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While it is known that the QCD vacuum in a magnetic background exhibits both diamagnetic and 
paramagnetic characteristics in the low-energy domain, a systematic investigation of the corresponding 
phases emerging in the pion-dominated regime is still lacking. Here, within two-flavor chiral perturbation 
theory, taking into account the pion-pion interaction, we analyze the subtle interplay between zero-
and finite-temperature portions in the magnetization and magnetic susceptibility. The dependence of the 
magnetic susceptibility on temperature and magnetic field strength in the paramagnetic and diamagnetic 
phase is non-monotonic. Our low-energy analysis complements lattice QCD that is currently operating at 
higher temperatures and stronger magnetic fields.
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1. Introduction

Achieving a more quantitative understanding of the phases emerging in quantum chromodynamics (QCD) subjected to external mag-
netic fields, is a major theme in current strong interaction research. One objective is to gain more rigorous insights into the nonperturbative 
regime of QCD – or the standard model of particle physics in general. Apart from theoretical aspects such as the characterization of com-
pact neutron stars (magnetic field strengths up to 1014 T in their interior) or primordial magnetic fields in the early universe (� 1019 T), 
the problem is also phenomenologically relevant in view of heavy-ion collision experiments that probe the quark-gluon plasma (� 1016 T). 
Here we focus on the low-energy domain where magnetic fields are weak and temperatures are low compared to the chiral symmetry 
breaking scale �χ ≈ 1 GeV (�2

χ ≈ 1016 T). It should be noted that the magnetic fields involved in heavy-ion collision experiments most 
likely never exceed the scale �2

χ .

The thermomagnetic properties of QCD are described by the magnetization Mtot and the magnetic susceptibility χtot.1 The classification 
of the QCD vacuum into diamagnetic or paramagnetic relies on the sign of the magnetic susceptibility, defined as the response of the 
magnetization with respect to the external magnetic field H ,2

χtot = dMtot

d|qH| , Mtot = − dztot

d|qH| . (1.1)

Here ztot is the free energy density and q is the electric charge. Aside from lattice QCD simulations [1–13], alternative approaches to study 
Mtot and χtot rely on the Nambu-Jona-Lasinio model and extensions thereof [14–16], on the hadron resonance gas (HRG) model [17–19], 
and on yet other techniques [20–34]. Remarkably, a systematic investigation of the magnetic susceptibility within chiral perturbation 
(CHPT) – i.e., the low-energy effective field theory of QCD – appears to be lacking.

The overall picture that emerged from these studies is that the QCD vacuum behaves as a diamagnetic medium at low temperatures, 
while at higher temperatures, around T ≈ 110 MeV, it evolves into a paramagnetic medium. The fact that χtot changes from negative into 
positive as temperature – or magnetic field strength – increase, can be traced back to various reasons. First, at low T , the physics of the 
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1 The magnetic susceptibility – much like the magnetization and the free energy density – contains a zero-temperature piece χ0 and a purely finite-temperature portion 

χT . The subscript “tot” means that we refer to the sum of the two contributions: χtot = χ0 + χT .
2 In the literature, the term “magnetic susceptibility” usually refers to the limit H → 0. In the present study, we also consider the magnetic susceptibility in nonzero 

magnetic fields.
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Fig. 1. Scaled zero-temperature QCD magnetization M0/F 2 in terms of magnetic field strength (mH ).

system is dominated by the pions that give rise to a negative magnetic susceptibility. However, at more elevated temperatures, spin- 1
2 and 

spin-1 hadrons also become important – unlike the pions they yield positive contributions to χtot . Then, in finite magnetic fields, pions 
and higher-spin hadrons lead to positive zero-temperature contributions in χtot that grow as the magnetic field becomes stronger. Overall, 
as temperature rises, the system undergoes a qualitative change in its particle content: while hadrons dominate at low temperatures, 
quarks are the relevant degrees of freedom at high temperatures – in particular, the quark-gluon plasma exhibits strong paramagnetic 
behavior.

Current lattice QCD simulations and most other studies address the temperature regime around or above T ≈ 110 MeV. An exception 
is the hadron resonance gas model: much like chiral perturbation theory it applies at low temperatures. However, the study in Ref. [17]
was restricted to noninteracting particles. In general, a quantitative investigation of the diamagnetic and paramagnetic phases in finite 
magnetic fields and at low temperatures, is still lacking. In the present two-flavor CHPT analysis, where pion-pion interactions are taken 
into account, we provide such a systematic and rigorous low-energy analysis. We derive the two-loop representation for the magnetization 
and the magnetic susceptibility at zero and finite temperatures in weak external homogeneous magnetic fields. We show that the QCD 
vacuum at T = 0 is paramagnetic in nonzero magnetic fields. In contrast, the finite-temperature portion in the magnetic susceptibility 
is negative, such that the total magnetic susceptibility χtot (sum of T = 0 and finite-T contribution) may result positive or negative: 
depending on temperature and magnetic field strength, paramagnetic and diamagnetic phases can be identified in the low-energy region. 
In zero magnetic field, χtot is strictly negative in the pion-dominated regime, but as the magnetic field grows, the QCD vacuum turns into 
a paramagnetic medium at low temperatures. Remarkably, the dependence of χtot on temperature is non-monotonic in the paramagnetic 
phase.

