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Fig. 1. Magnetic field strengths in nature.
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SPECIAL TOPIC—Spin and chiral effects in high energy heavy ion collisions

Electromagnetic field effects and anomalous chiral phenomena
in heavy-ion collisions at intermediate and high energy”
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1) (Key Laboratory of Nuclear Physics and Ion-beam Application, Ministry of Education, Institute of
Modern Physics, Fudan University, Shanghai 200433, China)
2) (Shanghai Research Center for Theoretical Nuclear Physics, National Natural Science
Foundation of China, Fudan University, Shanghai 200438, China)
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Abstract

Heavy-ion collisions can produce high-temperature and high-density quantum chromodynamics (QCD)
matter under extremely strong electromagnetic fields, which triggers off many important anomalous chiral
phenomena, such as the chiral magnetic effect and chiral magnetic wave. The anomalous chiral phenomena can
help to find the evidence of CP symmetry breaking in the strong interaction, deepen the understanding of the
QCD vacuum fluctuations, and disclose the mystery of asymmetry of antimatter-matter in the universe.

In this paper, firstly, the magnetic fields are investigated for small and large colliding systems at relativistic
heavy ion collider (RHIC) and large hadron collider (LHC). These studies indicate that collision energy and
initial nucleon structure have significant effects on magnetic fields. And, the lifetimes of magnetic field in
different media are very different in heavy-ion collisions. Then, in order to study the chiral magnetic effect,
some experimental observables are studied by using a multi-phase transport model without or with different
strengths of the chiral magnetic effect. For small systems, if QGP exists, the chiral magnetic effect could be
observed in the peripheral collisions. For isobaric collisions, the correlators with respect to the spectator plane
can imply a much cleaner signal of chiral magnetic effect than that with respect to the participant plane. Our
results support that the strength of chiral magnetic effect may be absent or small in isobaric collisions. Next,
some new strategies are applied to study the chiral magnetic wave. Moreover, a novel mechanism for the
electric quadrupole moment can also explain the charge-dependent elliptic flow of pions generated by the chiral
magnetic wave. In addition, some interesting phenomena also occur, owing to the magnetic field in heavy-ion
collisions at intermediate energy. The directed flow and elliptic flow of photons have no effect on magnetic field
at pr < 25 GeV. However, because of the magnetic field, the directed flow of photons decreases and the elliptic
flow of photons increases at pr > 25 GeV. Besides, the magnetic field has a significant effect on giant dipole
resonance, i.e. the magnetic field increases the angular momentum and enhances some observables of the giant
dipole resonance spectrum. In conclusion, magnetic field plays a key role in heavy-ion collisions at both high
energy and intermediate energy. It provides an unprecedented opportunity for studying the microscopic laws of

nuclear physics. However, there are still many unsolved problems that need further studying in the future.
Keywords: magnetic field, deformed nuclei, chiral magnetic effect, chiral magnetic wave
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