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Zusammenfassung

Die Produktion von W-Bosonen und zusätzlichen QCD-Jets am LHC ist von großem phäno-
menologischen Interesse. Da diese Prozesse sehr große Wirkungsquerschnitte besitzen, können
sie, auch wegen der klaren leptonischen Zerfalls-Signatur des W-Bosons, beispielsweise für eine
präzise Bestimmung der W-Masse oder zur Kalibrierung der Kollider-Luminosität verwendet
werden. Ein profundes theoretisches Verständnis dieser Prozessklasse ist daher erstrebenswert.

Um die Präzision der theoretischen Vorhersagen voranzutreiben, werden in dieser Arbeit die
elektroschwachen Strahlungskorrekturen in nächst-führender Ordnung der Kopplungskonstanten
α im Rahmen des Standard-Modells zur W+jet-Produktion am LHC und am Tevatron berechnet
und die resultierenden Effekte diskutiert. Da die Korrekturen zunächst in einem perturbativen
Zugang auf Parton-Niveau ausgewertet werden, arbeiten wir im Parton-Modell, in dem die per-
turbativen Anteile mit den nicht-perturbativen Parton-Verteilungsfunktionen gefaltet werden,
um realistische hadronische Wirkungsquerschnitte zu erhalten.

Die Rechnung wird sowohl für ein stabiles W-Boson auf seiner Massen-Schale durchgeführt,
als auch für ein intermediäres, leptonisch zerfallendes W-Boson. Neben virtuellen Schleifen-
Korrekturen müssen hierbei auch reelle Bremsstrahlungs-Korrekturen, verursacht durch die Ab-
strahlung eines zusätzlichen Photons, berücksichtigt werden, wobei in beiden Anteilen sogenannte
Massen-Singularitäten auftreten, die in der numerischen Auswertung sorgfältig behandelt werden
müssen. Für die Rechnung mit stabilem W-Boson verwenden wir die Methode des Phase-Space-

Slicings, um diese Singularitäten von der numerischen Phasenraum-Integration auszuschließen
und sie in den problematischen Bereichen des Phasenraumes analytisch auszuwerten. In der
Rechnung mit instabilem W-Boson hingegen werden die singulären Strukturen mittels der Me-
thode der Dipol-Subtraktion auf dem Niveau des Bremsstrahlungs-Integranden subtrahiert, um
eine stabile numerische Auswertung zu garantieren. Um eine konsistente Berechnung auch von
nicht-kollinear-sicheren Observablen zu ermöglichen, haben wir diese Subtraktions-Methode im
Rahmen der vorliegenden Arbeit entsprechend erweitert.

Neben dem Auftreten von Massen-Singularitäten beinhaltet die Berechnung der Strahlungs-
korrekturen zu Prozessen mit instabilem W-Boson die Schwierigkeit, dass eine endliche Zerfalls-
breite in die Rechnung eingeführt werden muss. Geschieht dies in unüberlegter Weise, kann
schon in führender Ordnung die Eichinvarianz der Amplitude verletzt sein. Wir arbeiten daher
im Complex-Mass-Scheme, das eine konsistente und eichinvariante Behandlung der endlichen
Lebensdauer des W-Bosons garantiert und in allen Regionen des Phasenraumes angewendet
werden kann.

Unsere Resultate sind in einem flexiblen Monte-Carlo Programm implementiert, das es er-
möglicht – neben totalen Wirkungsquerschnitten – alle physikalisch motivierten differentiellen
Wirkungsquerschnitte in Form von Histogrammen zu generieren. Es kann daher zukünftig als
Analyse-Tool für LHC-Daten verwendet werden, zumal die numerische Auswertung – neben
großen negativen elektroschwachen Korrekturen bei hohen Transversal-Impulsen – wichtige Kor-
rekturen zur Verteilung der transversalen Masse des Lepton-Paares in der Resonanz-Region
ergibt, die für eine präzise Bestimmung der W-Masse berücksichtigt werden sollten.





Abstract

The production of W bosons and additional jets at hadron colliders is a topic of great phe-
nomenological interest, because such processes have large cross sections and, owing to the clear
decay signature of the W boson, can for instance be used to monitor and calibrate the collider’s
luminosity, as well as for a precise determination of the W-boson mass and width. Thus, a
profound theoretical understanding of this process class is mandatory.

In order to improve the accuracy of the theoretical predictions, this thesis is devoted to the
calculation of the electroweak radiative corrections to the production of one W boson with one
associated jet at the LHC and the Tevatron within the Standard Model. Since these corrections
are at first evaluated on the parton level in a perturbative approach, we work in the parton
model, where the hadronic cross section is obtained by folding the partonic contributions with
the parton distribution functions that contain the non-perturbative information of the proton
structure and have to be determined by experiment.

We provide results for a stable W boson that is produced on its mass shell as well as for an
intermediate (off-shell) W boson decaying into a charged lepton and a neutrino. For a consistent
calculation of the next-to-leading order corrections, we have to take into account the virtual
one-loop contributions, as well as the real bremsstrahlung corrections caused by radiation of
one additional photon. Within both contributions, mass singularities appear that have to be
treated with care within the numerical evaluation. In the calculation with a stable W boson in
the final state, we use the method of phase-space slicing in order to exclude such singularities
from the numerical phase-space integration and calculate them analytically in the problematic
phase-space regions. For the off-shell calculation, however, we use the more sophisticated dipole
subtraction technique to subtract the infrared-singular structures on the integrand level to allow
for a stable numerical evaluation. Within this thesis, we extend this method to also enable the
consistent treatment of non-collinear-safe observables related to photon radiation off muons.

Additionally, the calculation of radiative corrections to processes involving an unstable W bo-
son leads to the problem that a finite particle width has to be consistently introduced in the
calculation. If this is done carelessly, gauge invariance might be destroyed even at the leading
order of the perturbative series. Thus, we work in the complex-mass scheme to account for a
proper inclusion of a finite W-boson width in our calculation. This particular scheme respects
gauge invariance and can be applied in all phase-space regions.

Our results are implemented into a flexible Monte Carlo code that allows for the calculation of
total cross sections and differential distributions, where in principle any event-selection criteria
that might be of physical interest can be applied. In the numerical analysis we observe large
negative electroweak corrections at large transverse momenta that can be attributed to universal
Sudakov logarithms. Moreover, relevant deviations in the shape of the transverse-mass distribu-
tion of the final-state lepton pair near the resonance are induced that are important with regard
to a precise determination of the W mass. Thus, our code can provide crucial information as a
tool for the analysis of LHC data.





Chapter 1

Motivation and introduction

The production of electroweak (EW) W and Z0 bosons with subsequent leptonic decays is
one of the most prominent Standard Model (SM) processes at present and future hadron
colliders like the Fermilab Tevatron and the CERN Large Hadron Collider (LHC). The
signatures are clean owing to the final-state leptons, and the cross sections are large. In
particular, the cross section for W-boson production at the LHC will be about ten times as
big as for Z0 production, corresponding to 200 events per second with a leptonic decay of
the W boson, when the collider operates at its design luminosity of LLHC = 1034 cm−2/s.

Due to the large cross sections and the resulting high statistics even at lower-luminosity
runs, the investigation of the charged-current Drell–Yan process

pp → W +X → lνl +X (1.0.1)

at the LHC will provide the possibility to directly measure the mass (MW) and width
(ΓW) of the W boson with the highest accuracy ever. For this purpose, the distributions
of the lepton transverse momentum (pT,l) or the transverse mass of the lepton pair (MT,lνl

)
that are obtained by experiment are compared to the theoretical predictions in a fitting
procedure [1, 2], since those leptonic observables exhibit a sensitive dependence on MW

and ΓW and are also well-suited for experimental reconstruction.
As pointed out in Ref. [2], a precise knowledge of MW and ΓW—which are essential

parameters of the SM—is desirable, since a comparison of direct measurements in single-
W production at the LHC with indirect measurements from a global fit to EW precision
data measured at LEP1/SLD [3], will provide a powerful test of the validity of the SM,
i.e. any significant disagreement could be interpreted as a hint to new physics beyond the
Standard Model (BSM). Aside, a precise determination of MW and the top-quark mass
mt will also allow us to further indirectly constrain the bounds on the mass MH of a SM
Higgs boson.

The current values for MW and ΓW stated by the Particle Data Group [4] are

MW = 80.398 ± 0.025 GeV, ΓW = 2.141 ± 0.041 GeV . (1.0.2)

They are obtained combining results from direct measurements at LEP and the Tevatron.
At the LHC, the (expected) experimental accuracy is so excellent that one hopes to further
improve the precision measurement ofMW to an accuracy of δMW

= 15 MeV [5], where gen-
erally the highest precision for the determination of the W mass can be achieved by fitting
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the MT,lνl
distribution near the Jacobian peak. In Ref. [1], the ATLAS collaboration even

states that for each exploitable leptonic W-boson decay channel (W → eνe, W → µνµ),
and for an integrated luminosity1 of 10 fb−1, an accuracy of δMW

= 7 MeV on the W-
boson mass is aspired in the high-precision mass determination. Additionally, the line-
shape of the MT,lνl

distribution in the off-shell region will give access to an accurate direct
determination of ΓW that might lead to a reduction of the corresponding uncertainty to
δΓW

= 30 MeV after an accumulated luminosity of 10 fb−1 is reached [2].
In addition to its relevance for mass determination, W-boson production can provide

important information in the fit of the parton distribution functions (PDFs) for valence-
and sea quarks by investigating the W-boson charge asymmetry [2]

A(yl) =
dσ+/dyl − dσ−/dyl

dσ+/dyl + dσ−/dyl
, (1.0.3)

at the LHC and the Tevatron, where

dσ± = dσ(pp/pp̄ → l±νl +X) , (1.0.4)

and yl denotes the rapidity of the charged lepton. Due to the high production rates,
W events may also serve as a luminosity monitor at the LHC, and they will help to
understand the detector performance in the early stage of data analysis [6]. Moreover, at
high energies, W bosons deliver background to searches for new heavy charged W′ gauge
bosons that are predicted in several extensions of the SM [7].

At hadron colliders, the EW gauge bosons are (almost) always produced together with
additional QCD radiation. The production cross section of W bosons in association with
a hard, visible jet,

pp/pp̄ → W + jet +X → lνl + jet +X, (1.0.5)

is still large. Moreover, the intermediate W boson recoils against the jet leading to a new
kinematical situation with boosted W bosons. For large pT of the jet the correspond-
ing events contain charged leptons and/or neutrinos with large pT. In fact, in the SM,
W + jet(s) production is the largest source for events with large missing transverse momen-
tum where also a charged lepton is present for triggering. Hence, W + jet(s) production is
not only a SM candle process. It is also an important background for a large class of new-
physics searches based on missing transverse momentum. In particular, W + jet(s) produc-
tion plays a crucial role—besides Z0 + jet(s) production and tt̄ events—in the one-lepton
search mode for R-parity-conserving supersymmetry (SUSY) scenarios at the LHC [8].
Apart from BSM-physics searches, W + 2 jets production also has to be considered as a
background process to the possible discovery channel

pp → W + H0 → lνl + bb̄ (1.0.6)

for a light SM Higgs boson which is produced via Higgs Strahlung and subsequently decays
into a bb̄ pair [9, 10].

To match the prospects and experimental importance of W+jet(s) production at hadron
colliders, excellent theoretical predictions are mandatory. The differential cross section for

1The value of 10 fb−1 will be reached after one year of stable running at a luminosity of
L = 1033 cm−2/s, corresponding to about 4·107 W events with a leptonic decay in the exploitable channels.
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W-boson production is known at NNLO accuracy with respect to QCD corrections [11] and
even up to N3LO in the soft-plus-virtual approximation [12]. The next-to-leading-order
(NLO) QCD corrections have been matched with parton showers [13] and combined with
a summation of soft gluon radiation (see ,e.g., Ref. [14]), which is particularly important
to reliably predict the transverse-momentum distribution of the W bosons for small pT.
A theoretical study of the QCD uncertainties in the determination of the W cross section
at hadron colliders has been presented in Ref. [15]. Concerning EW corrections, the full
NLO [16, 17, 18, 19] and leading higher-order effects, in particular due to multi-photon
final-state radiation [19, 20, 21, 22], have been calculated. The contributions of photon-
induced processes have been discussed in Refs. [22, 23, 24]. First steps towards combining
QCD and EW higher-order effects have been taken in Refs. [25, 26]. The NLO QCD and
EW corrections have also been calculated within the Minimal Supersymmetric Standard
Model (MSSM) [22].

The cross section for W+1 jet [27, 28] and W+2 jets [28] production is known at NLO
QCD, and the calculation of the NLO QCD corrections for the W + 3 jets cross section
has recently been completed [29, 30].

Since there has been such a great progress with respect to precision calculations for
W + jet(s) production on the QCD side, it is an important task to match this high ac-
curacy also in the EW sector. Since the NLO QCD corrections to W + jet production
formally provide a perturbative accuracy of O(α2α2

s ), a logical next step is to press ahead
with the calculation of the corresponding EW corrections that will deliver an even higher
accuracy of O(α3αs). For this reason, within this thesis we will present the calculation
of the full EW corrections to the hadronic process (1.0.5) within the SM, and provide a
substantial discussion of the numerical results.

As a reasonable starting point, we first present a fixed-order calculation of the EW ra-
diative corrections to the hadroproduction of an on-shell W boson with one associated
jet at the LHC and the Tevatron, where we put a special focus on a physically sensible
definition of jet observables. Within this on-shell approach, we are not forced to deal with
subtleties according to the finite width of the W boson, but, on the other hand, are also
not capable of describing observables that are related to its leptonic decay products. The
on-shell calculation presented in this work is an extension of my Diploma thesis [31] that
was elaborated at the University of Hamburg under the supervision of Bernd Kniehl.

The largest part of the thesis is then devoted to the calculation of the NLO EW corrections
to W + jet hadroproduction with a leptonic final state as in (1.0.5). Since the inclusion
of a finite particle width within a fixed-order perturbative calculation is a non-trivial
task, we describe how the W resonance can be treated consistently using the complex-
mass scheme [32, 33]. Another important topic we discuss in detail is—as in the on-shell
calculation—the definition of physically meaningful jet observables.

We want to point out that all off-shell effects due to the finite width of the W boson
are included in our calculation. Our results have been implemented in a fully flexible
Monte Carlo code which is able to calculate binned distributions for all physically relevant
W + 1 jet observables at NLO accuracy.

As will be discussed later, in real-emission events we are confronted with a soft-gluon
singularity that appears in the phase-space integration if the energy of a radiated gluon
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becomes arbitrarily small. This singularity will destroy the perturbative result if not
treated with special care. To solve this problem, we distinguish W + jet and W + photon
production by a cut on the photon energy fraction inside the jet, employing a measured
quark-to-photon fragmentation function [34], if the photon and the jet are collinear in
phase space.

To reach the accuracy of O(αsα
3) throughout the calculation we have also included the

photon-induced partonic processes and the respective NLO QCD corrections. Also non-
trivial interference terms between EW and QCD diagrams within the real corrections have
been included at this order. Moreover, we have recalculated the NLO QCD corrections
at O(α2

sα
2) in a fully flexible way, supporting a phase-space dependent choice for the

factorization and renormalization scales.
Our calculation is completely generic in the sense that it can predict observables that

are dominated by W bosons close to their mass shell as well as observables for which the
exchanged W boson is far off-shell. The calculation of the EW corrections for W-boson
production in association with a hard jet is also a step towards a better understanding
of the interplay between QCD and EW corrections for W production in general. This
understanding—including a full treatment of off-shell W bosons—is important to match
the envisaged experimental accuracy for the W-mass measurement at the Tevatron and
the LHC [26].

In the calculation of radiative corrections to SM processes including light or massless
particles, one has to face the problem of so-called mass singularities. Such singularities
have to be treated carefully in the evaluation of cross sections. Over the last decades,
different techniques have been developed to handle these singularities in such a way that
they can be controlled on the analytical level. One possibility to extract the mass singu-
larities from the numerical evaluation is to exclude the problematic phase-space regions
by means of slicing parameters, and to evaluate the singular structures analytically using
appropriate regulators. The non-singular structures of the phase-space integrals can then
be computed analytically without regulators. This method is known as phase-space slicing.
We have applied the slicing approach within the on-shell calculation outlined above.

Besides the well-known slicing prescriptions, there are several subtraction techniques in
the literature that follow a different strategy. Within this approach, an auxiliary function is
subtracted from the singular integrand that is constructed in such a way that it cancels all
mass-singular structures of the integrand pointwise during the numerical integration. This
auxiliary function is then integrated analytically over the singular phase-space structures
using proper regulators, and readded to the result afterwards. In the end, the same
contribution is readded that has been subtracted before, but the mass singularities are
excluded from the involved numerical integration. Specifically, the treatment of mass
singularities connected to photon radiation off fermions using the dipole subtraction method
has been worked out in Ref. [35].

However, attacking the challenge of the calculation of EW corrections to W + jet
hadroproduction including a leptonic decay of the W boson, we are facing the problem
of collinear singularities related to photon emission off final-state muons. To allow for
the calculation of observables where a collinear photon–muon pair can be separated by
experiment, we extend the dipole subtraction technique for so-called non-collinear-safe
observables within this thesis.
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This thesis is organized as follows:

• In Chapter 2 we first discuss the most important features of the Standard Model of
particle physics. Then we address the topic of a finite particle width in a fixed-order
NLO calculation, where we put special emphasis on the complex-mass scheme for
unstable particles. Finally, we outline how hadronic cross sections can be calculated
from partonic cross sections that are obtained in a perturbative approach.

• Chapter 3 is devoted to the important topic of infrared (IR) or mass singularities in
QED and QCD. The origin of such singularities is explained, and we discuss in detail
how the different types of IR singularities have to be dealt with to obtain consistent
physical results.

• Chapter 4 contains a rather technical discussion of the dipole subtraction method in
NLO QED and QCD that was developed to enable the treatment of IR singularities
within real radiative corrections in a general and straight-forward way. Building on
these concepts, we have extended the dipole subtraction method to the treatment of
non-collinear-safe observables in QED [36].

• In Chapter 5 we present a detailed discussion of the calculation of the EW corrections
to on-shell W + jet production at hadron colliders, closely following Ref. [37]. This
chapter is in principle self-contained and can be read as a preparation to the more-
involved off-shell calculation. Results for the same class of corrections have also been
published in Refs. [38, 39], where a slightly different definition of jet observables was
used. For a discussion of virtual SUSY effects on W + jet production we refer the
reader to Ref. [40].

• Chapter 6 contains a discussion of our general strategy for the calculation of the
radiative corrections to W + jet hadroproduction including a leptonic decay of the
W boson. We list the different contributions to the NLO cross section and present the
relevant physical concepts that are applied within the computation of the radiative
corrections, always referring to the parts of the thesis where those problems are
elaborated in more detail.

• In Chapter 7, we list the amplitudes that contribute to process (1.0.5) on the parton
level at LO, using the Weyl–van-der-Waerden spinor formalism that is outlined at
the beginning of the chapter.

• In Chapter 8, we provide the contributions explicitly that have to be calculated
within the real-radiation processes, covering the EW and QCD corrections as well
as the interference contributions of QCD and EW diagrams.

• Chapter 9 contains a discussions of the virtual EW and QCD corrections, including
the counterterm contributions that have to be taken into account to absorb the
ultraviolet (UV) divergences that appear in the one-loop amplitudes.

• In Chapter 10 we define the recombination procedure and the event-selection cuts
we apply to define physical observables from final-state momenta. Additionally,
we present the explicit formulae that are needed to calculate the hadronic cross
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sections from the partonic ones, including an explicit prescription of how the NLO
contributions have to be included into the hadronic calculation.

• Before we conclude in Chapter 12, we provide a discussion of the numerical results
in Chapter 11. The contents presented in Chapters 6 – 11 have been published in
Ref. [41].



Chapter 2

Theoretical background

2.1 The Standard Model of particle physics

The Standard Model of particle physics (SM) describes the electroweak (EW) and the
strong interactions of elementary particles as a relativistic quantum field theory (QFT)
which is formulated in terms of a local non-abelian gauge theory with the underlying gauge
group

SU(3)C × SU(2)W × U(1)Y . (2.1.1)

Here, the colour group SU(3)C denotes the internal symmetry group of the strong inter-
action that is described by the theory of Quantum Chromodynamics (QCD) [42, 43, 44].
In the EW part of the SM, the group SU(2)W represents the symmetry group of the weak
isospin with the three generators Ia, a = 1, 2, 3, and the group U(1)Y is generated by the
weak hypercharge Y .

The fermionic matter fields transform in the fundamental representation of the symme-
try group (2.1.1), while the bosonic gauge fields that mediate the forces between particles
live in the adjoint representation. The classical Lagrangian LC that governs the physical
interactions of massless fermions and gauge bosons is constructed in such a way that it is
invariant under local gauge transformations of the symmetry group (2.1.1). Some basic
definitions for gauge groups and Lie algebras can be found in Appendix A.2.

Unfortunately, explicitly introducing mass terms for the weak vector bosons or the
fermions would violate the local gauge symmetry of the Lagrangian. Therefore, within the
EW part of the SM, vector-boson masses and fermion masses are generated via the Higgs
mechanism [45]: By introducing an additional complex scalar field (the Higgs field) with a
non-vanishing vacuum expectation value (vev) in the EW sector, the local SU(2)W×U(1)Y

symmetry is spontaneously broken, and only the electromagnetic gauge symmetry U(1)em

is preserved. As a result, three of the four vector bosons receive masses, and only one
degree of freedom that later can be identified with the photon field stays massless, as it is
observed in experiment.

Spontaneous symmetry breaking also generates fermion masses through the Yukawa
couplings of the Higgs field to the fermion fields. Nevertheless, those Yukawa terms have
to be inserted into the classical Lagrangian by hand, while the couplings of the Higgs field
to the massive gauge bosons are generated by the covariant derivative. In the QCD sector
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of the SM the gauge symmetry remains unbroken, and the eight vector bosons (gluons)
that correspond to the eight generators of SU(3)C are exactly massless.

To allow for a correct quantization of a non-abelian gauge theory via the path-integral
formalism, one has to solve the problem of divergences in the corresponding functional
integral that are caused by the integration over physically equivalent configurations which
are related by gauge transformations. Following the ansatz of Faddeev and Popov [46], one
introduces a gauge-fixing condition into the functional integral and rewrites the underlying
effective Lagrangian according to

Leff = LC + Lfix + LFP , (2.1.2)

where the gauge-fixing Lagrangian Lfix contains the gauge parameter ξ, and the Faddeev–
Popov contribution LFP describes the interactions of gauge bosons and the Grassmann-
valued Faddeev–Popov ghost fields. These anticommuting scalar fields violate the spin-
statistics theorem. However, this does not raise any problems, because they are unphysical
degrees of freedom which occur in perturbative calculations only inside loops.

We will now briefly discuss the matter content of the SM and the overall structure of
the EW and the strong interaction, both to fix our notation and to provide the reader
with the concepts that build the framework of this thesis.

2.1.1 The EW part of the SM

We now outline the most important ingredients and principles that govern the EW in-
teractions of elementary particles, following the presentation of [47]. For an extensive
discussion of this subject we refer the reader to Chapter 4 of [48].

The EW sector of the SM (EWSM), also known as the Glashow–Salam–Weinberg
(GSW) model [49], describes the fundamental EW interactions of all known elementary
spin-1

2
fermions. To ensure local gauge symmetry of the Lagrangian that determines the

free propagation of those fermions, one introduces bosonic degrees of freedom into the
theory that couple to the fermion fields by means of a covariant derivative.

In nature one observes three generations of left-handed quarks and leptons that trans-
form as SU(2)W doublets,

L′L
j =


 ν ′Lj

l′Lj


 , Q′L

j =


 u′Lj

d′Lj


 , (2.1.3)

where j = 1, 2, 3 is the generation index. The right-handed leptons, up-, and down-type
quarks l′Rj , u′Rj , and d′Rj transform as SU(2)W singlets. In contrast to the leptons, the
quarks also take part in the strong interaction that will be discussed in Section 2.1.2.
In (2.1.3), the prime indicates that we assume the fermions to be eigenstates of the EW
interaction. The elementary fermions can be classified according to the third component
I3 of the weak isospin and their weak hypercharge Y , and the electric charge Q of a fermion
is given by the Gell-Mann–Nishijima formula,

Q = I3 +
Y

2
. (2.1.4)
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As a classical field theory, the EW interactions are described by the classical Lagrangian
LC that is given by the sum of a Yang–Mills part, a fermionic part, a Higgs part, and a
Yukawa part,

LC = Lgauge + Lferm + LHiggs + LYukawa , (2.1.5)

where all contributions are separately gauge invariant. We will now discuss the different
contributions in some detail.

Interactions of fermions and weak gauge bosons

The Yang–Mills part Lgauge governs the kinematic properties of the weak gauge fields
W a

µ , a = 1, 2, 3, and Bµ that can be associated with the connections of SU(2)W and
U(1)Y, respectively. We define the field-strength tensors

Bµν = ∂µBν − ∂νBµ ,

W a
µν = ∂µW

a
ν − ∂νW

a
µ + g2ǫ

abcW b
µW

c
ν , (2.1.6)

where the ǫabc denote the total-antisymmetric structure functions of SU(2)W, and g2 is the
corresponding coupling constant. The gauge contribution to the Lagrangian can now be
written as

Lgauge = −1

4
W a

µνW
µν,a − 1

4
BµνB

µν . (2.1.7)

We also introduce the covariant derivative

Dµ = ∂µ − ig2I
aW a

µ + ig1
Y

2
Bµ , (2.1.8)

where g1 is the U(1)Y coupling constant. Employing (2.1.8), the fermionic Lagrangian that
describes the physics of the free massless fermion fields and the interactions of fermions
with gauge bosons can be specified as

Lferm =
3∑

i=1

(
L′L

i i /DL′L
i +Q′L

i i /DQ′L
i + l′

R

i i /Dl′Ri + u′
R

i i /Du′Ri + d′
R

i i /Dd′Ri

)
. (2.1.9)

Spontaneous symmetry breaking – the Higgs mechanism

Until now, the fermion and gauge-boson fields that are part of the gauge theory with
unbroken EW symmetry are exactly massless. To generate particle masses, in LHiggs we
introduce a single complex scalar field

Φ(x) =


φ+(x)

φ0(x)


 (2.1.10)

with hypercharge YΦ = 1 that transforms as an SU(2)W doublet and is coupled to the
gauge fields of the theory via the covariant derivative (2.1.8),

LHiggs = (DµΦ)†(DµΦ) − V (Φ) . (2.1.11)
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The so-called Higgs potential

V (Φ) =
λ

4
(Φ†Φ)2 − µ2(Φ†Φ) , λ, µ2 > 0 , (2.1.12)

where λ denotes the Higgs self coupling, and µ2 is a mass parameter, initiates the sponta-
neous symmetry breaking in the following way:

The minimum of the potential V (Φ) is degenerate, i.e. all field configurations that fulfill
the condition

|Φ|2 =
v2

2
, v = 2µ/λ , (2.1.13)

minimize the potential V (Φ), and the non-vanishing vev of the Higgs potential is given
by |〈0|Φ|0〉| = v/

√
2. While different vacuum states that obey the condition (2.1.13) are

mapped onto each other by SU(2)W transformations, a specific ground state does not
exhibit SU(2)W symmetry anymore. Therefore, choosing

Φ0 =
1√
2


 0

v


 (2.1.14)

as vacuum state, the SU(2)W × U(1)Y symmetry is spontaneously broken, since Φ0 is
in general not invariant under the corresponding gauge transformations. However, the
invariance with respect to transformations of the electromagnetic gauge group U(1)em

is preserved, because the non-vanishing vev only affects the φ0 component of Φ that is
electrically neutral.

In perturbation theory, the scalar doublet Φ has to be expanded around its vev according
to

Φ(x) =


 φ+(x)

1√
2
[v +H(x) + iχ(x)]


 , φ−(x) = [φ+(x)]∗ . (2.1.15)

The fields φ± and χ can be eliminated by an adequate gauge transformation and therefore
are not related to physical particles, whereas the real scalar field H(x) corresponds to the
neutral scalar Higgs particle H0 that contributes to the particle content of the SM. The
mass of the Higgs particle,

MH =
√

2µ , (2.1.16)

is a free parameter of the SM that cannot be derived from other known quantities.
The Yukawa contributions to the SM Lagrangian are obtained by introducing interac-

tion terms of fermions with the field Φ in the theory,

LYukawa =
3∑

i,j=1

(
L′L

i G
l
ijl

′R
j Φ +Q′L

i G
u
iju

′R
j Φ̃ +Q′L

i G
d
ijd

′R
j Φ + h.c

)
, (2.1.17)

where Φ̃ = [φ0∗,−φ−]T, and the 3 × 3 Yukawa coupling matrices for leptons, up-, and
down-type quarks are denoted with Gl

ij, G
u
ij, and Gd

ij, respectively.
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Mass and charge eigenstates in the SM

In any experiment one will not observe particles that correspond to eigenstates of the EW
interaction, but to mass and charge eigenstates. Since the physical gauge bosons have
vanishing hypercharge, the charge eigenstates can be found by the determination of the
eigenstates of the isospin generator I3 that are given by the four contributions

W±
µ (x) =

1√
2
[W 1

µ ∓W 2
µ ] , W 3

µ(x) , Bµ(x) . (2.1.18)

Reformulating LHiggs by using the fields W±
µ instead of W 1

µ and W 2
µ , one finds that the

fields W±
µ already correspond to mass eigenstates and can therefore be associated with the

charged physical vector bosons W± with masses

MW =
1

2
g2 v . (2.1.19)

Diagonalizing the mass matrix of the fields W 3
µ and Bµ within LHiggs, one finds that the

neutral vector-boson fields Zµ and Aµ are given by


Zµ

Aµ


 =


 cW sW

−sW cW




W 3

µ

Bµ


 , (2.1.20)

where we have defined the weak mixing angle θW,

cW = cos θW =
g2√
g2
1 + g2

2

, sW = sin θW . (2.1.21)

The mass of the neutral Z0 boson that corresponds to the field Zµ reads

MZ =
v

2

√
g2
1 + g2

2 , (2.1.22)

and the massless field Aµ is identified with the photon. Using Eqs. (2.1.19), (2.1.21), and
(2.1.22), the weak mixing angle can be written as

cW =
MW

MZ
. (2.1.23)

The fermion fields associated to physical particles are obtained from the EW eigenstates
according to

fL
i =

∑

k

U f,L
ik f ′L

k , fR
i =

∑

k

U f,R
ik f ′R

k , (2.1.24)

where the matrices U
f,L/R
ik diagonalize the Yukawa coupling matrices, so that the fermion

masses that are induced by spontaneous symmetry breaking are given by

mf,i =
v√
2

∑

k,m

U f,L
ik Gf

kmU
f,R†
mi . (2.1.25)
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After diagonalizing the fermion-mass matrices and rewriting the Lagrangian LC in terms
of physical fields, one observes that the coupling of W± bosons to one up- and down-type
quark receives an additional factor

Vij =
∑

k

Uu,L
ik Ud,L†

kj . (2.1.26)

The unitary quark-mixing matrix Vij is known as the Cabibbo–Kobayashi–Maskawa (CKM)
matrix that quantifies the mixing of different quark families in charged-current processes.
Since all neutrinos are assumed massless and thus are degenerate in mass with each other,
the matrix U ν,L

ik can be chosen freely, and the neutrino fields

νL
i =

∑

k

U l,L
ik ν

′L
k (2.1.27)

are defined in such a way that the lepton–W-boson interaction is diagonal at tree level.
The electrical charge e =

√
4πα is defined as the coupling constant multiplying the

fermion–photon vertex and can be expressed in terms of the fundamental gauge couplings
as

e =
g1g2√
g2
1 + g2

2

. (2.1.28)

After we have identified all input parameters and all fields that can be assigned to physical
particles within the EW part of the SM, we can now rewrite the SM Lagrangian LC in
terms of those fields and the independent parameters

e,MW,MZ,MH,mf,i, Vij , (2.1.29)

that are not fixed by the theory, but have to be determined by experiment.

Gauge fixing and ghost fields

As stated above, we add a gauge-fixing Lagrangian

Lfix = − 1

2ξA
[FA(x)]2 − 1

2ξZ
[FZ(x)]2 − 1

ξW
F+(x)F−(x) (2.1.30)

to the classical expression LC to enable the proper quantization of the theory, where we
choose the linear gauge-fixing functionals

F±(x) = ∂µW±
µ (x) ∓ iMWξ

′
Wφ

±(x) ,

FZ(x) = ∂µZµ(x) − iMZξ
′
Zχ(x) ,

FA(x) = ∂µAµ(x) . (2.1.31)

It is convenient to work in the ’t Hooft gauge that is defined via ξW = ξ′W and ξZ = ξ′Z ,
respectively. For this special choice, the terms involving the would-be Goldstone fields φ±

and χ in (2.1.31) will exactly cancel the mixing terms V µ∂µφ
± and V µ∂µχ of the physical

vector bosons and the unphysical fields in LC that are induced by spontaneous symmetry
breaking.
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Additionally, the ghost-field Lagrangian

LFP = ūa(x)
δF a

δθb(x)
ub(x) (2.1.32)

has to be added to the theory that contains the Faddeev–Popov ghosts ua(x), ūa(x) (a =
±, A, Z), and the variations δF a of the gauge-fixing operators under infinitesimal group
transformations quantified by the group parameters δθb(x). The choice ξW = ξZ = ξA = 1
defines the so called ’t Hooft–Feynman gauge. In this gauge, the masses that correspond
to physical fields equal those that are associated to unphysical fields, and the kµkν terms
in the propagators are absent. Therefore, this choice is especially convenient for the
calculation of higher-order corrections.

Taking gauge-fixing terms and Faddeev–Popov terms into account, the full Lagrangian
of the GSW theory can be written as

LGSW = LC + Lfix + LFP , (2.1.33)

where LC is given by (2.1.5). The corresponding Feynman rules that follow from (2.1.33)
can be taken from Appendix A of [47].

2.1.2 The QCD Lagrangian

The strong interaction of colour-charged particles (quarks and gluons) is described by
QCD, the quantum theory of the unbroken local SU(3)C gauge symmetry. Here, we briefly
sketch the construction of the corresponding Lagrangian. For a detailed discussion of the
various features of QCD see, e.g., Chapter 3 of [48].

For simplicity, we now switch off the EW interactions and rewrite the Lagrangian for
free massive quarks qi in terms of mass eigenstates,

Lfree quarks =
∑

q=u,d

3∑

j=1

q̄j(x)
(
i/∂ −mj

)
qj(x) , (2.1.34)

where j = 1, 2, 3 assigns the generation of u- and d-type quarks, and each quark field

qj =




q1
j

q2
j

q3
j


 (2.1.35)

transforms as a triplet in colour space, since it belongs to the fundamental represen-
tation of SU(3)C. The Lagrangian (2.1.34) is invariant with respect to global SU(3)C

transformations, but violates local gauge invariance. Therefore, we introduce a bosonic
eight-component gluon field Ga

µ(x), a = 1, . . . , 8, via minimal substitution by means of a
covariant derivative, i.e. we replace the bare derivative ∂µ according to

∂µ → Dµ = ∂µ + igsGµ(x) , (2.1.36)
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with the strong coupling constant gs =
√

4παs, and the traceless hermitian 3 × 3 matrix
Gµ(x) = Ga

µ(x)T a, where the matrices T a denote the eight generators of SU(3)C. The
gluonic field-strength tensor

Ga
µν(x) = ∂µG

a
ν(x) − ∂νG

a
µ(x) − i gsf

abcGb
µ(x)Gc

ν(x) , (2.1.37)

where the fabc are the structure functions of SU(3)C, is needed to express the Lagrangian

Lgluon = −1

4
Ga

µν(x)G
µν,a(x) , (2.1.38)

that governs the dynamics and self interactions of the gluon fields. Defining the colour-
space matrix Gµν(x) = Ga

µν(x)T
a, the full QCD Lagrangian can be written in a compact

form as

LQCD = −1

2
Tr [Gµν(x)G

µν(x)] +
∑

q=u,d

3∑

j=1

q̄j(x)
(
i /D −mj

)
qj(x) . (2.1.39)

Gauge fixing and ghost fields

As in the EW case, we introduce gauge-fixing terms and ghost fields into the classical
Lagrangian LQCD to allow for a consistent quantization of QCD via the Faddeev–Popov
formalism, resulting in the expression

LQCD, eff = LQCD + Lfix,QCD + LFP,QCD , (2.1.40)

for the effective Lagrangian of QCD. The gauge-fixing Lagrangian explicitly reads

Lfix,QCD =
1

2ξG
[∂µGa

µ(x)][∂νGa
ν(x)] , (2.1.41)

and the ghost-field contribution is given by

LFP,QCD = −ūa(x) ∂µDab
µ ub(x) , (2.1.42)

where we have introduced the derivative

Dµ,ab = ∂µδab − i gs (T c
adj)abG

c
µ(x) (2.1.43)

in the adjoint representation. The Feynman rules that are deduced from (2.1.40) can ,e.g.,
be found in Section 2.4.2.2 of [48].

2.1.3 Renormalization of the SM: the on-shell scheme

The independent input parameters (2.1.29) that enter the SM Lagrangian (2.1.33) are
equivalent to the experimentally determined physical quantities only at tree level. Taking
higher-order corrections into account, the simple tree-level definitions of the input pa-
rameters do not match their original physical meaning anymore, and the so-called “bare”
parameters have to be redefined to predict the experimental results properly. This pro-
cedure is called renormalization. For instance, at tree level, the particle mass equals the
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zero of the corresponding propagator that describes the free propagation of the particle.
Including higher-order effects, the position of the zero will be slightly shifted, and the
tree-level mass cannot be regarded as a physical quantity anymore.

After renormalization, physical predictions have to be formulated in terms of a set of
independent renormalized input parameters, and their actual values have to be deter-
mined by experiment. The procedure of renormalization has to be specified by certain
renormalization conditions that fix the physical input parameters. Those renormaliza-
tion conditions can be formulated in different ways, and accordingly different so-called
renormalization schemes exist.

Dimensional regularization

The calculation of higher-order effects comprises the necessity of calculating loop inte-
grals, where four-momenta of internal particles are not fixed by the external momenta and
therefore have to be integrated over all accessible momentum configurations. For one-loop
corrections as considered in this thesis, such integrals will be of the form

∫
d4q (. . .) with

d4q ≡ dq0d3q, i.e. the one independent loop four-momentum q has to be integrated over
the complete Minkowski space. The loop integrals that appear in one-loop corrections to
SM processes may diverge if components of the integration momentum q get too large,
resulting in so-called ultraviolet (UV) divergences. Those divergences may be cured by
introducing a large cut-off scale ΛUV that will work as a regulator. However, since intro-
ducing a cut-off scale in loop integrals is a non-Lorentz-invariant approach, we will use
the method of dimensional regularization [50, 51] that respects Lorentz- as well as gauge
invariance of the theory. In dimensional regularization, loop integrals are evaluated in
d = 4 − 2ǫ space-time dimensions, where ǫ is an in principle arbitrary complex quantity.
In dimensional regularization, we have to replace the four-dimensional integrals according
to

∫
d4q (. . .)|4 dim. → (2πµ)4−d

∫
ddq (. . .)|d dim. , (2.1.44)

where the reference-mass scale µ was introduced to preserve the correct mass dimension
of the integral, and the subscripts indicate that the Lorentz- and Dirac structures that
appear within (. . .) also have to be evaluated in d dimensions. In d space-time dimensions,
the UV divergences are calculable and will appear as regular 1/ǫ poles in the underlying
expressions.

After the application of an adequate renormalization procedure, any physical result has
to be UV finite, i.e. the 1/ǫ poles will be absorbed in the relations of bare and renormalized
parameters. After the cancellation of UV divergences, the limit ǫ → 0 can easily be
achieved, and the theoretical predictions can be formulated in four space-time dimensions.

A theory is called renormalizable if its theoretical predictions are UV finite after the
redefinition of a finite number of input parameters at any perturbative order. It was
proven by ’t Hooft [52, 53] that non-abelian gauge theories with spontaneous symmetry
breaking, such as the SM, are renormalizable theories. Therefore, within the SM we can
provide meaningful theoretical predictions that can be compared to experimental data.
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The on-shell renormalization scheme

For the calculation of the EW radiative corrections to on-shell W bosons and one jet
which is described in Chapter 5, we will use the on-shell renormalization scheme [54] for
the renormalization of the Lagrangian at the one-loop order, as described in detail in
Chapter 3 of [47]. This scheme is defined in such a way that the redefined parameters of
the underlying theory match the physical quantities that are measured by experiment.

For the technical application of the on-shell renormalization scheme we follow the coun-
terterm approach, applying a multiplicative renormalization, where the bare, unrenormal-
ized parameters (denoted by a subscript 0) are given as a product of the renormalized
ones and adequate renormalization constants Z that are fixed by the corresponding renor-
malization conditions. These renormalization constants are then Taylor expanded in the
one-loop approximation, Z = 1 + δZ + O(α2), where δZ denotes the counterterm con-
tribution. In the following, we will sketch the renormalization procedure as far as it is
needed for our explicit calculation. Thus, we will not discuss the renormalization prescrip-
tions for the Higgs mass and the Higgs field, and there will also be no discussion of the
renormalization of an external photon field.

In case of an external on-shell vector boson there is no need to renormalize the vector-
boson mass. However, the renormalization of the vector-boson masses will be of special
interest when we consider the more realistic case of a leptonically decaying vector boson.
For this reason, we also list the corresponding expression in the on-shell scheme, although
the mass renormalization for unstable vector bosons will finally be carried out in the
complex-mass scheme that will be discussed in detail in Section 2.2.4.

We first split the bare vector-boson masses M 2
V,0 according to

M 2
V,0 = M 2

V + δM 2
V , V = W, Z , (2.1.45)

and the counterterm contributions explicitly read

δM 2
W = ReΣW

T (M 2
W) , δM 2

Z = ReΣZZ
T (M 2

Z) , (2.1.46)

where ΣT denotes the transverse parts of the corresponding unrenormalized self-energies.
To derive (2.1.46), we have demanded that the real part of the renormalized vector-boson
2-point function, projected on a physical state εµ(k), equals zero if the particle is on its
mass shell, i.e. k2 = M 2

V is valid.
Since we will neglect light fermion masses in our calculation whenever possible, we

do not have to perform a mass renormalization for light quarks and leptons, because
the corresponding counterterm contributions are suppressed by factors of the small mass
parameters. We also do not renormalize the quark-mixing matrix Vij and assume that it
is diagonal within the calculation of the one-loop corrections, since the off-diagonal effects
as well as the counterterm contributions are expected to be negligible.

The bare weak mixing angle

c2w,0 = 1 − s2
w,0 =

M 2
W,0

M 2
Z,0

(2.1.47)

is renormalized via
cw,0 = cW + δcW , sw,0 = sW + δsW , (2.1.48)
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and the counterterms are directly related to the counterterms of the weak gauge-boson
masses, yielding

δcW

cW

= −s
2
W

c2W

δsW

sW

=
1

2
Re

(
ΣW

T (M 2
W)

M 2
W

− ΣZZ
T (M 2

Z)

M 2
Z

)
. (2.1.49)

Note that this renormalization prescription preserves the relation c2W = M 2
W/M

2
Z for the

renormalized quantities.
Following the idea of the multiplicative renormalization, we rewrite the bare vector-

boson fields according to

W±
0 = (1 + 1

2
δZW )W± ,


Z0

A0


 =


 1 + 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1 + 1

2
δZAA




Z

A


 , (2.1.50)

where W and Z denote the fields of the two massive weak vector bosons, and A is the
photon field, respectively. The vector-boson and fermion fields are renormalized in such
a way that the residues of the particle propagators are equal to one for on-shell particles,
leading us to the explicit expressions

δZW = −Re Σ′W
T (M 2

W) , δZZZ = −Re Σ′ZZ
T (M 2

Z) (2.1.51)

for the counterterms of the massive vector-boson fields, where Σ′(x) ≡ ∂Σ(p2)/∂p2|p2=x.
The bare external left(L)- and right(R)-handed fermion fields are redefined as

fσ
0 = (1 + 1

2
δZσ

ff̄ ) f
σ , σ = R ,L , (2.1.52)

and the field renormalization constants δZ
R/L

f f̄
are explicitly given by

δZσ
ff̄ = −Re Σf f̄

σ (m2
f) −m2

f Re
[
Σ′f f̄

R (m2
f) + Σ′f f̄

L (m2
f) + 2 Σ′f f̄

S (m2
f)
]
, (2.1.53)

which is a function of the left-/right-handed and the scalar (S) part of the unrenormalized
fermion self-energies.

The bare electric charge
e0 = (1 + δZe) e , (2.1.54)

which parametrizes the QED coupling at tree level, is renormalized in such a way that
the one-loop expression for the QED vertex γff̄ matches its tree-level definition in the
Thomson limit of vanishing four-momentum transfer by the photon. This renormalization
prescription leads to the expression

δZe =
1

2
Σ′AA

T (0) − sW

cW

ΣAZ
T (0)

M 2
Z

, (2.1.55)

for the charge renormalization constant.
Applying the multiplicative renormalization as pointed out above, the bare Lagrangian

L0 that is formulated in terms of bare parameters, can be rewritten according to

L0 = L + δL , (2.1.56)
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where we have neglected two-loop contributions. The renormalized Lagrangian L is a
function of the renormalized input parameters with the same functional dependence as L0

on the bare parameters. The term δL contains all counterterm contributions which are
expressed in terms of (potentially UV divergent) unrenormalized self-energies. Equation
(2.1.56) can be used to derive Feynman rules for the counterterm contributions. Within
a consistent one-loop calculation in the EW SM, the UV divergences which emerge in the
specific one-loop corrections will cancel against universal counterparts that arise from δL
already at the amplitude level.

2.2 Resonances in QFT – unstable particles

Unstable particles play an important role in high-energy physics, since many SM particles
(like the scalar Higgs boson, the weak vector bosons, and the top quark) have a very
short lifetime and can only be identified in any experiment via their decay products. The
distribution of the invariant mass

√
Q2 of those decay products will typically follow a

Breit–Wigner shape around the mass m of the decaying particle,

dσ

dQ2
∝ 1

(Q2 −m2)2 +m2Γ2
, (2.2.1)

where Γ denotes the total decay width of the resonant particle which is directly related to
its lifetime τ by

Γ =
1

τ
, (2.2.2)

according to the energy–time uncertainty in quantum mechanics. For reasons of simplicity,
one often works in the approximation that unstable particles are produced on their mass
shell and have an infinite lifetime. This assumption usually strongly reduces the complexity
of the problem under consideration, since one only investigates the production of the
particle and does not take into account its possible decay channels. For instance, in
Chapter 5 of this thesis we will examine the production of on-shell W bosons at hadron
colliders. At tree level, the treatment of resonances as stable particles does not raise any
problems. By contrast, at next-to-leading order (NLO) this procedure may for instance
result in the appearance of unphysical Landau singularities, as can be observed in the
Z0Z0 → Z0Z0 scattering process [55].

We wish to perform an NLO calculation for a realistic physical process involving res-
onant vector bosons that decay into leptons. Therefore, and to avoid the conceptual
problems stated above, we need a proper treatment of the finite width of the vector boson
to allow for a consistent computation of quantum corrections within a field-theoretical
framework.

2.2.1 Naive inclusion of a finite width

One could naively introduce the finite width Γ into the calculation via the replacement

m2 → m2 − imΓ (2.2.3)
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in the propagator P (p2) of the resonant particle,

P (p2) ∝ 1

p2 −m2
→ 1

p2 −m2 + imΓ
. (2.2.4)

This procedure seems very promising, since the replacement (2.2.3) will yield the typical
Breit–Wigner shape (2.2.1) for the cross section. Unfortunately, however, in gauge theories
the naive inclusion of a finite width may destroy gauge invariance already at the Born
level, since the Dyson summation (see next subsection) effectively leads to a mixing of
perturbative orders so that incomplete gauge-dependent higher-order contributions enter
the calculation.

