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1. Introduction

Achieving a more quantitative understanding of the phases emerging in quantum chromodynamics (QCD) subjected to external mag-
netic fields, is a major theme in current strong interaction research. One objective is to gain more rigorous insights into the nonperturbative
regime of QCD - or the standard model of particle physics in general. Apart from theoretical aspects such as the characterization of com-
pact neutron stars (magnetic field strengths up to 10'#T in their interior) or primordial magnetic fields in the early universe (= 10'97),
the problem is also phenomenologically relevant in view of heavy-ion collision experiments that probe the quark-gluon plasma (< 10'6T),
Here we focus on the low-energy domain where magnetic fields are weak and temperatures are low compared to the chiral symmetry
breaking scale Ay ~ 1GeV (Ai ~ 1016 7). It should be noted that the magnetic fields involved in heavy-ion collision experiments most
likely never exceed the scale Ai.

The thermomagnetic properties of QCD are described by the magnetization 9ty and the magnetic susceptibility Xior.! The classification
of the QCD vacuum into diamagnetic or paramagnetic relies on the sign of the magnetic susceptibility, defined as the response of the
magnetization with respect to the external magnetic field H,?

dMior dzgor

Xtot = digH|’ Mot = digH|” (11)
Here zo is the free energy density and q is the electric charge. Aside from lattice QCD simulations [1-13], alternative approaches to study
Mot and xior rely on the Nambu-Jona-Lasinio model and extensions thereof [14-16], on the hadron resonance gas (HRG) model [17-19],
and on yet other techniques [20-34]. Remarkably, a systematic investigation of the magnetic susceptibility within chiral perturbation

(CHPT) - i.e., the low-energy effective field theory of QCD - appears to be lacking.
The overall picture that emerged from these studies is that the QCD vacuum behaves as a diamagnetic medium at low temperatures,
while at higher temperatures, around T &~ 110MeV, it evolves into a paramagnetic medium. The fact that xit changes from negative into
positive as temperature — or magnetic field strength - increase, can be traced back to various reasons. First, at low T, the physics of the

E-mail address: christoph.peter.hofmann@gmail.com.
1 The magnetic susceptibility - much like the magnetization and the free energy density - contains a zero-temperature piece xo and a purely finite-temperature portion
xr. The subscript “tot” means that we refer to the sum of the two contributions: ot = X0 + X71-
2 In the literature, the term “magnetic susceptibility” usually refers to the limit H — 0. In the present study, we also consider the magnetic susceptibility in nonzero
magnetic fields.
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Fig. 1. Scaled zero-temperature QCD magnetization 9%y/F? in terms of magnetic field strength (mp).

system is dominated by the pions that give rise to a negative magnetic susceptibility. However, at more elevated temperatures, spin—% and
spin-1 hadrons also become important — unlike the pions they yield positive contributions to x¢. Then, in finite magnetic fields, pions
and higher-spin hadrons lead to positive zero-temperature contributions in ) that grow as the magnetic field becomes stronger. Overall,
as temperature rises, the system undergoes a qualitative change in its particle content: while hadrons dominate at low temperatures,
quarks are the relevant degrees of freedom at high temperatures - in particular, the quark-gluon plasma exhibits strong paramagnetic
behavior.

Current lattice QCD simulations and most other studies address the temperature regime around or above T &~ 110MeV. An exception
is the hadron resonance gas model: much like chiral perturbation theory it applies at low temperatures. However, the study in Ref. [17]
was restricted to noninteracting particles. In general, a quantitative investigation of the diamagnetic and paramagnetic phases in finite
magnetic fields and at low temperatures, is still lacking. In the present two-flavor CHPT analysis, where pion-pion interactions are taken
into account, we provide such a systematic and rigorous low-energy analysis. We derive the two-loop representation for the magnetization
and the magnetic susceptibility at zero and finite temperatures in weak external homogeneous magnetic fields. We show that the QCD
vacuum at T =0 is paramagnetic in nonzero magnetic fields. In contrast, the finite-temperature portion in the magnetic susceptibility
is negative, such that the total magnetic susceptibility x:: (sum of T =0 and finite-T contribution) may result positive or negative:
depending on temperature and magnetic field strength, paramagnetic and diamagnetic phases can be identified in the low-energy region.
In zero magnetic field, xco: is strictly negative in the pion-dominated regime, but as the magnetic field grows, the QCD vacuum turns into
a paramagnetic medium at low temperatures. Remarkably, the dependence of y:: on temperature is non-monotonic in the paramagnetic
phase.

