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ABSTRACT OF THE DISSERTATION

Categorical Aspects of BPS States

By Ahsan Zulfeqar Khan

Dissertation Director:

Gregory W. Moore

This dissertation is devoted to the study of categorical aspects of BPS states in two-

dimensional quantum field theories with N = (2, 2) supersymmetry. The basic aim of a

categorical discussion is to study spaces of BPS states, which carry much more refined infor-

mation than their traditionally studied characters. In a two-dimensional theory, whereas

BPS states are supersymmetric states defined on a one-dimensional spatial slice, carry-

ing out the discussion at a categorical level requires one to incorporate two-dimensional

supersymmetric instantons. We motivate these instantons and the differential equations

they obey in a broader physical context. We show how these two-dimensional instanton

effects can be incorporated to result in a categorification of the Cecotti-Vafa wall-crossing

formula. We generalize the discussion to incorporate two-dimensional theories with non-

trivial twisted mass terms. The presence of twisted masses require us to incorporate Fock

spaces of periodic solitons into the discussion, and we show how these Fock spaces affect

the categorical wall-crossing formalism. We sketch two important future directions. The
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first involves the application of the ideas of this thesis to the study of three-manifolds and

homological knot invariants. The second has us graduate from two-dimensional theories

and enter the world of four-dimensional N = 2 theories and their BPS states.
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Chapter 1

Introduction: Instantons, Gradient Flow Equations,

Supersymmetry, and Categorification

Much of this thesis is devoted to the study of instanton effects in two-dimensional N = 2

supersymmetric Landau-Ginzburg models. In this introductory chapter we explain the

role of instantons in modern-day physics from a few different perspectives. We begin by

motivating instanton equations in the broader context of physics, and explain how these

equations often arise as the gradient flow equations for an appropriate action functional.

In particular, we use the gradient flow viewpoint to derive the instanton equation that

appears in Landau-Ginzburg models. Next we explain how instanton equations come up

as the supersymmetric equations in supersymmetric theories. Finally we explain the role

of instantons in categorification.

1.1 Instantons and Gradient Flow Equations

The equations of mathematical physics, whether they describe the motion of a particle

through Newton’s equation

d2x

dt2
= −∂V

∂x
, (1.1)

the shapes of minimal area surfaces, via the harmonic map equation

∆φ = 0, (1.2)
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or the properties of the nuclear force via the Yang-Mills equations

DAF = 0, (1.3)

DA ∗ F = 0, (1.4)

very often tend to be second order, non-linear partial differential equations. Intimately tied

with these properties is that these differential equations follow from an action principle:

there is a functional S of the relevant fields such that the equations of interest are equivalent

to the stationarity of S. Such partial differential equations and the action principles they

follow from have been the cornerstone of physics for many centuries.

These differential equations and the action principles that govern them are concise and

elegant summaries of the laws of nature. Furthermore, the physical predictions that follow

from them are compatible with empirical observation. Indeed it is very satisfying when a

vast array of physical phenomenon is captured by a few equations that can be written on

the back of an envelope. On the other hand, the world that we observe around us is full

of rich and complex phenomenon, many of which we still do not understand. How is the

apparent simplicity of physical laws and the richness and complexity of the world around

us compatible? The resolution lies in the non-linear nature of these equations1. While it

is simple to derive these equations and analyze their symmetry properties, their non-linear

nature prevents us from solving them beyond the simplest of cases.

1The skeptical reader might ask if this is really true. Indeed, many important physics equations are

in fact linear! For instance, consider the Dirac equation, which predicts the existence of anti-matter.

Similarly Maxwell’s equations are also linear. However, the observed phenomenon always involve some

type of interactions. For instance, the Dirac and Maxwell equations are separately linear theories and

explain anti-matter and light as an electromagnetic wave respectively, but if we want to describe how

electrons and light interact, we need Quantum Electrodynamics, a non-linear theory.



3

In what situations can one say something substantive about the solutions of these non-

linear equations of mathematical physics? The first is when one takes a special case when

the non-linearity drops out and the equations reduce to linear ones. For instance, with

Newton’s equations one could take V = 0, where one is describing the motion of a free

particle, or V to be a quadratic polynomial so that the system reduces to a combination of

free motion and harmonic oscillations. Similarly, one could take the harmonic map equation

for maps φ : Σ→M on flat manifolds, say Σ = R2 and M = R3 where the equation reduces

to the linear Laplace equation which can be analyzed by several well-developed methods.

Finally, in the Yang-Mills equations, one could take the gauge group G to be Abelian so that

one is describing electromagnetic waves propagating in a vacuum and we are once again

in a situation where an explicit analysis is possible. Another situation where one might

describe things explicitly, is a highly symmetric situation, such as describing the motion

of a symmetric top, or studying the harmonic map equation propagating in a symmetric

space. In these situations the equations are non-linear yet solvable due to the enhanced

symmetry of the problem.

Is there a class of solutions one can be explicit about, but does not involve making

specific choices, such as choosing favorable potentials V , manifolds (Σ,M) or Yang-Mills

gauge group G? It turns out that there is a class of solutions known as instantons where

this can be so. An instanton is a field configuration that not only minimizes the action

locally, but also globally (in a given connected component of field space). Equivalently, it

is a solution of a first-order partial differential equation (usually obtained by applying the

“Bogomolnyi trick”) that also satisfies the second-order equation. The first-order PDEs

obeyed by instantons are known as instanton equations. Let us discuss one-by-one in each

of our three examples what the corresponding instanton equation is. For the case of particle
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mechanics, we take V to be of the form V = −1
2

(
∂h
∂x

)2
, and the instanton equation reads

dx

dt
= ±∂h

∂x
. (1.5)

Similarly, assuming (Σ, j) is a Riemann surface, and M admits an almost complex struc-

ture J , the instanton equation for harmonic maps is the Cauchy-Riemann (or pseudo-

holomorphic map) equation

dφ ◦ j = ±J ◦ dφ. (1.6)

For Yang-Mills theory the instanton equation is the (anti) self-duality equation

F = ± ∗ F. (1.7)

Each equation is now first order in the fields x, φ, and A respectively. It is also easy to

directly verify that if a field configuration satisfies the respective instanton equations, they

also satisfy the Newton, harmonic map and Yang-Mills equations.

What makes instanton equations more amenable to study when compared to their

second-order parent equations? That they satisfy first-order equations certainly leads to

more simplicity. For instance, the Yang-Mills equations were considered intractable for

non-Abelian gauge groups and it was a breakthrough when Belavin, Polyakov, Schwartz

and Tyupkin [BPST] were able to write down an explicit solution for G = SU(2) by reduc-

ing first to the self-dual instanton equation. More generally, instanton equations obey a

property known as ellipticity2, so that their linearization leads to first-order elliptic differ-

ential operators. This is a favorable situation where mathematicians have developed tools

for the analysis of such PDEs. In particular, the Atiyah-Singer index theorem, applicable

2A partial differential equation is said to be elliptic if its linearization leads to an invertible principle

symbol.



5

to elliptic differential operators, can be used to extract a great deal of information about

instantons and their moduli spaces [ADHM, DK].

What do these instantons teach us? Naively, due to the Wick rotation involved, a

classical physicist might think that the solutions of instanton equations are unphysical and

therefore uninteresting. However this could not be further from the truth. All one has to do

is to step into the quantum world, where Wick rotation is necessary to get a well-behaved

path integral. Instantons are then indispensible. Indeed, in his classic lectures “The Uses

of Instantons,” [Col] Sidney Coleman opens with

In the last two years there have been astonishing developments in quantum field theory.

We have obtained control over problems previously believed to be of insuperable difficulty

and we have obtained deep and surprising insights into the structure of the leading candidate

for the field theory of strong interactions, quantum chromodynamics. These goodies have

come from a family of computational methods that are the subject of these lectures.

Instanton equations have also lead to deep new discoveries in pure mathematics. The

study of the holomorphic map equation lead to the field of Gromov-Witten theory/Floer

theory and advances in symplectic topology [F2]. The (anti) self-dual instanton equation

introduced in the study of four-manifolds by Donaldson, has revolutionized the field of

low-dimensional topology [Don].

Given the usefulness of instanton equations, is there a method to derive them systemati-

cally? For instance, one might wonder if there is an action principle which directly gives us

these first order non-linear PDEs? The answer to this question turns out to be negative.

The gradient flow equation, the pseudo-holomorphic map equation and the self-duality

equations all have the common property that there is no known method to derive them
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directly from an action principle. The equations cannot be identified as the critical set

of a functional S. There is however a very useful point of view which is the closest one

can get to having an action principle. Instanton equations are usually the gradient flow

equations for an action functional in one-dimension less than the original equations.

Suppose (M, g) is a Riemannian manifold and h : M → R is a function on M . The

gradient flow equation is the ordinary differential equation

dφa

dτ
= gab

∂h

∂φb
. (1.8)

It has the property that the value of h always increases along a solution as τ increases.

Consider the one-dimensional instanton equation

dx

dτ
=
∂h

∂x
. (1.9)

Consider the zero-dimensional action h. Then tautologically, indeed, the gradient flow of

h coincides with the instanton equation. Similarly, consider the Cauchy-Riemann equation

with Σ = R × I, where I is a one-manifold. Letting Σ be parametrized by the complex

coordinate z = x+ iτ , the Cauchy-Riemann equations in real coordinates read

∂φa

∂τ
= Jab

∂φb

∂x
. (1.10)

Let ω = dλ be the symplectic form onM and consider the one-dimensional action functional

h =

∫
I
ϕ∗(λ) (1.11)

on the space of maps from I to M . Then the Cauchy-Riemann equations can indeed be

identified as the flow equation

∂φa

∂τ
= gab

δh

δφb
. (1.12)
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Finally consider the self dual equations on a four-manifold of the type M4 = R×M3, and

consider the action functional

h =
1

4π

∫
M3

Tr
(
AdA+

2

3
A3
)

(1.13)

to be the Chern-Simons functional for gauge fields on M3. Then one can show that the

gradient flow equations for the Chern-Simons functional give a (gauged-fixed) version of

the self-duality equations.

Thus as we have just demonstrated, d-dimensional instanton equations, rather than

following from a d-dimensional action principle, tend to be gradient flow equations for

(d − 1)-dimensional action functionals. Does this mean we can write down a usual sort

of d-dimensional action and study flow equations to get desirable instanton equations in

(d + 1)-dimensions? Things are not so easy. The main reason for the “niceness” of the

instanton equations we have described so far is their ellipticity. Without the equations

being elliptic they lose much of their power. On the other hand, the gradient flow equation

of the usual sort of action does not lead to elliptic equations. Indeed, gradient flow of

the standard particle mechanics action S =
∫

dx 1
2

(
dφ
dx

)2
leads to the diffusion equation

∂φ
∂t = ∂2φ

∂x2
which is parabolic rather than elliptic.

The action functionals which do lead to elliptic equations are special. Stressing this

point at a seminar3, Edward Witten states

“Gradient flow will always be a differential equation in one dimension more, but gener-

ically it won’t be elliptic. Try it at home. Write down a functional, and write down the

3The seminar “The Jones Polynomial and Gauge Theory” by Edward Witten, was given in May 2021,

virtually via Zoom at MATRIX (Mathematical Research Institute), The University of Melbourne.
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gradient flow equation in one dimension more. You’ll more often get a parabolic equation

than an elliptic one. You can get lots of parabolic equations that way, but good luck find-

ing an elliptic equation. If you find one, I recommend to publish it. I think they’re all

significant.”

Let us go back to the Cauchy-Riemann equations. For simplicity we work on M = R2

with coordinates (p, q) and symplectic form ω = dp ∧ dq. The Cauchy-Riemann equations

for maps from the x+ iτ -plane to the q + ip-plane are

∂p

∂τ
=
∂q

∂x
,

∂q

∂τ
= −∂p

∂x
, (1.14)

and indeed follow from the gradient flow (in the variable τ) of the action

S =

∫
dx p

dq

dx
. (1.15)

By way of generalizing, a natural guess would be to add a Hamiltonian H(p, q) to the

symplectic action S, so that we take

S → S =

∫
dx
(
p

dq

dx
−H(p, q)

)
. (1.16)

The gradient flow equation of this symplectic action leads to a deformed version of the

Cauchy-Riemann equations that read

∂p

∂τ
=

∂q

∂x
− ∂H

∂p
, (1.17)

∂q

∂τ
=

∂p

∂x
+
∂H

∂q
. (1.18)

More generally, the equations on an arbitrary symplectic manifold X with almost complex

structure J are

∂φa

∂τ
= Jab

∂φb

∂x
− gab ∂H

∂φb
. (1.19)
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These equations are not particularly nice. For arbitraryH, it is not difficult to see that these

equations have no ellipticity (for instance, take H to be a quadratic polynomial p2+q2). We

also break the two-dimensional conformal symmetry of the Cauchy-Riemann equations. So

it seems like adding a Hamiltonian to the Morse function for Cauchy-Riemann equations is

not a desirable deformation. However, a miracle occurs when the almost complex structure

on M is integrable, and H is taken to be the real (or imaginary) part of a J-holomorphic

function on M ,

H = ReW. (1.20)

When this is the case our deformed Cauchy-Riemann equations can indeed shown to be

elliptic4!

Going back to the more general case, the summary is that on a Kähler manifold with

ω = dλ and a holomorphic function W on X, the symplectic action

S =

∫
φ∗(λ)− ImW dx (1.21)

via gradient flow, leads to an elliptic instanton equation

∂φa

∂x
+ Jab

∂φb

∂τ
= gab

∂

∂φb
ReW. (1.22)

Thus we have succeeded in finding an elliptic deformation of the holomorphic map equation.

The action (1.21) meets Witten’s standard of being an action functional whose gradient

flow equations are elliptic. The equation we have arrived at was first studied in [Wit3], and

is known as Witten’s ∂-equation. It is also known as the ζ-instanton5 equation in [GMW].

4One can show ellipticity by differentiating the equation to arrive at second order equations that coincide

with the the harmonic map equation deformed by the potential V = |dW |2. This is indeed elliptic

5Here ζ is a phase, and the ζ-instanton equation comes from replacing ReW in equation 1.22 with

Re ζ−1W .



10

The ζ-instanton equation, motivated from gradient flow above, will be responsible for

important instanton effects in two-dimensional N = 2 supersymmetric Landau-Ginzburg

models that we will extensively study in this thesis.

For completeness with regards to later use, it also useful to record an equivariant version

of the story above. Suppose the Kähler manifold X admits a G-action acting by holomor-

phic isometries with moment map µ, such that the holomorphic function W is invariant

under the G-action. Then we can consider the G-equivariant version of the symplectic

action

S =

∫
φ∗(λ) + 〈A,µ〉 − ImWdx (1.23)

where A is a Lie algebra valued connection on R. The instanton equations are now

Dxφ
a + JabDτφ

b = gab
∂

∂φb
ReW, (1.24)

FA = ∗µ (1.25)

where

Dµφ
a = ∂µφ

a +AiµK
ia, (1.26)

where i is a g = Lie(G) index and Kia are vector fields on X that generate the G-action.

The second equation is the gradient flow equation for A which gives

Fτx = µ. (1.27)

One can further motivate Witten’s ∂-equation by considering some infinte-dimensional

examples. At first it might seem like the deformation of the Cauchy-Riemann equation as

in (1.21) only gives us a new elliptic instanton equation in two dimensions. However, one

can exploit the freedom we have. W is an arbitrary holomorphic function, and by taking W
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to be a holomorphic functional, namely a holomorphic function on an infinite-dimensional

Kähler manifold one might get elliptic instanton equations in higher dimensions. We discuss

four seperate cases where this works. One is quickly lead to examples of first-order, elliptic

partial differential equations which are either completely new, or are known, but at the

forefront of modern research.

1.1.1 Holomorphic Liouville Functional

Let (Y,ΩAB) be a complex symplectic manifold. Let Ω = dΛ, and let ω = dλ be a real

symplectic form on Y . We also assume that Y is equipped with a Kähler metric for ω.

Consider the infinite-dimensional Kähler manifold

X = {ϕ : I → Y }, (1.28)

where I is a one-manifold parametrized by y, and choose the symplectic form and Kähler

metric on X to be the ones inherited from the real symplectic form ω on Y . Consider the

holomorphic function

W =

∫
I
ϕ∗(Λ). (1.29)

The symplectic action functional now reads

S =

∫
dxdy

(
λA

∂φA

∂x
− Im

(
ζ−1ΛA

∂φA

∂y

))
. (1.30)

The critical points of S satisfy the two-dimensional PDE

∂φA

∂x
= ωABIm(ζ−1ΩBC)

∂φC

∂y
, (1.31)

which may be rewritten as
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∂φA

∂x
= gABRe(ζ−1ΩBC)

∂φC

∂y
. (1.32)

By simple linear algebra, it is possible to choose a metric gAB on Y so that

IAC(ζ) = −gABIm(ζ−1ΩBC) (1.33)

is an almost complex structure. This almost complex structure for ζ an arbitrary phase

is distinct from the original one for which Y is a Kähler manifold. The stationarity of S

therefore gives the pseudo-holomorphic map equation

∂φA

∂x
+ IAB(ζ)

∂φB

∂y
= 0 (1.34)

in the almost complex structure I(ζ).

Set ζ = 1. Witten’s ∂-equation on the other hand for this superpotential reads

∂φA

∂τ
+ JAB

(∂φB
∂x

+ IBC
∂φC

∂y

)
= 0. (1.35)

This is a non-linear, three-dimensional elliptic PDE. The ellipticity follows from applying

for instance ∂
∂τ to the equation, and using the quaternion relation IJ = −JI along with

I2 = J2 = −1 to show that the equation implies the three-dimensional Laplace equation.

To the author’s knowledge this equation and its properties have not been discussed in

the literature. We expect it to be important for several applications. The paper [Wit4]

considers precisely the holomorphic Liouville functional, so it is tempting to speculate

that the three-dimensional instanton equation might play a role in A-model quantization.

Another place it is expected to play a role, as we will briefly discuss in Chapter 4, is the BPS

states in four-dimensional N = 2 theories. Finally it might give an explicit construction of

the 2-category of A-type boundary conditions associated to a complex symplectic manifold,
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a sort of mirror construction to the 2-category of B-brane boundary conditions studied in

[KRS].

To conclude this example, we also record a G-equivariant version of the formalism.

Suppose G acts on Y by Ω-preserving symplectomorphisms, and let µc be the associated

complex moment map. We now let

W =

∫
I
φ∗(Λ) + Tr(Aµc) (1.36)

where A = Aydy is a G-connection on I and Tr refers to the inner product on the Lie

algebra g of G. It is staightforward to derive the symplectic action, its critical points and

the gradient flow equation in the G-equivariant setting. We omit the details.

1.1.2 Symplectic Bosons

There is another natural generalization of the Liouville action on a complex symplectic

manifold (Y,Ω). This comes from considering the action of two-dimensional “symplectic

bosons” rather than the one-dimensional Liouville action. We take the target space X to

be the space of maps

X = {φ : C→ Y } (1.37)

with real symplectic form

ωX =

∫
d2z ωAB δφ

A ∧ δφB. (1.38)

Consider the holomorphic functional

W =

∫
dz ∧ φ∗(Λ), (1.39)

which in local coordinates reads

W =

∫
d2z ΛA∂z̄φ

A. (1.40)
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The symplectic action is

S =

∫
dxd2z

(
λA

∂φA

∂x
− Im(ζ−1ΛA∂zφ

A)
)

(1.41)

and its stationary points, in complex coordinates are

∂φi

∂x
= ζIij̄∂zφ

j̄
, (1.42)

where Ii
j̄

= gik̄Ωk̄j̄ . Letting s = x+ iτ , the gradient flow equation on the other hand reads

∂s̄φ
i = Iij̄∂zφ

j̄
. (1.43)

This is a non-linear elliptic PDE in four dimensions. The ellipticity again follows from

showing that this equation implies the Laplace equation

(∂s∂s + ∂z∂z)φ
i = 0 (1.44)

on Cs × Cz. Again we are not aware of any discussion of this instanton equation and its

applications in the literature.

It is also useful to consider a G-equivariant version of the symplectic boson superpoten-

tial. Again suppose G acts on Y by Ω-symplectomorphisms and suppose that µc is the

corresponding complex moment map. The G-equivariant holomorphic funtional is

W =

∫
d2z(ΛA∂z̄φ

A +Az̄µc). (1.45)

This will be used in 1.1.4 when discussing 4d Chern-Simons.

1.1.3 Complex Chern-Simons

In this subsection and the next we work out some gauge theoretic examples. Let M3 be

a three-manifold, G be a real compact gauge group and GC its complexification. Let the

target space be

X = {GC-connections on M3}. (1.46)
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with symplectic form

ωX =
i

2

∫
M3

d3x
√
g gij Tr

(
δAi ∧ δAj

)
. (1.47)

Let the superpotential be the complex Chern-Simons functional

W =

∫
M3

Tr
(
AdA+

2

3
A3
)
. (1.48)

We consider the G-equivariant version of the story where G = Map(M3, G) acts on X by

gauge transformations:

δεAi = −Diε, (1.49)

δεφi = [ε, φi]. (1.50)

The corresponding moment map for this action is

µ =

∫
M3

d3x
√
g gijTr(εDiφj). (1.51)

The symplectic action is then

S = −
∫

dyd3xTr
(√

ggijφiFyj +
1

2
Im
(
ζ−1εijk(Ai∂jAk +

2

3
[Ai,Aj ])

))
. (1.52)

The stationary condition for S is equivalent to the Kapustin-Witten equations [KW]

F = ζ ∗ F , (1.53)

dA ∗ φ = 0 (1.54)

specialized to M4 = R×M3.
6 When ζ = −i taking the real and imaginary parts of these

equations gives us the standard Kapustin-Witten equations

F − φ ∧ φ+ ∗dAφ = 0, (1.55)

dA ∗ φ = 0. (1.56)

6We also have to set φy = 0 in order to precisely match the stationary condition of S with the four-

dimensional equation F = ζ ∗ F .
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The gradient flow equations for this action functional on the other hand are the Haydys-

Witten equations on M5 = R2 ×M3

ds ∧ F = ζ ∗ F , (1.57)

Fτx +
√
g gijDiφj = 0. (1.58)

Once again, when ζ = −i and assuming that the connection of M5 is of the form

A = Aτdτ +Axdx+Aidxi (1.59)

where Aτ , Ax are real and Ai are complex, we can write the standard form of the Haydys-

Witten equations

Fyµ +DνBνµ = 0, (1.60)

F+ − 1

4
B ×B − 1

2
DyB = 0. (1.61)

The Kapustin-Witten and Haydys-Witten equations provide a gauge theoretic formula-

tion of Khovanov homology [Wit8]. We will revisit this topic briefly in Chapter 4 of this

thesis.

1.1.4 4d Chern-Simons

As our final example, we consider the 2d symplectic bosons of Section 1.1.2 with an infinite-

dimensional target space. Consider the complex symplectic manifold (Y,Ω) with

Y = {GC-connections on R2
u,v}, Ω =

∫
dudvTr

(
δAu ∧ δAv

)
. (1.62)

Take the G-equivariant version where G = Map(R2, G). Letting ε be the gauge transfor-

mation parameter, the complex moment map is

µc =

∫
dxdyTr(εFuv). (1.63)
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Plugging these equations into the G-equivariant holomorphic symplectic boson functional,

the resulting functional is the 4d Chern-Simons theory of Costello [C, CWY1, CWY2, CY]:

W =

∫
R2×C

dz ∧ CS(A), (1.64)

where

A = Audu+Avdv +Az̄dz̄ (1.65)

is a partial connection on R2 ×C. Note that along R2 we have Au,v = Au,v + iφu,v so that

the real part of Au and Av are real G-connections, whereas the complex part is a one-form

on R2.

The stationary equations are five-dimensional PDEs for a partial connection

A = Axdx+Audu+Avdv +Az̄dz (1.66)

on Rs × R2 × C which read

F = ζ ∗ (dz ∧ F). (1.67)

In order to match the above equations with the stationary condition of S we must assume

Ax is real. These are supplemented by the zero-moment map condition

Duφu +Dvφv + ∂zAz = 0. (1.68)

The gradient flow equation is a six-dimensional PDE for a connection

A = Aτdτ +Axdx+Audu+Avdv +Az̄dz (1.69)

on the six-manifold R2
s,τ × R2 × C taking the form

ds ∧ F = ∗(ζ dz ∧ F). (1.70)
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Once again these are supplemented with the equations

Fss +Duφu +Dvφv + ∂zAz = 0. (1.71)

Again, the author is not aware of a systematic discussion of these PDEs in the literature.

See [ATZ] for some indication of their applications to the categorification of integrable

systems.

1.2 Instantons and Supersymmetry

So far we have discussed instantons as solutions to first order non-linear PDEs that give

global minima of second-order non-linear Euclidean action functionals. We observed that

such field configurations provide non-perturbative insight into the field theory, and that the

equations they satisfy often come about as gradient flow equations for an action functional

in one dimension less. These remarks are applicable to general field theories. We now

explain how instantons play a role of distinguished importance in supersymmetric field

theories.

To illustrate this point, we go back to the gradient flow equation

dφ

dτ
=
∂h

∂φ
. (1.72)

One of the simplest examples of a supersymmetric system consists of the super-particle

moving under a potential V = 1
2

(
∂h
∂φ

)2
. In Euclidean signature the action reads

SE =

∫
dτ
(1

2

(dφ

dτ

)2
+

1

2

(∂h
∂φ

)2
+ ψ

d

dτ
ψ +

∂2h

∂φ2
ψψ
)
. (1.73)

It is invariant under the odd symmetry transformation

Qφ = ψ, (1.74)

Qψ = −dφ

dτ
+
∂h

∂φ
, (1.75)

Qψ = 0 (1.76)



19

and

Qφ = −ψ, (1.77)

Qψ = 0, (1.78)

Qψ =
dφ

dτ
+
∂h

∂φ
. (1.79)

Therefore the supersymmetry equations, obtained from setting the action of the super-

charges on the fermions to vanish, for Q, are equivalent to the gradient flow equation,

whereas for Q are equivalent to the anti-gradient flow equation.

As we remarked previously, one of the main uses of instantons is to provide informa-

tion about the quantum spectrum of a theory which is not accessible through standard

perturbative methods. This can be made precise in a beautiful mathematical fashion in

supersymmetric field theories [Wit2]. For supersymmetric quantum mechanics, we’re in-

terested in diagonalizing the Hamiltonian

H = −1

2

∂2

∂φ2
+

1

2

(∂h
∂φ

)2
+

1

2

∂2h

∂φ2
[ψ,ψ] (1.80)

acting on the super-quantum mechanics Hilbert space L2(R)⊗ C2. By using the equation

2H = {Q,Q†} (1.81)

one can show that the energy eigenvalues satisfy E ≥ 0 with E = 0 if and only if a

state is annihilated by both Q and Q†. The zero energy states, since they preserve both

supercharges are known as supersymmetric states and are of particular interest in super-

symmetric field theory. The virtue of instantons is that they can be used to obtain the

exact, non-perturbative space of supersymmetric states. The basic idea is as follows. One

begins by studying the classical vacua, which are given by the critical points of h. One can

then construct perturbative ground states |ψα〉 for each critical point α of h. This gives us
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the space of perturbative ground states. The tunneling effect however tells us that some

of these states might be lifted. This lifting is captured precisely by instantons. It tells us

that there are matrix elements of the form

〈ψα|Q|ψβ〉 = nβαe
hα−hβ (1.82)

where nβα is the number of instantons from β to α. Since we know the exact matrix

element between perturbative ground states, one can determine precisely which states are

lifted and determine the space of exact ground states. The virtue of supersymmetry is

that it allows us to obtain an exact expression for the non-perturbative correction to the

spectrum. This then gives us a method to obtain non-perturbative information about the

quantum spectrum.

The above is just the simplest example of a more general phenomenon. The supersym-

metric or BPS equations in supersymmetric theories typically are equivalent to instanton

equations, and these instantons usually give us non-perturbative insight into our quantum

theory. We can verify this remark for the other basic examples we discussed: The Cauchy-

Riemann equation is the supersymmetric equation for a two-dimensional field theory known

as the A-model with target space (X,ω). Since we are now in a two-dimensional quantum

field theory, we need to choose a spatial slice to define a Hilbert space. Taking the spatial

slice to be an interval, and studying the pseudo-holomorphic map equation with various

boundary conditions on the strip R× I, one is lead to the beautiful and rich mathematical

structure of the Fukaya A∞-category [FOOO1, FOOO2]. Finally, our third basic example,

the self-dual instanton equation is the supersymmetric equation for the four-dimensional

N = 2 supersymmetric gauge theory with the Donaldson-Witten twist. This time we con-

sider spatial slices determined by a compact three-manifold M3. The space of perturbative

ground states are given by flat G-connections on M3, whereas the space of quantum exact
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ground states are given by counting solutions of the self-dual instanton equation on R×M3.

The resulting structure is known as instanton Floer cohomology [F1].

Our main interest in this thesis however, as remarked before is the deformed Cauchy-

Riemann equation (1.22). The deformed Cauchy-Riemann equation, or Witten’s ∂-equation

arises as the supersymmetric equation for a deformation of the A-model known as the A-

model with superpotential. It is also known as a Landau-Ginzburg model with target space

X, and superpotential W . The A-model with superpotential and the role of the instanton

equation will play a central role in this thesis.

1.3 Instantons and Categorification

We now explain the role of instantons in categorification; an important notion used through-

out this thesis. Categorification at its most primitive level aims to upgrade an integer,

typically some sort of geometric or physical invariant, such as the Euler characteristic of a

manifold, or the Jones polynomial of a knot, to a more refined structure: a vector space,

or a chain complex, from which the original integer can be recovered by taking a character.

In physical terms, very often the new ingredient in categorification is the incorporation of

instanton effects.

To illustrate this, let us go back to the example of supersymmetric quantum mechanics.

Given an SQM system with two nilpotent supercharges Q,Q†, and a Z2-valued fermion

number operator (−1)F , one can define the Witten index

I = TrH(−1)F e−βH . (1.83)

The virtue of I is that unlike the standard partition function Z(β) = TrHe
−βH , the Witten

index is a protected quantity; it is insensitive to small deformations of the physical system.
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Moreover, one can show that supposing the quantum mechanical system has a discrete

spectrum, I is independent of β and is moreover an integer, I ∈ Z that only depends on

the supersymmetric ground states of H. For the SQM system defined by the pair (M,h)

one can compute I exactly in terms of the critical points of h and their Morse indices7. It

is given by

I =
∑

{p|∂h=0}

(−1)µp . (1.84)

In categorification one is interested in vector spaces. The natural vector space R that

categorifies the Witten index I is the Hilbert subspace of supersymmetric states: |ψ〉 ∈ H

such that Q|ψ〉 = Q†|ψ〉 = 0. The construction of the exact space of quantum ground

states, starting from the perturbative ground states labeled by the critical points of h

is where instantons come in. In order to construct R we begin by forming the space of

perturbative ground states

R =
⊕

{p|∂hp=0}

C〈ψp〉. (1.85)

The all-important instanton effects are then incorporated in an operator

d : R→ R (1.86)

of fermion degree +1 such that d2 = 0. Together (R, d) form what is known as a chain

complex, such that the d-cohomology gives us a space isomorphic to the space of ground

states

R ∼= H∗d(R). (1.87)

7The Morse index µp of a critical point p of h is given by the number of negative eigenvalues of the

Hessian of h at p.
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The Witten index I is recovered by taking the Euler character of R (and also the Euler

character of R). The chain complex (R, d) is known as the Morse-Smale-Witten complex

[Wit2].

This thesis aims to apply the categorification procedure to the study of a natural collec-

tion of integers known as BPS indices in the A-model with superpotential. In the A-model

with superpotential, we will be interested in the Hilbert space on the real line R. In order

to define a Hilbert space, we must choose the field configurations at the infinite ends of R,

which are constrained to be a critical point of the superpotential. Thus the Hilbert space

on R decomposes into superselection sectors Hij labeled by ordered pairs of critical points

{φi, φj}. Traditionally one studies the supersymmetric ground states in these sectors by

studying the individual Witten indices µij of Hij . The Witten index µij is known as a

BPS index. BPS indices, similar to the Witten index in SQM, can again be computed by

a classical analysis; one studies the ζ-soliton equation

dφa

dx
= gab∂b Re ζ−1W (1.88)

with ij boundary conditions, and its solutions in order to compute µij .

The study of the BPS indices {µij} goes back to work of Cecotti and Vafa [CV1], and

Cecotti, Fendley, Intriligator and Vafa [CFIV] from the early 1990s, who observed many

interesting properties. One particularly striking property eventually came to be known as

“wall-crossing.” Whereas the Witten index I in SQM is independent of small deformations

of the potential h, the collection of integers {µij} in the A-model with superpotential can

jump as we deform the superpotential W . Moreoever, the quantitative form of the jump

takes the form

µij → µij ± µikµkj , (1.89)
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for some critical point φk. Jumps in the BPS indices of this form are known as Cecotti-Vafa

wall-crossing. See Chapter 2 for more details and examples of the Cecotti-Vafa wall-crossing

formula.

Our basic aim in this thesis is to categorify BPS indices and their universal properties

such as wall-crossing. The main new ingredient involved in this, as mentioned before is

the incorporation of instanton effects which can be ignored when working at the level

of indices. In Chapter 2 we explain how one can incorporate Witten’s ∂-equation and

construct chain complexes (Rij , dij) that categorify the BPS index µij . The main result

of this chapter is then an explicit description of how instanton effects are incorporated to

provide a categorification of the Cecotti-Vafa wall-crossing formula.

In Chapter 3, we generalize the discussion of categorical wall-crossing to include theories

with twisted masses. To motivate twisted masses, we recall that one reason for studying

the A-model with superpotential is that when applied to infinite dimensions and taking

W to be a holomorphic functional, we are lead to some of the most interesting equations

of mathematical physics. However when discussing this we glossed over some subtleties.

For instance, if we look carefully we will note that in general the Chern-Simons superpo-

tential is not single-valued, only its derivative is. Similarly, in the setup of Section 1.1.1,

if the complex symplectic form Ω defines a non-trivial class in H(2,0)(Y ), then the holo-

morphic Liouville functional is only locally defined, and therefore not single-valued. This

multivaluedness of superpotentials is in fact allowed by Landau-Ginzburg theory, since the

superpotential enters the Lagrangian only through its derivatives. Equivalently, one can

say the the derivative of the superpotential can have non-trivial periods around 1-cycles of

the target space. These non-trivial periods are known as “twisted masses.” Twisted masses

can lead to various novel phenomenon in the A-model with superpotential. Chapter 3 is
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therefore devoted to the study of the A-model with non-trivial twisted masses, and how

the presence of twisted masses affects the discussion of BPS states, instanton equations

and categorical wall-crossing.

Finally in Chapter 4 we conclude by discussing some future research directions. We

revisit the Chern-Simons superpotential of Section 1.1.3, and conjecture how one can be

lead to novel algebraic knot invariants. We also remark on how some of our results are

expected to generalize to four-dimensional N = 2 theories.
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Chapter 2

Categorification of Cecotti-Vafa Wall-Crossing

The contents of this chapter appeared in the preprint [KM1], written jointly with G. W. Moore.

2.1 Introduction and Outline

BPS states have played an important role in many aspects of physical mathematics.