At NLO, the situation is even more involved. On the one hand, the particles’ masses
have to be redefined in a renormalization procedure to absorb the UV-singular contribu-
tions in the relation between the bare parameters and the renormalized, physical quantities.
On the other hand, the introduction of a finite width at leading order (LO) may implicitly
include certain NLO contributions that have to be subtracted from the perturbative NLO
contributions again to avoid double counting.

We will first discuss the implementation of a finite width within the on-shell renormal-
ization scheme and point out the severe problems arising in this approach. Afterwards,
we will present the pole definition of the mass that is considerably better suited to handle
resonances in the framework of NLO calculations.

2.2.2 Mass and width in the on-shell scheme

In standard perturbation theory, propagators do not contain the decay width explicitly;
in fact, the particle width enters the perturbative calculation via the Dyson summation of
one-particle-irreducible (1PI) self-energy insertions Σ(p2) of its propagator. For instance,
the inverse propagator of a scalar particle at any perturbative order is given by

P−1(p2) = p2 −m2
0 + Σ(p2) , (2.2.5)

where Σ(p2) for unstable particles in general is a complex quantity near the particle pole.
In the on-shell (OS) renormalization scheme (see Section 2.1.3), the renormalized mass of
the particle is determined by the zero of the inverse propagator on the real axis, i.e. by

0 = P−1
OS (m2

OS) = m2
OS −m2

0 + ReΣ(m2
OS) . (2.2.6)

Using m2
0 = m2

OS + ReΣ(m2
OS), the expression (2.2.5) for P−1

OS (p2) can be expanded1 in the
vicinity of p2 = m2

OS,

P−1
OS (p2) = p2 −m2

OS − Re Σ(m2
OS) + Re Σ(p2) + i Im Σ(p2)

= R−1
OS

[
p2 −m2

OS + iROS Im Σ(p2)
]
+ O

(
(p2 −m2

OS)
2
)
, (2.2.7)

where

ROS =
1

1 + Re Σ′(m2
OS)

(2.2.8)

1Usually, Γ will be much smaller than m, and all relevant contributions to the cross section will emerge
from kinematic regions where p2 ∼ m2 is valid.
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denotes the residue of the on-shell propagator. Now we define the on-shell width according
to the Breit–Wigner expression (2.2.1) as

mOSΓOS =
Im Σ(m2

OS)

1 + ReΣ′(m2
OS)

. (2.2.9)

This equation can be used to perturbatively determine the finite on-shell width ΓOS of the
particle at a given perturbative order.

However, using the on-shell renormalization scheme for unstable vector bosons turns
out to be a questionable approach, because the on-shell renormalization condition for the
W-boson mass (2.1.46) is given by

M 2
W,0 −M 2

W,OS = ReΣW
T (M 2

W,OS) , (2.2.10)

and the real part of the transverse (T) part of the W-boson self-energy ReΣW
T (M 2

W,OS)
is not a gauge-independent quantity beyond one-loop order [56]. As a result, MW,OS and
ΓW,OS will receive gauge-dependent contributions at O(α2). Thus, one is urged to find a
gauge-independent renormalization condition for the masses of unstable particles. This
requirement is respected applying the pole-mass definition that will be discussed now.

2.2.3 Gauge-independent description of a finite width: the pole
mass

The pole mass µ2 of an unstable scalar particle is defined as the pole position of the
particle’s propagator in the complex p2-plane,

0 = P−1
Pole(µ

2) = µ2 −m2
0 + Σ(µ2) . (2.2.11)

As shown in [57], this expression is gauge independent at any order in perturbation theory.
Using (2.2.11) as a renormalization condition, the renormalized propagator reads

P−1
Pole(p

2) = p2 − µ2 − Σ(µ2) + Σ(p2)

= R−1
Pole(µ

2)
(
p2 − µ2

)
+ O

(
(p2 − µ2)2

)
, (2.2.12)

with the residue

RPole =
1

1 + Σ′(µ2)
. (2.2.13)

Equation (2.2.12) implies the definition

µ2 ≡ m2 − imΓ (2.2.14)

for the physical mass and width of the particle that have to be determined by experiment.

2.2.4 The complex-mass scheme

Using the pole-mass definitions (2.2.11) and (2.2.14), we have found a gauge-independent
way to define the total width of a resonance. Nevertheless, we have not yet attacked the
problem of properly inserting a finite width into a fixed-order perturbative calculation. As
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mentioned before, the naive approach of introducing a width in the resonant propagators
includes an implicit Dyson summation that will lead to a mixing of different perturbative
orders. Accordingly, the SM gauge invariance will be violated in this approach, possibly
resulting in wrong predictions. To solve this problem, in our computation of the radiative
corrections to W+jet production we work in the complex-mass scheme (CMS) [32, 33], be-
cause it is probably the most elegant and straight-forward way to account for resonances
in perturbative NLO calculations. Within this scheme, gauge invariance and all corre-
sponding Ward- and Slavnov–Taylor identities are respected. Moreover, the CMS includes
all off-shell effects and is applicable in all regions of phase space. In spite of all these nice
features, its implementation is in principle remarkably easy.

The CMS is a renormalization scheme that is based on the pole definition (2.2.11) of
the complex particle mass. For instance, the physical vector-boson masses

µ2
V = M 2

V − iMVΓV , V = W, Z , (2.2.15)

are consequently defined as the position of the poles of the renormalized propagators in the
complex plane. This definition is applied everywhere in the physical amplitudes whenever
the vector-boson masses appear in the propagators or in the SM couplings. All related
quantities have to be adjusted according to this definitions to preserve gauge invariance.
Especially, the weak mixing angle becomes a complex parameter,

cos2 θW ≡ c2W = 1 − s2
W =

µ2
W

µ2
Z

. (2.2.16)

Since c2W receives an imaginary part, in tree-level calculations this definition will lead to
spurious terms that do not necessarily have a physical implication. However, those effects
will be of the order O(ΓV /MV ) = O(α) with respect to the lowest-order term, both in the
resonant and the non-resonant regions of phase space, and therefore are formally part of
an NLO contribution.

The general strategy of the CMS is to introduce complex vector-boson mass parameters
directly on the level of the Lagrangian by splitting the real bare mass into the complex
renormalized mass and a complex mass counterterm,

M 2
V,0 = µ2

V + δµ2
V . (2.2.17)

We also split the bare vector boson fields into complex fields and complex renormalization
constants according to

W±
0 = (1 + 1

2
δZW )W± ,


Z0

A0


 =


 1 + 1

2
δZZZ

1
2
δZZA

1
2
δZAZ 1 + 1

2
δZAA




Z

A


 . (2.2.18)

As a result, the bare Lagrangian can be expressed as L0 = L + δL, where L and the
counterterm contributions δL are formulated using complex mass parameters for unstable
particles. The Feynman rules that are deduced from this Lagrangian can be applied in the
usual way to perform perturbative calculations. This approach avoids double-counting,
because the perturbative series is just rearranged, but the bare Lagrangian and so the
theory is unchanged.
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We now present a short summary of the complex renormalization procedure concerning
the vector-boson masses, the associated fields, the weak mixing angle, and the electric
charge, because those quantities will be needed for the explicit calculation. A detailed
derivation of the renormalization of the EWSM within the CMS can be found in Chapter 4
of Ref. [33], and a compact review of the method is also presented in [58].

In the CMS, the renormalized transverse (T) parts of the self-energies for massive vector
bosons at the one-loop level are given by

Σ̂W
T (k2) = ΣW

T (k2) − δµ2
W + (k2 − µ2

W) δZW ,

Σ̂ZZ
T (k2) = ΣZZ

T (k2) − δµ2
Z + (k2 − µ2

Z) δZZZ , (2.2.19)

and the renormalization conditions are formulated as a generalization of the expressions
in the on-shell scheme (see Section 2.1.3) as

Σ̂W
T (µ2

W) = 0 , Σ̂′W
T (µ2

W) = 0 ,

Σ̂ZZ
T (µ2

Z) = 0 , Σ̂′ZZ
T (µ2

Z) = 0 , (2.2.20)

taking into account the pole-mass definition. The field renormalization constants will drop
out in any physical S-matrix element involving only virtual unstable vector bosons.2 Nev-
ertheless, including those field renormalization constants into the calculation, all renormal-
ized vertex functions can be defined in an UV-finite way. The obvious solutions to (2.2.20)
read

δµ2
W = ΣW

T (µ2
W) , δZW = −Σ′W

T (µ2
W) ,

δµ2
Z = ΣZZ

T (µ2
Z) , δZZZ = −Σ′ZZ

T (µ2
Z) , (2.2.21)

fixing the mass- and field renormalization constants. However, the calculations of ΣV V
T (µ2

V)
enforces an analytic continuation of 2-point functions to the unphysical Riemann sheet.
To circumvent this problem, one expands the self-energy expressions around the real mass
M 2

V ,

ΣW
T (µ2

W) = ΣW
T (M 2

W) + (µ2
W −M 2

W)Σ′W
T (M 2

W) + O(α3) ,

ΣZZ
T (µ2

Z) = ΣZZ
T (M 2

Z) + (µ2
Z −M 2

Z)Σ′ZZ
T (M 2

Z) + O(α3) , (2.2.22)

exploiting the fact that formally ΓV is an O(α) correction with respect to MV. Note that
the expansion (2.2.22) does not affect the structure of UV divergences in ΣV V

T (µ2
V). Now

the mass- and field renormalization constants can be rewritten according to

δµ2
W = ΣW

T (M 2
W) + (µ2

W −M 2
W)Σ′W

T (M 2
W) , δZW = −Σ′W

T (M 2
W) ,

δµ2
Z = ΣZZ

T (M 2
Z) + (µ2

Z −M 2
Z)Σ′ZZ

T (M 2
Z) , δZZZ = −Σ′ZZ

T (M 2
Z) . (2.2.23)

Since the weak mixing angle is deduced from the vector-boson masses, its renormalization
constant introduced in (2.1.48) can simply be derived from the definition (2.2.16),

δsW

sW

=
c2W
s2

W

δcW

cW

= − c2W
2s2

W

(
δµ2

W

µ2
W

− δµ2
Z

µ2
Z

)
. (2.2.24)

2In the CMS, unstable particles must not appear as external states.
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The charge renormalization constant in the CMS, given by

δZe =
1

2
Σ′AA

T (0) − sW

cW

ΣAZ
T (0)

µ2
Z

, (2.2.25)

can directly be carried over from the on-shell expression (2.1.55). One has to keep in
mind that the self-energies entering (2.2.24) and (2.2.25) are calculated with complex
mass parameters for unstable particles in the loops.

In our calculation we treat the light external fermions (namely the electron, the muon
and all quark flavours other than the top) as massless, stable particles. Small fermion
masses are only introduced to regularize collinear singularities and assumed to be real
parameters. Thus, we do not have to perform a renormalization of the corresponding
masses, since all related contributions are suppressed by powers of mf . Moreover, the
light-fermion self-energies in the renormalization constants do not have any absorptive
contributions arising from decay possibilities into lighter particles. Nevertheless, the self
energies have to be calculated with complex vector-boson masses and a complex weak mix-
ing angle and therefore become complex quantities themselves. Taking this into account,
it is necessary to perform a complex renormalization of the bare right- and left-handed
fermion fields f

R/L
0 according to

fσ
0 = (1 + 1

2
δZσ

ff̄ ) f
σ , σ = R ,L , (2.2.26)

where the complex field renormalization constants δZR/L

f f̄
are given by

δZσ
ff̄ = −Σf f̄

σ (m2
f ) −m2

f

[
Σ′f f̄

R (m2
f) + Σ′f f̄

L (m2
f) + 2 Σ′f f̄

S (m2
f)
]
. (2.2.27)

In this equation, the complex functions Σf f̄
R/L(m2

f ) and Σf f̄
S (m2

f) denote the right-/left-
handed and the scalar parts of the fermion self-energies, respectively.

The CMS can also be applied to the renormalization of the masses and fields of the
Higgs boson and the top quark. Since those quanta only enter our calculation at NLO, we
will not discuss the related renormalization procedure in this thesis. Details concerning
this topic can be found in [33]. Nevertheless, we should point out that one could easily
introduce a complex mass for the top quark and the Higgs within the loop corrections. This
treatment will lead to tiny deviations in the result that are formally of NNLO accuracy
and therefore do not necessarily have to be taken into account.

2.3 The parton model and QCD

Scattering processes at hadron colliders pose the problem that hadrons are strongly-
coupled, composite objects and therefore refuse access to a purely perturbative description.
Therefore, we work in the parton model [59, 60] that comprises the possibility of perturba-
tive predictability for hadronic scattering processes, since hadronic cross sections can be
factorized into universal non-perturbative contributions and the perturbative description
of the hard scattering event.

The parton model is valid for highly-relativistic fast-moving hadrons with a four-
momentum that is distributed to the constituting partons (gluons and (anti)quarks).
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Those massless partons are all moving in the same direction, and their transverse mo-
menta are negligible. One further assumes that partonic reactions in hadronic collisions
take place between two partons, whereas the remaining partons serve as spectators. The
parton model is valid if the scale Q2 of the hard process is large compared to the typical
QCD scale Λ2

QCD. In this situation αs(Q
2) is small and the partons in the hadron can

be treated as perturbatively free particles. As a result, the partonic cross section can be
computed using standard perturbation theory. One should keep in mind that the parton
model only works fine in high-energy processes for large transverse momenta where a large
momentum transfer is ensured.

2.3.1 Definition of partonic cross sections

The differential cross section dσi→f plays an important role in high-energy collider physics,
because it can be formulated as a purely phenomenological quantity, and, on the other
hand, has a well-defined counterpart on the theory side. Thus, it can be employed to test
theoretical predictions in an appropriate experimental approach.

On the experimental side, dσi→f is defined as the ratio of the numbers of events per
time nf that contribute to a certain final state f , and the luminosity Lin of the incoming
particles in the initial state i undergoing the collisions,

dσi→f

dO =
1

Lin

dnf (O)

dO . (2.3.1)

The final state f will usually be defined via its particle content, and the quantity O
symbolizes a certain physically well-defined observable that has to be constructible from
the momenta of the final-state (FS) particles. The total number of events per time nf is
accordingly given by

nf = Lin

∫
dO
[
dσi→f

dO

]
≡ Lin σi→f , (2.3.2)

defining the integrated cross section σi→f , where usually event-selection cuts will be applied
in the evaluation of (2.3.2).

In QFT, the integrated partonic (indicated by a hat) unpolarized cross section for a
process with two massless QCD partons a and b in the initial state is described theoretically
by the convolution of the square of the scattering amplitude,

|Mab→f |2 =
1

n(ca)n(cb) n(σa)n(σb)

∑

ca,cb

∑

cf

∑

σa,σb

∑

σf

|Mab→f |2 , (2.3.3)

averaged over the number of colours n(ca/b) and helicities n(σa/b) of initial-state (IS)
particles and summed over the FS colours and polarizations, and the differential phase
space dΦ(n) representing the kinematical degrees of freedom of the n-particle final state f ,

σ̂ab→f (pa, pb) =
1

2ŝ

∫
dΦ(n)(pa, pb; k1 . . . , kn) |Mab→f (pa, pb; k1, . . . , kn)|2 F (n)({Oj}) .

(2.3.4)
Here, pa and pb are the momenta of the IS partons, k1, . . . , kn depict the FS momenta, and
ŝ = (pa + pb)

2 denotes the partonic center-of-mass (cm) energy squared. If there are m
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identical particles in the final state f , the cross section additionally has to be multiplied
with a factor (1/m!). The cut function F (n) equals zero if the event does not pass certain
event-selection cuts defined using a set of observables {Oj}, and it is one otherwise. The
differential phase space in 4 dimensions reads

dΦ(n)(pa, pb; k1 . . . , kn) ≡ (2π)4−3n

[
n∏

i=1

d4ki δ(k
2
i −m2

i )θ(k
0
i )

]
δ(4)

(
pa + pb −

n∑

i=1

ki

)
,

(2.3.5)
where mi =

√
k2

i denotes the mass of particle i in the final state.

2.3.2 Hadronic cross sections

Now we consider a collision of two hadrons A and B in the so called infinite-momentum
frame where the hadrons are moving fast in the x3-direction, and their masses are small
compared to their energies. In this special situation the transverse momenta of the partons
can be neglected, and the four-momentum pa(b) of a parton belonging to hadron A(B) is
related to the hadronic four-momentum pA(B) via

pa(b) = xa(b)pA(B) , (2.3.6)

with 0 < xa(b) < 1. Now we can provide the hadronic cross section for the process

A(pA) +B(pB) → f +X , (2.3.7)

where f symbolizes the final state of the hard scattering event, andX denotes the remnants
of the two IS hadrons which are destroyed in the hadronic collision. The hadronic cross
section is given by

dσAB→f(pA, pB) =
∑

a,b

∫ 1

0

dxa

∫ 1

0

dxb

[
fa/A(xa) fb/B(xb) dσ̂ab→f (pa, pb)

]
, (2.3.8)

where we have to sum over all relevant pairs {a, b} of partons. The functions fa/A(xa) are
called parton distribution functions (PDFs). The expression fa/A(xa) dxa gives the total
number of partons a in a momentum interval (xa, xa + dxa) within the hadron A. The
PDFs cannot be computed from first principles since they are non-perturbative quantities
for hadrons; nevertheless, they can be measured by fitting experimental data of deep-
inelastic lepton-nucleon scattering (DIS) or hadron–hadron scattering processes. Note
that in (2.3.8) we have to perform the convolution over the PDFs and the phase-space
integration of (2.3.4) at the same time to allow for the proper calculation of differential
cross sections. An illustration of the hadronic process AB → W + jet + γ + X → lνl +
jet + γ +X that is discussed in this thesis can be found in Fig. 2.1.

The squared hadronic cm energy is s = (pA + pB)2. In the laboratory (lab) frame the
IS four-momenta can be expresses via

pµ
A =

√
s

2
(1, 0, 0,+1) , pµ

B =

√
s

2
(1, 0, 0,−1) , (2.3.9)

and according to their definition the partonic momenta read

pµ
a = xa

√
s

2
(1, 0, 0,+1) , pµ

b = xb

√
s

2
(1, 0, 0,−1) . (2.3.10)
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Figure 2.1: Schematic illustration for the hadronic process AB → W+jet+γ+X →
lνl +jet+γ +X. The perturbative partonic cross section is indicated by a green box.

In the partonic cm frame we find the expression

p̂µ
a =

√
ŝ

2
(1, 0, 0,+1) , p̂µ

b =

√
ŝ

2
(1, 0, 0,−1) , (2.3.11)

for the partonic four-momenta, with ŝ = xaxb s ≡ τs.
Note that the partonic cross section dσ̂ab→f is often calculated using momenta defined

in the partonic cm frame. Whenever one wants to apply event-selection cuts or sort events
into histogram bins, one has to boost the momenta along the beam axis into the lab frame
that coincides with the cm frame of the hadrons A and B. The boost parameter of the
partonic cm frame for parton a moving in positive x3-direction is given by

βab =
xa − xb

xa + xb

, (2.3.12)

and the FS momenta kµ
i in the lab frame can be obtained from the ones in the partonic

cm frame k̂µ
i via the boost

k0
i = γab

(
k̂0

i − βabk̂
3
i

)
,

k1
i = k̂1

i ,

k2
i = k̂2

i ,

k3
i = γab

(
k̂3

i − βabk̂
0
i

)
, (2.3.13)

where we have used γab = 1/
√

1 − β2
ab.

2.3.3 The QCD improved parton model

In Section 3.3 we will see that the inclusion of higher-order QCD corrections into the cal-
culation of hadronic cross sections enforces a redefinition of the bare PDFs in Eq. (2.3.8) in
an appropriate factorization procedure to absorb residual collinear singularities that arise
in the perturbative calculation of the partonic cross section. Those singularities can be ex-
plained by the fact that in the collinear regime perturbative QCD is not anymore suited for
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a proper description of the underlying physics. However, the problematic singular struc-
tures turn out to be universal, i.e. they factorize from the hard scattering cross section
and can be ascribed to the non-perturbative contributions contained in the PDF of the
incoming QCD parton. After the redefinition of the PDFs—which can be understood as a
renormalization procedure—the cross section of the perturbatively-defined hard scattering
event is infrared safe, and the hadronic cross section can be evaluated consistently.

The possibility of factorizing universal collinear-singular long-distance effects into the
non-perturbative part of the hadronic cross section is a fundamental property of the the-
ory which turns QCD into a reliable calculational tool with controllable approximations.
For DIS and Drell–Yan-like processes this factorization in universal non-perturbative and
process-dependent perturbative parts has proven to be possible at any order of perturba-
tion theory [61].

The “naive” parton model introduced at the beginning of this section that is extended by
the strong interaction of partons and the factorization of non-perturabtive IS contributions
is known as the QCD improved parton model (see, e.g., Ref. [62]). The technical details
of the factorization procedure at NLO QCD will be discussed in Section 3.3.





Chapter 3

Infrared singularities in NLO
corrections

3.1 Infrared singularities in QED & QCD

Infrared (IR) singularities appear in phase-space integrals of real-emission processes as well
as in loop integrals appearing in virtual radiative corrections. In contrast to UV diver-
gences that emerge at large loop momenta within virtual corrections, the IR singularities
are related to low-momentum and small-angle regions in real and virtual corrections. We
can distinguish two types of IR singularities (see ,e.g., Ref. [63]):

• A soft singularity arises if the energy of a massless real vector boson (photon or
gluon) that is radiated off an external on-shell particle approaches zero, or if a
virtual massless vector boson is exchanged between two on-shell lines within a 1PI
loop diagram.

• One can distinguish two types of collinear singularities, connected to certain split-
tings in the initial state or the final state of a hard scattering event. We now briefly
describe the collinear-singular situations that appear in real and virtual NLO cor-
rections (four-momenta of particles are given in brackets).

We observe a FS collinear singularity if a virtual light particle (light fermions or
massless vector bosons) ĩj(pij) in the final state splits into two external light particles
i(pi) and j(pj) that are collinear (i.e. (pipj) → 0). On the other hand, IS collinear
singularities appear if a light on-shell particle a(pa) in the initial state collinearly
emits another light on-shell particle i(pi) (i.e. (papi) → 0), while the second particle
ãi(pa − pi) of the splitting undergoes a hard scattering process. If a light on-shell
particle splits into two light particles within a 1PI loop diagram, there will also be a
collinear singularity. The collinear-singular structures that may appear in radiative
processes are depicted in Fig. 3.1.

Note that soft and collinear singularities also arise within on-shell derivatives of certain
self-energy contributions that appear in the field renormalization constants in the on-shell
renormalization scheme (see Section 2.1.3).

Soft- and collinear-singular situations in loop integrals are shown in Fig. 3.2. Since
IR singularities only appear when the involved particles are light or exactly massless, IR
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ãi
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M(ai)
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Figure 3.1: Collinear singularities in IS (a) and FS (b) splittings within
a radiative process. An IS collinear singularity occurs if the scalar product
(papi) gets small, and we observe FS collinear singularities for (pipj) → 0.
The underlying hard scattering processes are represented by their amplitudes
M(ai) and M(ij), respectively.

singularities are also called mass singularities. In real-emission processes, they emerge
because the phase-space integral over the propagator of the particle initiating the prob-
lematic splitting will diverge logarithmically if the singular structure is not regularized
properly. In case of a collinear divergence, the problematic singular structure arises in
expressions of the form

∫ 1

0
d cos θ/(1− cos θ) within the integration of the angle θ between

the two collinear particles. In soft-singular situations, we are confronted with integrals
as
∫ Emax

0
dE/E that exhibit a logarithmic divergence if the energy E of the emitted pho-

ton/gluon goes to zero.

3.1.1 Infrared singularities in QED

All IR singularities related to the γff̄ -vertex, where f indicates a light fermion, can be
found in Table 3.1. Of course, a photon that is radiated off an external (on-shell) W boson
will also cause a soft singularity. This situation will be discussed in detail in Chapter 5.
However, in a realistic physical situation the W boson will decay into a quark or lepton
pair, and the soft singularity eventually can be ascribed to soft photon radiation off light
fermions. If a photon is radiated off an external top quark, we will only observe a soft-
singular contribution, because there is no collinearly-divergent propagator due to the large
top-quark mass.

We regularize the soft singularity by introducing an infinitesimal photon mass λ and
keep small fermion-mass parameters mf to regularize the collinear-singular situations
in the calculation of the real and virtual EW corrections. Working out the singular
integrals, one obtains terms ∝ α ln(λ2/Q2) in the soft-singular situations, and terms
∝ α ln(m2

f/Q
2) for the collinear singularities, where Q denotes the typical scale of the

hard process. If the two singularities overlap in phase space, we observe contributions
∝ α ln(m2

f/Q
2)
[
ln(m2

f/Q
2) + ln(λ2/Q2

)
].

It is important to stress that collinear lepton–photon splittings are not literally inducing
a singularity, because the lepton mass regularizes the singular structure in a physically
meaningful way. Nevertheless, in high-energy processes at hadron colliders the lepton-
mass parameters ml are small compared to the reference scale Q of the underlying hard
scattering events. Thus, it is wise to handle the lepton mass as if it was a regulator in the
numerical evaluation to ensure numerical stability. This means that the logarithmic lepton-
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Figure 3.2: Soft singularities (a) and collinear singularities (b) in virtual
corrections. A collinear singularity only occurs if m0, m1, and m2 are small
compared to typical other scales of the considered process or exactly zero. If
particles 1 and 2 in diagram (b) are fermions, there is no collinear singularity
due to the coupling structure in the collinear limit [48].

mass dependences in a cross section should be extracted from the numerical evaluation
and be isolated as analytical terms ∝ ln(m2

l /Q
2).

A consistent calculation of NLO EW corrections enforces the computation of real ra-
diative corrections with an additional bremsstrahlung photon in the final state. However,
at NLO the unphysical logarithmic photon-mass dependence caused by radiation of a
soft photon will drop out in the sum of real and virtual contributions according to the
Bloch–Nordsieck theorem [64] if the real photon radiation is treated sufficiently inclusive.
Practically this means that the full soft-photon phase space must be covered in the compu-
tation of the bremsstrahlung integral. This is consistent with the experimental demands,
since it is not possible to apply cuts to kinematical configurations with arbitrarily soft
photons.

3.1.2 Infrared singularities in QCD

In QCD it is not convenient to introduce an infinitesimal gluon mass to regularize the soft
gluon pole or the collinear pole that arises in the g → gg splitting. Since we work in the
QCD improved parton model, we also have to assume all light quarks that contribute to the
parton content of the proton as massless. Therefore, we use dimensional regularization
(see Section 2.1.3) to enable the calculation of IR-singular contributions.1 Within this
framework, soft or collinear singularities will arise as 1/ǫ poles. If the singularities overlap,
we observe poles of 1/ǫ2. In Table 3.2 we show IR-singular scenarios that can appear in
real-emission and one-loop processes in QCD.

1As in the QED case, one could also safely insert small quark-mass parameters to properly regularize
the collinear-singular structures that appear due to the gqq̄-vertex.
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Real corrections Virtual corrections Singularity

f in IS or FS ln(mf), ln(λ)

ln(mf)

ln(mf)

f in IS or FS

ln(mf), ln(λ)

ln(mf)

Table 3.1: Relevant graphs for IR singularities in real and virtual corrections
within NLO QED corrections. Diagrams in one row contribute to the same
LO process indicated by the grey blob. The collinear singularities can arise
from IS or FS splittings and appear as terms of ln(mf ). In case of soft singu-
larities, there will be terms of ln(λ) and ln(mf ) ln(λ). There will also be a soft
singularity if a photon is exchanged between FS and IS fermions. The arrows
depicting the fermion-number flow may also be reversed.

3.2 Squared amplitudes in the IR limit

We will now discuss some general factorization properties of squared physical amplitudes in
the soft or collinear limit and present the structure of those factorized expressions. Doing
so, we will focus on soft and collinear photon radiation in QED, since these formulae are
very important in the calculation of EW radiative corrections. On should mention that the
existence of such factorization properties is the basis for any general method that allows
for the analytical extraction of IR singularities from the numerical phase-space integration,
as e.g. achieved in slicing and subtraction techniques.

3.2.1 Factorization in the soft limit – the eikonal approximation

Consider a partonic scattering process with n FS particles with four-momenta p1, . . . , pn

and one additional bremsstrahlung photon with momentum k. If the energy Eγ = k0 of
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Real corrections Virtual corrections Singularity
q/g,

IS or FS 1/ǫ, 1/ǫ2

1/ǫ

q/g,

IS or FS

1/ǫ, 1/ǫ2

1/ǫ

q/g,

IS or FS

1/ǫ, 1/ǫ2

q/g,

IS or FS

1/ǫ, 1/ǫ2

1/ǫ

Table 3.2: Situations for IR singularities in real and virtual corrections within
NLO QCD corrections. Diagrams in one row contribute to the same LO
process indicated by they grey blob. The singularities can arise from IS and FS
splittings and show up as poles of 1/ǫ or 1/ǫ2. Soft and collinear singularities
also appear if a gluon is interchanged between external IS and FS quarks or
gluons. The arrows depicting the fermion-number flow may also be reversed.
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the radiated photon becomes small, the corresponding squared bremsstrahlung amplitude
|Mn+γ|2, summed over the photon polarizations, factorizes into an eikonal factor and the
squared amplitude |Mn|2 without additional photon radiation [65],

∑

λγ

|Mn+γ(pa, pb; p1, . . . , k, . . . , pn)|2

Ẽγ→0
−
∑

i,j

QiσiQjσje
2 pipj

(pik)(pjk)
|Mn(pa, pb; p1, . . . , pn)|2 + O(1) , (3.2.1)

where we have suppressed terms that do not contribute in the soft limit after phase-space
integration. The indices i and j run over all external charged particles that carry the
electrical charges Qie and Qje, respectively. The sign factors σi and σj define the charge
flow of i and j into or out of the diagram. We define σf = +1 for incoming fermions and
outgoing antifermions, and σf = −1 for outgoing fermions and incoming antifermions. For
an incoming charged W− boson or an outgoing W+ boson we define σW = +1. Since the
W+ is defined to be the antiparticle, the charge of the W boson is QW = −1. Charge
conservation implies ∑

i

Qiσi = 0 , (3.2.2)

if we sum over all external charged particles. A formula similar to (3.2.1) can be deduced
for soft-gluon radiation in QCD (See, e.g., Eq. (4.3) in [66]).

3.2.2 Asymptotic behaviour in the collinear limit

Consider a real-emission process

a(pa) + b(pb) → c1(p1) + . . .+ cn+1(pn+1) , (3.2.3)

which is described by the scattering amplitude Mn+1. The particle momenta are given in
parentheses. It is possible to find general factorization formulae for any splitting depicted
in the left columns of Table 3.1 and Table 3.2, respectively, if the kinematical configuration
approaches the collinear limit, i.e. the scalar product of the two collinear particles becomes
small. Schematically, all those formulae can be expressed as

|Mn+1(pa, pb)|2 p̃api→0
ga,i(pi, pa, xa) ⊗ |M(ai)

n (pai = xapa, pb)|2 ,
(3.2.4a)

|Mn+1(pa, pb; . . . , pi, . . . , pj , . . .)|2

p̃ipj→0
gi,j(pi, pj, zi) ⊗ |Mn,(ij)(pa, pb; . . . , pij = pi + pj, . . .)|2,

(3.2.4b)

for IS and FS collinear singularities. We will now discuss those expressions in some detail.
The variable

xa =
p0

a − p0
i

p0
a

(3.2.5)

denotes the energy fraction of pa that enters the hard scattering process without splitting
specified by the amplitude M(ai)

n as indicated in Fig. 3.1(a), and

zi =
p0

i

p0
i + p0

j

(3.2.6)
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is the energy fraction that is carried away by particle i in the collinear FS splitting. The
information of the hard subprocess before the collinear splitting is contained in Mn,(ij) (see
Fig. 3.1(b)). The universal prefactors gai(xa) and gij(zi) are independent of the underlying
hard process and contain the physical information of the corresponding splitting in the
collinear limit. The symbol ⊗ in (3.2.4) indicates that, besides normal factorization,
spin correlations appear for certain splittings, namely if a vector boson enters the hard
scattering.

Collinear photon radiation

In case of collinear photon radiation off light (anti)fermions, the general formulae for the
squared averaged amplitudes in the collinear limit (3.2.4) explicitly read [35]

|Mn+γ(pf , pb)|2 p̃f k→0
gf,γ(k, pf , xf )

∣∣∣M(f)
n (xfpf , pb)

∣∣∣
2

,

|Mn+γ(pa, pb; . . . , k, . . . , pf , . . .)|2 k̃pf→0
gγ,f (k, pf , zf ) |Mn,(f)(pa, pb; . . . , k + pf , . . .)|2,

(3.2.7)

and—up to terms that are finite in the collinear limit—the unpolarized splitting kernels
are given by

gγ,f (k, pf , xf ) =
1

pfk

[
Pff(zf) −

m2
f

pfk

]
,

gf,γ(k, pf , zf ) =
1

xf (pfk)

[
Pff(xf ) −

xf m
2
f

pfk

]
, (3.2.8)

with the splitting function

Pff(ξ) =
1 + ξ2

1 − ξ
. (3.2.9)

3.3 Factorization of initial-state singularities in QCD

In NLO QCD calculation all soft singularities and collinear singularities due to FS split-
tings will drop out of any properly-defined jet observable as a consequence of the KLN
theorem [67]. Nevertheless, in the calculation of perturbative corrections to hadronic scat-
tering processes residual IR singularities arise that are caused by (real and virtual) collinear
parton radiation from IS (anti)quarks or gluons. These singularities are the consequence of
the fact that the collinear scenario is not describable in a perturbative approach anymore,
since the collinear radiation is settled at a low scale where QCD is strongly coupled.

These collinear singularities turn out to be universal, i.e. they are independent of the
hard scattering event. Thus, one can factorize them for all processes in the same way into
the renormalized PDFs. As a trade-off one has to introduce a factorization scale µF into
the calculation that separates the perturbative from the non-perturbative regime.
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In NLO QCD factorization can be described as a replacement of the bare PDF of parton
a according to

fa/A(x) → fF.S.

a/A(x, µ2
F) +

∑

a′

∫ 1

x

dz

z
fF.S.

a′/A

(x
z
, µ2

F

) αs

2π

[
P a′a(z)

Γ(1 − ǫ)ǫ

(
4πµ2

µ2
F

)ǫ

−Ka′a
F.S.

(z)

]
,

(3.3.1)
where the P a′a(z) denote the renormalized Altarelli–Parisi splitting functions in four di-
mensions that can be found in Appendix C of [66]. The terms Ka′a

F.S.
contain the finite terms

that are shifted to the renormalized PDFs, i.e. they depend on the choice for the so-called
factorization scheme (F.S.). In our calculation of the NLO QCD corrections we use the
modified minimal-subtraction (MS) scheme where the contribution in (3.3.1) proportional
to

∆IR
1 ≡ 1

ǫ

(4π)ǫ

Γ(1 − ǫ)
=

1

ǫ
− γE + ln 4π + O(ǫ) , (3.3.2)

which is typical for dimensional regularization, is absorbed into fMS
a/A(x, µ2

F). For this special

choice we find Ka′a
MS

(z) ≡ 0. In (3.3.2), γE is the Euler–Mascheroni constant.
Technically, the factorization can be arranged by adding a universal collinear counter-

term dσ̂C to the partonic cross section and replacing the PDFs according to fa/A(x) →
fF.S.

a/A(x, µF). For a two-parton initial state the collinear counterterm reads

dσ̂C
ab(pa, pb;µF) = −αs

2π

1

Γ(1 − ǫ)

∑

c,d

∫ 1

0

dz

∫ 1

0

dz̄ dσ̂0
cd(zpa, z̄pb)

×
{
δbd δ(1 − z̄)

[
− 1

ǫ

(
4πµ2

µ2
F

)ǫ

P ac(z) +Kac
F.S.

(z)

]

+ δac δ(1 − z)

[
− 1

ǫ

(
4πµ2

µ2
F

)ǫ

P bd(z̄) +Kbd
F.S.

(z̄)

]}
. (3.3.3)

If one investigates partonic processes with just one IS QCD parton, like DIS or photon-
induced contributions at hadron colliders, the collinear counterterm is given by

dσ̂C
a (pa;µF) = −αs

2π

1

Γ(1 − ǫ)

∑

b

∫ 1

0

dz

[
− 1

ǫ

(
4πµ2

µ2
F

)ǫ

P ab(z) +Kab
F.S.

(z)

]
dσ̂0

b (zpa) .

(3.3.4)
Taking NLO factorization into account, the partonic NLO cross section can be summarized
as

σ̂NLO
ab =

∫

n+1

dσ̂R
ab +

∫

n

dσ̂V
ab +

∫

n

dσ̂C
ab , (3.3.5)

where the cross sections
∫

n+1
dσ̂R

ab and
∫

n
dσ̂V

ab of the real and virtual corrections will be
formally defined in Section 4.4.1. Using the dipole subtraction formalism for the calculation
of the real QCD corrections (see Section 4.4), the collinear counterterm will automatically
be included when the subtracted contributions are added to the cross section again.
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3.4 Factorization of initial-state singularities in QED

Similar to the procedure in QCD, the residual ln(mq)-dependence resulting from IS QED
splittings can be factorized into renormalized PDFs according to the replacement [68]

fq/A(x) → fF.S.

q/A(x, µ2
F) −

∫ 1

x

fF.S.

q/A

(x
z
, µ2

F

) α

2π
Q2

q

×
{

ln

(
µ2

F

m2
q

)
[Pff(z)]+ − [Pff(z) (2 ln(1 − z) + 1)]+ + CF.S.

ff (z)

}

−
∫ 1

x

fF.S.

γ/A

(x
z
, µ2

F

) α

2π
3Q2

q

{
ln

(
µ2

F

m2
q

)
Pfγ(z) + CF.S.

fγ (z)

}
, (3.4.1)

with
Pfγ(ξ) = ξ2 + (1 − ξ)2 . (3.4.2)

Equation (3.4.1) accounts for both the case in which an IS quark radiates a collinear
photon and for the case of an incoming photon splitting into a collinear qq̄-pair where the
q initiates the hard scattering process. It is also valid for antiquarks if one replaces q by q̄.
Again, the process of factorization introduces a scheme dependence since we can absorb
in principle arbitrary finite parts into the renormalized PDFs. This scheme dependence is
contained in the structure functions CF.S.

ij (z).
In the calculation of the EW corrections to off-shell W + jet production we will apply

the so-called DIS scheme that is defined in such a way that the DIS structure function
F2 is unchanged at NLO. We make this choice, because the MRSTQED2004 PDF set we
apply in our calculation is defined in a DIS factorization scheme with respect to QED
corrections [68].

In analogy to QCD, one can furthermore define the MS factorization scheme for IS
collinear QED singularities at NLO in the following way: First, the logarithmic quark-
mass divergences in (3.4.1) are expressed as 1/ǫ poles in d dimensions. In a second step,
one demands that—as in QCD—the terms proportional to (3.3.2) are absorbed into the

renormalized PDFs, thereby defining the finite parts of CMS
ij (z). The coefficient functions

CF.S.

ij (x) for the MS and the DIS scheme are then given by

CMS
ff (z) = CMS

fγ (z) = 0 ,

CDIS
ff (z) =

[
Pff(z)

(
ln

(
1 − z

z

)
− 3

4

)
+

9 + 5z

4

]

+

,

CDIS
fγ (z) = Pfγ(z) ln

(
1 − z

z

)
− 8z2 + 8z − 1 . (3.4.3)

3.5 Infrared safety – definition of jet observables

A proper definition of jet observables is a very important topic, since it addresses the
question of how to construct physical jets from partons in perturbation theory. First of
all, it is mandatory to ensure that jet quantities are defined in an IR-safe way. This means
that at NLO an n-parton final state must not be identified as an (n+1)-parton final state
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if one adds one additional parton that is either collinear to another parton, or arbitrarily
soft.

There are two reasons for demanding IR safety, one is more of practical nature, while
the other has its origin in the underlying theory.

On the experimental side, it is not possible to separate two sufficiently collinear partons
in any realistic detector configuration, since the partons will in reality first undergo a
parton shower and afterwards hadronize, leaving a multi-hadron signal in the hadronic
calorimeter. If the energy of a jet is too low, however, it will not lead to a signal in
the detector at all. Therefore, no experimental setup is sensitive to any ultra-soft parton
activity.

On the theory side, soft and collinear parton configurations connected to an additional
parton arising from real radiation lead to IR singularities in the real-emission cross section
dσ̂R. These unphysical singularities will only drop out in the full NLO cross section if all
collinear and soft contributions are treated fully inclusively, simulating the experimental
demands. This request can be translated to certain properties of the jet function F

(R+k)
J .

This quantity defines the jet observables for a k-parton final state, i.e. it contains a pre-
scription how to construct physical jets from k distinct partons. It also includes event
selection cuts that apply to the FS jets as well as to the non-strongly-interacting particles
in the final state, symbolized by R.

In order to respect IR safety in the soft limit, we demand [66]

F
(R+n+1)
J (p1, . . . , pj = λq, . . . , pn+1; pa, pb) → F

(R+n)
J (p1, . . . , pn+1; pa, pb) if λ→ 0 ,

(3.5.1)
for the (n+1)-parton jet function. To ensure collinear safety, the jet function has to fulfill

F
(R+n+1)
J (p1, . . . , pi, . . . , pj, . . . , pn+1; pa, pb) → F

(R+n)
J (p1, . . . , p, . . . , pn+1; pa, pb)

if pi → zp and pj → (1 − z)p . (3.5.2)

In a realistic situation, the partons i and j have to be merged in a well-defined way if
they cannot be separated in a sensible experimental setup. This is done by so-called jet
algorithms that construct a new quasi-particle ĩj with momentum p̃ij from the partons i
and j. This procedure is called recombination. There are many different jet algorithms in
the literature (see ,e.g., Refs. [69]). In the actual calculation of the real QCD corrections to
off-shell W + jet production we apply the Tevatron Run II kT-algorithm [70] to construct
physical jets from partons.

Of course, at LO the n-parton final state has to be defined in such a way that it contains
n genuine jets. This implies the conditions

F
(R+n)
J (p1, . . . , pn; pa, pb) → 0 if pi · pj → 0 or if pi · pa → 0 or pi · pb → 0 . (3.5.3)

3.6 Non-collinear-safe observables in QED

Collinear-safe observables

In case of leptons in the final state the situation is somewhat different from the case of
QCD partons. If an electron (e±) in the final state radiates a photon, these two particles
will be detected as a shower in the electromagnetic calorimeter, a separation is impossible
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and the scenario is in some sense “QCD-like”. On the theory side this means that we
have to define collinear-safe observables for this special situation. This is achieved by
recombining electron and photon if they are sufficiently close to each other. As a result,
any perturbative corrections that are defined in such a way will not be enhanced by ln(me)-
terms, but, since the electron mass is a physical parameter, this cancellation does not have
to be demanded for theoretical consistency. In case of collinear photon radiation off FS
light quarks, however, recombination is also mandatory from a theoretical point of view,
because an exclusive treatment of a collinear quark–photon system will lead to residual
unphysical quark-mass logarithms in the perturbative result for the cross section, unless
non-perturbative effects are carefully taken into account (see Section 3.7.1).

Non-collinear-safe observables

By contrast, the configuration with a muon (µ±) in the final state can be treated differently.
In a scenario where the muon emits a collinear photon, the photon will be detected in
the calorimeter, while the muon escapes this detector and will lead to a signal in the
muon chambers. Therefore, we can experimentally distinguish photons and muons that
are emitted collinearly in phase space and we can apply event-selection cuts to the bare
muon, i.e. we do not have to perform a recombination for final states in which photons
are very close to muons. On the theory side this means that the ln(mµ)-terms that are
related to the collinear splitting will not drop out of the NLO cross section, which leads to
an enhancement of the relative EW corrections. Observables that exhibit this logarithmic
enhancement are called non-collinear-safe observables.

3.7 IR safety within W + jet production

The calculation of EW NLO corrections to W + jet production comprises a conceptual
problem. In the treatment of FS collinear singularities caused by the parallel emission of a
photon from an outgoing (anti)quark line, one is led to introduce a cut in an appropriate
separation variable. Within the collinear phase-space region thus defined, the (anti)quark-
photon system is effectively treated as one particle whose momentum is identified with the
jet momentum and thus subject to an acceptance cut—e.g. a cut in transverse momentum,
pT(jet) > pmin

T (jet)—that has to be applied to ensure the experimental observation of the
jet. This includes phase-space configurations where the photon essentially carries all the
momentum, while the (anti)quark can, in principle, be arbitrarily soft.

This will not generate any soft IR singularities, and the recombination procedure will
lead to a proper cancellation of unphysical quark-mass logarithms (see previous section).
However, since (anti)quark and gluon jets can, in general, not be distinguished experimen-
tally on an event-by-event basis, the same recombination procedure needs to be applied
to a gluon–photon system in the final state as well. This time, a soft gluon will produce
an IR singularity. Formally, this soft-gluon singularity could be avoided by applying the
pmin

T (jet) cut just to the transverse momentum of the gluon, even if it is accompanied by
a collinear photon. However, such a prescription is purely academic and quite unsuitable
for experimental implementation because (anti)quark and gluon jets are treated on differ-
ent footings. In this thesis we will follow two different strategies to treat the problem of
photon–gluon recombination in a theoretically consistent way.
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• The IR singularities related to soft gluon emission can be cancelled within the NLO
QCD corrections to W + γ production, so that those contributions are also taken
into account in the calculation of radiative corrections to on-shell W+jet production
that is discussed in Chapter 5.

• In the off-shell situation with a leptonic final state we exclude the soft gluon pole in
a collinear gluon–photon configuration from our calculation by means of phase-space
cuts, i.e. we discard events where the energy of the gluon in a collinear gluon–photon
system gets too small. Since situations with collinear photons and quarks in the final
state have to be treated analogously, this non-inclusive definition of observables
will lead to residual unphysical quark-mass logarithms in the cross sections. These
logarithms are subsequently absorbed into the non-perturbative parts of the quark-
to-photon fragmentation function that will be discussed in the next subsection.

3.7.1 Quark-to-photon fragmentation at NLO

In contrast to the QCD situation where two collinear partons cannot be separated in any
experimental setup, the situation with a collinear jet–photon pair in the final state is
slightly different. If the energy fraction carried by a hard, isolated photon in a collinear
photon–jet configuration is sufficiently high, the origin of this photon may be attributed
to FS radiation emitted at an early stage of the QCD parton evolution process [34].
Thus, those events may be considered as a contribution to prompt-photon production and
therefore be discarded from the jet cross section. The possibility of resolving collinear
parton–photon pairs comprises a theoretical problem within a perturbative calculation,
since any observable that is defined in such a way that it is sensitive to a single photon
in a collinear photon–quark pair, will destroy IR safety: if a photon is radiated collinearly
to a FS quark and we apply a cut solely to the photon, the situation is not inclusive
anymore, leading to residual unphysical ln(mq)-terms in the cross section. This problem
can be attacked similarly to the factorization of IS IR singularities.

As in case of the unphysical IS singularities, the logarithmic quark-mass dependence
arising from the exclusive treatment of quark–photon pairs can be absorbed into the non-
perturbative parts of an NLO definition of a quark-to-photon fragmentation function [72].