It should be pointed out that chiral perturbation theory – as a low-energy effective field theory – starts to break down if one ap-
proaches the chiral phase transition that is expected to occur around T ≈ 160 MeV for two dynamical quark flavors. While in our plots we 
go up to T ≈ 150 MeV for illustrative purposes, this caveat should be kept in mind. However, we emphasize that in the region T � 100 MeV
we provide high-precision results in a parameter domain where CHPT is reliable and lattice QCD simulations still are a challenge.

2. Magnetization

We first consider the magnetization that is induced by the external magnetic field. Based on the representation of the renormalized 
vacuum energy density zH

0 given Eq. (A.10),3 the magnetization at zero temperature amounts to

M0(Mπ , H) = |qH|
8π2

J−2 + M2
π

16π2
J−1 + l3

512π4

M4
π

F 2

{
I−1 + M2

π

|qH| I0

}

+ l3
1536π4

M2
π |qH|
F 2

− l6 − l5
768π4

|qH|
F 2

{
3|qH|I−1 + M2

πI0

}
. (2.1)

The dimensionless integrals In(Mπ , H) and Jn(Mπ , H), defined in Eq. (A.3), depend on the pion mass Mπ and the magnetic field H . 
The dimensionless quantities l3, l5, l6 are so-called next-to-leading order low-energy constants. Following Refs. [35,36], we use the values 
l3 = 3.41(82) and l6 − l5 = 2.64 ± 0.72. To discuss the properties of the QCD vacuum it is convenient not to use absolute values of Mπ , H
and T , but to define dimensionless quantities m, mH , and t as

m = Mπ

4π F
, mH =

√|qH|
4π F

, t = T

4π F
. (2.2)

The denominator �χ ≈ 4π F ≈ 1 GeV is the chiral symmetry breaking scale. For the tree-level pion decay constant we use F = 85.6 MeV
[36]. At low energies, i.e., in the domain where CHPT is valid, the parameters m, mH , and t are small. In the subsequent plots we choose 
t � 0.15 (T � 150 MeV) and mH � 0.3 (|qH | � 0.1 GeV2). The dependence of M0(Mπ , H) on magnetic field strength (mH ) is illustrated in 
Fig. 1 for the physically relevant case Mπ = 140 MeV (m = 0.130).4 Systematic errors in M0(Mπ , H), Eq. (2.1), arise due to the uncertainties 
in the low-energy constant l3 and the combination l6 − l5. These systematic errors are about seven percent at most (mH = 0.3). M0(Mπ , H)

3 For completeness we provide explicit expressions for the free energy density in Appendix A.
4 Note that Mπ , i.e., the pion mass in the absence of a magnetic field, is set to its physical value 140 MeV by hand. This means that all corrections to the tree-level 

pion mass M – starting with the one-loop correction given in Eq. (A.4) – are accounted for. No errors are introduced here due to uncertainties in low-energy constants or 
higher-loop corrections.
2
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Fig. 2. Scaled finite-temperature QCD magnetization MT /T 2 (LHS) and scaled total QCD magnetization Mtot/F 2 (RHS) in terms of magnetic field strength (mH ) and temper-
ature (t).

is positive and grows monotonically as the magnetic field strength increases. The curvature implies paramagnetic behavior. The limit 
H → 0 does not pose any problems: limH→0 M0(Mπ , H) = 0. As expected, no spontaneous magnetization emerges.

In contrast to M0(Mπ , H), the purely finite-temperature portion MT (Mπ , H) in the total magnetization5

Mtot(T , Mπ , H) = M0(Mπ , H) +MT (Mπ , H) , (2.3)

is negative at Mπ = 140 MeV according to the LHS of Fig. 2. Its dependence on T and H is nontrivial: at lower (fixed) temperatures, 
|MT (Mπ , H)| initially grows as the magnetic field gets stronger, goes through a maximum and then starts to decline. At fixed magnetic 
field strength, |MT (Mπ , H)| also starts to increase less rapidly as temperature rises. With respect to the (negative) one-loop contribution, 
the two-loop correction is of the order of a few percent and positive, i.e., it slightly weakens the dominant effect. Finally, on the RHS 
of Fig. 2, we depict the total magnetization which may take positive or negative values. Remarkably, this non-monotonic dependence of 
Mtot(T , Mπ , H) on H implies that the QCD vacuum may behave as a diamagnetic or paramagnetic medium (see below). The systematic 
errors in the finite-temperature6 and total magnetization are at most seven percent (LHS of Fig. 2) and up to ten percent (RHS of Fig. 2), 
respectively. While these errors – due to the uncertainties in low-energy constants – are indicated in the plots, we have not explicitly 
depicted the other source of errors due to neglected higher-loop corrections. Based on the pioneering CHPT three-loop calculation of the 
QCD partition function in zero magnetic field, Ref. [38], and based on the general fact that each additional loop correction in CHPT is 
suppressed by two powers of momentum (energy), these errors are expected to be of the order of a few percent at most.