As is very well-known, the spaces of BPS states can jump discontinuously as physical

parameters are varied, a phenomenon known as wall-crossing. Investigations of BPS wall-

crossing have led to a wide variety of very interesting developments. For some reviews of

BPS wall-crossing see [Cec, KoSo2, KoSo3, M1, M3, N, Pio].

BPS wall-crossing appears in two-dimensional quantum field theories with N = (2, 2)

supersymmetry, where it was first discovered [CFIV, CV1] as well as in four-dimensional

supergravity and field theory with N = 2 supersymmetry [DM, Dor, GMN1, LY, SW]. It

also appears in a more elaborate form in coupled 2d-4d systems [GMN4].

Indeed, there are quantitative formulae expressing how BPS indices change across walls of

marginal stability. It is natural to ask if one can obtain more refined information about the

spaces of BPS states. For example, if BPS states are identified with the cohomology of some

chain complexes one would like to know how the chain complexes themselves jump across

walls of marginal stability. One cannot expect an answer at the level of chain complexes
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per se, since homotopy equivalent chain complexes are also physically equivalent, but it

is meaningful to ask how the equivalence class of the chain complexes (up to homotopy)

changes1. In particular, relating the homotopy equivalence class of chain complexes across

a marginal stability wall allows us, by taking cohomology, to answer How do the BPS

Hilbert spaces jump across a wall of marginal stability? This is the question a categorified

wall-crossing formula is meant to answer.

This chapter addresses the categorification of the renowned Cecotti-Vafa wall-crossing

formula for BPS indices in two-dimensionalN = (2, 2) quantum field theory. We have made

use of a formalism developed in [GMW, GMWSh], specifically for the purpose of carrying

out the program of categorification of wall-crossing formulae. Indeed, in [GMW, GMWSh]

it was explained how to categorify the so-called “framed wall-crossing” or “S-wall-crossing”

formulae in the two-dimensional models. The present chapter adds to the story with an

improved understanding of how to phrase the categorification of the Cecotti-Vafa wall-

crossing formula.

1Note that the homotopy class of a chain complex contains more information than the index. As a

simple example, consider

C = (Z⊕ Z[1], d = 0) (2.1)

and

C′ = (Z⊕ Z[1], d′) (2.2)

where d′ maps a generator of Z to a generator of Z[1]. Both have vanishing Euler characteristics

χ(C) = χ(C′) = 0, (2.3)

but their cohomology is different so they are not homotopy equivalent.
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Much remains to be done in the program of the categorification of wall-crossing for-

mulae. In particular, the categorification of the four-dimensional wall-crossing formula

of Kontsevich-Soibelman is not known.2 We believe an important step forward is to in-

clude twisted masses in two-dimensional Landau-Ginzburg models. This will be achieved

in Chapter 3.

In the remainder of this introduction we outline in more detail the difficulties which must

be overcome to categorify the Cecotti-Vafa wall-crossing formula, and how we will achieve

this.

2.1.1 A Failure of Naive Categorification

Supposing that i, j, k denote distinct massive vacua of a two-dimensional N = (2, 2) the-

ory, recall that the Cecotti-Vafa wall-crossing formula states that across a wall of marginal

stability of type ijk, the BPS indices µ and µ′ on either side of the wall are related by

µ′ij = µij , (2.4)

µ′jk = µjk, (2.5)

µ′ik = µik ± µijµjk, (2.6)

the sign accounting for which way the wall-crossing occurred. As a first step in categorifica-

tion, it’s indeed encouraging, as we recall in section 2.3, that for Landau-Ginzburg models

one can formulate finite-dimensional chain complexes (Rij , dij) such that the BPS index

2The change in the 4d BPS state spaces is nicely understood using the halo formalism of [ADJM, DM,

GMN3]. In some sense, this answers the question of the categorification of wall-crossing formulae, but the

categorification program is more ambitious, and seeks to describe the full set of BPS states on either side

of the wall in homotopical algebra terms.
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µij is given by a graded trace

µij = TrRij (−1)F . (2.7)

The BPS Hilbert space 3 of type ij is isomorphic to the dij-cohomology,

HBPS
ij = H•(Rij , dij). (2.9)

A categorified wall-crossing formula should then relate the BPS chain complexes (R′ij , d
′
ij)

upon crossing a wall of marginal stability to the original chain complexes (Rij , dij). The

simplest guess consistent with (2.6) is to say that the underlying vector spaces of the chain

complexes are related by

R′ij = Rij , (2.10)

R′jk = Rjk, (2.11)

R′ik = Rik ⊕ (Rij ⊗Rjk), (2.12)

accompanied possibly with a degree shift on the (Rij⊗Rjk) summand to account for which

way the wall-crossing occurred. The simplest differentials that one can guess on the primed

spaces are

d′ij = dij , (2.13)

d′jk = djk, (2.14)

d′ik = dik ⊕ (dij ⊗ 1 + 1⊗ djk). (2.15)

3Throughout this chapter, we have factored out the (super)translational mode of the soliton. With it

included the chain complex will be

R̃ij = Rij ⊗ (Z[−1]⊕ Z), (2.8)

and the BPS index would be the “new index” TrR̃ij

(
F (−1)F

)
of [CFIV]. The spectrum of F on Rij lies in

a Z-torsor, so after a suitable phase redefinition, the µij will be integers.
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Indeed, the Cecotti-Vafa statement (2.6) would follow as a corollary from this guess, simply

by taking graded traces. Under this formula for the differentials, the primed BPS Hilbert

spaces are simply

(HBPS
ij )′ ∼= HBPS

ij , (2.16)

(HBPS
jk )′ ∼= HBPS

jk , (2.17)

(HBPS
ik )′ ∼= HBPS

ik ⊕
(
HBPS
ij ⊗HBPS

jk

)
. (2.18)

Things are not so simple: it is very easy to construct counter-examples to this naive

prediction of how BPS Hilbert spaces jump across a wall of marginal stability. Here is a

simple one.

Consider the quartic Landau-Ginzburg model, namely the theory of a chiral superfield

Φ with superpotential

W =
1

4
Φ4 − Φ. (2.19)

Denote the three vacua Φ1 = e−2πi/3, Φ2 = 1, Φ3 = e2πi/3 with corresponding critical

values W1,W2,W3. One can show that the absolute number of solitons is 1 between each

pair of distinct vacua. By taking into account the fermion degree we have that

R12 = Z, (2.20)

R23 = Z, (2.21)

R13 = Z, (2.22)

with all differentials identically zero. We can vary the lower order terms of the superpo-

tential (for instance we can turn on a quadratic term) so that W2 passes through the line

connecting W1 and W3. The naive guess implies that upon this wall-crossing the chain
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Figure 2.1: An instanton interpolating between two-different ij-solitons

complex R′13 is

R′13 = R13 ⊕ (R12 ⊗R23)[1], (2.23)

= Z⊕ Z[1]. (2.24)

Because every differential in sight acts trivially, we conclude that (HBPS
13 )′ is two-dimensional.

On the other hand, every Landau-Ginzburg model with target space C and a polynomial

superpotential has an absolute number of solitons between each pair of critical points given

by either 0 or 1 4. Thus the cohomology in such a model is either trivial or one-dimensional

and we have found a contradiction. Our naive attempt at categorification has failed.

2.1.2 Missing Instantons

The reason for the failure of the differential d′ik (2.15) is simple, but also interesting: We

have missed instantons.

The spaces Rij are made of perturbative BPS states |φij〉 coming from quantizing around

a classical soliton φij . The differentials dij on Rij are meant to encode matrix elements

〈φbij |Qij |φaij〉, (2.25)

4For a proof see Appendix C.1.
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Figure 2.2: An instanton which contributes to an off-diagonal element of d′ik.

where the superscripts a, b label different classical solitons of type ij. When these are non-

zero there is a difference between the exact ground states and the perturbative ones. We

know from the relation between Morse theory and supersymmetry [Wit2], that the former

are computed by considering suitable instantons between these perturbative ground states.

Now within a fixed sector, say the ij-sector, solutions of such an instanton on the plane

look as in Figure 2.1: The soliton φaij is stationary, sitting at a fixed point x0, whereas

at an instant τ0, we transition from the φaij to φbij . Such a process will contribute to the

matrix element if the fermion numbers of φaij and φbij differ by 1.

Close to a wall of marginal stability, it is reasonable to postulate that bound states of ij

and jk-solitons give rise to an approximate ik-soliton, post wall-crossing, thus giving our

guess (2.12). Instantons of the sort depicted in Figure 2.1, contribute to matrix elements

of the type

〈φbik|Qik|φaik〉 (2.26)

and

〈φaij , φbjk|Qik|φa
′
ij , φ

b′
jk〉. (2.27)
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Such contributions are indeed reflected in our guess for the differential (2.15). Our formula

for d′ik has made an implicit assumption that the off-diagonal matrix element

〈φaij , φbjk|Qik|φcik〉 (2.28)

vanishes. However, it turns out, as we will explain in section 2.3.2 that in addition to the

familiar instanton of Figure 2.1, there can be a more interesting object, where a stationary

ik-soliton can split into ij and jk solitons traveling at just the correct angles to preserve

Qik-supersymmetry. Such an instanton is depicted in Figure 2.2. Counting instantons of

this type allows one to write down a corrected differential on R′ik. This is the main new

ingredient that enters the categorified wall-crossing formula.

2.1.3 Wall-Crossing Invariants

In order to derive wall-crossing formulas such as (2.6) it is extremely useful to introduce

certain wall-crossing invariants. For Cecotti-Vafa wall-crossing an example of such a wall-

crossing invariant is the spectrum generator 5

S =

y∏
Zij∈H

(1 + µijeij) ∈ SL(|V|,Z) (2.29)

which must be invariant under crossing marginal stability walls [KoSo1], so long as no BPS

rays enter of exit the half-plane H. The wall-crossing invariant S has a simple conceptual

meaning. One can show that Sij is the Witten index of the space of boundary local

operators at a junction of thimbles of type i and j [GMW] (a related interpretation appeared

in [?]), see Figure 2.3. Such a space is insensitive to marginal stability walls. Nonetheless

5Notation: V is the vacuum set, assumed to be finite in this chapter. H is the upper-half plane, Zij are

central charges and eij is the ij elementary matrix. y is meant to indicate a clockwise ordered product

with respect to the central charges. Implicit in the notation is that an ordering on V has been chosen.
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Figure 2.3: A boundary local operator O between two branes L and L′

the BPS indices S at a given point in parameter space allow the computation of the

boundary Witten indices S. Comparing S on different sides of the wall of marginal stability

leads to (2.6).

It is natural then to expect that a categorical wall-crossing invariant can also be con-

structed. The invariance of S is categorically enhanced as follows. The BPS chain com-

plexes (Rij , dij), along with counts of ζ-instantons of the type depicted in Figure 2.2, allow

for the construction of an A∞-category R̂[X,W ] whose objects can be thought of thimble

branes 6 and morphisms are vector spaces of boundary local operators at brane junctions

[GMW] 7. The categorical wall-crossing constraint is then formulated as follows.

6Note that considering a category with only thimble objects is not restrictive. R̂[X,W ] can be enlarged

to a triangulated A∞ category for which the thimble objects provide a semi-orthogonal decomposition.

7The A∞ category of [GMW] can be viewed as an infrared construction of the category of A-branes

in a Landau-Ginzburg model, which to mathematicians is known as the Fukaya-Seidel category [Seid] of

(X,W ), and is denoted by FS[X,W ]. It is expected that FS[X,W ] and R̂[X,W ] are quasi-isomorphic as

A∞-categories. An outline of a proof of this expectation was given in [GMW].
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The homotopy class of R̂[X,W ] is a wall-crossing invariant.

In the above statement homotopy class refers to the homotopy equivalence of A∞-

categories which is defined in Appendix B.1. We show how our categorical wall-crossing

formula can be derived from this wall-crossing constraint in section 2.6.

Remark Note that instead of R̂[X,W ], there are other wall-crossing invariants one could

have used as a starting point. For instance instead of imposing A∞-equivalence of the

“open string algebra” R̂[X,W ] across a marginal stability wall like we do in this chapter,

one could have imposed L∞-equivalence of the closed string algebra Rc, defined in [GMW].

Another way of describing the categorical wall-crossing formula makes use of half-BPS

interfaces. These can be used to construct a categorical notion of a flat parallel transport

on a bundle of categories of boundary conditions over the space of Morse superpotentials

[GMW]. The absence of monodromy around contractible cycles that intersect walls of

marginal stability implies a categorified version of the invariance of S defined in equation

(2.29). This categorical equation can in turn can be reduced to categorified braid relations.

For details see [GMW, M2]. These superficially distinct starting points are all expected to

lead to the same eventual result.

2.1.4 Outline of the Chapter

The outline of this chapter is as follows. In section 2.2, we recall the standard discussion

of wall-crossing at the level of BPS indices. This is followed in section 2.3 by a discussion

of how to formulate chain complexes that categorify the BPS indices. The crucial concept

of a ζ-instanton with fan boundary conditions is discussed and we formulate the statement

of categorical wall-crossing by using counts of certain trivalent instantons in section 2.4.

After reviewing the construction of the A∞ category of half-BPS branes associated to a
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Landau-Ginzburg model in section 2.5, we show the equivalence of the categorical wall-

crossing formula to the homotopy equivalence of A∞ categories constructed on either side

of a marginal stability wall in section 2.6. After a brief digression on fermion degrees of

a ζ-instanton in section 2.7, we turn our attention to some examples that illustrate our

formulas in section 2.8. We conclude with some speculations in section 2.9.

2.2 Wall-Crossing of BPS Indices

While our formulas are expected to hold for arbitrary massive two-dimensional N = (2, 2)

theories (with a non-anomalous U(1)R-symmetry), it is simplest to work in the setting of

Landau-Ginzburg models. A Landau-Ginzburg model is a supersymmetric sigma model

with a Kähler manifold target X and a potential of the form

V = |dW |2, (2.30)

where W : X → C is a holomorphic function known as the superpotential. More precisely,

working in two-dimensional N = 2-superspace, we can use the Kähler structure on X to

write D-terms

LD =

∫
d4θK(Φ,Φ), (2.31)

and the holomorphicity of W to write F-terms

LF =

∫
d2θW (Φ) +

∫
d2θW (Φ), (2.32)

to get a Lagrangian

L = LD + LF , (2.33)

invariant under two-dimensional N = (2, 2) Poincaré supersymmetry. The reader is en-

couraged to consult [MS1], whose notation we adopt, for more details. Various non-

renormalization theorems [Seib] of W tell us that one can get great mileage simply by
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studying the superpotential and its various properties. One use of the superpotential W is

that it is sufficient to study many aspects of BPS states.

Supposing that W only has a finite number of isolated singularities, a familiar argument

shows that the classical energy in such a theory obeys the BPS bound,

E ≥ |Zij | (2.34)

where

Zij = Wi −Wj (2.35)

and Wi denotes the critical value W (φi) of the critical point φi. Denoting the bosonic fields

of the LG model as φ, the standard Bogomolny trick leads to the BPS equation

dφ

dx
= ∇Re(ζ−1W ), (2.36)

known as the ζ-soliton equation, ζ being an arbitrary phase. Solutions on R with prescribed

vacua φi and φj at the ends of R can only exist if

ζ = ζji :=
Wj −Wi

|Wj −Wi|
. (2.37)

Using intersection theory of vanishing cycles, it is possible to get a well-defined signed

count of the number of BPS solitons in the ij-sector. Let

Li(ζ) = {p ∈ X|limx→−∞f
ζ
x(p) = φi}, (2.38)

Ri(ζ) = {p ∈ X|limx→+∞f
ζ
x(p) = φi} (2.39)

be the ascending and descending manifolds respectively, emanating from the critical point

φi of the Morse function Re(ζ−1W ). f ζx denotes the one-parameter map f ζx : X → X

defined by the gradient vector field of Re(ζ−1W ). We then set

µij = L−i ◦R
+
j (2.40)
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where L−i = Li(ζjie
−iε) and R+

j = Rj(ζjie
+iε) and ε is a small positive number. The

infinitesimal rotation ensures that the intersection is transversal.

The significance of µij from the perspective of the N = 2 field theory defined by (X,W )

is that one can show [CFIV, CV1] that

µij = TrHBPS
ij

(−1)FF (2.41)

where F is the fermion number and

HBPS
ij = ker(Qij) ∩ ker(Qij), (2.42)

where

Qij = Q− − ζ−1
ij Q+. (2.43)

µij is thus a supersymmetry protected index that counts the degeneracy of BPS states of

type ij. Some of its elementary properties are as follows.

Metric Independence While the BPS soliton equation does depend on the Kähler

metric on X, the BPS index µij is metric-independent.

CPT Reversing x→ −x takes F → −F so that µij = −µji.

It is familiar that supersymmetric indices such as the Witten index are quantities that are

piecewise constant in parameter space. For instance, we can consider the one-dimensional

system given by the real superpotential

h = x4 + αx2 + βx. (2.44)
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While the conventional partition function Z = Tr(e−βH) of the system will be a very

non-trivial function of α and β, the Witten index I = Tr(−1)F e−βH is simply equal to +1,

I = 1, (2.45)

irrespective of α and β. In contrast the behavior of the BPS index is more subtle.

Historically8 wall-crossing was first noticed by considering points in the parameter space

of the Landau-Ginzburg model with

W = X4 + t1X
2 + t2X (2.46)

with distinct symmetry groups. Supposing we start out at (t1, t2) = (0, 1), where the model

is Z3-symmetric, the latter permuting the three vacua. We can show that there is indeed

a single soliton between each pair of distinct critical points,

µ12 = 1, (2.47)

µ23 = 1, (2.48)

µ13 = 1, (2.49)

a spectrum consistent with the Z3 symmetry. If we move slightly away from this point,

the collection of numbers doesn’t change. On the other hand at (t1, t2) = (1, 0), the

superpotential has Z2-symmetry. Requiring a Z2-symmetric spectrum requires that one of

the solitons disappears and the BPS indices are

µ′12 = 1, (2.50)

µ′23 = 1, (2.51)

µ′13 = 0. (2.52)

Thus BPS indices are examples of indices that are not constant but only piecewise constant.

8We thank S. Cecotti for narrating this story.
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Figure 2.4: Wall-crossing summarized in the W -plane.

The content of the Cecotti-Vafa formula is as follows. It first states that potential

discontinuous jumps in the BPS spectrum can occur when three critical values Wi,Wj ,Wk

become co-linear as we vary parameters. This is the locus where Im(ZijZjk) = 0. Next it

gives an explicit formula for the quantitative nature of this jump: If µ and µ′ denote BPS

degeneracies on different sides of the wall of marginal stability, they must be related by

µ′ij = µij , (2.53)

µ′jk = µjk, (2.54)

µ′ik = µik ± µijµjk, (2.55)

where the sign − is picked in going from the negative side, where Im(ZijZjk) < 0 to the

positive side, where Im(ZijZjk) > 0 and the + is picked in the reverse move. We summarize

the formula from the perspective of the W -plane in Figure 2.4.

The trick in arguing for this is to consider not just BPS states, but rather to look at

Q(ζ) = Q− − ζ−1Q+ (2.56)

preserving boundary conditions of our Landau-Ginzburg model when the latter is formu-

lated on a half-space such as (−∞, 0]×Rt. Such branes have been analyzed in great detail
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Figure 2.5: The topological intersection numbers µ̂ij obtained by looking at intersection
numbers of slightly rotated thimbles.

in references, [GMW, ?]. One finds that the homology class of the support of these branes

lives in the finite rank Z-module

B(ζ) := H 1
2

dim(X)(X,Re(ζ−1W )→∞;Z). (2.57)

We can equip B(ζ) with a natural bilinear form

µ̂ζ : B(ζ)×B(ζ)→ Z, (2.58)

defined as follows. When W is Morse, there is a natural Z-module basis for B(ζ) given

by the homology class of Lefschetz thimbles {[Li(ζ)]}i∈V. The thimble Li(ζ) projects to

half-infinite rays emanating from the critical value Wi in the ζ-direction. We then define

µ̂ζij := µ̂(Li, Lj) = L−i ◦ L
+
j , (2.59)

where L± denote thimbles with phases slightly rotated by a small positive or negative angle

respectively, as in Figure 2.5.

Some basic properties of µ̂ζ are as follows. First: if i and j are distinct vacua, µ̂ζij and

µ̂ζji cannot both be non-zero. In the case they are equal,

µ̂ii = 1. (2.60)
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Finally, if the vacuum weights are ζ-generic 9, we can order the thimble basis in decreasing

order of Im(ζ−1Wi). Making this choice of ordering, we find that µ̂ζ is an upper-triangular

|V| × |V| matrix with +1 on the diagonal.

For definiteness and to avoid notational clutter we set ζ = 1 and set µ̂ = µ̂ζ=1. This is

equivalent to choosing the half-plane in which we take phase ordered products to be the

upper-half plane, as was done in (2.29).

The matrix representation µ̂ij for the bilinear form can be calculated from the BPS

indices µij by a nice rule expressed in terms of convex geometry.

Definition: A half-plane fan F of phase ζ is a collection of vacua F = {i1, . . . , in} such

that W (F ) = {Wi1 , . . . ,Win} are the clockwise-ordered vertices of a semi-infinite convex

polygon going off to infinity in the −ζ-direction. See Figure 2.6 for an example with n = 4.

The dual graph looks like a half-plane fan (and indeed has a space-time interpretation),

hence the terminology.

To a given half-plane fan F = {i1, i2.i3, . . . , in} assign the number

µF = µi1i2µi2i3 . . . µin−1in . (2.61)

We then make the

Claim

µ̂ij =
∑

Fij={i,i1,...,ik,j}
Fij half-plane fan

µii1 . . . µikj . (2.62)

9A set of critical values is called ζ-generic, following the terminology in [KKS], if none of the relative

phases ζij are equal to ζ.
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Figure 2.6: A half-plane fan Fi1i4 = {i1, i2, i3, i4} for ζ = 1 and the semi-infinite polygon
it forms in the W -plane.

Proof The proof is a straightforward inductive argument, where we induct on distance

between i and j. To show the base case, for two neighboring vacua i < j, one has µ̂ij = µij

due to (2.40)10. On the other hand there’s only one polygon between two neighboring

vacua, whose finite segment is given by the segment connecting them, to which we also

assign µij . For the inductive step, assume that the polygon rule (2.62) holds for vacua that

are up to n units apart and consider a pair of vacua {i, j} that are n+ 1 units apart. We

know that

Li ◦ L̃j = µij (2.63)

where L̃j := Lj(ζije
−iε). We thus want to compare L̃j with L+

j namely we must rotate

this thimble in a clockwise direction by the phase of ζij . In doing this rotation we pick

up Picard-Lefschetz discontinuities: For each critical value Wk such that {i, k, j} forms

10Note that for ζ being the phase of an ij-soliton left-right intersection number of (2.40) agrees with the

left-left intersection number of (2.59)
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half-plane fan, we pick up a contribution of L+
k µki. Summing these up we get

L+
j = L̃j +

∑
k

{i,k,j} is a fan

L+
k µki. (2.64)

Thus we can compute that

µ̂ij = µij +
∑
k s.t.

{i,k,j} is a fan

µ̂ikµkj . (2.65)

The polygon rule applies to µ̂ik so that

µ̂ikµkj =
∑
Fik

µFikµkj . (2.66)

On the other hand if {i, k, j} is a fan, we can form an ij half-plane fan by taking the

fan Fik = {i, . . . , k} and putting j at the end {i, . . . , k, j}. To this one precisely assigns

µFikµkj . Conversely, every ij fan can be obtained in this way.

To see that this implies the wall-crossing formula, consider µ̂ restricted to the three-

dimensional {i, j, k} space and note that if we are on the left side of Figure 2.4 then there

is only one half-plane of type ij ik jk respectively, so that

µ̂ =


1 µij µik

0 1 µjk

0 0 1

 . (2.67)

On the other side of the wall we have two half-plane fans of type ik, depicted in Figure

2.10, leading us to write

µ̂ =


1 µ′ij µ′ik + µ′ijµ

′
jk

0 1 µ′jk

0 0 1

 . (2.68)

The two expressions for µ̂ are equal if and only if the wall-crossing formula holds.



45

More generally suppose that {l,m} is any pair of vacua such that there is a fan

Flm = {l, i1, . . . , i, k, . . . , in,m} (2.69)

in which {i, k} appears as a subset of consecutive vacua. Then on the other side of the

wall, for every such fan, the set of lm-fans gains an additional fan obtained by taking Flm

and inserting j in between i and k. Moreover these are the only additional fans we gain,

assuming we cross no other marginal stability walls in the move. Thus we compare

µli1 . . . µik . . . µinm (2.70)

with

µli1 . . . µ
′
ik . . . µinm + µli1 . . . µ

′
ijµ
′
jk . . . µinm (2.71)

and the two are equal if and only if the wall-crossing formula holds. Therefore we conclude

that the wall-crossing formula is equivalent to the invariance of the bilinear form µ̂ across

a wall of marginal stability.

2.3 BPS Chain Complexes and ζ-instantons

2.3.1 BPS Chain Complexes

The chain complexes Rij that categorify µij can be formulated by using an infinite-

dimensional version of Morse theory. Suppose that the symplectic form ω on X is exact

and choose a Liouville form λ so that ω = dλ. We consider the (family of) “Morse”

functions

hζ [φ] =

∫
R
φ∗(λ) + Im

(
ζ−1W (φ)

)
dx (2.72)

acting on the space

Xij = {φ : R→ X|limx→−∞φ(x) = φi limx→∞φ(x) = φj}. (2.73)
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Generators The critical points are the points where δhζ = 0 which are solutions of the

ζ-soliton equation

dφI

dx
=
ζ

2
gIJ̄

∂W

∂φ
J̄
, (2.74)

and so the critical point set is non-empty only for ζ = ζji. The Morse function is actually

not Morse because of the translational invariance of the soliton equation but we can mod

out the solution space by this R-action to obtain a (generically) finite set of critical points,

in one-to-one correspondence with intersection points

Li(ζjie
−iε) ∩Rj(ζjieiε). (2.75)

Thus we look to the pair

(Xij , h−ζij ) (2.76)

and assign a Z-module Rij with one generator for each solution of the ζji-soliton equation

Rij =
⊕

p∈L−i ∩R
+
j

Z〈φpij〉. (2.77)

Gradations Next we come to the subtle business of defining gradations on Rij . The

Fermion number, or homological degree of a generator in the Morse complex for a Morse

function f as reviewed in [GMW, MS1] is given by

−1

2

∑
λ∈Spec Hess(f(p))

sign(λ), (2.78)

where p is the critical point of f whose degree we’re computing. To assign a degree to

a ζ-soliton we must therefore compute the second derivative δ2hζ . Equivalently we may

linearize the ζ-soliton equation (2.74) which leads to

D(1,0)
x δφI =

ζ

2
gIJ̄DJ̄∂K̄Wδφ

K̄
(2.79)
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where

D(1,0)
x δφI =

∂

∂x
δφI + ΓIJK

∂φJ

∂x
δφK (2.80)

is the pullback connection on φ∗(T (1,0)X). By considering also the complex conjugate of

(2.79), we can write the linearized soliton equation as

Dζδφ = 0 (2.81)

where Dζ is a Dirac type operator

Dζ : Γ
(
φ∗(T (1,0)X)⊕ φ∗(T (0,1)X)

)
→ Γ

(
φ∗(T (1,0)X)⊕ φ∗(T (0,1)X)

)
. (2.82)

Writing

δφ ∈ Γ
(
φ∗(T (1,0)X)⊕ φ∗(T (0,1)X)

)
(2.83)

as a column vector

δφ =

δφI
δφ

Ī

 (2.84)

the operator Dζ reads11

Dζ =

δIJ∂x + ΓIJK∂xφ
K 0

0 δĪ
J̄
∂x + ΓĪ

J̄K̄
∂xφ

K̄


−

 0 ζ
2g
IK̄DK̄∂J̄W

ζ−1

2 gĪKDK∂JW 0

 .

(2.85)

The operator Dζ is expressed a little more compactly by identifying

φ∗(T (1,0)X)⊕ φ∗(T (0,1)X) ∼= φ∗(TX), (2.86)

11Note that the operator (2.85) differs from that given in equation 12.6 of [GMW], v1. The authors of

[GMW] forgot to include covariant derivatives.
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where TX denotes the complexified tangent bundle. Choosing real coordinates indexed by

a = 1, . . . ,dimR(X), we can write

Dζ = δabDx − gacDb∂c Re(ζ−1W ), (2.87)

where

Dxδφ
a = ∂xδφ

a + Γabc∂xφ
b δφc (2.88)

is now the pullback connection on φ∗(TX). The Fermion number of an ij-soliton φ should

thus be given by a regularized version of (2.78):

F (φ) = −limε→0
1

2

∑
λ∈Eigenvalues(Dζji (φ))

sign(λ)e−ε|λ| (2.89)

= −1

2
η
(
Dζij (φ)

)
. (2.90)

One wants chain complexes R
(1)
ij , R

(2)
ij constructed from two different choices of Kähler

metrics g(1), g(2) (namely by a different choice of D-terms) to be homotopy equivalent

R
(1)
ij ' R

(2)
ij . (2.91)

A necessary condition for is this that if we continuously interpolate between the metrics

g(1) and g(2) and evolve the soliton φ(1) solving the ζ-soliton equation for g(1) to φ(2) a

soliton for g(2) then their Fermion degrees must match. However the variational formula

for the η-invariant says that

1

2
η
(
D(φ(1), g(1))

)
− 1

2
η
(
D(φ(2), g(2))

)
= 2

∫
R×[0,1]

φ̃∗
( 1

2π
TrR

)
, (2.92)

where

φ̃ : R× [0, 1]→ X (2.93)
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is a path in Xij interpolating between φ(1) and φ(2), and

1

2π
TrR (2.94)

is the Chern-Weil representative of c1(TX). This is nothing but a reminder that the LG

model has an axial anomaly for arbitrary Kähler target. The axial anomaly is traditionally

expressed as the statement that the right hand side of (2.92) measures the net violation

of Fermion number. The factor of two comes from taking into account the individual

violations of both left and right moving fermions. Thus gradations are unchanged under

metric variations only if X is Calabi-Yau. Otherwise to ensure this property we must grade

Rij by a cyclic group ZN such that the image of 2c1(X) in H2(X,ZN ) vanishes.

Differential The differential dij is provided by counting (with signs) solutions of the

ζji-instanton equation

∂sφ
I =

ζji
2
gIJ̄

∂W

∂φ
J̄

(2.95)

interpolating between solitons of fermion number differing by a unit. Here s = x + iτ ,

where τ is the Euclidean time. Thus we get well-defined chain complexes (Rij , dij) from

which we can construct HBPS
ij by taking cohomology

HBPS
ij
∼= H•(Rij , dij). (2.96)

A ζ-instanton which contributes to the differential dij in spacetime looks like Figure 2.1.

Physically we expect the following properties.

Metric Dependence BPS chain complexes constructed from two different choices of

Kähler metrics should be homotopy equivalent.
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CPT Reversing the spatial coordinate, i.e the path φpij(−x) says that for every basis

element φpij of Rij we get an element φpji such that

deg(φpji) = 1− deg(φpij). (2.97)

The shift in degree by +1 is a technical consequence of factoring out the translational mode

of the soliton. For more details on this point see the discussion in section 12.3 in [GMW].

In basis independent terms, CPT says that we have a degree −1 non-degenerate pairing

Kij : Rij ⊗Rji → Z. (2.98)

2.3.2 ζ-instantons and Interior Amplitudes

As alluded to in the introduction, a categorified wall-crossing formula will involve certain

“off-diagonal” maps

M [βikj ] : Rij ⊗Rjk → Rik (2.99)

which allow construction of the correct differential. The construction of this map involves

counting ζ-instantons with fan boundary conditions, which we now discuss.

We consider solutions of the ζ-instanton equation

∂sφ
I =

ζ

4
gIJ̄

∂W

∂φ
J̄

(2.100)

which look like a collection of “boosted solitons” at infinity. See [GMW] sections 14.1-14.2

and Appendix E for more details on such boundary conditions. Let

I = {i1, . . . , in} (2.101)

be a cyclic fan of vacua and

φ = {φi1i2 , . . . , φini1} (2.102)
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Figure 2.7: Boundary conditions for a ζ-instanton in the (x, τ)-plane on the left, and the
image of such a ζ-instanton in the W -plane on the right.

be a fan of solitons. We want to consider ζ-instantons which support these particular

solitons on the edges. I is a fan if and only if the critical values

WI = {Wi1 , . . . ,Win} (2.103)

are the clockwise ordered vertices of a convex polygon in the W -plane. Solutions of the

ζ-instanton equation with fan boundary conditions are known as a domain-wall junctions

and have been studied in [CHT, GT, INOS], and elsewhere. In particular, it was noted

in [CHT], that just the way a ζij-soliton maps to a line connecting Wi and Wj in the

W -plane, a ζ-instanton maps to the interior of the convex polygon with WI as vertices.

See Figure 2.7 for an example with n = 5. This fact motivates the terminology BPS or

gradient polygon for φ, as was introduced in [KKS].

Solutions of the ζ-instanton equation modulo translations with a fixed fan and fixed

soliton collection φ supported on edges form a moduli space Mζ(φ). Its dimension is

given by forming the vector

eφ := φi1i2 ⊗ · · · ⊗ φini1 (2.104)
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in the cyclic tensor product

RI = Ri1i2 ⊗ · · · ⊗Rini1 (2.105)

and considering its degree

F (φ) := deg(eφ). (2.106)

The (virtual) dimension of these moduli spaces is [GMW]

dim(Mζ(φ)) = F (φ)− 2. (2.107)

Moreover Mζ(φ) can be oriented. In particular if F (φ) = 2, we learn that the moduli

space Mζ(φ) is a collection of oriented points and thus we can get a well-defined signed

count of ζ-instantons

Nζ(φ) := #Mζ(φ). (2.108)

The integers N(φ) 12 satisfy some miraculous identities . There is an identity corre-

sponding to each cyclic fan.

For a cyclic fan of length two, {i, j} we have

∑
χij∈L−i ∩R

+
j

F (φij ,χji)=2
F (χij ,ψji)=2

N
(
φij , χji

)
N
(
χij , ψji

)
= 0. (2.109)

This is nothing but the identity that the differential dij counting ζ-instantons between

ij-solitons is nilpotent, which is a familiar fact from Morse theory. It involves the fact that

the moduli space M(φij , ψji) such that d(φij , ψji) = 3 has ends corresponding to broken

flow lines gluing intermediate instantons.

12We can safely drop the ζ-subscript from the notation because the integers Nζ(φ) are ζ-independent
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Figure 2.8: The various ends of M
(
φik, ψkj , χji) where F (φik, ψkj , χji) = 3.

For {i, k, j} a cyclic fan of vacua of length three, we have the identity∑
ξij∈L−i ∩R

+
j

F (φik,ψkj ,ξji)=2
F (ξij ,χji)=2

N(φik, ψkj , ξji
)
N
(
ξij , χji

)

+
∑

ξjk∈L−j ∩R
+
k

F (χji,φik,ξkj)=2
F (ξjk,ψkj)=2

N
(
χji, φik, ξkj

)
N
(
ξjk, ψkj

)

+
∑

ξik∈L−i ∩R
+
k

F (ξik,ψkj ,χji)=2
F (φik,ξki)=2

N
(
φik, ξki

)
N
(
ξik, ψkj , χji

)
= 0.