Consider a situation in which a light FS quark with four-momentum p splits into a
collinear quark–photon pair, q(p) → q(p̃) + γ(kγ). After the splitting the photon carries
away the momentum fraction zγp, where zγ is defined as the ratio of the photon energy
and the energy of the quark–photon system,

zγ =
k0

γ

k0
γ + p̃0

, 0 < zγ < 1 . (3.7.1)

As worked out in [72], the cross section σq→γ(p, zγ) for a situation in which a FS quark
emits a collinear photon can be expressed as a product of the cross section for the bare
quark σq(p) and the quark-to-photon fragmentation function Dq→γ(zγ),

σq→γ(p, zγ) = σq(p) Dq→γ(zγ) . (3.7.2)
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The function Dq→γ(zγ) contains the full perturbative and non-perturbative information
of the fragmentation process. At NLO,2 the collinear quark-to-photon splitting can be
calculated in dimensional regularization, using a slicing approach. We integrate out the
collinear cone if p2 = (p̃ + kγ)

2 < smin, where smin is small compared to all relevant
scales of the process. Now we can decompose the fragmentation function into this singular
perturbative fraction and the bare non-perturbative fragmentation function Dq→γ(zγ),

Dq→γ(zγ) = Dq→γ(zγ) −
1

ǫ

(
4πµ2

smin

)ǫ
1

Γ(1 − ǫ)

(
αQ2

q

2π

)
[zγ(1 − zγ)]

−ǫPq→γ(zγ ; ǫ) , (3.7.3)

where the quark-to-photon splitting function in d dimensions is given by

Pq→γ(z; ǫ) =
1 + (1 − z)2 − ǫz

z
. (3.7.4)

The collinear pole can be absorbed into the bare parameter Dq→γ(zγ) using an MS frag-
mentation prescription in dimensional regularization (DR),

Dq→γ(zγ) → D(DR)
q→γ (zγ, ǫ) = DMS

q→γ(zγ , µF) +
1

ǫ

(
4πµ2

µ2
F

)ǫ
1

Γ(1 − ǫ)

(
αQ2

q

2π

)[
1 + (1 − z)2

z

]
,

(3.7.5)
where the fragmentation scale µF separates the perturbative from the non-perturbative
regime. After this redefinition, the function Dq→γ(zγ) is finite; DMS

q→γ(zγ, µF) has to be
determined by experiment.

In our calculation we need (3.7.5) in the mass-regularization (MR) scheme with a quark-
mass regulator mq. The prescription then reads

Dq→γ(zγ) → D(MR)
q→γ (zγ ,mq) = DMS

q→γ(zγ, µF) +
αQ2

q

2π
Pq→γ(zγ)

(
ln
m2

q

µ2
F

+ 2 ln zγ + 1

)
,

(3.7.6)
with the four-dimensional splitting

Pq→γ(z) =
1 + (1 − z)2

z
. (3.7.7)

Note that (3.7.5) and (3.7.6) define the same finite perturbative parts that are absorbed
into the bare fragmentation function Dq→γ .

In our perturbative calculation for off-shell W + jet production, we will discard events
where the energy fraction zγ of the photon in a collinear parton–photon configuration
after recombination is larger than a certain cut-off z0. Doing so, the problematic soft
gluon pole is explicitly excluded from our computation. However, if the parton is a quark,
we will thereby effectively subtract IR singular contributions from the perturbatively well-
defined inclusive configuration, leading to a perturbatively ill-defined result. However, for
a consistent treatment of the fragmentation physics, we additionally have to take into
account the analogous non-perturbative contributions to the fragmentation process that

2The quark-to-photon fragmentation function does not exist at LO.
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are parametrized by Dq→γ(zγ). On the technical side this means that we additionally have
to subtract the expression

∆q→γ(mq, z0) ≡ σq(pq)

∫ 1

z0

dzγ D
(MR)
q→γ (zγ,mq) (3.7.8)

from the NLO cross section. As a consequence, the residual quark-mass dependence in
the NLO result will vanish.

Fortunately, the non-perturbative contribution to the class of events we want to exclude
has been measured at LEP in photon+jet events. In these events a photon carries almost
all the energy of a radiating quark in a hadronic Z0-boson decay. In our explicit calculation
we use the bare fragmentation function

D(MR)
q→γ (zγ,mq) = DALEPH,MS

q→γ (zγ, µF) +
αQ2

q

2π
Pq→γ(zγ)

(
ln
m2

q

µ2
F

+ 2 ln zγ + 1

)
, (3.7.9)

where we employ the parametrization of the renormalized fragmentation function used by
the ALEPH collaboration to fit the data [34],

DALEPH,MS
q→γ (zγ, µF) =

αQ2
q

2π

(
Pq→γ(zγ) ln

µ2
F

(1 − zγ)2µ2
0

+ C

)
. (3.7.10)

Here, the constants µ2
0 and C are fit parameters and the dependence of the complete

fragmentation function on the fragmentation scale µF cancels by construction. We use the
result of a one-parameter fit where C is constraint to C = −1− ln(M 2

Z/(2µ
2
0)) resulting in

µ0 = 0.14 GeV and C = −13.26 . (3.7.11)

Details on the specific recombination- and cut procedure we have applied in our calcu-
lation can be found in Section 10.1.



Chapter 4

Dipole subtraction in NLO
calculations

In this chapter we present an overview about the dipole subtraction method as it is applied
in our calculation of the NLO QCD and EW corrections to the off-shell W+jet production.
We do not claim to provide all technical details that are necessary to actually implement
the method into a computer code. For this purpose, one actually has to work carefully
through the papers where the procedure was originally developed.

In Section 4.1 we start with a short motivation and afterwards discuss the underlying
principles of the method on the basis of its relevance for the calculation of IR QED
singularities. Then we will—building on earlier work by Stefan Dittmaier—discuss in
detail the construction of the subtraction formulae for the calculation of non-collinear-safe
observables in QED that were defined in Section 3.6.

In Section 4.4 we give a brief description of dipole subtraction within NLO QCD cal-
culations. We sketch the general procedure and comprise the most important formulae.

4.1 Dipole subtraction in QED

The calculation of real NLO QED corrections gives rise to several IR or mass singularities
in the phase-space integral

∫
dΦLO+1|Mreal|2 of real-emission processes (see Table 3.1, left

column). These mass singularities have to be regularized to make them calculable. As
stated in Section 3.1.1, we include small fermion masses mf to regularize the collinear
singularities and an infinitesimal photon mass λ to regularize the soft singularity.

If we naively introduced small regulator masses everywhere in a real-radiation ampli-
tude |Mreal|2 of a physical process that happens at a typical energy scale Q, the numerical
evaluation would be significantly slowed down by terms of order O(m2

reg/Q
2, m4

reg/Q
4, . . .)

that are irrelevant for the final result anyway. Moreover, the presence of many differ-
ent scales could spoil the numerical accuracy and—as a consequence—the reliability of
the result. The mass-singular logarithmic terms would be piled up as a purely-numerical
contribution, and the cancellation against the analytic counterparts from the virtual cor-
rections would be a tedious and delicate task. Additionally, the numerically-evaluated and
potentially huge singular terms could superimpose the finite contributions and jeopardize
the accuracy of the evaluation. Consequently, one has to work out a strategy which offers
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a fast and stable numerical evaluation on the one hand and analytical control over the
mass-singular terms on the other.

As a solution to this problem we now discuss the dipole subtraction formalism. In the
following, we try to be as general as possible and to present the keynote of the procedure.
All presented formulae are understood in such a way that they have to be specified for the
calculation of a particular process.

The general idea of any subtraction formalism is to subtract an auxiliary function
|Msub|2 from the real-emission amplitude |Mreal|2 that pointwise cancels all IR-singular
contributions in |Mreal|2 . The IR-singular structures in this auxiliary function can then be
integrated out analytically before the subtracted contribution is added to the cross section
again. The subtraction function |Msub|2 should be a general function in a sense that its IR-
singular structures should factorize from the hard process without IR-singular splitting.
This can in principle be achieved, since—as explained in Section 3.2—any given QED
amplitude exhibits a universal factorization behaviour in any IR-singular limit, resulting
in a convolutive expression of a general splitting term and the squared amplitude |MLO|2
of the underlying process without IR-singular splitting. The subtraction function should
also be simple enough that the singular parts allow for an analytical integration over the
IR-singular subspace [dφIR] of dΦLO+1 to attain analytical control over the singularities.
For this purpose, one needs an adequate phase-space decomposition, symbolically denoted
as

dΦLO+1 = dΦ̃LO ⊗ [dφIR] , (4.1.1)

where the symbol ⊗ abbreviates multiplications and adequate phase-space convolutions.
Following the preceding considerations, we can schematically reformulate the phase-space
integration of a real-emission amplitude containing problematic IR splittings according to

∫
dΦLO+1|Mreal|2 =

∫
dΦLO+1

(
|Mreal|2 − |Msub|2

)
+

∫
dΦ̃LO ⊗

(∫
[dφIR]|Msub|2

)
.

(4.1.2)
Since in the subtraction integral all IR singularities are neutralized pointwise, the evalua-
tion of

∫
dΦLO+1(|Mreal|2 − |Msub|2) is possible without any mass regulators. The three-

fold integration [dφIR] covers all mass-singular structures and can be done analytically
once and for all, employing mass regulators. Finally, we are left with a trivial numerical
convolution over a LO phase space dΦ̃LO. Of course the problematic task is now

1. to construct the subtraction function |Msub|2, and

2. to perform the analytical integration of [dφIR].

At NLO, different subtraction techniques have been proposed in the literature [35, 36, 66,
71, 73, 74, 75] that tackle this problem in different ways. Probably the most common
approach is the dipole subtraction method that constructs |Msub|2 as an appropriate sum
of so-called “dipoles” g

sub
ij,K and g

sub
ai,K ,

|Msub(ΦLO+1(. . . , pa, pi, pj, pK , . . .))|2 =
∑

g
sub
ĩj,K

(pi, pj, pK) ⊗
∣∣∣MLO(Φ̃LO(p̃ij, p̃K))

∣∣∣
2

+
∑

g
sub
ãi,K

(pa, pi, pK) ⊗
∣∣∣MLO(Φ̃LO(p̃ai, p̃K))

∣∣∣
2

. (4.1.3)
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The dipoles g
sub
ij,K and g

sub
ai,K are built from emitter-spectator pairs corresponding to IR-

singular IS and FS splittings of the form a → ãi + i and ĩj → i + j that are illustrated
in Fig. 3.1. The particles ãi and ĩj that enter the hard scattering event are denoted as
emitters, while the spectator particles K are needed to construct the reduced LO phase
space dΦ̃LO that enters the subtraction integral and to correctly match the asymptotic
behaviour of |Mreal|2 in case of soft-photon radiation.

For the readers convenience, we summarize the relevant properties of (4.1.3):

• |Msub|2 matches the asymptotic behaviour of |Mreal|2 in any soft or collinear limit,
i.e. its asymptotic behaviour is given by (3.2.4a), (3.2.4b), and (3.2.1), respectively.

• The dipoles g
sub
ij,K and g

sub
ai,K are general functions, i.e. they are independent of the LO

process and can be constructed once and for all for every collinear-singular splitting.

• Since the matrix elements in (4.1.3) have to be evaluated with physical momenta
of ΦLO, one needs an adequate prescription to map the momenta of the radiative
process to the momenta of the auxiliary phase space Φ̃LO of the underlying LO
contribution.

• The functions g
sub
ij,K and g

sub
ai,K have to be simple enough that they can be integrated

analytically over the IR-singular degrees of freedom in [dφIR].

The dipole subtraction approach was first developed in [66] for IR singularities related
to splittings of massless QCD partons. In Ref. [75] people have also worked out the dipole
subtraction formalism for massive QCD partons, for instance allowing for the application
of the method for cross sections involving external top quarks. The technique was extended
in [35] to the treatment of photon radiation off fermions with arbitrary masses, following
the ideas and principles of [66]. In the progress of this thesis we have broadened the
procedure to non-collinear-safe photon radiation off FS fermions and to all other possible
collinear splittings that might show up in NLO EW calculations [36] (see Table 3.1, left
column). In that paper, we present subtraction formulae for polarized external particles
and allow for the inclusion of truly massive FS spectators.

However, in this thesis we calculate unpolarized cross sections and do not have to take
into account massive spectators in the initial or final state. Therefore, we restrict ourselves
to the treatment of strictly massless spectators and only present results that are summed
(averaged) over FS (IS) emitters, respectively.

In the next section we will provide a detailed discussion of the dipole subtraction proce-
dure for photon radiation off FS fermions in processes with non-collinear-safe observables,
building on the conventions and results of [35]. In Section 4.3, we will also describe the
dipole subtraction approach for collinear IS γ → ff̄∗ splittings, since these techniques will
be needed for the calculation of the photon-induced processes listed in Section 6.3.2.



46 4. Dipole subtraction in NLO calculations
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Figure 4.1: Generic diagrams for photonic FS radiation off an emitter i with a
spectator j or a in the final or initial state, respectively.

4.2 Dipole subtraction for non-collinear-safe observ-

ables

The schematic form of the subtraction procedure to integrate the squared matrix element∑
λγ

|Mn+γ|2 (summed over photon polarizations λγ) for real photon radiation over the

(n+ 1)-particle phase space dΦγ reads

∫
dΦγ

∑

λγ

|Mn+γ|2 =

∫
dΦγ

(
∑

λγ

|Mn+γ|2 − |Msub|2
)

+

∫
dΦ̃0 ⊗

(∫
[dk] |Msub|2

)
,

(4.2.1)
where dΦ̃0 is a phase-space element of the corresponding non-radiative process and [dk]
includes the photonic phase space that leads to the soft and collinear singularities. The
two contributions involving the subtraction function |Msub|2 have to cancel each other,
however, they will be evaluated separately.

In the dipole subtraction formalism for photon radiation, the subtraction function is
explicitly given by [35]

|Msub(Φγ)|2 = −
∑

f 6=f ′

QfσfQf ′σf ′e2g
(sub)
ff ′ (pf , pf ′ , k)

∣∣∣Mn

(
Φ̃0,ff ′

)∣∣∣
2

, (4.2.2)

where the sum runs over all dipoles that can be constructed from emitter–spectator pairs
ff ′. In (4.2.2), which is a specification of (4.1.3), we implicitly assume summation over

polarizations of IS and FS fermions. The subtraction kernels g
(sub)
ff ′ are constructed in

such a way that (4.2.2) will exactly match the bremsstrahlung amplitude
∑

λγ
|Mn+γ|2 in

the soft and collinear limits that are given by Eqs. (3.2.1) and (3.2.7), respectively. The
auxiliary momenta defined on the phase-space sets Φ̃0,ff ′ respect momentum conservation
and all on-shell conditions in the calculation of |Mn|2.

For a FS emitter (FS radiation), the two possible dipoles are illustrated in Fig. 4.1.
The relative charges are denoted Qf , Qf ′, and the sign factors σf and σf ′ were defined
in Section 3.2.1. The singular behaviour of the subtraction function is contained in the
radiator functions g

(sub)
ff ′ (pf , pf ′ , k), which depend on the emitter, spectator, and photon

momenta pf , pf ′, and k, respectively. The squared lowest-order matrix element |Mn|2
of the corresponding non-radiative process enters the subtraction function with modified

emitter and spectator momenta p̃
(ff ′)
f and p̃

(ff ′)
f ′ . For a FS emitter f , the momenta are
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related by pf +k±pf ′ = p̃
(ff ′)
f ± p̃(ff ′)

f ′ , where ± refers to a spectator f ′ in the final or initial
state, and the same set {kn} of remaining particle momenta enters |Mγ |2 and |Mn|2. The

modified momenta are constructed in such a way that p̃
(ff ′)
f → pf +k in the collinear limit

(pfk → 0).
In collinear-safe observables (w.r.t. FS radiation), and only those are considered for light

fermions in Ref. [35], a collinear fermion–photon system is treated as one quasi-particle,
i.e., in the limit where f and γ become collinear only the sum pf +k enters the procedures
of implementing phase-space selection cuts or of sorting an event into a histogram bin of
a differential distribution. Therefore, it is guaranteed that for each photon radiation cone
around a charged particle f the energy fraction

zf =
p0

f

p0
f + k0

(4.2.3)

is fully integrated over. According to the KLN theorem, no mass singularity connected
with FS radiation remains. Collinear safety facilitates the actual application of the sub-
traction procedure as indicated in Eq. (4.2.1). In this case the events resulting from the
contributions of |Msub|2 can be consistently regarded as n-particle final states of the non-

radiative process with particle momenta as going into
∣∣∣Mn

(
Φ̃0,ff ′

)∣∣∣
2

, i.e. the emitter and

spectator momenta are given by p̃
(ff ′)
f , p̃

(ff ′)
f ′ , respectively. Owing to p̃

(ff ′)
f → pf +k in the

collinear limits, the difference
∑

λγ
|Mγ |2 − |Msub|2 can be integrated over all collinear

regions, because all events that differ only in the value of zf enter cuts or histograms in
the same way. The implicit full integration over all zf in the collinear cones, on the other
hand, implies that in the analytical integration of |Msub|2 over [dk] the zf integrations
can be carried out over the whole zf range.

In non-collinear-safe observables as defined in Section 3.6 (w.r.t. FS radiation) not all
photons within arbitrarily narrow collinear cones around outgoing charged particles are
treated inclusively. For a fixed cone axis the integration over the corresponding variable zf

is constrained by a phase-space cut or by the boundary of a histogram bin. Consequently,
mass-singular contributions of the form α lnmf remain in the integral. Technically this
means that the information on the variables zf has to be exploited in the subtraction
procedure of Eq. (4.2.1). The variables that take over the role of zf in the individual
dipole contributions in |Msub|2 are called zij and zia in Ref. [35], where f = i is a FS
emitter and j/a a FS/IS spectator. In the collinear limit they behave as zij → zi and

zia → zi. Thus, the integral
∫

dΦγ

(∑
λγ

|Mγ|2 − |Msub|2
)

can be performed over the

whole phase space if the events associated with |Msub|2 are treated as (n + 1)-particle

events with momenta pf → zff ′ p̃
(ff ′)
f , pf ′ → p̃

(ff ′)
f ′ , and k → (1 − zff ′)p̃

(ff ′)
f . This can

be formalized by introducing a step function Θcut(pf , k, pf ′ , {kn}) on the (n + 1)-particle
phase space which is 1 if the event passes the cuts and 0 otherwise. The set {kn} simply
contains the momenta of the remaining particles in the process. Making the dependence
on Θcut explicit, the first term on the r.h.s. of Eq. (4.2.1) reads

∫
dΦγ

[
∑

λγ

|Mγ |2Θcut(pf , k, pf ′ , {kn})
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−
∑

f 6=f ′

|Msub,ff ′|2Θcut

(
zff ′ p̃

(ff ′)
f , (1 − zff ′)p̃

(ff ′)
f , p̃

(ff ′)
f ′ , {kn}

)]
, (4.2.4)

where we have decomposed the subtraction function |Msub|2 into its subcontributions

|Msub,ff ′|2 = −QfσfQf ′σf ′e2g
(sub)
ff ′ (pf , pf ′ , k)

∣∣∣Mn

(
Φ̃0,ff ′

)∣∣∣
2

(4.2.5)

of specific emitter–spectator pairs ff ′. Apart from this refinement of the cut prescription
in the subtraction part for non-collinear-safe observables, no modification in |Msub|2 is
needed. Since its construction exactly proceeds as described in Sections 3 and 4 of Ref. [35],
we do not repeat the individual steps in this thesis. However, we will list all subtraction
contributions explicitly in Appendix C that are needed for the calculation of the real
photonic corrections to the process (1.0.5).

The modification of the cut procedure requires a generalization of the evaluation of
the second subtraction term on the r.h.s. of Eq. (4.2.1), because now the integral over
zff ′ implicitly contained in [dk] depends on the cuts that define the observable. In the
following two sections we work out the form of the necessary modifications, where we set
up the formalism in such a way that it reduces to the procedure described in Ref. [35] for
a collinear-safe situation, while the non-collinear-safe case is covered upon including extra
contributions.

4.2.1 Final-state emitter and final-state spectator

For a FS emitter i with massmi and a massless FS spectator j the integral of g
(sub)
ij (pi, pj, k)

over the photonic subspace [dk(P 2
ij, yij , zij)] defined in Eq. (4.7) of Ref. [35] is proportional

to

G
(sub)
ij (P 2

ij) =
P̄ 4

ij

2(P 2
ij −m2

i )

∫ y2

y1

dyij (1 − yij)

∫ z2(yij)

z1(yij)

dzij g
(sub)
ij (pi, pj, k) . (4.2.6)

Here, the definitions of Sections 3.1 and 4.2 of Ref. [35] for a massless spectator are used,
i.e.

P µ
ij = pµ

i + pµ
k + kµ , P̄ 2

ij = P 2
ij −m2

i − λ2 , (4.2.7)

and the subtraction kernel

g
(sub)
ij (pi, pj, k) =

1

(pik)Rij(yij)

[
2

1 − zij(1 − yij)
− 1 − zij −

m2
i

pik

]
, (4.2.8)

with the shorthand

Rij(y) =
P̄ 2

ij(1 − y)

P̄ 2
ij + λ2

, (4.2.9)

is given as a function of the auxiliary variables

yij =
pik

pipj + pik + pjk
, zij =

pipj

pipj + pjk
, (4.2.10)
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which are constructed from the momenta of the full bremsstrahlung phase space. In
order to leave the integration over zij open, the order of the two integrations has to be
interchanged, and the integral solely taken over yij is needed. Therefore, we define

Ḡ(sub)
ij (P 2

ij, zij) =
P̄ 2

ij

2(P 2
ij −m2

i )

∫ y2(zij)

y1(zij)

dyij (1 − yij) g
(sub)
ij (pi, pj, k). (4.2.11)

For practical purposes, we can safely neglect the photon-mass dependence in the function
Ḡ(sub)

ij (P 2
ij, z), because the soft singularity appearing at z → 1 can be split off by employing

a [. . . ]+ prescription in the variable z,

Ḡ(sub)
ij (P 2

ij, z) = G
(sub)
ij (P 2

ij)δ(1 − z) +
[
Ḡ(sub)

ij (P 2
ij, z)

]
+
. (4.2.12)

This procedure shifts the soft singularity into the quantity G
(sub)
ij (P 2

ij) which is already
known from Ref. [35]. Moreover, the generalization to non-collinear-safe integrals simply

reduces to the extra term
[
Ḡ(sub)

ij (P 2
ij, z)

]
+
, which cancels out for collinear-safe integrals

where the full z-integration is carried out.
In the limit mi → 0 and λ = 0 the boundary of the yij integration is asymptotically

given by

y1(z) =
m2

i (1 − z)

P 2
ijz

, y2(z) = 1 , (4.2.13)

and the splitting kernel g
(sub)
ij is expressed via the integration variables yij and zij according

to

g
(sub)
ij (pi, pj, pk) =

2

P 2
ij yij(1 − yij)

[
2

1 − zij(1 − yij)
− 1 − zij −

2m2
i

yijP 2
ij

]
. (4.2.14)

The evaluation of Eq. (4.2.11) yields

Ḡ(sub)
ij (P 2

ij, z) = Pff(z)

[
ln

(
P 2

ijz

m2
i

)
− 1

]
+(1 + z) ln(1 − z) + 1 − z , (4.2.15)

where Pff(z) is the splitting function (3.2.9). Equation (4.2.15) is correct up to terms
suppressed by factors of mi. For completeness, we repeat the form of the full integral
G

(sub)
ij (P 2

ij) in the case of a light emitter mass mi,

G
(sub)
ij (P 2

ij) = L(P 2
ij,m

2
i ) −

π2

3
+

3

2
, (4.2.16)

with the auxiliary function

L(P 2,m2) = ln

(
m2

P 2

)
ln

(
λ2

P 2

)
+ ln

(
λ2

P 2

)
− 1

2
ln2

(
m2

P 2

)
+

1

2
ln

(
m2

P 2

)
, (4.2.17)

which are taken from Eqs. (3.7) and (3.8) of Ref. [35].
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Finally, we give the explicit form of the ij contribution |Msub,ij(Φγ)|2 to the phase-space
integral of the subtraction function,

∫
dΦγ |Msub,ij(Φγ)|2 = − α

2π
QiσiQjσj

∫
dΦ̃0,ij

∫ 1

0

dz

×
{
G

(sub)
ij (P 2

ij)δ(1 − z) +
[
Ḡ(sub)

ij (P 2
ij, z)

]
+

}
(4.2.18)

× |Mn(p̃i, p̃j)|2 Θcut

(
pi = zp̃i, k = (1 − z)p̃i, p̃j , {kn}

)
,

generalizing Eq. (3.6) of Ref. [35]. While p̃i, p̃j , {kn} are the momenta corresponding to
the generated phase-space point in Φ̃0,ij, the momenta pi and k result from p̃i via a simple
rescaling with the independently generated variable z. The invariant P 2

ij is calculated via
P 2

ij = (p̃i+ p̃j)
2 independently of z. The arguments of the step function Θcut(pi, k, p̃j, {kn})

indicate on which momenta phase-space cuts are imposed.

4.2.2 Final-state emitter and initial-state spectator

For the treatment of a FS emitter i and an IS spectator a, we consistently make use of
the definitions of Sections 3.2 and 4.2 of Ref. [35]. In this thesis we only consider light
particles in the initial state, because we assume the incoming quarks as massless within
our calculation. Therefore, the spectator mass ma can be set to zero from the beginning,
which simplifies the formulae considerably.

Before we consider the non-collinear-safe situation, we briefly repeat the concept of
the collinear-safe case described in Ref. [35]. Following Eqs. (4.24) and (4.27) from there,
adopting the definitions

P µ
ia = pµ

i + kµ − pµ
a , P̄ 2

ia = P 2
ia −m2

i − λ2 , (4.2.19)

and using the auxiliary variables

xia =
papi + pak − pik

papi + pak
, zia =

papi

papi + pak
, (4.2.20)

respectively, the inclusive integral of the subtraction kernel

g
(sub)
ia (pi, pa, k) =

2

P̄ 2
ia(xia − 1)

[
2

2 − xia − zia
− 1 − zia −

2m2
i xia

P̄ 2
ia(xia − 1)

]
(4.2.21)

over [dk(P 2
ia, xia, zia)] (See Eq. (4.20) of Ref. [35]) is proportional to

G
(sub)
ia (P 2

ia) =

∫ x1

0

dxG(sub)
ia (P 2

ia, x) , (4.2.22)

with

G(sub)
ia (P 2

ia, xia) = − P̄
2
ia

2

∫ z2(xia)

z1(xia)

dzia g
(sub)
ia (pi, pa, k) . (4.2.23)



4.2. Dipole subtraction for non-collinear-safe observables 51

In (4.2.22) we can set the lower limit x0 of the xia-integration to zero because of ma = 0,
and the upper bound is given by

x1 = 1 − 2miλ

|P̄ 2
ia|

, (4.2.24)

that can be derived from the limits of the zia-integration,

z1,2(x) =
[P̄ 2

ia − x(P̄ 2
ia + 2m2

i )] ∓
√
P̄ 4

ia(1 − x)2 − 4m2
iλ

2x2

2[P̄ 2
ia − xP 2

ia]
. (4.2.25)

Since, however, the squared lowest-order matrix element |Mn|2 multiplying g
(sub)
ia in

Eq. (4.2.2) depends on the variable xia, the integration of |Msub|2 over x = xia is performed
employing a [. . . ]+ prescription,

− P̄
2
ia

2

∫ x1

0

dxia

∫ z2(xia)

z1(xia)

dzia g
(sub)
ia (pi, pa, k) · · ·

=

∫ 1

0

dx

{
G

(sub)
ia (P 2

ia) δ(1 − x) +
[
G(sub)

ia (P 2
ia, x)

]
+

}
· · · . (4.2.26)

This integration, where the ellipses stand for x-dependent functions such as the squared
lowest-order matrix elements and flux factors, is usually done numerically. Since the soft
and collinear singularities occur at x → x1 = 1 − O(λ), the singular parts are entirely

contained in G
(sub)
ia (P 2

ia) in Eq. (4.2.26), and the upper limit x1 could be replaced by 1 in

the actual x-integration. For completeness we give the explicit form of the functions G
(sub)
ia

and G(sub)
ia in the limit mi → 0,

G
(sub)
ia (P 2

ia) = L(|P 2
ia|,m2

i ) −
π2

2
+

3

2
,

G(sub)
ia (P 2

ia, x) =
1

1 − x

[
2 ln

(
2 − x

1 − x

)
− 3

2

]
, (4.2.27)

which are obtained from Eqs. (3.19) and (3.20) Ref. [35].
In a non-collinear-safe situation, the ellipses on the l.h.s. of Eq. (4.2.26) also involve

zia-dependent functions, as e.g. θ-functions for cuts or event selection. Thus, also the
integration over zia has to be performed numerically in this case, and we have to generalize
Eq. (4.2.26) in an appropriate way. Introducing a double [. . . ]+ prescription in x = xia

and z = zia,

∫ 1

0

dx

∫ 1

0

dz
[
g(x, z)

](x,z)

+
f(x, z) ≡

∫ 1

0

dx

∫ 1

0

dz
[
[g(x, z)]

(x)
+

](z)

+
f(x, z)

=

∫ 1

0

dx

∫ 1

0

dz g(x, z)
(
f(x, z) − f(x, 1) − f(1, z) + f(1, 1)

)
, (4.2.28)
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defined with an appropriate test function f(x, z), we can reformulate Eq. (4.2.26) according
to

− P̄
2
ia

2

∫ x1

0

dx

∫ z2(x)

z1(x)

dz g
(sub)
ia (pi, pa, k) · · ·

=

∫ 1

0

dx

∫ 1

0

dz

{
G

(sub)
ia (P 2

ia) δ(1 − x) δ(1 − z) +
[
G(sub)

ia (P 2
ia, x)

]
+
δ(1 − z)

+
[
Ḡ(sub)

ia (P 2
ia, z)

]
+
δ(1 − x) +

[
ḡ

(sub)
ia (x, z)

](x,z)

+

}
· · · . (4.2.29)

If the functions hidden in the ellipses do not depend on z, the last two terms within the
curly brackets do not contribute and the formula reduces to Eq. (4.2.26). In (4.2.29) we
have introduced the abbreviations

ḡ
(sub)
ia (x, z) = − P̄

2
ia

2
g

(sub)
ia

∣∣∣
λ=0

mi=0

,

G(sub)
ia (P 2

ia, x) = − P̄
2
ia

2

∫ 1

0

dz g
(sub)
ia

∣∣∣
λ=0

mi=0

,

Ḡ(sub)
ia (P 2

ia, z) = − P̄
2
ia

2

∫ x1(z)

0

dx g
(sub)
ia

∣∣∣
λ=0

,

G
(sub)
ia (P 2

ia) = − P̄
2
ia

2

∫ 1

0

dz

∫ x1(z)

0

dx g
(sub)
ia , (4.2.30)

with the upper integration boundary

x1(z) =
P̄ 2

iax

P̄ 2
iaz −m2

i (1 − z)
. (4.2.31)

The explicit results for G(sub)
ia (P 2

ia, x) and G
(sub)
ia (P 2

ia) have already been given above in
Eq. (4.2.27), and the two remaining functions are easily evaluated to

ḡ
(sub)
ia (x, z) =

1

1 − x

(
2

2 − x− z
− 1 − z

)
,

Ḡ(sub)
ia (P 2

ia, z) = Pff(z)

[
ln

(−P 2
iaz

m2
i

)
− 1

]
− 2 ln(2 − z)

1 − z
+ (1 + z) ln(1 − z) + 1 − z .

(4.2.32)

The collinear singularity ∝ lnmi that appears in non-collinear-safe observables is contained
in the function Ḡ(sub)

ia (P 2
ia, z). A detailed derivation of (4.2.29) can be found in Ref. [36].

The resulting ia contribution |Msub,ia(Φγ)|2 to the phase-space integral of the subtrac-
tion function reads
∫

dΦγ |Msub,ia(Φγ)|2 = − α

2π
QaσaQiσi

∫ 1

0

dx

∫
dΦ̃0,ia(P

2
ia, x)

∫ 1

0

dz

× Θcut

(
pi = zp̃i(x), k = (1 − z)p̃i(x), {k̃n(x)}

)

× 1

x

{
G

(sub)
ia (P 2

ia) δ(1 − x) δ(1 − z) +
[
G(sub)

ia (P 2
ia, x)

]
+
δ(1 − z)
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+
[
Ḡ(sub)

ia (P 2
ia, z)

]
+
δ(1 − x) +

[
ḡ

(sub)
ia (x, z)

](x,z)

+

}∣∣∣Mn

(
p̃i(x), p̃a(x)

)∣∣∣
2

, (4.2.33)

which generalizes Eq. (3.18) of Ref. [35]. Again, the arguments of the step function
Θcut(pi, k, {k̃n}) indicate on which momenta phase-space cuts are imposed. We recall
that Φ̃0,ia is the phase space of momenta p̃i(x) and {k̃n(x)} (without FS radiation) with
rescaled incoming momentum p̃a(x) = xpa instead of the original incoming momentum pa.
In the actual evaluation of Eq. (4.2.33), thus, the two phase-space points Φ̃0,ia(P

2
ia, x) and

Φ̃0,ia(P
2
ia, x = 1) have to be generated for each value of x owing to the plus prescription in

x. The relevant value of the invariant P 2
ia is then calculated separately via P 2

ia = (p̃i − p̃a)
2

for each of the two points, so that P 2
ia results from the momenta entering the matrix

element Mn in both cases. The variable z, however, is generated independently of the
phase-space points and does not influence the kinematics in the matrix element.

4.3 Dipole subtraction for photon-induced processes

4.3.1 Asymptotics in the collinear limit

We consider a generic scattering process

γ(k) + a(pa) → f(pf ) +X(kX), (4.3.1)

where the momenta of the particles are given in parentheses. Here a is any massless
incoming particle and f is an outgoing light fermion or antifermion. The remainder X
may contain additional light fermions which can be treated in the same way as f . For
later use, we define the squared cm energy s,

s = (pa + k)2 = 2pak. (4.3.2)

The collinear singularity in the squared matrix element |Mγa→fX |2 occurs if the angle θf

between f and the incoming γ becomes small; in this limit the scalar product (kpf ) is of
O(m2

f), where mf is the small mass of f . Neglecting terms that are irrelevant in the limit

mf → 0 the squared matrix element |Mγa→fX(k, pa, pf )|2, averaged over the polarizations
of a and γ and summed over the polarizations of f , asymptotically behaves like

|Mγa→fX(k, pa, pf )|2 k̃pf→0
Q2

fe
2 hγf (k, pf ) |Mf̄a→X(pf̄ = xk, pa)|2, (4.3.3)

where x = 1 − p0
f/k

0 and Qfe is the electric charge of f . The matrix element Mf̄a→X

corresponds to the related process f̄a → X that results from γa(→ ff̄∗a) → fX upon
cutting the f̄∗ line in all diagrams involving the splitting γ → ff̄∗ (see also Fig. 4.2).
Here and in the following, asterisks indicate virtual particles, and the momenta relevant
in the different matrix elements are given in parentheses. It is reasonable to stress that
Eq. (4.3.3) is also a specification of Eq. (3.2.4a). The function hγf (k, pf ), which rules the
structure of the collinear singularity, is given by

hγf (k, pf ) =
1

x(kpf )

(
Pfγ(x) +

xm2
f

kpf

)
(4.3.4)
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γ f

f̄

a pa

k pf

γ f

f̄

jpj

k pf

Figure 4.2: Generic diagrams for the splittings γ → ff̄∗ with an IS spectator a or
a FS spectator j.

with the splitting function Pfγ(x) from (3.4.2). The derivation of this result is carried out
in Appendix B.1 of [36].

Note that the collinear singularity for kpf → 0 can be attributed to a single external
leg (namely f̄) of the related hard process f̄a → X. Thus, there is no need to construct
the subtraction function |Msub|2 from several dipole contributions ∝ QfQf ′. Instead we
can construct |Msub|2 as a single term ∝ Q2

f . Nevertheless we select a spectator f ′ to
the emitter f for the phase-space construction, which proceeds in complete analogy to the
photon radiation case. We have the freedom to choose any particle in the initial or final
state as spectator. In the following we describe the dipole formalism in two variants: one
with a spectator from the initial state, another with a spectator from the final state. The
two situations are illustrated in Fig. 4.2.

4.3.2 Initial-state spectator

Subtraction function

The function that is subtracted from the integrand |Mγa→fX(k, pa, pf )|2 is defined as
follows,

|Msub|2 = Q2
fe

2 hγf,a(k, pf , pa)
∣∣∣Mf̄a→X

(
p̃f̄ , pa, {k̃n}

)∣∣∣
2

, (4.3.5)

with the unpolarized radiator function

hγf,a(k, pf , pa) =
1

xf,γa(kpf )

(
Pfγ(xf,γa) +

xf,γam
2
f

kpf

)
, (4.3.6)

and the auxiliary quantity

xf,γa =
pak − pfk − papf

pak
. (4.3.7)

Here we kept the dependence on a finitemf , because it is needed in the analytical treatment
of the singular phase-space integration below. The modified momenta p̃f̄ and {k̃n} entering
the squared matrix element on the r.h.s. of Eq. (4.3.5) will only be needed for mf = 0 in
applications with small values of mf . In this limit they can be chosen as

p̃µ

f̄
(x) = xkµ, p̃µ

f̄
= p̃µ

f̄
(xf,γa), k̃µ

n = Λµ
ν k

ν
n (4.3.8)
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with the Lorentz transformation matrix Λµ
ν given by

Λµ
ν = gµ

ν −
(P + P̃ )µ(P + P̃ )ν

P 2 + PP̃
+

2P̃ µPν

P 2
, (4.3.9)

P µ = pµ
a + kµ − pµ

f , P̃ µ(x) = pµ
a + p̃µ

f̄
(x), P̃ µ = pµ

a + p̃µ

f̄
. (4.3.10)

It is straight-forward to check that |Msub|2 possesses the same asymptotic behaviour
as |Mγa→fX |2 in Eq. (4.3.3) in the collinear limit with mf → 0. Thus, the difference

|Mγa→fX |2 − |Msub|2 can be integrated numerically for mf = 0.

Readded counterpart

The correct dependence of |Msub|2 (and the related kinematics) on a finite mf is, however,
needed when this function is integrated over θf leading to the collinear singularity for
θf → 0. The actual analytical integration can be done as described in Section 4.4 of
Ref. [35] (even for finite ma and mf ). Here we only sketch the individual steps and give
the final result. The (n + 1)-particle phase space is first split into the corresponding
n-particle phase space of the process

f̄(p̃f̄(x)) + a(pa) → X(kX) , (4.3.11)

and the integral over the remaining degrees of freedom that contain the singularity,
∫

dΦ(n+1)(k, pa;P, pf , kX) =

∫ x1

0

dx

∫
dΦ(n)

(
p̃f̄(x), pa; P̃ (x), kX

)∫
[dpf (s, x, yf,γa)],

(4.3.12)
with the explicit parametrization

∫
[dpf (s, x, yf,γa)] =

s

4(2π)3

∫ y2(x)

y1(x)

dyf,γa

∫
dφf . (4.3.13)

The upper kinematical limit of the parameter x = xf,γa is given by

x1 = 1 − 2mf√
s
, (4.3.14)

but in the limit mf → 0 we can set x1 = 1. While the integration of the azimuthal angle
φf of f simply yields a factor 2π, the integration over the auxiliary parameter

yf,γa =
kpf

kpa

=
2kpf

s
(4.3.15)

with the boundaries

y1,2(x) =
1

2


1 − x∓

√

(1 − x)2 −
4m2

f

s


 (4.3.16)

is less trivial. Defining

Hγf,a(s, x) =
xs

2

∫ y2(x)

y1(x)

dyf,γa h
γf,a(k, pf , pa), (4.3.17)
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the result of the integration (for mf → 0) is

Hγf,a(s, x) = Pfγ(x) ln

(
s(1 − x)2

m2
f

)
+ 2x(1 − x) . (4.3.18)

For clarity we finally give the contribution σsub
γa→fX that has to be added to the result for

the cross section obtained from the integral of the difference |Mγa→fX |2 − |Msub|2,

σsub
γa→fX(k, pa) = NC,f

Q2
fα

2π

∫ 1

0

dxHγf,a(s, x)σf̄a→X(pf̄ = xk, pa) , (4.3.19)

where NC,f denotes the colour factor of the fermion f . Although formulated for integrated
cross sections, the previous formula can be used to calculate any differential cross section
after obvious modifications.

4.3.3 Final-state spectator

As an alternative to the case of an IS spectator described in the previous section, we here
present the treatment with a massless FS spectator j, i.e. we consider the process

γ(k) + a(pa) → f(pf ) + j(pj) +X(kX). (4.3.20)

The IS particle a is also assumed massless in the following, but all formulas can be gen-
eralized to ma 6= 0 following closely the treatment of phase space described in Section 4.2
of Ref. [35].

Subtraction function

The subtraction function now is constructed as follows,

|Msub|2 = Q2
fe

2 hγf
j (k, pf , pj) |Mf̄a→jX(p̃f̄ , pa, p̃j)|2, (4.3.21)

with the unpolarized radiator function

hγf
j (k, pf , pj) =

1

xfj,γ(kpf )

(
Pfγ(xfj,γ) +

xfj,γm
2
f

kpf

)
, (4.3.22)

and the auxiliary parameter

xfj,γ =
kpj + kpf − pfpj

kpj + kpf
. (4.3.23)

The momenta p̃f̄ and p̃j are given by

p̃µ

f̄
(x) = xkµ, p̃µ

f̄
= p̃µ

f̄
(xfj,γ), p̃µ

j = P µ + p̃µ

f̄
, P µ = pµ

f + pµ
j − kµ, (4.3.24)

while the momenta of the other particles are unaffected. Note that this construction of
momenta is based on the restriction mf = 0, which is used in the integration of the

difference |Mγa→fjX |2 − |Msub|2.
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Readded counterpart

In the integration of |Msub|2 over the collinear-singular phase space
∫

[dφ], of course, the
correct dependence on a finite mf is required. The auxiliary momenta defined for a non-
zero fermion mass mf read

p̃µ

f̄
(x) = xkµ −

m2
f

P 2
P µ , p̃µ

f̄
= p̃µ

f̄
(xfj,γ) ,

p̃µ
j (x) = P µ + p̃µ

f̄
(x) , p̃µ

j = p̃µ
j (xfj,γ) . (4.3.25)

The phase space
∫

dΦ(n+1)(k, pa; pf , pj, kX) of the (n+1)-particle scattering process (4.3.20)
can be decomposed according to
∫

dΦ(n+1)(k, pa; pf , pj , kX) =

∫ 1

0

dx

∫
dΦ(n)(p̃f̄(x), pa; p̃j(x), kX)

∫
[dφ(P 2, x, zfj,γ)] ,

(4.3.26)
where Φ(n)(p̃f̄ (x), pa; p̃j(x), kX) denotes the phase-space measure of the underlying hard
process

f̄(p̃f̄(x)) + a(pa) → j(p̃j(x)) +X(kX) , (4.3.27)

and the effective phase space of the collinear-singular structure is given by
∫

[dφ(P 2, x, zfj,γ)] =
1

2(2π)3

−(P 2 −m2
f)(pap̃f̄ (x))

x2s

∫ z2(x)

z1(x)

dzfj,γ

∫ 2π

0

dφf , (4.3.28)

where we have introduced the auxiliary variable

zfj,γ =
kpj

kpf + kpj

, (4.3.29)

and φf denotes the azimuthal angle of the outgoing fermion. The boundaries of the zfj,γ

integration are given by

z1(x) = 0 , z2(x) =
−(P 2 −m2

f)(1 − x)

−P 2(1 − x) +m2
f

. (4.3.30)

Defining

Hγf
j (P 2, x) = −

(P 2 −m2
f)

2

∫ z2(x)

z1(x)

dzfj,γh
γf
j (k, pf , pj) , (4.3.31)

the cross-section contribution σsub
γa→fjX that has to be added to the integrated difference

|Mγa→fX |2 − |Msub|2 is given by

σsub
γa→fjX(k, pa) = NC,f

Q2
fα

2π

∫ 1

0

dxHγf
j (P 2, x)σf̄a→jX(pf̄ = xk, pa) , (4.3.32)

where the integrated subtraction kernel containing the collinear singularity explicitly reads

Hγf
j (P 2, x) = −Pfγ(x) ln

[
m2

f x

−P 2(1 − x)

]
+ 2x(1 − x) . (4.3.33)

Of course, the singular contributions ∝ lnmf have the same form as in the case of an IS
spectator discussed in the previous section.
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4.4 Dipole subtraction for NLO QCD corrections

As mentioned before, the dipole subtraction formalism was first introduced in [66] to enable
the calculation of NLO QCD corrections involving exactly massless partons. This approach
is well motivated, because masses of light quarks do not have a well-defined meaning in
perturbative QCD. Thus, in QCD one uses dimensional regularization to regularize IR
singularities in the phase-space integration, posing the necessity to perform phase-space
integrals in d = 4 − 2ǫ dimensions.

4.4.1 Partonic cross sections at NLO QCD

Here, we provide the contributions to the NLO QCD cross section, establishing the nota-
tion we will use for the discussion of the dipole subtraction technique in the next subsection.

We examine a process with two massless QCD partons a and b in the initial state and
n partons c1, . . . , cn in the final state,

a(pa) + b(pb) → c1(p1) + . . .+ cn(pn) + R(Q) . (4.4.1)

Particles in the final state that are not strongly interacting, like γ, W± ,Z0, or the leptons
are denoted as ”rest” R. In our special case, R represents a leptonically decaying W
boson. The four-momenta of the particles are given in parentheses. The momenta pa and
pb are incoming while all other momenta are defined as outgoing. Moreover, we employ a
factorization of the differential phase space of the partonic n-particle system

dφn(p1, . . . , pn; pa + pb −Q)

≡
[

n∏

l=1

ddpl

(2π)d−1
θ(p0

l )δ(p
2
l )

]
(2π)dδ(d)(pl + . . . + pn +Q− pa − pb) , (4.4.2)

defined in d space-time dimensions, and the phase space dφR of the system R,

dΦ(R+n) =
dQ2

(2π)4
dφR(Q) dφn , (4.4.3)

where dΦ(R+n) denotes the fully differential phase space of the process (4.4.1). When we
discuss the phase-space parametrization for off-shell W-boson production in Chapters 7
and 8, we will present explicit formulae for the factorization in (4.4.3).

The total partonic cross section at NLO accuracy in QCD is given by

σ̂ab = σ̂LO
ab + σ̂NLO

ab , (4.4.4)

where the LO cross section for a final state with n partons results from integrating the
fully exclusive cross section dσ̂0

ab in the Born approximation,

σ̂LO
ab =

∫
dQ2

(2π)4

∫

R

∫

n

dσ̂0
ab . (4.4.5)
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The differential cross section at the Born level reads

dσ̂0
ab(pa, pb) =

dφR(Q)

2ŝ

∑

{n}
dφn(p1, . . . , pn; pa + pb −Q)

× 1

S{n}

∣∣M0
n,ab(p1, . . . , pn, Q; pa, pb)

∣∣2F (R+n)
J (Q, p1, . . . , pn; pa, pb) ,

(4.4.6)

where M0
n,ab is the tree-level amplitude of process (4.4.1). The symmetry factors S{n}

account for identical partons in the final state, and the basic properties of the jet function
F

(R+n)
J have been discussed in Section 3.5. Note that we have to sum over all possible sets

of FS partons {c1, . . . , cn} to cover all LO contributions.
The perturbative part of the NLO cross section consists of the sum of real and vir-

tual corrections, and moreover includes the collinear counterterm that was introduced in
Section 3.3,

σ̂NLO
ab =

∫
dQ2

(2π)4

∫

R

[∫

n+1

dσ̂R
ab +

∫

n

dσ̂V
ab +

∫

n

dσ̂C
ab

]
, (4.4.7)

where

dσ̂R
ab(pa, pb) =

dφR(Q)

2ŝ

∑

{n+1}
dφn+1(p1, . . . , pn+1; pa + pb −Q)

× 1

S{n+1}

∣∣M0
n+1,ab(p1, . . . , pn+1, Q; pa, pb)

∣∣2F (R+n+1)
J (Q, p1, . . . , pn+1; pa, pb)

(4.4.8)

arises from (4.4.6) by simply replacing {n} by {n+ 1}. The expression for the virtual
contributions is

dσ̂V
ab(pa, pb) =

dφR(Q)

2ŝ

∑

{n}

dφn

S{n}
2 Re

[
M1

n,ab (M0
n,ab)

∗
]
F

(R+n)
J , (4.4.9)

with the renormalized one-loop amplitude M1
n,ab. In (4.4.9), we have omitted the depen-

dence on the external momenta, since it is given by (4.4.6).