3. Magnetic susceptibility

We now focus on the magnetic susceptibility where we also present zero-temperature and finite-temperature pieces,

χtot(T , Mπ , H) = χ0(Mπ , H) + χT (Mπ , H) , (3.1)

separately. The zero-temperature portion reads

χ0(Mπ , H) = 1

16π2

{
2J−2 + 2M2

π

|qH| J−1 + M4
π

|qH|2 J0

}
+ l3

512π4 F 2

M8
π

|qH|3 I1

+ l3
1536π4

M2
π

F 2
− l6 − l5

768π4 F 2

{
6|qH|I−1 + 4M2

π I0 + M4
π

|qH| I1

}
. (3.2)

According to Appendix B where we analyze the limit |qH | � M2
π , the corresponding expansion of χ0(Mπ , H) is characterized by even 

powers of the magnetic field,

χ0(Mπ , H) = α0 + α2|qH|2 + α4|qH|4 +O(|qH|6) , (3.3)

with coefficients αn given in Eq. (B.7). As explained in Appendix A.1, we adopt the standard renormalization prescription which is to drop 
in the T = 0 free energy density all terms quadratic in the magnetic field. This means that χ0 in zero magnetic field is set to zero by 
definition,

lim
H→0

χ0(Mπ , H)
.= 0 ⇐⇒ α0

.= 0 . (3.4)

The dependence of the zero-temperature magnetic susceptibility on magnetic field strength (mH ) at Mπ = 140 MeV is shown in Fig. 3: 
χ0(Mπ , H) is positive and grows monotonically – the QCD vacuum at T = 0 in finite magnetic fields is paramagnetic. Systematic errors 
due to uncertainties in the low-energy constant l3 and the combination l6 − l5 are about eight percent at most (mH = 0.3).

5 The explicit two-loop representation for MT (Mπ , H) can be found in Ref. [37].
6 Note that the kinematical functions for the charged pions, Eq. (A.13), depend on the combination l6 − l5 of low-energy constants appearing in the charged pion mass, 

Eq. (A.15). Uncertainties in the low-energy constants then propagate into the analytical kinematical functions and hence into the observables.
3
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Fig. 3. Zero-temperature QCD magnetic susceptibility χ0 in terms of magnetic field strength (mH ).

Fig. 4. Finite-temperature QCD magnetic susceptibility χT (LHS) and total QCD magnetic susceptibility χtot (RHS) in terms of magnetic field strength (mH ) and temperature (t).

The finite-temperature portion of the magnetic susceptibility we write as

χT (Mπ , H) = χ1(T , Mπ , H) + χ2(T , Mπ , H) . (3.5)

The one-loop contribution χ1 refers to noninteracting pions. The two-loop correction χ2 contains the pion-pion interaction and is of the 
order of a few percent compared to χ1. The respective expressions are rather lengthy and provided in Appendix C. On the LHS of Fig. 4
we depict the dependence of χT (Mπ , H) on temperature and magnetic field at Mπ = 140 MeV: it is negative in most of parameter space 
accessible by CHPT – only in stronger magnetic fields it takes slightly positive values. At fixed T , χT (Mπ , H) increases as the magnetic 
field becomes stronger and then reaches a plateau. At fixed H , overall, χT (Mπ , H) decreases as temperature rises – however, in stronger 
magnetic fields, it first slightly grows and then falls off to negative values – hence exhibiting non-monotonic behavior. Systematic errors 
in the finite-temperature magnetic susceptibility, due to the uncertainties in low-energy constants, are eight percent at most. Additional 
errors due to neglected higher-loop corrections are expected to be of the order of a few percent.

The main result of the present study concerns the total magnetic susceptibility χtot (T , Mπ , H), i.e., the superposition of χ0(Mπ , H)

and χT (Mπ , H). This quantity indeed exhibits some remarkable features in the low-energy region. First, as we illustrate on the RHS of 
Fig. 4, in stronger magnetic fields, the QCD vacuum – irrespective of temperature – is paramagnetic. In weaker magnetic fields, however, 
a diamagnetic phase starts to emerge – eventually, at H = 0, the QCD vacuum is diamagnetic in the entire regime t < 0.15 according to 
our CHPT calculation. Second, the behavior of χtot(T , Mπ , H) in the paramagnetic phase is non-monotonic as can be better appreciated 
in Fig. 5: as temperature grows – while H kept fixed – χtot initially rises, goes through a maximum and then starts to drop. It should be 
pointed out that this phenomenon already emerges at one-loop order and is slightly weakened (of the order of a few permille) by the 
two-loop correction. The effect is more pronounced in stronger magnetic fields and it is absent at H = 0 – in the latter case the QCD 
vacuum is purely diamagnetic in the pion-dominated low-temperature phase. In the temperature range t ≤ 0.15, the systematic errors in 
the total magnetic susceptibility are up to ten percent (RHS of Fig. 4) and eight percent at most (Fig. 5), respectively. Additional errors due 
to neglected higher-loop corrections, again, are expected of the order of a few percent.

Finally, it is instructive to compare the chiral perturbation theory prediction with alternative approaches. This is indeed possible in the 
limit H → 0 where HRG model and lattice data are available for the finite-temperature magnetic susceptibility χT .7 In Fig. 6, we plot χT

at H = 0 – in the literature also denoted as χB (T ) – for the temperature range 0 ≤ t ≤ 0.12 (0 ≤ T ≤ 126 MeV). The figure underlines the 
fact that lattice QCD simulations are a challenge in the low-temperature domain. Directly simulated data points below T = 90 MeV appear 
to be unavailable at present, and the available points in the interval 90 MeV ≤ T ≤ 126 MeV contain large errors.