It should be pointed out that chiral perturbation theory - as a low-energy effective field theory - starts to break down if one ap-
proaches the chiral phase transition that is expected to occur around T ~ 160MeV for two dynamical quark flavors. While in our plots we
go up to T ~ 150MeV for illustrative purposes, this caveat should be kept in mind. However, we emphasize that in the region T < 100 MeV
we provide high-precision results in a parameter domain where CHPT is reliable and lattice QCD simulations still are a challenge.

2. Magnetization

We first consider the magnetization that is induced by the external magnetic field. Based on the representation of the renormalized
vacuum energy density 25' given Eq. (A.10),> the magnetization at zero temperature amounts to

|q | M2 I3 M2 M2
Mo(My. H) = {I_ —”I]
oMz, H) = j2+16n2J]+512n4 2 1+|qH| 0

5 MZigH| Is—Is5 |qH|
153674  F2 76874 F2
The dimensionless integrals Z,(My, H) and J,(My, H), defined in Eq. (A.3), depend on the pion mass M, and the magnetic field H.
The dimensionless quantities I3, Is, lg are so-called next-to-leading order low-energy constants. Following Refs. [35,36], we use the values
I3 =3.41(82) and Ig —Is = 2.64 £ 0.72. To discuss the properties of the QCD vacuum it is convenient not to use absolute values of M, H
and T, but to define dimensionless quantities m, my, and t as

{3|qH|I_1 + M,ZTIO] . 21)

M VIqgH T
M g oveHl T (2.2)
4w F 4 F 4 F

The denominator Ay ~ 4w F ~ 1GeV is the chiral symmetry breaking scale. For the tree-level pion decay constant we use F = 85.6 MeV
[36]. At low energies, i.e., in the domain where CHPT is valid, the parameters m, my, and t are small. In the subsequent plots we choose
t £0.15 (T £ 150MeV) and my < 0.3 (JgH| 5 0. 1GeV?). The dependence of Mo(My, H) on magnetic field strength (mp) is illustrated in
Flg 1 for the | physically relevant case M; = 140 MeV (m=0. 130).% Systematic errors in 9g(My, H), Eq. (2.1), arise due to the uncertainties
in the low-energy constant I3 and the combination Ig —Is. These systematic errors are about seven percent at most (my = 0.3). Mo (M, H)

3 For completeness we provide explicit expressions for the free energy density in Appendix A.

4 Note that My, i.e., the pion mass in the absence of a magnetic field, is set to its physical value 140MeV by hand. This means that all corrections to the tree-level
pion mass M - starting with the one-loop correction given in Eq. (A.4) - are accounted for. No errors are introduced here due to uncertainties in low-energy constants or
higher-loop corrections.
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Fig. 2. Scaled finite-temperature QCD magnetization 9i7 /T2 (LHS) and scaled total QCD magnetization 9%, /F2 (RHS) in terms of magnetic field strength (my) and temper-
ature (t).

is positive and grows monotonically as the magnetic field strength increases. The curvature implies paramagnetic behavior. The limit
H — 0 does not pose any problems: limy_.0 Mo(M5, H) = 0. As expected, no spontaneous magnetization emerges.
In contrast to Mig(My, H), the purely finite-temperature portion 9t7 (M, H) in the total magnetization®