4.4.2 General procedure of the subtraction formalism

In this subsection we present a brief and formal summary of the basic ideas of the dipole
subtraction method for the calculation of NLO corrections in QCD, following the notation
of [66]. The technical details about the explicit construction of the dipole formulae and
about the integration of the universal IR-singular parts can also be found in this paper.
The following general statements hold for any scattering process involving massless QCD
partons (i.e. gluons, quarks, or antiquarks) in the final and/or initial state. Nevertheless,
for simplicity we neglect the dependence on the non-strongly-interacting system R(Q) we
have introduced in Section 4.4.1 in this subsection, since the following explanations only
affect the QCD sector of the examined process. We also remark that we demand collinear
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safety with respect to the definition of physical jets. Since we do not specify the initial
state, we always assume parton-level cross sections in the following.

As explained in Sections 3.3 and 4.4.1, the NLO part of any cross section is defined as
the sum of the real corrections

∫
n+1

dσ̂R, arising from one additional parton in the FS, the

virtual corrections
∫

n
dσ̂V and the collinear counterterm

∫
n
dσ̂C that removes the residual

IS collinear singularities connected to radiative QCD corrections to IS partons. As a result
of general factorization properties of QCD amplitudes in the soft and the collinear limit
(see Section 3.2), one is able to construct a local counterterm dσ̂A that exactly matches the
IR-singular structure of dσ̂R. This local counterterm can be composed from the underlying
hard process dσ̂0 and the dipoles dVdipole by summing over all possible dipole contributions,

dσ̂A =
∑

dipoles

dσ̂0 ⊗ dVdipole . (4.4.10)

Note that this notation is symbolic and just visualizes the general procedure. The symbol
⊗ denotes adequately defined phase-space convolutions and the sums over colour and spin
indices, and dσ̂0 is a particular spin and colour projection of the exclusive Born-level cross
section. The dipoles dVdipole do not depend on the underlying hard process and can be
computed once and for all.

No we can rearrange the NLO cross section (4.4.7) as

σ̂NLO =

∫

n+1

(dσ̂R − dσ̂A) +

∫

n

dσ̂V +

∫

n+1

dσ̂A +

∫

n

dσ̂C . (4.4.11)

Since dσ̂A acts as a local counterterm that cancels all IR singularities in dσ̂R, the first sub-
traction integral can be computed numerically in four dimensions over the whole (n+ 1)-
parton phase space. The IR-singular subspace of the emitted parton in dσ̂A can be inte-
grated analytically in d = 4 − 2ǫ dimensions,

∫

n+1

dσ̂A =
∑

dipoles

∫

n

dσ̂0 ⊗
∫

1

dVdipole , (4.4.12)

exploiting the general factorization properties of the jet amplitudes mentioned before. This
procedure results in a convolution of the general, process-independent operators I(ǫ), P ,
and K with the leading order cross section dσ̂0 specifying the underlying hard process
without additional parton radiation. Finally, one finds that the NLO cross section can be
decomposed according to the n- and the (n+ 1)-parton kinematics in the following way,

σ̂NLO(p) =

∫

n+1

[
(
dσ̂R(p)

)
ǫ=0

−
(
∑

dipoles

dσ̂0(p) ⊗ dVdipole

)

ǫ=0

]

+

∫

n

[
dσ̂V(p; ǫ) + dσ̂0(p) ⊗ I(ǫ)

]
ǫ=0

+

∫ 1

0

dx

∫

n

[
dσ̂0(xp) ⊗ (P (x, xp, µF) + K(x))

]
ǫ=0

, (4.4.13)

where the argument “p” includes the schematic dependence of the cross section on the
momenta of the IS partons.
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The I-operator contains all IR-singular 1/ǫ and 1/ǫ2 poles arising from the collinear
splitting of a FS parton into two collinear partons. It additionally contains the endpoint
contributions of gluon radiation from IS partons, corresponding to a situation in which
the radiated gluon becomes soft. All these IR singularities have to be cancelled against
antipodal contributions from the virtual corrections dσ̂V according to the KLN theorem
as already stated in Section 3.3.

The P - and the K-operator, respectively, are related to collinear parton radiation from
IS partons. In the collinear limit, the emitted parton carries away the four-momentum
(1 − x)p from the incoming parton, reducing the momentum of the hard process from p
to xp. This qualitatively explains why we have to perform a convolution of the LO cross
section dσ̂0(xp), allowing for all possible momentum configurations after parton emission
for x between x = 0 (soft emission) and x = 1 (hard emission).

The P -operator exhibits a dependence on the factorization scale µF and the momentum
p, since it contains the regular remnant resulting from the cancellation of the universal IS
collinear singularities against the 1/ǫ terms in the collinear counterterm dσ̂C. In contrast,
the K-operator includes the factorization–scheme-dependent finite contributions Kab

F.S.
(z)

introduced in (3.3.1).

4.4.3 The dipole subtraction formulae for two initial-state par-
tons

Here we provide the explicit formulae that allow one to calculate a NLO QCD cross
section at hadron colliders using the dipole subtraction method. This section summarizes
the results of Chapter 10 in Ref. [66].

Consider a partonic process with two incoming partons of flavours a and b with momenta
pa and pb, and n QCD partons in the final state. The full NLO cross section for this process
is given by

σ̂NLO
ab (pa, pb;µF) =

∫

n+1

(
dσ̂R

ab(pa, pb) − dσ̂A
ab(pa, pb)

)

+

[∫

n+1

dσ̂A
ab(pa, pb) +

∫

n

dσ̂V
ab(pa, pb) +

∫

n

dσ̂C
ab(pa, pb)

]
. (4.4.14)

Following the ideas of the last subsection, the second line of this equation can be turned
into a simple convolution of Born-level cross sections with the all-purpose operators I(ǫ),
P , and K,
∫

n+1

dσ̂A
ab(pa, pb) +

∫

n

dσ̂V
ab(pa, pb) +

∫

n

dσ̂C
ab(pa, pb)

=

∫

n

[
dσ̂0

ab(pa, pb) I(ǫ) + dσ̂V
ab(pa, pb; ǫ)

]
F

(n)
J (p1, . . . , pn; pa, pb)

+
∑

a′

∫ 1

0

dx

∫

n

[
Ka,a′

(x) + P a,a′

(xpa, x;µ
2
F)
]
dσ̂0

a′b(xpa, pb)F
(n)
J (p′1, . . . , p

′
n;xpa, pb)

+
∑

b′

∫ 1

0

dx

∫

n

[
Kb,b′(x) + P b,b′(xpb, x;µ

2
F)
]
dσ̂0

ab′(pa, xpb)F
(n)
J (p′′1, . . . , p

′′
n; pa, xpb) ,

(4.4.15)
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where the FS momenta p′i and p′′i are generated with the reduced squared cm energy xŝ.
The explicit expressions of the three contributing operators can be found in Section 10.1
of [66]. We will discuss this equation in some detail. Since the I-operator contains the full
IR structure of the real corrections, the cancellation against the virtual corrections can
be done analytically, resulting in a straight-forward numerical integration of a Born-level
phase space. All non-singular contributions to the NLO cross section are given by simple
convolutions of smooth functions with Born-level differential cross sections, also allowing
for a numerically stable evaluation.

The expression dσ̂A
ab(pa, pb) in the subtraction integral is given by a sum over all dipoles

that can be constructed from all partonic processes with (n+1) partons in the final state,
contributing as real corrections to the cross section dσ̂0

ab(pa, pb):

dσ̂A
ab(pa, pb) =

1

ns(a)ns(b) 2ŝ

∑

{n+1}
dφn+1(p1, . . . , pn+1; pa + pb)

1

S{n+1}

×
{
∑

pairs
i,j

∑

k 6=i,j

Dij,k(p1, . . . , pn+1; pa, pb)F
(n)
J (p1, . . . , p̃ij, p̃k, . . . , pn+1; pa, pb)

+
∑

pairs
i,j

[
Da

ij(p1, . . . , pn+1; pa, pb)F
(n)
J (p1, . . . , p̃ij , . . . , pn+1; p̃a, pb) + (a↔ b)

]

+
∑

i

∑

k 6=i

[
Dai

k (p1, . . . , pn+1; pa, pb)F
(n)
J (p1, . . . , p̃k, . . . , pn+1; p̃ai, pb) + (a↔ b)

]

+
∑

i

[
Dai,b(p1, . . . , pn+1; pa, pb)F

(n)
J (p̃1, . . . , p̃n+1; p̃ai, pb) + (a↔ b)

]}
, (4.4.16)

where i, j, and k depict QCD partons in the final state, and ns(a/b) denotes the number
of polarizations of the IS partons a and b.

The dipoles Dai,b and Dai
k that are constructed with the IS spectator b or the FS spec-

tator ck according to (4.4.10) are composed in such a way that the sum
∑

b,k(Dai,b + Dai
k )

will cancel the collinear singularity that arises due to the IS splitting a→ ãi+ i, where the
parton ãi enters the hard scattering process depicted by the amplitude M0,(ai), in which
parton ci is absent (see Fig. 3.1(a)). The structure of the dipoles is given by

Dai
k (p1, . . . , pn+1; pa, pb) =

1

2 (papi)
Gai

k (pa, pi, pk)

⊗
∣∣M0,(ai)

(
ãi(p̃ai) + b(pb) → c1(p1) + · · · + ck(p̃k) + . . .+ cn(pn)

)∣∣2 , (4.4.17a)

Dai,b(p1, . . . , pn+1; pa, pb) =
1

2 (papi)
Gai,b(pa, pb, pi, )

⊗
∣∣M0,(ai)

(
ãi(p̃ai) + b(p̃b) → c1(p̃1) + . . .+ cn(p̃n)

)∣∣2 , (4.4.17b)

where the matrices Gai,...
... contain the process-independent information about the singular

splitting, and the so-called auxiliary momenta indicated by a “∼” have to be constructed
from the full radiative phase space in such a way that momentum conservation and all
mass-shell conditions are fulfilled within the calculation of M0,(ai). Note that the matrices
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G normally do not factorize from the squared LO matrix element, but act as operators
on the colour structure of the the LO amplitude M0 (see Section 4.4.5) and employ spin
correlations.

On the other hand, the dipoles Dij,k and Da
ij that are constructed with the IS spectator

a or the FS spectator ck are composed in such a way that the sum
∑

a,k(Dij,k + Da
ij)

cancels the collinear singularity in σ̂R
ab originating from the FS splitting ĩj → i+ j, where

the parton ĩj leaves the hard scattering process and splits into the collinear pair of partons
i and j (see Fig. 3.1(b)). The kernels now read

Dij,k(p1, . . . , pn+1; pa, pb) =
1

2 (pipj)
Gij,k(pi, pj , pk)

⊗
∣∣M0

(ij)

(
a(pa) + b(pb) → c1(p1) + · · · + cĩj(p̃ij) + . . .+ ck(p̃k) + . . .+ cn(pn)

)∣∣2 ,
(4.4.18a)

Da
ij(p1, . . . , pn+1; pa, pb) =

1

2 (pipj)
Ga

ij(pa, pi, pj)

⊗
∣∣M0

(ij)

(
a(p̃a) + b(pb) → c1(p1) + . . .+ cĩj(p̃ij) + . . . cn(pn)

)∣∣2 , (4.4.18b)

with the adequate matrices G...
ij,..., and the auxiliary momenta p̃ij, p̃k, and p̃a that again

have to be physical external momenta of the amplitude M0
(ij) without collinear splitting.

In accordance with [66], we assume summation over helicities and colours of external
particles as well as colour-averaged IS particles in the squared LO amplitudes in (4.4.17)
and (4.4.18), respectively.

Although it is possible to cancel different collinear singularities in different regions
of the phase space independently, the soft singularities in σ̂R

ab are not related to a single
external splitting. Thus, all contributions in (4.4.16) are needed to match the soft-singular
structure of the radiative process properly.

A detailed technical discussion of the construction of the dipole kernels D is carried out
in Chapter 5 of [66]. It is important to stress that the FS momenta that enter the cut

function F
(n)
J or are used to calculate a phase-space dependent scale parameter should be

identical with the auxiliary momenta entering the reduced LO amplitudes M0 within the
subtraction kernels. Otherwise, it could become very intricate to consistently readd the
correct contributions in the analytically integrated counterparts.

4.4.4 The dipole subtraction formulae for one initial-state par-
ton

Here we list the subtraction formulae for a situation with just one QCD parton a in the
initial state. This description for example accounts for processes with one photon in the
initial state that arise due to the photon content of the proton. In this case, the subtraction
function dσ̂A

a reads

dσ̂A
a (pa) =

1

ns(a) 2ŝ

∑

{n+1}
dφn+1(p1, . . . , pn+1; pa + pb)

1

S{n+1}

×
{∑

pairs
i,j

∑

k 6=i,j

Dij,k(p1, . . . , pn+1; pa, pb)F
(n)
J (p1, . . . , p̃ij, p̃k, . . . , pn+1; pa, pb)
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+
∑

pairs
i,j

Da
ij(p1, . . . , pn+1; pa, pb)F

(n)
J (p1, . . . , p̃ij, . . . , pn+1; p̃a, pb)

+
∑

i

∑

k 6=i

Dai
k (p1, . . . , pn+1; pa, pb)F

(n)
J (p1, . . . , p̃k, . . . , pn+1; p̃ai, pb)

}
, (4.4.19)

and the readded counterpart is given by

∫

n+1

dσ̂A
a (pa) +

∫

n

dσ̂V
a (pa) +

∫

n

dσ̂C
a (pa)

=

∫

n

[
dσ̂0

a(pa)I(ǫ) + dσ̂V
a (pa; ǫ)

]
F

(n)
J (p1, . . . , pn; pa, pb)

+
∑

b

∫ 1

0

dx

∫

n

[
Ka,b(x) + P a,b(xpa, x;µ

2
F)
]
dσ̂0

b (xpa)F
(n)
J (p′1, . . . , p

′
n;xpa, pb) ,

(4.4.20)

where the operators I(ǫ), K(x), and P (xpa, x;µ
2
F) are listed in Section 8.1 of [66].

4.4.5 Colour-correlated amplitudes

For the implementation of the QCD subtraction kernels and their integrated counterparts,
one is confronted with the calculation of colour-correlated squared amplitudes at the Born
level. Establishing the notation

|Mn|2 ≡ 〈1, . . . , n|1, . . . , n〉 , (4.4.21)

for an n-parton amplitude, the colour-correlated squared amplitude is defined via

|MI,J
n |2 = 〈1, . . . , I, J, . . . , n|T I · T J |1, . . . , I, J, . . . , n〉 , (4.4.22)

where the colour charges T I/J that act as operators in colour space are associated with
the emission of a gluon from parton I or J , respectively. We will not discuss the explicit
calculation of colour-correlated amplitudes in detail, because this is not necessary in our
special case, as will be pointed out now.

The matrices T obey the colour-charge algebra

T i · T j = T i · T j if i 6= j, T 2
i = Ci , (4.4.23)

where Ci is the Casimir operator of parton i, i.e. Ci = CA = NC if the parton is a gluon,
and Ci = CF = (N2

C − 1)/2NC if the parton i is a quark or antiquark. Note that the
expression T 2

i is diagonal in colour space. Since any physical amplitude corresponds to a
colour-singlet state, conservation of colour charge implies

n∑

i=1

T i|1, . . . , n〉 = 0 . (4.4.24)
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In our explicit calculation we have to consider processes with three QCD partons at the
Born level, namely two quarks and a gluon. In such cases, colour conservation (4.4.24)
can be used to express any colour-correlator T I ·T J in terms of Casimir operators. Using

0 =

(
3∑

i=1

T i

)2

|1, 2, 3〉

=
[
T 2

1 + T 2
2 + T 2

3 + 2(T 1 · T 2 + T 1 · T 3 + T 2 · T 3)
]
|1, 2, 3〉 , (4.4.25)

and

(T 1 · T 2 + T 1 · T 3) |1, 2, 3〉 = −T 2
1 |1, 2, 3〉 ,

(T 2 · T 1 + T 2 · T 3) |1, 2, 3〉 = −T 2
2 |1, 2, 3〉 ,

(T 3 · T 1 + T 3 · T 2) |1, 2, 3〉 = −T 2
3 |1, 2, 3〉 , (4.4.26)

one obtains
〈1, 2, 3|T i · T j|1, 2, 3〉 = (C2

k − C2
i − C2

j ) |M3|2 , (4.4.27)

for any permutation {i, j, k} of {1, 2, 3}. This expression gives the prescription how to
express colour-correlated amplitudes in terms of a simple factorization in any three-parton
process.

For the calculation of the QCD corrections to photon-induced processes (see Section 8.1)
we will also apply the dipole subtraction procedure. In this particular situation, the Born-
level processes only contain two partons, and one simply obtains

〈1, 2|T 1 · T 2|1, 2〉 = C2
1 |M2|2 = C2

2 |M2|2 , (4.4.28)

for the colour-correlated amplitudes.





Chapter 5

Production of on-shell W bosons in
association with a jet

In this chapter we present the full NLO EW corrections to hadroproduction of one on-shell
(stable) W boson with one associated parton that will subsequently hadronize to a hadron
jet which will be denoted as j in the following. At LO, we take into account the dominant
partonic channels with two QCD partons in the initial state, but we will also have a closer
look at the contributions via photoproduction. Due to the conceptual problems discussed
in Section 3.7, we also include W + γ production and the associated QCD corrections in
our calculation.

This chapter is organized as follows. First, we outline the different contributions that
can be assigned to photon-induced processes. In Section 5.2, we list the relevant partonic
cross sections at LO and explain how to evaluate the hadronic cross section from them.
In Section 5.3, we discuss in detail the structure of the NLO corrections. In Section 5.4,
we present our numerical results for pp̄ collisions with cm energy

√
s = 1.96 TeV at the

Fermilab Tevatron and pp collisions with
√
s = 14 TeV at the CERN LHC.

5.1 Photon-induced contributions

By crossing external lines, the LO partonic subprocesses of W + γ hadroproduction can
be converted to those of W + j photoproduction with one incoming photon participating
directly in the hard scattering via direct photoproduction. The emission of photons off
the proton can happen either elastically or inelastically, i.e. the proton stays intact or
is destroyed, respectively. In both cases, an appropriate PDF can be evaluated in the
Weizsäcker–Williams approximation [76, 77, 78]. Since the PDFs are of O(α), these direct
photoproduction contributions are of O(α3). Although photoproduction contributions
are parametrically suppressed by a factor of α/αs relative to the dominant EW O(α2αs)
corrections, we shall include them in our analysis because we want to investigate their
phenomenological relevance compared to the EW NLO corrections to W + j production.
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5.2 Conventions and LO results

We consider the hadronic process

A(pA) +B(pB) → W(p) +X, (5.2.1)

where the four-momentum assignments are indicated in parentheses. We work in the
QCD improved parton model (see Section 2.3) with nf = 5 massless quark flavours
q = u, d, s, c, b, neglect the masses of the incoming hadrons, A and B, and impose the
acceptance cut pT > pcut

T on the transverse momentum pT of the W boson. (We as-
sign masses to the partons γ, g, q, q only to regulate soft and collinear IR singularities in
intermediate steps of our calculation, as explained in Section 3.1.)

Specifically, denoting u1 = u, u2 = c, d1 = d, d2 = s, and d3 = b, the relevant partonic
subprocesses include

ui dj → W+ + g, (5.2.2)

ui g → W+ + dj , (5.2.3)

dj g → W+ + ui, (5.2.4)

at O(ααs),

ui dj → W+ + γ, (5.2.5)

ui γ → W+ + dj , (5.2.6)

dj γ → W+ + ui, (5.2.7)

at O(α2), and

ui dj → W+ + g + γ, (5.2.8)

ui g → W+ + dj + γ, (5.2.9)

dj g → W+ + ui + γ, (5.2.10)

at O(α2αs). The partonic subprocesses involving a W− boson emerge through a CP trans-
formation on the parton level. Processes (5.2.2) – (5.2.5) must be treated also at one loop,
O(α2αs). The Processes (5.2.6) and (5.2.7) contribute to direct photoproduction. Since
photon emission off protons happens at O(α), it is a good starting point to deal with pho-
toproduction at tree level. In summary, we calculate the cross section of process (5.2.1)
at NLO as the sum

σAB→WX = σ0
Wj + σ0

Wγ + σ
O(α)
Wj + σ

O(αs)
Wγ + σ0

Wjγ + σγ
Wj, (5.2.11)

where σ0
Wj and σ

O(α)
Wj are due to processes (5.2.2) – (5.2.4) at tree level and one loop,

σ0
Wγ and σ

O(αs)
Wγ are due to process (5.2.5) at tree level and one loop, σ0

Wjγ is due to
processes (5.2.8) – (5.2.10) at tree level, and σγ

Wj is due to processes (5.2.6) and (5.2.7)
via direct photoproduction at tree-level.

We demand a minimum pT for the jet, i.e. pT(j) > pcut
T , to ensure that we observe a

visible jet at LO. As discussed in Section 2.3.2, the cross section σAB→WX of the hadronic
process (5.2.1) is related to the cross sections σ̂ab→Wc(d) of the partonic subprocesses,

a(pa) + b(pb) → W(p) + c(pc)(+d(pd)), (5.2.12)



5.2. Conventions and LO results 69

where a, b, c, d = γ, g, q, q and pa = xapA, pb = xbpB with scaling parameters xa, xb, as the
incoherent sum

σAB→WX(s, pT > pcut
T ) =

∑

a,b,c(,d)

∫ 1

τ0

dτ Lab
AB(τ)σ̂ab→Wc(d)(ŝ, pT > pcut

T ), (5.2.13)

where

Lab
AB(τ) =

∫ 1

τ

dxa

xa
fa/A(xa, µ

2
F)fb/B

(
τ

xa
, µ2

F

)
, (5.2.14)

is the parton luminosity defined in terms of the PDFs. In (5.2.13), we have to sum over
all combination of partons a, b, c, and d that contribute to the processes (5.2.2) – (5.2.10).
Introducing the shorthand notation w = M 2

W, we have

τ0 =

(
pcut

T +
√
w + (pcut

T )2
)2

s
. (5.2.15)

In order to obtain σ̂ab→Wc(d), we have to evaluate the transition matrix elements
Mab→Wc(d) of processes (5.2.12), square them, average them over the IS spins and colours,

and sum them over the FS ones, which leads to |Mab→Wc(d)|2. To the order of our cal-
culation, Mab→Wcd is calculated at tree level, while Mab→Wc may receive also one-loop
contributions, Mab→Wc = M0

ab→Wc + M1
ab→Wc, so that

|Mab→Wc|2 = |M0
ab→Wc|

2
+ 2Re

[
(M0

ab→Wc)
∗M1

ab→Wc

]
. (5.2.16)

Then we have to integrate over the partonic phase spaces constrained by the minimum-
pT cut. In the following two subsections, we describe how this is done for the two- and
three-particle final states, respectively.

Since we are dealing with charged-current interactions of quarks, ui and dj , the quark-
mixing matrix Vij (see Eq. (2.1.26)) appears. At tree level, the cross sections of pro-
cesses (5.2.2) – (5.2.10) contain the overall factor |Vij|2. Since we assume the CKM matrix
as diagonal in the one-loop corrections, we can absorb the residual appearances of |Vij |2
at LO into a redefinition of the down-quark PDFs, as [38, 39]

f̃di/A(x, µ2
F) =

3∑

j=1

|Vij|2 fdj/A(x, µ2
F), (5.2.17)

and similarly for down antiquarks. Therefore, it is sufficient to calculate the partonic
cross sections for the flavour-diagonal case, with Vij = δij . The replacement (5.2.17) in
particular restores the correct CKM dependences for the ud̄ and ūd annihilation channels.

5.2.1 Two-particle final states

If parton d is absent in process (5.2.12), we supplement ŝ by two more Mandelstam
variables, t = (pa − p)2 and u = (pb − p)2. Four-momentum conservation implies that
ŝ+ t+ u = w, and we have p2

T = tu/ŝ. The partonic cross section entering Eq. (5.2.13) is
evaluated as

σ̂ab→Wc(ŝ, pT > pcut
T ) =

∫ pmax
T

pcut
T

dpT
dσ̂ab→Wc

dpT

, (5.2.18)
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Figure 5.1: Tree-level diagrams of (a) process (5.2.2) and (b) process (5.2.5).
The tree-level diagrams of processes (5.2.3), (5.2.4), (5.2.6), and (5.2.7) emerge
through crossing.

where pmax
T = (ŝ− w)/(2

√
ŝ) and

dσ̂ab→Wc

dpT

=
pT

8πŝ
√

(ŝ− w)2 − 4ŝp2
T

|Mab→Wc|2. (5.2.19)

For the reader’s convenience, we list the differential cross sections of processes (5.2.2) –
(5.2.7), in the conventional form

dσ̂ab→Wc

dt
=

1

16πŝ2
|Mab→Wc|2, (5.2.20)

at LO. The Feynman diagrams contributing to processes (5.2.2) and (5.2.5) are displayed
in Figs. 5.1(a) and (b), respectively. We have

dσ̂ud→W+g

dt
=

2πααs

9s2
W

ŝ2 + w2 − 2tu

ŝ2tu
,

dσ̂ud→W+γ

dt
=

α

12αs

(
1 +

3t

ŝ− w

)2 dσ̂ud→W+g

dt
, (5.2.21)

where sW = sin θW is the sine of the weak mixing angle θW defined in (2.1.21). We use the
GF scheme for the definition of the electromagnetic coupling α, i.e. we derive α from the
Fermi constant GF according to

αGF
=

√
2

π
GFs

2
Ww. (5.2.22)

In this scheme, the weak corrections to muon decay ∆r are included in the charge renormal-
ization constant (see e.g. Ref. [17]). As a consequence, the EW corrections are independent
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of logarithms of the light-quark masses. Moreover, this definition effectively resums the
contributions associated with the running of α from zero to the W-boson mass and absorbs
leading universal corrections ∝ GFm

2
t from the ρ parameter into the LO amplitude. The

implementation of the GF scheme at one loop is explained in Section 5.3.1.
The cross sections of processes (5.2.3), (5.2.4), (5.2.6), and (5.2.7) may be obtained

from Eq. (5.2.21) by exploiting crossing symmetries, leading to

ŝ2 dσ̂ug→W+d

dt
= −3

8

[
ŝ2

dσ̂ud→W+g

dt

]

ŝ↔u

,

ŝ2
dσ̂dg→W+u

dt
=

[
ŝ2dσ̂ug→W+d

dt

]

ŝ↔t

,

ŝ2 dσ̂uγ→W+d

dt
= −3

[
ŝ2

dσ̂ud→W+γ

dt

]

ŝ↔u

,

ŝ2
dσ̂dγ→W+u

dt
=

[
ŝ2dσ̂uγ→W+d

dt

]

ŝ↔t

. (5.2.23)

5.2.2 Three-particle final states

If parton d is present in process (5.2.12), then the partonic cross section entering Eq. (5.2.13)
may be obtained through a four-fold phase-space integration along the lines of Ref. [79].
We work in the partonic cm frame and choose our coordinate system so that pa points
along the x3 direction and pd lies in the x2–x3 plane. We denote the polar angle of pd by
ϑ and the azimuthal angle of pc by ϕ. As the first three independent variables, we select
p0

d, ϑ, and ϕ, which take the values

0 < p0
d <

ŝ− w

2
√
ŝ
, 0 < ϑ < π, 0 < ϕ < 2π. (5.2.24)

In the case of process (5.2.8), which contains two massless gauge bosons in the final state,
it is convenient to take the fourth variable to be p0

c , with values

1

2

(√
ŝ− 2p0

d −
w√
ŝ

)
< p0

c <
1

2

(
√
ŝ− w√

ŝ− 2p0
d

)
. (5.2.25)

We then have

d4σ̂ud→W+gγ

dp0
cdp

0
dd cosϑdϕ

∣∣∣∣
pT>pcut

T

=
1

8(2π)4

∣∣Mud→W+gγ

∣∣2 θ
(
pT − pcut

T

)
. (5.2.26)

On the other hand, in the case of processes (5.2.9) and (5.2.10), which only contain one
massless gauge boson in the final state, it is more useful to choose the fourth variable to
be the angle ψ enclosed between pc and pd, with values

0 < ψ < π. (5.2.27)

We then have

d4σ̂ug→W+dγ

dp0
dd cosϑdϕdψ

∣∣∣∣
pT>pcut

T

=
p0

d

[√
ŝ
(√

ŝ− 2p0
d

)
− w

]

16(2π)4
[√

ŝ− 2p0
d sin2(ψ/2)

] |Mug→W+dγ|2 θ
(
pT − pcut

T

)
,

(5.2.28)
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Figure 5.2: O(α) self-energy diagrams of process (5.2.2).

and similarly for process (5.2.10). In order to implement the minimum-pT cut, pT can be
expressed in terms the integration variables, which is conveniently done with the help of
Eqs. (5.40) and (5.42) of Ref. [79] and starting from

pT =

√
(p1

c + p1
d)

2
+ (p2

c + p2
d)

2
. (5.2.29)

5.3 NLO results

We now describe the calculation of the NLO contributions σ
O(α)
Wj , σ

O(αs)
Wγ , and σ0

Wjγ of
Eq. (5.2.11) in some detail.

We employ the following tools. We generate the relevant Feynman diagrams using the
symbolic program package FeynArts [80, 81], carry out the spin and colour sums us-
ing the program package FormCalc [82], and perform the Passarino–Veltman reduction
of the tensor one-loop integrals [83] using the program package FeynCalc [84]. Sub-
sequently, the analytical results are implemented in a Fortran program. The standard
scalar one-loop integrals contained in the purely weak corrections (i.e. corrections due
to diagrams without photon exchange) are evaluated using the program package Loop-

Tools [85], which incorporates the program library FF [86]. The numerical integrations
are performed using a version of the adaptive Monte Carlo algorithm Vegas [87] that is
part of the program package Cuba [88].

5.3.1 Virtual EW corrections to W + j production

The virtual EW corrections of O(α) to processes (5.2.2) – (5.2.4) arise from self-energy,
triangle, box, and counterterm diagrams. They are shown for process (5.2.2) in Figs. 5.2 –
5.5, respectively.

Evaluating the transition matrix element MO(α)
Wj from these loop diagrams, we encounter

both UV and IR singularities, which need to be regularized and properly cancelled. As
outlined in Section 2.1.3, we use dimensional regularization, with d = 4 − 2ǫ space-time



5.3. NLO results 73

u

d

W

g

d

d

γ d

u

d

W

g

d

d

Z d

u

d

W

g

d

u

W u

u

d

W
g

u

u

γ u

u

d

W
g

u

u

Z
u

u

d

W
g

u

d

W d

u

d

W

gu

d

γ
u

u

d

W

gu

d

Z u

u

d

W

gu

W

u γ

u

d

W

gu

γ

d W

u

d

W

gu

W

u Z

u

d

W

gu

Z

d W

u

d

W

g

d

u

γ d

u

d

W

g

d

u

Z d

u

d

W

g

d

γ

u W

u

d

W

g

d

W

d γ

u

d

W

g

d

Z

u W

u

d

W

g

d

W

d Z

Figure 5.3: O(α) triangle diagrams of process (5.2.2).

dimensions and ’t Hooft mass scale µ, to extract the UV singularities as single poles in
ǫ. These poles vanish after renormalizing the parameters and wave functions of the LO
transition matrix element M0

Wj, which leads to the counterterm contribution (see Fig. 5.5),

MCT
Wj = M0

Wj δ
CT
Wj . (5.3.1)

Owing to the renormalizability of the SM, the UV singularities in MO(α)
Wj cancel, and the

physical limit ǫ→ 0 can be reached smoothly.
As explained in Section 2.1.3, the EW on-shell renormalization scheme uses the fine-

structure constant α defined in the Thomson limit and the physical particle masses as
basic parameters. In order to avoid the appearance of large logarithms induced by the
running of α to the EW scale MW in MO(α)

Wj , it is useful to replace α by GF in the set of
basic parameters, using the relation [89]

GF =
πα√
2s2

W
w

1

1 − ∆r
, (5.3.2)

where

∆r = Σ′AA
T (0) − c2W

s2
W

(
ΣZZ

T (M 2
Z)

M 2
Z

− ΣW
T (M 2

W)

M 2
W

)
+

ΣW
T (0) − ΣW

T (M 2
W)

M 2
W
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+ 2
cW

sW

ΣAZ
T (0)

M 2
Z

+
α

4πs2
W

(
6 +

7 − 4s2
W

2s2
W

ln c2W

)
(5.3.3)

contains those EW one-loop corrections to the muon lifetime which the SM introduces on
top of those derived in the QED improved Fermi model. In the EW on-shell scheme thus
modified, we have

δCT
Wj = δZe −

δsW

sW

+
1

2

(
δZL

uu + δZL
dd

+ δZW − ∆r
)
, (5.3.4)

where the renormalization constants are defined in Section 2.1.3.
The IR singularities can be of soft or collinear type. The loop diagrams involving virtual

photons interchanged between external lines contain soft IR singularities. Owing to the
Bloch–Nordsieck theorem [64], they cancel against similar singularities arising from the
real emission of soft photons, as discussed in Section 3.1.1. The loop diagrams involving
external quark or antiquark lines that split into virtual photons and quarks induce collinear
IR singularities. Such singularities also arise from the real emission of collinear photons
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Figure 5.6: O(αs) self-energy, triangle, and box diagrams of process (5.2.5).

off external quark or antiquark lines (see Tab. 3.1). According to the KLN theorem [67],
collinear IR singularities from FS radiation are completely cancelled in the sum of real and
virtual corrections provided that the final state is treated sufficiently inclusive. On the
other hand, collinear IR singularities from IS radiation survive and have to be absorbed into
the quark and antiquark PDFs according to the replacement (3.4.1). For consistency, the
splitting functions in the evolution equations of the PDFs then need to be complemented
by their O(α) terms. IR singularities also arise from the wave-function renormalizations in
Eq. (5.3.4). We choose to regularize the IR singularities by assigning infinitesimal masses,
λ, mu, and md, to the photon, the light up-type quarks, and the down-type quarks,
respectively. This is convenient because the standard scalar one-loop integrals C0 and
D0 that emerge after the tensor reduction [83] are well established for this regularization
prescription [63, 90].

We emphasize that, in the treatment of both the virtual and real corrections, terms
depending on λ, mu, and md are extracted analytically and their cancellation is established
on the analytical level, so that the expressions used for the numerical analysis do not
contain these IR regulators.

5.3.2 Virtual QCD corrections to W + γ production

The virtual QCD corrections of O(αs) to process (5.2.5) arise from the self-energy, triangle,
and box diagrams shown in Fig. 5.6 and the counterterm contribution,

MCT
Wγ = M0

Wγ δ
CT
Wγ . (5.3.5)

The latter only receives contributions from the gluon-induced wave-function renormaliza-
tion of the external quark lines,

δCT
Wγ =

1

2

(
δZG

uu + δZG
dd

)
, (5.3.6)
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Figure 5.7: Tree-level diagrams of process (5.2.8). The tree-level diagrams
of processes (5.2.9) and (5.2.10) emerge through crossing.

where

δZG
qq = −Σqq

G,V(m2
q) − 2m2

q

∂

∂q2

[
Σqq

G,V(q2) + Σqq
G,S(q

2)
]∣∣∣∣

q2=m2
q

, (5.3.7)

in analogy to Eq. (2.1.53). Because parity is conserved within QCD, the quark self-energy
has just one vector part Σqq

G,V = Σqq
G,L = Σqq

G,R. Up to terms that vanish in the limit mq → 0,
we have

δZG
qq = −αsCF

4π

[
1

ǫ
− γE + ln(4π) − ln

m2
q

µ2
− 2 ln

m2
q

λ2
+ 4

]
+ O(ǫ), (5.3.8)

where CF = (N2
C − 1)/(2NC) = 4/3 for NC = 3 quark colours, and λ now represents

an infinitesimal gluon mass. Since the W + γ production cross section at LO does not
contain a gluon, we can safely employ mass regularization for the soft gluon pole, because
the gluon—except for a colour factor—couples to the external quarks like a photon, and
potentially gauge-violating terms will vanish in the limit λ→ 0.

5.3.3 Real corrections due to W + j + γ production – phase-
space slicing

The tree-level diagrams for process (5.2.8) are shown in Fig. 5.7. They contribute at
the same time to the electromagnetic bremsstrahlung in process (5.2.2) and to the QCD
bremsstrahlung in process (5.2.5), which complicates the treatment of the EW corrections
to W + j associated production, as we have detailed in Section 3.7. The diagrams con-
tributing to the electromagnetic bremsstrahlung in processes (5.2.3) and (5.2.4) emerge
from Fig. 5.7 by crossing the gluon with the u and d quarks, respectively.

When the cross sections of processes (5.2.8) – (5.2.10) are integrated over their three-
particle phase spaces, one encounters IR singularities of both soft and collinear types.
The former stem from the emission of soft photons and gluons and cancel against similar
contributions from the virtual corrections owing to the Bloch–Nordsieck theorem [64], as
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explained in Section 5.3.1. The latter arise when a massless gauge boson is collinearly
emitted from an external massless fermion line or when a massless gauge boson splits into
two collinear massless fermions. Specifically,

• in process (5.2.8), the photon or the gluon can be emitted collinearly from the
incoming ui and dj quarks;

• in process (5.2.9), the photon can be emitted collinearly from the incoming ui quark
or the outgoing dj quark, and the gluon can split into a collinear djdj quark pair;

• and in process (5.2.10), the photon can be emitted collinearly from the incoming dj

quark or the outgoing ui quark, and the gluon can split into a collinear uiui quark
pair.

As already mentioned in Section 5.3.1, the collinear IR singularities from FS radiation are
cancelled by the virtual corrections according to the KLN theorem [67] if the considered
process is treated sufficiently inclusive. By contrast, those from IS radiation survive and
have to be absorbed into the PDFs as shown in Sections 3.3 and 3.4.

Due to the minimum-pT cut, the photon and the gluon cannot be soft simultaneously
because one of them has to balance the transverse momentum of the W boson. By the
same reasoning, there can only be one collinear situation at a time. However, soft and
collinear singularities do overlap, and care needs to be exercised to avoid double counting.

For consistency, also the IR singularities in the real corrections need to be regularized by
the infinitesimal photon or gluon mass λ and the light-quark massesmu and md introduced
in Sections 5.3.1 and 5.3.2. As already mentioned in Section 5.3.1, the cancellation of IR
singularities is achieved analytically, so that the expressions underlying the numerical
analysis are free of them.

Phase-space slicing

As in Refs. [91, 92], we employ the method of phase-space slicing [93] to separate the soft
and collinear regions of the phase space from the one where the momenta are hard and
non-collinear, so that the partonic cross section can be written as

dσ̂Wjγ = σ̂soft
Wjγ + dσ̂coll

Wjγ + dσ̂hard
Wjγ. (5.3.9)

For definiteness, let us assume that parton d in process (5.2.12) is the soft or collinearly-
emitted one and that partons a and c are the ones emitting IS radiation and FS radiation,
respectively. In the notation introduced in Section 5.2.2, the soft regions of phase space
are then defined by λ < p0

d < ∆E ≪ (ŝ − w)/(2
√
ŝ), the collinear ones for IS radiation

and FS radiation by ϑ < ∆ϑ and ψ < ∆ψ, respectively, and p0
d > ∆E, and the hard and

non-collinear one by the rest. The angular slicing cuts ∆ϑ and ∆ψ fulfill the conditions
m2

q/ŝ ≪ ∆ϑ ≪ 1 and m2
q/ŝ≪ ∆ψ ≪ 1, respectively. In the following, we explain how to

evaluate dσ̂soft
Wjγ and dσ̂coll

Wjγ analytically using appropriate approximations. On the other
hand, dσ̂hard

Wjγ can straight-forwardly be evaluated numerically with high precision. For this
purpose, the integration boundaries for p0

d and the angles ϑ and ψ in (5.2.26) and (5.2.28)
have to be adjusted according to

∆E < p0
d <

ŝ− w

2
√
ŝ
, ∆ϑ < ϑ < π − ∆ϑ , (5.3.10)
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and
∆ψ < ψ < π , (5.3.11)

respectively. Moreover, we apply adequate exponential phase-space mappings for the vari-
ables p0

d, ϑ, and ψ to improve the efficiency of the numerical evaluation. Since ∆E has
to be compared to

√
ŝ/2, we define δs = 2∆E/

√
ŝ. The demarcation parameters δs, ∆ϑ,

and ∆ψ must be chosen judiciously. If they are too small, the numerical phase-space inte-
gration performed for dσ̂hard

Wjγ becomes unstable; if they are too large, the approximations
adopted for dσ̂soft

Wjγ and dσ̂coll
Wjγ become crude. In practice, one varies δs, ∆ϑ, and ∆ψ to find

the respective stability regions. For the problem considered here, this is easily achieved.

Soft singularities

In the soft phase-space regions, Mab→Wcd factorizes into Mab→Wc times an eikonal factor
that depends on pd. For soft-photon radiation, i.e. d = γ, the general formula for this
eikonal factor is given by (3.2.1). The integration of (3.2.1) over the soft-photon phase
space leads to the integrals

Iij ≡
∫

|k|≤∆E

d3k

2k0

2(pipj)

(kpi)(kpj)
, (5.3.12)

that can be integrated analytically [65], yielding

Iij =
4πη (pipj)

(η pi)2 − p2
j

{
1

2
ln

(η pi)
2

p2
j

ln
4∆E2

λ2

+

[
1

4
ln2 u0 − |u|

u0 + |u| + Li2

(
1 − u0 + |u|

v

)
+ Li2

(
1 − u0 − |u|

v

)]u=η pi

u=η pj

}
,

(5.3.13)

where Li2(x) = −
∫ 1

0
dt ln(1 − tx)/t is the dilogarithm, η is implicitly defined through

η2p2
i − 2η (pipj) + p2

j = 0 ,
η p0

i − p0
j

p0
j

> 0 , (5.3.14)

and

v =
(η pi)

2 − p2
j

2(η p0
i − k0

j )
. (5.3.15)

Squaring Mab→Wcd, performing the spin and colour sums, and integrating over pd with
the constraint λ < p0

d < ∆E, one finds

dσ̂soft
ab→Wcd(λ,∆E) = δsoft

ab→Wcd(λ,∆E)dσ̂ab→Wc , (5.3.16)

for the soft part of the bremsstrahlung integral.
In case of soft electromagnetic and QCD bremsstrahlung in process (5.2.8), we then

obtain

δsoft
ud→W+gγ

(λ,∆E) = − α

2π

(
Q2

uδuu +Q2
dδdd + δWW + 2QuQdδud + 2QuδuW + 2QdδdW

)
,

δsoft
ud→W+γg

(λ,∆E) = −αsCF

2π
(δuu + δdd + 2δud), (5.3.17)
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where Qu = 2/3 and Qd = −1/3 are the fractional electric charges of the u and d quarks,
respectively. Applying (5.3.13), the particular IR-singular contributions read

δuu = ln
4(∆E)2

λ2
+ ln

m2
u

ŝ
,

δdd = δuu|mu↔md
,

δud =
1

2
ln

4(∆E)2

λ2
ln
m2

um
2
d

ŝ2
+

1

4

(
ln2 m

2
u

ŝ
+ ln2 m

2
d

ŝ

)
+
π2

3
,

δWW = ln
4(∆E)2

λ2
+
ŝ+ w

ŝ− w
ln
w

ŝ
,

δuW =
1

2
ln

4(∆E)2

λ2
ln

wm2
u

(w − t)2
+

1

4

(
ln2 m

2
u

ŝ
+ ln2 w

ŝ

)

+ Li2

( −t
w − t

)
+ Li2

( −u
w − t

)
+
π2

6
,

δdW = − δuW|t↔u, mu↔md
, (5.3.18)

where the hierarchy λ≪ mq was respected,1 and terms that vanish for mu = md = 0 have
been omitted.

Furthermore, we find the soft-photon correction factor for process (5.2.9) to be

δsoft
ug→W+dγ(λ,∆E) = − α

2π

(
Q2

uδuu +Q2
dδdd + δWW + 2QuQdδ̃ud + 2QuδuW + 2Qdδ̃dW

)
,

(5.3.19)
in which two terms of Eq. (5.3.18) are modified to be

δ̃ud =
1

2
ln

4(∆E)2

λ2
ln
m2

um
2
d

u2
+

1

4

[
ln2 m

2
u

ŝ
+ ln2 ŝm2

d

(ŝ− w)2

]
+ Li2

(
− t

u

)
+
π2

3
,

δ̃dW = −1

2
ln

4(∆E)2

λ2
ln

wm2
u

(ŝ− w)2
− 1

4

[
ln2 w

ŝ
+ ln2 ŝm2

d

(ŝ− w)2

]
− Li2

(
1 − w

ŝ

)
− π2

6
.

(5.3.20)

Finally, the soft-photon correction factor for process (5.2.10) emerges from the one of
process (5.2.9) through the simple replacement

δsoft
dg→W+uγ

(λ,∆E) = δsoft
ug→W+dγ(λ,∆E)

∣∣
mu↔md, Qu↔Qd

. (5.3.21)

Collinear singularities

In our calculation collinear singularities arise from three sources:

(1) the emission of a photon or gluon from an incoming quark or antiquark;

(2) the splitting of an incoming gluon into a quark–antiquark pair; and

1This assumption is important, since the fermion masses are small physical parameters, while the
photon/gluon mass λ is an infinitesimal regulator that has to be neglected with respect to all physical
scales of the process.
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(3) the emission of a photon from an outgoing quark or antiquark.

In accordance with Eqs. (3.2.4), the resulting contributions to dσ̂coll
Wjγ all factorize into the

respective LO cross sections without radiation and appropriate collinear radiator functions.
For collinear photon radiation off fermions, the factorization formulae for the squared
matrix elements are explicitly given by Eq. (3.2.7). While in case of FS radiation the
collinear cone can be integrated out analytically, for IS radiation the calculation of dσ̂coll

Wjγ

involves a convolution with respect to the fraction x of four-momentum that the emitting
parton passes on to the one that enters the hard interaction.

Let parton a in process (5.2.12) be the emitting quark q and parton d the emitted
photon or gluon. Then we have [79, 94]

dσ̂coll
qb→Wc{γ,g}(mq,∆ϑ) =

{
αQ2

q, αsCF

}

2π

∫ 1−δs

x0

dxRIS
q (mq,∆ϑ, x)dσ̂

0
qb→Wc(xpq, pb) ,

(5.3.22)
where δs is introduced to exclude a slice of phase space that is both soft and collinear and
is already included in σ̂soft

Wjγ, x0 = τ0s/ŝ, with τ0 being defined in Eq. (5.2.15), and

RIS
q (mq,∆ϑ, x) = Pqq(x)

[
ln
ŝ(∆ϑ)2

4m2
q

− 2x

1 + x2

]
, (5.3.23)

with

Pqq(x) =
1 + x2

1 − x
(5.3.24)

being the LO q → q∗γ splitting function [95]. This result is identical to the case when
parton a is an antiquark q. Note that the cm frame is boosted along the beam axis by the
collinear emission of the photon or gluon.