However, at higher temperatures (not shown in Fig. 6) lattice data are much more precise. Most important, lattice QCD simulations 
have demonstrated that the diamagnetic QCD vacuum eventually turns into paramagnetic at higher T . This feature is missed by the HRG 
model as well as by chiral perturbation theory as they are both restricted to the low-energy (low-temperature) domain. In contrast to 
two-flavor CHPT, the HRG model – apart from the three pions – takes into account a total of 22 additional particles (see Table 1 of 

7 The author thanks G. Endrödi and G. S. Bali for providing the corresponding data.
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Fig. 5. Non-monotonic behavior of the total QCD magnetic susceptibility in the paramagnetic phase: Dependence of χtot on temperature (t) at fixed magnetic field strength 
|qH| = {0.02, 0.04, 0.06, 0.08, 0.1} GeV2 (bottom to top).

Fig. 6. Temperature dependence of the finite-temperature QCD magnetic susceptibility at H = 0: Comparison of different approaches. Lattice data with errors (blue) from 
Ref. [6], HRG model (magenta) from Ref. [17], and present CHPT analysis: one-loop result (green), two-loop result with systematic errors (red).

Ref. [17]). Still, deviations between the HRG model and CHPT are very small according to Fig. 6, implying that the properties of the system 
up to temperatures T � 100 MeV are dominated by the physics of the pions.

4. Conclusions

The subtle interplay between zero-T and finite-T contributions leads to the nontrivial behavior of the magnetization and magnetic 
susceptibility that we observe at low temperatures and weak magnetic fields. The comparison of CHPT studies of the quark condensate 
with lattice data performed in Ref. [39] suggests that CHPT is perfectly valid up to magnetic field strengths of |qH | � 0.1 GeV2 (mH � 0.3). 
Likewise, the HRG model analysis of Ref. [17] concludes that pions no longer dominate at low temperatures beyond |qH | � 0.2 GeV2 (mH �
0.4). Our high-precision and fully systematic results for the magnetization and magnetic susceptibility are within this parameter range and 
thus accurately describe the pion-dominated phase. We hence complement and extend all previous studies on these two observables to 
a parameter domain that is hardly accessible by lattice QCD at present and has not been examined by any other method beyond leading 
order in a systematic way. It remains to be seen whether future lattice QCD simulations can quantitatively explore the diamagnetic and 
paramagnetic phases in the low-energy region of QCD and confirm our predictions.
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Appendix A. Representation of the free energy density

The purpose of this Appendix is to make the presentation self-contained by providing explicit expressions for the two-loop free energy 
density ztot which is the starting point of our analysis. It is convenient to split z into two pieces,

ztot = z0 + zT , (A.1)
5
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where z0 is the free energy density at T = 0 and zT is the finite-temperature portion. In what follows we discuss these two pieces 
individually. The two-loop calculation within the framework of two-flavor chiral perturbation theory8 in the isospin limit mu = md was 
performed in Refs. [42,43].

A.1. Zero temperature

The renormalized vacuum energy density z0 takes the form

z0 = −F 2M2 + M4

64π2

(
l3 − 4h1 − 3

2

)
+ |qH|2

96π2
(h2 − 1) − |qH|2

16π2
J−2

+3l3(c10 + 2c11)

1024π4

M6

F 2
− (l6 − l5)c34

768π4

|qH|2M2

F 2

− l3
512π4

M4|qH|
F 2

I−1 + l6 − l5
768π4

|qH|3
F 2

I−1 +O(p8) , (A.2)

where the integrals In and Jn are

In =
∞∫

0

dρ ρn exp
(

− M2

|qH|ρ
)( 1

sinh(ρ)
− 1

ρ

)
,

Jn =
∞∫

0

dρ ρn exp
(

− M2

|qH|ρ
)( 1

sinh(ρ)
− 1

ρ
+ ρ

6

)
. (A.3)

z0 contains the renormalized next-to-leading order and next-to-next-to-leading order effective constants, l3, l5, l6, h1, h2 and c10, c11, c34, 
respectively. Details on the definition and running of these low-energy couplings can be found in Appendix A of Ref. [43], as well as in 
the original references [35,44]. Numerical values are provided in the main body of the present paper. Finally, M is the tree-level pion mass 
which is related to the (one-loop) pion mass Mπ as

M2
π = M2 − l3

32π2

M4

F 2
+O(M6) . (A.4)

A crucial question is which contributions in the T = 0 free energy density are physically relevant. Since we are interested in how the 
QCD vacuum is affected by the magnetic field, we can ignore all terms that do not involve the magnetic field. We are then left with

z̃H
0 = |qH|2

96π2
(h2 − 1) − |qH|2

16π2
J−2 − (l6 − l5)c34

768π4

|qH|2M2

F 2

− l3
512π4

M4|qH|
F 2

I−1 + l6 − l5
768π4

|qH|3
F 2

I−1 . (A.5)

Clearly, the contribution

−|qH|2
96π2

(A.6)

can be dropped as it is independent of the properties of the pions: it does not involve the pion mass, but solely depends on the external 
magnetic field. Note that there are further terms quadratic in the magnetic field. At chiral order p4, we have

h2

96π2
|qH|2 , (A.7)

and at chiral order p6 we have

− (l6 − l5)c34

768π4

M2

F 2
|qH|2 . (A.8)