Mot (T, My, H) = Mo(My, H) + M1 (My, H), (2.3)

is negative at M; = 140MeV according to the LHS of Fig. 2. Its dependence on T and H is nontrivial: at lower (fixed) temperatures,
|97 (M, H)| initially grows as the magnetic field gets stronger, goes through a maximum and then starts to decline. At fixed magnetic
field strength, |97 (M, H)| also starts to increase less rapidly as temperature rises. With respect to the (negative) one-loop contribution,
the two-loop correction is of the order of a few percent and positive, i.e., it slightly weakens the dominant effect. Finally, on the RHS
of Fig. 2, we depict the total magnetization which may take positive or negative values. Remarkably, this non-monotonic dependence of
Mot (T, Mz, H) on H implies that the QCD vacuum may behave as a diamagnetic or paramagnetic medium (see below). The systematic
errors in the finite-temperature® and total magnetization are at most seven percent (LHS of Fig. 2) and up to ten percent (RHS of Fig. 2),
respectively. While these errors - due to the uncertainties in low-energy constants - are indicated in the plots, we have not explicitly
depicted the other source of errors due to neglected higher-loop corrections. Based on the pioneering CHPT three-loop calculation of the
QCD partition function in zero magnetic field, Ref. [38], and based on the general fact that each additional loop correction in CHPT is
suppressed by two powers of momentum (energy), these errors are expected to be of the order of a few percent at most.

3. Magnetic susceptibility
We now focus on the magnetic susceptibility where we also present zero-temperature and finite-temperature pieces,
Xtot (T, Mz, H) = xo(Mx, H) + x1(Mx, H) , (3.1)
separately. The zero-temperature portion reads

2 4
2M5 J-1+ My Joj +
1672 |qH| |gH|?

Lo M2 d—Is
153674 F2 76874 F2

I3 mE
51274F2 |qH|?

XoM H) = —— {272+ T

2 M3

{6|qH|I,1 +4AM2 To + —L}. (32)
IqH|

According to Appendix B where we analyze the limit |gH| <« M%, the corresponding expansion of xo(My, H) is characterized by even

powers of the magnetic field,

Xo(Mx, H) = g + a2|gH|? + aalqH|* + O(1gH|®) (3.3)

with coefficients o, given in Eq. (B.7). As explained in Appendix A.1, we adopt the standard renormalization prescription which is to drop
in the T =0 free energy density all terms quadratic in the magnetic field. This means that x( in zero magnetic field is set to zero by
definition,

Jim xoMx H)=0 = a0 =0. (3.4)

The dependence of the zero-temperature magnetic susceptibility on magnetic field strength (mpy) at M, = 140MeV is shown in Fig. 3:
xo(My, H) is positive and grows monotonically - the QCD vacuum at T =0 in finite magnetic fields is paramagnetic. Systematic errors
due to uncertainties in the low-energy constant I3 and the combination lg — I5 are about eight percent at most (my = 0.3).

5 The explicit two-loop representation for 9t (My, H) can be found in Ref. [37].
6 Note that the kinematical functions for the charged pions, Eq. (A.13), depend on the combination Is — I5 of low-energy constants appearing in the charged pion mass,
Eq. (A.15). Uncertainties in the low-energy constants then propagate into the analytical kinematical functions and hence into the observables.
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Fig. 3. Zero-temperature QCD magnetic susceptibility xo in terms of magnetic field strength (my).

Finite—T QCD Magnetic Susceptibility QCD Magnetic Susceptibility
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Fig. 4. Finite-temperature QCD magnetic susceptibility xt (LHS) and total QCD magnetic susceptibility x:: (RHS) in terms of magnetic field strength (my) and temperature (t).

The finite-temperature portion of the magnetic susceptibility we write as

X1 (Mz, H) = x1(T, Mz, H) + x2(T, Mz, H) . (3.5)

The one-loop contribution y; refers to noninteracting pions. The two-loop correction x; contains the pion-pion interaction and is of the
order of a few percent compared to yi. The respective expressions are rather lengthy and provided in Appendix C. On the LHS of Fig. 4
we depict the dependence of x7(Myz, H) on temperature and magnetic field at M; = 140MeV: it is negative in most of parameter space
accessible by CHPT - only in stronger magnetic fields it takes slightly positive values. At fixed T, xt(My, H) increases as the magnetic
field becomes stronger and then reaches a plateau. At fixed H, overall, x7(My, H) decreases as temperature rises - however, in stronger
magnetic fields, it first slightly grows and then falls off to negative values - hence exhibiting non-monotonic behavior. Systematic errors
in the finite-temperature magnetic susceptibility, due to the uncertainties in low-energy constants, are eight percent at most. Additional
errors due to neglected higher-loop corrections are expected to be of the order of a few percent.