(2.110)

The argument for this involves looking at the ends of the moduli space

M
(
φik, ψkj , χji) (2.111)

of a fan of solitons such that F (φik, ψkj , χji) = 3. There are three types of ends, where

a rigid instanton of type {i, k} is glued to a rigid instanton of type {i, k, j}, similarly for
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{i, j} and {j, k}. See Figure 2.8. Such “broken flows” give

∂M
(
φik, ψkj , χji) =

⊔
ξij∈L−i ∩R

+
j

F (φik,ψkj ,ξji)=2
F (ξij ,χji)=2

M
(
φik, ψkj , ξji

)
×M

(
ξij , χji

)

t
⊔

ξjk∈L−j ∩R
+
k

F (χji,φik,ξkj)=2
F (ξjk,ψkj)=2

M
(
χji, φik, ξkj

)
×M

(
ξjk, ψkj

)

t
⊔

ξik∈L−i ∩R
+
k

F (ξik,ψkj ,χji)=2
F (φik,ξki)=2

M
(
φik, ξki

)
×M

(
ξik, ψkj , χji

)
.

(2.112)

(2.110) then follows from

#∂M
(
φik, ψkj , χji) = 0. (2.113)

More generally, one expects that the moduli spacesMζ(φ) can be compactified, such that

the compactified moduli space Mζ(φ) has strata labeled by web diagrams of the type in

Figure 2.8.

Although the identities (2.109) and (2.110) are all we need for categorical wall-crossing,

we should mention for completeness that there are more complicated identities involving

fans of longer length which can be deduced from the web combinatorics of [GMW]. The

summary is that all identities follow from a single L∞-Maurer-Cartan equation. Form the

vector space13

Rc = ⊕IRI (2.114)

= ⊕i∈VRi ⊕i 6=j (Rij ⊗Rji)⊕ . . . (2.115)

13Ri ∼= Z
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corresponding to taking all possible cyclic tensor products. Rc has the structure of an

L∞-algebra. Namely there are maps

ρ(t) : S+Rc → Rc, (2.116)

where S+Rc denotes (the positive part of) the symmetric algebra, satisfying L∞-axioms.

ρ(t) is defined through taut webs as in [GMW]. Define

βI :=
∑

φ gradient polygons for I
F (φ)=2

N(φ)eφ, (2.117)

and let

β :=
∑
I

βI ∈ Rc. (2.118)

One of the main results of [GMW] is that analysis of various moduli spaces leads one to

conclude that β is a Maurer-Cartan element for the L∞-structure. Namely it satisfies the

L∞ Maurer-Cartan equation

ρ(t)(eβ) = 0. (2.119)

β was called the interior amplitude in [GMW]. The identities (2.109), (2.110) are some

simple equations that come from unpacking the L∞ Maurer-Cartan equation.

Remark In general interior amplitudes will have components associated to arbitrary fans

βi1i2...in ∈ Ri1i2 ⊗Ri2i3 ⊗ · · · ⊗Rini1 . (2.120)

However, only the trivalent components associated to the “wall-crossing triangle”; βikj on

one side and β′ijk on the other, enter the discussion in categorical wall-crossing.
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2.3.3 Homotopy Equivalence of BPS Data

We have discussed the construction of the BPS chain complexes

{(Rij , dij)}, (2.121)

the contraction maps

{Kij} (2.122)

and the important vector encoding counts of rigid ζ-instantons

β ∈ Rc. (2.123)

We have noted however that the BPS complexes by themselves are not physical observables,

only their homotopy equivalence class is. It is natural to try to extend the notion of

homotopy equivalence from the BPS complexes, to the full categorical BPS data, namely

to introduce a natural notion of homotopy equivalence for the contraction pairings and

interior amplitudes. We briefly formulate such a notion in this sub-section.

Suppose we are given another collection of BPS data ({Sij}, {Lij}, γ) where Sij denote

complexes Lij contaction maps, and γ is now a Maurer-Cartan element of the L∞-algebra

Sc, constructed from Sij and Lij . We say that the BPS data

(
{Rij}, {Kij}, β

)
and

(
{Sij}, {Lij}, γ) (2.124)

are homotopy equivalent if there are homotopy equivalences of chain complexes

fij : Rij → Sij (2.125)

that fit into a collection of maps

fn : R⊗nc → Sc (2.126)
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with f1 being induced canonically from the collection {fij} that together define an L∞-

equivalence from Rc to Sc. The maps {fij} and the L∞-morphism {fn} must be such that

the diagram

Rij ⊗Rji
fij⊗fji //

Kij

&&

Sij ⊗ Sji

Lij

��
Z

(2.127)

commutes up to homotopy, and the Maurer-Cartan element transports naturally:

f(eβ) ∼ γ, (2.128)

where ∼ denotes gauge equivalence of Maurer-Cartan elements, defined in Appendix B.1.

The general philosophy of this thesis is that we should only consider homotopy equiva-

lence classes of the categorical BPS data. For example a D-term variation will only result

in homotopy equivalent BPS data. The equivalence in this section can be viewed as a re-

laxation of the notion of strict isomorphism of categorical BPS data as defined in [GMW]

section 4.1.1.

2.4 Statement of Categorical Wall-Crossing

Notation Given an element rik ⊗ rkj ⊗ rji ∈ Rik ⊗Rkj ⊗Rji we can define

M [rik ⊗ rkj ⊗ rji] : Rij ⊗Rjk → Rik (2.129)

by using the contraction maps

M [rik ⊗ rkj ⊗ rji](r′ij ⊗ r′jk) = Kji(rji, r
′
ij)Kkj(rkj , r

′
jk)rik. (2.130)
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Similarly we define

M ′[rik ⊗ rkj ⊗ rji] : Rki → Rkj ⊗Rji (2.131)

by contracting the ik factor using Kik, and using the Koszul sign rule. Finally the natural

product rule differential on a tensor product chain complex of the form as Rij ⊗ Rjk is

denoted as dijk:

dijk = dij ⊗ 1± 1⊗ djk. (2.132)

When we write ± it means we are not being precise about the exact sign.

Marginal Stability Wall Recall an ijk wall of marginal stability is the locus where

Im(ZijZjk) = 0. (2.133)

See Figure 2.9.

Main Statement Let

(Rij , Rjk, Rik, βikj) (2.134)

be the chain complexes and interior amplitude component in a region where

Im(ZijZjk) < 0, (2.135)

and

(R′ij , R
′
jk, R

′
ik, β

′
ijk) (2.136)

be the chain complexes and interior amplitude component in a region where

Im(Z ′ijZ
′
jk) > 0. (2.137)
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Note that βikj defines a chain14 map

M [βikj ] : Rij ⊗Rjk → Rik, (2.138)

and β′ijk defines a chain map

M ′[β′ijk] : R′ik[1]→ R′ij ⊗R′jk. (2.139)

The categorical wall-crossing formula states that

R′ij ' Rij , (2.140)

R′jk ' Rjk, (2.141)

R′ik ' Cone
(
M [βikj ] : Rij ⊗Rjk → Rik

)
. (2.142)

Furthermore, letting (P,Q) be the chain maps that implement the homotopy equivalence

between the primed and unprimed sides, it states that the diagrams

R′ik[1]
M ′[β′ijk]
−−−−−→ R′ij ⊗R′jk

P

y yP⊗P
Cone

(
M [βikj ]

)
[1] −−−−→

π
Rij ⊗Rjk

(2.143)

and

R′ik[1]
M ′[β′ijk]
−−−−−→ R′ij ⊗R′jk

Q

x xQ⊗Q
Cone

(
M [βikj ]

)
[1] −−−−→

π
Rij ⊗Rjk

(2.144)

commute up to homotopy.

14This follows from β being an interior amplitude, or equivalently, identity (2.110). The taut webs

involved in this identity are the ones in Figure 2.8.
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Equivalently,

Rij ' R′ij , (2.145)

Rjk ' R′jk, (2.146)

Rik ' Cone(M ′[β′ijk] : R′ik[1]→ R′ij ⊗R′jk), (2.147)

and letting (S, T ) be the chain maps implementing homotopy equivalence between the two

sides, the diagrams

Rij ⊗Rjk
M [βikj ]−−−−−→ Rik,

T⊗T
y yT

R′ij ⊗R′jk −−−−→i Cone
(
M ′[β′ijk]

) (2.148)

and

Rij ⊗Rjk
M [βikj ]−−−−−→ Rik,

S⊗S
x xS

R′ij ⊗R′jk −−−−→i Cone
(
M ′[β′ijk]

) (2.149)

commute up to homotopy.

These formulas are also sufficient to relate the contraction maps. Given chain complexes

(Rij , Rjk, Rik, βikj) (2.150)

such that

Im(ZijZjk) < 0, (2.151)

the dual complexes (Rkj , Rji, Rki) will be a triple such that

Im(ZkjZji) > 0. (2.152)
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Therefore the formulas for going from Im(· · · ) > 0 to Im(· · · ) < 0 imply that

R′kj ' Rkj , (2.153)

R′ji ' Rji, (2.154)

R′ki ' Cone
(
M ′[βikj ] : Rki[1]→ Rkj ⊗Rji

)
. (2.155)

Note that there is a canonical degree −1 map

L : Cone
(
M [βikj ]

)
⊗ Cone

(
M ′[βijk])→ Z (2.156)

given by

L =

 0 Kik

Kij ⊗Kjk 0

 . (2.157)

Denote the chain maps implementing the homotopy equivalence as P̃ , Q̃. With this, the

final part of categorical wall-crossing also determines the homotopy class of the contraction

maps, by stating that the diagrams

Rij ⊗Rji
Kij // Z

R′ij ⊗R′ji

P⊗P̃

OO

K′ij

:: (2.158)

Rjk ⊗Rkj
Kjk // Z

R′jk ⊗R′kj

P⊗P̃

OO

K′jk

:: (2.159)
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C(M)⊗ C(M ′)
L // Z

R′ik ⊗R′ki

P⊗P̃

OO

K′ik

99 (2.160)

commute up to homotopy. In the above we have abbreviated Cone
(
M [βikj ]

)
and Cone

(
M ′[β′ijk]

)
as C(M) and C(M ′) respectively. There will be similar diagrams with (Q, Q̃).

Canonical Representatives In practice given the chain complexes on one side, one

wants to work with specific representatives within the homotopy equivalence class of chain

complexes (and chain maps) for the other. There is a canonical choice for this. Suppose

we treat the primed side as unknown. Then the canonical representatives for the primed

complexes are

R′ij = Rij , (2.161)

R′jk = Rjk, (2.162)

R′ik = Cone
(
M [βikj ]

)
. (2.163)

By letting P,Q to be identity maps, we can then make the diagrams (2.143),(2.144), strictly

commute by letting

M ′[β′ijk] = π, (2.164)

which is equivalent to saying that

β′ijk = K−1
ij K

−1
jk . (2.165)
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Figure 2.9: Categorical wall-crossing summarized in the W -plane.

The canonical representatives for the dual complexes are

R′kj = Rkj , (2.166)

R′ji = Rji, (2.167)

R′ki = Cone
(
M ′[βikj ]

)
(2.168)

and one can then set the contraction maps to be

K ′ij = Kij , (2.169)

K ′jk = Kjk, (2.170)

K ′ik =

 0 Kik

Kij ⊗Kjk 0

 . (2.171)

Figure 2.9 summarizes the categorical wall-crossing formula for going from a point in

parameter space with Im(ZijZjk) < 0 to a point where Im(ZijZjk) > 0 from the perspective

of the W -plane. The formulas and the figure summarizing the specific representatives in

the inverse move would look similar. These straightforward details are left for the reader.
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Remark: Consistency Check A consistency check our formulas must pass is whether

jumping from the negative side of the wall of marginal stability where Im(ZijZjk) < 0

to the positive side where Im(ZijZjk) > 0 and then jumping back to the negative side is

equivalent to doing nothing. We work with the canonical representatives. Starting from

the complex Rik the wall-crossing formula says that

R′ik = Cone
(
M [βijk] : Rij ⊗Rjk → Rik

)
, (2.172)

and

β′ijk = K−1
ij K

−1
jk . (2.173)

Jumping back to the right side, gives us

R′′ik = Cone
(
M ′[K−1

ij K
−1
jk ] : Cone

(
M [βikj ]

)
[1]→ Rij ⊗Rjk

)
. (2.174)

But

M ′[β′ijk] = π (2.175)

and therefore we have

R′′ik = Cone
(
π : Cone

(
M [β] : Rij ⊗Rjk → Rik)[1]→ Rij ⊗Rjk

)
(2.176)

= Cyl
(
M [βikj ] : Rij ⊗Rjk → Rik

)
(2.177)

' Rik. (2.178)

The cylinder construction of homological algebra, used above is described in Appendix

A.1. Therefore we end up with a complex canonically homotopy equivalent to the original

complex. A similar check can be performed for β′′ikj . One shows that the diagram

Rij ⊗Rjk

M [β′′ikj ] ''

M [βikj ] // Rik

i
��

Cyl
(
M [βikj ]

)
(2.179)
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commutes up to homotopy. This shows clearly the need to work at the level of homotopy

equivalence.

In the next two sections we show how these conditions word-for-word are the homotopy

equivalence of A∞ categories constructed at a point where Im(ZijZjk) > 0 compared to a

point where Im(ZijZjk) < 0.

2.5 ζ-instantons and Brane Categories

2.5.1 Bare Thimble Category

While the chain complex Rij categorifies µij , categorification of µ̂ij leads to more interesting

structure. The correct viewpoint will be that B must be upgraded to a category, and µ̂ij

will be categorified to vector spaces of morphisms.

The construction of the “bare” thimble category R̂bare proceeds as follows.

Objects The objects are an ordered collection of thimbles

T1, . . . ,Tn, (2.180)

one for each critical point i ∈ Crit(W ). They are ordered by Im(−W ) so that i > j if

Im(Wi) < Im(Wj).

Morphisms The morphisms are given as follows. In order to define 15

R̂ij := Hop(Ti,Tj) (2.181)

15Hop(A,B) := Homopp(A,B) = Hom(B,A)
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Figure 2.10: Contribution of some half-plane fans to Hop(Ti,Tk)

we look at all half-plane fans with “top” vacuum i and “bottom” vacuum j. To an edge

separating i and j assign the vector space Rij and take the (ordered) tensor product along

each edge. Thus to each half-plane fan Fij of this type we assign a vector space RFij . The

morphism space is then defined by taking direct sums over all Fij half-plane fans

R̂ij =
⊕
Fij

RFij . (2.182)

See Figure 2.10 for an example of a morphism space where two fans contribute. Note that

R̂ii = Hop(Ti,Ti) = Z. (2.183)

If there are no half-plane fans then

R̂ij = 0, (2.184)

so that the objects {T1, . . . ,Tn} are an exceptional collection; the matrix of morphism

spaces R̂ij is an upper-triangular matrix with Z on the diagonal.
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Compositions An associative composition law

mijk : R̂ij ⊗ R̂jk → R̂ik (2.185)

is given simply by looking at whether Fjk can be placed below Fij to form a fan Fik. If so,

we take the tensor product of the vectors in RFij and RFjk to get a vector in RFik . If not,

we set it equal to zero.

Differentials Finally the differential d̂ij on

R̂ij = Rij ⊕ (Rik ⊗Rkj)⊕ . . . (2.186)

will be inherited from the differentials on the complexes in the obvious way

d̂ij = dij ⊕ (dik ⊗ 1 + 1⊗ dkj)⊕ . . . . (2.187)

Remark The differential-graded algebra

End
(
⊕i Ti) =

⊕
i,j

R̂ij (2.188)

in which the algebra multiplication is specified by the morphisms as defined above, as

explained in Appendix B.1, carries the same information as the category R̂ and so we often

use the terms algebra and category interchangeably in what follows.

2.5.2 Interior Amplitudes and Deformations of R̂

While R̂bare indeed gives µ̂ as its matrix of Euler characters, the cohomology spaceH•(R̂ij , d̂ij)

is not very physically meaningful. In particular, it is not isomorphic to the space of bound-

ary BPS local operators at a Ti-Tj brane junction, like we would want it to be. The reason

for this is similar to the failure of our naive categorification: we have not taken into account

all ζ-instantons. In particular these ζ-instantons will correct the differential (2.187) and

the composition law (2.185) described in the previous section.
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The precise way to take ζ-instantons into account again uses the interior amplitude β.

Similar to how one can use taut webs with n vertices to define L∞-maps,

ρ(t(n)) : SnRc → Rc, (2.189)

we can use taut half-plane webs with p boundary vertices and q bulk vertices to define

maps

ρ(t
(p,q)
H ) : (R̂)⊗p ⊗ (Rc)

⊗q → R̂ (2.190)

which satisfy the LA∞-axioms [GMW] (these are also known as the axioms of an open-

closed homotopy algebra, see [KS]). We now make use of the

Theorem Suppose (A,L) is an open-closed homotopy algebra with structure maps

mk,l : A⊗k ⊗ L⊗l → A, k ≥ 1, l ≥ 0 (2.191)

and suppose γ ∈ L is a Maurer-Cartan element for the L∞ algebra L. Then the collection

of maps

mk[γ] : A⊗k → A, (2.192)

defined by

mk[γ](−, . . . ,−) :=
∑
l≥0

1

l!
mk,l(− . . . ,−, γ⊗l) (2.193)

give a (new) A∞-structure on A.

Thus we use the ζ-instanton counting element β to deform the dg-category R̂bare to an

A∞-category denoted by R̂[X,W ]. The deformed category R̂[X,W ] is proposed as the

physical brane category of the Landau-Ginzburg model associated to the pair (X,W ). In
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particular, we correct the differential d̂ij to d̂ij [β] via (2.193) with k = 1, so that the

cohomology

H•(R̂ij , d̂ij [β]) (2.194)

is isomorphic to the space of 1
2 -boundary BPS local operators at a (Ti,Tj)-brane junction.

In addition k = 2 of (2.193) also modifies the bilinear composition (2.185). As a result of

(2.193) higher operations

{mk[β]}k>2 (2.195)

are also introduced. Together these operations turn R̂[X,W ] into a genuine A∞-category.

2.6 Homotopy Equivalence of Brane Categories

The categorical wall-crossing constraint is formulated as follows.

Categorical Wall-Crossing Constraint Suppose W and W ′ are superpotentials on

different sides of a wall of marginal stability. Then the β-deformed thimble categories on

either side of the wall are homotopy equivalent

R̂[X,W ] ' R̂′[X,W ′] (2.196)

as A∞-categories.

We now relate our categorical wall-crossing formulas with the categorical wall-crossing

constraint. First we construct the left and right {i, j, k}-subcategories. As an instructive

first check, we verify that the canonical representatives indeed give homotopy equivalent

categories. Finally we unpack the axioms for A∞ equivalence and show how the general

statement follows.
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Figure 2.11: A taut half-plane web which contributes to a non-trivial bilinear product, by
inserting the interior amplitude β in the bulk vertex.

2.6.1 Left Configuration

Let us first construct the {i, j, k} sub-algebra of R̂ for the configuration on the left of Figure

2.4. The soliton complexes are

(Rij , dij), (Rik, dik), (Rjk, djk). (2.197)

Because there are no half-plane fans with more than one edge emanating from the boundary,

the morphism spaces are simply

R̂ij = Rij , (2.198)

R̂jk = Rjk, (2.199)

R̂ik = Rik. (2.200)

In the undeformed algebra, there are no non-trivial multiplications.

Now consider the interior amplitude component

βikj ∈ Rik ⊗Rkj ⊗Rji, (2.201)
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Figure 2.12: A taut half-plane web which contributes to an off-diagonal element in the
differential by inserting the interior amplitude β′ in the bulk vertex.

and consider the β-deformed algebra R̂(X,W ). In R̂(X,W ) we see that the taut half-plane

web shown in Figure 2.11 now gives rise to a non-trivial morphism

M [βikj ] : R̂ij ⊗ R̂jk → R̂ik (2.202)

given precisely by (2.130) applied to βikj . The differential d̂ remains uncorrected.

The only A∞ axiom to check is that

dik(M [βikj ](rij , rjk)) = M [βikj ](drij , rjk)±M [βikj ](rij , drjk) (2.203)

which follows from βikj being an interior amplitude component.

2.6.2 Right Configuration

Suppose the BPS chain complexes on the right configuration are

(R′ij , d
′
ij), (R

′
jk, d

′
jk), (R

′
ik, d

′
ik). (2.204)

There are now two half-plane fans of type ik, shown in Figure 2.10 with one and two edges

emanating from the boundary vertex respectively. This gives that the morphism spaces
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are

R̂′ij = R′ij , (2.205)

R̂′jk = R′jk, (2.206)

R̂′ik = R′ik ⊕ (R′ij ⊗R′jk). (2.207)

Denote the interior amplitude on the right configuration to be

β′ijk ∈ R′ij ⊗R′jk ⊗R′ki. (2.208)

Writing an element of R̂′ik as a column vector

 r′ik

r′ijr
′
jk

 the differential on R̂′ik is of the

form

d̂′ik[β
′] =

 d′ik 0

M ′[β′ijk] d′ijk

 (2.209)

where

M ′[β′ijk] : R′ik → R′ij ⊗R′jk (2.210)

is a degree +1 map defined by Figure 2.12. Nilpotence of d̂′ik[β
′] holds if

d′ijkM
′[β′ijk] +M ′[β′ijk]d

′
ik = 0, (2.211)

therefore we may equivalently view M ′[β′ijk] as a chain map

M ′[β′ijk] : R′ik[1]→ R′ij ⊗R′jk (2.212)

and we can rewrite

R̂′ik = Cone
(
M ′[β′ijk] : R′ik[1]→ R′ij ⊗R′jk

)
. (2.213)

The only non-trivial multiplication map is

i : R̂′ij ⊗ R̂′jk → R̂′ik (2.214)
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given by inclusion. The A∞ axiom says that i is a chain map with respect to d′ijk, the

product rule differential on R′ij ⊗ R′jk and d̂′ik[β
′] = dM ′ the mapping cone differential on

R̂′ik.

2.6.3 Canonical Representatives Satisfy Wall-Crossing Constraint

In this section we show that the canonical representatives (2.161), (2.162), (2.163),

(2.165) satisfy the categorical wall-crossing constraint.

Claim: Suppose the primed complexes

(R′ij , d
′
ij), (R

′
jk, d

′
jk), (R

′
ik, d

′
ik) (2.215)

and interior amplitude

β′ijk ∈ R′ij ⊗R′jk ⊗R′kj (2.216)

are given as in (2.161), (2.162), (2.163) and (2.165). Then there is a functor

T : R̂→ R̂′ (2.217)

which defines a quasi-isomorphism of A∞-categories. We call T the wall-crossing functor.

Proof: By virtue of the categorical wall-crossing statement, we have the primed mor-

phism spaces

R̂′ij = Rij , (2.218)

R̂′jk = Rjk, (2.219)

R̂′ik = Rik ⊕
(
Rij ⊗Rjk

)
[−1]⊕

(
Rij ⊗Rjk

)
. (2.220)
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The differentials deformed by the interior amplitude component β′ijk are of the form

d̂′ik[β
′] = d̂ik, (2.221)

d̂′jk[β
′] = d̂jk, (2.222)

d̂′ik[β
′] =


dik M [βikj ] 0

0 d
[−1]
ijk 0

M ′1[β′ijk] M ′2[β′ijk] dijk

 , (2.223)

where M [βikj ] was defined as before and

M ′1[β′ijk] : Rik → Rij ⊗Rjk, (2.224)

M ′2[β′ijk] :
(
Rij ⊗Rjk

)
[−1]→ Rij ⊗Rjk (2.225)

are the different components of the maps defined by Figure 2.12 by inserting β′ in the

bulk vertex. The functor T can then be defined as follows. On objects we simply have the

identity map. On morphism spaces we define

T1 : R̂ij → R̂′ij , (2.226)

T1 : R̂kj → R̂′kj (2.227)

as identity maps, whereas

T1 : R̂ik → R̂′ik (2.228)

is defined as inclusion,

T1(rik) =


rik

0

0

 (2.229)

Furthermore

T2 : R̂ij ⊗ R̂jk → R̂′ik (2.230)
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is again defined to be inclusion, but into the summand with shifted degree,

T2(rijrjk) =


0

(rijrjk)
[−1]

0

 . (2.231)

Indeed (T1, T2) have degrees (0,−1) respectively. The higher maps Tn are set to be zero

for n ≥ 3.

First we have to show the axioms of an A∞-morphism are satisfied. Here there are just

two axioms to check. At n = 1 we have to check if T1 is a chain map. The only non-trivial

check is on the ik-component of T1 and it follows that we have a chain map from the form

of the differential (2.223). At n = 2 we must check

T1

(
m2(rij , rjk)

)
−m′2

(
T1(rij), T1(rjk)

)
= T2(rij , drjk)± T2(drij , rjk)± d′(T2(rij , rjk)).

(2.232)

This follows from the following simplification for the expression of d̂′ik[β
′]. The explicit

form of β′

β′ijk = K−1
ij K

−1
jk , (2.233)

from (2.165), implies that the off-diagonal maps M ′1,2[β′ijk] are

M ′1[β′ijk] = 0 (2.234)

M ′2[β′ijk] = id. (2.235)

Note that the identity map M ′2 has degree +1 due to the degree shift on the domain. Thus

we can rewrite the differential as

d̂′ik[β
′] =


dik M [βikj ] 0

0 d
[−1]
ijk 0

0 id dijk

 . (2.236)
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Using this expression for d′ on the right hand side, the axiom easily follows. Thus T defines

an A∞-functor.

Finally, we must show that the wall-crossing functor T is a quasi-isomorphism. Again

this is non-trivial only on the ik-component. The simplification of d̂′[β′] in fact allows us

to relate this to the mapping cylinder construction: similar to (2.163) one can recognize

R̂′ik as the mapping cone of the projection map

π : R′ik[1] = Cone
(
M [βikj ]

)
[1]→ Rij ⊗Rjk. (2.237)

In other words we can rewrite

R̂′ik = Cyl
(
M [βikj ]

)
. (2.238)

Applying the Proposition about mapping cylinders from Appendix A.1 to f = M [βikj ]

yields that T is a quasi-isomorphism.

Remark TwoA∞-algebras are homotopy equivalent if and only if they are quasi-isomorphic

(this is a theorem of Prouté, [Pro]). We can thus say

R̂[X,W ] ' R̂′[X,W ′] (2.239)

where ' is meant to be understood as homotopy equivalence.

2.6.4 Homotopy Equivalence =⇒ Categorical WCF

Finally we come to the main claim.

Claim The categorical wall-crossing constraint, namely the homotopy equivalence of A∞-

categories

R̂[X,W ] ' R̂[X,W ′] (2.240)
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implies the categorical wall-crossing formula

R′ij ' Rij , (2.241)

R′jk ' Rjk, (2.242)

R′ik ' Cone
(
M [βikj ] : Rij ⊗Rjk → Rik

)
. (2.243)

Consider first the A∞ morphism

T : R̂[X,W ]→ R̂′[X,W ′]. (2.244)

This in particular means that there are chain maps

T1 : R̂ij → R̂′ij , (2.245)

T1 : R̂jk → R̂′jk, (2.246)

T1 : R̂ik → R̂′ik. (2.247)

We showed in 2.6.1, 2.6.2 that the hatted and un-hatted spaces coincide as chain complexes

except for R̂′ik which is of the form

R̂′ik = Cone(M ′[β′ijk] : R′ik[1]→ R′ij ⊗Rjk). (2.248)

Therefore we have chain maps

T1 : Rij → R′ij , (2.249)

T1 : Rjk → R′jk, (2.250)

T1 : Rik → Cone
(
M ′[β′ikj ]

)
. (2.251)

In addition the A∞-morphism T provides a degree −1 map

T2 : R̂ij ⊗ R̂jk → R̂′ik = Cone
(
M ′[β′ikj ]

)
(2.252)
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such that the second A∞-morphism axiom, (B.13), which in the present case reads

T1

(
M [βikj ](rij , rjk)

)
±M ′2

(
T1(rij), T1(rjk)

)
= d̂′ik[β

′]T2(rij , rjk)± T2(drij , rjk)± T2(rij , drjk),

(2.253)

holds. We showed that M ′2 the bilinear multiplication

M ′2 : R̂′ij ⊗ R̂′jk → Cone
(
M ′[β′ijk]

)
(2.254)

is given simply by the inclusion map i in 2.6.2. We therefore see that the conceptual way

to interpret this axiom is that it is saying that the square

Rij ⊗Rjk
M [βikj ]−−−−−→ Rik

T1⊗T1
y yT1

R′ij ⊗R′jk
i−−−−→ Cone

(
M ′[β′ijk]

) (2.255)

commutes up to homotopy 16

i(T1 ⊗ T1) ' T1(M [βikj ]) (2.257)

with T2 providing the chain homotopy. This condition is precisely (2.148).

Let the morphism in the other direction be

S : R̂′[X,W ′]→ R̂[X,W ] (2.258)

which in particular says that we have chain maps

S1 : R′ij → Rij , (2.259)

S1 : R′jk → Rjk, (2.260)

S1 : Cone
(
M ′[β′ijk]

)
→ Rik (2.261)

16Note that the the compositions are chain maps

Rik ⊗Rjk
i◦T1⊗T1−−−−−−→
T1◦M [β]

Cone
(
M ′[β′ijk]), (2.256)
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that provide homotopy inverses to the T1’s. S also provides us with a degree −1 map

S2 : R′ij ⊗R′ik → Rik (2.262)

that satisfies the second A∞ axiom which in this case says that the the square

R′ij ⊗R′jk
i−−−−→ Cone(M ′[β′ijk])

S1⊗S1

y yS1

Rij ⊗Rjk −−−−−→
M [βikj ]

Rik

(2.263)

commutes up to homotopy, with S2 providing the chain homotopy.

R′ij ⊗R′jk
S1◦i−−−−−−−−→

M [β]◦S1⊗S1

Rik. (2.264)

In particular the existence of (S1, T1) implies that

Rik ' R′ik, (2.265)

Rjk ' R′jk, (2.266)

Rik ' Cone
(
M ′[β′ijk] : R′ik[1]→ R′ij ⊗R′jk

)
, (2.267)

which are precisely the homotopy equivalences (2.145), (2.146), (2.147) asserted in the

categorical wall-crossing statement. The statement that these are homotopy equivalences

follows from the definition of homotopy equivalence of A∞-algebras. Similarly the commu-

tative square above is precisely (2.149).

Finally we use the Triangularity Lemma from Appendix A.1.

We found above that

Rik ' Cone
(
M ′[β′ijk] : R′ik[1]→ R′ij ⊗R′jk

)
(2.268)

so an application of the Triangularity Lemma implies that

R′ik ' Cone(S1 ◦ i : R′ij ⊗R′jk → Rik). (2.269)
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Next we recall that the A∞-axiom for S2 implies that

S1 ◦ i 'M [βikj ] ◦ (S1 ⊗ S1) (2.270)

and so their cones are homotopy equivalent. This gives

R′ik ' Cone
(
M [βikj ] ◦ (S1 ⊗ S1) : R′ik ⊗R′jk → Rik

)
. (2.271)

Finally since

S1 : R′ij → Rij , (2.272)

S1 : R′jk → Rjk (2.273)

are individually homotopy equivalences, so is

S1 ⊗ S1 : R′ij ⊗R′jk → Rij ⊗Rjk. (2.274)

Therefore the latter part has a trivial mapping cone and can be “factored out” to conclude

that

R′ik ' Cone
(
M [βikj ] : Rij ⊗Rjk → Rik

)
, (2.275)

the result to be shown.

2.7 The Fermion Degree of a ζ-instanton

Recall that a ζ-instanton with boundary conditions labeled by the triple of solitons

φ = (φik, φkj , φji) (2.276)

that occupy the edges of an ikj wall-crossing triangle contributes to the differential in a

categorical wall-crossing process if and only if

F (φik ⊗ φkj ⊗ φji) = 2. (2.277)

Therefore it is quite important to determine the degree of a given gradient polygon.
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By definition the Fermion number is the index of the Dirac operator

Dζ : Γ
(
φ∗(TX)

)
→ Γ

(
φ∗(TX)

)
(2.278)

given by

Dζ =

δIJD(1,0)
s̄ 0

0 δĪ
J̄
D

(0,1)
s

−
 0 ζ

2g
IK̄DK̄∂J̄W

ζ−1

2 gĪKDK∂JW 0

 . (2.279)

in the background of a ζ-instanton φ with φ boundary conditions. Clearly such an index

will be difficult to compute if we work directly with D 17. However a Maslov index type

construction, described in [KKS], gives a more geometric prescription to obtain a well-

defined integer d(φ) which is expected to agree with the index of D up to an overall shift.

It would be interesting to prove the equality of d(φ) with the index of D, but this would

take us too far afield in the present chapter. We proceed assuming the equality holds

and use the geometric prescription in what follows. The Maslov index construction also

assumes that X is equipped with a nowhere vanishing holomorphic volume form Ω.

Starting from a convex gradient polygon

φ = (φi0i1 , . . . φini0) (2.280)

the Maslov index prescription gives us d(φ) ∈ Z as follows. The main step consists of

assigning to the gradient polygon φ a (homotopy class of a) loop in the Lagrangian Grass-

mannian of X,

Lag(TX) = {(p,E)|p ∈ X, E Lagrangian subspace of TpX}, (2.281)

constructed as follows.

17Moreover the question of whether D is even Fredholm is a very delicate one, [CGGLPFZ]
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First to each soliton φij we associate an open path γ in Lag(TX) simply by taking a

point p along the soliton trajectory and assigning to it the Lagrangian subspace

TpLi(ζij) ⊂ TpX (2.282)

as the fiber. Let γk denote the open path assigned to φik−1ik in this way. One notices that

the endpoint of γk and the starting point of γk+1 have the same base point, the kth critical

point ik, but the Lagrangians fibers differ. The endpoint of γk has fiber

`k := TikLik−1
(ζik−1ik) (2.283)

whereas the starting point of γk+1 has the fiber

`k+1 := TikLik(ζikik+1
). (2.284)

`k, `k+1 are Lagrangians living in the same ambient space TikX. Between any two La-

grangian subspaces L1, L2 in a symplectic vector space V , there is a canonical homotopy

class of paths κL1,L2 in Lag(V ) that connects these points, known as the symplectic

bridge 18 connecting L1 and L2. For instance if dim(V ) = 2, the Lagrangians are specified

by points θ1, θ2 in RP1 ∼= S1 and κθ1,θ2 is the circular arc going in the counter-clockwise

direction between these two angles. Therefore there is a well-defined way to connect the

open path γk to γk+1. Going around the gradient polygon by gluing adjacent open paths

via symplectic bridges, one obtains a loop in Lag(TX).

Next we need to define a winding number of the loop γ. Let γ̄ be the loop in X obtained

by projecting γ to X. Thus, if γ̄(t) = p ∈ X then γ(t) ⊂ TpX is a maximal Lagrangian

subspace. Let 2n denote the rank of TX considered as a real vector bundle over X. Then

γ(t) is a real vector space of dimension n. The nth exterior product of this space is a real

18This is also known as the canonical short path, see for instance [Aur].
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line associated to the point p. Now, recall that TX can also be considered to be a complex

vector bundle of rank n. Therefore, the nth exterior power of TX as a complex vector

bundle is a complex line associated to p. Indeed, this is the fiber of the canonical bundle

at p, denoted Kp. Note that Λnγ(t) ⊂ Kp is a real line inside a complex line. Finally we

use Ω to trivialize the canonical bundle and therefore get a real line `p ⊂ C. That is, to

the loop γ : S1 → Lag(TX) we associate a loop in Lag(C) = RP1 ∼= S1. All-in-all we get a

map

ψ(φ) : S1 → Lag(C) ∼= S1. (2.285)

The integer d(φ) is defined to be the winding number of ψ(φ). The fermion number is

then

F (φ) = d(φ) + 1. (2.286)

We illustrate the computation of d(φ) in some examples.