Then – according to the analysis of the integral I−1 in the limit |qH | � M2 performed in Appendix B – an additional term quadratic in 
the magnetic field arises at chiral order p6, namely,

l3
3072π4

M2

F 2
|qH|2 . (A.9)

In order to compare our results with the literature, we adopt the renormalization prescription for the zero-temperature free energy density 
that underlies lattice as well HRG model studies [1–13,17–19,22], which is to drop in the T = 0 free energy density all terms quadratic in 
the magnetic field. In our CHPT framework this corresponds to subtracting the terms (A.6)-(A.9) from the vacuum energy density Eq. (A.5). 
The properly normalized zero-temperature free energy density hence takes the form

8 Outlines of chiral perturbation theory are given in Refs. [40,41].
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zH
0 = −|qH|2

16π2
J−2 − l3

512π4

M4|qH|
F 2

(
I−1 + |qH|

6M2

)
+ l6 − l5

768π4

|qH|3
F 2

I−1 . (A.10)

Note that the difference between the tree-level pion mass M and the one-loop pion mass Mπ only starts manifesting itself beyond chiral 
order p6. We can therefore safely replace M by Mπ in Eq. (A.10). The expansion of zH

0 in the limit |qH | � M2 gives rise to even powers 
of the magnetic field that start at order |qH |4 – all terms quadratic in the magnetic field have been eliminated.9 Equivalently, within this 
convention, the T = 0 magnetic susceptibility χ0 in zero magnetic field is set to zero by definition,

lim
H→0

χ0 = lim
H→0

− d2zH
0

d|qH|2
.= 0 . (A.11)

It is important to emphasize that our assessment of whether the QCD vacuum has diamagnetic or paramagnetic properties is tied to this 
renormalization convention.

A.2. Finite temperature

For completeness we provide the finite-temperature contribution zT in the free energy density. Following Ref. [42], the two-loop 
representation reads

zT = −g0(M±
π , T ,0) − 1

2
g0(M0

π , T ,0) − g̃0(M±
π , T , H)

+ M2
π

2F 2
g1(M±

π , T ,0) g1(M0
π , T ,0) − M2

π

8F 2

{
g1(M0

π , T ,0)
}2

+ M2
π

2F 2
g1(M0

π , T ,0) g̃1(M±
π , T , H) +O(p8) , (A.12)

with respective Bose functions defined as

gr(M, T ,0) = T 4−2r

(4π)r

∞∫
0

dρ ρr−3 exp
(

− M2

4π T 2
ρ
)[

S
( 1

ρ

)
− 1

]
,

g̃r(M±
π , T , H) = T 2−2r

(4π)r+1 |qH|
∞∫

0

dρ ρr−2

(
1

sinh(|qH|ρ/4π T 2)
− 4π T 2

|qH|ρ

)

× exp
(

− (M±
π )

2

4π T 2
ρ
)[

S
( 1

ρ

)
− 1

]
, (A.13)

where S(z),

S(z) =
∞∑

n=−∞
exp(−πn2z) , (A.14)

is the Jacobi theta function. The Bose functions involve the quantities M±
π and M0

π , i.e., the masses of the charged and neutral pions 
subjected to the magnetic field,

(M±
π )

2 = M2
π + l6 − l5

48π2

|qH|2
F 2

,

(M0
π )

2 = M2
π + M2|qH|

16π2 F 2
I−1 . (A.15)

The symbol M in the kinematical Bose functions gr can either denote M±
π or M0

π depending on context. The quantity Mπ is the (one-
loop) pion mass in zero magnetic field defined by Eq. (A.4).

Appendix B. Zero-temperature magnetic susceptibility in the limit |qH | � M2

In this Appendix we identify the structure of magnetic field powers in the zero-temperature magnetic susceptibility χ0(M, H) by 
considering the limit |qH | � M2. The quantity χ0(M, H),

χ0(M, H) = − d2z0

d|qH|2 , (B.1)

with z0 given in Eq. (A.2), contains the integrals In and Jn – see Eq. (A.3) – that we write as

9 This means that the NLO effective constant h2 and the NNLO effective constant c34 are irrelevant within the adopted renormalization prescription.
7
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In = εn+1

∞∫
0

dρ ρn e−ρ
( 1

sinh(ερ)
− 1

ερ

)
,

Jn = εn+1

∞∫
0

dρ ρn e−ρ
( 1

sinh(ερ)
− 1

ερ
+ ερ

6

)
, (B.2)

where ε,

ε = |qH|
M2

, (B.3)

is the relevant expansion parameter. The integrands yield the series

1

sinh(ερ)
− 1

ερ
= ĉ1ρ ε + ĉ2ρ

3ε3 + ĉ3ρ
5ε5 +O(ε7) , (B.4)

with the first five Taylor coefficients as

ĉ1 = −1

6
≈ −0.167 ,

ĉ2 = 7

360
≈ 0.0194 ,

ĉ3 = − 31

15120
≈ −0.00205 ,

ĉ4 = 127

604800
≈ 0.000210 ,

ĉ5 = − 73

3421440
≈ −0.0000213 . (B.5)