The main result of the present study concerns the total magnetic susceptibility xo:(T, Mz, H), i.e., the superposition of xo(My, H)
and x7 (Mg, H). This quantity indeed exhibits some remarkable features in the low-energy region. First, as we illustrate on the RHS of
Fig. 4, in stronger magnetic fields, the QCD vacuum - irrespective of temperature - is paramagnetic. In weaker magnetic fields, however,
a diamagnetic phase starts to emerge - eventually, at H =0, the QCD vacuum is diamagnetic in the entire regime t < 0.15 according to
our CHPT calculation. Second, the behavior of y:o:(T, My, H) in the paramagnetic phase is non-monotonic as can be better appreciated
in Fig. 5: as temperature grows — while H kept fixed - x:o initially rises, goes through a maximum and then starts to drop. It should be
pointed out that this phenomenon already emerges at one-loop order and is slightly weakened (of the order of a few permille) by the
two-loop correction. The effect is more pronounced in stronger magnetic fields and it is absent at H =0 - in the latter case the QCD
vacuum is purely diamagnetic in the pion-dominated low-temperature phase. In the temperature range t < 0.15, the systematic errors in
the total magnetic susceptibility are up to ten percent (RHS of Fig. 4) and eight percent at most (Fig. 5), respectively. Additional errors due
to neglected higher-loop corrections, again, are expected of the order of a few percent.

Finally, it is instructive to compare the chiral perturbation theory prediction with alternative approaches. This is indeed possible in the
limit H — 0 where HRG model and lattice data are available for the finite-temperature magnetic susceptibility x7.” In Fig. 6, we plot X1
at H =0 - in the literature also denoted as xp(T) - for the temperature range 0 <t <0.12 (0 < T < 126 MeV). The figure underlines the
fact that lattice QCD simulations are a challenge in the low-temperature domain. Directly simulated data points below T = 90MeV appear
to be unavailable at present, and the available points in the interval 90 MeV < T < 126 MeV contain large errors.

However, at higher temperatures (not shown in Fig. 6) lattice data are much more precise. Most important, lattice QCD simulations
have demonstrated that the diamagnetic QCD vacuum eventually turns into paramagnetic at higher T. This feature is missed by the HRG
model as well as by chiral perturbation theory as they are both restricted to the low-energy (low-temperature) domain. In contrast to
two-flavor CHPT, the HRG model - apart from the three pions - takes into account a total of 22 additional particles (see Table 1 of

7 The author thanks G. Endrédi and G. S. Bali for providing the corresponding data.
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Fig. 5. Non-monotonic behavior of the total QCD magnetic susceptibility in the paramagnetic phase: Dependence of x,; on temperature (t) at fixed magnetic field strength
|gH| = {0.02, 0.04, 0.06, 0.08, 0.1} GeV? (bottom to top).
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Fig. 6. Temperature dependence of the finite-temperature QCD magnetic susceptibility at H = 0: Comparison of different approaches. Lattice data with errors (blue) from
Ref. [6], HRG model (magenta) from Ref. [17], and present CHPT analysis: one-loop result (green), two-loop result with systematic errors (red).

Ref. [17]). Still, deviations between the HRG model and CHPT are very small according to Fig. 6, implying that the properties of the system
up to temperatures T < 100 MeV are dominated by the physics of the pions.