2.7.1 Gradient Polygons in C

Suppose our target space is the complex plane, and say for simplicity that the solitons

trace out straight lines so that the gradient polygon φ = (φi0i1 , . . . φini0) traces out the

boundary of an (n+ 1)-gon. This boundary can be clockwise or counter-clockwise oriented

and we analyze each case.

For the case of clockwise oriented boundaries, the tangent Lagrangian does not vary

along the soliton. The symplectic bridge between φik−1ik and φikik+1
chooses to take the

route that takes θk radians where θk is an internal angle of the polygon. Adding up these
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Figure 2.13: The left shows the gradient polygon φ = (φi0i1 , φi1i2 , φi2i0) assumed to trace
out straight lines on the complex plane. The dashed lines depict the Lagrangians tangent
to these solitons. On the right we show the symplectic bridges κLi,Li+1 connecting these
Lagrangians. The winding number of the total path in Lag(C) = S1/Z2 is +1, therefore
d(φ) = 1.

angles gives one a total winding number in S1/Z2 of

d(φ) =

(
(n+ 1)− 2

)
π

π
(2.287)

= n− 1 (2.288)

where in the first equality we divide by π (not 2π) because of the Z2 quotient. See Figure

2.13 for the case of n = 2.

For counter-clockwise oriented (convex) polygons 19, the symplectic bridge chooses to

connect adjacent Lagrangians via the route that takes π − θk radians. This gives one

d(φ) = 2, (2.289)

an index independent of n.

19We don’t know any examples of W (φ) where this happens, although we don’t see a reason why it

cannot happen in principle.
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That clockwise versus counterclockwise give such different answers might be a bit puz-

zling first, but its origin is clarified if one thinks about the analogous situation in Morse

theory. Suppose that M(xa, xb) denotes the reduced moduli space of solutions of the

gradient flow equation

dφI

dx
= gIJ

∂h

∂φJ
, (2.290)

between two critical points xa, xb of h with Morse indices µa, µb
20. Then supposing µb > µa

we have

dimM(xa, xb) = µb − µa − 1. (2.291)

On the other hand,

dimM(xb, xa) = 0. (2.292)

M(xb, xa) is in fact empty, as a consequence of the ascending property of the gradient flow.

Thus it should not be very surprising that the moduli space of ζ-instantons is not very

well-behaved under orientation reversal of a cyclic fan.

2.7.2 Paths in C∗

Let’s now consider a gradient polygon of solitons in the punctured complex plane C∗ so

that the total path winds around the origin. We choose the holomorphic volume form that

trivializes TC∗ to be

Ω =
dX

X
. (2.293)

One can show that a loop that winds around the origin, by virtue of this trivialization

satisfies

d(φ) = 0. (2.294)

20Not to be confused with the BPS index µij
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This will be useful for the trigonometric Landau-Ginzburg models.

2.7.3 Fermion Degrees for ZN -symmetric Models

We can use the observations above to determine (integral part of) the fermion degrees of

solitons in at least two interesting ZN -symmetric family of models. These are

1. W = 1
N+1φ

N+1 − tφ, the deformed AN−1 model.

2. W = φ+ 1
N−1φ

−(N−1), the ZN invariant “trigonometric” LG model.

Let’s analyze each one.

Deformed AN−1-Model

The model of a single chiral superfield φ with superpotential

W =
1

N + 1
φN+1 − tφ (2.295)

is a well-studied one. The critical points are

φk = t
1
N e

2πik
N (2.296)

for k = 0, 1, . . . , N − 1, with critical values

Wk = − N

N + 1
t
N+1
N e

2πik
N . (2.297)

It is well-known that there is a unique soliton φij interpolating between each pair (φi, φj)

of distinct critical points. Therefore

Rij = Z〈φij〉. (2.298)

The degree Fij of φij is of the form

Fij = nij + fij (2.299)
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where nij is the integral part and fij is the fractional part (for which we have a universal

formula). It remains to determine nij .

For this we use the constraint coming from the Maslov index: Let φ = (φi0i1 , . . . , φiki0)

be a convex gradient polygon. Then

ni0i1 + ni1i2 + · · ·+ niki0 = d(φ) + 1. (2.300)

For the present model, we have that

(φi0i1 , φi1i2 , . . . φiki0) (2.301)

is a gradient polygon if and only if i0 > i1 > i2 · · · > in up to cyclic reordering. In

the complex plane the gradient polygon traces out a clockwise oriented closed path with

k-segments, and thus the computation in 2.7.1 implies

d(φi0i1 , φi1i2 , . . . , φiki0) = k − 2. (2.302)

We thus get the constraint

ni0i1 + ni1i2 + · · ·+ niki0 = k − 1, (2.303)

which is satisfied by a particularly simple solution:

nij = 1 for i > j, (2.304)

nij = 0 for i < j. (2.305)

By induction on k we see the solution is unique up to shifts

nij → nij + ni − nj . (2.306)

Therefore we conclude that

Rij = Z[1] for i > j, (2.307)

Rij = Z for i < j. (2.308)
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Trigonometric Models

We can do a similar analysis for the ZN -symmetric trigonometric Landau-Ginzburg models.

These have target space C∗ and superpotential

W = φ+
1

N − 1
φ−(N−1). (2.309)

The critical points are again located at the roots of unity

φk = e2πik/N (2.310)

for k = 0, 1, . . . , N − 1 and the critical values are

Wk =
N

N − 1
e

2πik
N . (2.311)

The soliton spectrum of this model is also known (this model is example 3 in section 8.1 of

[CV1]): There is a unique soliton between each nearest neighbor pair (φi, φi+1), (φi, φi−1)

and none between the other pairs. Therefore the only gradient polygon φ with more than

2 solitons consists of the full N -gon

φ = (φN−1,N−2, φN−2,N−3, . . . , φ0,N−1). (2.312)

The paths these solitons trace out in C∗ consists of round arcs that together wind around

the origin once in the clockwise direction. The computation of the Maslov index for paths

in C∗ allows us to conclude that d(φ) = 0 and therefore

nN−1,N−2 + nN−2,N−3 + · · ·+ n0,N−1 = 1. (2.313)

We choose the solution

ni,i−1 = 0, (2.314)

ni,i+1 = 1. (2.315)
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Thus the non-zero BPS chain complexes with this solution read

Ri,i+1 = Z〈φi,i+1〉 ∼= Z, (2.316)

Ri,i−1 = Z〈φi,i−1〉 ∼= Z[1]. (2.317)

2.8 Examples

Finally let’s illustrate categorical wall-crossing in a few examples.

2.8.1 Quartic LG Model

Let’s return to the quartic Landau-Ginzburg model that was alluded to in the introduction.

The target space is the complex plane C and the superpotential is

W =
1

4
φ4 − t1

2
φ2 − t2φ. (2.318)

Consider the point (t1, t2) = (0, 1) where the critical points are

φ1 = e−
2πi
3 , φ2 = 1, φ3 = e

2πi
3 (2.319)

with critical values

W1 = −3

4
e−

2πi
3 , W2 = −3

4
, W3 = −3

4
e

2πi
3 . (2.320)

The BPS chain complexes consist of

R12 = Z〈φ12〉, (2.321)

R13 = Z〈φ13〉, (2.322)

R23 = Z〈φ23〉, (2.323)

where φij is the unique soliton interpolating between φi and φj . As discussed in 2.7.3,

an assignment of degrees consistent with the Maslov index is that all three spaces are

concentrated in degree zero.
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Figure 2.14: Image of the ζ-instanton with fan boundary conditions {1, 3, 2} in the X-plane.
It sweeps out a region bounded by the soliton paths.

Now we must count ζ-instantons. Consider the cyclic fan {1, 3, 2} which has degree +2.

It is argued in papers on domain wall junctions [GT] that there is indeed a solution with

no reduced moduli with these trivalent fan boundary conditions. Therefore we have

N(φ13, φ32, φ21) = 1. (2.324)

The image swept out by this instanton φ(C) is depicted in Figure 2.14.

Crossing the wall of marginal stability we consider (t1, t2) = (1, ε) where ε is some small

number. Categorical wall-crossing says that the chain complex is

R′13 = Z〈(φ12φ23)[−1]〉 ⊕ Z〈φ13〉. (2.325)

The differential reads

d′13

(
(φ12φ23)[−1]

)
= φ13, (2.326)

d′13(φ13) = 0, (2.327)
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by virtue of the ζ-instanton of Figure 2.14. Therefore the cohomology is trivial

H•(R′13, d
′
13) = 0. (2.328)

Indeed this is the correct BPS Hilbert space on the other side of the wall.

2.8.2 Trigonometric LG Model

Next we consider the model with target space the complex cylinder C∗ with coordinate φ.

The family of superpotentials we consider is

W = φ+ λφ−1 +
1

2
φ−2. (2.329)

The model at λ = 0 is known in [CV1] as the Bullough-Dodd model and that’s where we

begin our analysis. Here we have the critical points

φ1 = e
2πi
3 , φ2 = 1, φ3 = e−

2πi
3 (2.330)

with critical values Wi = 3
2Xi. As discussed in 2.7.3, there is a single soliton between each

pair of vacua and so the BPS chain complexes read

R12 = Z〈φ12〉, (2.331)

R23 = Z〈φ23〉, (2.332)

R13 = Z〈φ12〉. (2.333)

As discussed in 2.7.2, consistent with the Maslov index is to choose these spaces to be

concentrated in degree zero (the vacua have been relabeled compared to that section).

Note that there’s a crucial difference with the quartic Landau-Ginzburg model. The vector

space associated to the cyclic fan {1, 2, 3} is one-dimensional but now concentrated in

degree +1. The interior amplitude must therefore be trivial

β = 0. (2.334)

Therefore, there are no ζ-instantons.
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Figure 2.15: Left: the solitons in the λ = 0 model. There is one between each pair of
vacua. On the right we cross the wall of marginal stability and go to λ = 2i. There are
now two solitons in the 32 sector. We also gain a non-trivial ζ-instanton contributing to
the interior amplitude.

The absence of ζ-instantons with trivalent boundary conditions may also be geometrically

argued as follows. The cyclic fan of solitons sweep out a path that winds around the origin.

Were a ζ-instanton to exist, its image would be a region bounded by this path. However,

the latter region contains the singular point φ = 0, which means that the ζ-instanton blows

up at finite (x, τ).

We now vary λ by taking it to be purely imaginary and increasing the magnitude from

the Z3 symmetric point λ = 0. The wall of marginal stability is crossed at λ ∼ 1.5i. W1

passes through the line between W2 and W3. Therefore R23 jumps. We have

R′23 = (R21 ⊗R13

)
[−1]⊗R23, (2.335)

= Z〈(φ21φ13)[−1]〉 ⊕ Z〈φ23〉, (2.336)

∼= Z2. (2.337)

Trivial β implies that this is also the cohomology. We see that the 23 sector has gained a

bound state of the 21 and 13 sectors.
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These two states post wall-crossing have a simple interpretation. When λ is large the

theory consists of the CP1 mirror along with a vacuum W1 running away to infinity. The

solitons between 2 and 3 are the solitons of this model.

Categorical wall-crossing also predicts the interior amplitude after wall-crossing. Formula

(2.165) says that the interior amplitude should be

β′132 = (φ31φ12)⊗ φ21 ⊗ φ13. (2.338)

Indeed the geometry of solitons allows the region between the new soliton that appears,

φ31φ12, between 3 and 2 and the the old solitons φ21 and φ13 to be filled up by a ζ-instanton.

See Figure 2.15.

2.8.3 Elliptic LG Model

Let the target space be T 2
τ \{0} and

W = ℘(φ, τ). (2.339)

We study the wall-crossing properties as we vary τ , the complex structure parameter of

the torus21. The critical points are the familiar half-periods

{1

2
,
τ

2
,
1 + τ

2
} mod

(
Z⊕ Zτ

)
(2.340)

with critical values being the elliptic constants

{e1(τ), e2(τ), e3(τ)}. (2.341)

21The moduli space of models is the stack H/PSL(2,Z) where H is the upper-half plane. The moduli

space of models with marked vacua is H/Γ(2) where Γ(2) is the level 2 principal congruence subgroup of

SL(2,Z). See [BC] for further examples of this type.
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Figure 2.16: BPS solitons in the W = ℘(φ, τ) model with τ = e
2πi
3 . There are two solitons

between each pair of vacua, the paths they trace out are depicted.

It is well-known [CV1, ?] that this model has precisely two solitons between each pair of

critical points, independent of the value of τ . On the other hand, there are still marginal

stability walls. For example when τ is pure imaginary the ei(τ) are all real and hence

co-linear, so the imaginary axis and its PSL(2,Z)-images are marginal stability walls in

the upper-half plane. The fact that there are two solitons in any chamber, is explained at

the level of BPS indices by the equations

2 = −2 + 2 · 2, or , (2.342)

−2 = 2− 2 · 2. (2.343)

We will now see what happens at the level of chain complexes.

First work at the Z3 symmetric point τ0 = e
2πi
3 . We set

φ1 =
τ0

2
, φ2 =

1

2
, φ3 =

1 + τ0

2
. (2.344)
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The homogeneity property of ℘(φ, τ) at the Z3 symmetric point implies that the critical

values are proportional to the cubic roots of unity

W1 = W0 e
2πi
3 , W2 = W0, W3 = W0 e

−2πi
3 , (2.345)

where the proportionality constant is, according to [DLMF]:

W0 =

(
Γ3(1

3)

2
1
3 2π

)2

. (2.346)

The chain complexes are

R12 = Z〈φ1
12〉 ⊕ Z〈φ2

12〉 ∼= Z2[1], (2.347)

R13 = Z〈φ1
13〉 ⊕ Z〈φ2

13〉 ∼= Z2[1], (2.348)

R23 = Z〈φ1
23〉 ⊕ Z〈φ2

23〉 ∼= Z2[1]. (2.349)

A computation similar to the deformed AN−1-minimal models can be performed to conclude

that these chain complexes are all concentrated in degree +1 and so all the individual

differentials dij vanish. The trajectories these solitons trace out on T 2
τ0 are depicted in

Figure 2.16.

The anti-particles are associated to the BPS complexes

R21 = Z〈φ1
21〉 ⊕ Z〈φ2

21〉 ∼= Z2, (2.350)

R31 = Z〈φ1
31〉 ⊕ Z〈φ2

31〉 ∼= Z2, (2.351)

R32 = Z〈φ1
32〉 ⊕ Z〈φ2

32〉 ∼= Z2. (2.352)

The pairings K12,K13,K23 are diagonal in this basis of solitons.

Let’s now consider ζ-instantons. The vector space corresponding to the cyclic fan

{1, 2, 3}, (2.353)
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Figure 2.17: ζ-instantons in the W = ℘(φ, τ) model with τ = e
2πi
3 .

R12 ⊗ R23 ⊗ R31 is concentrated in degree +2 and so this model allows rigid instantons.

There are eight possible gradient polygons φa,b,c = (φa12, φ
b
23, φ

c
31) for a, b, c = 1, 2 which

could a-priori be occupied. However, the model has additional flavor symmetries whose

charges are associated with the winding numbers around the torus 22. These symmetries

reduce the number of possibilities as follows. Denoting q1, q2 the fugacities for the cycles

that (half)-wind around the horizontal and τ -direction respectively, the solitons have the

following (exponentiated) winding numbers: States in R12 have winding numbers q1q2 and

(q1q2)−1, in R23 they have q2, q
−1
2 , and in R13 they have q1, q

−1
1 . On the other hand β

must have zero winding charge. This cuts down the allowed gradient polygons that can be

occupied to

φ1 = (φ1
12, φ

1
23, φ

1
31), (2.354)

φ2 = (φ2
12, φ

2
23, φ

2
31). (2.355)

22More precisely this symmetry doesn’t come from translational invariance, since the pole in the super-

potential distinguishes a point in the torus (there is a puncture at X = 0). Nevertheless we can form a

conserved current for each harmonic one-form α given by j = ∗φ∗(α).
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The simplest non-trivial guess is to posit that these polygons indeed support ζ-instantons

with degeneracies

N(φ1) = 1, (2.356)

N(φ2) = 1. (2.357)

Thus we predict the interior amplitude for this model is

β = φ1
12 ⊗ φ1

23 ⊗ φ1
31 + φ2

12 ⊗ φ2
23 ⊗ φ2

31. (2.358)

Assuming this is indeed the case, we now evolve from τ0 = e2πi/3 to, a point of the form

τ1 = ie−iε with ε > 0. In doing so we must cross the wall at Re(τ) = 0. In such a move, one

can check (numerically for instance) that the point W3 passes through the line connecting

W1 and W2. Therefore the chain complexes R13, R32 remain the same as before

R′13 = Z2[1], (2.359)

R′32 = Z2, (2.360)

but R12 can jump:

R′12 =
(
R13 ⊗R32

)
[−1]⊕R12 (2.361)

=
(
Z〈φ1

13, φ
2
13〉 ⊗ Z〈φ1

32, φ
2
32〉
)
[−1]⊕ Z〈φ1

12, φ
2
12〉. (2.362)

The first summand is concentrated in degree zero whereas the second factor is in degree

one. The ζ-instanton count imply that the differentials act as follows.

d′12

(
(φ1

13φ
1
32)[−1]

)
= φ1

12, (2.363)

d′12

(
(φ1

13φ
2
32)[−1]

)
= 0, (2.364)

d′12

(
(φ2

13φ
1
32)[−1]

)
= 0, (2.365)

d′12

(
(φ2

13φ
2
32)[−1]

)
= φ2

12. (2.366)
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Thus the cohomology is

H•(R′12, d
′
12) = Z〈(φ1

13φ
2
32)[−1], (φ2

13φ
1
32)[−1]〉, (2.367)

which is two-dimensional as expected. Categorical wall-crossing has allowed us to see that

there has been a non-trivial reorganization of the BPS states in the 12-sector: in particular

their winding numbers jump. This was not visible at the level of ordinary BPS indices23.

2.9 Conclusions and Future Directions

There are various future directions that might be worth pursuing. While staying in the

two-dimensional world, it is desirable to categorify more general wall-crossing statements.

In particular the presence of twisted masses leads to interesting new phenomena. These

new phenomena and how they affect the discussion of categorical wall-crossing will be the

subject of Chapter 3. Similarly, another interesting direction would be to categorify the

beautiful formula of Kontsevich and Soibelman, perhaps by constructing the category of

infrared line defects in four-dimensional N = 2 theories as a first step.

In a more speculative direction one might wonder about the following. We were study-

ing two-dimensional theories, both in spacetime and from the perspective of the W -plane.

Edges between vacua in the latter were initially supported by BPS indices, which are

integers, and in particular we can use these edges to form a wall-crossing triangle. Cat-

egorifying upgraded these integers to chain complexes, but a lesson we learned is that

information about these chain complexes by themselves is not sufficient to describe cate-

gorical wall-crossing: they must be accompanied by integers associated to the interior of

23Of course a refined index could have still detected this. In particular upgrading µij to a character

valued index µij(q1, q2) and applying Cecotti-Vafa does the job in this example. In general such a refinement

might not always be available.
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the wall-crossing triangle. In a higher-dimensional generalization of the formalism, let’s

say three dimensions, we can imagine having a tetrahedron, whose edges carry categories,

faces carry chain complexes and whose interior carries the data of integers. See Figure

2.18. Wall-crossing would occur when the vertices of the tetrahedron lie on a common

plane followed by the apex switching sides as viewed from the base. It would be interesting

to spell out the wall-crossing structure of this hierarchy of categories, vector spaces and

integers that lie on the various faces of the tetrahedron. Even more compelling would be

to find a quantum field theoretic realization of such a higher-dimensional “wall-crossing

simplex.”

Figure 2.18: A speculative wall-crossing simplex. Cij etc denote categories associated to

edges, Rijk etc denote chain complexes associated to faces and β(∆ijkl) denotes a collection

of numbers associated to the interior. Wall-crossing would occur when i passes through

the base jkl triangle and moves over to the other side.
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In the process of categorifying the simplest wall-crossing formula, we have been lead to

an interesting blend of mathematics and physics. The physics of domain wall junctions and

their moduli spaces allows one to construct canonical objects in homological algebra: the

mapping cone and mapping cylinder. These mathematical objects allow us to compactly

express the answer to the question we had initially asked. This is the very essence of

physical mathematics.
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Chapter 3

Algebra of the Infrared and Categorical Wall-Crossing with

Twisted Masses

The contents of this paper will appear in a forthcoming preprint [KM2], being prepared

jointly with G. W. Moore.

3.1 Introduction

We begin this chapter by recalling how twisted masses can arise in two-dimensional N =

(2, 2) theories, thus generalizing the setup of the previous chapter. Consider a two-

dimensional quantum field theory with N = (2, 2) supersymmetry. To help orient our

discussion, we begin by recalling the basic symmetry algebra of our field theory. By def-

inition having an N = (2, 2) theory means that our theory possesses a symmetry algebra

containing the two-dimensional Poincare algebra, along with odd generators

Q1
+, Q

2
+, Q

1
−, Q

2
− (3.1)

with Q1,2
+ being the two left movers and Q1,2

− being the two right movers under the Lorentz

group. The two left and two right movers are assumed to be distinguished by a U(1) R-

symmetry generator F , so that we have Q1
+, Q

1
− of positive eigenvalue under F and Q2

+, Q
2
−

of negative eigenvalue. The symmetry algebra of these odd charges (in Lorentz signature)
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is constrained to be

{Q1
+, Q

2
+} = P0 + P1, (3.2)

{Q1
−, Q

2
−} = P0 − P1 (3.3)

where Pµ is the generator of translations in the xµ direction, and also has central charges

{Q1
+, Q

2
−} = Z, (3.4)

{Q1
−, Q

2
+} = Z, (3.5)

with all other brackets vanishing. In Lorentz signature we require the reality condition:

(Q1
+)† = Q2

+, (Q1
−)† = Q2

−. (3.6)

What type of questions might we be interested in? One of the most basic questions one

might answer is what are the supersymmetric vacua of our theory on R, and what properties

do they possess? By a supersymmetric vacuum, we mean a state which annihilates all four

supercharges. In this paper we are primarily concerned with theories with finitely many

discrete vacua, each of which is assumed to be massive. We use the notation introduced in

[GMW] and denote the finite set of vacua as V with a typical element labelled by lowercase

Latin letters such as i or j. For a massive theory with finitely many vacua then the next

most basic question one might ask is what is the space of half-BPS states? More precisely,

if we let

QBPS(ζ) = Q1
+ + ζQ1

−, (3.7)

with ζ being an arbitrary phase, then from the elementary equation

{QBPS, (QBPS)†} = 2
(
H + Re(ζ−1Z)

)
(3.8)
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one may derive the BPS bound: it says the energy spectrum of the Hilbert space on R, in

the ij-sector, satisfies

Eij ≥ |Zij |, (3.9)

with the space of half-BPS states being states that precisely saturate the bound. The

quantum Hilbert space of ij BPS states is denoted as Rij . If a classical description of the

theory is available then the quantum BPS states Rij can be further described as the space

classical BPS states Rij , corrected by instantons (as in Morse theory). Finally another

interesting quantity of study involves studying the spectrum of our theory on the spatial

half-line R+ with a half-BPS boundary condition (namely a boundary condition preserving

QBPS(ζ) and its adjoint) B placed at the boundary x = 0. The basic quantity of study now

is the space of (B, i) BPS states, namely BPS states that satisfy the B-boundary condition

at x = 0 and settle into a specific vacuum i as x → ∞. Denote the space of such BPS

states Ri(B). These are known as “framed BPS states” (whereas spaces of BPS states

on R are sometimes referred to as “vanilla BPS states”). If we are in a situation where

a classical description is available, one can again describe Ri(B) as the space of classical

framed BPS states Ei(B) corrected by instantons. In practice we will often work with

Landau-Ginzburg models where classical descriptions of vanilla and framed BPS states are

indeed available. Therefore for the rest of the paper we will work with Rij and Ei(B),

with instanton corrections incorporated through differentials dij and dEi(B), and state our

results in terms of these “BPS chain complexes.” 1

To recap, in a given gapped N = 2 theory, the basic objects of interest are the space of

BPS states on the line, Rij , and the space of BPS states on the half-line Ri(B). One of

1Note that using BPS complexes is more general, since spaces of quantum BPS states can always be

considered to be a chain complex with vanishing differential.
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Figure 3.1: Figure of bulk amplitude βikj , and boundary amplitue Bij required to describe
wall-crossing of vanilla and framed BPS Hilbert spaces respectively. Euclidean time runs
vertically.

the most basic properties of these spaces of BPS states is that they undergo wall-crossing.

Indeed taking Euler characters, one recovers the BPS indices µij and Ωi(B), respectively,

which are well-known to undergo wall-crossing, with the most basic wall-crossing formulas

being of the type

µij → µij + µikµki, (3.10)

for the vanilla BPS indices and

Ωj(B)→ Ωj(B) + Ωi(B)µij , (3.11)

for the framed BPS indices. Can we describe how the spaces Rij ,Ri(B) of BPS states

jump rather than just the indices? Surprisingly and interestingly, this is an instance where

a naive categorification of the formulas for the indices fails and gives incorrect results.

There is additional physical input required to describe the correct way in which the spaces

of BPS states jump.

The additional physical data we need to describe the wall-crossing of vanilla and framed

BPS states are certain instanton corrections to the differentials that are encoded in certain
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linear maps between the underlying chain complexes. To describe the jumping of the vanilla

BPS states there is a canonical linear map of vanishing fermion number

M [βikj ] : R
[1]
ij → Rik ⊗Rkj . (3.12)

Similarly, for the framed BPS states, there is a linear map

T [Bij ] : E [1]
j (B)→ Ei(B)⊗Rij (3.13)

of vanishing fermion number. The categorical wall-crossing formulas can then be elegantly

described in terms of the mapping cone construction of homological algebra applied to

these linear transformations: the homotopy class of Rij jumps to

R′ij ' Cone
(
M [βikj ] : R

[1]
ij → Rik ⊗Rkj

)
(3.14)

and the homotopy class of Ej(B) jumps to

E ′j(B) ' Cone
(
T [Bij ] : E [1]

j (B)→ Ei(B)⊗Rij
)
. (3.15)

See Figure 3.1 for an illustration of these instantons in spacetime. To define a Cone of two

complexes, one must use a chain map. One might ask then, why the linear transformations

in (3.12) and (3.13) are chain maps? The requirement that they are chain maps imposes

certain algebraic constraints on the instanton amplitudes βijk and Bij .

The bulk and boundary amplitudes required to describe categorical wall-crossing of

vanilla and framed BPS states are in fact the simplest examples of more general bulk

and boundary amplitudes. The trivalent amplitude βijk describing the jump in vanilla

BPS states can be easily generalized to n-valent amplitudes βi1...in , and similarly the brane

amplitude Bij with a single outgoing soliton can be generalized to have a fan of outgoing

solitons. The algebraic relations obeyed by βijk and Bij are also the simplest examples of
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general algebraic constraints obeyed by bulk and boundary amplitudes. The bulk ampli-

tudes are governed by an L∞ Maurer-Cartan equation whereas the boundary amplitudes

satisfy an A∞ Maurer-Cartan equation. Thus in writing down a categorical wall-crossing

formula one is naturally lead to discover a novel class of BPS objects which obey rich al-

gebraic structures. These more general amplitudes enter into the calculations of physically

natural objects such as the space of supersymmetric states on a segment with (BL,BR)

boundary conditions, or in the computation of spaces of bulk and boundary local operators.

The part of the story that we have described so far was worked out in [GMW] and

expanded further upon in Chapter 2 of this dissertation. A different viewpoint, with po-

tential applications to higher dimensional theories appears in [KKS, KSS]. The formalism

of all these papers makes an important simplifying assumption: the central charge in the

ij sector is assumed to be of the form

Zij = Wi −Wj (3.16)

for a well-defined set of complex numbers (defined up to an overall simultaneous shift) Wi

associated to each vacuum i ∈ V. In other words, it is assumed that the central charge

gets a purely topological contribution coming from the “boundary” of space, the two ends

of R. In particular, on a compact spatial slice such as S1, the central charge vanishes.

However this is not always the case. It is easy to imagine a situation where the central

charge can be non-zero even on S1. Suppose that our theory has a global symmetry group

G with charges valued in a lattice Γ. By definition since G is a global symmetry, its charges

commute with the rest of the N = (2, 2) superPoincare generators. Therefore a central

charge of the form

Z(γ) = M · γ (3.17)
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where γ ∈ Γ and M ∈ Hom(Γ,C) is allowed and can be non-zero. Going back to the

Hilbert space on R with ij boundary conditions, the central charge becomes a sum of the

topological contributions and the contributions from the global charges. It takes the form

Zij(γ) = Wi −Wj +M · γ. (3.18)

M is commonly referred to as a twisted mass [HH]. We note that the split of the cen-

tral charge into contributions coming from topological and Noether charges is not fully

canonical. A more precise version of (3.18) will appear in Section 2.

The presence of a non-trivial twisted mass in the central charge gives rise to various

novel and interesting physical phenomenon:

1. An initial, rather trivial observation is that in the presence of a non-trivial G, the

BPS states are refined to carry extra charges

Rij = ⊕γ∈ΓRij(γ), Ei(B) = ⊕γ∈ΓEi(B, γ), (3.19)

and such a refinement can lead to useful selection rules. Moreover if M 6= 0, the

assumption that each ordered pair of vacua carries a unique central charge, important

for the formalism of [GMW], no longer holds. Instead each pair of vacua is now

associated with a Γ-torsor.

2. Next, a second slightly less obvious observation is the presence of BPS states on

S1 [GMW, Park]. These compact or periodic BPS states can contribute to the

Hilbert space on R as well, simply by choosing the same vacuum i at both ends on

R. Therefore, with a non-trivial twisted mass, there can be non-trivial BPS states

present in the ii-sector. Furthermore, these BPS states typically come in Fock spaces,

since by the linear nature of M , multiparticle states can also saturate the BPS bound.
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So the BPS particle spectrum of an N = (2, 2) theory with twisted masses can have

Fock spaces of periodic BPS particles.

3. Finally, wall-crossing phenomenon are much more rich and interesting if M 6= 0. For

vanilla BPS states, the only generic wall with M = 0 is the alignment of Zij and Zjk

with Zik. With twisted masses, Zij(γ) may align with Zii(γ) and because of the linear

nature of Zii, there is simultaneous alignment with Zii(kγ) for k ≥ 1. Therefore a

whole host of wall-crossing decays may occur. Similar remarks apply to wall-crossing

for framed BPS states. If a brane B preserves the supercharge associated with a

phase ζB, then Zkγ for each k ≥ 1 can align with ζB, and at such a wall (known as

a K-wall) the spaces of framed BPS states can jump in interesting ways.

The main aim of this paper is to address the third point in a categorical framework.

Whereas the wall-crossing formula for the framed and vanilla BPS indices, being a spe-

cialization of the 2d-4d wall-crossing formula, is well-understood, a categorical discussion

will have to incorporate bulk and boundary amplitudes. The wall-crossing formula for the

framed indices says that the framed BPS index

Ωi(B) =
∑
γ∈Γ

Ωi(B, γ)Xγ (3.20)

jumps to

Ωi(B)→ Ωi(B)
∏
n≥1

(1−Xnγ′)
−µi(nγ′), (3.21)

where Xγ generate the group algbebra of Γ. To see for instance what type of amplitude is

involved in the categorification of this formula, we note that there can be an amplitude for

a brane B to emit entire Fock spaces of periodic solitons. More precisely, the amplitude

relevant for describing wall-crossing when Zγ aligns with ζB will be encoded in a linear
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map of the form

T [Bγ ] : Ei(B)→ Ei(B)⊗F [Vγi ] (3.22)

where F [Vγi ] is the graded Fock space of

Vγi = ⊕n≥1Rnγi . (3.23)

Incorporating these amplitudes to describe the wall-crossing of framed Hilbert spacesRi(B)

will be one of the main results of this paper.

To conclude the introductory remarks, we explain some of our motivations for carrying

out a categorical discussion of BPS states in the presence of twisted masses.

1. First, as we have already discussed, it is very natural to do this from a purely two-

dimensional perspective, since a generic two-dimensional N = (2, 2) model will have

a non-trivial global symmetry group, which generically does affect the central charge

Z. A canonical example of a useful model where a twisted mass term can be present

is the CP1 sigma model which has an SU(2) global symmetry group coming from

target space isometries.

2. Second, there is a particular Landau-Ginzburg model of interest in the study of

three-manifolds and knot homology: this is twisted five-dimensional supersymmetric

Yang-Mills theory, which can indeed be formulated as a Landau-Ginzburg model

with the target being the space of GC-connections on a three-manifold M and the

superpotential W being the Chern-Simons functional. Since the CS superpotential

is multivalued, this is an example of an LG model with twisted masses. Here one

of the main interesting points discovered in [Wit8] was that to each knot K ⊂ M3,

one can assign a brane B(K) of this model, and then the framed BPS Hilbert spaces
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Eσi(B(K)) are natural candidates for homological knot invariants that generalize

Khovanov’s complex. These “knot invariants” however will be subject to wall-crossing

phenomenon. The formulas in this paper are expected to apply to the complexes

Eσi
(
B(K)

)
for K ⊂M3 at least for isolated flat connections. Other LG models that

appear in the study of knot homology, some of which are directly motivated from the

CSLG model [GW, GM], and from other perspectives [A] always involve multivalued

superpotentials. All the new phenomenon associated with non-trivial twisted masses

are present in these models.

3. Third, from a mathematical perspective, we are outlining novel mutations that are

expected to occur in the Fukaya-Seidel category of a multivalued superpotential.

4. Finally, the behavior of BPS indices under wall-crossing in two-dimensional theories

with twisted masses, is a special case of the more general 2d-4d wall-crossing formula

[GMN4], and the discussion presented here is expected to be directly relevant for

discussing categorical wall-crossing of BPS states in four-dimensional N = 2 theories.

The outline of this paper is as follows. In Section 3.2, we recall some basics of twisted

mass terms in N = (2, 2) theories. We discuss spaces of BPS states and the important

categorified spectrum generator in the presence of twisted masses, and illustrate these

notions with some examples. Next we begin our discussion of categorical wall-crossing

formulas with twisted masses. We discuss boundary amplitudes and wall-crossing of framed

BPS states in Section 3.3 and illustrate our formulas in the important example of the

theory of a free chiral superfield (we work with the mirror Landau-Ginzburg formulation).

In Section 3.4 we discuss interior amplitudes and wall-crossing of vanilla BPS states, and

demonstrate these notions in the example of the CP1 sigma model with twisted masses.

Finally, we sketch generalizations of the “Algebra of the Infrared” [GMW] - an algebraic
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framework to discuss bulk and boundary amplitudes - to incorporate twisted masses.

