@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2023-THPL099

GNU Radio 4.0 FOR REAL-TIME SIGNAL-PROCESSING AND
FEEDBACK APPLICATIONS AT FAIR

Ralph J. Steinhagen, Matthias Kretz, Alexander Krimm, (GSI Helmholtzzentrum, Germany),
Derek Kozel, Josh Morman (GNU Radio Project), Ivan Cukié, Frank Osterfeld (KDAB, Germany)

Abstract

At FAIR, GNU Radio! is being used as part of the generic
monitoring and first-line diagnostics for accelerator related
devices, and to further support equipment experts, operation,
and FAIR users in developing basic to advanced top-level
measurement and control loops.

GNU Radio is a free and open-source software devel-
opment toolkit supporting hundreds of low-cost to high-
performance industrial digitizers with sampling frequencies
ranging from a few MS/s to GS/s. At its core are directed
signal flow graphs expressing arbitrary post-processing and
feedback control loop logic that are both numerically highly
efficient as well as providing an intuitive yet detailed nuts-
and-bolts representation. This facilitates to inspect and/or
to reconfigure existing systems by accelerator-, control- or
other system domain-experts alike with little to no prior
required programming experience.

This contribution describes the community-driven im-
provement and modernisation process leading to GNU Ra-
dio 4.0 supporting improved type-safety, improved perfor-
mance, and new features such as event-driven data process-
ing, nanosecond-level synchronisation using White-Rabbit,
and slow feedback loops.

INTRODUCTION

The Facility for Antiproton and Ion Research (FAIR) aims
to develop cutting-edge accelerator technology to investigate
the fundamental properties of matter. In this context, GNU
Radio, an open-source software-defined radio (SDR) frame-
work, has emerged as a powerful tool for generic monitoring
and first-line diagnostics for accelerator-related devices and
beams [1-5]. The flexibility of its flow-graphs enable equip-
ment experts, operation, and users of FAIR experiments in
developing ad-hoc basic to advanced top-level measurement,
real-time signal-processing, and feedback control loop appli-
cations. GNU Radio in its version 3.7 (GR3) is utilised in a
wide range of applications within the FAIR accelerator facil-
ity, including monitoring of magnet, RF, fast kicker, and HV
power supply systems. GR is also being used for Al-based
monitoring of the primary electrical network, addressing
non-intrusive load monitoring, transient monitoring, and
compliance assurance with network operator regulations.

GRAPH-BASED SIGNAL PROCESSING

GNU Radio lowers the threshold for transferring lab or
test bench prototypes into 24/7 operational use by sharing the
same and easily reviewable logical structure, thanks to the
intuitive graph representation and a more efficient, near-zero

! https://www.gnuradio.org/

THPLO99
4688

overhead API. Directed signal flow graphs form the core
of the framework, enabling the expression of arbitrary post-
processing and feedback control loop logics as shown in Fig-
ures 1 and 2. Flow graphs can be accessed programmatically
and graphically without impacting processing performance.
This approach allows for efficient numerical computation
while offering an intuitive and detailed representation of the
underlying system. During commissioning and early opera-
tion, the graph-based structure facilitates easy adaptation to
accommodate new requirements or changes in hardware or
software components, ensuring modularity, clarity, and per-
formance. This is crucial since many accelerator experts do
not necessarily possess the required RSE expertise needed
for reliable long-term operation of these systems, while soft-
ware engineers often have only limited or partial knowledge
of the required specific accelerator sub-domain.

FAIR CONTRIBUTIONS AND
ENHANCEMENTS TO GNU RADIO 4.0

FAIR has contributed its expertise in high-performance
computing, research software engineering (RSE), real-time
signal-processing, diagnostics, and feedback system appli-
cations to the modernisation of GNU Radio, resulting in
the upcoming version, GNU Radio version 4.0 (GR4). En-
hancements that were contributed to the GR4 codebase in-
clude improved type-safety, reduced overhead, and a more
intuitive and extensible design. Improved type-safety and
following C++ Core Guidelines minimises data corruption
and segmentation faults, catching most issues and errors
at compile-time before operational deployment. Modern
programming techniques like the preference for ’composi-
tion” over ’inheritance’ and the adoption of the latest C++
standard (ISO/IEC 14882:2020) result in better performance
and a more efficient, near-zero overhead API. A clearer sep-
aration of concerns in class and interface hierarchies and
well-defined buffer objects associated with ports lead to a
leaner and more extensible design. Notable improvements
contributed by FAIR include [2, 3]:

» Type-safe, high-performance lock-free 10 buffers,
which improved throughput and enhances the run-time
performance by at least an order of magnitude as shown
in Figure 3 and Table 1.

e Zero run-time overhead (node *merge-API’) for sub-
graphs whose topology is determined at compile-time.