4. Conclusions

The subtle interplay between zero-T and finite-T contributions leads to the nontrivial behavior of the magnetization and magnetic
susceptibility that we observe at low temperatures and weak magnetic fields. The comparison of CHPT studies of the quark condensate
with lattice data performed in Ref. [39] suggests that CHPT is perfectly valid up to magnetic field strengths of |gH| < 0.1 GeV2 (my < 0.3).
Likewise, the HRG model analysis of Ref. [17] concludes that pions no longer dominate at low temperatures beyond |gH| Z 0.2 GeV? (my z
0.4). Our high-precision and fully systematic results for the magnetization and magnetic susceptibility are within this parameter range and
thus accurately describe the pion-dominated phase. We hence complement and extend all previous studies on these two observables to
a parameter domain that is hardly accessible by lattice QCD at present and has not been examined by any other method beyond leading
order in a systematic way. It remains to be seen whether future lattice QCD simulations can quantitatively explore the diamagnetic and
paramagnetic phases in the low-energy region of QCD and confirm our predictions.
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Appendix A. Representation of the free energy density

The purpose of this Appendix is to make the presentation self-contained by providing explicit expressions for the two-loop free energy
density zi¢ which is the starting point of our analysis. It is convenient to split z into two pieces,

Zyot =20 + 27, (A1)
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where zp is the free energy density at T =0 and z7 is the finite-temperature portion. In what follows we discuss these two pieces
individually. The two-loop calculation within the framework of two-flavor chiral perturbation theory® in the isospin limit m, =my was
performed in Refs. [42,43].

A.l. Zero temperature

The renormalized vacuum energy density zo takes the form

- 3 H? — H|?
(13—4h1——)+'q D1y - g,

M4
z0=—F*M? +
0 64

72 2 96772 16727
31310 +2C1) M® (s —15)C34 qH*M?
102474 F2 7684 F2
I3 M*qH| ls—1s |qH?
1 7 +omd, (A2)

“51274 - F2 ' 76874 F2
where the integrals Z, and 7, are

o0

2
1= [ 00" o0 (= 1) (ny )
0
o0
jn:/dpp” EXP(_ %p) (sinli(p) B % + %) (A3)
0

Zo contains the renormalized next-to-leading order and next-to-next-to-leading order effective constants, I3, 1s,lg, h1, h2 and Cio, €11, C34,
respectively. Details on the definition and running of these low-energy couplings can be found in Appendix A of Ref. [43], as well as in
the original references [35,44]. Numerical values are provided in the main body of the present paper. Finally, M is the tree-level pion mass
which is related to the (one-loop) pion mass My as

I3 M4

M2 =M*— >

3272 F?

A crucial question is which contributions in the T =0 free energy density are physically relevant. Since we are interested in how the
QCD vacuum is affected by the magnetic field, we can ignore all terms that do not involve the magnetic field. We are then left with

+O(M>). (A4)

sH _ lqH|? iy — 1) — IqHIZJ B (s — I5)c34 |qH|*M?
0~ 9672 2 167227 " 76874 F2
I3 M*qH] ls—Is |qHP?
- I_ T4. A5
51274~ F2 17 76874 2 ! (A5)
Clearly, the contribution
lqH |?
~ 562 (A.6)

can be dropped as it is independent of the properties of the pions: it does not involve the pion mass, but solely depends on the external
magnetic field. Note that there are further terms quadratic in the magnetic field. At chiral order p*, we have

h
2_|qH)?

) A7
9672 ! (A7)
and at chiral order p® we have
(Is —I5)t34 M?
-2 |qH|?. (A.8)

76874 F2

Then - according to the analysis of the integral Z_; in the limit |gH| <« M? performed in Appendix B - an additional term quadratic in
the magnetic field arises at chiral order p®, namely,

13 M?

307274 F2

In order to compare our results with the literature, we adopt the renormalization prescription for the zero-temperature free energy density

that underlies lattice as well HRG model studies [1-13,17-19,22], which is to drop in the T = 0 free energy density all terms quadratic in

the magnetic field. In our CHPT framework this corresponds to subtracting the terms (A.6)-(A.9) from the vacuum energy density Eq. (A.5).
The properly normalized zero-temperature free energy density hence takes the form

lgH|*. (A.9)

8 OQutlines of chiral perturbation theory are given in Refs. [40,41].



C.P. Hofmann Physics Letters B 818 (2021) 136384
i _laHP L I3 M%qH| |qH|) ls—Is lqH)?
0 1672° " 51274 F2 6M2/ ' 76874 F2
Note that the difference between the tree-level pion mass M and the one-loop pion mass M, only starts manifesting itself beyond chiral
order p®. We can therefore safely replace M by M, in Eq. (A.10). The expansion of zg in the limit |gH| <« M? gives rise to even powers
of the magnetic field that start at order |gH|* - all terms quadratic in the magnetic field have been eliminated.® Equivalently, within this
convention, the T = 0 magnetic susceptibility xo in zero magnetic field is set to zero by definition,

(1,1 + T4, (A10)

) ) a2z}l
lim xo = lim — 5 =0.
H—0 H—0 d|qH|

(A11)

It is important to emphasize that our assessment of whether the QCD vacuum has diamagnetic or paramagnetic properties is tied to this
renormalization convention.