3.2 Basics of Twisted Masses in N = (2, 2) Theories

3.2.1 Abstract Vacuum and BPS data

We begin by recalling the formal setup of [GMW]. One is given a finite set of massive

vacua V with a typical element denoted by a Latin letter i ∈ V, along with a generic set of

vacuum weights z : V→ C. Writing zi := z(i) the central charge in the ij-sector is written

as

Zij = zi − zj . (3.24)

For each (ordered) pair of distinct vacua i 6= j, we are given Z-graded Z-modules2 Rij

equipped with a perfect degree −1-pairing

Kij : Rij ⊗Rji → Z. (3.25)

Given these concepts one can define the categorified spectrum generator associated to a

half-plane H ⊂ C. It is given by

R̂H :=
y⊗
Zij∈H

(Z1⊕Rijeij), (3.26)

where y denotes an ordering on the product by the clockwise order of the central charges

{Zij}, eij denotes the ij elementary matrix in gl(|V|,Z), and 1 denotes the |V| × |V| unit

2In the introduction we indicated that {Rij} is a collection of chain complexes rather than just ordinary

Z-modules. We will show how to incorporate the differentials {dij} on this collection of Z-modules when

we discuss interior amplitudes in a later section. Also, in physical theories one should work with chain

complexes over C, but the abstract formalism makes sense for more refined modules over Z. We work at

this more refined level.
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matrix. We denote the coefficient of eij in R̂ as R̂ij :

⊕
i,j∈V

R̂ijeij =
y⊗
Zij∈H

(Z1⊕Rijeij). (3.27)

Most often we will work with H being the right half-plane, {z|Re z > 0} and R̂ without

any half-plane in the subscript is understood to mean the spectrum generator associated

to the right half plane.

The R̂ij-spaces give us a formalism to discuss branes. A given brane B carries Chan-

Paton spaces which by definition are Z-graded Z-modules Ei(B) for each i ∈ V. The

morphism space of two branes Hop(B1,B2) is then given by

Hop(B1,B2) =
⊕
i,j∈V

Ei(B1)⊗ R̂ij ⊗ E∨j (B2) (3.28)

where V ∨ denotes the dual of a Z-module V .

Finally, it is also useful to define the trace of the categorical BPS monodromy

Rc = Tr
(
R̂opp ⊗ R̂

)
(3.29)

where R̂opp denotes the spectrum generator associated to the opposite half-plane Re z < 0,

and Tr is defined by

Tr
(
⊕i,j∈V Vijeij

)
= ⊕i∈VVii. (3.30)

Rc is a categorification of the wall-crossing invariant quantity Tr(S−tS) studied in [CV1,

CV2].

We now generalize these notions to include twisted masses. As in the introduction, the

new piece of data that enters the discussion is a finitely generated free abelian group Γ. The
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vacuum set V is now upgraded to the vacuum groupoid as follows. The vacuum groupoid

V consists of a finite collection of objects i, j, · · · ∈ Ob(V). Abusing notation, we often

write objects as i ∈ V. The morphism space for each pair of vacua Γij := Hom(i, j) is

required to be Γ-torsor, with a typical element denoted as γij ∈ Γij . The composition map

Γij × Γjk → Γik is denoted as γij + γjk. For each i we have Hom(i, i) = Γii a Γ-torsor

canonically isomorphic to Γ and we write ui as the additive identity. A typical element

γii ∈ Γii is often abbreviated as γi, and canonically maps to an element γ ∈ Γ. The data

of a central charge is then captured by a groupoid homomorphism

Z : ti,jΓij → C (3.31)

written as Zγij for γij ∈ Γij . On the diagonal components Γii, the homomorphism is

required to be independent of i simply being determined by a homomorphism Z : Γ → C

and is denoted as Zγ . Then Zγii is determined under the canonical identification of Γii

with Γ.

The BPS Z-modules {Rγij}, is a collection of Z-graded Z-modules, one for each ordered

pair of vacua i, j and an element γij ∈ Γij along with perfect pairings of degree −1

Kγij : Rγij ⊗Rγji → Z, (3.32)

where γji denotes the inverse of γij ∈ Γij : the element of Γji such that γij + γji = ui and

γji + γij = uj . Unlike before i and j are no longer required to be distinct. The collection

of BPS Z-modules can include the spaces of periodic BPS states Rγi for each γi ∈ Γii.

Remark on Notation In this paper γij is used to denote a generic element of Γij .

Similarly, γji also denotes a generic element of Γji. However, given γij ∈ Γij , the element

γji ∈ Γji denotes the specific additive inverse of γij .
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We now introduce the categorified spectrum generator with twisted masses. Before doing

this, we introduce the groupoid algebra Z[V] associated to the vacuum groupoid V. It is

generated by elements xγij for each γij ∈ Γij and satisfies the relation

xγijxγkl = δjk xγij+γkl . (3.33)

The categorified spectrum generator with twisted masses in then given by

R̂H =
y⊗

Zγij∈H, i 6=j
Zγ∈H

: SγijKγ :, (3.34)

where

Sγij = Z1⊕Rγijxγij (3.35)

is the categorified Sγij -factor, and

Kγ = ⊕i∈VF ∗[Rγixγi ] (3.36)

is the categorified Kγ-factor. In the above we clarify that

1 =
∑
i∈V

xui , (3.37)

and F ∗[V x] for a graded Z-module V and a formal variable x denotes the series

F ∗[V x] = ⊕n≥0F
n[V ]xn. (3.38)

As before R̂ allows us to define R̂γij as the coefficients of xγij

R̂ =
⊕
i,j∈V
γij∈Γij

R̂γijxγij . (3.39)

There is also new data involved in defining branes. A brane B now carries a Γ-torsor ΓB,i

for each i ∈ V, equipped with composition maps

◦ : ΓB,i × Γij → ΓB,j (3.40)
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subject to natural coherence conditions, so that the Chan-Paton spaces of B are now

graded by this collection of Γ-torsors

Ei(B) =
⊕

γB,i∈ΓB,i

EγB,i(B). (3.41)

The morphism space between two branes Hop(B1,B2) is then graded by a Γ-torsor ΓB1,B2

so that

Hop(B1,B2) =
⊕
i,j∈V

γB1,i
∈ΓB1,i

, γij∈Γij , γB2,j
∈ΓB2,j

EγB1,i
(B1)⊗ R̂γij ⊗ E∨γB2,j

(B2). (3.42)

Finally as before, we can introduce the trace of the categorical BPS monodromy

Rc = Tr
(
R̂opp ⊗ R̂

)
, (3.43)

where Tr denotes the direct sum of all diagonal coefficients xγi :

Tr
( ⊕

i,j∈V
γij∈Γij

Vγijxγij

)
=
⊕
i∈V,
γi∈Γii

Vγi . (3.44)

We note that because of the canonical identification of Γii with Γ, the Z-module Rc is

graded Z × Γ. We call the grading by Z the cohomological or fermion degree, and the

grading by Γ the equivariant or flavor degree.

In practice, it is useful to express the categorical spectrum generator with twisted masses

as a |Ob(V)| × |Ob(V)| matrix, similar to the spectrum generator without twisted masses.

In order to do this one has to make some non-canonical choices. One has to choose a

reference element τij ∈ Γij for each i 6= j. Since Γij is a Γ-torsor, we can write any other

element γij as γij = τij + γ for some γ ∈ Γ. We then identify

xγij → xγeij , (3.45)

xγi → xγeii (3.46)
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Figure 3.2: A configuration of central charge rays that lie in the right half-plane when
Ob(V) = {i, j, k}. This is not to be confused with a half-plane fan, introduced later.

with eij being elementary matrices as before. In other words the choices of the τij ’s allow

us to define an isomorphism

Z[V]→ gl(|V|,Z[Γ]) (3.47)

from the groupoid algebra to the algebra of |V| × |V| matrices valued in the group ring

Z[Γ]. Applying this to the spectrum generator, we can write R̂ as a matrix with entries

being Z-module valued polynomials in the xγ variables, with Z-modules as coefficients.

We end this subsection by recording the form of R̂ and Rc for two important classes of

vacuum data that will be of use later in this paper.

The first case is when Ob(V) = {i, j, k} consists of three distinct vacua, and the only

non-trivial BPS Z-modules are Rγij , Rγjk , Rγik and therefore Rγji , Rγkj , Rγki for some γij ∈

Γij , γjk ∈ γjk and γik ∈ Γik. In particular, there are no non-trivial spaces of periodic

solitons, and therefore the categorified Kγ-factors are trivial. We suppose that

γik = γij + γjk, (3.48)
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and that the central charges corresponding to

(γik, γkj , γji) (3.49)

are in clockwise order in the complex plane. We can choose γik to lie in the right half plane

and therefore so do γij and γjk. The spectrum generator is therefore

R̂ = (Z1⊕Rγjkejk)⊗ (Z1⊕Rγikeik)⊗ (Z1⊕Rγijeij). (3.50)

Choosing the ordering i < j < k on the vacua, the matrix form of R̂ therefore reads

R̂ =


Z Rγij Rγjk

0 Z Rγik

0 0 Z

 . (3.51)

On the other hand for the opposite half-plane we have

R̂opp = (Z1⊕Rγkjekj)⊗ (Z1⊕Rγkieki)⊗ (Z1⊕Rγjieji), (3.52)

which can be expanded to

R̂opp =


Z 0 0

Rγji Z 0

Rγki ⊕ (Rγkj ⊗Rγki) Rγkj Z

 . (3.53)

The categorical trace Rc can then be computed to be

Rc = Ri ⊕Rj ⊕Rk

⊕R(γij ,γji)
⊕R(γik,γki)

⊕R(γjk,γkj)

⊕R(γik,γkj ,γji)
,

(3.54)

where Ri ∼= Rj ∼= Rk ∼= Z are generated by each respective vacuum state φi, φj , φk,

R(γij ,γji)
= Rγij ⊗Rγji , (3.55)

with similar definitions for R(γik,γki)
and R(γjk,γkj)

, and

R(γik,γkj ,γji)
= Rγik ⊗Rγkj ⊗Rγji . (3.56)
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Figure 3.3: A configuration of central charge rays that lie in the right half-plane when
Ob(V) = {i, j} and Γ = Z〈γ〉. τij + τji = γi ∼= γ in the above figure.

The second case we will analyze in detail is when Ob(V) = {i, j} consists of two vacua,

and Γ = Z〈γ〉 is a rank one lattice with generator γ. We suppose τij , τji are elements

of Γij ,Γji respectively such that τij + τji = γi. We suppose that (τij , γj , τji,−γi) are in

clockwise order and that τij is an element such that Zτij is in the right-half plane, but

−γi + τij is not. Then the clockwise order of central charges that lie in the right half-plane

is

(τij , τij + γ, τij + 2γ, . . . , γ, . . . , τji + 2γ, τji + γ, τji), (3.57)

and therefore

R̂ = Sτij Sτij+γ Sτij+2γ · · ·
∞∏
n=1

Knγ . . .Sτji+2γ Sτji+γ Sτji . (3.58)

The configuration of central charges in the right half-plane is depicted in Figure 3.3. In

[GGM] it is referred to as a “peacock pattern.” By choosing τij as the representative element
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in Γij , we can write R̂ as a 2× 2 matrix as follows

R̂ =

Z Rτij

0 Z

Z Rτij+γ

0 Z

Z Rτij+2γ

0 Z

 . . .

⊗∞n=1 F ∗[Rnγi ] 0

0 ⊗∞n=1 F ∗[Rnγj ]


. . .

 Z 0

Rτji+2γ Z

 Z 0

Rτji+γ Z

 Z 0

Rτji Z

 .

(3.59)

This product can be computed out to be

R̂ =

R̂ii R̂ij

R̂ji R̂jj

 (3.60)

where

R̂ii = F [Vγi ]⊕n,m≥0 Rτij+nγ ⊗F [Vγj ]⊗Rτji+mγ , (3.61)

R̂ij = ⊕n≥0Rτij+nγ ⊗F [Vγj ], (3.62)

R̂ji = ⊕n≥0F [Vγj ]⊗Rτji+nγ , (3.63)

R̂jj = F [Vγj ]. (3.64)

As before we denote Vγa = ⊕n≥1Rnγa for a ∈ {i, j}. The opposite spectrum generator is

R̂opp = Sτ ji Sτ ji−γ Sτ ji−2γ · · ·
∞∏
n=1

K−nγ . . .Sτ ij−2γ Sτ ij−γ Sτ ij . (3.65)

Its matrix elements can be computed out to be

R̂opp
ii = F∗[V−γi ] (3.66)

R̂opp
ij = ⊕n≥0F [V−γi ]⊗Rτ ij−nγ (3.67)

R̂opp
ji = ⊕n≥0Rτ ji−nγ ⊗F [V−γi ] (3.68)

R̂opp
jj = ⊕n,m≥0Rτ ji−nγ ⊗F [V−γi ]⊗Rτ ij−mγ ⊕F [V−γi ]. (3.69)

The categorical trace

Rc =
(
R̂opp
ii ⊗ R̂ii

)
⊕
(
R̂opp
ij ⊗ R̂ji

)
⊕
(
R̂opp
ji ⊗ R̂ij

)
⊕
(
R̂opp
jj ⊗ R̂jj

)
, (3.70)
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can be simplified to

Rc = Ri ⊕Rj ⊕R(ij) (3.71)

where

Ri := F ∗[Vγi ]⊗F ∗[V−γi ], (3.72)

Rj := F ∗[Vγj ]⊗F ∗[V−γj ], (3.73)

and

R(ij) =
⊕

(γij ,γji)∈Γij×Γji

Rγij ⊗F ∗[Vγj ]⊗Rγji ⊗F ∗[V−γi ]. (3.74)

3.2.2 Realization of BPS data in Landau-Ginzburg Models

We now explain how one can concretely realize the vacuum and BPS data in Landau-

Ginzburg models. Suppose (X, g, J) is a Kähler manifold with Riemannian metric g and

complex structure J , and suppose α is a closed holomorphic one-form on X. The pair

(X,α) allows one to write down a two-dimensional theory with N = (2, 2) supersymmetry

which we call a Landau-Ginzburg model with twisted masses. The Lagrangian in terms of

component fields (φ, ψ±) is written as

L = LD + LF (3.75)

where

LD = gIJ̄(∂tφ
I∂tφ

J̄ − ∂xφI∂xφJ̄) + igIJ̄ψ
J̄
+D−ψ

I
+ + igIJ̄ψ

J̄
−D+ψ

I
−

+RIJ̄KL̄ψ
I
+ψ

J̄
+ψ

K
−ψ

L̄
−

(3.76)

and

LF =
1

2
gIJ̄αIαJ̄ +DIαJψ

I
+ψ

J
− +DĪαJ̄ψ

J̄
−ψ

Ī
+. (3.77)
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Since the potential of the theory is V = 1
2g
IJ̄αIαJ̄ we see that the physical vacuum set

coincides with the zeroes of the one-form α, which we assume to be isolated and non-

degenerate. The latter condition means that the symmetric matrix DIαJ evaluated at a

zero is non-degenerate for each zero.

The vacuum data introduced in the previous subsection is concretely realized in terms

of (X,α) as follows. First, the deck group Γ is simply the first homology group of X

Γ = H1(X,Z). (3.78)

Since the zeroes of α coincide with the physical vacua of the LG theory, the vacuum

groupoid V has objects given by

Ob(V) = Zero(α). (3.79)

The morphisms of the vacuum groupoid are given by the relative homology

Γij ⊂ H1(X, {φi, φj};Z), (3.80)

of oriented 1-chains c such that ∂c = φj − φi, and the composition maps Γij × Γjk →

Γik are given simply by concatenating an ij-chain with a jk-chain. The central charge

homomorphism is given by

Zγij =

∫
γij

α. (3.81)

One can indeed show that this coincides with the definition coming from the supersymmetry

algebra

Z = {Q1
+, Q

2
−}. (3.82)

Finally, if B is a brane of the LG model supported on a Lagrangian submanifold LB ⊂ X,

we can also realize the torsor ΓB,i as

ΓB,i ⊂ H1(X, {LB, φi};Z), (3.83)
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the subset of 1-chains homologous to paths that start at a point in LB, and end on φi.

The BPS data can also be realized explicitly. Explain how to construct Rγij and EγB,i(B)

are constructed explicitly.

Remark on terminology We have been referring to a model defined by a closed holo-

morphic one-form α as “Landau-Ginzburg model with twisted masses.” On the other hand,

in the introduction twisted masses referred to a non-zero contribution of a global symmetry

charge to the central charge Z of the theory. The reason why these two uses of terminology

is compatible is as follows. Suppose we start out with an LG model defined by (X,W )

where W is a single-valued holomorphic function. The Lagrangian of the LG model has

the same kinetic term (3.76), and the potential term, determined by W , is

LF =
1

2
gIJ̄∂IW∂J̄W +DI∂JWψI+ψ

J
− +DĪ∂J̄Wψ

J̄
−ψ

Ī
+. (3.84)

Given a representative η of a non-trivial cohomology class in H1(X,C) we can define a

conserved current by letting

jµη = εµνηI∂νφ
I . (3.85)

The corresponding conserved charge is J =
∫
dx j0 as usual. Supposing {βa}h

1,0(X)
a=1 is a

basis of holomorphic differentials, we may couple the corresponding topological currents to

a background twisted vector multiplet and freeze the values of the corresponding scalar to

2πi(m1, . . . ,mh1,0) ∈ Cn while setting all other fields to vanish. The resulting deformation

of the action is quite simple and amounts to taking

∂IW → αI := ∂IW + 2πi
k∑

n=1

mn(βn)I (3.86)

in the expression (3.84) for LF , thus giving a potential term of the form (3.77).
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3.2.3 Realization in Sigma Models with Isometries

We now discuss twisted masses and the realization of vacuum data in supersymmetric

sigma models with target space isometries. Consider a N = (2, 2) sigma model defined

by a choice of a target Kähler manifold (X, g, J). The standard Lagrangian in terms of

component fields is given by L = LD where LD is given as in (3.76). Supposing that X

has a holomorphic Killing field KI , meaning it satisfies

DIKJ̄ +DJ̄KI = 0, (3.87)

we can perform the twisted mass deformation as follows. The Killing field K leads to a

U(1) symmetry of the sigma model with corresponding conserved current

jµ = hµνgIJ̄(∂νφ
IK J̄ + ∂νφ

J̄KI) + iDIKJ̄ψ
J̄
γµψI . (3.88)

It is useful to write out the individual components for later use

jt = gIJ̄(∂tφ
IK J̄ + ∂tφ

J̄KI) + iDIKJ̄(ψ
J̄
+ψ

I
+ + ψ

J̄
−ψ

I
−), (3.89)

jx = −gIJ̄(∂xφ
IK J̄ + ∂xφ

J̄KI) + iDIKJ̄(−ψJ̄+ψI+ + ψ
J̄
−ψ

I
−). (3.90)

We can couple this U(1) global symmetry to a background twisted vector multiplet with

component fields

(At, Ax, λ±, σ, σ,D). (3.91)

One can consistently set these fields to values

(0, 0, 0,m,m, 0) (3.92)

where m is an arbitrary complex number, while preserving N = (2, 2) supersymmetry. The

resulting deformation to the Lagriangian is

∆LK = −|m|2gIJ̄KIK J̄ + iDIKJ̄

(
mψ

J̄
+ψ

I
− +mψ

J̄
−ψ

I
+

)
. (3.93)
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The combined Lagrangian

LK = L+ ∆LK (3.94)

is invariant under the supersymmetry transformations

δφI = ε+ψ
I
− − ε−ψI+, (3.95)

δψI+ = iε−∂+φ
I + ε+ΓIJKψ

J
+ψ

K
− + iε+mK

I , (3.96)

δψI− = −iε+∂−φ
I + ε−ΓIJKψ

J
+ψ

K
− − iε−mK

I , (3.97)

along with their complex conjugates. Under these the combined action S := S0 +SK varies

as

δS =

∫
d2x(−∂µε−Gµ+ + ∂µε+G

µ
− + ∂µε−G

µ
+ − ∂µε+G

µ
−) (3.98)

where

Gt+ = gIJ̄∂+φ
J̄ψI+ −mgIJ̄K J̄ψI−, (3.99)

Gx+ = −gIJ̄∂+φ
J̄ψI+ −mgIJ̄K J̄ψI−, (3.100)

Gt− = gIJ̄∂−φ
J̄ψI− −mgIJ̄K J̄ψI+, (3.101)

Gx− = gIJ̄∂−φ
J̄ψI− +mgIJ̄K

J̄ψI+. (3.102)

Note that in addition to the U(1) global isometry, there is also a topological current reading

Tµ = iεµν
(
∂νφ

IKI − ∂νφĪKĪ

)
, (3.103)

which is conserved, ∂µT
µ = 0, as a consequence of the holomorphic Killing equation. Again

it is useful to write out the individual components

T t = i(∂xφ
IKI − ∂xφĪKĪ), (3.104)

T x = i(−∂tφIKI + ∂tφ
ĪKĪ). (3.105)
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When m 6= 0, the supersymmetry algebra obtains a non-zero twisted central charge term

Z̃ = {Q+, Q−}. (3.106)

By using the explicit form of the supercharges, it is straightforward to compute that

Z̃ = im

∫
dxT t −m

∫
dx jt. (3.107)

In the case when there is a moment map h, meaning we can write

∂Ih = igIJ̄K
J̄ , (3.108)

we can convert the integrand to a total derivative and write

Z̃ij = im
(
h(φj)− h(φi)

)
−mJ (3.109)

where {φi} are the critical points of the moment map (assumed to be isolated). Thus we

find that the twisted central charge is a sum of a contribution from the boundary of space,

and a contribution proportional to the conserved charge of the global symmetry. This is

of the form anticipated in (3.18).

Unlike the case of Landau-Ginzburg models where non-renormalization theorems tell

us that the classical vacua and form of the central charges continue to be valid quantum

mechanically, the classical vacuum set given by the critical points of the moment map h,

and the expression for Z given by (3.109) are subject to strong quantum corrections. We

can anticipate the form of the quantum corrections as follows.

In order to summarize the expected result we have to recall some aspects of the A-

model with target (X,ω). With the twisted mass deformation the A-model observables are

equivariant deRham cohomology classes H∗U(1)(X,m) where the equivariant differential is

given by

dm = d− imιK . (3.110)
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There is a distinguished element given by the cohomology class of the equivariant symplectic

form

ωh = ω − imh. (3.111)

ωh is special because deforming the action by second descendant of ωh

(ωh)(2) = dzdz {Q+, [Q−, ωh]} (3.112)

via

S → S + t

∫
(ωh)(2) (3.113)

corresponds to rescaling the metric gIJ̄ → t gIJ̄ . In other words, in the correspondence

between observables and deformation parameters, ωh corresponds to the Kähler parameter

t. Let Cω be the corresponding action of ωh on H∗U(1)(X,m) via the quantum cup product.

Let C = C∗t be the parameter space. By using Cω we can define the spectral curve Σ ⊂ T ∗C

via the spectral equation

det(Cω − s) = 0. (3.114)

Once we have a natural spectral curve Σ, we can propose the standard formulas familiar

from coupled 2d-4d systems [GMN4]. At a point t ∈ C we propose that

ObV = π−1(t) (3.115)

is the set of quantum vacua,

Γ = H1(Σ,Z) (3.116)

is the deck group, and

Γij ⊂ H1(Σ, {t(i), t(j)};Z) (3.117)
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the collection of Γ-torsors is given by oriented 1-chains homologous to paths that begin at

t(i) and end at t(j). Finally we propose that the quantum central charge is

Zγij =

∫
γij

λ, (3.118)

where λ = s dt is the Liouville form on T ∗C.

It is interesting to continue and formulate the BPS Z-modules Rγij directly in terms of

the spectral curve Σ. This would involve a categorification of the procedure via spectral

networks used in [GMN4, GMN5] to determine the Euler characters µγij of Rγij . It is also

interesting to express the data of a B-brane B and its Chan-Paton spaces Ei(B) in terms

of the spectral curve Σ. We leave this to future work.

3.2.4 Examples

We now discuss examples of vacuum and BPS data in concrete N = (2, 2) theories with

twisted masses.

We remark that in order to determine the BPS Z-modules of classical solitons in Landau-

Ginzburg models, we directly consider intersection points of left and right thimbles, in-

finitesimally rotated from the phase of the classical soliton. It is possible analyze the inter-

section points explicitly for Landau-Ginzburg models with one-dimensional target spaces,

which is exclusively the case in our examples. The fermion degrees mod 2 of the solitons

corresponding to the intersection points of thimbles are also determined once the thimbles

have been oriented. We postulate that the fermion degrees in Z mod 2, being either 0 or

1, continue to hold in Z for this simple class of examples. That this can be done consis-

tently requires one to either directly compute η-invariants of a Dirac operator coming from

linearizing the soliton equation, or an argument based on the Maslov index.
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The Free Chiral

The simplest theory one can write down with a non-trivial twisted mass term is the theory of

a free chiral superfield Φ with a twisted mass m turned on for the standard U(1) symmetry

Φ → eiϕΦ. It is instructive to work in the mirror formulation of the model, which is a

Landau-Ginzburg model with target space C∗ with coordinate φ, and LG one form

α =
(m
φ
− 1
)

dφ. (3.119)

The model has a unique vacuum V = {1} located at φ = m and the deck group Γ =

H1(C∗,Z) has rank one, generated by the cycle γ that goes counter-clockwise around the

origin once. The central charge is given by

Zγ = 2πim. (3.120)

The only non-trivial BPS Z-modules consist of3

Rγ = Z, (3.121)

generated by φγ , along with its CPT conjugate

R−γ = Z[1], (3.122)

where the superscript means that the generator has cohomological degree +1. Letting

m = ia with a < 0, Zγ lies in the right-half plane, therefore the categorical spectrum

generator

R̂11 = F∗[Rγ ], (3.123)

3One can determine these spaces in a standard way by working out the intersections of left and right

thimbles explicitly. The fermion degrees mod 2 are determined by working out the orientation of thimble

intersections. These will be discussed in Section 3.3.2.
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is simply a bosonic Fock space in the φγ variable. Equivalently,

R̂nγ ∼= Z (3.124)

for each n ≥ 0 and trivial for n < 0.

We will discuss various examples of branes and their Chan-Paton spaces in Section 3.3.2.

The CP1 Model

Another canonical example of an N = (2, 2) theory with twisted masses consists of the

CP1 model with a twisted mass m turned on for the diagonal U(1) subgroup of the SU(2)

isometry group. One can determine the BPS spectrum of this model in a variety of ways

[Dor, GMN4]. We find it useful to illustrate this example once again in the mirror Landau-

Ginzburg formulation [HV, MS1]. The mirror theory once again has target the punctured

complex plane C∗ with coordinate φ, and LG one-form given by

α =
(

1− m

φ
− Λ2

φ2

)
dφ. (3.125)

The model has two vacua V = {1, 2} which are located at the two zeroes of φ:

φ1 =
1

2

(
m−

√
m2 + 4Λ2

)
, (3.126)

φ2 =
1

2

(
m+

√
m2 + 4Λ2

)
. (3.127)

We note that the theory has a Z2-symmetry acting on the field φ via

φ→ −φ−1. (3.128)

Let τ12 ∈ Γ12 denote the cycle going from φ1 to φ2 and γ denote the cycle going around

the origin in a counter-clockwise direction. We can compute

Zγ12 = 2
√
m2 + 4Λ2 +m log

(
m−

√
m2 + 4Λ2

m+
√
m2 + 4Λ2

)
, (3.129)

Zγ = −2πim. (3.130)
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The strong coupling spectrum is

Rτ12 = Z, (3.131)

Rτ12−γ = Z (3.132)

generated by the corresponding solitons φτ12 and φτ12−γ respectively, along with the CPT

conjugates

Rτ21 = Z[1], (3.133)

Rτ21+γ = Z[1]. (3.134)

Therefore at strong coupling the spectrum generator is

R̂s =

 Z 0

Z〈φτ21+γ〉 Z

⊗
Z Z〈φτ12〉

0 Z

 . (3.135)

The weak coupling spectrum is

Rγ12
∼= Z for any γ12 ∈ Γ12, (3.136)

Rγ21
∼= Z[1] for any γ21 ∈ Γ21 (3.137)

generated by the correspnding solitons φγ12 and φγ21 respectively, along with

Rγ1
∼= Z, Rγ2

∼= Z[1], (3.138)

R−γ1
∼= Z[1], R−γ2

∼= Z, (3.139)

generated by the corresponding periodic solitons aγ1 , ψ−γ1 , ψγ2 , a−γ2 respectively. The spec-

trum generator is

R̂w =

∞∏
n=0

Z Z〈φτ12+nγ〉

0 Z

S∗[aγ1 ] 0

0 Λ∗[ψγ2 ]

 ∞∏
n=1

 Z 0

Z〈φτ21+nγ〉 Z

 . (3.140)
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The relationship between the strong and weak coupling BPS spectra is usually explained

via the invariance of the (decategorified) spectrum generator. Indeed, if one takes graded

characters of R̂s and R̂w we find that the strong and weak coupling spectrum generator

agree, namely the wall-crossing identity 1 0

−xγ 1

1 1

0 1

 =

∞∏
n=0

1 xnγ

0 1

(1− xγ)−1 0

0 1− xγ

 ∞∏
n=1

 1 0

−xnγ 1

(3.141)

holds. However, one finds that such an identity does not hold on the nose as an equality for

the categorified spectrum generators R̂w, R̂s; the matrix elements of the spectrum generator

at weak coupling consists of infinite-dimensional spaces, whereas at strong coupling they

are finite-dimensional. This is rectified by incorporating instanton effects. We will show in

Section 3.4.4 how the use of ζ-instantons of the CP1 model allow us to construct differentials

on the matrix elements of the categorical spectrum generators so that we have a homotopy

equivalence between the weak and strong coupling spectrum generators

R̂s ' R̂w, (3.142)

thus categorifying the wall-crossing formula (3.141).

It is also instructive to discuss branes and their framed Z-modules in the LG formulation

of the CP1 model. The superpotential on the covering space C with coordinate Y (so that

φ = eY ) is given by

W = mY − Λ2(eY + e−Y ). (3.143)

Suppose we work at a point in parameter space with m,Λ > 0 and study branes preserving

ζ = 1. A brane B is supported on a curve in C along which ReW →∞. These regions for

Λ > 0 are given by

Ok = {π
2

+ 2πk < ImY <
3π

2
+ 2πk}. (3.144)
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Figure 3.4: Left thimbles for the CP1 model in the covering space C.

The left Lefschetz thimbles T1,T2 at ζ = 1 along with their deck translates are depicted in

Figure 3.4. The thimbles T
(k)
2 := Tkγ ·T2 is a curve lying entirely in the region Ok whereas

Tk1 connects the region Ok with Ok+1 as depicted in the Figure. A standard example of

a brane in the CP1 model then is the brane Bk whose support consists of a curve that

connects O0 with Ok for any k ∈ Z. The case k = 3 is shown in Figure 3.5. Bk intersects

non-trivially at a single point with the right thimbles R
(l)
2 only for l = 0, whereas for it has

one intersection point with R
(l)
1 for each l = 0, . . . , k−1. Moreover, all of these intersections

have positive orientation. Therefore the brane Bk has framed BPS Hilbert spaces given by

E1,nγ(Bk) = Z for n = 0, 1, . . . , k − 1, (3.145)

E2,nγ(Bk) = δn,0 Z. (3.146)
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Figure 3.5: The brane Bk with k = 3 and its intersection points with the right thimbles
are depicted.

Weierstrass Model

Finally we also include an example of a model4 where the rank of Γ is bigger than one.

Consider the model with target being a punctured elliptic curve X = T 2
τ \{0} and

α = ℘(φ, τ)dφ. (3.147)

Note the contrast with the “Elliptic LG model” discussed in section 8.3 of [KM1], which

had W = ℘(φ, τ). In this case we can write

W = −ζ(φ, τ), (3.148)

the Weierstrass ζ-function, necessarily multivalued. Since ℘(φ, τ) has a second-order pole

at the additive zero of the elliptic curve X, it must have two zeroes. Thus, the model has

two vacua, but in general it is difficult to write down explicit expressions for the zeros of

4This model was originally discussed by the author in unpublished work with S. Cecotti, whom we

thank.
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℘(φ, τ). However one can work at the enhanced symmetry point τ0 = e2πi/3 where the

model has Z6 symmetry. Making use of this symmetry, it is possible to locate the exact

zeroes. On the one hand the Z6 symmetry implies that if φ0 is a zero, then so is ωkφ0

where ω = e
2πi
3 and k = 0, 1, . . . , 5. On the other hand there are only two zeroes in the

fundamental domain. Therefore some of the six complex numbers above must coincide

with a lattice translate of φ0. In particular we have

ω2φ0 = φ0 − 1 (3.149)

which means that φ0 = 1√
3
e

iπ
6 . The other zero in the fundamental domain is given by ωφ0.

Thus the two zeroes are located at

φ1 =
1√
3

exp
( iπ

6

)
, (3.150)

φ2 =
1√
3

i. (3.151)

The punctured torus has

H1(T 2
τ \{0},Z) ∼= Z〈γ〉 ⊕ Z〈γ′〉 (3.152)

where γ, γ′ are the a and b-cycles respectively. Therefore we have V = {1, 2} and Γ =

Z〈γ〉⊕Z〈γ′〉. The one-form α has non-zero periods on either cycle which can be computed

to be

Zγ = − 2π√
3
, (3.153)

Zγ′ =
2π√

3
exp
( iπ

3

)
. (3.154)

Letting γ12 be the open cycle going from φ1 to φ2 in a straight line, we can also compute

Zγ12 =
2π

3
iτ0. (3.155)
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Figure 3.6: The critical points and soliton paths of the α = ℘(φ, τ)dφ model as depicted
on the cover.

The BPS spectrum consists of three 12 solitons, all with distinct charges in Γ12:

Rγ12 = Z[1], (3.156)

Rγ12−γ = Z, (3.157)

Rγ12+γ′ = Z[1], (3.158)

where the solitons are depicted in Figure 3.6, along with the usual spaces of anti-solitons:

Rγ21 = Z, (3.159)

Rγ21+γ = Z[1], (3.160)

Rγ21−γ′ = Z. (3.161)

All other soliton spaces, including spaces of periodic solitons are trivial. The clockwise

order of the central charges in the upper-half plane is

(Zγ21+γ , Zγ12+γ′ , Zγ21) (3.162)
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and so the categorical spectrum generator reads

R̂ = Sγ21+γSγ12+γ′Sγ21 (3.163)

=

 Z 0

Rγ21+γ Z

Z Rγ12+γ′

0 Z

 Z 0

Rγ21 Z

 (3.164)

=

 Z⊕ (Rγ12+γ ⊗Rγ21) Rγ12+γ′

Rγ21 ⊕Rγ21+γ ⊕ (Rγ21+γ′ ⊗Rγ12+γ ⊗Rγ21) Z⊕ (Rγ21+γ ⊗Rγ12+γ)

 .(3.165)

It is a good exercise to draw the Lefschetz thimbles, and to work out the framed BPS

complexes of the brane Bn,m whose support winds around γ n-times and γ′ m-times.

Class S theories with trivial DSZ pairing

Any four-dimensional, N = 2 theory of class S such that the charge lattice of electromag-

netic + flavor charges Γ has a trivial DSZ pairing 〈 , 〉 = 0, coupled to its canonical surface

defect is a theory to which our framework applies. The Rγi are then spaces of 4d BPS

particles, and the Rγij consist of spaces of 2d-4d solitons. The simplest example of such a

theory is the free hypermultiplet.