* Out-of-the-box portable and register-width agnostic
SIMD support with transparent handling of SIMD loop
pro- and epilogue [6-10].

THPL: Thursday Poster Session: THPL
MC6.T33: Online Modelling and Software Tools

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL099

4688

MC6.T33: Online Modelling and Software Tools

THPL099

THPL: Thursday Poster Session: THPL

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy JACoW Publishing

ISBN: 978-3-95450-231-8 ISSN: 2673-5490 doi: 10.18429/JACOW-IPAC2023-THPL099
flow-graph
sub-flow-graph: e.g. CPU scheduling domain
Digitizer #1 edge<T> block #2 y: Dlock #5 i sink #7
<CPU> <CPU> I]]]]]]]]]]:I]] <CPU> <CPU>
Block Buffer<T>

sink #3 sink #8
<CPU> / <CPU>

/

N block #4 > block #6 / > sink #N

<GPU> <GPU> <GPU>

sub-flow-graph: e.g. GPU scheduling domain

flow-graph —¥scheduler sink#3:work() - block#2 - block#5 - ... %{@} CPU

(]
w scheduler#2 —» block#4:work() - block#6 — ... —»{C]} GPU

Figure 1: Schematic flow-graph based processing and scheduling concept.

* Tag based timing system integration (e.g., White- maintenance, security, and improvements fostering col-
Rabbit) allowing nanosecond-level synchronisation and laboration and knowledge sharing.
adding timing context information into the sample
stream (e.g., using White-Rabbit technology [11]).

* Settings management supporting transactional settings

updates and multiplexing of settings for different timing 4ET7+
contexts. 2

Q.

S 4E6

* Extension of continuous sample-by-sample based sig- 5 e
nal processing to support synchronised chunked-data 8 TEAR- \
. . . . Z |

processing found in transient-recording, event-based, 5 488
or recurring semi-periodic signal applications and slow = ora- |- poSIX - ---1- a0 mm

9 GR3.10 - vmcirc - - - - - GR3.10 - simple

4E4 T T T T

feedback loops. 1 6 1 16 21 f#freader

* Cross-platform support, including WebAssembly.

Figure 3: Throughput performance comparison of the GR3
and GR4 lock-free 10 buffer implementations. The GR4
implementation for both, POSIX and strict fully std-C++
compliant implementation, an order of magnitude faster
compared to the previous GR3 one. Large part of this per-
* Fostering of continuous improvement and investment formance improvement is due to the elimination of vtable-

in RSE practices and user communities for long-term indirections and using a lock-free programming paradigm.

« Efficient, user-adaptable and pluggable work scheduler
architecture adaptable to different execution domains
(e.g., CPU, GPU, NET, FPGA, DSP, ...) and scheduling
constraints (throughput, latency, real-time).

Options QT GUI Range QT GUI Label QT GUI Check Box | QT GUIRange QT GUI Label)
Title: Not titled yet Id: frequency Id: variable_qtgui_label_0_0 Id: speaker 1d: amplitude 1d: variable_qtgui_label_0 UG Eequen cySinK
LT Default Value: 102.5M | | Label: PUB Radio Source Label: local speaker | Default Value: 100m | | Label: SUB Radio Clint g Frseetozek
Output Language: Python | | start: 0 Default Value: 1 Default Value: False | Start: 0 Default Value: 0 ol SR
Generate Options: QT GUI | | stop: 1.56 True: True Stop: 2 Bandwidiit$iz).S2K
Step: 10k False: False Step: 100m
Complexity: 322ubal

QT GUI Time Sink

Variable Variable Number of Points: 20k
ana ane ZMQ SUB Source ’
Id: samp_rate_RF | | Id: samp_rate P i Sample Rate: 32k
Value: 21 Value: 32k g Autoscale: No
Timeout (msec): 100

Pass Tags: Yes

Constant Source
Constant: False
Low Pass Filter
Decimation: 1
Gain: 1
Sample Rate: 2M
Cutoff Freq: 100k
Transition Width: 1M
Window: Hann
Beta: 6.76

RTL-SDR Source
Device Arguments: ti=0
Sync: Unknown PPS
Number Channels: 1
Sample Rate (sps): 2M
Cho: Frequency (Hz): 1025M
m Cho: Frequency Correction (ppm): 0
Cho: DC Offset Mode: 0
Cho: 1Q Balance Mode: 0
Cho: Gain Mode: False Tags Strobe
ChO: RF Gain (dB): 10 Value (PMT): TEST
Cho: IF Gain (dB): 20 B e
Cho: BB Gain (dB): 20 [Srrezll)

Multiply Const Audio Sink
Constant: 100m Sample Rate: 32k

Rational Resampler
WBFM Receive Interpolation: 32
Quadrature Rate: 500k Decimation: 50
Audio Decimation: 10 Taps:
Fractional BW: 0

QT GUI Frequency Sink
FFT Size: 1.024k

L Center Frequency (Hz): 0 D

Bandwidth (Hz): 2M

Rational Resampler
Interpolation: 1
Decimation: 4
Taps:

Fractional BW: 0

ZMQPUB Sink
Address: tcp://*5001
Time out (msec): 100
Pass Tags: Yes

Figure 2: GR3 graph example illustrating a basic FM-type receiver with ZeroMQ-based connectivity.