A.2. Finite temperature

For completeness we provide the finite-temperature contribution zr in the free energy density. Following Ref. [42], the two-loop
representation reads

+ 1 0 4 +
ir = _gO(Mj'[a Tv 0) - igO(an T,O) - gO(Mﬂa T? H)

M72T + 0 M721 0 2
55 a1 (M5 T.0) g1 (MY, T.0) — =5 {&1(M2. T.0)}
M?2 _
+577 81(Mz, T,0) &1 (Mz, T, H) + O(p"), (A12)

with respective Bose functions defined as

T4—2r 3 M2 _l

1.0 =G [0 (= 50)|(5) =1 |
0
o0

T272r 1 47‘[T2
~ Mi,T,H=7 H/d r—2 ! _
! TR (smh(|qH|p/4nT2> |qH|p)

(M3E)? 1
xexp (- 4 T? ) 5(;)_1 ’ (A13)
where S(z),
o0
S(z)= Y exp(-mn’z), (A14)
n=—o0

is the Jacobi theta function. The Bose functions involve the quantities Mjf and M?,. i.e., the masses of the charged and neutral pions
subjected to the magnetic field,

22 o ls—Is |gH?
M) =Mzt Y P2
2
0.2 5 . M?|qH]|
(Mz)" =Mz + 155 Tt (A15)

The symbol M in the kinematical Bose functions g, can either denote Mﬁ or M?T depending on context. The quantity My is the (one-
loop) pion mass in zero magnetic field defined by Eq. (A.4).

Appendix B. Zero-temperature magnetic susceptibility in the limit |gH| <« M?

In this Appendix we identify the structure of magnetic field powers in the zero-temperature magnetic susceptibility xo(M, H) by
considering the limit |gH| <« M2. The quantity xo(M, H),

d220
digH|*’

with zg given in Eq. (A.2), contains the integrals Z, and J, - see Eq. (A.3) - that we write as

Xo(M, H) = — (B.1)

9 This means that the NLO effective constant h, and the NNLO effective constant ¢34 are irrelevant within the adopted renormalization prescription.

7
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T, =&"t1 /d ne=p (7— —)
" PP sinh(ep) ¢ep
0
r 1
l1+1 d (— - %)
In= / prte sinh(gp) eo 6/’
0
where ¢,
lgH|
=7
is the relevant expansion parameter. The integrands yield the series
1 1

A A 3.3, A 5.5 7
— — — =C1pE+2p0°¢ c3p’e OE"),
sinhep)  2p 1pE+Cp°e” +C3p°” +0O(e")

with the first five Taylor coefficients as

1
1 =——=~-0.167,
6

N 7
(2= —~0.0194,
360

N 31

(3 =———— ~ —0.00205,
15120

A 127

(4 = ——— ~0.000210,

604800

~ 73

(s = ————— ~ —0.0000213.
3421440
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(B.3)

(B.4)

(B.5)

Collecting terms, we find that the zero-temperature magnetic susceptibility features even powers of the magnetic field and amounts to

Xo(M, H) = a0 + a2 |qH* + aualgH|* + O(IgH|%) ,

with respective coefficients

w21 N Ca4(ls — I5) M? I3 M?
0= " 4852 38474 F2 153674 F2°
7 713 Ig —1I5
oy = + ,
48072M4  7680m4F2M2 ' 384m4F2M?2
31 3103 7ds —I5)
g = —

134472M8  1075274F2M® 46087 4F2MS6

(B.6)

(B.7)

Again we point out that the renormalization convention adapted for the T =0 free energy density specified in Appendix A.1 implies that
the coefficient «g is set to zero by definition, i.e., the contribution &g is subtracted from the zero-temperature magnetic susceptibility

Xo(M, H).