3.3 Boundary Amplitudes and Framed Wall-Crossing

3.3.1 S-Walls

In this section we review framed wall-crossing in the absence of twisted masses. As in the

introduction, fix a phase ζB and let B be a supersymmetric boundary condition (placed at

the boundary of the right half plane 5 i.e at x = 0 where x ≥ 0) that preserves QBPS(ζB).

5Might need to switch conventions. Either replace Im(ζ−1Zij) to Re(ζ−1Zij) or work with the upper-

half plane instead.
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Let Ei(B) be the Z-graded module of classical (B, i) framed BPS states, and let Rij be the

Z-graded module of classical ij vanilla BPS states.

As stressed in the introduction, a categorical discussion of framed wall-crossing involves

not only the framed and vanilla BPS spaces Ei(B), Rij , but forces us to also include a

boundary amplitude B. The essential ingredients of S-wall crossing can be captured in a

theory with just two vacua, V = {i, j}. Suppose we are at a region of parameter space

with Im(ζ−1
B Zij) > 0 (the unprimed side). In order to discuss the boundary amplitude B,

one has to consider the space of self-morphisms of the brane B which read

Hop(B,B) = ⊕a∈VEa(B)⊗ R̂ab ⊗ E∨b (B). (3.166)

When there are only two vacua with ζ−1
B Zij lying in our chosen half-plane (so we have

Re(ζ−1
B Zij) > 0), the different direct sum components of Hop(B,B) can be organized into

a 2× 2 matrix

Hop(B,B) =

End(Ei(B)) Ei(B)⊗Rij ⊗ (Ej(B))∨

0 End(Ej(B)).

 (3.167)

Recall from Appendix C.1 of [GMW], that the interior amplitude βij ∈ Rij⊗Rji in a theory

with two vacua is equivalent, by the use of the non-degenerate pairing Kij : Rij⊗Rji → Z,

to a differential dij : Rij → Rij so that d2
ij = 0. This turns the the morphism space

Hop(B,B) to a differential-graded algebra, where the differential only acts on the 12

component via dij while acting trivially on the framed BPS spaces, and the multiplication

comes from matrix multiplication combined with compositions of linear maps. B is then a

degree one element of Hop(B,B)

B =

dEi Bij
0 dEj

 (3.168)
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which satisfies the Maurer-Cartan equation

dijB + B2 = 0. (3.169)

The Maurer-Cartan equation in turn can be translated into saying that dEi and dEj are

differentials on Ei(B) and Ej(B) respectively, thus turning the framed BPS Z-modules into

chain complexes, and that the degree shifted map

Bij : E [1]
j (B)→ Ei(B)⊗Rij (3.170)

is a chain map between the complexes (E [1]
j (B),−dEj ) and (Ei(B)⊗Rij , dEi ⊗ 1 + 1⊗ dij).

We are now ready to state the framed wall-crossing formula. Define an Sij wall to be

the locus where

Zij
ζB
∈ iR+. (3.171)

Let us cross an Sij wall to go to a region of parameter space with Re(ζ−1
B Zij) < 0 (the

primed side). The categorical wall-crossing formula for framed BPS states says that in

crossing the wall from the positive side to the negative side, the homotopy class of the BPS

complexes jumps to

R′ij ' Rij , (3.172)

E ′i(B) ' Ei(B), (3.173)

E ′j(B) ' Cone
(
Bij : E [1]

j (B)→ Ei(B)⊗Rij
)
. (3.174)

Moreover, the primed boundary amplitude, which is now valued in6

B′ji ∈ E ′j(B)⊗R′ji ⊗ (E ′i(B))∨ (3.175)

6We remind the reader that the perfect pairing Kij : Rij ⊗ Rji → Z, provides an isomorphism Rji ∼=

(R∨ij)
[1].
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Figure 3.7: Summary of framed S-wall crossing in the W -plane. The horizontal lines
represent images of framed BPS solitons in the W -plane, whereas the lines connecting Wi

and Wj are images of the vanilla solitons in the W -plane. The shaded region represents
the image of a framed ζ-instanton.

i.e valued in

(
Ej(B)⊗Rji ⊗ E∨i (B)

)
⊕
(
End(Ei(B))⊗ (Rij ⊗Rji)

)
(3.176)

is given by

B′ij =

 0

id⊗K−1
ij

 . (3.177)

This wall-crossing formula is summarized in the Figure 3.7.

Conversely suppose that we begin with a region where Re(ζ−1Zij) < 0 (now, the un-

primed side) and cross an Sij-wall to go over to the side with Re(ζ−1Zij) > 0 (now, the

primed side). The boundary amplitude is now valued in

Bji ∈ Ej(B)⊗Rji ⊗ E∨i (B), (3.178)

and defines a chain map

Bij :
(
R∨ji ⊗ Ei(B)

)[1] → Ej(B). (3.179)
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In doing this move, the BPS complexes jump to

R′ji ' Rji, (3.180)

E ′i(B) ' Ei(B), (3.181)

E ′j(B) ' Cone
(
Bji : (R∨ji ⊗ Ei(B))[1] → Ej(B)

)
. (3.182)

The primed boundary amplitude, which is valued in

B′ij ∈ E ′i(B)⊗R′ij ⊗ (E ′j(B))∨ (3.183)

is given by

B′ij =

 0

id⊗K−1
ij

 . (3.184)

That these two moves are inverses of each other follows essentially from the mapping

cylinder construction.

Example: Cubic LG Model

Let’s illustrate framed wall-crossing in perhaps the simplest example. Consider the cubic

Landau-Ginzburg model

W =
1

3
φ3 − tφ (3.185)

where t is a complex parameter. The two vacua V = {1, 2} are located at φ1 =
√
t and

φ2 = −
√
t with critical values W1 = −2

3 t
3
2 , and W2 = 2

3 t
3
2 , and therefore Z12 = −4

3 t
3
2 .

We consider branes for this theory at ζ = 1. They are supported on one-dimensional

submanifolds of C along which Re(W )→ +∞. The regions where Re (W ) goes to positive

infinity, along with some examples of one-dimensional submanifolds on which branes can

be supported are depicted in the left of Figure 3.8.
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Figure 3.8: Left: the shaded regions are regions in which the support of a brane with
ζ = 1 goes off to infinity. L1,L2 are the two thimbles at t = e−iε and B is the support of
the brane whose framed BPS states we are studying. Right: the intersection points of B
with the right thimbles R1,2 are denoted as p1,2 We also show the paths traced out by the
framed BPS solitons φB,1 and φB,2 along with the vanilla soliton φ12. Finally the shaded
region is the image of the framed ζ-instanton that gives rise to the boundary amplitude
for B.

The S12 wall is the locus where t
3
2 is real and positive. We begin with t = e−iε and move

across the S12 wall to t′ = eiε where ε is a small positive real number.

Consider the brane B whose support is depicted in the left of Figure 3.8. At t = e−iε, the

support of B has one intersection point for each right Lefschetz thimble R1,R2. Flowing

from these intersection points to the critical points along the right thimbles, we see that

the framed BPS complexes E1(B) and E2(B) are one-dimensional, generated by φB,1 and

φB,2 respectively. The fermion degrees can be chosen to vanish mod 2 by choosing the

orientations of the branes B and the right thimbles so that they give intersection numbers

to be +1. We go ahead and postulate that the fermion degrees vanish not only in Zmod2,

but in Z. Thus the framed BPS complexes for B are

E1(B) = Z, E2(B) = Z. (3.186)
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Independent of the parameter t we also have a single vanilla 12 soliton, φ12, and with the

orientations of thimbles fixed as above, the fermion degree is 1 mod 2, and we postulate

that

R12 = Z[1]. (3.187)

Finally with this choice of B at t = eiε there is also (conjecturally) a single framed rigid

ζ-instanton: a map from R+×R to the target space C satisfying the ζ-instanton equation,

with boundary conditions specified by the brane B and the half-plane fan of solitons

(φB,1, φ12, φ2,B). (3.188)

The brane B, the soliton paths φB,1, φB,2, φ12 and the image of the conjectural ζ-instanton

are depicted on the right of Figure 3.8. With the existence of this ζ-instanton postulated,

the boundary amplitude of the brane B

B12 ∈ E1(B)⊗R12 ⊗ E2(B)∨ ∼= Z[1] (3.189)

is given by

B12 = φB,1 ⊗ φ12 ⊗ φ∨B,2. (3.190)

Having specificed the BPS complexes and boundary amplitude on one side of the wall, we

can go ahead and discuss what happens on the other. The framed wall-crossing formula

says that in moving from t = e−iε to t′ = eiε the framed BPS Hilbert space E1(B) is

unchanged

E ′1(B) ' E1(B) = Z (3.191)

whereas

E ′2(B) ' Cone
(
B12 : E [1]

2 (B)→ E1(B)⊗R12

)
(3.192)

= Cone(Id : Z[1] → Z[1]) (3.193)

' 0. (3.194)
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Therefore the cohomology of the primed spaces for B i.e the physical framed BPS Hilbert

spaces are precisely identical to those of a left thimble at t′ for the vacuum φ1. Indeed by

using the formula for B′21, it is not hard to show that B is homotopy equivalent to the left

thimble L′1 at t′ = eiε.

S-Wall Interface

The framed wall-crossing formula we stated and illustrated above can be derived from

the action of an appropriate “wall-crossing interface” that acts as a domain wall between

the theory T with Re(ζ−1Zij) > 0 and the theory T ′ with Re(ζ−1Zij) < 0. This wall-

crossing interface was constructed in [GMW] where it is known as an Sij-wall interface. As

usual, i 6= j throughout this section.

Generalizing the formalism of branes, which are characterized by the framed spaces Ei(B)

and the boundary amplitude B ∈ Hom(B,B), an interface ILR between the theory TL with

vacua i ∈ VL and TR with vacua a ∈ VR is constructed by providing Z-modules

Eia(ILR). (3.195)

One can then show that the data of the interior amplitudes βL, βR along with taut interface

webs tLR provides one with an A∞-algebra structure on the space

Hop(ILR, ILR) =
⊕
i,j∈VL
a,b∈VR

Eia(ILR)⊗ R̂opp
ji ⊗ R̂ab ⊗ E

∨
jb(ILR), (3.196)

where we recall that for a given theory, say TL the R̂ab spaces are defined via the factor-

ization formula

⊕
a,b∈VL

R̂abeab =
y⊗

ReZab>0

(Z1⊕Rabeab), (3.197)



144

where y denotes clockwise ordering on the product, and R̂opp denotes the clockwise

ordered product in the opposite half-plane, namely the half-plane with ReZab < 0. An

interface amplitude BLR by definition is a Maurer-Cartan element of this A∞-algebra. The

pair
(
{Eia(ILR)},BLR) then characterizes an interface between the theories (TL, TR). Note

that the theory of left (right) branes come about when the right (left) theory is the trivial

theory.

Perhaps the simplest non-trivial example of an interface consists of the identity interface

Id between a theory T and itself. The Chan-Paton spaces are simply

Eij(Id) = δijZ, (3.198)

whereas the morphism space

Hop(Id, Id) = ⊕i,jR̂opp
ji ⊗ R̂ij (3.199)

is a categorification of Tr(S−tS). In particular we have Rji ⊗ Rij ⊂ Hop(Id, Id) for each

pair of vacua i 6= j. The interface amplitude is given simply by

B = ⊕i 6=jK−1
ji . (3.200)

We now come to the Sij wall-crossing interfaces. Suppose we have TL, TR theories with

two vacua separated by an Sij-wall. We define an interface Sij as follows. The Chan-Paton

spaces are given by

Eii(Sij) = Z, Eij(Sij) = Rij , (3.201)

Eji(Sij) = 0, Ejj(Sij) = Z. (3.202)
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Figure 3.9: The different components for the interface amplitude of the Sij-wall interface
Sij .

The interface amplitude B(Sij) is given as follows. Letting eij denote the basic thimble

interface, 7 the non-trivial morphism spaces for Sij come from

Hop(Rijeij , eii) = Rij ⊗Rji, (3.203)

Hop(Rijeij , ejj) = Rij ⊗Rji, (3.204)

Hop(Rijeij , Rijeij) = End(Rij). (3.205)

We let B(Sij) to be the direct sum of K−1
ij ,K

−1
ij and dij that live in each of these spaces

respectively

B(Sij) = K−1
ij ⊕K

−1
ij ⊕ dij . (3.206)

See Figure 3.9 for an illustration of this amplitude.

One of the main properties of interfaces is that they can be composed. This was ex-

plained in Section 6.2 of [GMW] for the case without twisted masses. Given three theories

(TL, TM, TR) along with interfaces ILM, IMR between these theories, one can construct an

7In more detail a thimble eia interface between TL with vacua i ∈ VL and TR with vacua a ∈ VR is the

interface with Chan-Paton spaces Ejb(eia) = δijδabZ, and trivial interface amplitude B(eia) = 0
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interface

ILM � IMR ∈ Br(TL, TR). (3.207)

The Chan-Paton spaces of the product interface is given by

Eia(ILM � IMR) =
⊕
α∈VM

Eiα(ILM)⊗ Eαa(IMR). (3.208)

The interface amplitude B(ILM � IMR) is given by summing over all taut webs for the

(L,M,R) system and plugging in all possible bulk and interface amplitudes for the theories

(TL, TR, TM ):

B(ILM � IMR) = ρ(tLMR)
(
eβL ,

1

1− BLM
, eβM ,

1

1− BMR
, eβR

)
. (3.209)

The framed wall-crossing formula comes about when we consider TL to be the trivial

theory, and TM TR to be T and T ′ respectively, and for a given brane B of T , we consider

the composite brane

B�Sij (3.210)

as a brane in the theory T ′. Letting E ′i,j(B) = Ei,j(B � Sij), we find by the rule for

composing Chan-Paton spaces that

(
E ′i(B) E ′j(B)

)
=
(
Ei(B) Ej(B)

)Z Rij

0 Z

 , (3.211)

so that we have that the Z-modules are given by

E ′i(B) = Ei(B), (3.212)

E ′j(B) = Ej(B) ⊕ Ei(B)⊗Rij . (3.213)

In particular, the latter is indeed the underlying Z-module of the Cone complex. Next we

come to working out the boundary amplitude B′ of the brane B�Sij . The main thing to
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Figure 3.10: Left: the web that contributes the off-diagonal component of the mapping
cone complex. Right: the taut web that gives the off-diagonal component B′ji.

check is that the differential on E ′j(B) indeed coincides with the Cone differential for Bij .

First note that the natural differentials on Ej(B) and Ei(B) ⊗ Rji are transported to T ′

identically. On the other hand, the off-diagonal component of the Cone differential comes

from the contribution to B′ of the composite web shown in the left of Figure 3.10. The

web depicted in the right of the same Figure also tells us that the off-diagonal component

B′ji of the boundary amplitude is given by id⊗K−1
ij as stated in the wall-crossing formula.

Thus we’ve seen that the wall-crossing formula is equivalent to fusion of the brane B with

the wall-crossing interface Sij .

Let’s also work out the converse construction namely an interface between T ′ and T

that would give us the wall-crossing formula for crossing an Sij-wall in the opposite way.

The S′ij interface has Chan-Paton data

Eii(S′ij) = Z, Eij(S′ij) = R∨ji, (3.214)

Eji(S′ij) = 0, Ejj(S′ij) = Z. (3.215)
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The non-trivial morphism spaces now come from

Hop(eii, R
∨
ji eij) = Rij ⊗Rji, (3.216)

Hop(ejj , R
∨
ji eij) = Rij ⊗Rji, (3.217)

Hop(R∨ji eij , R
∨
ji eij) = End(Rji), (3.218)

and we let the interface amplitude for S′ij be

B(S′ij) = K−1
ij ⊕K

−1
ij ⊕ dji. (3.219)

Showing that B�S′ij has Chan-Paton spaces and boundary amplitude as expressed in the

framed wall-crossing formula involves similar steps to the demonstration for Sij .

Finally it is instructive to check that these two interfaces are inverses of each other.

Namely, we would like to show that

Sij �S′ij ' Id, S′ij �Sij ' Id′ (3.220)

where Id and Id′ are the identity interfaces for the theories T and T ′ respectively, and '

denotes the homotopy equivalence of interfaces. We have

E(Sij �S′ij) =

Z Rij ⊕R∨ji
0 Z

 . (3.221)

A necessary condition for the homotopy equivalence of Sij�S′ij with Id is that the Chan-

Paton spaces are homotopy equivalent to the Chan-Paton spaces for Id. In other words, the

interface amplitude B(Sij�S′ij) should equip the off-diagonal Chan-Paton space Rij⊕R∨ji
with a differential so that the complex becomes homotopy equivalent to the trivial one.

Indeed, there is a taut composite web, which evaluated on the interface amplitudes for

Sij and S′ij lead to such a differential. With a little more effort one can show the full

homotopy equivalence. See Section 7.6 of [GMW] for a complete argument.
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3.3.2 K-Walls

We now discuss novel wall-crossing phenomenon in the presence of non-trivial twisted

masses. We discuss framed wall-crossing across a so-called “K-wall”. By definition, a Kγ

wall is the region of parameter space where

Zγ
ζB
∈ R−. (3.222)

Such walls are only present when a non-zero twisted mass is present in the theory. The

discussion of K-wall crossing is simplest, while capturing all the essential ingredients, if we

assume there is only a single vacuum V = {i} and Γ = Z〈γ〉. Let

Ei(B) = ⊕γ′∈ΓEi,γ′(B) (3.223)

be the bi-graded chain complex of (B, i) BPS particles. Let Rγi be the complex of ii-BPS

particles of charge γ. Suppose we are at a region of parameter space with Im(
Zγ
ζB

) < 0. We

propose that the boundary amplitude for B is degree (1, 0) element valued Bi valued in

Hop(B,B) = Ei(B)⊗F [Rγi ]⊗ E∨i (B), (3.224)

where we recall that F [Rγi ] denotes the graded Fock space of Rγi , the space of classical

BPS states of flavor charge γii. The framed wall-crossing formula states that upon moving

across a Kγ-wall to a region where Im(ζ−1
B Zγ) > 0, the framed BPS chain complex jumps

to

E ′i(B) '
(
Ei(B)⊗F [Rγi ], dB

)
, (3.225)

where the differential dB is given as follows. Note that Bi is valued in End(Ei(B))⊗F [Rγi ].

This is a differential graded algebra where the differentials are the natural ones inherited

from dEi(B) and dγi . The multiplication on this space is given by the natural multiplication
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on the tensor product of a (graded) symmetric algebra and a matrix algebra. Bi obeys the

natural Maurer-Cartan equation

[dEi(B),Bi] + dγiBi + B2
i = 0. (3.226)

Note that Bi can be naturally extended to a map

Bi : Ei(B)⊗F [Rγi ]→ Ei(B)⊗F [Rγi ]. (3.227)

The differential dB is then given by

dB = dEi(B) + dγi + Bi (3.228)

which is nilpotent courtesy of the Maurer-Cartan equation. We also state the wall-crossing

formula for the boundary amplitude. We need to state a formula for

B′i ∈ End
(
E ′i(B)

)
⊗F [R−γi ], (3.229)

where the latter space is

End(Ei(B))⊗F [Rγi ]⊗F [R−γi ]⊗F [R∨γi ] = End(Ei(B))⊗ End(F [Rγi ])⊗F [R−γi ].(3.230)

The primed boundary amplitude is

B′i = IdEi(B) ⊗ (K−1
γi )ab α

a
γie

b
−γi . (3.231)

This satisfies the Maurer-Cartan equation mainly due to Bose-Fermi statistics telling us

that (K−1
γi )2 = 0.

The formulae for going from Im(ζ−1
B Zγ) > 0 to a region with Im(ζ−1

B Zγ) < 0 are as

follows. The boundary amplitude now lives in

Bi ∈ End(Ei(B))⊗F [R−γi ]. (3.232)
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The framed BPS complex after crossing a wall is

E ′i(B) '
(
Ei(B)⊗F [R∨−γi ], dB

)
, (3.233)

where

dB = dEi(B) + d−γi + Bi. (3.234)

The boundary amplitude now lives in

End(Ei(B))⊗ End(F [R−γi ])⊗F [Rγi ], (3.235)

and is given by

B′i = IdEi(B) ⊗ (K−1
−γi)ab α

a
−γie

b
γi . (3.236)

Again, a consistency check on these formulas is that they should be inverses of each

other. We find that

E ′′i (B) = Ei(B)⊗F [Rγi ]⊗F [R∨−γi ]. (3.237)

Thanks to the boundary amplitude B′i, the differential on E ′′i (B) is deformed from the usual

one precisely by the Koszul differential acting on the latter two factors. By the standard

homological algebra of the Koszul complexes we have

F [Rγi ]⊗F [R∨−γi ] ' Z, (3.238)

and therefore

E ′′i (B) ' Ei(B). (3.239)
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Example: Mirror to the Free Chiral

It is very instructive to study framed wall-crossing at a K−γ-wall in the simplest model

where it occurs: the theory of a free chiral superfield with twisted mass. We work in

the mirror formulation where the target space is the punctured complex plane C∗ with

coordinate φ, and superpotential one-form is

dW =
(m
φ
− 1
)

dφ. (3.240)

As usual, we go to the cover C via φ = eY so that the single-valued superpotential on C is

W = mY − eY . (3.241)

The critical points are Yk = logm+ 2πik with corresponding critical values

Wk = m(logm− 1) + 2πikm (3.242)

for k ∈ Z. We study branes for the theory at ζ = 1. Once again, there are good and bad

regions on the Y -plane along which the support of the brane goes to infinity. For Re(Y )

positive and large, the exponential term dominates and so we have to look at regions where

Re(−eY ) is positive. These is the union of the regions

Ok := {π
2

+ 2πk < Im(Y ) <
3π

2
+ 2πk, Re(Y ) > 0} (3.243)

for k being an integer. Thus any curve connecting Ok with Ol for any k 6= l can support

a (left) boundary condition. These regions are independent of m. For Re(Y ) < 0 on the

other hand, the good region is given as follows. Let m = |m|eiα and consider the half-plane

Hα obtained by rotating the right-half plane clockwise by an angle α. The good region R

is given by the intersection of Hα with the left-half plane Re(Y ) < 0. The union of these

two regions, for m = i along with some good curves are depicted in the Figure 3.11.
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Figure 3.11: Left: The good regions along with Re(W ) → ∞ for m = i are shaded. Also
depicted are some curves homologous to left (depicted in black) and right (depicted in
blue) Lefschetz thimbles for m = ie−iε with ε > 0. Right: Some other branes are depicted,
the brane Bk with k = 2, along with the brane N.

The K−γ wall is located at Z−γ = 2πim ∈ R− so that it is at m = ia with a > 0.

We therefore begin with m = ie−iε and cross over to m′ = ieiε where ε is a small positive

number. We would like to study framed wall-crossing for a given brane B placed on x = 0

when the spatial domain is R≥0. The branes that are well-defined in the UV are easy to

classify given what we have already discussed about the regions where the branes may be

supported. Up to the action of the deck group Γ = Z〈γ〉 (equivariant degree shift) and

orientation reversal (fermion degree shift), there are two types of branes. The first type of

brane comes in an infinite family labeled by a positive integer k. Its support consists of a

curve that connects the region O0 with the region O−k. The other type of brane connects

O0 with the lower left quadrant. Some examples are depicted in the right of Figure 3.11.

Let’s begin discussing the first class of branes. We denote brane whose support connects

R0 with R−k as Bk. As usual we have to describe the framed BPS complexes along with

the boundary amplitude. The support of Bk intersects at a single point with positive
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Figure 3.12: The intersection points of the brane B2 with the right thimbles, the paths of
the framed and vanilla BPS solitons, and the image of the ζ-instanton that contributes to
the boundary amplitude B2.

orientation for each right thimble R0,R−1, . . . ,R−(k−1). Therefore we have that

E−nγ(Bk) = Z for 0 ≤ n ≤ k − 1 (3.244)

and is trivial otherwise. So the framed BPS complex for Bk is

E(Bk) = Z〈e0, e1, . . . , ek−1〉 (3.245)

where deg(en) = (0,−nγ). To discuss the boundary amplitude, we have to discuss the

vanilla BPS complexes. By rotating the left and right Lefschetz thimbles and noticing that

only adjacent thimbles intersect, we see that there is a single elementary soliton between

adjacent critical points and no others. The fermion degree of the soliton from Yk to Yk+1

can be determined (mod 2) by noting that L0 intersects with R1 with positive orientation.

Therefore

Rγ = Z, R−γ = Z[1]. (3.246)
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Because R−γ has odd degree, we find that F [R−γ ] is a fermionic Fock space in one variable

ψ−γ . The boundary amplitude, valued in the tensor product of an exterior algebra in one

variable and a matrix algebra in k variables,

Bk ∈ End(Zk)⊗ Λ∗
(
Z〈ψ−γ〉

)
(3.247)

is conjectured to be

Bk =
k−1∑
n=0

enψ−γe
∨
n+1, (3.248)

=



0 1 0 . . . 0

0 0 1 . . . 0

...
. . .

0 0 0 . . . 1

0 0 0 . . . 0


ψ−γ . (3.249)

Indeed, the Maurer-Cartan equation, B2
k = 0 holds, the cohomological degree of Bk is +1

and the flavor degree is zero. In terms of ζ-instantons (3.248) is saying that there is a

unique rigid ζ-instanton on R+ × R for each half-plane fan of the form

(en, ψ−γ , e
∨
n+1), (3.250)

where n = 0, . . . , k − 1, and no others. The k = 2 case, namely the brane B2, the paths

traced out by the solitons e0, ψ−γ , e1 and the image of the ζ-instanton contributing to B2,

is illustrated in Figure 3.12. Let’s discuss framed wall-crossing for the brane Bk. The

categorical wall-crossing formula for crossing a K−γ-wall says that we have

E ′(Bk) ' E(Bk)⊗F [R−γ ] (3.251)

= Z〈e0, . . . , ek−1〉 ⊗ Λ∗
(
Z〈ψ−γ〉

)
. (3.252)

The latter space is naturally viewed as column vectors with entries valued in the exterior

algebra Λ∗
(
Z〈ψ−γ〉

)
. Because the Maurer-Cartan element is non-trivial, E ′(Bk) carries a
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non-trivial differential given in this case simply by the action of Bk. Therefore we find that

the primed complex is given by

E ′(Bk) =
(
Span{ei, ψ−γei}i=0,1,...,k−1, dB(ei) = ei−1ψ−γ .

)
(3.253)

The states ei, ei−1ψ−γ are paired up for i = k − 1, . . . , 1 and the cohomology is generated

by e0 and ek−1ψ−γ . Therefore we find that

E ′0(Bk) ' Z, (3.254)

E ′−kγ(Bk) ' Z[1] (3.255)

with all others vanishing. We see that on one side of the wall of marginal stability Bk has k

framed BPS states, whereas upon crossing it, the spectrum jumps so that there are only two

framed BPS states for each k. The primed boundary amplitude can be similarly analyzed.

The summary is that the BPS complexes and boundary amplitude after wall-crossing are

given by

E ′(Bk) ' Z〈f0, fk〉 (3.256)

where f0 has degrees (0, 0) and fk has degrees (1,−kγ), and the boundary amplitude

B′k ∈ End
(
E ′(Bk)

)
⊗F [Rγ ], (3.257)

= End
(
Z〈f0, fk〉

)
⊗ S∗

(
Z〈xγ〉

)
(3.258)

is given by

B′k = fk x
k
γ f
∗
0 (3.259)

=

 0 0

xkγ 0

 . (3.260)
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Next let’s describe framed wall-crossing for the brane N where one end goes off to infinity

in the the region R0 and the other end going off to infinity in the lower left quadrant. The

support of N intersects every right thimbles R−k at m = ie−iε for each k ≥ 0, and moreover

does so with positive orientation. Therefore the framed BPS complexes are

E−kγ(N) = Z, for each k ≥ 0. (3.261)

Therefore

E(N) = Z〈e0, e1, e2, . . . , 〉 (3.262)

where deg(ek) = (0,−kγ). The boundary amplitude BN is given by

BN =
∑
k≥0

ek ψ−γ e
∗
k+1. (3.263)

In terms of ζ-instantons we are simply conjecturing the existence of a unique ζ-instanton

for every half-plane fan of the form (ek, φ−γ , e
∨
k+1) for each k ≥ 0, and claiming that there

no others. The framed wall-crossing formula then says that

E ′(N) ' E(N)⊗F [R−γ ] (3.264)

= Z〈e0, e1, e2 . . . , 〉 ⊗ Λ∗
(
Z〈ψ−γ〉

)
. (3.265)

The differential on E ′(N) determined by BN can be compactly described in the following

way. On E(N) one can define the usual raising and lowering operators

aγ · ek = ek−1, a−γ · ek = ek+1. (3.266)

The differential on E ′(N) is then given by

dB = aγψ−γ . (3.267)
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The differential dB then pairs up ek and ek−1ψ−γ provided k ≥ 1 while annihilating e0. The

complex therefore turns out to be homotopy equivalent to the one-dimensional complex Z

and we find that

(E ′(N), dB) ' (Z, 0). (3.268)

Furthermore taking into account the jumping of the boundary amplitude, we find that N

is homotopy equivalent to the thimble L′0 at m′ = ieiε.

K-Wall Interface

We now turn the discussion to the construction of wall-crossing interfaces which result

in the framed wall-crossing formula across a Kγ-wall. Before we discuss the wall-crossing

interfaces it is useful to discuss the identity interface in this setup. Suppose we are in a

theory with a single vacuum i and rank one deck group as before, and let ζ−1
B Zγ lie in the

right half plane. The identity interface Id carries the trivial Chan-Paton space

Ei(Id) = Z. (3.269)

The interface amplitude B(Id) is valued in

Hop(Id, Id) = F [R−γi ]⊗F [Rγi ]. (3.270)

Note that the form of the space Hop(Id, Id) coincides with R̂opp
ii ⊗ R̂ii where R̂ii = F [Rγi ]

and R̂opp
ii = F [R−γi ]. We have

R−γi ⊗Rγi ⊂ F [R−γi ]⊗F [Rγi ] (3.271)

and so we let the interface amplitude be

B(I) = K−1
γi . (3.272)

It can be shown that Id indeed behaves as an identity under the �-product of interfaces.
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Now suppose that TL is theory with ζ−1
B Zγ in the right-half plane and TR is a theory

with ζ−1
B Zγ in the left-half plane. We wish to construct an interface K+

γ ∈ Br(TL, TR) that

implements framed wall-crossing across such a wall. Note that if eiLiR denotes the basic

thimble interface between TL and TR, we have

Hop(eiLiR , eiLiR) = F [R−γiL ]⊗F [R−γiR ]. (3.273)

Note that R−γiL
∼= R−γiR so one could simply write Rγi . We then let

EiLiR(K+
γ ) = F [Rγi ]. (3.274)

The interface amplitude B(K+
γ ) is then a degree (1, 0) element valued in

Hop(K+
γ ,K

+
γ ) = End

(
F [Rγi ]

)
⊗F [R−γiL ]⊗F [R−γiR ] (3.275)

given as follows. Let {ea±γi} denote bases for R±γi . Then the corresponding Fock spaces

F [R±γi ] are built from applying creation operators αa±γi (αa±γi could be bosonic or fermionic

depending on the parity of the degree of eaγi) to the vacuum states |0〉±γi . Thus for each

eaγi we have an operator αaγi ∈ End
(
F [Rγi ]

)
. The interface amplitude is then given by

B(K+
γ ) = dγi + (K−1

γiiL
)ab α

a
γie

b
−γiL

+ (K−1
γiiR

)ab α
a
γie

b
−γiR

. (3.276)

Given a brane B for the theory TL with Chan-Paton spaces EiL(B) and boundary amplitude

B ∈ End(Ei(B))⊗F [RγiL ], we can produce the brane B� K+
γ for the right theory TR,

B ∈ Br(TL)→ B� K+
γ ∈ Br(TR) (3.277)

with Chan-Paton space

EiR(B� K+
γ ) = Ei(B)⊗F [Rγi ]. (3.278)

The new boundary amplitude is produced from the natural rule for composing the boundary

amplitude B for the brane B and the interface amplitude B(K+
γ ) given in (3.276). The
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differential dB on E(B � K+
γ ) as written in (3.228) is given by composing B with the first

two terms of (3.276). On the other hand, the expression for B′ as in (3.231) is due to the

third term of (3.276).

We can also easily describe the wall-crossing interface K−γ for going from TL with ζ−1
B Zγ

in the left-half plane to TR with ζ−1
B Zγ in the right half plane. K−γ has Chan-Paton space

given by

EiLiR(K−γ ) = F [R∨−γi ]. (3.279)

The interface amplitude B(K−γ ) lives in the space

Hop(K−γ ,K
−
γ ) = End

(
F [R−γi ]

)
⊗F [RγiL ]⊗F [RγiR ] (3.280)

and is given by

B(K−γ ) = d−γi + (K−1
−γiiL

)ab α
a
−γie

b
γiL

+ (K−1
−γiiR

)ab α
a
−γie

b
γiR
. (3.281)

For a given brane B ∈ Br(TL), one can easily show that B � K−γ has Chan-Paton space

and differentials as indicated in the framed wall-crossing formula.

Finally, we must show that the composition of the two Kγ-interfaces is homotopy equiv-

alent to the identity interface

K+
γ � K−γ ' IdL, K−γ � K+

γ ' IdR. (3.282)

The Chan-Paton space for K+
γ � K−γ reads

EiLiL(K+
γ � K−γ ) = F [Rγi ]⊗F [R∨−γi ]. (3.283)

Although we have not worked through this in detail, it is not unreasonable to expact that

(3.276) and (3.281) equips EiLiL(K+
γ � K−γ ) with a differential such that

EiLiL(K+
γ � K−γ ) ' Z (3.284)
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3.4 Bulk Amplitudes and Wall-Crossing of Vanilla BPS States

So far in this paper we have discussed wall-crossing of framed BPS states. We have

seen that for a given N = (2, 2) theory with non-trivial twisted masses, in addition to the

well-understood Sγij -walls where Zγij becomes parallel to ζB for i 6= j, there are also new

walls known as Kγ-walls, where Zγ becomes parallel to ζB. We were able to describe the

wall-crossing of framed BPS states Ei(B) across a Kγ-wall. We would now like to work out

the analogous exercise for vanilla BPS states. We address the question

In the presence of twisted masses what type of new marginal stability walls are present,

and how do the spaces Rγij jump across these walls?

Recall that in a given theory we have a finite set V along with a Γ-torsors Γij for each

pair of (not necessarily distinct) vacua i and j. The vacuum set V and Γij for each pair

i, j forms a groupoid which we refer to as the vacuum groupoid. There is a groupoid

homomorphism that maps γij ∈ Γij → Zγij ∈ C. At a generic point in parameter space

Zγij for γij ∈ Γij and Zδjk for δjk ∈ Γjk are parallel if and only if i = j = k, and γii and

δii are both positive multiples of a primitive element αii ∈ Γii. Walls of marginal stability

are precisely where this genericity condition is violated. It can be violated in two ways.