Now, let parton a in process (5.2.12) be a gluon that splits into a qq pair, with q being
outgoing and q entering the residual hard scattering. Then we have [68]

dσ̂coll
gb→Wcq(mq,∆ϑ) =

αsTF

2π

∫ 1

x0

dxRIS
g (mq,∆ϑ, x)dσ̂

0
qb→Wc(xpq̄, pb) , (5.3.25)

where TF = 1/2 and

RIS
g (mq,∆ϑ, x) = Pgq(x) ln

ŝ(1 − x)2(∆ϑ)2

4m2
q

+ 2x(1 − x), (5.3.26)

with
Pgq(x) = x2 + (1 − x)2 (5.3.27)

being the LO g → qq̄∗ splitting function. This result is identical to the case when parton
d is an antiquark q.

Finally, let parton c in process (5.2.12) be the emitting quark q and parton d the emitted
photon. Then we have [79, 94]

dσ̂coll
ab→Wqγ(mq,∆ψ) =

αQ2
q

2π

∫ 1−δ̃s

0

dz RFS
q (mq,∆ψ, z)dσ̂

0
ab→Wq, (5.3.28)
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where δ̃s = ŝδs/(ŝ− w) is again to avoid double counting of phase space regions that are
both soft and collinear, and

RFS
q (mq,∆ψ, z) = Pqq(z)

[
ln

(ŝ− w)2(∆ψ)2

4ŝm2
q

+ 2 ln z − 2z

1 + z2

]
, (5.3.29)

with Pqq given in Eq. (5.3.24). The same result is obtained in the the case when parton
c is an antiquark q. The integral in Eq. (5.3.28) is not a convolution and can easily be
carried out analytically if we recombine the FS quark and the collinearly-radiated photon,
yielding

∫ 1−δ̃s

0

dz RFS
q (mq,∆ψ, z) = −

(
2 ln δ̃s +

2

3

)
ln

(ŝ− w)2(∆ψ)2

4ŝm2
q

+2 ln δ̃s−
2

3
π+

9

2
. (5.3.30)

In order to obtain dσ̂coll
Wjγ for one of the processes (5.2.8) – (5.2.10), all possible collinear

emissions must be taken into account one by one.
While the collinear IR singularities from FS radiation cancel upon combination with

the virtual corrections by the KLN theorem [67] within collinear-safe observables, those
from IS radiation survive. Since their form is universal (see Sections 3.3 and 3.4), they
can be factorized and absorbed into the PDFs [61]. Adopting the MS factorization scheme
both for the collinear singularities of relative orders O(α) and O(αs), this is achieved by
modifying the PDF of quark q inside hadron A as

fq/A(x) → f̃q/A(x, µ2
F) = fMS

q/A(x, µ2
F)

{
1 −

αQ2
q + αsCF

π

[(
ln δs +

3

4

)
ln
µ2

F

m2
q

− ln2 δs − ln δs + 1

]}
−
∫ 1−δs

x

dz

z
fMS

q/A

(x
z
, µ2

F

) αQ2
q + αsCF

2π
Pqq(z)

×
[
ln

µ2
F

(1 − z)2m2
a

− 1

]
−
∫ 1

x

dz

z
fMS

g/A

(x
z
, µ2

F

) αsTF

2π
Pgq(z) ln

µ2
F

m2
q

, (5.3.31)

where µF is the factorization scale, which separates the perturbative and non-perturbative
parts of the hadronic cross section. In contrast to the procedure described in Chapters 3.3
and 3.4, where we have applied a [. . .]+ prescription to extract the soft-photon pole from
the z-integration, in (5.3.31) we have used the soft-photon cut-off δs for this purpose. Note
that the prescription (5.3.31) does not include a redefinition for the photon PDF, because
we treat photon-induced processes only at LO.

5.4 Numerical results

We are now in a position to present our numerical results. Our choice of input is specified
as follows: We adopt the values

GF = 1.6637 × 10−5 GeV−2 , MW = 80.403 GeV ,

MZ = 91.1876 GeV , mt = 174.2 GeV ,

that have been quoted by the Particle Data Group [96], take the other nf = 5 quarks to
be massless partons, and assume MH = 120 GeV, which is presently compatible with the
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Figure 5.8: (a) Total cross section as a function of pcut
T and (b) pT distri-

bution of pp̄ → W+ + X for
√

s = 1.96 TeV (Tevatron). The NLO results
are compared with those of orders O(ααs), O(α2), and O(α3) via photopro-
duction. In both plots (a) and (b), the curve for the O(ααs) contribution is
covered by the NLO result.

direct search limits and the bounds from the EW precision tests [96]. We take the absolute
values of the CKM matrix elements to be [96]

|Vud| = 0.9377, |Vus| = 0.2257, |Vcd| = 0.230,

|Vcs| = 0.957, |Vcb| = 41.6 × 10−3, |Vub| = 4.31 × 10−3.
(5.4.1)

Since we are working at LO in QCD, we employ the one-loop formula for α
(nf ),LO
s (µR),

α
(nf ),LO
s (µ2

R) =
4π

β
(nf )
0 ln

µ2
R(

Λ
(nf )

QCD

)2

, (5.4.2)

with β
(nf )
0 = 11/3CF−2/3TF nf . We use the LO proton PDF set CTEQ6L1 by the Coordi-

nated Theoretical-Experimental Project on QCD (CTEQ) [97], with Λ
(5)
QCD = 165 MeV. In

the case of photoproduction, we add the photon spectra for elastic [76] and inelastic [77, 78]
scattering elaborated in the Weizsäcker–Williams approximation. In the latter case, we
use the more recent set by Martin, Roberts, Stirling, and Thorne (MRSTQED2004) [78] as
our default, and the set by Glück, Stratmann, and Vogelsang (GSV) [77] to assess the
theoretical uncertainty from this source. We choose the renormalization and factorization
scales to be µR = µF = ξmcut

T , where

mcut
T =

√
(pcut

T )2 +M 2
W (5.4.3)

is the minimum transverse mass of the produced W boson and ξ is introduced to estimate
the residual scale uncertainty. Unless stated otherwise, we use the default value ξ = 1.



5.4. Numerical results 83

O(α2αs) + O(α3)

O(α3)el
O(α3)mrst
O(α3)GSV
O(α2αs)

pp̄ → W+ + jet + X

√
s = 1.96 TeV

pcut
T (GeV)

K − 1

10 50 100 150 200

0.06

0.04

0.02

0

−0.02

−0.04

−0.06

O(α2αs) + O(α3)

O(α3)el
O(α3)mrst
O(α3)GSV
O(α2αs)

pp → W± + jet + X

√
s = 14 TeV

pcut
T (GeV)

K − 1

100 500 1000 1500 2000

0.4

0.3

0.2

0.1

0

−0.1

−0.2

−0.3

−0.4

−0.5

(a) (b)

Figure 5.9: NLO corrections (K−1), with and without the photoproduction
contributions, to the total cross sections of (a) pp → W+ + X for

√
s =

1.96 TeV (Tevatron run II) and of (b) pp → W± +X for
√

s = 14 TeV (LHC)
as functions pcut

T . For comparison, also the contributions due to elastic and
inelastic photoproduction normalized to the LO results are shown. In the
latter case, the evaluation is also performed with the GSV PDFs. The symbol
W± in the LHC plot (b) indicates that we present our results for the sum of
W+ and W− production.

We consider the total cross sections of pp̄ → W± + X at the Tevatron (run II) with√
s = 1.96 TeV and pp → W± +X at the LHC with

√
s = 14 TeV as functions of pcut

T . By
numerically differentiating the latter with respect to pcut

T , we also obtain the corresponding
pT distributions as dσ/dpT = − dσ(pcut

T )/dpcut
T |pcut

T =pT
. Owing to the baryon symmetry of

the initial state, the results for W+ and W− bosons are identical at the Tevatron, and it
is sufficient to study one of them. By contrast, W+-boson production is favoured at the
LHC because the proton most frequently interacts via a u quark. Therefore, it is necessary
to study the production of W+ and W− bosons separately at the LHC. We compare the
contributions of four different orders:

(1) the LO contribution of O(ααs) from processes (5.2.2) – (5.2.4), where the system X
accompanying the W boson contains a hadron jet;

(2) the LO contribution of O(α2) from process (5.2.5), where X contains a prompt
photon;
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Figure 5.10: Total cross sections of (a) pp → W++X for
√

s = 1.96 TeV and
pcut
T = 20 GeV (Tevatron run II) and of (b) pp → W± + X for

√
s = 14 TeV

and pcut
T = 200 GeV (LHC) as functions of ξ normalized to their default values

for ξ = 1. The NLO results are compared with those of orders O(ααs), O(α2),
and O(α3) via photoproduction. The symbol W± in the LHC plot (b) indicates
that we show our results for the sum of W+ and W− production.

(3) the NLO contribution of O(α2αs) comprising processes (5.2.2) – (5.2.5) at one loop
as well as processes (5.2.8) – (5.2.10) at tree level, where X contains a hadron jet, a
prompt photon, or both; and

(4) the LO contributions of O(α3) from processes (5.2.6) and (5.2.7) via direct photopro-
duction, where X contains a hadron jet and, in the case of elastic photoproduction,
also the scattered proton or antiproton.

Since we consider inclusive one-particle production, we do not use any information on the
composition of X, i.e. we include all possibilities. In the following, we regard the sum of
contributions (1) and (2) as LO and sum of contributions (1) – (4) as NLO unless the
perturbative orders are explicitly specified in terms of coupling constants. We thus define
the correction factor K to be the NLO to LO ratio with this understanding.

Let us now discuss the numerical results and their phenomenological implications in
detail. Specifically, Figs. 5.8, 5.9(a), and 5.10(a) refer to the Tevatron, while Figs 5.9(b),
5.10(b), 5.11, 5.12, and 5.13 refer to the LHC. In Fig. 5.8(a) the NLO result for the
total cross section as a function of pcut

T is compared with the LO contributions of O(ααs)
and O(α2) as well as with the photoproduction contribution of O(α3). The O(ααs) and
O(α2) results exhibit very similar shapes, but the normalization of the latter is suppressed
by a factor of about 500. This is qualitatively understood from the partonic cross section
formulae in Eq. (5.2.21) and by noticing that the O(ααs) contributions from the Compton-
like processes (5.2.3) and (5.2.4), which have no counterparts in O(α2), are significantly
enhanced by the gluon PDF. As a consequence, the LO result is almost entirely exhausted
by the O(ααs) contribution.
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Figure 5.11: (a) Total cross section as a function of pcut
T and (b) pT distribu-

tion of pp → W++X for
√

s = 14 TeV (LHC). The NLO results are compared
with those of orders O(ααs), O(α2), and O(α3) via photoproduction.

The inclusion of the NLO correction leads to a moderate reduction in cross section,
which increases in magnitude with pcut

T , reaching about −4% for pcut
T = 200 GeV, as can

be seen from Fig. 5.9(a), where the K factor is depicted.
In Fig. 5.8(a), also the photoproduction contribution is shown. As explained above,

we have to distinguish between elastic and inelastic scattering off the proton that both
formally contribute at O(α3). For the combined photoproduction contribution, we observe
from Fig. 5.8(a), that, except for small values of pcut

T , it overshoots the O(α2) contribu-
tion, although it is formally suppressed by one power of α. Detailed inspection reveals
that this unexpected enhancement can be traced to the photoproduction diagram involving
the triple-gauge-boson coupling and the space-like W-boson exchange, which significantly
contributes at large values of

√
ŝ. In fact, for a fixed value of pcut

T , the total cross sec-
tions of processes (5.2.6) and (5.2.7) have an asymptotic large-ŝ behaviour proportional
to 1/(mcut

T )2, while those of processes (5.2.2) – (5.2.5) behave as ln ŝ/ŝ. Consequently,
photoproduction appreciably contributes to the K factor, as is apparent from Fig. 5.9(a),
which also shows the photoproduction to LO ratios for elastic and inelastic scattering.
The freedom in the choice of the inelastic photon content of the proton is likely to be the
largest source of theoretical uncertainty in the photoproduction cross section. In order to
get an idea of this uncertainty, we display in Fig. 5.9(a) also the inelastic-photoproduction
to LO ratio evaluated with the GSV photon spectrum for inelastic scattering. The result
is roughly a factor of two smaller than our default prediction based on the MRSTQED2004

spectrum.
In Fig. 5.10(a), we examine the theoretical uncertainties in the O(ααs), O(α2), NLO,

and photoproduction results due to the freedom in setting the renormalization and factor-
ization scales by exhibiting their ξ dependences relative to their default values at ξ = 1.
The ξ dependencies of the O(α2) and photoproduction results stem solely from the fac-
torization scale µF and are rather feeble, while the ξ dependence of the O(ααs) result is
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Figure 5.12: (a) Total cross section as a function of pcut
T and (b) pT distribu-

tion of pp → W−+X for
√

s = 14 TeV (LHC). The NLO results are compared
with those of orders O(ααs), O(α2), and O(α3) via photoproduction.
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Figure 5.13: Ratios of the respective results for W+ and W− bosons shown
in Figs. 5.11(a) and 5.12(a).

also linked to the renormalization scale µR of αs(µR) and is therefore more pronounced,
but still not dramatic. The scale variation of the LO result amounts to less than ±15%
for 1/2 < ξ < 2. It is only slightly reduced by the inclusion of the NLO correction. This
is expected because the NLO result is still linear in αs(µR), so that the µR dependence of
αs(µR) is not compensated yet. For this reason, we have also included the NLO QCD con-
tributions in the calculation of the radiative corrections to off-shell W-boson production
that will be discussed in the following chapters.
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In Fig. 5.8(b), the analysis of Fig. 5.8(a) is repeated for the pT distribution. We observe
that the line shapes and relative normalizations of the various distributions are very similar
to those in Figs. 5.8(a) and the same comments apply.

Turning to the LHC, we can essentially repeat the above discussion for the Tevatron,
except that we have to take into account the difference between W+ and W− boson
production. Thus, Fig. 5.8 has two LHC counterparts, Figs. 5.11 and 5.12, for the W+

and W− bosons, respectively. To illustrate this difference more explicitly, we show in
Fig. 5.13 the W+ to W− ratios of the respective results from Figs. 5.11 and 5.12. For
simplicity, Figs. 5.9(b) and 5.10(b), the LHC counterparts of Figs. 5.9(a) and 5.10(a),
refer to the sum of the results for W+ and W− bosons. In the following, we only focus on
those features which are specific for the LHC. From Figs. 5.11 and 5.12, we observe that
the gaps between the O(ααs) and O(α2) results are increased by about a factor of two, to
reach three orders of magnitude. This is mainly because the Compton-like processes (5.2.3)
and (5.2.4) benefit from the extended dominance of the gluon PDF at small values of x.
Furthermore, the photoproduction contributions now significantly exceed the O(α2) ones
throughout the entire pcut

T and pT ranges. From Fig. 5.13, we see that the W+ to W− ratios
take values in excess of unity, as expected, and strongly increase with increasing values
of pcut

T . Comparing Figs. 5.9(a) and (b), we find that the EW K factors are significantly
amplified as one passes from the Tevatron to the LHC. This is due to the fact that the
typical Sudakov logarithms ∝ α

πs2
W

ln2(ŝ/w) [98], which originate from triangle and box

diagrams, become quite sizeable at the large values of
√
ŝ and pT that can be reached at

the LHC, as has been dicussed in detail in Refs. [38, 39]. Finally, comparing Fig. 5.10(a)
and (b), we conclude that the ξ dependence is generally somewhat larger at the LHC.





Chapter 6

Off-shell W-boson production at
NLO accuracy: an overview

6.1 General setup and contributions at Born level

6.1.1 LO contributions via QCD partons

Analogously to the on-shell case discussed in the previous chapter, the hadroproduction
of an intermediate W boson in association with one hard jet is governed at LO by quark–
antiquark annihilation, where the IS quarks radiate a gluon, and the corresponding crossed
channels with a gluon in the initial state. Specifically, for W+ production the relevant
partonic processes are

ui d̄j → W+g → l+νl g , (6.1.1)

ui g → W+dj → l+νl dj , (6.1.2)

d̄j g → W+ūi → l+νl ūi , (6.1.3)

where ui and dj denote an up-type quark of generation i and a down-type quark of gen-
eration j, respectively. In contrast to the approach of Chapter 5, we now perform the
calculation for the physical final state, i.e. a charged lepton l, the corresponding neutrino
νl, and a parton which will be seen in the detector as a jet. The corresponding tree-level
Feynman diagrams for process (6.1.2) are shown in Fig. 6.1. The intermediate W-boson
resonance is described by a complex W-boson mass µW via the replacement

M 2
W → µ2

W = M 2
W − iMWΓW (6.1.4)

in the W propagator as dictated by the complex-mass scheme that has been discussed
in Section 2.2.4. Hence, all our results correspond to a fixed-width description of the
Breit–Wigner resonance.

The dependence on quark mixing, as parametrized in the CKM matrix (2.1.26), fac-
torizes from the tree-level matrix elements. Apart from a global CKM-dependent factor,
the tree-level amplitudes do not depend on the specific generations. Hence, for hadronic
observables, the summation over the quark generations i = 1, 2 and j = 1, 2, 3 requires
only the evaluation of a single generic amplitude per process type shown in (6.1.1) – (6.1.3)
when folding the squared tree-level amplitudes with the corresponding PDFs. The explicit
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Figure 6.1: Feynman diagrams for the LO process (6.1.2).
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Figure 6.2: Feynman diagrams for the photon-induced process (6.1.5).

calculation of these amplitudes is carried out in Section 7.2.1. Only squares of the ab-
solute value of CKM elements enter the final results. We do not include top quarks in
the final state since their decays lead to significantly different signatures. According to
Section 3.1.1, the five other quark flavours (including the bottom quark) as well as the
FS leptons are treated as massless throughout the calculation, except if small masses are
needed to regularize a collinear divergence. Since we neglect the small CKM mixing of
the third generation with the first two generations, the PDFs of the bottom quark are
irrelevant at tree level but enter the result for the QCD bremsstrahlung cross sections (see
Section 6.3).

6.1.2 LO photon-induced contributions

In our approach, we describe W + jet production up to an accuracy of O(α3αs). Hence,
we also include the O(α3) tree-level processes with a photon in the initial state,

ui γ → W+dj → l+νl dj , (6.1.5)

d̄j γ → W+ūi → l+νl ūi . (6.1.6)

The tree-level Feynman diagrams for process (6.1.5) are shown in Fig. 6.2. The photon
content of the proton has been quantified in the MRSTQED2004 PDFs [78], that was also
our default choice in the on-shell calculation. Since the photon also couples to the charged
lepton and the intermediate W boson, the amplitude is more involved than its QCD
counterpart (see Section 7.2.2). We neglect the effects due to elastic photoproduction in
the full off-shell calculation, because they turned out to be small in the on-shell case.
Moreover, contrary to the on-shell calculation, we do not consider the crossed processes
corresponding to W + γ production at this point, following the approach of Section 3.7.
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6.1.3 General setup

As in the on-shell calculation, we use the GF scheme to define the electromagnetic coupling
constant α, i.e. we derive α from the Fermi constant according to (5.2.22).

We employ the Feynman-diagrammatic approach to calculate all relevant amplitudes
in the ’t Hooft–Feynman gauge defined in Section 2.1.1. For a numerical evaluation at the
amplitude level we use the Weyl–van-der-Waerden spinor formalism that is briefly outlined
in Section 7.1. To ensure the correctness of the presented results, our team has performed
two independent calculations which are in mutual agreement.

Our calculation starts from diagrammatic expressions for the one-loop corrections gener-
ated by FeynArts 1.0 [80], and the subsequent evaluation of the amplitudes is carried out
with programs that have been derived from code that was usually developed for the com-
putation of the EW one-loop corrections to the process e+e− → 3 jets [99]. The algebraic
evaluation of the loop amplitudes is performed with a program written in Mathematica,
and the results are automatically transferred to Fortran. The Born and bremsstrahlung
amplitudes are calculated and optimized by hand and directly included into a Fortran
program for numerical evaluation. A specific parametrization of phase space is used for
an adaptive Monte Carlo integration employing the Vegas [87] algorithm. The ana-
lytical expressions for all bremsstrahlung amplitudes, as well as the explicit phase-space
parametrizations are presented in Chapter 8.

The second calculation carried out by Ansgar Denner and Alexander Mück is based on
FeynArts 3.2 [81] and FormCalc version 3.1 [82]. The translation of the amplitudes
into the Weyl–van-der-Waerden formalism as presented in Ref. [100] is performed with the
program Pole [101]. Pole also provides an interface to the multi-channel phase-space
integrator Lusifer [102] which has been extended to use Vegas [87] in order to optimize
each phase-space mapping.

6.2 Virtual EW and QCD corrections

We calculate the virtual one-loop QCD and EW corrections for the partonic processes
(6.1.1) – (6.1.3) to order O(α2α2

s ) and O(α3αs), respectively, and discuss the calculation
in some detail in Chapter 9. Since the partonic processes (6.1.5) and (6.1.6) are already
suppressed by α/αs at LO, we only need to include the NLO QCD corrections for these
channels to reach the required accuracy. The QCD corrections are induced by self-energy,
vertex, and box (4-point) diagrams only. The NLO EW corrections are more involved and
include pentagon (5-point) diagrams. There are O(100) diagrams per partonic channel,
including 6 pentagons and 20 boxes. The generic structure of the contributing diagrams
is indicated in Fig. 6.3, and the pentagon diagrams are explicitly given in Fig. 6.4. The
different channels are related by crossing symmetry.

In the calculation of the one-loop contributions UV divergences are regularized dimen-
sionally. For the IR, i.e. soft or collinear, divergences we use pure dimensional regular-
ization with massless gluons and (anti)fermions (except for the top quark) to calculate
the QCD corrections, or—in case of the EW NLO corrections—pure mass regularization
with infinitesimal photon mass and small fermion masses, which are only kept in the
mass-singular logarithms. When using dimensional regularization, the rational terms of
IR origin are treated as described in Appendix A of Ref. [103].
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Figure 6.3: Contributions of different one-particle irreducible vertex func-
tions (indicated as blobs) to the LO process (6.1.2); there are contributions
from self-energies, triangles, boxes, and pentagon graphs.
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Figure 6.4: Virtual pentagon contributions to the process (6.1.2).
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We use the on-shell renormalization prescription for the EW part of the SM as detailed
in Section 2.2.4 for the complex-mass scheme. Employing the GF scheme for the defini-
tion of the fine-structure constant (see Sections 5.2.1 and 5.3.1), we include ∆r in the
counterterm contribution via the replacement

δZe|α(0) → δZe|GF
= δZe|α(0) −

1

2
∆r (6.2.1)

for the charge renormalization constant, as suggested in Ref. [104]. The strong coupling
constant is renormalized in the MS scheme with nf = 5 active flavours. Hence, bottom
quarks are included everywhere in the calculation as a massless quark flavour.

6.3 Real corrections and interference effects

The evaluation of the real corrections has to be done with care, both for theoretical
consistency as well as to match the experimental observables as closely as possible.

6.3.1 Real EW corrections

Let us first focus on the EW real corrections to the partonic processes (6.1.1) – (6.1.3).
The emission of an additional photon leads to the processes

ui d̄j → l+νl g γ , (6.3.1)

ui g → l+νl dj γ , (6.3.2)

d̄j g → l+νl ūi γ . (6.3.3)

The Feynman diagrams contributing to the process (6.3.2) are shown in Fig. 6.5. If the
photon and the charged leptons/quarks are recombined into a pseudo-particle (mimicking
the start of hadronic or electromagnetic showers) to form IR-safe observables, all the
soft singularities and collinear singularities related to FS radiation cancel against the
corresponding singularities in the virtual corrections. The collinear singularities arising
from IS collinear splittings are absorbed into the PDFs according to (3.4.1). Note that
the MRSTQED2004 PDFs are defined in the DIS scheme with respect to QED corrections,
as explained in Ref. [68]. It is implied that all selection cuts for a given observable have to
be blind to the distribution of momenta in collinear lepton–photon configurations. We use
the dipole subtraction formalism as specified for photon emission in Ref. [35] to isolate the
divergences and observe the numerical cancellation. In Appendix C we explicitly list the
relevant subtraction functions and the readded counterparts that carry the IR singularities
for the processes (6.3.1) – (6.3.3).

For muons in the final state it is, however, experimentally possible to separate collinear
photons from the lepton, i.e. to observe so-called “bare” muons (see Section 3.6). Hence,
the resulting cross sections are not collinear safe (i.e. the KLN theorem [67] does not
apply), and the corresponding collinear singularities show up as logarithms of the small
lepton (muon) mass. The lepton mass cuts off the collinear divergence in a physically
meaningful way. In this work, we employ the extension of the subtraction formalism
that has been illustrated in Section 4.2 which allows one to calculate cross sections for
bare leptons, i.e. cross sections defined without any photon recombination. There, the
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Figure 6.5: Real photonic bremsstrahlung corrections to the LO process
(6.1.2).

additional logarithms of the lepton mass in the final result are also isolated analytically.
Like in the standard subtraction formalism, it is sufficient to calculate the real matrix
elements for the partonic processes in the massless-fermion approximation.

Photons and QCD partons always have to be recombined into a single jet if they are
sufficiently collinear. This leads to collinear-safe observables if the selection cuts respect
the recombination procedure. However, the recombination induces a problem for subpro-
cess (6.3.1), as we have seen in Section 3.7. If the photon and the gluon are accidentally
collinear (of course there is no collinear enhancement for these configurations) arbitrarily
soft gluons can still pass the jet selection due to a collinear photon. There is a soft-gluon
divergence induced by this simple recombination procedure that can be cancelled by the
virtual QCD corrections to W + γ production as demonstrated in Chapter 5. To avoid
the singularity, one has to distinguish W + γ and W + jet production by means of a more
precise event definition employing a cut on the maximal energy or transverse momentum
fraction of a photon inside a given jet. However, this procedure spoils the collinear safety
of the event definition in subprocesses (6.3.2) and (6.3.3). Using again the subtraction
formalism for non-collinear-safe observables to extract the problematic collinear terms,
the appearance of an unphysical quark-mass logarithm in the final result signals the ne-
cessity to include non-perturbative physics to properly describe the emission of a photon
by a quark for exclusive final states. In our calculation, we follow the strategy of Sec-
tion 3.7.1 and absorb the residual quark-mass dependence in the non-perturbative parts
of the quark-to-photon fragmentation function.

6.3.2 Real QCD corrections

The real corrections due to NLO QCD are less subtle, but, in contrast to the EW cor-
rections, new partonic channels contribute to the real-emission processes that have been
absent at LO.
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Real gluon emission leads to the processes

ui d̄j → l+νl g g , (6.3.4a)

ui g → l+νl dj g , (6.3.4b)

d̄j g → l+νl ūi g , (6.3.4c)

Additionally, the FS gluon at LO may also split into two quarks, inducing the two partonic
channels

ui d̄j → l+νl ukūk , k = 1, 2 , (6.3.5)

ui d̄j → l+νl dmd̄m , m = 1, 2, 3 . (6.3.6)

Application of crossing symmetry to (6.3.5) and (6.3.6) results in the processes

ui d̄j → l+νl qk q̄k , (6.3.7)

q̄k d̄j → l+νl ūi q̄k , (6.3.8)

qk d̄j → l+νl qk ūi (qk 6= ui, qk 6= dj) , (6.3.9)

ui q̄k → l+νl dj q̄k (q̄k 6= d̄j, q̄k 6= ūi) , (6.3.10)

ui qk → l+νl qk dj , (6.3.11)

qk q̄k → l+νl ūi dj , (6.3.12)

where qk stands for up-type quarks uk with k = 1, 2 or for down-type quarks dk with
k = 1, 2, 3. Note that the Feynman diagrams are different in the two cases i = k (j = k)
and i 6= k (j 6= k). As in the EW case, we use the dipole subtraction method [66] to
extract the IR singularities analytically from the numerical phase-space integration. In
Section 4.4 we have presented a brief summary of the relevant formulae that are needed to
apply the dipole subtraction method in QCD. Absorbing all the collinear singularities due
to IS splittings into the relevant PDFs as prescribed by (3.3.3), the remaining collinear and
soft divergences cancel all divergent parts of the one-loop QCD corrections for processes
(6.1.1) – (6.1.3). Here, also the bottom-quark PDF enters the NLO prediction. For
example a bottom quark from a proton can emit a gluon which subsequently takes part
in the hard process.

Turning to the photon-induced contributions, the corresponding real-radiation processes
are

ui γ → l+νl dj g , (6.3.13)

d̄j γ → l+νl ūi g , (6.3.14)

g γ → l+νl ūi dj . (6.3.15)

All singularities cancel those in the virtual NLO QCD corrections or are absorbed into
PDFs as prescribed by Eqs. (3.3.4) and (3.4.1).

6.3.3 Interference of EW and QCD diagrams

There is yet another class of corrections contributing at O(α3αs). For the six-fermion
processes (6.3.7) – (6.3.12) with two identical quarks, diagrams with gluon exchange can
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interfere with purely EW diagrams. Exemplarily, the relevant diagrams for one of the
contributing subprocesses are shown in Fig. 6.6. The result is non-singular due to the
restrictions from colour flow, but only if all fermions are distinct the interference contribu-
tion vanishes. We have also included these corrections in our calculation. However, their
effect turns out to be phenomenologically negligible. Diagrams with an internal top prop-
agator and two W bosons do not contribute if mixing with quarks of the third generation
is neglected. The tree-level amplitudes that correspond to the purely weak diagrams for
the processes (6.3.7) – (6.3.12) will be listed in Section 8.3, where we will also discuss the
calculation of the interference contributions of EW and QCD diagrams.





Chapter 7

Partonic LO contributions to
pp/pp̄ → l+νl + jet

7.1 The Weyl–van-der-Waerden spinor formalism

Throughout this thesis, we use the Weyl–van-der-Waerden (WvdW) spinor formalism to
express helicity amplitudes in terms of spinor products. The squaring of amplitudes and
the summation over helicities of external particles is then performed numerically within
the computational processing. The WvdW formalism is discussed in detail in Ref. [100].
Nevertheless, we will now, after a short motivation, expose the underlying principles of
the method.

Performing polarization sums numerically, the number of terms that have to be calcu-
lated analytically is usually much smaller than the number of contributions that arise when
using completeness relations and trace techniques to sum over the external polarizations.
Moreover, applying WvdW spinors to express the scattering amplitudes, it is often possi-
ble to significantly simplify the intermediate cumbersome expressions and to obtain very
compact results. This is especially true if massless external particles are involved. The ap-
proach also directly enables the calculation of polarized cross sections without introducing
additional helicity projectors, which is another beneficial feature of this method.

In the end, the analytical power of the technique is based on the fact that all phys-
ical objects, i.e. fermion spinors, Dirac matrices, four-vectors of physical momenta, and
polarization vectors of external vector bosons, can be expressed in terms of the same
fundamental mathematical objects.

On the one hand, external (anti)fermions are mathematically described using the co-

variant and contravariant two-dimensional WvdW-spinors ψA and ψȦ that belong to the
two-dimensional irreducible representations D(1

2
, 0) and D(0, 1

2
) of the Lorentz group, re-

spectively. The two components of the spinors are denoted by capital letters, and a dotted
index simply means complex conjugation of the particular component,

ψȦ = (ψA)∗ , ψȦ = (ψA)∗ . (7.1.1)

We need the anti-symmetric 2 × 2 matrix

ǫAB = ǫAB = ǫȦḂ = ǫȦḂ =

(
0

−1

1

0

)
, (7.1.2)
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called spinor metric, to convert covariant to contravariant spinors, and vice versa,

ψA = ǫABψB , ψȦ = ǫȦḂψḂ , , ψA = ψBǫBA , ψȦ = ψḂǫḂȦ , (7.1.3)

where we assume implicit summation over pairs of identical indices. Note that the two
different representations are not mixed by this manipulation.

On the other hand, the description of four-vectors (i.e. momenta and polarization vec-
tors) is done by means of four-dimensional matrices with two spinor indices. The transition
matrices

σµ,ȦB = (σ0,σ) , σµ

AḂ
= (σ0,−σ) , (7.1.4)

where σ0 denotes the 2 × 2 unity matrix, and σ is a vector of the three Pauli matrices,
transform a given four-vector kµ to the spinor representation D(1

2
, 1

2
) = D(1

2
, 0)⊗D(0, 1

2
)

of the Lorentz group via

KȦB = kµσµ,ȦB =

(
k0 + k3

k1 − ik2

k1 + ik2

k0 − k3

)
. (7.1.5)

Here, KȦB is a hermitian 2× 2 matrix if the components of kµ are real. If kµ denotes the
physical four-momentum of a massless particle, i.e. k2 = 0, the momentum matrix KȦB

factorizes into a product of two so-called momentum spinors,

KȦB = kȦkB . (7.1.6)

Denoting the polar angle of the massless particle by θ and its azimuthal angle by φ, the
four-vector reads

kµ = k0(1, sin θ cosφ, sin θ sinφ, cos θ) , (7.1.7)

and the momentum spinor can be written as

kA =
√

2k0

(
e−iφ cos θ

2

sin θ
2

)
. (7.1.8)

According to Chapter 4 of [100], the usual Feynman rules given in terms of four-vectors,
Dirac matrices, and Dirac spinors can be systematically translated to the WvdW for-
malism. Doing so, one finds that—if only massless external particles are involved—any
helicity amplitude at tree level can be expressed in terms of so-called spinor products
〈pk〉 ≡ pAk

A and ordinary scalar products (pk), which are related to spinor products
via (pk) = |〈pk〉|2/2. In the numerical evaluation, the spinor products can be calculated
according to the explicit expression

〈pk〉 = 2
√
p0k0

(
e−iφp cos

θp

2
sin

θk

2
− e−iφk cos

θk

2
sin

θp

2

)
. (7.1.9)

7.2 Analytical expressions of LO amplitudes

In this section we list the partonic scattering amplitudes for the LO contributions to W+jet
production. For the dominant channels (6.1.1) – (6.1.3), we have to consider processes of
the form

a(c1)(pa, σa) + b(c2)(pb, σb) → l+(kl, τl) + νl(kn,−) + c(c3)(kc, σc) , (7.2.1)
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where momenta and polarizations are given in parentheses, and the colours of the strongly
interacting partons a, b, and c are depicted as upper indices. The partons a and b initiate
the hard scattering process, while the parton c will be seen as a jet in the detector after
hadronization has taken place. Accordingly, the momenta pa and pb are assumed to be
incoming, while the momenta kl, kn, and kc are outgoing.

In addition to the W+jet prduction via two QCD partons, we will also discuss the
photon-induced contributions

a(c1)(pa, σa) + γ(pb, σb) → l+(kl, τl) + νl(kn,−) + c(c2)(kc, σc) , (7.2.2)

that are given by the processes (6.1.5) and (6.1.6).

7.2.1 Contributions at O(α2αs)

Now we provide the amplitudes for the partonic channels at LO listed in (6.1.1) – (6.1.3).
We start with the process

u
(l)
i (pa, σa) + d̄

(k)
j (pb, σb) → l+(kl, τl) + νl(kn,−) + g(a)(kc, σc) , (7.2.3)

and define the corresponding LO amplitude as

iM0
uid̄j→l+νlg

= i

√
2e2V ∗

ij

s2
W

(gsT
a
kl)M

0, σaσb

ud̄→l+νlg
(τl, σc) . (7.2.4)

The dependence on the momenta and the helicities of the external particles is entirely
contained in the non-vanishing colour- and CKM-stripped helicity amplitudes,

M 0,−+

ud̄→l+νlg
(+,+) = − 〈knpb〉2〈klkn〉∗

(q2
W − µ2

W )〈kcpa〉〈kcpb〉
, (7.2.5a)

M 0,−+

ud̄→l+νlg
(+,−) = − (〈klpa〉∗)2 〈knkl〉

(q2
W − µ2

W )〈kcpa〉∗〈kcpb〉∗
, (7.2.5b)

with qµ
W = kµ

l + kµ
n being the four-momentum of the virtual W+ boson. All other helicity

combinations vanish or are suppressed by masses of light fermions.
Since the prefactor in (7.2.4) is of course the same for all partonic processes (6.1.1) –

(6.1.3), the amplitudes

iM0
uig→l+νldj

= i

√
2e2V ∗

ij

s2
W

(gsT
a
kl)M

0, σaσb

ug→l+νld
(τl, σc) , (7.2.6)

iM0
d̄jg→l+νlūi

= i

√
2e2V ∗

ij

s2
W

(gsT
a
kl)M

0, σaσb

d̄g→l+νlū
(τl, σc) , (7.2.7)
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for the processes (6.1.2) and (6.1.3) can be obtained applying crossing symmetry to (7.2.5)
as explained in Section 4.2 of [100]. The resulting contributions M 0, σaσb

ug→l+νld
(τl, σc) and

M 0, σaσb

d̄g→l+νlū
(τl, σc) are given by

M 0,−−
ug→l+νld

(+,−) =
〈knkc〉2〈klkn〉∗

(q2
W − µ2

W )〈papb〉〈pbkc〉
, (7.2.8a)

M 0,−+
ug→l+νld

(+,−) =
(〈klpa〉∗)2 〈knkl〉

(q2
W − µ2

W )〈pbkc〉∗〈pbpa〉∗
, (7.2.8b)

M 0,++

d̄g→l+νlū
(+,+) =

(〈klkc〉∗)2 〈knkl〉
(q2

W − µ2
W )〈pbpa〉∗〈pbkc〉∗

, (7.2.8c)

M 0,+−
d̄g→l+νlū

(+,+) =
〈knpa〉2〈klkn〉∗

(q2
W − µ2

W )〈pbkc〉〈pbpa〉
, (7.2.8d)

where the assignment of the momenta and helicities is defined by (7.2.1). Squaring the
amplitudes, summing over the external colours and polarizations, and averaging over the
IS ones yields

|M0
ab→l+νlc, (ij)|2 =

16

Fab
(2π)3α

2|Vij|2
|s2

W
|2 (N2

C − 1)αs TF

∑

σa,σb

∑

τl,σc

∣∣∣M 0, σaσb

ab→l+νlc
(τl, σc)

∣∣∣
2

, (7.2.9)

where the colour relation

NC∑

k,l=1

N2
C−1∑

a=1

(T a
klT

a
lk) =

N2
C−1∑

a=1

Tr(T aT a) = (N2
C − 1)TF (7.2.10)

was used. Equation (7.2.9) is valid for all partonic channels (6.1.1) – (6.1.3), and the
different averaging factors Fab read

Fud̄ = 36 , Fug = Fd̄g = 96 . (7.2.11)

Due to the very simple structure of (7.2.5) it is also easily possible to perform the sum-
mation over the helicities in (7.2.9) analytically, yielding

∑

σa,σb

∑

τl,σc

∣∣∣M 0, σaσb

ud̄→l+νlg
(τl, σc)

∣∣∣
2

=
q2
W

|q2
W − µ2

W|2
(pbkn)2 + (pakl)

2

(pakc)(pbkc)
(7.2.12)

for process (6.1.1), where we have used the relation |〈pk〉|2 = 2(pk).

7.2.2 Photon-induced contributions at O(α3)

The helicity amplitudes for the partonic channels (6.1.5) and (6.1.6) can be obtained from
the photon-bremsstrahlung amplitudes of the Drell–Yan process, given by Eqs. (2.28) and
(2.29) in Ref. [17], by crossing the photon into the initial state and one quark into the
final state at the same time. For instance, the scattering amplitude of the process

u
(l)
i (pa, σa) + γ(pb, σb) → l+(kl, τl) + νl(kn,−) + d

(k)
j (kc, σc) (7.2.13)
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can be written as

iM0
uiγ→l+νldj

= i

√
2e3V ∗

ij

s2
W

δkl M
0,σaσb

uγ→l+νld
(τl, σc) , (7.2.14)

where the dependence on the momenta and the helicities is again solely contained in the
following colour- and CKM-stripped amplitudes,

M 0,−−
uγ→l+νld

(+,−) = 〈kckn〉2
{
− Qu〈knkl〉∗

(q2
W − µ2

W)〈papb〉〈kcpb〉

+
1

(ŝ− µ2
W)

[
− Ql〈pakc〉∗

〈pbkn〉〈pbkl〉
+

(Qd −Qu)〈pakl〉∗
〈kcpb〉〈pbkn〉

]

− CγWW(Qu −Qd)〈knkl〉∗〈papb〉∗
(ŝ− µ2

W)(q2
W − µ2

W)〈kcpb〉

}
, (7.2.15a)

M 0,−+
uγ→l+νld

(+,−) = (〈pakn〉∗)2

{
Qd〈knkl〉

(q2
W − µ2

W)〈papb〉∗〈kcpb〉∗
+

(Qd −Qu)〈kckn〉
(ŝ− µ2

W)〈papb〉∗〈pbkl〉∗

− CγWW(Qd −Qu)〈knkl〉〈kcpb〉
(ŝ− µ2

W)(q2
W − µ2

W)〈papb〉∗
}
. (7.2.15b)

After the trivial colour summation
∑NC

i,j=1 δij = NC, the squared averaged amplitudes
for both photon-induced contributions (6.1.5) and (6.1.6) at LO are given by the general
formula

|M0
aγ→l+νlc

|2 =
NC

Fqγ

16 (2π)3 α3 |Vij|2
|s2

W
|2

∑

σa,σb

∑

τl,σc

∣∣∣M 0, σaσb

aγ→l+νlc
(τl, σc)

∣∣∣
2

, (7.2.16)

where Fqγ = 12, and the M 0, σaσb

d̄γ→l+νlū
(τl, σc) result from (7.2.15) via crossing.

7.3 Construction of the LO phase space

In accordance with (2.3.4), the partonic cross section for any contributing LO channel
a (b/γ) → l+ + νl + c is given by

σ̂0
a (b/γ)→l+νlc

(pa, pb) =
1

2ŝ

∫
dΦ(l+νl+c) |M0

a (b/γ)→l+νlc
|2 . (7.3.1)

As explained in Appendix B.2, the three-particle phase space
∫

dΦ(l+νl+c) for a lepton, a
neutrino, and a parton c in the final state can be decomposed according to

∫
dΦ(l+νl+c)(pa, pb; kl, kn, kc) =

1

(2π)5

∫ ŝ

0

dq2
W

∫
dΩd(q

2
W; k2

l , k
2
n)

∫
dΩp(pa, pb; k

2
c , q

2
W) ,

(7.3.2)
where we have constructed the phase space subject to the topology depicted in Fig. 7.1.
In (7.3.2), dΩd(q

2
W; k2

l , k
2
n) is the two-particle subspace of the decay process W+ → l+ + νl,

and dΩp(pa, pb; k
2
c , q

2
W) represents the effective two-particle phase space of the preceding
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kc

kn

kl

ta,c

q2
W

pa

pb

Figure 7.1: Topology for the phase-space construction within the LO calcu-
lations.

2 → 2 scattering process a + b → W+ + c. The explicit expressions for
∫

dΩd(q
2
W; k2

l , k
2
n)

and
∫

dΩp(pa, pb; k
2
c , q

2
W) read

∫
dΩd(q

2
W; k2

l , k
2
n) =

1

8

∫ 2π

0

dφW
l

∫ 1

−1

d cos θW
l , (7.3.3a)

∫
dΩp(pa, pb; k

2
c , q

2
W) =

1

4ŝ

∫ 2π

0

dφc

∫ 0

−ŝ+q2
W

dta,c , (7.3.3b)

where φW
l and θW

l are the azimuthal and polar angles of the lepton in the rest frame of
the decaying W boson, φc denotes the azimuthal angle of the parton c in the partonic
cm frame, and ta,c = (pa − kc)

2. Since the process under consideration is invariant with
respect to rotations around the beam axis, the corresponding matrix elements exhibit an
azimuthal symmetry, and the integration over φc is trivial, yielding a factor 2π.

The particle momenta in the partonic cm frame can be expressed in terms of the inte-
gration variables as follows. The jet momentum is chosen as

kµ
c =

ŝ− q2
W

2
√
ŝ

(1, sin θc, 0, cos θc) , (7.3.4)

where the polar angle θc of the parton c reads

θc = arccos

(
1 +

2 ta,c

ŝ− q2
W

)
. (7.3.5)

We also need the four-momentum of the intermediate W boson,

qµ
W =

ŝ+ q2
W

2
√
ŝ

(1,−βW sin θc, 0,−βW cos θc) , (7.3.6)

where we have introduced the W-boson velocity βW = (ŝ− q2
W)/(ŝ+ q2

W), to construct the
lepton momenta in the cm frame. In the rest frame of the W boson we find

kW,µ
l =

√
q2
W

2
(1, sin θW

l cosφW
l , sin θ

W
l sinφW

l , cos θW
l ) , (7.3.7a)

kW,µ
n =

√
q2
W

2
(1,− sin θW

l cosφW
l ,− sin θW

l sinφW
l ,− cos θW

l ) , (7.3.7b)
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and we obtain the momenta in the cm frame by applying the boost

kl = B
(
q0
W,−qW

)
kW

l , kn = B
(
q0
W,−qW

)
kW

n , (7.3.8)

with the boost matrix B defined by (B.16).
In the actual numerical analysis we use a Breit–Wigner mapping (see Appendix B.3) to

improve the efficiency of the q2
W-integration. The remaining integrations are carried out

applying simple linear mappings as prescribed by (B.23) and (B.24).





Chapter 8

Real corrections to partonic cross
sections:
pp/pp̄ → l+νl + jet + (jet/γ)

In this chapter we describe the calculation of real-correction amplitudes MR
a b→l+νl+c+(d/γ)

for processes with four FS particles,

a(c1)(pa, σa) + b(c2)(pb, σb)

→ l+(kl, τl) + νl(kn,−) + c(c3)(kc, σc) + [d(c4)/γ](kd/kγ , σd/λγ) . (8.0.1)

In case of the real EW corrections, we are confronted with an additional bremsstrahlung
photon γ in the final state, and for the real QCD corrections a second strongly interacting
parton d occurs.

In the following, the assignment of momenta and helicities for processes denoted as
a b→ l+νl + c+ (d/γ) is given by (8.0.1), where colours of partons are indicated by upper
indices.

8.1 Real EW corrections and QCD corrections to pho-

ton-induced processes

Here, we present the amplitudes for the bremsstrahlung processes listed in (6.3.1) – (6.3.3).
Since all these channels are related by crossing symmetry, it is sufficient to discuss the
amplitudes for the process (6.3.1),

u
(l)
i (pa, σa) + d̄

(k)
j (pb, σb) → l+(kl, τl) + νl(kn,−) + g(a)(kc, σc) + γ(kγ , λγ) . (8.1.1)

Again, we use the WvdW formalism to compute the different helicity amplitudes and to
simplify the corresponding expressions as far as possible. As in the LO case, the squaring
of the amplitudes and the helicity summation is performed numerically afterwards.