Appendix C. Magnetic susceptibility at finite temperature

Here we provide the explicit representation of the finite-temperature magnetic susceptibility - xr - in terms of the various kinematical

Bose functions involved.'® In the derivation of xr,

dZZT
XT = _W )
the following identities featuring derivatives of Bose functions with respect to the magnetic field are useful,
diar &M T.0) = 24n'§ ";H' gra1(ME,T,0),
2 M2
dioi &M T 0 =~ (T |qH|Io)gr+1(Mﬂ,T 0,

—1Is |gH]| .
247r2

LY
&M n’ T,H)y= —g M5, T,H)—

digH| IqH]|

where

10 The Bose functions g; and g are defined in Eq. (A.13).

2 B M3 T H) + 5" (M5 T H),

(C1)

(C.2)
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[o.¢]
. T2 th(|qH|p/4m T? 47 T?
@ T = gl [ dppr (- L 2
(4) 1 4 T2sinh(|qH|p/4T2) * |qH%p

2
(Mz) ) 1
x exp (- s(—)—l . c3
p ( 2772 " P (C3)
Instead of using dimensionful Bose functions gr and gr, it is more transparent to express observables by dimensionless Bose functions h;
and h;,

g2 ; & 21
T3 h0:F7 hlZﬁ,

The finite-temperature magnetic susceptibility yr can then be written in the form

ho = hi=25, hi=g, hh=%. (C4)

XT Mz, H) = x1(T, Mz, H) + x2(T, Mz, H) . (C.5)
One-loop and two-loop contributions, respectively, are

2

mot? t
= hi(ME, T,0) +m2 hy(ME, T, 0) + yr- Xoh1 (M2, T,0)

X1=
m

2
H
2 2 2
3myte -~ t? .
+=Lhy (MY, T, 0) + == — hy(ME, T, H) + — hif'(ME, T, H)
2 ms, my;
2 d o 25 ok [H] p
mwh (M T,H)‘l’mihz(MT[,T,H)‘i‘mih] (MT[,T,H),
tz
X2 = 8n?m?{ — m—zmihz(M?;, T,0)h (M2, T,0) —mihs(ME, T,0)hy (M2, T,0)
H

t2
—2mymphy(ME, T, 0)ha (M2, T, 0) — S Xoh1(MZ,T,0h2(M2, T, 0)

t2 -
—mahi(ME, T,0h3(M2, T, 0) — mxohz(Mg,T,O)hﬂM;t,T,H)
2 0 R 2t 0 oyt
—mghs (M2, T, 0kt (M. T, H) = — mohz(Mz. T, 0)y (M. T, H)
H
—momzha (M3, T, 0h2(My, T, H) — 2moha (M., T, OhY" (M5, T, H)
t2 - t2 -
— = mehy (MY, T, 0)ha(ME, T, H) — — hy(M3, T, )b (ME, T, H)
my my
-mih (M2, T, 0)E3<M*, T, H) —mshy (M2, T, RS (ME, T, H)
t? Z[H] <2> 0
_ﬁ hl(M T, 0) h (M T,H)+ — h3(M T,O)h1(Mﬂ,T,O)
H

t—2

+RX0h2(M9,,T,0)h1(M T,0) + °h2(M T,O)hz(M?T,T,O)], (C6)
H

with coefficients

2(s — I5)m?,
3 ,

mo = —mZ/dP p! EXP(_ m_;p) (sin:l(,o) - %)

my =—

r m? 1 1
__f,f pep H”)(smh@)‘;)*
m=—% O/dpp exp(—%p) (Sin;—(p)—%) (€7)

The dimensionless functions flﬁH] (M,i;, T, H) read
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MMz, T, H)
T2 ’
A ME, T, H) =8\ (ME, T, H) x T2,

A (ME T, H) = vz, T, Hy =g mE, T, 1),

while h3 and ﬁ_o, are
h3=g3T?, h3=g3T?
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