Collecting terms, we find that the zero-temperature magnetic susceptibility features even powers of the magnetic field and amounts to

χ0(M, H) = α0 + α2|qH|2 + α4|qH|4 +O(|qH|6) , (B.6)

with respective coefficients

α0 = −h2 − 1

48π2
+ c34(l6 − l5)

384π4

M2

F 2
− l3

1536π4

M2

F 2
,

α2 = 7

480π2M4
+ 7l3

7680π4 F 2M2
+ l6 − l5

384π4 F 2M2
,

α4 = − 31

1344π2M8
− 31l3

10752π4 F 2M6
− 7(l6 − l5)

4608π4 F 2M6
. (B.7)

Again we point out that the renormalization convention adapted for the T = 0 free energy density specified in Appendix A.1 implies that 
the coefficient α0 is set to zero by definition, i.e., the contribution α0 is subtracted from the zero-temperature magnetic susceptibility 
χ0(M, H).

Appendix C. Magnetic susceptibility at finite temperature

Here we provide the explicit representation of the finite-temperature magnetic susceptibility – χT – in terms of the various kinematical 
Bose functions involved.10 In the derivation of χT ,

χT = − d2zT

d|qH|2 , (C.1)

the following identities featuring derivatives of Bose functions with respect to the magnetic field are useful,

d

d|qH| gr(M±
π , T ,0) = − l6 − l5

24π2

|qH|
F 2

gr+1(M±
π , T ,0) ,

d

d|qH| gr(M0
π , T ,0) = − M2

π

16π2 F 2

(
I−1 + M2

π

|qH| I0

)
gr+1(M0

π , T ,0) ,

d

d|qH| g̃r(M±
π , T , H) = 1

|qH| g̃r(M±
π , T , H) − l6 − l5

24π2

|qH|
F 2

g̃r+1(M±
π , T , H) + g̃[H]

r (M±
π , T , H) , (C.2)

where

10 The Bose functions gr and g̃r are defined in Eq. (A.13).
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g̃[H]
r (M±

π , T , H) = T 2−2r

(4π)r+1 |qH|
∞∫

0

dρρr−2

(
− ρ coth(|qH|ρ/4π T 2)

4π T 2 sinh(|qH|ρ/4π T 2)
+ 4π T 2

|qH|2ρ

)

× exp
(

− (M±
π )

2

4π T 2
ρ
)[

S
( 1

ρ

)
− 1

]
. (C.3)

Instead of using dimensionful Bose functions gr and g̃r , it is more transparent to express observables by dimensionless Bose functions hr

and h̃r ,

h0 = g0

T 4
, h̃0 = g̃0

T 4
, h1 = g1

T 2
, h̃1 = g̃1

T 2
, h2 = g2 , h̃2 = g̃2 . (C.4)

The finite-temperature magnetic susceptibility χT can then be written in the form

χT (Mπ , H) = χ1(T , Mπ , H) + χ2(T , Mπ , H) . (C.5)

One-loop and two-loop contributions, respectively, are

χ1 = m±t2

m2
H

h1(M±
π , T ,0) + m2± h2(M±

π , T ,0) + t2

4mH
χ0 h1(M0

π , T ,0)

+m2
0

2
h2(M0

π , T ,0) + 3m±t2

m2
H

h̃1(M±
π , T , H) + t2

m2
H

h̃[H]
0 (M±

π , T , H)

+ t2

2mH

d

dmH
h̃[H]

0 (M±
π , T , H) + m2±h̃2(M±

π , T , H) + m±h̃[H]
1 (M±

π , T , H) ,

χ2 = 8π2m2

{
− t2

m2
H

m±h2(M±
π , T ,0)h1(M0

π , T ,0) − m2±h3(M±
π , T ,0)h1(M0

π , T ,0)

−2m±m0h2(M±
π , T ,0)h2(M0

π , T ,0) − t2

2mH
χ0 h1(M±

π , T ,0)h2(M0
π , T ,0)

−m2
0h1(M±

π , T ,0)h3(M0
π , T ,0) − t2

2mH
χ0 h2(M0

π , T ,0)h̃1(M±
π , T , H)

−m2
0h3(M0

π , T ,0)h̃1(M±
π , T , H) − 2t2

m2
H

m0h2(M0
π , T ,0)h̃1(M±

π , T , H)

−m0m±h2(M0
π , T ,0)h̃2(M±

π , T , H) − 2m0h2(M0
π , T ,0)h̃[H]

1 (M±
π , T , H)

− 2t2

m2
H

m± h1(M0
π , T ,0)h̃2(M±

π , T , H) − t2

m2
H

h1(M0
π , T ,0)h̃[H]

1 (M±
π , T , H)

−m2±h1(M0
π , T ,0)h̃3(M±

π , T , H) − m±h1(M0
π , T ,0)h̃[H]

2 (M±
π , T , H)

− t2

2mH
h1(M0

π , T ,0)
d

dmH
h̃[H]

1 (M±
π , T , H) + m2

0

2
h3(M0

π , T ,0)h1(M0
π , T ,0)

+ t2

4mH
χ0 h2(M0

π , T ,0)h1(M0
π , T ,0) + m2

0

2
h2(M0

π , T ,0)h2(M0
π , T ,0)