THPL: Thursday Poster Session: THPL THPL099
MC6.T733: Online Modelling and Software Tools 4689

=gz Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL099

MC6.T33: Online Modelling and Software Tools

4689

THPL: Thursday Poster Session: THPL

THPL099

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

JACoW Publishing
doi: 10.18429/JACoW-IPAC2023-THPL099

Table 1: Processing performance for graphs known at compile-time or runtime. The ’constraint’ benchmark case limits the
min/max number of samples to ’src(N=1024)->b1(N<128)->b2(N=1024)->b3(N=32...128)->sink’. The merging of blocks
forgoes the IO buffers if the connection and topology between processing block is known at runtime. In turn allows the
compiler to see and optimise the merged algorithm. The merge-API is used for common topologies but allows nevertheless

the introspection and easy (albeit offline) modifications.

Benchmark cache misses | mean | stddev max ops/s
compile-time src->sink 1.3k /3k=46% | 626ns | 110ns | 952 ns | 16.4G
compile-time src->copy->sink 391/971=40% | 957 ns | 106 ns lus | 10.7G
compile-time src->constraint->sink 398/960=41% | 957 ns | 103 ns lus | 10.7G
compile-time src->mult(2)->divide(2)->add(-1)->sink 401 / 1k = 40% 3us | 108 ns 4 us 3.0G
compile-time src->(mult(2)->div(2)->add(-1))0->sink 470/ 1k = 42% 41 us | 189 ns 42 us | 248M
runtime src->sink 9k / 174k = 5% 42 us 98us | 336us | 241M
runtime src->constraint->sink 20k / 648k =3% | 125us | 328 us I ms | 81.7M
runtime src->(mult(2)->div(2)->add(-1))19->sink 56k / 686k = 8% | 127 us 28us | 198 us | 80.6M
runtime src->mult(2)->... - via process_one(..) 24k /1 663k =4% | 105us | 259 us | 882 us | 97.5M
runtime src->mult(2)->... - via process_bulk(..) 24k / 664k =4% | 152 us | 358 us 1ms | 67.3M

template<typename T>
requires (std::is_arithmetic<T>())
struct CustomNode : public node<CustomNode<T>> {

IN<T> in;
OUT<T> out;
T scaling_factor = static_cast<T>(1);

std::string context; // <=> multiplexing settings

®© N o U kW =

9 template<t_or_simd<T> V> // -> dntrinsic SIMD support
10 [[nodiscard]] constexpr V

11 process_one(const V &a) const noexcept {

12 return a * scaling_factor;

13 }

14

15 /% alternate interface:

16 process_bulk(std: :span<const V> in, std::span<V> out) {
17 // [..] user-defined processing logic [..]

18 }

19 */

20)}

21 ENABLE_REFLECTION_FOR_TEMPLATE_FULL((typename T),

2 (CustomNode<T>), in, out, scaling_factor, context);

Listing 1: Custom GR4 Block Example. The IO-ports
as well as block settings are defined as plain public data
members. These can be programmatically accessed through
compile-time reflection and to automatically generate the
required meta information, (optional) string-based key-value
mapping, (de-)serialisers etc. without any additional IDL
specification or external code-generation tool (N.B. intrin-
sically done by by the C++ compiler preprocessor). This
simplifies writing new processing blocks and reduces a com-
mon error source for most new developers.

GNU Radio includes many common signal processing
blocks, often enabling full application development without
writing any sample processing code. However, the modi-
fied API makes it easy to implement custom extensions if
a specific function is unavailable or cannot be composed
using existing blocks. A new block can be as simple as the
following code example 1:

This approach simplifies implementation, unit testing,
quality assurance, and reasoning about the system compared
to other signal processing and front-end software frame-
works. Consequently, transition from prototypes to 24/7
operational use is easier, leading to faster development cy-

THPLO99
4690

cles. Together, the improvements of GNU Radio 4.0 over
3.7 are instrumental in advancing FAIR’s research capabili-
ties and may also benefit other research facilities, industries,
academia, and private enthusiasts alike.