The first type of violation occurs when i = j = k still holds, but Zγ and Zγ′ become

parallel for γ and γ′ non co-linear elements of Γ. When this happens, not only do γ and

γ′ become parallel, but by linearity nγ + mγ′ for n > 0 and m > 0 become parallel, and

so in principle the spaces {Rnγ+mγ′}n>0,m>0 can mix and form new BPS states. This

setup, where spaces of BPS states are graded by a lattice Γ along with a homomorphism

Z : Γ → C, and marginal stability walls are defined as the locus where Zγ and Zγ′
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are aligned is more familiar in four dimensions. Indeed, in four dimensions the wall-

crossing of BPS states is very non-trivial and is captured by the Kontsevich-Soibelman

wall-crossing formula. One of the main properties responsible for KS wall-crossing is the

non-commutativity of the Kγ-factors due to the non-trivial DSZ pairing 〈 , 〉 on Γ. However

in a purely two-dimensional setting, like we have in this paper, we expect that the BPS

chain complexes Rnγ+mγ′ are actually unchanged up to homotopy. The main reason for

this is that Γ in our setup consists of purely flavor charges, and is therefore isotropic for the

DSZ pairing. This renders the Kγ-factors commutative, and thus there is no wall-crossing

at the level of BPS indices. At the categorical level, we expect that the interface Kγ � Kγ′

is homotopy equivalent to Kγ′ � Kγ and therefore the BPS complexes are expected to be

unchanged up to homotopy.

The second type of violation is when i = j = k no longer holds. This can happen if none,

or only two of the three vacua coincide. Suppose that none of them coincide so that at a

wall Zγij and Zγjk are parallel for three distinct vacua i 6= j 6= k. Categorical wall-crossing

in this situation is described by a refined version of the formula of [KM1]. Note that by

linearity, if Zγij becomes parallel to Zγjk , then Zγij+γjk also becomes parallel to both of

them. Therefore mixing can occur between the BPS states of charges γij , γjk and γij +γjk.

Let γik = γij +γjk and let Rγij , Rγjk and Rγik be the corresponding BPS complexes. There

is an interior amplitude component β(γik,γkj ,γji). Then all other complexes except Rγik are

unchanged up to homotopy, whereas Rγik jumps to R′γik where

R′γik ' Cone
(
M [β(γik,γkj ,γji)] : Rγij ⊗Rγjk → Rγik

)
. (3.285)

We will review the essential ingredients that go into this formula shortly.

On the other hand suppose the violation is such that two vacua coincide, say i = k, but

i 6= j and j 6= k so that at a wall of marginal stability Zγij is parallel to Zγji . Letting
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γ = γij+γji, by linearity of Z we find that {γij+nγ, kγ, γji+mγ}n≥0,m≥0 all become parallel

at the wall. Therefore, there can be mixing between the corresponding BPS complexes

{Rγij+nγ , Rγi , Rγj , Rγji+mγ}. (3.286)

This is the new type of wall-crossing that we describe in this section.

3.4.1 Interior Amplitudes in Cecotti-Vafa Wall-Crossing

We give a quick review of the logic obtained to arrive at the categorification of the Cecotti-

Vafa formula (3.285). A similar chain of reasoning will apply in a more complicated setting

to describe wall-crossing at the new type of wall.

We are interested in describing how homotopy classes of BPS complexes jump at a

wall where Zγij gets aligned with Zγjk for three distinct vacua i, j, k. The important new

ingredient that enters the categorified wall-crossing formula is the interior amplitude. In

general interior amplitudes are elements of an L∞ algebra built from the BPS complexes

that satisfy the L∞ Maurer-Cartan equation. See Appendix A.5 of [GMW] for a review of

L∞-algebras. The L∞ algebra relevant to describing the (γij , γjk) alignment is as follows.

Let γik = γij+γjk, and let γji, γkj be elements such that γij+γji = 0, γjk+γkj = 0. Suppose

we are on the side of the wall where (γik, γkj , γji) is a cyclic fan. Letting Rγij , Rγjk , Rγik

be the Z-modules of classical BPS states, we consider the categorical trace in the {i, j, k}

subsector of the theory. As computed in (3.54), it is given by

Rijk = Ri ⊕Rj ⊕Rk

⊕R(γij ,γji) ⊕R(γik,γki) ⊕R(γjk,γkj)

⊕R(γik,γkj ,γji),

(3.287)
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where Ri, Rj , Rk are one-dimensional spaces spanned by each respective vacuum state

φi, φj , φk,

R(γij ,γji) = Rγij ⊗Rγji , (3.288)

with similar definitions for R(γik,γki) and R(γjk,γkj), and

R(γik,γkj ,γji) = Rγik ⊗Rγkj ⊗Rγji . (3.289)

Rijk is an L∞ algebra where the L∞ maps are given as follows. We denote the bilinear

bracket as [ , ]. Letting {eaγij} be a basis for Rγij , so that {ea,bγij ,γji := eaγij ⊗ e
b
γji}, and using

similar notation for jk and ik solitons, we have that the non-vanishing brackets are

[eab(γij ,γji)
, ecd(γij ,γji)] = (Kγij )

ad ecb(γij ,γji) ± (Kγij )
bc ead(γij ,γji)

, (3.290)

with similar ones for the bivalent ik and jk fans. We also have non-vanishing brackets

between the bivalent and trivalent summands as follows

[eab(γij ,γji)
, ecde(γik,γkj ,γji)

] = ±(Kγij )
ae ecdb(γik,γkj ,γji)

, (3.291)

[eab(γjk,γkj)
, ecde(γik,γkj ,γji)

] = ±(Kγjk)ad ecbe(γik,γkj ,γji)
, (3.292)

[eab(γik,γki)
, ecde(γik,γkj ,γji)

] = ±(Kγki)
bc eade(γik,γkj ,γji)

. (3.293)

These non-vanishing brackets can be summarized diagrammatically in terms of the taut

webs shown in Figure 3.13.

An interior amplitude is a degree 2 element β ∈ Rijk such that [β, β] = 0. Decomposing

β into its different direct sum components

β = β(γij ,γji) + β(γik,γki) + β(γjk,γkj) + β(γik,γkj ,γji), (3.294)

we find that the equation [β, β] = 0 is equivalent to saying that

dγij := Kγik ◦ β(γij ,γji) : Rγij → Rγij , (3.295)
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Figure 3.13: The L∞-structure on Rijk is determined by the taut webs allowed by a
given configuration of central charges. The left side depicts a taut web that determines
the bracket of two elements of R(γij ,γji) whereas the right side depicts the taut web that
determines the bracket of an element of R(γij ,γji) with an element of R(γik,γkj ,γji).

and similiarly defined dγik , dγjk are differentials that turn Rγij , Rγik , Rγjk , respectively, into

chain complexes, and that

M [β(γik,γkj ,γji)] := Kγij ◦Kγjk ◦ β(γik,γkj ,γji) : Rγij ⊗Rγjk → Rγik (3.296)

is a chain map between the chain complexes (Rγij⊗Rγjk , dγij⊗1+1⊗dγjk) and (Rγik , dγik).

We are thus given BPS chain complexes Rγij , Rγjk , Rγik and a chain map Rγij ⊗Rγjk →

Rγik on one side of the wall. In order to describe the chain complexes on the other side of the

wall of marginal stability, the strategy is to study an object that, on the one hand is a wall-

crossing invariant, and on the other hand is strong enough that the wall-crossing invariance

determines the homotopy equivalence class of the chain complexes R′γij , R
′
γjk
, R′γik . There

are two related options for proceeding.

The first approach, taken in [KM1], is to study the A∞-(sub)category of branes with

objects Ti,Tj ,Tk. The morphism spaces Hop(Tα,Tβ) are constructed from the spaces

Rγαβ whereas the A∞ maps are constructed using the interior amplitude β. The homotopy
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equivalence class of this (sub)category is insensitive to walls of marginal stability. The

requirement that there be an A∞-equivalence between the categories constructed at either

side of the wall leads to (3.285).

Another option, pursued in [GMW], is to consider flat parallel transport of brane cate-

gories. The parallel transport of branes along a path ℘ in parameter space can be carried

out by fusing with an S-wall interface each time ℘ crosses an S-wall. The flatness of the

connection says that two homotopic paths in parameter space lead to homotopy equivalent

interfaces that carry out this parallel transport. Applied to Cecotti-Vafa wall-crossing this

leads to the requirement that

Sγjk �Sγik �Sγij ' S′γij �S′γik �S′γjk . (3.297)

Imposing this homotopy equivalence leads to the Cone formula (3.285).

3.4.2 L∞-Algebra Governing Interior Amplitudes

We now turn to a discussion of categorical wall-crossing at a wall where Zτij and Zτji

become parallel. If τij + τji = γ, then at the wall τij + nγ, τji + mγ for n,m ≥ 0,

and all positive multiples of γ become aligned, thus there can be mixing amongst the

corresponding spaces Rτij+nγ , Rτji+mγ and Fock spaces of Vγi = ⊕n≥1Rnγi and Vγj =

⊕n≥1Rnγj . Precisely how the mixing occurs will be governed by an interaction amplitude;

a Maurer-Cartan element of an L∞ algebra constructed from the spaces of BPS particles

that get mixed at a wall.

Suppose we are on the side of the wall of marginal stability where the corresponding

central charges to

(τij , γj , τji,−γi) (3.298)
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are in clockwise order as in Figure (3.14).

Figure 3.14: The configuration of central charges on one side of the wall is such that

(τij , γj , τji,−γi) is a cyclic fan.

The L∞ algebra governing the interaction amplitude amongst these coincides with the

categorical trace

Rc = Tr
(
R̂opp ⊗ R̂

)
. (3.299)

For the present configuration of vacua this was computed in Section 3.2.1. The result from

(3.71) was that

Rc = Ri ⊕Rj ⊕R(ij) (3.300)

where

Ri := F ∗[Vγi ]⊗F ∗[V−γi ], (3.301)

Rj := F ∗[Vγj ]⊗F ∗[V−γj ], (3.302)

and

R(ij) =
⊕

(γij ,γji)∈Γij×Γji

Rγij ⊗F ∗[Vγj ]⊗Rγji ⊗F ∗[V−γi ]. (3.303)
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Conjecture Rc carries the structure of a Γ-graded8 L∞-algebra. Moreover for a given

physical theory, there is a canonical interior amplitude, an element β ∈ (Rc)
(2,0) that

satisfies the L∞ Maurer-Cartan equation.

It is natural to expect that similar to the formalism of [GMW], the L∞-brackets result

from summing up contributions of planar graphs where the edges are chosen from the set of

central charge rays {Zγi , Zγij}. In general, a planar graph that contributes to the nth L∞

bracket [−, . . . ,−]n has n vertices and 2n − 3 edges. In [GMW] such graphs were known

as taut webs.

We now provide some (generalized) taut webs and the corresponding contributions to

the L∞-brackets in the present setup. Following the notation of [GMW], a web is denoted

by a gothic lowercase Latin letter such as w, whereas the linear map it induces is denoted

as ρ(w). First we expect that Ri, Rj , R(ij) are each individually L∞-subalgebras. The Fock

space Ri = F [Rγi ]⊗F [R−γi ] is constructed by acting with operators eaγi and ea−γi on the

vacuum φi. The L∞-structure on Ri is determined by the basic graph tγi shown below

which is a diagram with two vertices and an edge parallel to Zγ .

The entire process occurs in the background of the ith vacuum with no mixing with j.

Imagining outgoing solitons eaγi , e
b
−γi from the left and right vertex respectively, the graph

tγi translates to the bracket

ρ(tγi)
[
eaγi , e

b
−γi
]

= ±(Kγi)
abφi (3.304)

8A Γ-graded L∞ algebra simply refers to an L∞-algebra carrying, in addition to the usual cohomological

grading, an extra gradation by Γ such that each L∞-operation has vanishing Γ-degree.
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on Ri. The bracket of any other two elements of Ri is determined by the above by using

the graded Leibniz rule

[a · b, c] = a · [b, c]± b · [a, c]. (3.305)

It can be expressed in terms of differential operators ∂
∂eaγi

and ∂
∂ea−γi

acting on Ri as follows.

Given two elements v, w ∈ Ri, their bracket is written as

[v, w] = (Kγi)
ab ∂v

∂eaγi

∂w

∂eb−γi
± (Kγi)

ab ∂w

∂eaγi

∂v

∂eb−γi
. (3.306)

The L∞-structure on Rj is obtained by the same formulas by replacing i with j. The L∞-

structure on R(ij) is determined by the web tγij ,γ′ij ,γ′′ij determined by a triple of elements

γij , γ
′
ij , γ

′′
ij depicted below.

Figure 3.15: The taut web that leads to a non-zero bilinear bracket between two elements

of R(ij).

It leads to the bracket

ρ(tγij ,γ′ij ,γ′′ij )[e
a
γij vγj e

b
γ′ji

v−γi , e
c
γ′ij
wγj e

d
γ′′ji
w−γi ] = (Kγij )

adδγij+γ′′ji,0
ecγ′ij

vγjwγj e
b
γji v−γiw−γj

±(Kγij )
bc eaγij vγjwγj e

d
γ′′ji

v−γiw−γj ,

(3.307)
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where vγj , wγj are arbitrary elements of F [Vγj ] and v−γi , w−γi are arbitrary elements of

F [V−γi ]. It is a combination of the basic bracket (3.290) with Fock space multiplication

on the factors inserted between ij states; the periodic solitons go along for the ride. The

expectation is that the subalgebras Ri, Rj , R(ij) only have non-vanishing bilinear brackets.

We also need to specify the brackets that mix Ri, Rj and R(ij). There is no non-vanishing

bracket between elements of Ri and Rj . On the other hand, there can be non-vanishing

contributions to L∞-brackets that mix elements of Ri and R(ij) and that mix elements of

Rj and R(ij). The simplest such bracket comes from the graph t2 with two vertices and

one edge as shown below,

which leads to the bracket

ρ(t2)[eaγi , e
b
−γie

c
γije

d
γji ] = Kab

−γie
c
γije

d
γji . (3.308)

More generally, given

vi ∈ Ri and w−γiwγijwγjwγji ∈ F [R−γi ]⊗Rγij ⊗F [Rγj ]⊗Rγji (3.309)

the bracket is given by

[vi , w−γiwγijwγjwγji ] =
(

(Kγi)
ab ∂vi
∂eaγi

∂w−γi
∂eb−γi

)
wγijwγjwγji . (3.310)
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So far the discussion has closely paralleled that in [GMW]. However, for the formalism

to work we need rather novel types of “generalized webs”. An example is the following

generalized web t3.

Figure 3.16: A novel type of taut web leading to a ternany bracket.

This generalized web leads to a non-vanishing contribution to the ternary bracket as

follows. There are two periodic solitons emanating from the vertex on the left. We contract

these with the two periodic solitons coming from the right, while simultaneously contracting

the non-periodic solitons of charges γ′ij , γ
′
ji. We thus have

ρ(t3)
[
eaγie

b
γi , e

c
−γie

d
γije

e
γ′ji
, ef−γie

g

γ′ij
ehγ′′ji

]
= (Kγi)

ac(Kγi)
bf (Kγ′ji

)eg edγije
h
γ′′ji

±(Kγi)
af (Kγi)

bc(Kγ′ji
)eg edγije

h
γ′′ji
.

(3.311)
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For more general elements of the Fock spaces, the graph t3 leads to the ternary bracket

ρ(t3)
[
ui , v−γivγijvγjvγ′ji , w−γiwγ′ij

wγjwγ′′ji

]
=

Kγ′ji
(vγ′ji , wγ′ij

)
(

(Kγi)
ac(Kγi)

bd 1

2

∂2ui
∂eaγi∂e

b
γi

∂v−γi
∂ec−γi

∂w−γi
∂ed−γi

)
vγijvγjwγjwγ′ji

+ permutations,

(3.312)

where +permutations denote additional terms of the same form needed to make the bracket

obey the right symmetry properties.

We clarify that even though Figure 3.16, as we have drawn it, looks like two disconnected

independent webs, it is to be considered as a single object due to the fact that there are

contractions taking place between the edges carrying periodic solitons. That this is a single

object will be clarified further in Section 4.1 where we explain how to think of such webs

in terms of dual polygons and their subdivisions.

The graphs t2, t3 easily generalize to tn+1 for arbitrary n ≥ 1. tn+1 gives rise to the

bracket

ρ(tn+1)[−, . . . ,−] : Ri ⊗R⊗n(ij) → R(ij) (3.313)

which is given as follows. Let vi ∈ F [Rγi ]⊗F [R−γi ], and

vk−γiv
k
γkij
vkγjv

k
γkji
∈ F [R−γi ]⊗Rγkij ⊗F [Rγj ]⊗Rγkji (3.314)

for k = 1, . . . , n and γkij ∈ Γij and γkji ∈ Γji. Then

ρ(tn+1)
[
vi , v

1
−γiv

1
γ1ij
v1
γjv

1
γ1ji
, . . . , vn−γiv

n
γnij
vnγjv

n
γnji

]
=

n−1∏
k=1

δγkji+γ
k+1
ij ,0Kγkji

(
vk
γkji
, vk+1

γk+1
ij

)
×
(
Ka1b1
γi . . .Kanbn

γi

1

n!

∂nvi
∂ea1γi . . . ∂e

an
γi

∂v1
−γi

∂eb1−γi
. . .

∂vn−γi

∂ebn−γi

)
v1
γ1ij

(
v1
γj . . . v

n
γj

)
vnγnji

+ permutations .

(3.315)
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This bracket involves n contractins of periodic solitons and n − 1 contractions of ij-ji

solitons so that there are a total of (n − 1) + n = 2n − 1 contractions. The degree of

this bracket is indeed 1− 2n = 3− 2(n+ 1). There are entirely analogous brackets where

periodic jj-solitons are contracted.

We have presented some examples of important contributions to the L∞-brackets, but

have not determined them completely. For a more complete discussion one has to give

suitable definitions of generalized webs that contribute to the L∞-brackets, along with

their convolutions. Figure 3.16 (and the webs tn for n = 2, 3, . . . ) only give some examples

of the generalized webs we must introduce. Letting tΓ be the formal sum of all these

graphs, one also has to define a convolution ∗ of such generalized webs. The proof of the

L∞-relations is then expected to follow from the vanishing of the convolution of tΓ with

itself

tΓ ∗ tΓ = 0. (3.316)

We have not developed the theory of generalized webs to this extent and leave it as an

interesting exercise for the future. As we will briefly discuss in Section 4.1, a dual viewpoint

in terms of polygons and their subdivisions provides a potential route for a systematic

discussion of the brackets and the algebraic axioms they obey. We will however give a

complete discussion of how the formalism should work in the important example of the

CP1 model at both weak and strong coupling.

The main use of the L∞-structure is that it gives us a framework to discuss interior

amplitudes. An interior amplitude is an element β ∈ Rc carrying homological degree 2 and

vanishing equivariant degree such that the L∞ Maurer-Cartan equation is satisifed. We
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can decompose β into its direct sum components

β = βi + βj + β(ij), (3.317)

and with the above L∞-structure the Maurer-Cartan equation reads

1

2

[
βi, βi

]
+

1

2

[
βj , βj

]
+

1

2

[
β(ij), β(ij)

]
+∑

n≥2

1

n!

[
βi, . . . , βi, β(ij), . . . β(ij), βj , . . . , βj

]
n

= 0.
(3.318)

Example: The CP1 Model at Weak Coupling

We illustrate the (conjectured) L∞-algebra Rc and interior amplitude β introduced above

in an important example. The CP1 model with twisted masses, has two vacua V = {1, 2}

and Γ is a rank one lattice generated by an element γ. Recall that in the weak coupling

regime the BPS Z-modules are given by

Rγ12
∼= Z for any γ12 ∈ Γ12, (3.319)

Rγ21
∼= Z[1] for any γ21 ∈ Γ21 (3.320)

along with the periodic solitons,

Rγ1
∼= Z, Rγ2

∼= Z[1], (3.321)

R−γ1
∼= Z[1], R−γ2

∼= Z, (3.322)

where γ is the generator of Γ homologous to a loop that winds around the origin once in

a counter-clockwise direction. The periodic complexes are trivial otherwise,

Rnγ1 = Rnγ2 = 0 for n 6= ±1. (3.323)

Let us denote the generators of the latter four modules of periodic solitons as

{aγ1 , ψ−γ1 , ψγ2 , a−γ2} (3.324)
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the letters a, ψ reminding us of their parity. The L∞-algebra Rc is then constructed as

follows. We have

R1 = F ∗[Rγ1 ]⊗F ∗[R−γ1 ], (3.325)

= Z[aγ1 , ψ−γ1 ]/〈ψ2
−γ1〉 (3.326)

and similarly

R2 = F ∗[Rγ2 ]⊗F ∗[R−γ2 ] (3.327)

= Z[ψγ2 , a−γ2 ]/〈ψ2
γ2〉. (3.328)

Finally

R(12) =
⊕

(γ12,γ21)
∈Γ12×Γ21

R(γ12,γ21) (3.329)

=
⊕

(γ12,γ21)
∈Γ12×Γ21

F ∗[R−γ1 ]⊗Rγ12 ⊗F ∗[Rγ2 ]⊗Rγ21 . (3.330)

The periodic solitons that enter in R(12) are fermions, thus R(12) is generated by elements

with no periodic solitons

φγ12 ⊗ φγ21 (3.331)

for arbitrary charges γ12 ∈ Γ12, γ21 ∈ Γ21, one insertion of a periodic soliton

ψ−γ1 ⊗ φγ12 ⊗ φγ21 or φγ12 ⊗ ψγ2 ⊗ φγ21 (3.332)

or both insertions

ψ−γ1 ⊗ φγ12 ⊗ ψγ2 ⊗ φγ21 . (3.333)

Elements of the above type have homological degree 1, 2, 3 respectively.



176

Figure 3.17: The interior amplitude for the CP1 model at weak coupling given in (3.334)
consists of two infinite sums. A typical term in the first (second) sum is depicted on the
right (left).

Finally let’s come to the interior amplitude for the CP1 model at weak coupling. We set

β =
∑

γ12+γ21=γ

ψ−γ1 φγ12 φγ21 +
∑

γ12+γ21=−γ
φγ12 ψγ2 φγ21 . (3.334)

Note that β expressed as above satisfies the basic symmetry requirements; it has the correct

flavor and fermion degrees, and moreover is invariant under the Z2-symmetry of the CP1

model that exchanges the two vacua, the two infinite sums being exchanged under the

symmetry. Typical fans contributing to each of the two sums are depicted in Figure 3.17.

Because β as in (3.334) only has non-zero components are in R(12), namely β1 = β2 = 0,

the Maurer-Cartan equation (3.318) collapses to

[β, β] = 0. (3.335)

This is satisfied, most importantly as a consequence of

[ψ−γ1 φγ12 φγ21+γ , φγ12−γ ψγ2 φγ21 ] + [φγ12 ψγ2 φγ21−γ , ψ−γ1 φγ21+γ φγ21 ] = 0, (3.336)

which holds for any γ12 ∈ Γ21 and γ21 denotes as usual the element of Γ21 such that

γ12 + γ21 = 0. This identity is demonstrated diagrammatically in Figure 3.18. The other

part of showing the identity is the fact that the non-cross terms, terms of the type

[ψ−γ1φγ12φγ21+γ , ψ−γ1φγ21φγ21+γ ] (3.337)



177

Figure 3.18: Two webs that lead to canceling contributions when verifying the Maurer-
Cartan equation (3.336). In terms of ζ-instantons, the diagram shows the two ends of
Mζ(ψ−γ1 , φγ12 , ψγ1 , φγ21) which has one reduced modulus. At the ends it looks like glued
rigid trivalent instantons.

identically vanishes due to Fermi statistics ψ2
−γ1 = 0.

The reader might ask about the physical justification behind the Maurer-Cartan element

given in (3.334). The conceptual content of this equation is simply that every possible rigid

ζ-instanton9 is indeed uniquely occupied. We are thus claiming that the CP1 model at weak

coupling has infinitely many occupied trivalent ζ-instantons. See section 4.7 of [Gal] for

some numerical evidence of this conjecture.

3.4.3 The A∞ Category of Thimbles

Our next step is to construct a wall-crossing invariant strong enough that its wall-crossing

invariance allow us to determine the chain complexes on one side of the wall, up to homo-

topy, given the knowledge of the chain complexes and interior amplitude on the other.

9Note that the rigidity requirement, namely requiring that β have degree +2 restricts us to trivalent

instantons only
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Figure 3.19: Images of ζ-instantons in the CP1 model, in the Y -plane at weak coupling.
The top shaded region contributes the term ψ−γ1φτ12φτ21 to β whereas the bottom shaded
region contributes φτ12ψγ2φτ21 .

We work with the categorical spectrum generator R̂. More precisely, we consider the

category of thimbles with objects Ti,Tj , and recall that the matrix elements of R̂ are

identified with the morphism spaces of these thimbles

R̂ab = Hop(Ta,Tb), (3.338)

where a, b ∈ {i, j} and i, j denote the two vacua. Thus, we consider a category with objects

Ti,Tj such that the morphism spaces, computed from the spectum generator, are given by

(3.61)-(3.64):

Hop(Ti,Ti) = F ∗[Vγi ] ⊕n,m≥0 Rτij+nγ ⊗F ∗[Vγj ]⊗Rτji+mγ , (3.339)

Hop(Ti,Tj) = ⊕n≥0Rτij+nγ ⊗F ∗[Vγj ], (3.340)

Hop(Tj ,Ti) = ⊕n≥0F
∗[Vγj ]⊗Rτji+nγ , (3.341)

Hop(Tj ,Tj) = F ∗[Vγj ]. (3.342)
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Let

Ro = ⊕a,b∈{i,j}Hop(Ta,Tb) (3.343)

be the endomorphism algebra of this the thimble category.

Conjecture The pair (Ro, Rc) carries the structure of an open-closed homotopy alge-

bra10. In particular, the interior amplitude β ∈ Rc determines canonically an A∞-structure

on R̂, denoted as R̂[β].

The structure maps

mp,q : (Ro)⊗p ⊗ (Rc)
⊗q → Ro for p ≥ 1, q ≥ 0 (3.344)

that give the LA∞-structure once again are expected to be determined by summing over

graphs that now live in the half-plane H ⊂ C used to work out the spectrum generator.

We remind the reader that we are working with the right-half plane. The graphs that

contribute to mp,q in general carry p vertices on the boundary, q vertices in the bulk, and

have p + 2q − 2 internal edges (or contractions). In [GMW] such half-planar graphs were

known as taut half-plane webs. One can easily produce examples of such graphs that would

contribute to the conjectured LA∞-structure in the present setup.

Once again, there are first the traditional sort of taut webs where the only contrac-

tions that are occuring are between ij-solitons or not more than a single ii-soliton. Some

examples of such half-plane webs are

10An open-closed homotopy algebra [KS] is also known as an LA∞-algebra in the language of [GMW].
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as well as the web

These fit well into the framework of [GMW] and contribute to the operations m2,1,m2,1

and m1,1 respectively. On the other hand, there are once again new diagrams that must

be taken into account that generalize the third of the webs that we depicted to the case

when multiple solitons are being shot out of the half-plane, at a single boundary vertex.

For instance, if two periodic solitons emanate from a boundary vertex, one can consider

the generalized web w2 taking the form



181

Figure 3.20: A new sort of half-plane web where multiple periodic solitons emanating from

a single vertex are being contracted.

This has one boundary vertex and two bulk vertices and therefore contributes to a

bracket m1,2 via

ρ(w2)
[
eaγie

b
γi , e

c
−γie

d
γije

e
γ′ji
, ef−γie

g

γ′ij
ehγji

]
= (Kγi)

ac(Kγi)
bf (Kγ′ji

)eg edγije
h
γji

±(Kγi)
af (Kγi)

bc(Kγ′ji
)eg edγije

h
γji .

(3.345)

One can generalize this diagram to wn where n periodic solitons emanate from a single

boundary vertex and are being contracted through n bulk vertices, thus contributing to

m1,n.

We now discuss the importance of graphs such as wn and the corresponding brackets

they induce to verifying the appropriate algebraic axioms. In the present case, we have to

check the LA∞-axioms. In [GMW] such axioms were a consequence of certain properties

the moduli spaces of sliding webs possess. One can define a convolution operation ∗ of

half-plane webs with other half plane webs, along with half-plane webs with planar webs.

The taut half-plane and taut plane webs satisfy the identity

tH ∗ tp + tH ∗ tH = 0. (3.346)
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This follows from the fact that any given sliding half-plane web can be obtained by con-

volving a taut half-plane web with either another taut half-plane web or a taut planar

web in exactly two ways. The two different ways correspond to terms that cancel when

verifying the LA∞-identities. Therefore let us study sliding half-plane webs in the present

setup. Consider the following sliding web s.

On the one hand, there is a pair of taut webs such that a standard convolution produces

s. This pair and the vertex v at which the convolution occurs is depicted below.

On the other hand, there is no second pair of taut webs whose standard convolution

would give the sliding web s, as a result. Thus without including any additional type of
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operations or diagrams, the LA∞-axioms would not be satisfied. This is where the web

w2 comes to the rescue. With the addition of w2 to the taut half-planar element tH, we

find the following generalized convolution produces precisely the sliding web s. Note that

the half-plane fan at the vertex v is (γi, γi), which coincides with the fan at infinity of the

half-plane web on the right, so that convolution at v still makes sense.

Thus, with the proper inclusion of additional webs, we fully expect the LA∞-axioms to

hold, giving us an open-closed homotopy algebra structure on the pair (Ro, Rc).

The main use of the LA∞-axioms is that they allow us to use the interior amplitude β to

give a natural A∞-structure on R̂. The procedure for doing this is simple. We simply plug

in the interior amplitude for each bulk vertex in the taut half-plane webs. We denote the

categorical spectrum generator with the A∞-maps on its matrix elements induced from β

as R̂[β].

Polygon Viewpoint

The reader who is dismayed by the new sort of webs that have to be included such as the

one of Figure 3.20 might find a brief discussion of a dual viewpoint in terms of polygons

more enlightening. Recall from [KKS] that in the case without twisted masses, cyclic fans

of vacua correspond to convex polygons in the W -plane, and deformation types of planar
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Figure 3.21: The left depicts a planar web and its corresponding dual, a subdivision of a
polygon into subpolygons. The right depicts a half-plane web and its corresponding dual,
a subdivision of a semi-infinite polygon into other finite and semi-infinite polygons.

webs are dual to tilings or subdivisions of such polygons. Similarly, half-plane webs are

dual to subdivisions of semi-infinite polygons that go off to infinity in a direction dictated

by the half-plane. See Figure 3.21 for some examples of such polygonal subdivisions and

the corresponding dual webs. Notions such as taut webs and their convolutions can be

formulated in this dual setup.

Now consider configurations of vacuum weights arising in theories with twisted masses.

Going back to the example of this section, the configuration in the W -plane consists of two

arithmetic progressions of complex numbers, as in Figure 3.23, left. Consider the semi-

infinite polygon P with vertices {̃i, j̃, ĩ + 2γ} and its subdivision shown below. The tiling

consists of TA, TB, TC where TA and TB consists of finite triangles with vertices {̃i, j̃, ĩ+γ}

and {j̃, ĩ + 2γ, ĩ + γ}, and TC consists of semi-infinite polygon with four edges, and three

vertices {̃i, ĩ+ γ, ĩ+ 2γ}. A degenerate polygon such as TC where several vertices lie along

a straight line do not appear without twisted masses. All we are saying in the previous

section is that in the presence of twisted masses, in a sensible formalism, such degenerate

polygons must be included when working out all possible tilings. Generalized webs such
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Figure 3.22: The left depicts the W -plane configuration of the two vacuum, rank one
subsector we are focusing on in the present section. ĩ, j̃ denote chosen lifts of the vacua i
and j. The right depicts a tiling of a semi-infinite polygon dual to the web of Figure 3.20.

as the one of Figure 3.20 then arise as the dual to subdivisions involving such degenerate

polygons.

3.4.4 Equivalence of A∞-Categories and Categorical Wall-Crossing

We can now come to the statement of categorical wall-crossing. We have been working at a

point of parameter space where the central charges corresponding to (τij , γj , τji,−γi) are in

clockwise order. We discussed the BPS Z-modules {Rγab} and the interior amplitude β ∈

Rc. We also discussed the categorical spectrum generator and how the interior amplitude β

gives rise to an A∞-structure on R̂ written as R̂[β]. Suppose now that we cross the wall of

marginal stability to the side so that the central charges corresponding to (τji, γi, τij ,−γj)

are now clockwise ordered. The configuration of the central charges on either side of the

wall of marginal stability is shown in Figure.
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Figure 3.23: The configuration of central charge rays in the right-half plane on either side of
the wall of marginal stability. On the left, we have that (τij , γj , τji) are clockwise ordered,
whereas on the right we have that (τji, γi, τij) are clockwise ordered.

Suppose the BPS Z-modules are given upon wall-crossing by R′γij etc. We can now form

R′c = R′i ⊕R′j ⊕R′(ij) (3.347)

where

R′i = F∗[V ′γi ]⊗F
∗[V ′−γi ], (3.348)

R′j is defined in a similar way as R′i, and

R′(ij) =
⊕

(γij ,γji)∈Γij×Γji

R′γji ⊗F [V ′γi ]⊗R
′
γij ⊗F [V ′−γj ], (3.349)

as coming from the categorical trace of (R̂′)opp ⊗ R̂′ where R̂′ is obtained by composing

the elementary factors associated to the rays (τji, τji + γ, . . . , γ, . . . , τij + γ, τij) :

R̂′ = S ′τji S
′
τji+γ S

′
τji+2γ · · ·

∞∏
n=1

K′nγ . . .S ′τij+2γ S ′τij+γ S
′
τij . (3.350)
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The product can be computed out to give

R̂′ii = F∗[V ′γi ], (3.351)

R̂′ij = ⊕n≥0F∗[V ′γi ]⊗R
′
τij+nγ , (3.352)

R̂′ji = ⊕n≥0R
′
τji+nγ ⊗F

∗[V ′γi ], (3.353)

R̂′jj = F∗[V ′γj ]⊕⊕n,m≥0R
′
τji+nγ ⊗F

∗[V ′γi ]⊗R
′
τij+mγ . (3.354)

Statement of Categorical Wall-Crossing Let a, b ∈ {i, j}. Suppose
(
{Rγab}, β ∈

(Rc)
(2,0)

)
and

(
{R′γab}, β

′ ∈ (R′c)
(2,0)

)
are the BPS Z-modules and interior amplitudes on

either side of the wall of marginal stability where τij and τji align. Then

R̂[β] ' R̂′[β′] (3.355)

where ' denotes homotopy equivalence of A∞-categories. Moreover, given ({Rγab}, β ∈

(Rc)
(2,0)), the wall-crossing invariance of R̂[β], up to homotopy, determines the BPS Z-

modules and interior amplitude ({R′γab}, β
′ ∈ (R′c)

(2,0)) uniquely up to homotopy.

In the rest of this section we demonstrate how all this works for the CP1 model with

twisted masses.

Categorical Wall-Crossing in the CP1 Model

Let’s recall that the wall of marginal stability in the CP1 model. There is a marginal

stability curve WMS in the u = m
Λ plane that separates two regions. The region inside

WMS is known as the strong coupling regime and the region outside WMS is known as

the weak coupling regime.