}
, (C.6)

with coefficients

m± = −2(l6 − l5)m2
H

3
,

m0 = −m2

∞∫
0

dρ ρ−1 exp
(

− m2

m2
H

ρ
)( 1

sinh(ρ)
− 1

ρ

)

− m4

m2
H

∞∫
0

dρ exp
(

− m2

m2
H

ρ
)( 1

sinh(ρ)
− 1

ρ

)
,

χ0 = −2m6

m5
H

∞∫
0

dρ ρ exp
(

− m2

m2
H

ρ
)( 1

sinh(ρ)
− 1

ρ

)
. (C.7)

The dimensionless functions h̃[H]
r (M±

π , T , H) read
9
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h̃[H]
0 (M±

π , T , H) = g̃[H]
0 (M±

π , T , H)

T 2
, h̃[H]

1 (M±
π , T , H) = g̃[H]

1 (M±
π , T , H) ,

h̃[H]
2 (M±

π , T , H) = g̃[H]
2 (M±

π , T , H) × T 2 , (C.8)

while h3 and h̃3 are

h3 = g3 T 2 , h̃3 = g̃3 T 2 . (C.9)

References

[1] G.S. Bali, F. Bruckmann, M. Constantinou, M. Costa, G. Endrödi, S.D. Katz, H. Panagopoulos, A. Schäfer, Phys. Rev. D 86 (2012) 094512.
[2] C. Bonati, M. D’Elia, M. Mariti, F. Negro, F. Sanfilippo, Phys. Rev. Lett. 111 (2013) 182001.
[3] G.S. Bali, F. Bruckmann, G. Endrödi, F. Gruber, A. Schäfer, J. High Energy Phys. 04 (2013) 130.
[4] G.S. Bali, F. Bruckmann, G. Endrödi, A. Schäfer, PoS LATTICE2013 (2013) 182.
[5] C. Bonati, M. D’Elia, M. Mariti, F. Negro, F. Sanfilippo, PoS LATTICE2013 (2013) 184.
[6] G.S. Bali, F. Bruckmann, G. Endrödi, S.D. Katz, A. Schäfer, J. High Energy Phys. 08 (2014) 177.
[7] C. Bonati, M. D’Elia, M. Mariti, F. Negro, F. Sanfilippo, Phys. Rev. D 89 (2014) 054506.
[8] G.S. Bali, F. Bruckmann, G. Endrödi, A. Schäfer, Phys. Rev. Lett. 112 (2014) 042301.
[9] L. Levkova, C. DeTar, Phys. Rev. Lett. 112 (2014) 012002.

[10] G. Endrödi, PoS CPOD2014 (2014) 038.
[11] C. Bonati, M. D’Elia, M. Mariti, M. Mesiti, F. Negro, F. Sanfilippo, PoS LATTICE2014 (2014) 237.
[12] V.V. Braguta, M.N. Chernodub, A.Y. Kotov, A.V. Molochkov, A.A. Nikolaev, Phys. Rev. D 100 (2019) 114503.
[13] G.S. Bali, G. Endrödi, S. Piemonte, J. High Energy Phys. 07 (2020) 183.
[14] S. Fayazbakhsh, N. Sadooghi, Phys. Rev. D 90 (2014) 105030.
[15] V.P. Pagura, D. Gómez Dumm, S. Noguera, N.N. Scoccola, Phys. Rev. D 94 (2016) 054038.
[16] R.L.S. Farias, V.S. Timóteo, S.S. Avancini, M.B. Pinto, G. Krein, Eur. Phys. J. A 53 (2017) 101.
[17] G. Endrödi, J. High Energy Phys. 04 (2013) 023.
[18] A.N. Tawfik, A.M. Diab, N. Ezzelarab, A.G. Shalaby, Adv. High Energy Phys. 2016 (2016) 1381479.
[19] G. Kadam, S. Pal, A. Bhattacharyya, arXiv:1908 .10618.
[20] D. Kabat, K. Lee, E. Weinberg, Phys. Rev. D 66 (2002) 014004.
[21] A.N. Tawfik, N. Magdy, Phys. Rev. C 90 (2014) 015204.
[22] T. Steinert, W. Cassing, Phys. Rev. C 89 (2014) 035203.
[23] K. Kamikado, T. Kanazawa, J. High Energy Phys. 01 (2015) 129.
[24] Y.A. Simonov, V.D. Orlovsky, JETP Lett. 101 (2015) 423.
[25] V.D. Orlovsky, Y.A. Simonov, Int. J. Mod. Phys. A 30 (2015) 1550060.
[26] Y. Tsue, J. da Providencia, C. Providencia, M. Yamamura, H. Bohr, Prog. Theor. Exp. Phys. (2015) 103D01.
[27] A.N. Tawfik, A.M. Diab, M.T. Hussein, arXiv:1604 .08174.
[28] M.A. Andreichikov, Y.A. Simonov, Eur. Phys. J. C 78 (2018) 420.
[29] A.N. Tawfik, A.M. Diab, M.T. Hussein, J. Exp. Theor. Phys. 126 (2018) 620.
[30] X. Li, W. Fu, Y. Liu, Phys. Rev. D 99 (2019) 074029.
[31] B. Karmakar, R. Ghosh, A. Bandyopadhyay, N. Haque, M.G. Mustafa, Phys. Rev. D 99 (2019) 094002.
[32] S. Rath, B.K. Patra, Eur. Phys. J. A 55 (2019) 220.
[33] S.S. Avancini, R.L.S. Farias, M.B. Pinto, T.E. Restrepo, W.R. Tavares, arXiv:2008 .10720.
[34] P. Adhikari, J.O. Andersen, arXiv:2102 .01080, 2021.
[35] J. Gasser, H. Leutwyler, Ann. Phys. (N.Y.) 158 (1984) 142.
[36] S. Aoki, et al., Eur. Phys. J. C 80 (2020) 113.
[37] C.P. Hofmann, arXiv:2012 .06461, 2020.
[38] P. Gerber, H. Leutwyler, Nucl. Phys. B 321 (1989) 387.
[39] G.S. Bali, F. Bruckmann, G. Endrödi, Z. Fodor, S.D. Katz, A. Schäfer, Phys. Rev. D 86 (2012) 071502(R).
[40] H. Leutwyler, in: V.E. Herscovitz, C.A.Z. Vasconcellos, E. Ferreira (Eds.), Hadron Physics 94 – Topics on the Structure and Interaction of Hadronic Systems, World Scientific, 