The full scattering amplitude MR,EW for the process (8.1.1) can be written as

iMR,EW

uid̄j→l+νl+g+γ
= i

4 e3 V ∗
ij

s2
W

(gs T
a
kl)M

σaσb

ud̄→l+νlgγ
(τl, σc, λγ) . (8.1.2)
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The colour- and CKM-stripped helicity amplitudes Mσaσb

ud̄→l+νlgγ
(τl, σc, λγ) are given by the

following expressions,

M−+
ud̄→l+νlgγ

(+,+,+) =
〈pbkn〉

〈pakc〉〈pbkγ〉〈kcpb〉

{
1

[(qW + kγ)2 − µ2
W] (q2

W − µ2
W)

×
[
〈kγkl〉∗(〈pbpa〉〈pa|Kn|pb〉 − 〈pbkc〉〈kc|Kn|pb〉)

(
1 −Ql

q2
W − µ2

W

(kγ + kl)2

)

− 〈kγ|Kn|pb〉〈kl|Kc − Pa|pb〉
]
−Qu

〈papb〉
〈pakγ〉

〈kl|Kn|pb〉
q2
W − µ2

W

}
, (8.1.3a)

M−+
ud̄→l+νlgγ

(+,−,−) =
〈klpa〉∗

〈pbkc〉∗〈kcpa〉∗〈kγpb〉∗
{

1

[(qW + kγ)2 − µ2
W] (q2

W − µ2
W)

×
[
〈pa|Kc − Pb|kn〉

(
〈pb|Kn|kγ〉 + 〈pb|Kl|kγ〉

[
1 −Ql

q2
W − µ2

W

(kγ + kl)2

])

+ 〈pa|Kn +Kl|kγ〉〈pb|Kγ|kn〉
]

+
〈pbpa〉∗
〈kγpa〉∗

[〈pa|Kγ|kn〉 +Qu〈pa|Kl|kn〉]
q2
W − µ2

W

}
,

(8.1.3b)

M−+
ud̄→l+νlgγ

(+,+,−) =
1

〈pakc〉〈pbkc〉〈pakγ〉∗
{FγQ(+,+,−)

q2
W − µ2

W

+
Fγl(+,+,−)

(qW + kγ)2 − µ2
W

+
FγW(+,+,−)

(q2
W − µ2

W)[(qW + kγ)2 − µ2
W]

}
, (8.1.3c)

M−+
ud̄→l+νlgγ

(+,−,+) =
1

〈pakc〉∗〈pbkγ〉〈pbkc〉∗
{FγQ(+,−,+)

q2
W − µ2

W

+
Fγl(+,−,+)

(qW + kγ)2 − µ2
W

+
FγW(+,−,+)

(q2
W − µ2

W)[(qW + kγ)2 − µ2
W]

}
, (8.1.3d)

where we use the shorthand notation 〈η|P |ξ〉 ≡ ηȦP
ȦBξB, following the conventions in

Chapter 2 of [100]. The expressions for the amplitudes where the photon and the gluon
have opposite helicities are quite lengthy. Therefore, we have introduced the form factors

FγQ(+,+,−) =
1

〈pbkγ〉∗
[
Qd

(
〈kl|Pa −Kc|pb〉〈pa|Kγ − Pb|kn〉

− 〈pa|Kγ|pb〉
(qW − pa)2

〈kl|Pa|kc〉〈kc|Pa −Kl|kn〉
)

+Qu
〈pa|Kc|pb〉
(qW − pb)2

〈kγ |Pb|kn〉〈kl|Kn − Pb|kγ〉
]
,

(8.1.4a)

Fγl(+,+,−) =
Ql

〈klkγ〉∗
〈pakl〉∗〈knpb〉〈kl|Pa −Kc|pb〉 , (8.1.4b)

FγW(+,+,−) = 〈kγpb〉〈pa|Kc|pb〉〈kl|Kγ|kl〉 + 〈knpb〉〈pa|Kl +Kn|kγ〉〈kl|Pa −Kc|pb〉

− 1

2
〈kγkn〉

(
〈pakl〉∗〈pbkc〉〈kc|Kγ −Kl −Kn|pb〉 + 〈kl|Pa|pb〉〈pa|Kγ −Kl −Kn|pb〉

)
,

(8.1.4c)

for the (+,+,−) case and

FγQ(+,−,+) =
1

〈kγpa〉

[
−Qu

(
〈kl|Pa −Kγ|pb〉〈pa|Kc − Pb|kn〉
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+
〈pa|Kγ|pb〉
(qW − pb)2

〈kc|Pb|kn〉〈kl|Kn − Pb|kc〉
)

+Qd
〈pa|Kc|pb〉
(qW − pa)2

〈kl|Pa|kγ〉〈kγ |Pa −Kl|kn〉
]
,

(8.1.5a)

Fγl(+,−,+) = − Ql

〈klkγ〉〈
〈pa|Kc − Pb|kn〉〈pa|Kl +Kγ|pb〉 , (8.1.5b)

FγW(+,−,+) = 〈pakγ〉∗〈kl|Kγ|kn〉〈pa|Kc|pb〉 + 〈klpa〉∗〈kγ |Kl +Kn|pb〉〈pa|Kc − Pb|kn〉

+
1

2
〈kγkl〉∗〈pbkn〉

(
〈pakc〉∗〈pa|Kγ −Kl −Kn|kc〉 − 〈papb〉∗〈pa|Kγ −Kl −Kn|pb〉

)
,

(8.1.5c)

for the (+,−,+) combination. As in the LO expressions, the prefactor in (8.1.2) is the same
for all bremsstrahlung processes. Thus, the averaged squared amplitudes can generally be
written as

∣∣∣MR,EW
ab→l+νl+c+γ, (ij)

∣∣∣
2

=
64

Fab

(2π)4 α
3|Vij|2
|s2

W|2
(N2

C − 1)αs TF

∑

σa,σb

∑

τl,σc,λγ

∣∣∣Mγ, σaσb

ab→l+νlc
(τl, σc, λγ)

∣∣∣
2

, (8.1.6)

with the averaging factors from (7.2.11). For the sake of completeness, we also provide
the formula

σ̂R,EW
ab→l+νl+c+γ, (ij) =

1

2ŝ

∫
dΦ(lνl+c+γ)

∣∣∣MR,EW
ab→l+νl+c+γ, (ij)

∣∣∣
2

, (8.1.7)

for the total bremsstrahlung cross section, where the computation of the phase-space
integral

∫
dΦ(lνl+c+γ) will be described in detail in Section 8.4.

Crossing the bremsstrahlung photon into the initial state, the amplitudes above also
provide the real QCD corrections (6.3.13) – (6.3.15) to the photon-induced processes. For

the calculation of the corresponding amplitudes
∣∣∣MR,QCD

aγ→l+νl+c, (ij)

∣∣∣
2

, we additionally need

the averaging factor
Fgγ = 64 , (8.1.8)

for channels with a photon and a gluon in the initial state. The amplitudes for the photon-
induced LO processes (6.1.5) and (6.1.6) were already discussed in Section 7.2.2.

8.2 Real QCD corrections

8.2.1 Generic amplitudes

Corresponding to (6.3.4), (6.3.5), and (6.3.6) there are three generic processes contributing
to the real QCD corrections,

0 → d̄
(n)
i (p1, σ1) + d

(m)
j (p2, σ2) + d

(q)
l (p3, σ3) + ū

(p)
k (p4, σ4) + l+(kl, τl) + νl(kn,−) ,

(8.2.1a)

0 → ū
(n)
i (p1, σ1) + u

(m)
j (p2, σ2) + d

(q)
l (p3, σ3) + ū

(p)
k (p4, σ4) + l+(kl, τl) + νl(kn,−) ,

(8.2.1b)
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0 → g(a)(p1, σ1) + g(b)(p2, σ2) + d
(l)
j (p3, σ3) + ū

(k)
i (p4, σ4) + l+(kl, τl) + νl(kn,−) .

(8.2.1c)

Crossing all possible pairs of partons into the initial state, one obtains all partonic channels
that enter the real QCD corrections. To give examples for a six- and a four-quark process,
respectively, we list the Feynman diagrams for the processes ud̄ → lνl + gg and ud̄ →
lνl +uū in Figs. 8.1 and 8.2. The generic amplitudes T R,QCD for the real QCD corrections
are given by the expressions

T R,QCD

0→W+d̄idjdlūk

=
2 g2

s e
2

s2
W(q2

W − µ2
W)

[
(δijV

∗
kl)
∑

a

(T a
mnT

a
qp)Adddu + (δilV

∗
kj)
∑

a

(T a
mpT

a
qn)Bdddu

]
,

(8.2.2a)

T R,QCD
0→W+ūiujdlūk

=
2 g2

s e
2

s2
W(q2

W − µ2
W)

[
(δijV

∗
kl)
∑

a

(T a
mnT

a
qp)Auudu + (δjkV

∗
il )
∑

a

(T a
mpT

a
qn)Buudu

]
,

(8.2.2b)

T R,QCD
0→W+ggdj ūi

= − g2
s e

2

s2
W(q2

W − µ2
W)

V ∗
ij

[
−i
∑

c

fabcT c
lk G̃ggdu + (T aT b)lk Ãggdu + (T bT a)lk B̃ggdu

]
,

(8.2.2c)

where the colour- and CKM structures have been separated. In (8.2.2) we have omitted
the explicit helicity dependence of the helicity amplitudes A... and B... in the notation,

A... = Aτl
...(σ1, σ2, σ3, σ4) , B... = Bτl

...(σ1, σ2, σ3, σ4) .

Six-fermion processes

For the six-fermion contributions the non-vanishing helicity amplitudes read

A+
dddu(−,+,−,+) =

1

(p1 + p2)2

[ 〈knp3〉
(qW + p3)2

〈kl|Kn +Kl + P3|p1〉〈p4p2〉∗

− 〈klp4〉∗
(qW + p4)2

〈p2|Kn +Kl + P4|kn〉〈p3p1〉
]
, (8.2.3a)

A+
dddu(+,−,−,+) =

1

(p1 + p2)2

[ 〈knp3〉
(qW + p3)2

〈kl|Kn +Kl + P3|p2〉〈p4p1〉∗

− 〈klp4〉∗
(qW + p4)2

〈p1|Kn +Kl + P4|kn〉〈p3p2〉
]
, (8.2.3b)

B+
dddu(σ1, σ2, σ3, σ4) = (−1) ·A+

dddu(σ1, σ3, σ2, σ4)
∣∣
p2↔p3

, (8.2.3c)

for the processes (8.2.1a) and

A+
uudu(σ1, σ2, σ3, σ4) = A+

dddu(σ1, σ2, σ3, σ4) , (8.2.4a)

B+
uudu(σ1, σ2, σ3, σ4) = (−1) · A+

uudu(σ4, σ2, σ3, σ1)
∣∣
p1↔p4

, (8.2.4b)

for the processes (8.2.1b), respectively.
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Figure 8.1: Real QCD corrections via the six-fermion process ud̄ → lνl + uū.

Processes involving two gluons

For the partonic channels (8.2.1c) involving two gluons we can further simplify the ampli-
tudes and rewrite the G̃-term that emerges from the three-gluon vertex,

T R,QCD
0→W+ggdj ūi

= − g2
s e

2

s2
W(q2

W − µ2
W)

V ∗
ij

[
(T aT b)lk Aggdu + (T bT a)lk Bggdu

]
, (8.2.5)

where we have exploited the relation

N2
C−1∑

c=1

fabcT c
ij = −i[T a, T b]ij . (8.2.6)

Using WvdW spinor techniques, it is possible to derive compact results for the non-
vanishing helicity amplitudes A and B,

A+
ggdu(+,+,−,+) =

2 〈p3kn〉
〈p3p1〉〈p4p2〉〈p2p1〉(qW + p3)2

{
〈kl|P4|p3〉 [kn · (kl + p3)]

− 〈kl|Kn|p3〉
[
(qW + p3)

2 + p4 · (p3 + kl)
]

+
1

2

[
〈kl|P3|p4〉〈p4|Kn|p3〉 + 〈kl|Kn|p4〉〈p4|Kl|p3〉

]}
, (8.2.7a)

A+
ggdu(−,−,−,+) = (A+

ggdu(+,+,−,+))∗|(kn↔kl,p3↔p4,p2↔p1) , (8.2.7b)

A+
ggdu(+,−,−,+) = − 〈p4p1〉∗〈knp3〉

〈p3p1〉〈p4p2〉∗〈p2p1〉∗(qW + p3)2

×
[
〈p4p1〉∗〈knp3〉〈klkn〉∗ +

〈p4|P2 − P1|p3〉〈kl|Kn + P3|p2〉
〈p2p1〉

]

+ c.c.|(kn↔kl,p3↔p4,p2↔p1) , (8.2.7c)

A+
ggdu(−,+,−,+) =

1

(p1 + p2)2

1

〈p3p1〉∗〈p4p2〉

{ 〈knp3〉
(qW + p3)2

[
〈p3p2〉∗

{(
2 (p1 + p2)

2 − (p1 + p4)
2
)

× 〈kl|P3 +Kn|p1〉 + 〈p2|P4|p1〉〈kl|P3 +Kn|p2〉 + 2 〈p4|P2|p1〉〈kl|P3 +Kn|p4〉
}

+ 〈p2|P1|p4〉〈p3p4〉∗〈kl|Kn + P3|p4〉
]
− (p1 + p2)

2〈klp2〉∗〈knp1〉
}

+ c.c.|(kn↔kl,p3↔p4,p2↔p1) , (8.2.7d)

B+
ggdu(σ1, σ2,−,+) = A+

ggdu(σ2, σ1,−,+)|p1↔p2 , (8.2.7e)

where c.c. denotes the complex conjugate of the corresponding expression.
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Figure 8.2: Real QCD corrections to the process (6.1.1) via radiation of one addi-
tional gluon.

8.2.2 Computation of colour- and CKM structures

In order to calculate the squared matrix elements of the generic processes (8.2.1), care has
to be taken when working out the different contributing colour structures. We point out
that the construction of the various physical processes from the generic amplitudes via
crossing does not change the colour and CKM structure of the underlying mathematical
expressions, but it will just modify the kinematics and the helicity structure in A and B.
Thus, we can find general expressions for the squared and colour-summed amplitudes for
all contributing subprocesses. For the six-fermion processes we find

∑

col

∣∣∣T R,QCD

0→W+d̄idjdlūk

∣∣∣
2

=
4 (4π)4α2

sα
2

|s2
W|2|(q2

W − µ2
W)|2

×
(
δij |Vkl|2 CAA

4q |Adddu|2 + δil |Vkj |2 CBB
4q |Bdddu|2

+ 2 δij δil |Vkl|2 CAB
4q Re [AddduB

∗
dddu]

)
, (8.2.8a)

∑

col

∣∣∣T R,QCD
0→W+ūiujdlūk

∣∣∣
2

=
4 (4π)4α2

sα
2

|s2
W|2|(q2

W − µ2
W)|2

×
(
δij |Vkl|2 CAA

4q |Auudu|2 + δjk |Vil|2 CBB
4q |Buudu|2

+ 2 δij δkj |Vil|2 CAB
4q Re [AuuduB

∗
uudu]

)
, (8.2.8b)

and for the processes involving two gluons, we obtain

∑

col

∣∣∣T R,QCD
0→W+ggdj ūi

∣∣∣
2

=
(4π)4α2

sα
2

|s2
W|2|(q2

W − µ2
W)|2 |Vij|2

(
CAA

gg |Aggdu|2 + CBB
gg |Bggdu|2

+ 2 CAB
gg Re

[
AggduB

∗
ggdu

] )
. (8.2.9)

In (8.2.8) and (8.2.9), we have omitted the helicity dependences in the notation. The
different colour factors are given by

CAA
4q = T c

mnT
c
qpT

d
nmT

d
pq = [Tr(T cT d)]2 = (N2

C − 1)T 2
F , (8.2.10a)
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CBB
4q = T c

mnT
c
qpT

d
nmT

d
pq = [Tr(T cT d)]2 = (N2

C − 1)T 2
F , (8.2.10b)

CAB
4q = T c

mnT
c
qpT

d
pmT

d
nq = Tr(T dT cT dT c) = NCCF

(
CF − 1

2
CA

)
, (8.2.10c)

for the four-quark processes, where we assume summation over pairs of identical colour
indices. For the colour factors in (8.2.9), we find

CAA
gg = Tr(T aT bT bT a) = 3C2

F , (8.2.11a)

CBB
gg = Tr(T aT bT bT a) = 3C2

F , (8.2.11b)

CAB
gg = Tr(T aT bT aT b) = NCCF

(
CF − 1

2
CA

)
. (8.2.11c)

In the numerical evaluation, we have applied the following strategy: For every given
subprocess we calculate the expressions |A|2, |B|2, and AB∗, using the adequate crossing
prescriptions, and carry out the sum over polarizations. Then we perform a numerical
summation over the contributing quark flavours i, j, k, l. Of course, at least the summation
of the FS flavours could easily be done analytically, exploiting the unitarity of the CKM
matrix (2.1.26). We have tried this approach, but the gain in runtime was negligible.
Moreover, doing the flavour summation numerically comprises the important benefit that
the complete calculation can be carried out using the general master formulae (8.2.8)
and (8.2.9), respectively.

The full squared averaged amplitude for any given partonic channel can be written as

∣∣∣MR,QCD
aibj→lνl+ck+dl

∣∣∣
2

=
1

Fab

∑

τl

∑

σ1,...,σ4

∑

col

∣∣∣T R,QCD
0→W+aibjcldk

∣∣∣
2

a, b crossed into IS
, (8.2.12)

where we have to choose the adequate master amplitude from (8.2.8) or (8.2.9). We assume
that all partons a, b, c, and d carry flavour indices, which are suppressed in case of gluons.
For the relevant averaging factors we find

Fqq = Fqq̄ = Fq̄q̄ = 36 , Fqg = Fq̄g = 96 , Fgg = 256 . (8.2.13)

According to (2.3.4), the corresponding partonic cross sections for the real QCD corrections
are then given by

σ̂R,QCD
aibj→lνl+ckdl

(pa, pb) =
1

2ŝ

∫
dΦ(lνl+c+d)

1

1 + δckdl

∣∣∣MR,QCD
aibj→lνl+ck+dl

∣∣∣
2

, (8.2.14)

where the construction of the phase-space integral
∫

dΦ(lνl+c+d) will be discussed in Sec-
tion 8.4.

8.3 Interferences between EW and QCD diagrams

8.3.1 General structure of the contributions

The purely EW diagrams that contribute to the generic channel (8.2.1a) at the order O(α3)
(see Section 6.3.3) can be decomposed according to their flavour and colour structure as

T R,EW

0→W+d̄idjdlūk
= (δijV

∗
kl) (δnmδqp) T

A,EW
dddu + (δilV

∗
kj) (δnqδmp) T

B,EW
dddu , (8.3.1)
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where we have defined TA,EW
dddu and TB,EW

dddu in analogy to Adddu and Bdddu in (8.2.2a). Rewrit-
ing the corresponding QCD amplitude as

T R,QCD

0→W+d̄idjdlūk
= (δijV

∗
kl)
∑

a

(T a
nmT

a
pq)T

A,QCD
dddu + (δilV

∗
kj)
∑

a

(T a
pmT

a
nq)T

B,QCD
dddu , (8.3.2)

we find that the interference (IF) term

∣∣∣T R,IF

0→W+d̄idjdlūk

∣∣∣
2

= 2 Re
[
T R,EW

0→W+d̄idjdlūk

(
T R,QCD

0→W+d̄idjdlūk

)∗]
(8.3.3)

contributes at the same order O(α3αs) as the genuine EW corrections and thus has to be
taken into account within a complete fixed-order calculation.

Looking carefully at the colour structure of (8.3.3), it turns out that the terms with
identical flavour structure {i, j, k, l} in T R,EW and T R,QCD vanish, since they include the
colour factor δmnT

a
mn δqpT

a
qp = [Tr(T a)]2 = 0, when we sum over colours of the external

quarks. Only the terms with different flavour structure survive, yielding the colour factor
δmnT

a
pmδpqT

a
nq = Tr(T aT a) = 8TF. Therefore, we can express the squared colour-summed

amplitude (8.3.3) according to

∑

col

∣∣∣T R,IF

0→W+d̄idjdlūk

∣∣∣
2

= (8TF) (δijδil|Vkl|2) 2 Re
[
TA,EW

dddu

(
TB,QCD

dddu

)∗
+ TB,EW

dddu

(
TA,QCD

dddu

)∗]
. (8.3.4)

8.3.2 Explicit analytical results

For the purely EW contributions, the non-vanishing helicity structures TA,EW
dddu can be

written as
TA,EW

dddu = TA,EW
W+W− +

∑

V =γ,Z

(
TA,EW

V W+ + TA,EW
V W− + TA,EW

V W+W−

)
, (8.3.5)

where the subscripts denote the different vector bosons that appear in the propagators of
the underlying diagrams. The subamplitudes that are needed for the calculation explicitly
read

TA,EW
V W+ (+,−,−,+) =

2 e4

s2
W

C−
V dd̄

[(p1 + p2)2 − µ2
V ](q2

W − µ2
W)

×
[
C−

V uū

〈knp3〉
(qW + p3)2

〈kl|Kn + P3|p2〉〈p4p1〉∗

− C−
V dd̄

〈klp4〉∗
(qW + p4)2

〈p1|Kl + P4|kn〉〈p3p2〉
]
,

TA,EW
V W+ (−,+,−,+) =

2 e4

s2
W

C+
V dd̄

[(p1 + p2)2 − µ2
V ](q2

W − µ2
W)

×
[
C−

V uū

〈knp3〉
(qW + p3)2

〈kl|Kn + P3|p1〉〈p4p2〉∗

− C−
V dd̄

〈klp4〉∗
(qW + p4)2

〈p2|Kl + P4|kn〉〈p3p1〉
]
, (8.3.6a)
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TA,EW
γW− (+,−,−,+) =

2 e4

s2
W

Cγdd̄ Cγl−l+
〈p3kn〉〈p4|kn + p3|p2〉〈klp1〉∗

(p1 + p2)2[(p3 + p4)2 − µ2
W](kn + p3 + p4)2

,

TA,EW
γW− (−,+,−,+) =

2 e4

s2
W

Cγdd̄ Cγl−l+
〈p3kn〉〈p4|kn + p3|p1〉〈klp2〉∗

(p1 + p2)2[(p3 + p4)2 − µ2
W](kn + p3 + p4)2

,

(8.3.6b)

TA,EW
ZW− (+,−,−,+) =

2 e4

s2
W

C−
Zdd̄

[(p1 + p2)2 − µ2
Z][(p3 + p4)2 − µ2

W]

×
[
C−

Zl−l+
〈p3kn〉

(kn + p3 + p4)2
〈p4|Kn + P3|p2〉〈klp1〉∗

− C−
Zνlν̄l

〈p4kl〉∗
(kl + p3 + p4)2

〈p1|Kl + P4|p3〉〈knp2〉
]
,

TA,EW
ZW− (−,+,−,+) =

2 e4

s2
W

C+
Zdd̄

[(p1 + p2)2 − µ2
Z][(p3 + p4)2 − µ2

W]

×
[
C−

Zl−l+
〈p3kn〉

(kn + p3 + p4)2
〈p4|Kn + P3|p1〉〈klp2〉∗

− C−
Zνlν̄l

〈p4kl〉∗
(kl + p3 + p4)2

〈p2|Kl + P4|p3〉〈knp1〉
]
, (8.3.6c)

TA,EW
V W+W−(+,−,−,+) = − 2e4

s2
W

CV W+W− C−
V dd̄

[(p1 + p2)2 − µ2
V ](q2

W − µ2
W)[(p3 + p4)2 − µ2

W]

×
[
〈p1p4〉∗〈p2p3〉〈kl|P1 + P2|kn〉 + 〈p4kl〉∗〈p3kn〉〈p1|P3 + P4|p2〉

+ 〈klp1〉∗〈knp2〉〈p4|Kl +Kn|p3〉
]
,

TA,EW
V W+W−(−,+,−,+) = 0 , (8.3.6d)

TA,EW
W+W−(+,−,−,+) = − 2 e4

s2
W

C−
W−d̄u

C−
W+ūd

〈p4p1〉∗〈knp2〉〈kl|Kn + P2|p3〉
(qW + p2)2(q2

W − µ2
W)[(p3 + p4)2 − µ2

W]
,

TA,EW
W+W−(−,+,−,+) = 0 , (8.3.6e)

where we have adopted the helicity assignment TA,EW
... (σ1, σ2, σ3, σ4). The contributions

TB,EW
... (σ1, σ2, σ3, σ4) emerge from (8.3.6) via

TB,EW
... (σ1, σ2, σ3, σ4) = (−1) · TA,EW

... (σ1, σ3, σ2, σ4)
∣∣∣
p2↔p3

. (8.3.7)

The IF contributions for the generic process (8.2.1b) can be deduced in a similar way:
The amplitude for the purely weak contributions reads

T R,EW
0→W+ūiujdlūk

= (δijV
∗
kl) (δnmδqp) T

A,EW
uudu + (δjkV

∗
il ) (δnqδmp) T

B,EW
uudu , (8.3.8)

and the QCD amplitude can be written as

T R,QCD
0→W+ūiujdlūk

= (δijV
∗
kl)
∑

a

(T a
nmT

a
pq)T

A,QCD
uudu + (δjkV

∗
il )
∑

a

(T a
pmT

a
nq)T

B,QCD
uudu . (8.3.9)
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Accordingly, the interference term is given by the expression

∑

col

∣∣∣T R,IF
0→W+ūiujdlūk

∣∣∣
2

= (8TF) (δijδjk|Vkl|2) 2 Re
[
TA,EW

uudu

(
TB,QCD

uudu

)∗
+ TB,EW

uudu

(
TA,QCD

uudu

)∗]
, (8.3.10)

and the non-vanishing helicity amplitudes TA,EW
uudu are decomposed according to

TA,EW
uudu = KA,EW

W+W− +
∑

V =γ,Z

(
KA,EW

V W+ +KA,EW
V W− +KA,EW

V W+W−

)
, (8.3.11)

with the explicit expressions

KA,EW
V W+ (+,−,−,+) =

2 e4

s2
W

C−
V uū

[(p1 + p2)2 − µ2
V ](q2

W − µ2
W)

×
[
C−

V uū

〈knp3〉
(qW + p3)2

〈kl|Kn + P3|p2〉〈p4p1〉∗

− C−
V dd̄

〈klp4〉∗
(qW + p4)2

〈p1|Kl + P4|kn〉〈p3p2〉
]
,

KA,EW
V W+ (−,+,−,+) =

2 e4

s2
W

C+
V uū

[(p1 + p2)2 − µ2
V ](q2

W − µ2
W)

×
[
C−

V uū

〈knp3〉
(qW + p3)2

〈kl|Kn + P3|p1〉〈p4p2〉∗

− C−
V dd̄

〈klp4〉∗
(qW + p4)2

〈p2|Kl + P4|kn〉〈p3p1〉
]
, (8.3.12a)

KA,EW
γW− (+,−,−,+) =

2 e4

s2
W

Cγuū Cγl−l+
〈p3kn〉〈p4|kn + p3|p2〉〈klp1〉∗

(p1 + p2)2[(p3 + p4)2 − µ2
W](kn + p3 + p4)2

,

KA,EW
γW− (−,+,−,+) =

2 e4

s2
W

Cγuū Cγl−l+
〈p3kn〉〈p4|kn + p3|p1〉〈klp2〉∗

(p1 + p2)2[(p3 + p4)2 − µ2
W](kn + p3 + p4)2

,

(8.3.12b)

KA,EW
ZW− (+,−,−,+) =

2 e4

s2
W

C−
Zuū

[(p1 + p2)2 − µ2
Z][(p3 + p4)2 − µ2

W]

×
[
C−

Zl−l+
〈p3kn〉

(kn + p3 + p4)2
〈p4|Kn + P3|p2〉〈klp1〉∗

− C−
Zνlν̄l

〈p4kl〉∗
(kl + p3 + p4)2

〈p1|Kl + P4|p3〉〈knp2〉
]
,

KA,EW
ZW− (−,+,−,+) =

2 e4

s2
W

C+
Zuū

[(p1 + p2)2 − µ2
Z][(p3 + p4)2 − µ2

W]

×
[
C−

Zl−l+
〈p3kn〉

(kn + p3 + p4)2
〈p4|Kn + P3|p1〉〈klp2〉∗

− C−
Zνlν̄l

〈p4kl〉∗
(kl + p3 + p4)2

〈p2|Kl + P4|p3〉〈knp1〉
]
, (8.3.12c)
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kc

kn

kl

kd

ta,c

tac,d

q2
W

pa

pb

= slνld = (kn + kl + kd)
2

Figure 8.3: Topology for the phase-space construction within the real cor-
rections.

KA,EW
V W+W−(+,−,−,+) = − 2e4

s2
W

CV W+W− C−
V uū

[(p1 + p2)2 − µ2
V ](q2

W − µ2
W)[(p3 + p4)2 − µ2

W]

×
[
〈p1p4〉∗〈p2p3〉〈kl|P1 + P2|kn〉 + 〈p4kl〉∗〈p3kn〉〈p1|P3 + P4|p2〉

+ 〈klp1〉∗〈knp2〉〈p4|Kl +Kn|p3〉
]
,

KA,EW
V W+W−(−,+,−,+) = 0 , (8.3.12d)

KA,EW
W+W−(+,−,−,+) = − 2 e4

s2
W

C−
W−d̄u

C−
W+ūd

〈klp1〉∗〈p3p2〉〈p4|p3 + P2|kn〉
(qW + p1)2(q2

W − µ2
W)[(p3 + p4)2 − µ2

W]
,

KA,EW
W+W−(−,+,−,+) = 0 , (8.3.12e)

where we again use the helicity assignment KA,EW
... (σ1, σ2, σ3, σ4). Finally, we obtain the

contributions KB,EW
... (σ1, σ2, σ3, σ4) from (8.3.12) via

KB,EW
... (σ1, σ2, σ3, σ4) = (−1) ·KA,EW

... (σ4, σ2, σ3, σ1)
∣∣∣
p1↔p4

. (8.3.13)

As for the real QCD corrections, the partonic cross sections σ̂R,IF
aibj→lνl+ckdl

(pa, pb) for the

interference contributions is computed according to Eqs. (8.2.12) and (8.2.14), respectively.

8.4 Phase-space decomposition for real corrections

In this section we explicitly demonstrate the phase-space parametrization for a four-
particle final state, using again the concepts that have been outlined in Appendix B. It
turned out to be sufficient to use the same phase-space parametrization for the calculation
of the EW corrections, the QCD corrections, and for the computation of the interference
effects of EW and QCD diagrams. We consider the process

a(pa) + b(pb) → l+(kl) + νl(kn) + c(kc) + d(kd) , (8.4.1)
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where c and d denote two massless QCD partons or a parton and a photon, respectively.
The phase-space parametrization we use for the calculation of the real corrections reads

∫
dΦ(lνl+c+d)(pa, pb; kl, kn, kc, kd) =

1

(2π)8

∫ ŝ

0

dq2
W

∫ ŝ

q2
W

dslνlc

×
∫

dΩp(pa, pb; k
2
c , slνld)

∫
dΩp(pa − kc, pb; k

2
d, q

2
W)

∫
dΩd(q

2
W; k2

l , k
2
n) , (8.4.2)

where we have defined the time-like invariant slνld = (kl + kn + kd)
2. Our phase-space

decomposition corresponds to the topology depicted in Fig. 8.3. As in the LO case, we
list the explicit expressions for the contributing two-particle subspaces,

∫
dΩp(pa, pb; k

2
c , slνld) =

1

4ŝ

∫ 2π

0

dφc

∫ tmax
a,c

tmin
a,c

dta,c ,

∫
dΩp(pa − kc, pb; k

2
d, q

2
W) =

1

slνld − ta,c

∫ 2π

0

dφ∗
d

∫ tmax
ac,d

tmin
ac,d

dtac,d ,

∫
dΩd(q

2
W; k2

l , k
2
n) =

1

8

∫ 2π

0

dφW
l

∫ 1

−1

d cos θW
l , (8.4.3)

where φ∗
d is the polar angle of particle d in the rest frame of pa,c ≡ pa − kc and pb. This

frame is boosted and rotated with respect to the partonic cm frame. As in (7.3.3a),
φW

l and θW
l span the solid angle of the lepton in the rest frame of the intermediate W

boson. The integration boundaries for the t-channel like invariants ta,c = (pa − kc)
2 and

tac,d = (pa − kc − kd)
2 are given by

tmin
a,c = −ŝ+ slνld , tmax

a,c = 0 ,

tmin
ac,d = ta,c

q2
W

slνld
, tmax

ac,d = q2
W − slνld + ta,c . (8.4.4)

The four-momentum of parton c,

kµ
c =

ŝ− slνld

2ŝ
(1, sin θc cosφc, sin θc sinφc, cos θc) , (8.4.5)

with

θc = arccos

(
1 +

2 ta,c

ŝ− slνld

)
, (8.4.6)

is analogous to (7.3.4). As shown in Section 7.3, the leptonic four-momenta can be obtained
from the four-momentum qµ

W of the W boson (7.3.6) and the boost prescriptions (7.3.8).
The construction of kµ

d is more involved. We start with the expression

k∗,µd =
slνld − q2

W

2
√
slνld

(1, sin θ∗d cosφ∗
d, sin θ

∗
d sinφ∗

d, cos θ∗d) (8.4.7)

in the rest frame of pa,c and pb , where the polar angle θ∗d is constructed from the integration
variables via

cos θ∗d =
q2
W(slνld + q2

W)(slνld + ta,c) + slνld(ta,c − 2 tac,d − slνld)

(q2
W − slνld)(slνld − ta,c)

. (8.4.8)
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To obtain kd in the partonic cm frame, we have to perform a Lorentz transformation
consisting of a rotation and a subsequent boost as defined in (B.19),

kd = B
[
p0

a,c + p0
b ,−(pa,c + pb)

]
R(φ̃d, cos θ̃d) k

∗
d , (8.4.9)

where the boost and rotation matrices are given by (B.16) and (B.20), respectively.
Again, we use a Breit–Wigner mapping as specified in Appendix B.3 to improve the

performance of the q2
W-integration in the numerical evaluation, while the remaining inte-

grations in (8.4.2) are worked out applying linear mappings according to (B.23). In the
calculation of the interference contributions discussed in Section 8.3, we also use a linear
mapping for the q2

W-integration, because these contributions do not contain Breit–Wigner
resonances.





Chapter 9

Virtual corrections

In this chapter we discuss the calculation of the virtual EW and QCD corrections to the
process pp/pp̄ → lνl + jet +X.

9.1 General structure of one-loop corrections

Within the calculation of one-loop corrections to processes with P external legs various
N-point tensor integrals of the tensor rank n arise that have the general structure

TN
µ1,...,µn

(p1, . . . , pN−1,m0, . . . ,mN−1)

=
(2πµ)4−d

iπ2

∫
ddq

qµ1 . . . qµn

(q2 −m2
0 + iǫ)

∏N−1
i=1 [(q + pi)2 −m2

i + iǫ]
, (9.1.1)

where p1, p2−p1, p3−p2, . . . , −pN−1 can be identified with the incoming external momenta,
m0,m1,m2, . . . ,mN−1 are the masses of the internal propagators, and N ≤ P is valid. To
allow for the regularization of UV divergences the tensor integrals are defined via their
analytical continuation in d dimensions. To ensure that the integrals retain the correct
mass dimension, the reference mass scale µ has been introduced in (9.1.1).

For a consistent treatment of a physical one-loop amplitude in d dimensions all alge-
braical operations acting on the tensor structure of the amplitude have to be carried out
in d dimensions. Additionally, one needs a suitable extension of the Dirac algebra to d
dimensions if fermions take part in the considered process. A detailed discussion on the
algebraical properties of Lorentz- and Dirac structures in dimensional regularization can
e.g. be found in Ref. [105].

The tensor integrals (9.1.1) can be decomposed in terms of a linear combination of all
possible covariant structures that can be constructed from the metric and the external mo-
menta, and the coefficient functions that arise during this decomposition into covariants
are called tensor coefficients. Those tensor coefficients can be reduced to linear combina-
tions of simpler scalar integrals T

{N,N−1,...,2}
0 by means of the Passarino–Veltman reduction

algorithm [83]. The explicit expression for the N -point scalar integral is given by

TN
0 (p1, . . . , pN−1,m0, . . . ,mN−1)

=
(2πµ)4−d

iπ2

∫
ddq

1

(q2 −m2
0 + iǫ)

∏N−1
i=1 [(q + pi)2 −m2

i + iǫ]
. (9.1.2)
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For the 2-, 3-, 4- and 5-point functions that appear during the calculation of one-loop
corrections the corresponding tensor integrals are conveniently labeled as T 2 → B, T 3 →
C, T 4 → D and T 5 → E according to the first letters of the alphabet.

9.2 EW contributions

9.2.1 Reduction of 5-point tensor integrals

In scattering processes the external momenta in general become linearly dependent at the
phase-space boundary. This means that the determinant det(Z) of the Gram matrix Z,
which is constructed from the external momenta according to

Z =




2p1p1 . . . 2p1pN−1

...
...

2pN−1p1 . . . 2pN−1pN−1


 , (9.2.1)

exhibits a zero in these particular phase-space points. In the usual Passarino–Veltman [83]
reduction algorithm inverse Gram determinants appear that will lead to zeroes in the de-
nominator if the external momenta become linearly dependent. Although these zeroes are
just artefacts of the underlying reduction algorithm and will be compensated by corre-
sponding contributions in the numerator (resulting in a “0/0”-like situation), they might
still spoil the accuracy of the numerical phase-space integration.

In 2 → 2 scattering processes the singular Gram determinants appear in isolated phase-
space points in case of forward or backward scattering, i.e. if the polar angles of the
scattered particles approach 0 or π. Thus, the corresponding numerical problems are
usually negligible, and the Passarino–Veltman algorithm can safely be adopted.

By contrast, in case of 2 → 3 scattering processes the problems of vanishing Gram
determinants are more severe and may even jeopardize the reliability of the numerical
results. For this reason, we apply the reduction algorithms discussed in Sections 2 and
3 of [106] and in Section 6 of [107] which consistently avoid small Gram determinants
within the direct reduction of 5-point tensor integrals to a linear combination of 4-point
functions. It is always possible to express 5-point functions in terms of 4-point functions
in four space-time dimension, because the integration momentum q can always be written
in terms of the four independent external momenta.

9.2.2 Calculation of the EW one-loop corrections

The Feynman diagrams that have to be evaluated for the one-loop EW corrections to the
partonic process (6.1.2) are summarized in Fig. 6.3, and the six contributing pentagon
diagrams are depicted in Fig. 6.4. The corresponding one-loop amplitude

M1
uig→l+νldj

= (V ∗
ij)M1

ug→l+νld
, (9.2.2)

where we have factorized the overall LO CKM dependence, can be expressed in terms of
standard matrix elements and coefficients, which contain the tensor integrals (following
the ideas described in the appendix of Ref. [108]). The tensor integrals are recursively
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reduced to master integrals at the numerical level. Scalar and tensor 5-point integrals
are directly expressed in terms of 4-point integrals as stated in the previous subsection.
For the reduction of the 4- and 3-point tensor coefficients to scalar integrals we use the
conventional Passarino–Veltman algorithm. This procedure turned out to be sufficient
to allow for a proper numerical evaluation without visible problems due to small Gram
determinants. However, one could still improve the numerical efficiency using the sophis-
ticated methods that have been developed in [107] for the treatment of situation where
small Gram determinants appear within the reduction of 4- and 3-point tensor integrals.

Since we work in the complex-mass scheme (see Section 2.2.4), all scalar integrals that
result from the tensor-reduction procedure are evaluated for complex vector-boson masses,
using the methods and results of Refs. [65, 90, 109]. Moreover, one has to compute
many scalar integrals that carry IR-singular structures and therefore have to be expanded
properly in the corresponding IR limits to allow for a numerically-stable evaluation.

For the recursive numerical reduction of tensor coefficients to scalar integrals, as well as
for the analytical evaluation of the scalar integrals we use a Fortran implementation1 of an
integral library [110] that has been developed and optimized by Ansgar Denner and Stefan
Dittmaier during the last years. This library supports the calculation of scalar integrals
with complex vector-boson masses and the correct mass-singular behaviour of such scalar
integrals that exhibit IR-singular structures.

The counterterm contribution to process (6.1.2) that emerges from the redefinition of
the SM parameters within the complex-mass scheme is given by

MCT,EW
ug→l+νld

= δCT,EW
ug→l+νld

M0
ug→l+νld

, (9.2.3)

and the prefactor—which is the same for all partonic processes (6.1.1) – (6.1.3)—explicitly
reads

δCT,EW
ug→l+νld

=

[
2

(
δZe −

1

2
∆r +

δsW

sW

)
− δµ2

W

q2
W − µ2

W

+
1

2

(
δZL

uū + δZL
dd̄ + ZL

ll̄ + δZL
νlν̄l

)]
,

(9.2.4)
where the formulae for the renormalization constants can be found in Section 2.2.4. This
counterterm is the same for all contributing helicity amplitudes. The parameter ∆r (see
Eq. (5.3.3)) has to be calculated consequently using complex vector-boson masses. Now,
the full renormalized one-loop contribution to the NLO amplitude can be written as

∣∣∣MV,EW
ug→l+νld

∣∣∣
2

= 2 Re
[(

M1
ug→l+νld

+ MCT,EW

ud̄→l+νlg

)(
M0

ud̄→l+νlg

)∗]
, (9.2.5)

and the virtual corrections to the partonic cross section explicitly read

σ̂V,EW
uig→lνl+dj

(pa, pb) = |Vij|2
1

2ŝ

∫
dΦ(l+νl+d)

∣∣∣MV,EW
ug→l+νld

∣∣∣
2

. (9.2.6)

1As mentioned in Section 6.1.3, in our team we have performed two completely independent calculations
of the radiative corrections to W+jet production. Within these calculations, we have also used two different
branches of this library, obtaining results that are in mutual agreement.
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Figure 9.1: Virtual QCD corrections to the process (6.1.1).
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Figure 9.2: Virtual QCD corrections to the photon-induced process (6.1.5).
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9.3 One-loop QCD corrections

The calculation of the virtual QCD corrections includes self-energies, triangles, and box
diagrams. For completeness, we list all contributing Feynman diagrams for channel (6.1.1)
in Fig. 9.1. The diagrams are consistently calculated in dimensional regularization, i.e. all
light quark masses are exactly zero, and then reduced algebraically to scalar integrals
according to the Passarino–Veltman algorithm, again using the library [110].

The counterterm that has to be added to the bare one-loop corrections for a proper
cancellation of UV singularities reads

MCT,QCD

ud̄→l+νlg
= δCT,QCD

ud̄→l+νlg
M0

ud̄→l+νlg
, (9.3.1)

with

δCT,QCD

ud̄→l+νlg
=

1

2
(δZαs + δZG + δZuū + δZdd̄) , (9.3.2)

where we have adopted an on-shell renormalization prescription for the external fields of
the QCD partons. We perform an MS renormalization of the strong coupling constant,
where the contribution from the massive top-quark loop in the gluon self-energy is sub-
tracted at zero momentum transfer, so that the running of αs is driven by the nf = 5 light
flavours. The renormalization constants for nf = 5 massless quark flavours explicitly read

δZG =
αs

π

(
5

4
− nf

6

)
B0(0, 0, 0) − αs

6π
B0(0,m

2
t ,m

2
t ) , (9.3.3)

δZαs = −αs

π

(
11

4
− nf

6

)(
∆UV + ln

µ2

µR
2

)
+
αs

6π
B0(0,m

2
t ,m

2
t ) , (9.3.4)

δZqq̄ = −αs

3π
B0(0, 0, 0) , (9.3.5)

where

∆UV =
1

ǫ

(4π)ǫ

Γ(1 − ǫ)
, d = 4 − 2ǫ , (9.3.6)

contains the UV divergence, and the contributing scalar 2-point integrals are given by

B0(0,mt,mt) = ∆UV − ln
m2

t

µ2
, B0(0, 0, 0) = ∆UV − ∆IR

1 , (9.3.7)

with ∆IR
1 from (3.3.2), i.e. the scale-free integral B0(0, 0, 0) does not vanish if we use

different regulators for IR and UV singularities. The prefactor (9.3.2) is the same for all
partonic channels (6.1.1) – (6.1.3), and the contribution that has to be added to the one-

loop QCD corrections to process (6.1.1) is given by 2 δCT,QCD

ud̄→l+νlg
|Vij|2 |M0

ud̄→l+νlg
|2 when the

cross section for the virtual corrections is computed according to (4.4.9). Note that we
have evaluated the renormalization constants and the loop integrals using a real top-quark
mass mt.

9.4 One-loop QCD corrections to photon-induced pro-

cesses

The loop diagrams that contribute to the process (6.1.5) are shown in Fig. 9.2. Since the
corresponding amplitude does not contain the strong coupling constant, we simply have
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to perform a renormalization of the external quark fields, resulting in the counterterm
contribution

MCT,QCD
uγ→lνld

=
1

2
(δZuū + δZdd̄)M0

uγ→lνld
, (9.4.1)

that has to be added to the one-loop amplitude M1
uγ→lνld

.
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Hadronic cross sections

10.1 Definition of hadronic observables

10.1.1 Recombination

For the experimental identification of the process pp/pp̄ → W+ + jet → l+νl + jet + X
we recombine FS partons and photons to IR-safe pseudo-particles and impose a set of
phase-space cuts as detailed now.

To define the recombination procedure and the separation cuts, we use the variable

Rij =
√

(yi − yj)2 + φ2
ij , (10.1.1)

to quantify the separation of particles i and j in phase space. In (10.1.1), yi denotes the
rapidity

y =
1

2
ln
p0 + pL

p0 − pL

(10.1.2)

of particle i and φij is the azimuthal angle in the transverse plane between the particles
i and j. In the definition of the rapidity, p0 denotes the particle’s energy and pL = p3

the momentum along the beam axis. The recombination procedure, where we simply add
four-momenta to form a pseudo-particle, works as follows:

1. For observables with bare muons we do not recombine photons and leptons. Alter-
natively, a photon and an electron are recombined for Rγl < 0.1 to define IR safe
inclusive observables.

2. A photon and a parton a (quark or gluon) are recombined for Rγa < 0.5. In this case,

we use the energy fraction of the photon inside the jet, zγ =
p0

γ

p0
γ+p0

a
, to distinguish

between W + jet and W + γ production. If zγ > 0.7, the event is regarded as a part
of W + γ production and rejected because it lacks any other hard jet at NLO. This
event definition is not collinear safe and requires the usage of a quark-to-photon
fragmentation function to include the non-perturbative part of the quark–photon
splitting (see Section 3.7 for details).

3. Two QCD partons c and d in the final state are recombined for Rcd < 0.5. For
our simple FS configurations, this procedure is equivalent to the Tevatron Run II
kT-algorithm [70] for jet reconstruction with resolution parameter D = 0.5.
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Technically, we perform a possible photon–lepton recombination before the photon–
parton recombination. This procedure is IR safe because the triple-soft/collinear situation
that a photon should have been first recombined with a parton, but was by mistake first
recombined with a lepton, is excluded by our basic cuts.

10.1.2 Basic event-selection cuts

A W+jet event is defined by the following basic requirements:

1. A partonic object (after a possible recombination) is called a jet if its transverse
momentum

pT =
√

(p1)2 + (p2)2 (10.1.3)

is larger than 25 GeV. Events are required to include at least one jet.

2. We demand a charged lepton with transverse momentum pT > 25 GeV and a missing
momentum (i.e. the transverse momentum of the FS neutrino) /pT

> 25 GeV.

3. The events have to be central, i.e. the lepton and at least one jet have to be produced
in the rapidity range |y| < ymax = 2.5.

4. The lepton has to be isolated, i.e. the event is discarded if the distance between the
lepton and a jet Rljet is smaller than 0.5.
(The lepton–jet separation is also required for jets with |y| > ymax. It is important to
apply a lepton–jet separation procedure only to visible jets (not to low-pT partons),
since otherwise observables would not be IR safe.)