IMPORTANCE OF SUSTAINABLE AND
MAINTAINABLE RSE STANDARDS

The adoption of sustainable and maintainable research
software engineering (RSE) standards is crucial for the long-
term success and adaptability of a facility like FAIR. Sus-
tainable RSE practices help bridge the gap between software
engineers and domain experts, fostering collaboration and
knowledge sharing. FAIR adheres to these standards to en-
sure that its software infrastructure remains robust, auditable,
and secure while enabling rapid prototyping and adaptation
to accommodate the facility’s ever evolving research mis-
sion.

GR4 not only benefits FAIR by providing significant ad-
vancement to the most broadly used open source signal
processing framework, benefitting researchers in industry,
academia, hobbyists/enthusiasts, across a wide range of
fields such as wireless communications, radio astronomy,
and infosec research. The shared value created by GR4 fos-
ters an ecosystem that spawns new ideas and fosters contin-
uous improvement of the solutions offered. FAIR is grateful
for the cooperation with the GNU Radio core team and its
openness to new ideas, suggestions, and improvements that
led to the development of GR4.

CONCLUSION

This paper invites readers to explore, adapt, and contribute
to the GR4 project. The development and collaboration
between FAIR and the GNU Radio core team have resulted
in a robust and modernised solution for real-time signal-
processing and feedback applications. With an emphasis on
sustainable and maintainable RSE practices, GR4 offers a
powerful and adaptable platform for addressing the evolving
needs of FAIR and the broader research community.

THPL: Thursday Poster Session: THPL
MC6.T33: Online Modelling and Software Tools

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL099

4690

MC6.T33: Online Modelling and Software Tools

THPL099

THPL: Thursday Poster Session: THPL

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

ISBN:

1

—

(2]

[3

—

[4

—_

[5

—

(6]

THPL:

14th International Particle Accelerator Conference,Venice, Italy

978-3-95450-231-8

REFERENCES

GNU Radio Development Team, GNU Radio, https://
www . gnuradio.org, Accessed: May 3, 2023, 2001.

GNU Radio Development Team, GNU Radio GitHub repo,
https://github.com/gnuradio/gnuradio, 2001.

FAIR & GNU Radio Development Team, GNU Radio
4.0 — graph-prototype, https://github.com/fair-acc/
graph-prototype, 2022.

R.J. Steinhagen et al., “Generic Digitization of Analog Sig-
nals at FAIR - First Prototype Results at GSI”, in Proc. 10th
International Particle Accelerator Conference (IPAC’19),
Melbourne, Australia, 19-24 May 2019, Melbourne, Aus-
tralia, 2019, pp. 2514-2517.
doi:10.18429/JACOW-IPAC2019-WEPGWO21

R. Steinhagen, A. Krimm, D. Ondreka, 1. Cukic, and
F. Osterfeld, “OpenDigitizer: Digitizer Modernisation us-
ing OpenCMW and GNU Radio 4.0 for FAIR”, presented
at [IPAC’23, Venice, Italy, May 2023, paper THPL09S, this
conference.

M. Kretz, “vir-simd”, Tech. Rep., version 0.2.0, 2023.
doi:10.5281/zenodo.7892320

Thursday Poster Session: THPL

MC6.733: Online Modelling and Software Tools

ISSN: 2673-5490

(7]

(9]

[10]

(1]

JACoW Publishing
doi: 10.18429/JACoW-IPAC2023-THPL099

“Isofiec 19570:2018, Programming Languages — Technical
Specification for C++ Extensions for Parallelism”, Standard,
2018. https://www.iso.org/standard/70588.html

M. Kretz, “Extending c++ for explicit data-parallel program-
ming via simd vector types”, Frankfurt (Main), Univ., Ph.D.
dissertation, 2015. doi:10.13140/RG.2.1.2355.4323

M. Kretz and V. Lindenstruth, “Vc: A C++ library for explicit
vectorization”, Software: Practice and Experience, 2011.
doi:10.1002/spe.1149

M. Kretz, “Efficient use of multi- and many-core systems with
vectorization and multithreading”, Diplomarbeit, University
of Heidelberg, 2009.
doi:10.13140/RG.2.2.12005.27360

P. Moreira, J. Serrano, T. Wlostowski, P. Loschmidt, and
G. Gaderer, “White Rabbit: Sub-nanosecond Timing Distri-
bution over Ethernet”, in Proc. of 2009 International Sympo-
sium on Precision Clock Synchronization for Measurement,
Control and Communication, 2009, pp. 1-4.
doi:10.1109/ISPCS.2009.5340196

THPLO99
4691

e=ga Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPL099

MC6.T33: Online Modelling and Software Tools

4691

THPL: Thursday Poster Session: THPL

THPL099

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