Singapore, 1995, p. 1.
[41] S. Scherer, Adv. Nucl. Phys. 27 (2003) 277.
[42] C.P. Hofmann, Phys. Rev. D 101 (2020) 114031.
[43] C.P. Hofmann, Phys. Rev. D 102 (2020) 094010.
[44] J. Bijnens, G. Colangelo, G. Ecker, Ann. Phys. (N.Y.) 280 (2000) 100.
10

http://refhub.elsevier.com/S0370-2693(21)00324-5/bib35FEC176215C7DFD5985667995C022CCs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib2712EA407E16800B773C95E3DF25CBF4s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibAE481CE5DD9BB83FDEFD815ADFB962C4s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibB8BF3DA633BB09E0B95C7EE893597165s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibB90ECE32075274A25B0EC110545F268Fs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib981DDFDF071EB16A6BA64E71C02B9E55s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib88C7B783DB6D835F845E343792FA93C5s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibDDBADAEC026329910ECF915D65DF91C1s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib170D65B819FFC03653A046EDD1629A2Bs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibA2357F637E8440FA74C038FAED75C15Cs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibC89B58C704DFE17A77B99A6E0B00C000s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib7D903E98AC50CEF966AD4527B14E8024s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib5254B8BA4D3AFC41658311895E34E756s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib8E99D937A018E2705A85286C6F486B2Ds1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib8F53131E89A344EAB8A530B2800C45FAs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib0149DF8CC05DBD17BB5CFEBFCBDED267s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib1341B9A4735970265D1F33364C123EC7s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibBA45D8578656F9497BAC9B1E41FB4303s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib5F69A20BEEFA742380D7D39CF2D4538Es1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib5DD07BB8158BE419EA1C15CD9E8E89ABs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib03BC0A7EBB02F110C331C52F0F147951s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib21D2525FD056364B784A9CB174116CFAs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib4F5D5368EBC6A7E7599E5B9D863DC983s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibEA1275A8D5C2D7E4A0FF3263B8C253CDs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibAEE1A33D2351CD7DA4DB7F01715AD0BBs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib737B832D9FBF72AEF1A96D99D4CB461Es1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib85125CA1ED248054E45BC7DAA35F573As1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibFCE5182EC4A9A96E5F8B0EFE24EEFFBFs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib74E387C374F475A4D5995059AF82FC46s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib642A7D88AC4368B23711F476D5D128F7s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib7C73EA8EBFD10A3EEBCA2165A37B7BE1s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib12BC7E7749537B1DC4B7EC80162C258Fs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib7F739FF54AA5116A92DF3EFED213ACF3s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib0FCCDAE097F2AD9E0C5FD9BAE5754D02s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib6058AED9475BEFBC96D4D0443B5A45CCs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibF8ACB0C97AC54E082DEBB42C2B96ADCFs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib4BD7F36553AA5A06782CA65DDD977969s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib42B9F7F605F572C7FB807E2D78CDB6EBs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibEB86A361FDEC35DAC5B2A15BB7E2F308s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib96C741F3BB4C843F8E6A31BF4695ED24s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib96C741F3BB4C843F8E6A31BF4695ED24s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibC969D63C082876C2898FFF148786166As1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibD88794A6EA64C5424F5BDE01F0F3A997s1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bib35217A882FD2114445E747FB5F7FABEBs1
http://refhub.elsevier.com/S0370-2693(21)00324-5/bibECE2AF2836F08ED54AF70FF6F5C9FA35s1

	Diamagnetic and paramagnetic phases in low-energy quantum chromodynamics
	1 Introduction
	2 Magnetization
	3 Magnetic susceptibility
	4 Conclusions
	Declaration of competing interest
	Acknowledgements
	Appendix A Representation of the free energy density
	A.1 Zero temperature
	A.2 Finite temperature

	Appendix B Zero-temperature magnetic susceptibility in the limit |qH|≪M2
	Appendix C Magnetic susceptibility at finite temperature
	References