While the EW corrections differ for FS electrons and muons without photon recombi-
nation, the corrections become universal in the presence of photon recombination, since
the lepton-mass logarithms cancel in this case, in accordance with the KLN theorem. In
Chapter 11, numerical results will be presented for photon recombination and for bare
muons.

10.2 LO contributions

The total hadronic cross section at LO is given by

σLO
AB(pA, pB;µ2

F)

=

∫ 1

0

dxadxb

{[ 2∑

i=1

3∑

j=1

Luid̄j

AB (xa, xb)σ̂
0
uid̄j→l++νl+g(pa, pb; kl, kn, kc)

+
2∑

i=1

Lui(g/γ)
AB (xa, xb)

3∑

j=1

σ̂0
ui(g/γ)→l++νl+dj

(pa, pb; kl, kn, kc)

+
3∑

j=1

Ld̄j(g/γ)
AB (xa, xb)

2∑

i=1

σ̂0
d̄j(g/γ)→l++νl+ūi

(pa, pb; kl, kn, kc)

]

+

[
. . .

]

a↔b

}
F

(l++νl+1 jet)
J (kl, kn, kc; pa, pb) , (10.2.1)



10.3. EW corrections 129

where

Lab
pp(xa, xb) ≡ fa/p(xa, µ

2
F)fb/p(xb, µ

2
F) , Lab

pp̄(xa, xb) ≡ fa/p(xa, µ
2
F)fb/p̄(xb, µ

2
F) , (10.2.2)

denote the experimentally determined parton luminosities for the LHC or the Tevatron.
Although it is formally part of the partonic cross section, we have made the jet function

F
(l++νl+1 jet)
J explicit that includes the basic event-selection cuts described in Section 10.1.2.

The partonic cross sections σ̂0
a (b/γ)→l+νlc

are defined in (7.3.1). Equation (10.2.1) covers

the dominant QCD enhanced contributions (6.1.1) – (6.1.3) as well as the photon-induced
processes (6.1.5) and (6.1.6).

10.2.1 Numerical integration of the hadronic variables

For the numerical implementation of the convolutive integrations
∫ 1

0
dxadxb ≡∫ 1

0
dxa

∫ 1

0
dxb we first transform the integrals (2.3.8) according to

∫ 1

0

dxadxb F(xa, xb) →
∫ 1

τmin

dτ

∫ 1

τ

dxb

xb

F(τ/xb, xb) , (10.2.3)

where τ ≡ xaxb, and the choice of τmin = 9 p2
T,min/s corresponds to the minimal cm energy

ŝmin = τmins that is necessary to produce a jet, a lepton, and a neutrino with a minimal
transverse momentum pT,min, as demanded by our basic cuts. To cancel the overall 1/ŝ
dependence that appears in any phase-space integral, the hadronic integrations (10.2.3)
are mapped to the unit square r = (r1, r2) via

∫ 1

τmin

dτ

∫ 1

τ

dxb

xb

=

∫ 1

0

d2r [τ(r) ln τ(r) ln τ0]F(xa(r), xb(r)) , (10.2.4)

with τ = τ r1
min and xb = τ r2.

10.3 EW corrections

The partonic expressions for the EW NLO corrections are given by the sum of the virtual
corrections σ̂V,EW, the collinear counterterm σ̂C,EW that arises from the replacement (3.4.1)
in the LO cross section, and the bremsstrahlung contributions σ̂R,EW,

σ̂NLO,EW
ab→l+νlc(+γ)(pa, pb;µ

2
F) = σ̂V,EW

ab→l+νlc
(pa, pb) + σ̂C,EW

ab→l+νlc
(pa, pb;µ

2
F) + σ̂R,EW

ab→l+νlc+γ(pa, pb) ,

(10.3.1)
where the explicit expressions for the partonic contributions σ̂R,EW

ab→l+νlc+γ and σ̂V,EW
ab→l+νlc

are
given by Eqs. (8.1.7) and (9.2.6), respectively. The full hadronic contribution simply
emerges from (10.2.1) via the replacement1

σ̂0
ab→l+νlc

(pa, pb) → σ̂NLO,EW
ab→l+νlc(+γ)(pa, pb;µ

2
F) , (10.3.2)

1For a consistent NLO calculation, one also has to replace the LO PDFs by adequate PDFs defined
at NLO. However, since the MRSTQED2004 PDF set we use in our calculation is only available at NLO
accuracy, we employ those NLO PDFs for the LO as well as for the NLO computation.
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but one has to keep in mind that the bremsstrahlung cross section is defined on a four-

particle phase space, implying the necessity of introducing the jet function F
(l++νl+1 jet+γ)
J

that properly accounts for the recombination of photons and light fermions in the final
state as detailed in Section 10.1.1,

σNLO,EW
AB (pA, pB;µ2

F)

=

∫ 1

0

dxadxb

{[ 2∑

i=1

3∑

j=1

Luid̄j

AB (xa, xb)σ̂
NLO,EW

uid̄j→l++νl+g(+γ)
(pa, pb; kl, kn, kc(, kγ))

+
2∑

i=1

Luig
AB(xa, xb)

3∑

j=1

σ̂NLO,EW
uig→l++νl+dj(+γ)(pa, pb; kl, kn, kc(, kγ))

+
3∑

j=1

Ld̄jg
AB(xa, xb)

2∑

i=1

σ̂NLO,EW

d̄jg→l++νl+ūi(+γ)
(pa, pb; kl, kn, kc(, kγ))

]

+

[
. . .

]

a↔b

}
F

(l++νl+1 jet(+γ))
J (kl, kn, kc(, kγ); pa, pb) . (10.3.3)

In (10.3.3), all bremsstrahlung corrections are calculated using the dipole subtraction
technique discussed in Sections 4.1 and 4.2, applying formula (4.2.1),

∫
dΦ(lνl+c+γ)

∣∣∣MR,EW
ab→lνl+c+γ

∣∣∣
2

=

∫
dΦ(lνl+c+γ)

(∣∣∣MR,EW
ab→lνl+c+γ

∣∣∣
2

− |Msub|2
)

+

∫
dΦ̃(lνl+c) ⊗

(∫
[dk] |Msub|2

)
,

(10.3.4)

with |Msub|2 from Eq. (4.2.2), for the safe numerical evaluation of the squared brems-
strahlung amplitudes. Since the corresponding expressions are a bit lengthy, we explicitly
list the contributing dipoles and the integrated counterparts that have to be readded to
the virtual corrections in Appendix C.

10.4 QCD corrections

10.4.1 Real radiation processes

After summing over all IS and FS quark flavours according to (2.3.8) and (4.4.8), we can
still distinguish twelve different partonic contributions that have to be convoluted with
the proper parton luminosities and afterwards summed incoherently to obtain the final
hadronic result. The four contributions arising from the generic process (8.2.1c) add up
to

σ
R, (W+ggdu)
AB (pA, pB;µ2

F)

=

∫ 1

0

dxa dxb

{ [
1

2
Lgg

AB(xa, xb)
2∑

i=1

3∑

j=1

σ̂R,QCD
gg→W+ūidj

(pa, pb; kl, kn, kc, kd)
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+
2∑

i=1

Lgui

AB(xa, xb)
3∑

j=1

σ̂R,QCD
gui→W+gdj

(pa, pb; kl, kn, kc, kd)

+
3∑

j=1

Lgd̄j

AB(xa, xb)
2∑

i=1

σ̂R,QCD

gd̄j→W+gūi
(pa, pb; kl, kn, kc, kd)

+
2∑

i=1

3∑

j=1

Luid̄j

AB (xa, xb)σ̂
R,QCD

uid̄j→W+gg
(pa, pb; kl, kn, kc, kd)

]

+

[
. . .

]

a↔b

}
F

(l++νl+2 jets)
J (kl, kn, kc, kd; pa, pb) , (10.4.1)

where the corresponding parton luminosities for the LHC and the Tevatron are defined
in the MS factorization scheme w.r.t. IS QCD corrections. In (10.4.1) we have used
the prescription (8.2.14) to calculate the partonic QCD cross sections. Note that it is
important to boost the FS momenta to the hadronic cm frame according to (2.3.13)

before calculating the cut function F
(l++νl+2 jets)
J that summarizes the recombination and

cut procedure discussed in Section 10.1. The hadronic contributions arising from the
processes (8.2.1a) read

σ
R, (W+dddu)
AB (pA, pB;µ2

F)

=

∫ 1

0

dxa dxb

{ [ 3∑

i,j=1

Ldid̄j

AB (xa, xb)
3∑

l=1

2∑

k=1

σ̂R,QCD

did̄j→W+ūkdl
(pa, pb; kl, kn, kc, kd)

+
3∑

i=1

2∑

k=1

Ldiuk

AB (xa, xb)
3∑

j=1

3∑

l=j

σ̂R,QCD
diuk→W+djdl

(pa, pb; kl, kn, kc, kd)

+
3∑

j=1

2∑

k=1

Ld̄juk

AB (xa, xb)
3∑

i,l=1

σ̂R,QCD

d̄juk→W+d̄idl
(pa, pb; kl, kn, kc, kd)

+

(
1

1 + δjl

) 3∑

j=1

3∑

l=j

Ld̄j d̄l

AB (xa, xb)
3∑

i=1

2∑

k=1

σ̂R,QCD

d̄j d̄l→W+d̄iūk
(pa, pb; kl, kn, kc, kd)

]

+

[
. . .

]

a↔b

}
F

(l++νl+2 jets)
J (kl, kn, kc, kd; pa, pb) , (10.4.2)

where the parton luminosities are defined in the same way as in (10.2.2). Finally, we also
list the hadronic contributions that emerge from the generic processes (8.2.1b),

σ
R, (W+uudu)
AB (pA, pB;µ2

F)

=

∫ 1

0

dxa dxb

{ [ 2∑

i,j=1

Luiūj

AB (xa, xb)
3∑

l=1

2∑

k=1

σ̂R,QCD
uiūj→W+ūkdl

(pa, pb; kl, kn, kc, kd)

+

(
1

1 + δik

) 2∑

i=1

2∑

k=j

Luiuk

AB (xa, xb)
2∑

j=1

3∑

l=1

σ̂R,QCD
uiuk→W+ujdl

(pa, pb; kl, kn, kc, kd)

+
2∑

j=1

2∑

k=1

Lūjuk

AB (xa, xb)
2∑

i=1

3∑

l=1

σ̂R,QCD
ūjuk→W+ūidl

(pa, pb; kl, kn, kc, kd)
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+
2∑

j=1

3∑

l=1

Lūj d̄l

AB (xa, xb)
2∑

i=1

2∑

k=i

σ̂R,QCD

ūj d̄l→W+ūiūk
(pa, pb; kl, kn, kc, kd)

]

+

[
. . .

]

a↔b

}
F

(l++νl+2 jets)
J (kl, kn, kc, kd; pa, pb) . (10.4.3)

As mentioned before, the complete result for the real corrections to the hadronic cross
section is given by the sum

σR, QCD
AB (pA, pB;µ2

F)

= σ
R, (W+uudu)
AB (pA, pB;µ2

F) + σ
R, (W+dddu)
AB (pA, pB;µ2

F) + σ
R, (W+ggdu)
AB (pA, pB;µ2

F) ,

(10.4.4)

where we implicitly assume that all partonic contributions are calculated according to

σ̂R,QCD
ab =

∫ (
dσ̂R,QCD

ab − dσ̂A
ab

)
+

∫
dσ̂A

ab , (10.4.5)

using the proper subtraction formulae (4.4.15) and (4.4.16). We will now discuss the
structure of the subtraction contributions dσ̂A in some detail.

Subtraction contributions σ̂A

Since the focus of this thesis is not on the calculation of the QCD corrections, we will
not list all contributing subtraction terms and all corresponding readded counterparts
explicitly, but we will outline the general procedure by means of the example process

ui(pa) uk(pb) → W(qW) + uj(kc) + dl(kd) . (10.4.6)

However, since we have provided a formal discussion of the calculation of NLO QCD cor-
rections in Section 4.4, the general procedure of the calculation should become sufficiently
clear.

Calculating the subtraction terms for the partonic processes in (10.4.1), (10.4.2), and
(10.4.3), the flavour structure of the involved quarks has to be respected carefully. For the
channels involving two external gluons, this task is trivial, since the overall flavour factor
|Vij|2 can be factorized, and the computation is straight-forward, applying Eq. (4.4.16).

For the channels with four external quarks, however, the subtraction kernels have to
be composed according to the flavour structure of the squared amplitudes as discussed in
Section 8.2. Since the kinematical configurations that lead to IR singularities during the
phase-space integration are entirely contained in the factors |A|2 and |B|2 in (8.2.8), the
flavour structure of the adequate subtraction terms can be expressed as

σ̂A
(dddu) = δij |Vkl|2 |Asub

dddu|2 + δil |Vkj|2 |Bsub
dddu|2 , (10.4.7a)

σ̂A
(uudu) = δij |Vkl|2 |Asub

uudu|2 + δjk |Vil|2 |Bsub
uudu|2 , (10.4.7b)

for all partonic channels in (10.4.2) and (10.4.3).
The subtraction function for our example process (10.4.6) is given by

σ̂A
uiuk→W+ujdl

=
1

4

∫
dΦ(l+νl+c+d)

×
{
δij |Vkl|2[Duiuj ,uk + Duiuj

dl
]gu→lνld + δkj |Vil|2 [Dukuj ,ui + Dukuj

dl
]ug→lνld

}
,(10.4.8)
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where the first two subtraction kernels will compensate for the IS collinear singularity
that arises from the ui(pa) → g∗(p̃ac) ui(kc) splitting in the initial state, and the last two
terms cancel the singular contributions originating from the collinear splitting uj(pb) →
g∗(p̃bc) uj(kc). The lower subscripts denote the LO contributions that have to be used in
the calculation of the dipoles (4.4.17).

10.4.2 Calculation of the hadronic V + A + C contributions

Now we will briefly discuss the hadronic contributions that result from the sum of vir-
tual corrections V, the readded subtraction terms A, and the collinear counterterm C in
(4.4.15).

To obtain the hadronic virtual contributions and the corrections due to the I-operator
corresponding to the second line of (4.4.15), it is sufficient to simply replace the LO
expression in (10.2.1) according to

dσ̂0
ab(pa, pb) → dσ̂V,QCD

ab (pa, pb; ǫ) + dσ̂0
ab(pa, pb)Iab(ǫ), (10.4.9)

for processes with two QCD partons in the initial state. The I-operator contains all
singularities related to soft-gluon radiation, and it covers all singular structures that arise
if the collinear FS splittings g∗ → gg and g∗ → qiq̄i are integrated analytically. This is
always assumed, because we only consider IR-safe jet observables, i.e. two partons that
are sufficiently collinear are always recombined to a jet.

The convolutive contributions to the readded counterparts that contain the collinear
counterterm C and the finite parts of the collinear IS splittings are obtained by replacing
all partonic radiative contributions σ̂R

ab in (10.4.1), (10.4.2), and (10.4.3) by the adequate
expressions given by the last two lines of (4.4.15). Doing so, care has to be taken to account
for the different flavour structures properly. For instance, the convolutive expression for
our partonic example process (10.4.6) explicitly reads

σ̂A+C
uiuk→W+ujdl

∣∣∣∣
conv.

=

∫ 1

0

dx

{(
Kq,g(x) + P q,g(xpa, x;µ

2
F)

)
σ̂0

gu→l+νl+d(xpa, pb) δij |Vkl|2

+

(
Kq,g(x) + P q,g(xpb, x;µ

2
F)

)
σ̂0

ug→l+νl+d(pa, xpb) δkj |Vil|2
}
,

(10.4.10)

i.e. there are convolutive contributions from the collinear ui → g∗ui splitting connected
to the incoming momentum pa as well as from the splitting uk → g∗uk connected to the
reverse incoming momentum pb. In (10.4.10), we have factorized the CKM dependence of
the LO cross sections according to

σ̂0
uig→l+νl+dj

= |Vij|2 σ̂0
ug→l+νld

. (10.4.11)

10.4.3 Real corrections to photon-induced processes

Here we list the explicit formulae that are needed to calculate the real radiative corrections
(6.3.13) – (6.3.15) to the photon-induced processes (6.1.5) and (6.1.6) within the dipole
subtraction formalism. In this section we omit the CKM structure in all expression, since
it is always given by the same overall factor |Vij|2.
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Initial-state QED singularities

The channels

γ(pa) + q(pb) → l+(kl) + νl(kn) + q′(kc) + g(kd) , (10.4.12)

which are formally part of the real QCD corrections to the photon-induced processes,
exhibit a collinear QED singularity due to the splitting γ → q′q̄′∗ in the initial state.
Following the notation of Section 4.3, the function that has to be subtracted from the
averaged squared amplitude to compensate for this singularity reads

|Msub|
2

= Q2
q′ e

2 hγq′

g (pa, kc, kd)
∣∣∣M0

q̄′q→lνlg
(p̃a, pb, k̃d)

∣∣∣
2

, (10.4.13)

where we have chosen the gluon as FS spectator, and the function hγq′

g was defined in
(4.3.21). The integrated contribution containing the singularity in terms of quark-mass
logarithms is given by

σ̂sub
γq→lνlq′g

= NC
Qq′α

2π

∫ 1

0

dxHγq′

g (P 2
da, x) σ̂

0
q̄′q→lνlg

(xpa, pb) , (10.4.14)

with P 2
da = (kd(x) − xpa)

2, and Hγq′

g from (4.3.33). After adding the collinear counter-
term that arises through the redefinition of the PDFs (see Section 3.4), the renormalized
integrated counterpart that has to be added to the hadronic cross section is

σ̃sub
AB,(γq→lνlq′g) =

∫ 1

0

dxadxb Lγq
AB(xa, xb)

×
∫ 1

0

dx
α

2π
NCQ

2
q′

{
Pfγ(x) ln

[
P 2

da(x− 1)

xµ2
F

]
+ 2x(1 − x) − CDIS

fγ (x)

}
σ̂0

q̄′q→lνlq′g
(xpa, pb) ,

(10.4.15)

where we have applied Eqs. (3.4.1) and (4.3.32). Note that (10.4.15) shows an explicit
dependence on the factorization scale µF. The analogous calculation for the channels with
a photon and a gluon in the initial state should be obvious.

Subtraction for gluon radiation

For the QCD subtraction term that cancels the soft and collinear singularities in (10.4.12)
that are related to gluon radiation, we obtain

σ̂A
γq→W+q′g =

1

4

∫
dΦ(l+νl+c+d) [Dq

q′g + Dqg
q′ ]γq→W+q′ , (10.4.16)

where we have applied (4.4.19). The readded counterpart (see Eq. (4.4.20)) after the
renormalization of the quark PDF is given by

σ̂A+C
γq→W+q′g = Iγq(ǫ)σ̂

0
γq→W+q′(pa, pb)

+

∫ 1

0

dx

(
Kq,q(x) + P q,q(x, pb, µ

2
F)

)
σ̂0

γq→W+q′(pa, xpb) . (10.4.17)
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The operators I, K, and P in this case explicitly read

Iγq(ǫ) =
(αs

2π

)
2CF

[
∆IR

2

(
µ2

2 (pbkd)

)ǫ

+
3

2
∆IR

1

(
µ2

2 (pbkd)

)ǫ

− π2

2
+ 5

]
,

P q,q(x, pb, µ
2
F) = −

(αs

2π

)
P qq(x) ln

(
µ2

F

2x (pbkc)

)
,

Kq,q(x) =
(αs

2π

){
K

qq
(x) − 3

2
CF

[(
1

1 − x

)

+

+ δ(1 − x)

]}
. (10.4.18)

Here we used

∆IR
2 =

1

ǫ2
(4π)ǫ

Γ(1 − ǫ)
, (10.4.19)

that includes the overlapping soft and collinear singularities, and ∆IR
1 from (3.3.2). The

explicit expression for the regularized Altarelli–Parisi splitting function in four dimensions
P qq(x) and for K

qq
(x) can be found in Appendix C of [66].

The real QCD corrections to the photon-induced processes comprise the γg channel

γ(pa) + g(pb) → W+(qW) + ū(kc) + d(kd) , (10.4.20)

that is absent at LO. The collinear QCD singularities related to the IS g → qq∗ splittings
are subtracted from the corresponding integrand using the local counterterm

σ̂A
γg→W+ūd =

1

4

∫
dΦ(l+νl+c+d)

(
Dgū

d

∣∣
γu→W+d

+ Dgd
ū

∣∣
γd̄→W+ū

)
, (10.4.21)

and the corresponding readded counterpart reads

σ̂A+C
γg→W+ūd =

∫ 1

0

dx
[(

P g,u(x, pb, µ
2
F) + Kg,u(x)

)
σ̂0

γu→W+d(pa, xpb)

+
(
P g,d̄(x, pb, µ

2
F) + Kg,d̄(x)

)
σ̂0

γd̄→W+ū(pa, xpb)
]
. (10.4.22)

The operators K and P in this case are given by

Kg,(u/d̄)(x) =
(αs

2π

)
K

gq
(x) , (10.4.23)

and

P g,u(x, pb, µ
2
F) = −αs

2π
P gq(x) ln

(
µ2

F

2x (pbkd)

)
,

P g,d̄(x, pb, µ
2
F) = −αs

2π
P gq(x) ln

(
µ2

F

2x (pbkc)

)
. (10.4.24)

Again, the expressions for P gq(x) and K
gq

(x) can be found in Appendix C of [66].
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10.5 Interference contributions of EW and QCD di-

agrams

The calculation of the hadronic cross sections for the interference contributions discussed
in Section 8.3 is carried out using Eqs. (10.4.2) and (10.4.3), where the partonic expressions
dσ̂R,QCD

ab→W+cd have to be replaced by the corresponding contributions of dσ̂R,IF
ab→W+cd. Note that

no regularization procedure has to be applied within the calculation of the interference
contributions, since those corrections are IR (and of course also UV) finite by construction.



Chapter 11

pp/pp̄ → l+νl + jet(+γ/jet):
Numerical Results

11.1 Input parameters and setup

The relevant SM input parameters are

GF = 1.16637 × 10−5 GeV−2, ΛQCD = 239 MeV, αs(MZ) = 0.11899,

MOS
W = 80.398 GeV, ΓOS

W = 2.141 GeV,

MOS
Z = 91.1876 GeV, ΓOS

Z = 2.4952 GeV, MH = 120 GeV,

me = 0.510998910 MeV, mµ = 105.658367 MeV, mt = 172.6 GeV,

|Vud| = |Vcs| = 0.974, |Vus| = |Vcd| =
√

1 − |Vcs|2,
(11.1.1)

which essentially follow Ref. [4]. The CKM matrix is included via global factors in the
partonic cross sections for the different possible quark flavours. Within loops the CKM
matrix is set to unity, because its effect is negligible there.

Using the complex-mass scheme that was outlined in Section 2.2.4, we employ a fixed
width in the W- and Z-boson propagators in contrast to the approach used at LEP and
Tevatron to fit the W and Z resonances, where running widths are taken. Therefore, we
have to convert the “on-shell” (OS) values of MOS

V and ΓOS
V (V = W,Z), resulting from

LEP and Tevatron, to the “pole values” denoted by MV and ΓV . The relation between
the two sets of values is given by [111]

MV = MOS
V /
√

1 + (ΓOS
V /MOS

V )2, ΓV = ΓOS
V /
√

1 + (ΓOS
V /MOS

V )2, (11.1.2)

leading to

MW = 80.370 . . . GeV, ΓW = 2.1402 . . . GeV,

MZ = 91.153 . . . GeV, ΓZ = 2.4943 . . . GeV. (11.1.3)

We make use of these mass and width parameters in the numerics discussed below, al-
though the difference between using MV or MOS

V would be hardly visible.



138 11. Numerical Results for pp/pp̄ → l+νl + jet(+γ/jet)

As mentioned in Section 6.1, we adopt the GF scheme, where the electromagnetic cou-
pling α is set to αGF

. In this scheme the electric-charge renormalization constant does not
contain logarithms of the light-fermion masses, in contrast to the α(0) scheme, so that the
results become independent of the light-quark masses.

The O(α)-improved MRSTQED2004 set of PDFs [78] is used throughout implying the
value of αs(MZ) stated above. We use standard two-loop running of the strong coupling
constant in the 5-flavour scheme,

α(5),NLO
s (µ2

R) = α(5),LO
s (µ2

R)


1 − β

(5)
1(

β
(5)
0

)2

ln
(
lnµ2

R/(Λ
(5)
QCD)2

)

lnµ2
R/(Λ

(5)
QCD)2


 , (11.1.4)

where α
(nf ),LO
s (µ2

R) denotes the one-loop running (5.4.2), β
(nf )
1 = 102−38/3nf for NC = 3,

and Λ
(5)
QCD = 239 MeV. Since the MRSTQED2004 PDF set has been released, there have

been considerable improvements for PDFs, in particular with respect to the heavy-flavour
treatment. Since recent PDF sets do not include QED effects we stick to MRSTQED2004

for theoretical consistency. Hence, all the absolute values for cross sections lack the recent
PDF improvements. However, the presented relative corrections should be more stable
with respect to variations in the PDFs than absolute predictions.

The QCD and QED factorization scales as well as the renormalization scale are always
identified. For low-pT jets, the scale of the process is given by the invariant mass of the
leptons which in turn peaks around MW for resonant W-boson production. Hence, one
natural choice is the W-boson mass, i.e. µR = µF = MW. For high-pT jets, well beyond
the W-boson scale, however, the relevant scale is certainly larger, and the QCD emission
from the initial state is best modelled by the pT of the jet itself (see e.g. Ref. [112]). To
interpolate between the two regimes, we alternatively use

µ = µR = µF =
√
M 2

W + (phad
T )2 , (11.1.5)

where phad
T is given by the pT of the summed four-momenta of all partons, i.e. quarks

and/or gluons in the final state. At LO, phad
T is simply the pT of the one FS jet. We

present results for both scale choices.

11.2 Results on cross sections

We first consider W+ production in association with a jet at the LHC, i.e. a pp initial
state with a cm energy of

√
s = 14 TeV.

11.2.1 LHC results

We present the LO cross section σ0 and various types of corrections δ, defined relative to
the LO cross section by σ = σ0 × (1 + δ). Concerning the EW corrections, we distinguish

the cross section σ
µ+νµ

EW for bare muons and σrec
EW for which lepton–photon recombination is

employed as defined above. Accordingly, the corresponding corrections are labelled δ
µ+νµ

EW
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and δrec
EW, respectively. An additional label specifies which renormalization and factoriza-

tion scale is used. Either we use the fixed scale (µ = MW) or we determine the scale on an
event-by-event basis by the kinematical configuration of the final state (var), as specified
in (11.1.5). For the EW corrections the difference is not expected to be large, since the LO
and the NLO results depend on the renormalization scale for αs and the QCD factorization
scale in the same way. However, for the QCD part a sensible scale choice can be crucial
for the stability of the perturbative series. Accordingly, the QCD corrections are labelled
δµ=MW

QCD for a fixed scale choice and δvar
QCD for the scale choice defined in (11.1.5).

As shown below, the QCD corrections become larger and larger with increasing pT

of the leading jet.1 The increase in the cross section results from a new kinematical
configuration which is available for the W + 2 jets final state. The large pT of the leading
jet is not balanced by the leptons, as required at LO, but by the second jet. Hence, we
encounter the production of 2 jets where one of the quark lines radiates a relatively soft
W boson. This part of the cross section, which does not really correspond to a true NLO
correction to W + jet production, can be separated by employing a veto against a second
hard jet in real-emission events. Hence, we present NLO QCD corrections with a jet veto,
(δµ=MW

QCD,veto, δ
var
QCD,veto), and without a jet veto, (δµ=MW

QCD , δvar
QCD).

Using a jet veto based on a fixed pT value for the second jet is not well suited. It will
either cut away relatively collinear emission events in the high-pT tails of the leading-jet
distribution (leading to large negative corrections) or it has to be chosen too large to be
effective in the intermediate-pT parts of the distribution. Hence, we veto any sub-leading
jet with pT > pT,j1/2, where pT,j1 denotes the pT of the leading jet. As shown below, this
jet veto indeed effectively removes events with back-to-back kinematics.

We also investigate the impact of the photon-induced tree-level processes (6.1.5) and
(6.1.6) and the corresponding NLO QCD corrections including the real-emission processes
(6.3.13), (6.3.14), and (6.3.15). Since even the LO photon-induced cross section is a small
effect, we show its relative impact δγ,Born with respect to the LO cross section where initial
states with photons are not taken into account. Including the NLO QCD corrections,
the relative impact of the full NLO cross section is denoted by δγ,NLO. The impact of the
interference contribution introduced at the end of Section 6.3 is denoted by δIF. Additional
labels again indicate the scale choice and the application of a jet veto.

Table 11.1 shows the LO predictions and the above corrections for different cuts on the
pT of the charged lepton pT,l+ . All other cuts and the corresponding event selection follow
our default choice as introduced in Section 10.1. All integrated cross sections and, hence,
the corrections are dominated by events close to the lowest accepted pT,l+ , as can be seen
by the rapid decrease of the integrated cross section when increasing the pT,l+ cut.

Tables 11.2 and 11.3 show the analogous results for a variation of cuts on the transverse
mass of the FS leptons, defined by

MT,lνl
=
√

2pT,l+/pT
(1 − cosφlνl

) , (11.2.1)

and the pT of the leading jet pT,jet, respectively. The transverse mass and the pT,l+ dis-
tributions are particularly relevant for the measurement of the W-boson mass at hadron
colliders. For this measurement, W-boson events without or with very little additional jet

1The leading jet is defined as the jet with highest pT.
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pp → l+νl jet + X at
√

s = 14TeV

pT,l+/GeV 25 −∞ 50 −∞ 100 −∞ 200 −∞ 500 −∞ 1000 −∞

σµ=MW
Born / fb 508560(50) 163680(20) 130900(10) 1484.2(2) 44.461(6) 1.3784(2)

σvar
Born/ fb 501770(50) 159450(20) 114800(10) 1124.62(7) 25.873(4) 0.6433(1)

δ
µ+νµ ,var
EW /% −3.048(9) −5.376(6) −8.948(9) −14.762(7) −25.73(3) −36.46(5)

δrec ,var
EW /% −2.08(2) −3.16(2) −6.51(2) −11.63(1) −21.51(4) −31.17(9)

δµ=MW
QCD /% 48.2(1) 34.4(1) 50.3(1) 30.3(1) −15.7(1) −60.4(4)

δvar
QCD/% 47.5(1) 33.8(1) 54.7(1) 46.43(7) 27.58(6) 6.10(4)

δvar
γ,Born/% 0.3978(3) 0.5869(5) 1.669(1) 2.650(2) 4.049(4) 4.882(5)

δvar
γ,NLO/% 0.3761(4) 0.5626(7) 1.660(3) 2.642(3) 4.068(4) 4.973(6)

δvar
IF /% 0.0491(3) 0.0176(5) 0.0238(7) 0.0039(8) −0.050(1) −0.135(1)

Table 11.1: Integrated cross sections for different cuts on the lepton trans-
verse momentum at the LHC. We show the LO results for both a variable and
a constant scale. The relative EW corrections δEW are given with and with-
out lepton–photon recombination. The QCD corrections δQCD are presented
for a fixed as well as a variable scale. The corrections due to photon-induced
processes δγ , and the contributions from interference terms δIF are presented
for a variable scale. The error from the Monte Carlo integration for the last
digit(s) is given in parentheses.

activity are selected. Nevertheless, the calculation of the EW corrections in the presence
of an additional jet supplies a handle to quantify how well the interplay of QCD and EW
corrections is understood.

Note that for a given pT,jet both leptons share the recoil since they stem from a boosted
W boson and are therefore preferably emitted in the same direction. Consequently, the
LO cross section for a given cut on pT,l+ is smaller than for the same cut on pT,jet, because
on average the required cm energy is larger. In other words, there is a kinematic and
an additional PDF suppression of events with a cut on the lepton pT compared to events
with the same cut on the jet pT. For large values of MT,lνl

, the W boson is necessarily
produced far off shell so that the cross section is further suppressed. The presented cut
values for MT,lνl

are chosen because one finds MT,lνl
= 2pT,l for back-to-back leptons in

the rest frame of the decaying W boson.
For the most-inclusive cross section (left columns in Table 11.1 or Table 11.3) the EW

corrections are at the percent level and negative. The difference in scale choice is not im-
portant, and due to the recombination procedure δrec

EW is slightly smaller in absolute size.
With increasing pT,l+ cut, the relevant cm energies rise, and the well-known Sudakov log-
arithms in the virtual EW corrections start to dominate the total corrections as expected.
For pT,l+ > 1000 GeV, the EW corrections reach the level of −30%. This behaviour
is generic and also holds true for the cross sections with varying cuts on the transverse



11.2. Results on cross sections 141

pp → l+νl jet + X at
√

s = 14TeV

MT,lνl
/GeV 50 −∞ 100 −∞ 200 −∞ 500 −∞ 1000 −∞ 2000 −∞

σµ=MW
Born / fb 450720(50) 71030(1) 752.2(1) 53.301(7) 5.0645(8) 0.24029(4)

σvar
Born/ fb 446080(50) 69370(1) 714.9(1) 48.618(7) 4.4510(7) 0.20231(4)

δ
µ+νµ ,var
EW /% −3.126(6) −5.190(8) −8.24(1) −14.79(1) −22.42(1) −32.89(3)

δrec ,var
EW /% −2.119(8) −3.665(7) −6.784(5) −12.805(8) −19.90(1) −29.28(3)

δµ=MW
QCD /% 47.7(1) 30.1(2) 11.5(1) −15.8(1) −40.5(1) −69.90(6)

δvar
QCD/% 47.2(2) 30.5(2) 14.5(1) −8.9(1) −30.4(1) −56.07(6)

δvar
γ,Born/% 0.3547(3) 0.3427(8) 0.4464(8) 0.4698(8) 0.4081(6) 0.3307(3)

δvar
γ,NLO/% 0.3333(4) 0.331(1) 0.431(1) 0.452(1) 0.3912(8) 0.3128(4)

δvar
IF /% 0.0575(4) 0.008(1) −0.0461(6) −0.0819(5) −0.0855(3) −0.0685(1)

Table 11.2: Integrated cross sections for different cuts on the transverse
mass of the W at the LHC.

mass or pT,jet. We compare the EW corrections for pT,jet with previous results obtained
in the on-shell approximation of Chapter 5 together with the differential distributions in
Section 11.3.

Turning to the NLO QCD results, the corrections δvar
QCD for different cuts on pT,l+, as

shown in Table 11.1, are sizable and reach the 50% level for intermediate cut values. For
low cut values, δµ=MW

QCD is practically the same. However, for large cut values, the corrections

for a fixed scale differ significantly. Here, δµ=MW

QCD grows large and negative to compensate
for the overestimated LO cross section, which is larger by more than a factor of two with
respect to σvar

0 . This is expected, since the hard jet recoiling against the high-pT lepton
should be reflected in the scale choice. Including the NLO QCD corrections, the difference
between the results obtained with our two scale choices is significantly reduced.

For small cut values on the transverse mass, as shown in Table 11.2, the corrections
are quite similar to the ones of the corresponding cuts on pT,l+. However, for large MT,lνl

,
both scale choices fail to reflect the kinematical situation, since the production of a far
off-shell W boson is dominated by the region near the threshold set by the cut on MT,lνl

.
In this region the W boson decays mainly to back-to-back leptons with relatively soft jet
activity. Hence, δµ=MW

QCD as well as δvar
QCD become large and negative. A scale choice based

on the cm energy of the event would be more adequate.
As discussed above, the integrated NLO QCD cross sections for large pT,jet cuts, as

shown in Table 11.3, contain large contributions from a completely different class of events
for which two jets recoil against each other. Hence, the corrections are huge. The correction
δµ=MW

QCD is smaller than δvar
QCD because it is defined relative to a larger LO cross section. In

absolute size, they are similar. Using the jet veto proposed above, the corrections are
reduced and δvar

QCD rises only to the 50% level for large cut values. The fixed scale choice



142 11. Numerical Results for pp/pp̄ → l+νl + jet(+γ/jet)

pp → l+νl jet + X at
√

s = 14TeV

pT,jet/GeV 25 −∞ 50 −∞ 100 −∞ 200 −∞ 500 −∞ 1000 −∞

σµ=MW
Born / fb 508560(50) 182460(10) 49700(5) 8096.1(8) 315.07(1) 11.675(1)

σvar
Born/ fb 501770(50) 176090(10) 45312(4) 6488.5(6) 184.73(2) 4.7809(3)

δ
µ+νµ ,var
EW /% −3.048(9) −3.36(1) −4.66(1) −8.52(1) −18.08(3) −28.30(2)

δrec ,var
EW /% −2.08(2) −2.59(2) −4.21(2) −8.33(2) −17.93(1) −28.19(2)

δµ=MW
QCD /% 48.1(1) 64.8(1) 80.71(9) 115.20(9) 188.6(1) 270.3(1)

δvar
QCD/% 47.5(1) 65.58(9) 85.9(1) 135.14(9) 270.3(1) 495.7(2)

δµ=MW
QCD,veto/% 21.7(1) 18.2(1) 22.5(1) 24.36(8) 5.51(8) −26.09(9)

δvar
QCD,veto/% 22.5(1) 20.9(1) 29.91(9) 42.92(8) 52.56(7) 59.29(7)

δvar
γ,Born/% 0.3978(3) 0.7520(6) 1.298(1) 2.039(1) 3.420(2) 5.249(4)

δvar
γ,NLO/% 0.3761(4) 0.7006(8) 1.181(1) 1.877(2) 3.274(3) 5.223(6)

δvar
γ,NLO,veto/% 0.3453(4) 0.6420(7) 1.104(1) 1.765(2) 3.048(3) 4.751(5)

δvar
IF /% 0.0491(3) 0.1289(5) 0.5076(7) 1.884(1) 11.490(7) 49.85(3)

δvar
IF,veto/% 0.0102(3) 0.0298(4) 0.1133(5) 0.4034(9) 1.630(2) 4.729(5)

Table 11.3: Integrated cross sections for different cuts on the pT of the
leading jet at the LHC. Corrections with a second jet in real-emission events
are shown with and without a jet veto.

leads to even smaller corrections δµ=MW

QCD in absolute size. However, varying the exact
definition of the jet veto, the variable scale turns out to be more robust. We have also
verified that our simple jet veto indeed removes mainly events with back-to-back jets from
the event selection. If we only veto events with cosφjj < −0.99, where φjj is the azimuthal
angle in the transverse plane between the two jets, δvar

QCD for example is still reduced from
495% to 172% for pT,jet > 1000 GeV. Events with cosφjj > 0 do not have any noticeable
effect.

The contribution δγ from the photon-induced processes are small and only reach up to
5% for large cuts on pT,l+ or pT,jet where the EW and QCD corrections to the dominating
tree-level processes are by far larger. The NLO corrections to the photon-induced processes
are phenomenologically completely irrelevant.

The corrections δIF due to the interference between EW and QCD diagrams also turn
out to be unimportant. They only increase together with the NLO QCD corrections for
large pT,jet. Once a sensible jet veto is applied, they disappear again.
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pp̄ → l+νl jet + X at
√

s = 1.96TeV

pT,l+/GeV 25 −∞ 50 −∞ 75 −∞ 100 −∞ 200 −∞ 300 −∞

σµ=MW
Born / fb 37342(4) 10563(1) 1007.2(2) 263.50(6) 7.242(2) 0.3901(1)

σvar
Born/ fb 36061(4) 10052(1) 863.4(2) 209.52(5) 4.834(1) 0.23644(9)

δ
µ+νµ ,var
EW /% −2.827(5) −5.39(1) −6.81(1) −8.19(1) −13.15(2) −17.46(4)

δrec ,var
EW /% −1.88(4) −2.84(2) −3.99(3) −5.15(3) −9.00(4) −12.39(9)

δµ=MW
QCD /% 33.4(1) 23.9(1) 27.4(1) 18.08(9) −6.5(1) −22.34(7)

δvar
QCD/% 35.8(1) 27.3(1) 39.6(1) 36.6(1) 28.0(1) 21.4(1)

δvar
γ,Born/% 0.3762(3) 0.4983(6) 1.144(1) 1.398(2) 1.467(3) 1.283(1)

δvar
γ,NLO/% 0.3706(4) 0.4909(8) 1.174(2) 1.432(3) 1.525(3) 1.355(2)

δvar
IF /% −0.0994(8) −0.110(1) −0.229(2) −0.262(3) −0.189(9) −0.128(5)

Table 11.4: Integrated cross sections for different cuts on the lepton trans-
verse momentum at the Tevatron.

pp̄ → l+νl jet + X at
√

s = 1.96TeV

MT,lνl
/GeV 50 −∞ 100 −∞ 150 −∞ 200 −∞ 400 −∞ 600 −∞

σµ=MW
Born / fb 34425(4) 434.5(1) 80.35(1) 27.602(7) 1.2539(3) 0.08821(3)

σvar
Born/ fb 33362(4) 415.7(1) 76.03(1) 25.930(6) 1.1572(3) 0.08048(2)

δ
µ+νµ ,var
EW /% −2.89(1) −5.02(1) −6.44(1) −7.95(1) −12.65(2) −16.70(3)

δrec ,var
EW /% −1.92(2) −3.32(2) −4.84(1) −6.12(2) −9.96(3) −13.25(2)

δµ=MW
QCD /% 33.3(1) 20.9(1) 12.3(1) 7.7(1) −4.9(2) −13.2(1)

δvar
QCD/% 35.7(1) 24.1(1) 16.8(1) 12.4(1) 1.5(2) −6.2(1)

δvar
γ,Born/% 0.3500(3) 0.2343(5) 0.1775(3) 0.1435(2) 0.0743(1) 0.04771(6)

δvar
γ,NLO/% 0.3432(4) 0.2336(8) 0.1775(3) 0.1438(3) 0.0741(2) 0.04737(8)

δvar
IF /% −0.0963(8) −0.110(2) −0.107(1) −0.0994(8) −0.073(1) −0.0442(2)

Table 11.5: Integrated cross sections for different cuts on the transverse
mass of the W at the Tevatron.
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pp̄ → l+νl jet + X at
√

s = 1.96TeV

pT,jet/GeV 25 −∞ 50 −∞ 75 −∞ 100 −∞ 200 −∞ 300 −∞

σµ=MW
Born / fb 37342(4) 8849(1) 3115.1(3) 1231.7(1) 54.559(8) 3.6279(6)

σvar
Born/ fb 36061(4) 8094(1) 2685.9(3) 998.3(1) 34.990(5) 1.8965(3)

δ
µ+νµ ,var
EW /% −2.827(5) −2.922(7) −3.179(7) −3.704(9) −6.48(2) −9.17(3)

δrec ,var
EW /% −1.88(4) −2.12(2) −2.55(1) −3.18(2) −6.18(2) −9.01(6)

δµ=MW
QCD /% 33.4(1) 31.6(1) 25.2(1) 20.7(1) 6.1(1) −8.2(1)

δvar
QCD/% 36.10(6) 39.5(1) 39.4(1) 41.8(1) 56.3(1) 70.6(1)

δµ=MW
QCD,veto/% 20.8(1) 7.2(1) 1.3(1) −3.8(1) −24.2(2) −43.7(1)

δvar
QCD,veto/% 23.6(1) 15.3(1) 15.1(1) 16.0(1) 19.5(1) 21.1(1)

δvar
γ,Born/% 0.3762(3) 0.8024(7) 1.152(1) 1.421(1) 1.997(2) 2.317(2)

δvar
γ,NLO/% 0.3706(4) 0.768(1) 1.074(1) 1.306(2) 1.824(4) 2.154(3)

δvar
γ,NLO,veto/% 0.3545(4) 0.732(1) 1.039(1) 1.270(2) 1.784(3) 2.102(2)

δvar
IF /% −0.0994(8) −0.386(1) −0.580(1) −0.778(2) −1.972(4) −3.500(4)

δvar
IF,veto/% −0.0364(6) −0.131(1) −0.266(1) −0.356(1) −0.725(2) −1.092(1)

Table 11.6: Integrated cross sections for different cuts on the pT of the
leading jet at the Tevatron. Corrections with a second jet in real-emission
events are shown with and without a jet veto.

11.2.2 Tevatron results

The qualitative features of the corrections at the Tevatron, where protons and antiprotons
collide at

√
s = 1.96 TeV, are very similar to those at the LHC. At the Tevatron the

high-energy, Sudakov regime is not as accessible as at the LHC but the onset of the
Sudakov dominance is nevertheless visible as can be seen for the different observables in
Tables 11.4 – 11.6. We have adapted the range for the different integrated cross sections
to the kinematic reach of the Tevatron.

11.3 Results on momentum and transverse-mass dis-

tributions

In Figs. 11.1 – 11.6 we show for various observables the LO distribution and the distribu-
tion including the full set of corrections, i.e. the EW corrections δEW, the contribution of
the photon-induced processes δγ,NLO, interference contribution δIF, and the QCD correc-
tions δQCD. The various contributions to the corrections are also shown separately relative
to the LO.
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Figure 11.1: LO and fully corrected distribution (top), corresponding rela-
tive EW, photon-induced, and interference corrections (middle), and relative
QCD corrections (bottom) for the transverse momentum of the charged lepton
at the LHC (left) and the Tevatron (right).
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Figure 11.2: LO and fully corrected distribution (top), corresponding rela-
tive EW, photon-induced, and interference corrections (middle), and relative
QCD corrections (bottom) for the W-boson transverse mass at the LHC (left)
and the Tevatron (right).
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While the corrections to the integrated cross sections are quite similar for a given pT,l+

and an MT,lνl
cut of similar size, the differential distributions in Fig. 11.1 and Fig. 11.2

are significantly different. The EW corrections for the MT,lνl
distributions resemble the

corrections for the inclusive W-boson sample for which no additional jet is required (see,
e.g., Figure 2 in Ref. [22]). This result is expected since the definition (11.2.1) of the trans-
verse mass is boost invariant to first order in the boost velocity and therefore insensitive
to a boost of the intermediate W boson. The pT,l+ distribution, in contrast, is sensitive
to these boosts, and neither the LO prediction nor the NLO EW corrections resemble the
inclusive result (see, e.g., Figure 1 in Ref. [22]).

As expected, the corrections for bare muons are larger since photons, being radiated
collinearly to the charged lepton, carry away transverse momentum. Hence, events that
are enhanced by muon-mass logarithms are shifted to lower bins in the distributions and
to some extent do not survive the basic cuts. As a result, the corrections are dominated
by negative virtual corrections that are not compensated by positive bremsstrahlung con-
tributions. This is particularly evident around the peak of the differential cross section
with respect to the W-boson transverse mass in Fig. 11.2 and also for the peaks in the
transverse-momentum distribution of the charged leptons near (MW±pcut

T,jet)/2 in Fig. 11.1.
In Fig. 11.3 we show the differential cross sections with respect to pT,jet and the corre-

sponding corrections. As expected, the increasing size of the EW corrections with pT,jet

due to the EW Sudakov logarithms can be observed. This observable has also been acces-
sible in calculations using the approximations of a stable, on-shell W boson as worked out
in Chapter 5. A comparison of our numerical results to former results for on-shell W+ jet
production [37, 38, 39] has to face the problem that we apply various event-selection cuts
to the leptonic final state, while in the previous calculations the degrees of freedom re-
lated to the decaying W boson are implicitly integrated out. Nevertheless, the relative EW
corrections at high momentum transfer are dominated by Sudakov logarithms [98] of the
form ln2(ŝ/M 2

W) that, at least at the one-loop level, give rise to large process-independent
contributions and therefore are expected to show a similar behaviour for both the on- and
off-shell case. Comparing our results for the leading-jet pT,jet (Fig. 11.3) with Fig. 5 in
Ref. [39], we in fact find reasonable agreement within 2%. The results for the EW cor-
rections to the integrated cross sections with different cuts on pT,jet given in Table 11.3
also agree within 1% with the results presented in Fig. 5.9(b) in Chapter 5 for cut values
larger than 200 GeV. This figure shows the relative corrections for the sum of W+- and
W− production at the LHC, but the relative EW corrections to the on-shell W+ and W−

production rates turn out to be very similar, as can e.g. be seen in Fig. 10 of Ref. [39].
Comparing the EW corrections at the Tevatron given in Table 6 to the on-shell results
of Fig. 5.9(a), we observe slightly larger deviations, because the universal Sudakov-like
contributions are not dominant at typical Tevatron energy scales.

Turning again to the NLO QCD results, the corrections to pT,l+ andMT,lνl
distributions,

also displayed in Figs. 11.1 and 11.2, show quite different features. The corrections to the
MT,lνl

distribution are rather flat, reflecting the well-known fact that the transverse mass is
less sensitive to additional QCD radiation. In contrast, the corrections δQCD for pT,l+ show
pronounced dips where the LO cross section has peaks, indicating that the real corrections
do not particularly populate the regions of the distributions that are enhanced due to the
particular LO kinematics. The QCD corrections to the differential distribution for pT,jet
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Figure 11.3: LO and fully corrected distribution (top), corresponding rela-
tive EW, photon-induced, and interference corrections (middle), and relative
QCD corrections (bottom) for the transverse momentum of the leading jet at
the LHC (left) and the Tevatron (right).
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show exactly the same features which have already been discussed for the integrated cross
sections (see Table 11.3), as can be seen in Fig. 11.3.

At the Tevatron, the shapes of the EW and QCD corrections to distributions (see
Figs. 11.1 – 11.3) are very similar to the respective results for the LHC. For the pT dis-
tribution of the leading jet (see Fig. 11.3), the jet veto again stabilizes the perturbative
result. However, using the variable scale choice, the increase in cross section without jet
veto is not as pronounced as at the LHC. On the other hand, as expected, the fixed scale
choice together with a jet veto leads to large negative corrections. A fixed scale choice
without a jet veto accidentally leads to small corrections at the Tevatron.

11.4 Results on rapidity and angular distributions

In Fig. 11.4, we analyse the rapidity distribution for the charged lepton. While the EW
corrections are flat, the NLO QCD corrections are larger at large rapidities and, hence, tend
to populate the forward and backward regions with more events. Concerning the rapidity
of the leading jet at the LHC, both EW and NLO QCD corrections do not disturb the LO
shapes of the distribution, as can be seen in Fig. 11.5.

At the Tevatron, the rapidity distributions show the expected asymmetry between the
forward and backward direction due to the antiproton in the initial state. This asymmetry
is also reflected by asymmetric NLO QCD corrections for the rapidity of the leading jet.

Another interesting observable is the angle between the charged lepton and missing pT

in the transverse plane (Fig. 11.6). For W production without jet activity the two leptons
are always back-to-back in the transverse plane. Here, with one jet at LO, the distribution
is still peaked at large angles. However, back-to-back events are suppressed as shown in
Fig. 11.6. While the EW corrections only slightly disturb the shape of the distribution,
the NLO QCD corrections tend to distribute events more equally with respect to the
investigated angle. However, the dip in the NLO distributions at the LO peak might
indicate that higher orders are necessary for an accurate prediction of this observable.
The shapes of the relative QCD corrections reflect the large impact of real corrections
induced by W + 2 jets configurations where two hard jets are nearly back-to-back while
the W boson receives only a small transverse momentum. Such events cause the large
positive corrections for φlνl

→ 180◦, which are sensitive to the application of the jet veto.
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Figure 11.4: LO and fully corrected distribution (top), corresponding rela-
tive EW, photon-induced, and interference corrections (middle), and relative
QCD corrections (bottom) for the rapidity of the charged lepton at the LHC
(left) and the Tevatron (right).
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Figure 11.5: LO and fully corrected distribution (top), corresponding rela-
tive EW, photon-induced, and interference corrections (middle), and relative
QCD corrections (bottom) for the rapidity of the leading jet at the LHC (left)
and the Tevatron (right).
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Figure 11.6: LO and fully corrected distribution (top), corresponding rela-
tive EW, photon-induced, and interference corrections (middle), and relative
QCD corrections (bottom) for the azimuthal angle in the transverse plane be-
tween the charged lepton and the neutrino (missing pT) at the LHC (left) and
the Tevatron (right).



Chapter 12

Summary and outlook

In this work we have presented the calculation of radiative corrections to the hadropro-
duction of a W boson and one associated jet at the LHC and the Tevatron. In a first
simpler approach, we have considered a stable W boson that is produced on its mass shell.
In a second step, the leptonic decay of the W boson has been included in the calculation,
where finite-width effects are consistently accounted for using the complex-mass scheme.
We have extended the dipole subtraction method to non-collinear-safe observables in order
to enable the computation of radiative corrections related to collinear photon radiation off
muons in the final state.

In Chapter 5 we have studied the effect of electroweak radiative corrections at first
order on the cross section of the inclusive hadroproduction of single on-shell W bosons
with finite values of pT, i.e. accompanied by one hard QCD jet, putting special emphasis
on the notion of IR-safe observables with a common treatment of hadron jets initiated by
(anti)quarks and gluons.

To circumvent the soft-gluon singularity in the channel ud̄ → lνl + g + γ after applying
a jet algorithm, we additionally include the O(αs) correction to W + γ production along
with the O(α) correction to W + jet production in our calculation that both contribute
at absolute order O(α2αs) to the cross section. We also consider the contribution from
events where one of the colliding hadrons interacts via a real photon, which is of absolute
order O(α3), if one assumes that the photon PDF within the hadron is suppressed by one
order of α. The hadron can then either stay intact (elastic scattering) or be destroyed
(inelastic scattering), both contributions were calculated, and the elastic part turned out
to be negligible.

Within the on-shell calculation, the UV singularities are extracted using dimensional
regularization and removed by renormalization in the on-shell scheme. The IR soft and
collinear singularities are regularized by means of an infinitesimal photon or gluon mass λ,
and light quark masses mu and md, respectively. We use the phase-space slicing method,
with technical slicing cuts on the photon and gluon energies and on the separation angles
in the initial and final states, respectively, to isolate the soft and collinear singularities
within the corrections from real particle radiation. The cancellation of λ, mu, and md is
achieved analytically, and we ensure that the numerical results are insensitive to variations
of the slicing cuts within wide ranges.

We have presented theoretical predictions for the total cross sections with a minimum-
pT cut and for the pT distributions to be measured in pp collisions with

√
s = 1.96 TeV
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at run II at the Tevatron and in pp collisions with
√
s = 14 TeV at the LHC, and

estimate the theoretical uncertainties from the scale setting ambiguities. As expected, the
renormalization-scale dependence of about 10% in the LO cross section that originates
from the strong coupling constant αs is not significantly reduced after adding the NLO
EW corrections. We find that considerably less than 1% of all W + X events contain a
prompt photon. The EW corrections considered turn out to be negative and to increase
in magnitude with the value of pT. While the reduction is moderate at the Tevatron,
reaching about −4% at pT = 200 GeV, it can be quite sizeable at the LHC, of order −30%
at pT = 2 TeV, which is due to the well-known enhancement by Sudakov logarithms.
It is an interesting new finding that the photoproduction contribution is considerably
larger than expected from the formal order of couplings. In fact, at very high values of
pT, it compensates an appreciable part of the reduction due to the O(α2αs) correction.
Nevertheless, taking NLO QCD corrections into account, one finds that the photon-induced
contributions are still small compared to those contributions.

As an extension of the on-shell calculation, we have also computed the EW NLO cor-
rections to W + jet production within the SM including the decay of the W boson into
a lepton and a neutrino to mimic a realistic experimental scenario as good as possible.
Doing so, we are able to apply event-selection cuts to the decay products of the W boson
and to provide differential cross sections for leptonic observables that have to be known
at high precision in order to allow for an accurate experimental determination of the mass
and width of the W boson. As opposed to the procedure in Chapter 5, we use the dipole
subtraction method exposed in Chapter 4 to enable the calculation of mass singularities
within real corrections both for the EW and the QCD contributions. Thus, to afford
a flexible treatment of collinear photons and muons in the final state, we establish the
dipole subtraction method for non-collinear-safe observables to account for experimental
situations in which collinear photon–muon or photon–quark pairs are not recombined to
a new quasi-particle.

Our results have been implemented in a flexible Monte Carlo code which can model
the experimental event definition at the NLO parton level. In contrast to the approach
presented in Chapter 5, a distinction of W + jet and W + γ production is consistently
assumed by making use of the measured quark-to-photon fragmentation function that
absorbs the residual quark-mass dependence that arises if collinear quark–photon pairs
are not recombined properly. We have recalculated the NLO QCD corrections supporting
a phase-space dependent scale choice that is better suited to describe events that happen
at a high momentum transfer. Interference contributions of EW and QCD diagrams as well
as photon-induced processes, contributing at the same order O(α3αs) as the purely EW
corrections, are included but—compared with the size of the genuine QCD corrections—
turn out to be phenomenologically unimportant.

In Chapter 11 we have presented integrated cross sections for different phase-space
cuts and various distributions of differential cross sections. The EW corrections to the
transverse mass of the W boson exhibit the same enhancement as for a W boson without jet
activity, reaching −10% for corrections without photon–muon recombination at the peak of
the LO distribution which is dominated by resonant W bosons. For large transverse mass,
i.e. in the off-shell tail of the distribution, we find large negative corrections, dominated
by the well-known EW Sudakov logarithms. The EW corrections to the pT distributions
of the lepton and the jet in the final state are rather flat and at the percent level for
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small values of pT and also become more and more negative owing to contributions from
Sudakov logarithms. In this Sudakov-dominated regime, we find good agreement with the
results for the on-shell approximations presented in Chapter 5. The QCD corrections have
a typical size of 50%. However, they can become extremely large (hundreds of percent) at
large jet pT if one does not apply a sensible jet veto.

The precise prediction for W-boson production at the Tevatron and the LHC is an
important task. Our results extend the theoretical effort to associated production with a
hard jet. As part of a full NNLO prediction of the mixed EW and QCD corrections for
inclusive W production our results can provide a handle for a better understanding of the
interplay between EW and QCD corrections in the charged-current Drell–Yan process.
Moreover, they establish a flexible precision calculation for one of the most important
background processes for BSM-physics searches. In the range of intermediate and large
transverse momenta of the additional hard jet our calculation delivers state-of-the-art
predictions. For small transverse momenta, however, the pure NLO calculation should of
course be improved by dedicated QCD resummations.

Since our calculation includes all relevant fixed-order NLO contribution to the W + jet
final state and, additionally, provides maximal flexibility, we hope that our results will find
their way into the analysis of physical data once the LHC era has started. In the future,
the calculation should be supplemented by the inclusion of QCD parton showers or by the
inclusion of soft-gluon resummations to improve the reliability of the QCD predictions in
the low-pT regime. As an advance on the EW side, we will first tackle the calculation of
the EW corrections also for W− + jet production to study in detail the W-boson charge
asymmetry given in Eq. (1.0.3). Moreover, we plan to work out the NLO corrections for
associated Z0 + jet production at the LHC and the Tevatron with a leptonically decaying
Z0 boson. For this purpose, the same techniques can be applied that have been discussed
in this thesis, and we expect the calculation to be straight-forward.
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A Conventions and notation

A.1 General conventions

In this thesis we use the following conventions. The components of a covariant four-vector

kµ = (k0, k1, k2, k3) (A.1)

are denoted by upper indices, and its spatial part

k = (k1, k2, k3) (A.2)

is indicated by a bold symbol. The Lorentz-invariant scalar product of two four-vectors
pµ and kν is given by

pk ≡ p · k = p0k0 − p · k . (A.3)

Introducing the metric tensor in its canonical definition,

gµν = diag(1,−1,−1,−1) , (A.4)

the scalar product can be expresses via

pk = gµνp
µkν , (A.5)

where summation over identical indices is implicitly assumed. The covariant derivative ∂µ

is defined via

∂µk
µ =

∂k0

∂x0
− ∇ · k , (A.6)

where the three-dimensional gradient is given by

∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)T

. (A.7)

Moreover, we introduce the convenient shorthand notation

/k = gµνk
µγν (A.8)

for the contraction of a four-vector with the Dirac matrices γµ.
We use the Feynman rules and coupling parameters arranged in Appendix A of Ref. [47]

for the EW part of the SM to express physical scattering amplitudes that are always
assigned by caligraphic letters M or T , respectively. The QCD Feynman rules are taken
from Section 2.4.2 of Ref. [48]. All Feynman rules can be translated into the Weyl–van-
der-Waerden formalism as explained in Section 4 of Ref. [100].
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A.2 Basic definitions for Lie algebras and gauge groups

Since the Standard Model of particle physics is formulated as a gauge theory1 with the
underlying symmetry group

U(1) × SU(2) × SU(3) , (A.9)

it is reasonable to discuss some basic definitions of SU(N) gauge groups.
The fundamental representation of the local internal symmetry group SU(N) of any

gauge theory is generated via exponentiation by a set of N2 − 1 traceless and hermitian
N ×N matrices Qa,

U(x) = exp

[
−i
∑

a

θa(x)Qa

]
, a = 1, . . . , N2 − 1 , (A.10)

with adequate group parameters θa(x), where the unitary matrix U (x) is an element of
SU(N), i.e. any symmetry transformation of a multiplet φ(x) in the fundamental repre-
sentation of SU(N) can be written according to

φ(x) → φ′(x) = U(x)φ(x) . (A.11)

The matrices Qa live in the fundamental representation of the Lie algebra su(N) that can
be defined via its total-antisymmetric structure functions fabc according to

[Qa, Qb]ij = i fabc Qc
ij , (A.12)

where summation over c is assumed. The Dynkin index TF of the fundamental represen-
tation of su(N) is defined via

Tr(QaQb) = δabTF, (A.13)

with TF = 1/2. The Casimir operator CF in the fundamental representation of su(N) is
diagonal,

N2−1∑

a=1

∑

j

(Qa
ijQ

a
jk) = δijCF , (A.14)

and takes the value

CF =
N2 − 1

2N
. (A.15)

The (N2 − 1) × (N2 − 1) matrices

(Qa
adj)bc = ifabc , (A.16)

that also satisfy the commutation relations (A.12) define the adjoint representation of
su(N), where Dynkin index and Casimir operator are given by TA = CA = N .

1A theory that is invariant under continuous local transformations of a given symmetry group is called
a gauge theory.
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Gauge groups in the SM

• In case of the weak-isospin group SU(2), the three generators are given by the 2× 2
matrices

Ia
ij = τa

ij/2 , a = 1, 2, 3 , (A.17)

where τa denote the three Pauli matrices, and the structure functions ǫabc are iden-
tical to the total-antisymmetric Levi–Civita tensor, i.e. the commutator (A.12) is
given by

[τa, τ b]ij = iǫabcτ c
ij . (A.18)

• The gauge group of QCD, SU(3), is generated by the eight 3 × 3 matrices

T a
ij = λa

ij/2 , a = 1, . . . , 8 , (A.19)

with the eight Gell-Mann matrices λa
ij and the non-vanishing structure functions

f123 = +1 , f458 = f678 =

√
3

2
,

f147 = −f156 = f246 = f257 = f345 = −f367 =
1

2
. (A.20)

B Techniques for phase-space generation

B.1 Monte Carlo integrators

In general, the integral (2.3.4) is too involved to be worked out analytically owing to the
complicated structure of |M|2. Therefore, Monte Carlo computer techniques are used to
compute cross sections numerically by sampling the m = (3n− 4)-dimensional integrand
using m-dimensional tuples of random numbers r = (r1, . . . , rm) with 0 < ri < 1. This is
done in the following way.

A given (3n − 4)-dimensional phase-space integral of the form (2.3.4) can always be
expressed via

In =

∫

Φ

dσab→f =

∫
d3n−4φ ρ (ki(φ)) f (ki(φ)) , (B.1)

where φ = (φ1, . . . , φm) is a proper parametrization of the phase space dΦ(n), ρ (ki(φ))
denotes the so-called phase-space density, and

f (ki(φ)) =
1

2ŝ
|Mab→f (pa, pb; k1(φ), . . . , kn(φ))|2 . (B.2)

The integral (B.1) is now mapped to the (3n− 4)-dimensional hypercube r via the trans-
formation φ = h(r),

∫

Φ(φ)

d3n−4φ ρ (ki(φ)) f (ki(φ)) =

∫ 1

0

d3n−4r
f (ki(h(r)))

g (ki(h(r)))
, (B.3)

where g denotes the probability density of events generated in phase-space,

1

g (ki(φ))
= ρ (ki(φ))

∣∣∣∣
∂h((r))

∂r

∣∣∣∣
r=h−1(φ)

. (B.4)
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If one generates N (3n− 4)-tuples rk, k = 1, . . . , N , the integral In can be approximated
by the finite sum

Īn(N) =
1

N

N∑

k=1

f (ki(h(rk)))

g (ki(h(rk)))
. (B.5)

Of course, N should be chosen as large as possible, since the statistical deviation of Īn(N)
from the true result In,

δIn =

√
I2
n(N) − I

2

n(N)

N
, (B.6)

will decrease ∝ 1/
√
N for large N .

B.2 Generic phase-space decomposition

Appendix C of [113] provides a detailed discussion of the generic construction of phase-
space parametrizations. It is shown how different phase-space parametrizations can be
built from universal sub-entities, allowing for a proper numerical integration of in princi-
ple arbitrarily complicated multi-particle phase-space structures by means of multi-channel
integration techniques. In this approach, different phase-space parametrizations are used
at the same time to optimally adapt the phase-space weight to the potentially compli-
cated structure of the considered integrand that may result from the various different
propagator structures in the underlying S-matrix elements. Moreover, specific mappings
are suggested that facilitate to efficiently and generically smooth certain “peaks” in the
integrand that arise as a result of s– and t–channel propagators and Breit–Wigner-like
structures connected to unstable particles. We will not discuss all these topics in detail,
since in this thesis we do not use a sophisticated multi-channel approach. Nevertheless, it
is convenient to stress the most important concepts of the generic phase-space generation
procedure.

Consider a 2 → n particle scattering process

a(pa) + b(pa) → c1(k1) . . . cn(kn) (B.7)

with the incoming four-momenta pµ
a and pµ

b and the outgoing four-momenta kµ
i , i = 1, . . . , n.

According to (2.3.5), the differential phase space for the n-particle final state in four di-
mensions reads

dΦ(2→n) = (2π)4−3n

[
n∏

i=1

d4ki δ(k
2
i −m2

i )θ(k
0
i )

]
δ(4)

(
pa + pb −

n∑

i=1

ki

)
, (B.8)

where the mi =
√
k2

i denote the masses of the FS particles. The IS particles are assumed
massless. As shown in [113, 114] the phase-space integral

∫
dΦ(2→n) can be constructed

by proper combinations of three generic building blocks. These blocks are

• integrations of s–channel-like variables,

• phase-space integrations
∫

dΩd of 1 → 2 particle decay processes i(p12) → f1(k1) +
f2(k2), and
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• phase-space integrations
∫

dΩp of t–channel-like 2 → 2 particle scattering processes
i1(p1) + i2(p2) → f1(k1) + f2(k2).

Defining s12 = (k1 + k2)
2, the corresponding analytic expressions for the last two contri-

butions are given by

∫
dΩd(s12; k

2
1, k

2
2) ≡ (2π)2

∫
dΦ(1→2)(p12; k1, k2)

=

∫
d4k1

[
δ(k2

1 −m2
1)θ(k

0
1)
]

d4k2

[
δ(k2

2 −m2
2)θ(k

0
2)
]
δ(4)(p12 − k1 − k2) , (B.9)

∫
dΩp(p1, p2; k

2
1, k

2
2) ≡ (2π)2

∫
dΦ(2→2)(pa, pb; k1, k2)

=

∫
d4k1

[
δ(k2

1 −m2
1)θ(k

0
1)
]

d4k2

[
δ(k2

2 −m2
2)θ(k

0
2)
]
δ(4)(p1 + p2 − k1 − k2) .

(B.10)

The δ-functions in
∫

dΩd and
∫

dΩp can be integrated out analytically, in each case re-
sulting in a residual two-fold non-trivial integration. It turns out to be convenient to
parametrize the phase space of the particle decay (B.9) by the azimuthal angle φ∗ and the
polar angle θ∗ of particle f1 in the rest frame of particle i, leading to the explicit form

∫
dΩd(s12; k

2
1, k

2
2) =

λ1/2 (s12, k
2
1 , k

2
2)

8 s12

∫ 2π

0

dφ∗
∫ 1

−1

d cos θ∗ , (B.11)

where we have introduced the kinematical Kaellen function

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz) . (B.12)

The four-vector kµ,∗
1 in the rest frame of i is given by

kµ,∗
1 = (k0

1, |k∗
1| sin θ∗ cosφ∗, |k∗

1| sin θ∗ sinφ∗, |k∗
1| cos θ∗) (B.13)

where the energy and the absolute value of the three-momentum of the particle read

k0,∗
1 =

s12 + k2
1 − k2

2

2
√
s12

, |k∗
1| =

λ1/2(s12, k
2
1, k

2
2)

2
√
s12

. (B.14)

Since the momenta k1 and k2 are defined in the rest frame of i, they have to be boosted
to the laboratory frame (i.e. the partonic cm frame) via a proper Lorentz transformation,
resulting in

k1 = B [p12,−p12] k
∗
1, k2 = p12 − k1 . (B.15)

The boost matrix B(Q0,Q) transforms any given four-vector kµ into the rest frame of Qµ

assigned by Q = 0. Defining m =
√
Q2 and γ = p0/m, one finds

k∗ = k +

(
Q · k

m2(γ + 1)
− k0

m

)
Q , (B.16a)

k∗,0 =
1

m
(Q0k0 − Q · k) =

Q · k
m

(B.16b)
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for the components of the boosted four-vector k∗,µ = B(Q0,Q) kµ. The inverse trans-
formation kµ = B(Q0,−Q) k∗,µ is obtained by inverting the signs of the spatial parts of
Qµ.

The phase-space integral of the t–channel-like scattering process (B.10) should prefer-
ably be parametrized explicitly using the variable t = (p1 − k1)

2, yielding

∫
dΩp(p1, p2; k

2
1 , k

2
2) =

1

4λ1/2 (s12, p2
1, p

2
2)

∫ 2π

0

dφ∗
∫ t+

t−
dt . (B.17)

The four-vector k∗1 in the rest frame of p1 + p2 is given by (B.13), and its polar angle is
related to the integration variable t via

t = k2
1 + p2

1 −
(s12 + k2

1 − k2
2)(s12 + p2

1 − p2
2) − λ1/2(s12, k

2
1 , k

2
2)λ

1/2(s12, p
2
1, p

2
2) cos θ∗

2 s12
.

(B.18)
The vector k1 in the laboratory frame is obtained applying a Lorentz transformation that
consists of a rotation and a subsequent boost,

k1 = B
[
p0

1 + p0
2,−(p1 + p2)

]
R(φ̃, cos θ̃) k∗1, k2 = p1 + p2 − k1 . (B.19)

The rotation matrix R(φ, cos θ) is given by

R(φ, cos θ) =




1 0 0 0

0 cosφ − sinφ 0

0 sinφ cosφ 0

0 0 0 1







1 0 0 0

0 cos θ 0 sin θ

0 0 1 0

0 − sin θ 0 cos θ



, (B.20)

corresponding to an anti-clockwise θ-rotation around the x2-axis followed by an anti-
clockwise φ-rotation around the x3-axis which in our case coincides with the beam axis.
The explicit expressions for the angles θ̃ and φ̃ have to be calculated from the incoming
momentum p̃1 = B(p0

1 + p0
2,p1 + p2) p1 according to

φ̃ =





arctan
(

p̃2
1

p̃1
1

)
if p̃1

1 > 0

arctan
(

p̃2
1

p̃1
1

)
+ π if p̃1

1 < 0
, cos θ̃ =

p̃3
1

|p̃1|
. (B.21)

Finally, the limits

t± = k2
1 + p2

1 −
(s12 + k2

1 − k2
2)(s12 + p2

1 − p2
2) ± λ1/2(s12, k

2
1, k

2
2)λ

1/2(s12, p
2
1, p

2
2)

2 s12

(B.22)

of the t-integration are set by simple geometrical constraints, restricting the cosine of θ∗

between −1 and 1.
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B.3 Breit–Wigner mappings

The integral transformation (B.3) can always be carried out easily using an iterative linear
mapping φ = hl(r),

φ1 → φ1,min + r1(φ1,max − φ1,min) ,

φ2 → φ2,min(φ1(r1)) + r2(φ2,max(φ1(r1)) − φ2,min(φ1(r1))) ,
...

φm → φm,min({φi(rj)}) + rm(φm,max({φi(rj)}) − φm,min({φi(rj)})) , (B.23)

with i ≤ j < m, and

gl(hl(r)) =

m∏

i=1

(φi,max(r) − φi,min(r)) , (B.24)

but one should keep in mind that this naive procedure does not at all take into account
the structure of the integrand, possibly resulting in an inefficient numerical integration.
In particular, severe problems can arise if processes including resonances are considered.

If an unstable particle (for instance the weak bosons W or Z) of mass m and width Γ
appears in a propagator, the partonic cross section will in general comprise dominating
terms of the form

σ ∝ 1

|p2 −m2 + imΓ|2 (B.25)

(see Section 2.2) that lead to sharp resonance peaks of the integrand when the incoming
momentum p is timelike, i.e. p2 > 0. In such situations, a naive numerical integration
without adequate phase-space mappings will be very inefficient and maybe even provide
wrong results, since only very few random numbers r will eventually hit the important
region p2 ∼ m2 where the cross section is large. This problem can be cured by introducing a
so-called Breit–Wigner resonance mapping. If one chooses the timelike invariant p2 flowing
through the problematic propagator as integration variable, the phase-space integral will

contain the expression
∫ p2

max

p2
min

dp2 , with the limits p2
min / max. Applying the substitution

p2 → h(r,m2,−imΓ, 2, p2
min, p

2
max) = mΓ tan[y1 + (y2 − y1)r] +m2 , (B.26)

with

y1/2 = arctan

(
p2

min / max −m2

mΓ

)
(B.27)

and 0 < r < 1 will mediate a transformation of the integral that is given by

∫ p2
max

p2
min

dp2 →
∫ 1

0

dr

gs(p2(r),m2, 2, p2
min, p

2
max)

, (B.28)

where the phase-space probability density

gs(p
2(r),m2, 2, p2

min, p
2
max) ≡

[
dh(r,m2,−imΓ, 2, p2

min, p
2
max)

dr

]−1

=
mΓ

(y1 − y2)[(p2(r) −m2)2 +m2Γ2]
(B.29)
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will exactly cancel the problematic denominator (B.25), leaving a smooth function that
can be sampled with good efficiency. The procedure of manipulating the integrand in such
a way that more random numbers are sampled in phase-space regions where the integrand
is large is known as importance sampling.

C Dipole subtraction for photonic bremsstrahlung

processes

In this appendix we list the explicit formulae for the subtraction functions for the brems-
strahlung corrections to the processes (6.1.1) – (6.1.3). We also present the contributions
that have to be readded to the cross section. We follow the notation of [35, 36], and
Section 4.2 where we always use the formulae for light emitters and massless spectators.
The momenta are always assigned according to (8.0.1), i.e. the incoming partons carry
the momenta pa and pb, while the momentum of the outgoing QCD parton is denoted
by kc. In the following, we use the shorthand notation Φγ ≡ Φ(ab→lνl+c+γ) to denote the

bremsstrahlung phase space. Moreover, we introduce the notation Φ̃0,AB for the LO phase
space Φ(ab→lνl+c) of the auxiliary momenta {k̃j} that enter the squared LO amplitudes

|Mab→lνl+c({k̃j})|2 within the subtraction kernels which are constructed from an emitter

A and a spectator B, respectively. The cut function F
(l++νl+c+γ)
J will be denoted as Θcut

in the following.

C.1 Subtraction contributions

Subtraction terms for the channel ud̄ → l+νlgγ

We first present the two dipoles that have to be constructed with an IS emitter and an IS
spectator.

The corresponding auxiliary variables are defined through the momenta of the full
bremsstrahlung phase space,

xud̄ =
papb − pakγ − pbkγ

papb
, xd̄u = xud̄ , yud̄ =

pakγ

papb
, yd̄u =

pbkγ

papb
, (C.1)

where the momentum assignment of (8.0.1) was used. The two contributing dipoles are
given by

g
(sub)

ud̄
(pa, pb, kγ) =

1

(pakγ)xud̄

[
2

1 − xud̄

− 1 − xud̄

]
, (C.2)

g
(sub)

d̄u
(pb, pa, kγ) =

1

(pbkγ)xd̄u

[
2

1 − xd̄u

− 1 − xd̄u

]
, (C.3)

and the auxiliary IS momenta which enter the LO matrix elements are constructed ac-
cording to

ud̄ case : p̃a
µ = xud̄p

µ
a , P̃ µ

ud̄
= xud̄p

µ
a + pµ

b , P µ

ud̄
= pµ

a + pµ
b − kµ

γ , p̃b
µ = pµ

b ,(C.4)

d̄u case : p̃b
µ = xd̄up

µ
b , P̃ µ

d̄u
= xd̄up

µ
b + pµ

a , P µ

d̄u
= pµ

b + pµ
a − kµ

γ , p̃a
µ = pµ

a ,(C.5)
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for the ud̄ and the d̄u cases, respectively. All remaining FS momenta {ki} that are used
to calculate the physical observables are modified by a Lorentz transformation,

k̃µ
i = Λµ

ν k
ν
i , Λµ

ν = gµ
ν −

(Pqq′ + P̃qq′)
µ(Pqq′ + P̃qq′)ν

P 2
qq′ + (Pqq′P̃qq′)

+
2P̃ µ

qq′Pqq′,ν

P 2
qq′

, (C.6)

where qq′ denotes the two different contributions ud̄ and d̄u.
We find four contributing dipoles that are built from an IS emitter and a FS spectator,

and vice versa. The auxiliary variables that are needed to construct the subtraction kernels
read

xlu =
pakl + pakγ − klkγ

pakl + pakγ
, zlu =

pakl

pakl + pakγ
, (C.7)

xld̄ =
pbkl + pbkγ − klkγ

pbkl + pbkγ

, zld̄ =
pbkl

pbkl + pbkγ

, (C.8)

and the dipoles are given by

g
(sub)
ul (pa, kl, kγ) =

1

(pakγ)xlu

[
2

2 − xlu − zlu

− 1 − xlu

]
, (C.9)

g
(sub)
lu (kl, pa, kγ) =

1

(klkγ)xlu

[
2

2 − xlu − zlu

− 1 − zlu

]
, (C.10)

g
(sub)

d̄l
(pb, kl, kγ) =

1

(pbkγ)xld

[
2

2 − xld − zld
− 1 − xld

]
, (C.11)

g
(sub)

ld̄
(kl, pb, kγ) =

1

(klkγ)xld

[
2

2 − xld − zld

− 1 − zld

]
. (C.12)

The auxiliary momenta that enter the LO matrix elements are constructed from the orig-
inal bremsstrahlung momenta via

k̃l
µ

= kµ
l + kµ

γ − (1 − xlu)p
µ
a , p̃a

µ = xlup
µ
a , (C.13)

for the ul case, and

k̃l
µ

= kµ
l + kµ

γ − (1 − xld̄)p
µ
b , p̃b

µ = xld̄p
µ
b , (C.14)

for the d̄l case. All other momenta remain unchanged. Exploiting momentum conserva-
tion, we define the momenta

P µ
lu = kµ

l + kµ
γ − pµ

a = k̃l
µ − p̃a

µ , (C.15)

P µ

ld̄
= kµ

l + kµ
γ − pµ

b = k̃l
µ − p̃b

µ , (C.16)

that will be needed in the calculation of the readded counterparts. In case of photon
radiation off FS leptons we are also interested in calculating non-collinear-safe observables,
which means that the photon and the emitting fermion are not considered as one quasi
particle in the collinear cone and that cuts are imposed solely on the bare lepton. For
this purpose we have to reconstruct the photon momentum and the antilepton momentum
from the auxiliary momentum k̃l

µ
via

k′µγ = (1 − zl{u,d̄}) k̃l
µ
, k′µl = zl{u,d̄} k̃l

µ
. (C.17)
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These reconstructed momenta then enter the cut function of the hard bremsstrahlung
process.

According to Eq. (4.2.2), the local counterterm that has to be subtracted from the
squared bremsstrahlung amplitude is given by

|Msub(Φγ)|2

= −e2
[
QuσuQdσd g

(sub)

ud̄
(pa, pb, kγ)

∣∣∣M0
ud̄→l+νlg

(
Φ̃0,ud̄

)∣∣∣
2

Θcut(p̃a, p̃b; k̃l, k̃n, k̃c, 0)

+QdσdQuσu g
(sub)

d̄u
(pb, pa, kγ)

∣∣∣M0
ud̄→l+νlg

(
Φ̃0,d̄u

)∣∣∣
2

Θcut(p̃a, p̃b; k̃l, k̃n, k̃c, 0)

+QuσuQlσl g
(sub)
ul (pa, kl, kγ)

∣∣∣M0
ud̄→l+νlg

(
Φ̃0,ul

)∣∣∣
2

Θcut(p̃a, pb; k̃l, kn, kc, 0)

+QdσdQlσl g
(sub)

d̄l
(pb, kl, kγ)

∣∣∣M0
ud̄→l+νlg

(
Φ̃0,d̄l

)∣∣∣
2

Θcut(pa, p̃b; k̃l, kn, kc, 0)

+QlσlQuσu g
(sub)
lu (kl, pa, kγ)

∣∣∣M0
ud̄→l+νlg

(
Φ̃0,lu

)∣∣∣
2

Θcut(p̃a, pb; k
′
l, kn, kc, k

′
γ)

+QlσlQdσd g
(sub)

ld̄
(kl, pb, kγ)

∣∣∣M0
ud̄→l+νlg

(
Φ̃0,ld̄

)∣∣∣
2

Θcut(pa, p̃b; k
′
l, kn, kc, k

′
γ)
]
.

(C.18)

Note that the squared LO amplitude in every single subtraction contribution is always
defined on the reduced phase-space Φ̃0,AB that is spanned by the corresponding auxiliary
momenta. The same momenta also have to be used to calculate physical observables to
impose event-selection cuts, i.e. every subtraction kernel has to be multiplied with the
cut function Θcut that acts on the corresponding momenta defined on the auxiliary phase
space Φ̃0,AB. In case of non-collinear-safe photon radiation off FS leptons, the momenta of
the photon and the lepton have to be reconstructed according to (C.17) from the auxiliary
momenta entering the underlying process without photon radiation. As suggested by
(4.2.4), those reconstructed momenta are then used to compute the observables that are
treated in a non-collinear-safe way.

Subtraction terms for the channel ug → l+νldγ

Instead of pairs of an IS emitter and an IS spectator we are now also confronted with the
situation where emitter and spectator (namely quark and lepton, or vice versa) are both
FS particles. Defining the auxiliary variables

ydl =
kckγ

kckl + kckγ + klkγ

, zdl =
kckl

kckl + klkγ

, (C.19)

and

yld =
klkγ

kckl + klkγ + kckγ

, zld =
kckl

kckl + kckγ

, (C.20)

we obtain the subtraction functions

g
(sub)
dl =

1

(kckγ)(1 − ydl)

[
2

1 − zdl(1 − ydl)
− 1 − zdl

]
, (C.21)

g
(sub)
ld =

1

(klkγ)(1 − yld)

[
2

1 − zld(1 − yld)
− 1 − zld

]
. (C.22)
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For the ld case, the auxiliary momenta that enter the LO subprocess are given by

k̃l
µ

= kµ
l + kµ

γ − yld

1 − yld
kµ

c , k̃c
µ

=
1

1 − yld
kµ

c , (C.23)

and for the dl case, they read

k̃c
µ

= kµ
c + kµ

γ − ydl

1 − ydl

kµ
l , k̃l

µ
=

1

1 − ydl

kµ
l . (C.24)

All other FS momenta remain unchanged. To treat the lepton–photon pair or the quark–
photon pair exclusively, the corresponding momenta have to be reconstructed from the
adequate auxiliary momenta according to

k′µγ = (1 − zld)k̃l
µ
, k′µl = zld k̃l

µ
, (C.25)

in the ld-case and

k′µγ = (1 − zdl)k̃c
µ
, k′µc = zdl k̃c

µ
, (C.26)

for the collinear quark-photon splitting. Momentum conservation now implies

P µ
ld = kµ

l + kµ
c + kµ

γ = k̃l
µ

+ k̃c
µ
,

P µ
dl = P µ

ld . (C.27)

The full subtraction contribution for the bremsstrahlung process ug → l+νldγ is given by

|Msub(Φγ)|2

= −e2
[
QuσuQdσd g

(sub)
ud (pa, kc, kγ)

∣∣∣M0
ug→l+νld

(
Φ̃0,ud

)∣∣∣
2

Θcut(p̃a, pb; kl, kn, k̃c, 0)

+QdσdQuσu g
(sub)
du (kc, pa, kγ)

∣∣∣M0
ug→l+νld

(
Φ̃0,du

)∣∣∣
2

Θcut(p̃a, pb; kl, kn, k
′
c, k

′
γ)

+QuσuQlσl g
(sub)
ul (pa, kl, kγ)

∣∣∣M0
ug→l+νld

(
Φ̃0,ul

)∣∣∣
2

Θcut(p̃a, pb; k̃l, kn, kc, 0)

+QdσdQlσl g
(sub)
dl (kc, kl, kγ)

∣∣∣M0
ug→l+νld

(
Φ̃0,dl

)∣∣∣
2

Θcut(pa, pb; k̃l, kn, k
′
c, k

′
γ)

+QlσlQuσu g
(sub)
lu (kl, pa, kγ)

∣∣∣M0
ug→l+νld

(
Φ̃0,lu

)∣∣∣
2

Θcut(p̃a, pb; k
′
l, kn, kc, k

′
γ)

+QlσlQdσd g
(sub)
ld (kl, kc, kγ)

∣∣∣M0
ug→l+νld

(
Φ̃0,ld

)∣∣∣
2

Θcut(pa, pb; k
′
l, kn, k̃c, k

′
γ)
]
,

(C.28)

where the contributions g
(sub)
ud and g

(sub)
du are obtained analogously to the expressions g

(sub)
ul

and g
(sub)
lu in (C.1). The subtraction function for the process d̄g → l+νlū emerges from

(C.28) via the replacement u → d̄ and d → ū.
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C.2 Readded Counterparts

Convolution terms for the channel ud̄ → l+νlgγ

In case of the ud̄- and the d̄u-parts of the subtraction function the analytically-integrated
counterparts that have to be added to the result read

∫
dΦγ|Msub,ud̄|2 = − α

2π
QuσuQdσd

∫ 1

0

dx
{[

G(sub)

ud̄
(ŝ, x)

]
+

+G
(sub)

ud̄
(ŝ)δ(1 − x)

}

×1

x

∫
dΦ̃0,ud̄(ŝ, x)|Mud̄→l+νlg(xpa, pb, k̃l, k̃n, k̃c)|2Θcut(xpa, pb; k̃l, k̃n, k̃c, 0) ,

∫
dΦγ|Msub,d̄u|2 = − α

2π
QuσuQdσd

∫ 1

0

dx
{[

G(sub)

d̄u
(ŝ, x)

]
+

+G
(sub)

d̄u
(ŝ)δ(1 − x)

}

×1

x

∫
dΦ̃0,d̄u(ŝ, x)|Mud̄→l+νlg(pa, xpb, k̃l, k̃n, k̃c)|2Θcut(pa, xpb; k̃l, k̃n, k̃c, 0) , (C.29)

where the kernels containing the singularities are given by

G(sub)
ab (ŝ, x) = Pff(x)

[
ln
( ŝ

m2
a

)
− 1

]
+ 1 − x , (C.30)

G
(sub)
ab (ŝ) = L(ŝ,m2

a) −
π2

3
+ 2 , (C.31)

with the abbreviation from (4.2.17),

L(P 2,m2) = ln
(m2

P 2

)
ln
( λ2

P 2

)
+ ln

( λ2

P 2

)
− 1

2
ln2
(m2

P 2

)
+

1

2
ln
(m2

P 2

)
. (C.32)

Here, λ is a small photon mass to regularize the soft singularity occurring at x = 1,
and λ2 ≪ m2 ≪ |P 2| is valid. In (C.29), the LO momenta that enter |Mud̄→l+νlg|2 are

defined on the LO phase-space sets Φ̃0,ud̄ and Φ̃0,d̄u that are constructed using the incoming
momenta xpa and pb in the ud̄ case or pa and xpb in the d̄u case, respectively. Note that
two independent phase-space sets have to be generated, one set for x < 1 and one for
x = 1.

For the contributions corresponding to an IS emitter and a FS spectator we obtain
∫

dΦγ|Msub,ul|2 = − α

2π
QuσuQlσl

∫ 1

0

dx
{[

G(sub)
ul (P 2

ul, x)
]
+

+G
(sub)
ul (P 2

ul)δ(1 − x)
}

×1

x

∫
dΦ̃0,ul(P

2
ul, x)|Mud̄→l+νlg(xpa, pb; k̃l, k̃n, k̃c)|2

×Θcut(xpa, pb; k̃l, k̃n, k̃c, 0) ,
∫

dΦγ|Msub,d̄l|2 = − α

2π
QdσdQlσl

∫ 1

0

dx
{[

G(sub)

d̄l
(P 2

d̄l, x)
]
+

+G
(sub)

d̄l
(P 2

d̄l)δ(1 − x)
}

×1

x

∫
dΦ̃0,d̄l(P

2
d̄l, x)|Mud̄→l+νlg(pa, xpb; k̃l, k̃n, k̃c)|2

×Θcut(pa, xpb; k̃l, k̃n, k̃c, 0) , (C.33)

where the momenta that are used to calculate |Mud̄→l+νlg|2 are defined on the phase-space

sets Φ̃0,ul and Φ̃0,d̄l that are constructed from the incoming momenta xpa and pb in the ul
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case or pa and xpb in the d̄l case, respectively. The universal kernels Gai and Gai for an IS
emitter a and a FS spectator i are given by

G(sub)
ai (P 2

ia, x) = Pff(x)

[
ln

( |P 2
ia|

m2
ax

)
− 1

]
− 2

1 − x
ln(2 − x)

+(1 + x) ln(1 − x) + 1 − x , (C.34)

G
(sub)
ai (P 2

ia) = L(|P 2
ia|,m2

a) +
π2

6
− 1 , (C.35)

where the four-vector
P µ

ia(x) = k̃µ
i (x) − xpµ

a (C.36)

is constructed from the four-momenta of the underlying process and thus implicitly de-
pends on x. In the endpoint of the [. . .]+ distribution in (C.33), however, one has to use
P 2

ia(1) that is evaluated from the phase-space set generated for x = 1.
Finally, the readded counterparts for the two contributions with the antilepton as FS

emitter and one light quark as IS spectator are given by
∫

dΦγ|Msub,lu(Φγ)|2 = − α

2π
QlσlQuσu

∫ 1

0

dx

∫
dΦ̃0,lu(P

2
lu, x)

∫ 1

0

dz

×Θcut

(
xpa, pb; k

′
l = zk̃l, k̃n, k̃c, k

′
γ = (1 − z)k̃l

)

× 1

x

{
G

(sub)
lu (P 2

lu)δ(1 − x)δ(1 − z) +
[
G(sub)

lu (P 2
lu, x)

]
+
δ(1 − z) +

[
Ḡ(sub)

lu (P 2
lu, z)

]
+
δ(1 − x)

+
[
ḡ

(sub)
lu (x, z)

](x,z)

+

} ∣∣∣Mud̄→l+νlg

(
xpa, pb; k̃l, k̃n, k̃c

)∣∣∣
2

, (C.37a)

∫
dΦγ|Msub,ld̄(Φγ)|2 = − α

2π
QlσlQdσd

∫ 1

0

dx

∫
dΦ̃0,ld̄(P

2
ld̄, x)

∫ 1

0

dz

×Θcut

(
pa, xpb; k

′
l = zk̃l(x), k̃n, k̃c, k

′
γ = (1 − z)k̃l)

× 1

x

{
G

(sub)

ld̄
(P 2

ld̄)δ(1 − x)δ(1 − z) +
[
G(sub)

ld̄
(P 2

ld̄, x)
]
+
δ(1 − z) +

[
Ḡ(sub)

ld̄
(P 2

ld̄, z)
]
+
δ(1 − x)

+
[
ḡ

(sub)

ld̄
(x, z)

](x,z)

+

} ∣∣∣Mud̄→l+νlg

(
pa, xpb; k̃l, k̃n, k̃c

)∣∣∣
2

, (C.37b)

where we have used the iterated (+)-distribution (4.2.28). The kernels in (C.37) explicitly
read

ḡ
(sub)
ia (x, z) =

1

1 − x

( 2

2 − x− z
− 1 − z

)
, (C.38)

G(sub)
ia (P 2

ia, x) =
1

1 − x

[
2 ln

(2 − x

1 − x

)
− 3

2

]
, (C.39)

Ḡ(sub)
ia (P 2

ia, z) = Pff(z)
[
ln
(−P 2

iaz

m2
i

)
− 1
]
− 2 ln(2 − x)

1 − z

+(1 + z) ln(1 − z) + 1 − z , (C.40)

G
(sub)
ia (P 2

ia) = L(|P 2
ia|,m2

i ) −
π2

2
+

3

2
. (C.41)

In (C.37) the momenta of the photon and the FS lepton that enter the cut function have
to be reconstructed from the lepton momentum of the underlying hard process.
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Convolution terms for the channel ug → l+νldγ

Additionally, one now has to cover the situation with a FS emitter and a FS spectator. In
this case, the readded counterpart reads

∫
dΦγ|Msub,ld(Φγ)|2 = − α

2π
QlσlQdσd

∫
dΦ̃0,ld(P

2
ld)

∫ 1

0

dz

×
{
G

(sub)
ld (P 2

ld)δ(1 − z) +
[
Ḡ(sub)

ld (P 2
ld, z)

]
+

}
(C.42)

×
∣∣∣Mug→l+νld(pa, pb; k̃l, k̃n, k̃c)

∣∣∣
2

Θcut

(
pa, pb; k

′
l = zk̃l, k̃n, k̃c, k

′
γ = (1 − z)k̃l

)
,

∫
dΦγ|Msub,dl(Φγ)|2 = − α

2π
QdσdQlσl

∫
dΦ̃0,dl(P

2
dl)

∫ 1

0

dz

×
{
G

(sub)
dl (P 2

dl)δ(1 − z) +
[
Ḡ(sub)

dl (P 2
dl, z)

]
+

}
(C.43)

×
∣∣∣Mug→l+νld(pa, pb; k̃l, k̃n, k̃c)

∣∣∣
2

Θcut

(
pa, pb; k̃l, k̃n, k

′
c = zk̃c, k

′
γ = (1 − z)k̃c

)
,

where the LO phase-space sets Φ̃0,ld and Φ̃0,dl are generated using the IS momenta pa and
pb. The kernels containing the collinear and soft singularities are given by

Ḡ(sub)
ij (P 2

ij, z) = Pff(z)

[
ln

(
P 2

ijz

m2
i

)
− 1

]
+ (1 + z) ln(1 − z) + 1 − z , (C.44)

G
(sub)
ij (P 2

ij, z) = L(P 2
ij,m

2
i ) −

π2

3
+

3

2
, (C.45)

where we have used the four-vector

P µ
ij = k̃µ

i + k̃µ
j , (C.46)

which again has to be constructed from the four-momenta of the underlying process and
therefore is a dynamical quantity.
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