Let’s begin our discussion of the BPS Z-modules {Rs
γab
} and interior amplitude βs ∈

(Rc)
s. At strong coupling it is well-known that there are two 12-solitons carrying charges
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τ12 and τ12
11 so that we have

Rs
τ12 = Z, (3.356)

Rs
τ12 = Z. (3.357)

The corresponding anti-particles are

Rs
τ21 = Z[1], (3.358)

Rs
τ21 = Z[1]. (3.359)

Because there are no periodic solitons in the spectrum at strong coupling, one has

Rs
1
∼= Rs

2
∼= Z (3.360)

generated by φ1, φ2 respectively, and

Rs
(12) = (Rτ12 ⊗Rτ21)⊕ (Rτ12 ⊗Rτ21)⊕ (Rτ12 ⊗Rτ21)⊕ (Rτ12 ⊗Rτ21) (3.361)

is four-dimensional, with the four summands carrying degrees (1, 0), (1, 0), (1, γ), (1,−γ)

respectively. Because the degree (2, 0) component of (Rc)
s is trivial, the strong coupling

interior amplitude is constrained to vanish

βs = 0. (3.362)

The spectrum generator R̂s on the other hand is given by

R̂s
11 = Z〈φ1〉, (3.363)

R̂s
12 = Z〈φτ12〉, (3.364)

R̂s
21 = Z〈φτ21〉, (3.365)

R̂21 = Z〈φ2〉 ⊕ Z〈φτ21 ⊗ φτ12〉, (3.366)

11Recall that the two charges we are using are denoted by τ12 and τ21 so that τ21 + τ12 = γ, where γ

generates Γ. Their inverses are denoted as τ21 and τ12 respectively, so that there are a total of four BPS

rays in the game.
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coming from the factorized form

R̂s =

 Z〈φ1〉 0

Z〈φτ21〉 Z〈φ2〉

⊗
Z〈φ1〉 Z〈φτ12〉

0 Z〈φ2〉

 . (3.367)

Because the interior amplitude is trivial, the A∞-algebra structure is also simple. Other

than φ1 and φ2 acting as the identity in the first and second vacua, the only non-trivial

product is

· : R̂s
21 ⊗ R̂s

12 → R̂s
22 (3.368)

being given by

φτ21 · φτ12 = φτ21 ⊗ φτ12 . (3.369)

It results from the following simple taut half-plane web.

Thus we have determined R̂s[βs].

Let’s now come to the discussion at weak coupling. At weak coupling, the BPS spectrum

and interior amplitude was discussed in Section 3.4.2. We remind the reader that the

spectrum consisted of a soliton φγ12 for each γ12 ∈ Γ12, and periodic solitons aγ1 , ψγ2 for

γ ∈ Γ the generator12 along with their usual anti-particles φγ21 , ψ−γ1 , a−γ2 . The interior

12Once again, we clarify that Rnγ1 = Rnγ2 = 0 for each n ≥ ±1.
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amplitude was

βw =
∑

γ12+γ21=γ

ψ−γ1φγ12φγ21 +
∑

γ12+γ21=−γ
φγ12ψγ2φγ21 . (3.370)

The categorical spectrum generator has components which now read

R̂w
11 = S∗[aγ1 ]⊕(Zγ12 ,Zγ21 )∈H Z〈φγ12〉 ⊗ Λ∗[ψγ2 ]⊗ Z〈φγ21〉, (3.371)

R̂w
12 = ⊕Zγ12∈HZ〈φγ12〉 ⊗ Λ∗[ψγ2 ], (3.372)

R̂w
21 = Λ∗[ψγ2 ]⊗⊕Zγ21∈HZ〈φγ21〉, (3.373)

R̂w
22 = Λ∗[ψγ2 ] (3.374)

coming from expanding out the factorized form

∞∏
n=0

Z Z〈φτ12+nγ〉

0 Z

S∗[aγ1 ] 0

0 Λ∗[ψγ2 ]

 ∞∏
n=1

 Z 0

Z〈φτ21+nγ〉 Z

 . (3.375)

Note that the set of γ12 such that Zγ12 ∈ H can be written as {τ12 + nγ}n=0,1,2,... and

similarly γ21 ∈ H can be written as {τ21 + nγ}n=0,1,2,....

We now come to specifying the A∞-structure. The first task is to specify the differential

d. This is determined by (generalized) half-plane taut webs with a single boundary vertex.

We specify d on the individual components of R̂.

We begin by specifying the action of d̂β on R̂w
11. R̂11 is generated by akγ1 for any k ≥ 0,

and terms φγ12φγ21 and φγ12ψγ2φγ21 and each of these terms have fermionic degrees 0, 1

and 2 respectively. The differential d̂β then turns R̂11 into a complex

0 −−−−→ R̂
(0,∗)
11

d̂β−−−−→ R̂
(1,∗)
11

d̂β−−−−→ R̂
(2,∗)
11 −−−−→ 0 (3.376)

as follows. Because akγ1 ∈ R̂
(0,kγ)
11 is visualized as k bosonic periodic solitons emanating from

a single half-plane vertex, one has to consider the new type of web we discussed in Section
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3.4.3, for instance Figure 3.20. In this case there is a web wγ12
k with a single boundary

vertex for each k ≥ 1 and γ12 such that Zγ12 and Zγ21+kγ are both in the right half plane.

The boundary vertex of wγ12
k spits out k rays parallel to Zγ each of which carries a bosonic

11 soliton. In the bulk one has k vertices v1, . . . , vk with corresponding fans

(−γ1, γ12, γ21 + γ), (−γ1, γ12 − γ, γ21 + 2γ), . . . , (−γ1, γ12 − kγ, γ21 + kγ). (3.377)

The k periodic 11 solitons of charge γ are contracted with the k periodic solitons of charge

−γ, one from each of the k bulk vertices, whereas the soliton with charge γ21 + jγ in vj

is contracted with the soliton of charge γ12 − jγ in vj+1 for j = 1, . . . , k − 1. Altogether

there are 2k − 1 contractions, the right number to give a contribution to m1,k. The web

wγ12
k for k = 2 is depicted below.

Figure 3.24: A novel half-plane web wγ12
2 that contributes to d̂β[a2

γ1 ].

Plugging in the interior amplitude component ψ−γ1φγ12−jγφγ21+(j+1)γ in the bulk vertex

vj+1, and doing the relevant contractions, we find

ρ(wγ12
k )[akγ1 ] = φγ12φγ21+kγ . (3.378)
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Summing up over all wγ12
k , we find

d̂β[akγ1 ] =
∑

(γ12,γ21) HP fan
γ12+γ21=kγ

φγ12φγ21 , (3.379)

for k ≥ 1. Next let’s specify how d̂β acts on an element φγ12φγ21 ∈ R̂
(1,γ12+γ21)
11 . There are

two taut webs that contribute to this for generic13 (γ12, γ21) which are depicted in Figure

3.25, shown below.

Figure 3.25: The taut half-plane webs that contibute to d̂β[φγ12φγ21 ].

Summing up the contribution from each of these webs, we find

d̂β[φγ12φγ21 ] = φγ12−γψγ2φγ21 − φγ12ψγ2φγ21−γ . (3.380)

Because there are no elements of degree three, the differential on the degree two elements

φγ12ψγ2φγ12 is constrained to vanish

d̂β[φγ12ψγ2φγ12 ] = 0. (3.381)

13The non-generic case is when γ12 is such that γ12 − γ leaves the half-plane, so that the half-plane web

depicted in the left of Figure 3.25 does not exist. One simply sets the corresponding contribution to the

differential to zero. Similarly, if γ21 is such that γ21 − γ leaves the half-plane, the term in the differential

coming from the right half-plane web of Figure 3.25 is set to vanish.
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Next, the differential on the 12 complex

0 −−−−→ R̂
(0,∗)
12

d̂β−−−−→ R̂
(1,∗)
12 −−−−→ 0 (3.382)

acts via

d̂β[φγ12 ] = φγ12−γψγ2 , (3.383)

for generic γ12. Similarly, the differential on the 21 complex

0 −−−−→ R̂
(1,∗)
21

d̂β−−−−→ R̂
(2,∗)
21 −−−−→ 0 (3.384)

acts via

d̂β[φγ21 ] = −ψγ2φγ21−γ . (3.385)

The expressions for d̂β on the 12 and 21 components come from the taut webs in the left

and right of Figure 3.26, shown below, respectively.

Figure 3.26: The left and right taut half-plane webs contibute to d̂β[φγ12 ] and d̂β[φγ21 ]

respectively.

Finally, the differential on R̂22 vanishes identically by degree reasons.
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The next A∞ map to discuss is the multiplication mβ[·, ·]. The bilinear multiplication

mβ[·, ·] comes from summing up the contribution of taut half-plane webs with two boundary

vertices and inserting β in the bulk vertices. We begin with specifying the map mβ[·, ·] :

R̂⊗2
11 → R̂11. First, the standard taut web gives

mβ[akγ1 , a
l
γ1 ] = ak+l

γ1 , (3.386)

independent of β. Next we have

mβ[akγ1 , φγ12φγ21 ] = φγ12+kγφγ21 , (3.387)

mβ[φγ12φγ21 , a
k
γ1 ] = φγ12φγ21+kγ . (3.388)

These two products result from the taut half-plane web with two boundary vertices, one of

them carrying k periodic solitons, and k bulk vertices carrying different interior amplitude

components. For instance (3.387), with k = 2 results from the web shown in the left of

Figure 3.27. Inserting the periodic soliton ψγ2 between between the 12, 21 solitons, resulting

in

mβ[akγ1 , φγ12ψγ2φγ21 ] = φγ12+kγψγ2φγ21 , (3.389)

mβ[φγ12ψγ2φγ21 , a
k
γ1 ] = φγ12ψγ2φγ21+kγ . (3.390)

The webs these prducts follow from simply consist of taking the webs corresponding to

(3.387) and (3.388) and inserting a ray carrying a ψγ2 soliton at the boundary vertex with

fan (γ12, γ21) so that the new half-plane fan at the vertex is (γ12, γ2, γ21). Finally, the only

other non-vanishing product between elements of R̂11 is

mβ[φγ12φτ21 , φτ12φγ21 ] = φγ12ψγ2φγ21 , (3.391)

resulting from taut web shown in the right of Figure 3.27.
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Figure 3.27: Some taut half-plane webs resulting in non-trivial products between elements
of R̂11. In particular, the left depicts the web resulting in the product (3.387) for k = 2.
The right shows the web that results in the product (3.391).

Next we specify mβ : R̂11 ⊗ R̂12 → R̂12. The webs that contribute to the non-zero

products can easily be classified and they result in the following non-trivial products:

mβ[akγ1 , φγ12 ] = φγ12+kγ , (3.392)

mβ[akγ1 , φγ12ψγ2 ] = φγ12+kγψγ2 , (3.393)

mβ[φγ12φτ21 , φτ12 ] = φγ12ψγ2 . (3.394)

Next mβ : R̂12 ⊗ R̂21 → R̂11 is given simply by the tensor product (modulo the relation

ψ2
γ1 = 0). Such products result from half-plane webs with no bulk vertices. mβ : R̂12 ⊗

R̂22 → R̂12 is also given by an ordinary tensor product. mβ : R̂21 ⊗ R̂11 → R̂21 is given by

mβ[φγ21 , a
k
γ1 ] = φγ21+kγ , (3.395)

mβ[ψγ2φγ21 , a
k
γ1 ] = ψγ2φγ21+kγ . (3.396)

The only non-zero product mβ : R̂21 ⊗ R̂12 → R̂22 is given by

mβ[φτ21 , φτ12 ] = ψγ2 . (3.397)
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Finally, the products mβ : R̂22 ⊗ R̂21 → R̂21 and mβ : R̂22 ⊗ R̂22 → R̂22 are given by the

ordinary product modulo the relation ψ2
γ1 = 0. This finishes specifying the bilinear map

mβ.

The higher multiplications are all trivial. One can verify the A∞ axioms explicitly.

Namely that d̂2
β = 0, that mβ is associative and that d̂β is a derivation with respect to

mβ. Thus we have identified the A∞-structure on the weak coupling categorical spectrum

generator R̂w[βw] .

We now discuss the homotopy equivalence claim

R̂s[βs] ' R̂w[βw]. (3.398)

Recall that the homotopy equivalence of A∞-algebras is equivalent to providing an A∞-

quasi-isomorphism [Kel]. Therefore it suffices to provide an A∞ morphism

T : R̂s[βs]→ R̂w[βw] (3.399)

that induces an isomophism on cohomology. We claim that

T1(φs
1 ) = φw

1 , (3.400)

T1(φs
τ12) = φw

τ12 , (3.401)

T1(φs
τ21) = φw

τ21 (3.402)

T1(φs
2 ) = φw

2 , (3.403)

T1(φs
τ21 ⊗ φ

s
τ12) = ψw

γ2 , (3.404)

with Tn = 0 for n ≥ 2 does the job. Since φw
τ12 , φw

τ21 and ψγ2 are all d̂βw-closed elements,

T1 defines a chain map. We also have the relation

T1(mβs(φs
τ21 , φ

s
τ12)) = mβw(φw

τ21 , φ
w
τ12) (3.405)
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due to (3.397). Thus T defines a strict A∞-morphism. It remains to check that T1-induces

an isomorphism on cohomology.

Let’s therefore compute the cohomology of the weak coupling spectrum generator with

respect to d̂βw . Recall that τ12 ∈ Γ12 has Zτ12 ∈ H, the right-half plane, but Zτ12−γ /∈ H.

Similarly τ21 ∈ Γ21 is such that Zτ21 ∈ H but Zτ21−γ /∈ H. We then have that R̂12 is

generated by φτ12+nγ and φτ12+nγψγ2 for n ≥ 0 and

d̂β[φτ12+nγ ] =


0 for n = 0,

φτ12+(n−1)γψγ2 for n ≥ 1.

(3.406)

Therefore we find that φτ12 is closed, and that the differential pairs up φτ12+nγ and

φτ12+(n−1)γψγ2 for all n ≥ 1. Thus we have

H
(∗,∗)
d̂β

(R̂12) = Z〈φτ12〉. (3.407)

Very similar reasoning shows that

H
(∗,∗)
d̂β

(R̂21) = Z〈φτ21〉. (3.408)

The differential acts trivially on R̂22 therefore

H
(∗,∗)
d̂β

(R̂22) = Z[ψγ2 ]/〈ψ2
γ2〉, (3.409)

the exterior algebra in ψγ2 . Finally let’s come to R̂11. We organize elements in terms of their

flavor degrees. Fix a flavor charge kγ and set C∗k = R̂
(∗,kγ)
11 . The degree zero component

C0
k is rank one and is generated simply by xk := akγ1 . The degree one component C1

k is

rank k and is generated by the elements

{yn,k := φτ12+nγφτ21+(k−(n+1))γ}k−1
n=0. (3.410)
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Finally the degree two component C2
k is rank k − 1 and is generated by

{zn,k := φτ12+nγψγ2φτ21+(k−(n+2))γ}k−2
n=0. (3.411)

Thus we are considering the complex

0 −−−−→ C0
k

d−−−−→ C1
k

d−−−−→ C2
k −−−−→ 0, (3.412)

with the differential given by rewriting (3.379) in the present notation:

dxk =
k−1∑
n=0

yn,k, (3.413)

dyn,k = zn−1,k − zn,k, (3.414)

dzn,k = 0. (3.415)

In the second of these equations we set zn,k = 0 if n is outside of the range 0 ≤ n ≤ k − 2,

so a little more explicitly, one has

dy0,k = −z0,k, (3.416)

dy1,k = z0,k − z1,k, (3.417)

dy2,k = z1,k − z2,k (3.418)

... (3.419)

dyk−1,k = zk−2,k. (3.420)

It is straightforward to show that C∗k is an acyclic complex for k ≥ 1: Clearly the degree

zero cohomology is trivial since the only generator of C0
k , namely xk is not d-closed. In

degree one, the kernel of d is rank one and generated by
∑k−1

n=0 yn,k but this is precisely

dxk. Finally one has that d : C1
k → C2

k is surjective:

zn,k = −d
( n∑
m=0

ym,k

)
. (3.421)
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Thus we find

H(p,kγ)(R̂11) =


Z p = k = 0,

0 otherwise

, (3.422)

namely the cohomology of R̂w
11 is generated by class of φw

1 . It follows that T1 induces an

isomorphism on cohomology, thereby establishing the homotopy equivalence claim.

3.5 Algebra of the Infrared

Up to this point in this paper we have discussed bulk and boundary amplitudes insofar

as they pertain to wall-crossing. We sketch a more general framework to discuss bulk

and boundary amplitudes in the present section. Namely, given the data of a vacuum

groupoid V, deck group Γ, a central charge map Z, and BPS Z-modules {Rγab} (with non-

degenerate pairings {Kγab}), how does one formulate the interior amplitude? Similarly,

given framed BPS Z-modules {Ei(B)} for a brane B how does one formulate the boundary

amplitude? Our goal is to sketch generalizations of the construction of [GMW] to include

twisted masses. The discussion here will be incomplete. We only make some remarks and

observations to be incorporated in a more complete treatment at another occasion.

Recall that in [GMW], one considers cyclic fans of vacua to be a cyclically ordered set

of vacua I = {i0, i1, . . . , in} such that the central charge rays {Zi0i1 , Zi1i2 , . . . , Zini0} were

clockwise-ordered in the complex plane. To each cyclic fan one assigned the cyclic tensor

product

RI = Ri0i1 ⊗ · · · ⊗Rini0 , (3.423)

and the Z-module obtained by summing over all cyclic fans Rc = ⊕IRI carried the structure

of an L∞-algebra. Rc then governed the theory of interior amplitudes. These notions are

generalized as follows in the present, more general setup.
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Definition A cyclic fan of arrows in the vacuum groupoid V consists of a collection

of arrows

~γ = (γi0i1 , γi1i2 , . . . γin−1in , γini0) (3.424)

where γij ∈ Hom(i, j) = Γij (we don’t necessarily assume that i and j are distinct) such

that the central charges

(Zγi0i1 , Zγi1i2 , . . . , Zγin−1in
, Zγini0 ) (3.425)

are monotonically clockwise ordered. The charge of a cyclic fan is obtained by considering

the composite arrow

n∑
k=0

γikik+1
= γi0 ∈ Hom(i0, i0), (3.426)

which under the canonical isomorphism Γi0
∼= Γ gives us an element γ ∈ Γ. The latter

element γ is defined to be the charge of the cyclic fan. Equivalently the charge is defined

by looking at the sum

Zγi0i1 + Zγi1i2 + · · ·+ Zγini0 = Zγ , (3.427)

and the right hand side is necessarily of the form Zγ for some γ ∈ Γ.

Remark Equation (3.427) should be compared with the “no-force” condition, Equation

2.2 of [GMW], where the sum of central charges around a cyclic fan of vacua always added

up to zero.

Remark One should also contrast with [GMW] in that a cyclic fan is now only partially

ordered. This is because in the set-up of [GMW], successive central charges Zik−1ik , Zikik+1

that appear in a cyclic fan, away from walls, never had the same phase. In contrast one

can now have elements γi, γ
′
i ∈ Γi appearing in a cyclic fan of arrows that are multiples of
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Figure 3.28: An example of a pictorial depiction of a cyclic fan of arrows. The arrow labeled
by αij is parallel to Zαij , the one labeled by βji is parallel to Zβji and the arrow in between
is parallel to Zγ for some γ ∈ Γ primitive, and so it is labeled by an arbitrary collection of
positive integers (n1, n2, . . . ). The total charge of this fan is n1γi + 2n2γi + · · ·+ αij + βji
and in this case it is clearly non-zero.

a common primitive element by, say, positive integers and then they will necessarily satisfy

Arg(Zγ) = Arg(Zγ′). Thus, γi and γ′i must be assigned the same phase order.

Remark Note that elements γi ∈ Γi can appear in a cyclic fan arbitrarily many times.

A cyclic fan of arrows I is represented pictorially as a collection of rays coming out from

a common point such that the angular sectors are labeled by vacua and a ray E is labeled

by a subset SE ⊂ I such that for any s ∈ SE one has that Zs and E are parallel. Thus if

a ray separates distinct vacua i 6= j then it carries a label of the unique element γij ∈ Γij

such that Zγij is parallel to the ray. If a ray separates regions labeled by the same vacuum

then it carries a subset of elements {γi} all proportional by a positive number to some

common primitive element. See Figure 3.28 for an example.

Definition A cyclic fan of arrows (γi0i1 , γi1i2 , . . . , γini0) is said to be irreducible if ik 6=

ik+1, meaning successive vacua are distinct.
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Any cyclic fan can be obtained from an irreducible cyclic fan by inserting an appropriate

number of γi’s into an irreducible cyclic fan,

(γi0i1 , γi1i2 , . . . , γini0)→ (Ii0 , γi0i1 , Ii1 , γi1i2 , Ii2 , . . . , Iin , γini0), (3.428)

where Iik consists of a (partially ordered) collection of elements in Γik such that for any

element γik in the collection, Zγik lies in the angular sector bounded by Zγik−1ik
and

Zγikik+1
. This process clearly does not conserve charge.

We can now come to the definition of Rc, the Z-module we expect to govern interior

amplitudes. First, given a pair (γij , γjk) arrows where i 6= j 6= k we let

F(γij ,γjk) =
⊗

γij<γj<γjk

F [Rγj ]. (3.429)

Conceptually, F(γij ,γjk) is the tensor product over Fock spaces of all periodic soliton spaces

Rγj such that Zγ lies in the angular sector swept out by going from the Zγij ray to the

Zγjk ray in a clockwise direction. Let

~γ = (γi0i1 , . . . , γini0) (3.430)

be an irreducible fan. To it we assign the generalized cyclic tensor product

R~γ := Rγi0i1 ⊗F(γi0i1 ,γi1i2 ) ⊗Rγi1i2 ⊗ · · · ⊗Rγini0 ⊗F(γini0 ,γi0i1)
. (3.431)

Finally, Rc is obtained by summing over all irreducible fans

Rc =
⊕

(γi0i1 ,...,γini0 )
irreducible fan

Rγi0i1 ⊗F(γi0i1 ,γi1i2
)⊗ · · · ⊗Rγini0 ⊗F(γini0 ,γi0,i1 ). (3.432)

We clarify that in the sum above, the trivial irreducibe cyclic fan (ui) for each vacuum i is

also included. To it we assign the space

Ri := Rui =
⊗

γi∈Γi\{0}

F [Rγi ]. (3.433)
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Figure 3.29: An illustration of the generalized cyclic product corresponding to an irre-
ducible trivalent fan (γij , γjk, γki). We assign the space Rγij to the ray γij , whereas the
space F(γij ,γjk) is associated to the clockwise oriented angular sector between γij and γjk.

Conjecture: Rc carries the structure of a Γ-graded L∞-algebra.

The theory of bulk vertices or interior amplitudes for a given physical theory is then

expected to be governed by the degree (2, 0) part of the conjectural L∞-algebra Rc.

Remark Earlier in Section 3.2, we defined Rc as the trace of the categorical monodromy.

Because the trace of the categorical monodromy Tr
(
R̂opp ⊗ R̂

)
is viewed as the clockwise

ordered product of S and K-factors over all central charge rays in the full plane, it is not

difficult to see that

Tr
(
R̂opp ⊗ R̂

)
=

⊕
(γi0i1 ,...,γini0 )
irreducible fan

Rγi0i1 ⊗F(γi0i1 ,γi1i2
)⊗ · · · ⊗Rγini0 ⊗F(γini0 ,γi0,i1 ). (3.434)

Thus the two notions are equivalent.

In order to get a better handle on the structure of Rc, it is useful to examine some special

cases.
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3.5.1 No Periodic Solitons

The first special case to look at is when Rγi = 0 for all i ∈ V and γ ∈ Γ, namely when the

spaces of periodic solitons are trivial, and therefore all the Fock spaces drop out, and one

has

Rc =
⊕

(γi0i1 ,...,γini0 )

Rγi0i1 ⊗ · · · ⊗Rγini0 . (3.435)

This might give one the impression that one is now working in the framework of [GMW],

but this is not the case. In the presence of a non-trivial flavor group Γ, even without

periodic solitons, there are novel phenomenon due to the no-force condition being violated:

• The first novelty one notices is the possibility to construct a web that has a fan at

infinity simply being the identity fan in some vacuum i. An example of such a web

is depicted in Figure 3.31. We call such a web a vacuum web.

• It was noted in [KKS] that the L∞ algebra Rc without twisted masses is always

nilpotent 14. We will see that in the presence of a non-trivial flavor group Γ this

ceases to be true.

Both of these properties are illustrated well by the example of the Weierstrass model,

discussed in 3.2.4.

14Recall that an L∞ algebra (L, λ1, λ2, . . . ) is called nilpotent if successive iterations of the L∞-

operations, eventually vanish:

λk1(λk2(. . . λkn(·, . . . , ·), . . . ) = 0 (3.436)

for n large enough. Strictly speaking nilpotence holds only for the subalgebra of Rc coming from at least

trivalent fans.
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Rc for the Weierstrass Model

Throughout this section we simplify notation and take γ21 to be such that γ12 + γ21 = 0,

and γ12 is the homology class of the path going from φ1 to φ2 depicted in Figure3.6. There

are 16 non-trivial irreducible fans:

(γ12 + γ′, γ21) + 5 Z6 rotations, (3.437)

(γ12 + γ′, γ21 − γ′) + 2 Z6 rotations, (3.438)

(γ12 + γ′, γ21, γ12 − γ, γ21 − γ′) + 5 Z6 rotations, (3.439)

(γ12 + γ′, γ21, γ12 − γ, γ21 − γ′, γ12, γ21 + γ), (3.440)

which up to Z6 rotations are depicted in Figure 3.30.

In fermion degree 0, because there are no periodic solitons Rnγ1+mγ′1
= Rnγ2+mγ′2

= 0,

we have

R(0,0)
c
∼= Z2. (3.441)

In fermion degree +1 we have

R(1,0)
c

∼= (Z3)[1], (3.442)

generated by the fan in the upper-right of Figure 3.30 and its Z6-orbit, and

R(1,γ′)
c

∼= Z, (3.443)

R(1,−γ)
c

∼= Z, (3.444)

R(1,−γ−γ′)
c

∼= Z (3.445)

R(1,−γ′)
c

∼= Z, (3.446)

R(1,γ)
c

∼= Z, (3.447)

R(1,γ+γ′)
c

∼= Z, (3.448)
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Figure 3.30: Some cyclic fans in the Weierstrass model. All others can be obtained by Z6

rotations of these.
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which come from the upper-left fan of Figure 3.30 and its Z6-orbit. In fermion degree +2

we have

R(2,γ′)
c

∼= Z, (3.449)

R(2,−γ)
c

∼= Z, (3.450)

R(2,−γ−γ′)
c

∼= Z (3.451)

R(2,−γ′)
c

∼= Z, (3.452)

R(2,γ)
c

∼= Z, (3.453)

R(2,γ+γ′)
c

∼= Z, (3.454)

coming from the Z6-orbit of the lower-left fan of Figure 3.30, and finally in fermion degree

3

R(3,0)
c

∼= Z, (3.455)

coming from the lower-right fan of Figure 3.30. Since R
(2,0)
c = {0}, there is no room for a

non-trivial interior amplitude, β = 0.

Let’s discuss the algebraic structure on Rc. Denote the three fans generating R(1,0) as

{h1, h2, h3}, (3.456)

and

{θγ , θγ′ , θ−(γ+γ′), θ−γ , θ−γ′ , θγ+γ′} (3.457)

where θ· denotes the generator of R(1,·). The standard taut webs with two vertices give the

following bracket on the degree one elements

[θγ′ , θ−γ′ ] = h1 − h2, (3.458)

[θγ , θ−γ ] = h2 − h3, (3.459)

[θγ+γ′ , θ−(γ+γ′)] = h1 − h3. (3.460)
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Figure 3.31: Taut webs t
(3)
L and t

(3)
R in the Weierstrass model having vacuum fans at infinity.

We also have the brackets

[hi, θ∗] = ±θ∗ (3.461)

for i = 1, 2, 3 and ∗ being one of ±γ,±γ′,±(γ+ γ′). The nine-dimensional (degree −1) Lie

algebra R(1,•) is thus easily recognized as gl(3)[1].

In fact there is more to discuss even in homological degree one. There is a non-zero

ternary bracket λ3 : Λ3R(1,•) → R(1,•) due to the possibility of constructing a taut web

with the fan at infinity being a vacuum fan, such as the ones depicted in Figure 3.31. Such

webs give us

ρ(t
(3)
L )[θγ , θγ′ , θ−(γ+γ′)] = φ1, (3.462)

ρ(t
(3)
R )[θ−γ , θ−γ′ , θγ+γ′ ] = φ2, (3.463)

where φ1, φ2 are the two vacua.

Let’s now also include elements of higher homological degree. We denote generators of

the six-dimensional space R(2,·) as

{χ±γ , χ±γ′ , χ±(γ+γ′)}, (3.464)
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the subscript denoting the flavor degree. For instance the lower-right fan of Figure 3.30 is

denoted by χ−γ . Also denote the generator of the one-dimensional space R(3,0) as ψ. Taut

webs with two vertices give the following bilinear brackets of the degree two generators

with the degree one generators:

[χα, θβ] =


χα+β if α+ β′ ∈ {±γ,±γ′,±(γ + γ′)},

0 otherwise

. (3.465)

[χα, hi] = 0 for any α ∈ {±γ,±γ′,±(γ + γ′)}, i ∈ {1, 2, 3}. (3.466)

We also have the bracket

[χα, χα′ ] = δα+α′,0 ψ, (3.467)

essentially constrained to be this for degree reasons.

We are far from done. Despite being finite-dimensional, Rc has an infinite number of

taut webs with arbitrarily many vertices. For instance, the taut vacuum webs of Figure

3.31 can be generalized to a vacuum web with n(n+1)
2 vertices for every n ≥ 2. The web for

n = 3 is depicted in Figure 3.32, and the generalization to arbitrary n is clear. For every

such web there is also its mirror web, obtained by reflecting about the vertical axis and

exchanging the vacuum labels 1↔ 2.

Therefore, despite being finite-dimensional and there being no periodic solitons, the

algbera Rc is expected to have non-trivial brackets λn for arbitrarily high n. Such phe-

nomenon were not seen without twisted masses.

3.5.2 Periodic Solitons Only

The next special case to discuss is when we are considering a theory with a single vacuum

i, so that the only BPS states are periodic solitons. In this case the central charge is simply
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Figure 3.32: A taut vacuum web with six vertices in the Weierstrass model.

a homomorphism

Z : Γ→ C (3.468)

from the flavor group to the complex numbers, Zγ+γ′ = Zγ + Zγ′ . One has a set of BPS

chain complexes that are integral graded (the fractional part of a periodic soliton vanishes)

{(Rγ , dγ)|γ ∈ Γ}. (3.469)

When we need to be explicit about the vacuum it will be referred to by the letter i, although

we will mostly drop it from the notation in what follows.

The space Rc now reads

Rc =
⊗

γ∈Γ\{0}

F [Rγ ], (3.470)

and we would like to make some remarks on the expected L∞ structure on this space.

When we are considering fans and webs lying within particular vacua we have some new

phenomenon. First we have a vertex representing the identity within a particular vacuum.
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Figure 3.33: The very left shows a closed vertex, the middle shows a one-valent fan, and
the right shows a taut web consisting of just a finite segment with fan at infinity being the
identity fan.

This was present in the formalism of [GMW], known as a “closed vertex” denoted by an

open circle. New with the presence of periodic solitons are now one-valent vertices with a

ray shooting out in the Zγ direction. The simplest possible taut web is given by a finite

segment connecting two vertices where the segment is parallel to some Zγ . The fan at

infinity of such a finite taut web is the identity fan. See Figure 3.33.

We are interested in assigning multilinear operations to a given taut web in some canon-

ical way. Let’s start with the operation we assign to the taut web of Figure 3.33. To the

taut web w(2) consisting of a finite segment in the γ-direction, we will assign a bilinear,

graded anti-symmetric, degree −1, operation on

Polγ := F [Rγ ]⊗F [R−γ ] ⊂ Rc. (3.471)

Let {eaγ} and {ea−γ} be homogeneous bases sets for Rγ and R−γ respectively and let

Kab
γ := Kγ(eaγ , e

b
−γ) (3.472)

be the non-degenerate pairing Kγ evaluated in this basis. The space Polγ can be thought

of as the free algebra in the variables eaγ , e
a
−γ modulo the relations

eaγe
b
γ = (−1)deg(a)deg(b)ebγe

a
γ (3.473)
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and similar relations for a product of −γ-variables, and for mixed products. An arbitrary

element f ∈ Polγ is thus written as some polynomial f(eaγ ; eb−γ). We then set

ρ
(
w(2)

)
[f, g] = Kab

γ

∂f

∂eaγ

∂g

∂eb−γ
±Kab

γ

∂g

∂eaγ

∂f

∂ea−γ
. (3.474)

Conceptually what we have done is to assign the differential operator ∂
∂eaγ

to the vertex

whose outgoing edge is parallel to Zγ and ∂
∂ea−γ

to the vertex whose outgoing edge is parallel

to Z−γ and then we contract the two vertices via the edge connecting them by assigning

to it Kab
γ . We then anti-symmetrize the operator to obtain the expression for ρ(w(2)):

ρ(w(2)) = Kab
γ

∂

∂eaγ
∧ ∂

∂eb−γ
, (3.475)

and this fixes the sign in (3.474).

For another example, consider the following taut web w(3) having a trivial fan at infinity

again.

To this we assign the ternary operator

ρ(w(3)) = Kac
γ1K

de
γ2K

fb
γ3

∂2

∂eaγ1∂e
b
−γ3
∧ ∂2

∂ec−γ1∂e
d
γ2

∧ ∂2

∂ee−γ2∂e
f
γ3

, (3.476)

where the wedge product of operators means we graded-antisymmetrize, so that for instance

ρ(w(3))[f, g, h] = Kac
γ1K

de
γ2K

fb
γ3

∂2f

∂eaγ1∂e
b
−γ3

∂2g

∂ec−γ1∂e
d
γ2

∂2h

∂ee−γ2∂e
f
γ3

+ permutations of {f, g, h}.

(3.477)
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The general rule is clear from this: to every vertex we consider the edges oriented

outwards to get a collection of directions {γi} and so to that vertex we assign the operator∏
i

∂
∂e
ai
γi

. The free indices on the operators are all contracted by assigning Kab
γi to the finite

edges. The resultant operator will have no free indices if and only if the fan at infinity is

trivial.

Thus to define the n-ary operation

λn : ΛnRΓ → RΓ, (3.478)

we simply sum over the differential operators corresponding to taut webs with the trivial

fan at infinity

λn[·, . . . , ·] =
∑

t(n) taut
I∞(t(n))={ui}

ρ(t(n))[·, . . . , ·]. (3.479)

We expect the collection of maps obtained in this way to satisfy the L∞ axioms. For

instance in the simplest case of Γ being rank one, the only taut web is the one appearing

in the right of Figure 3.33 and the corresponding bracket coincides with the Schouten

bracket of polyvector fields. This is well-known to satisfy the (graded) Jacobi identity.

The multilinear operations in this section, defined by assigning differential operators to

“taut webs”, has a similar flavor to the L∞-operations of [Sho], which in turn was inspired

by similar open-closed algebraic constructions of [K].

Rc for Free Chiral

For the free chiral model recall that one has Γ = Z〈γ〉 and the soliton spaces are

Rγ = Z〈aγ〉 ∼= Z, (3.480)

R−γ = Z〈ψ−γ〉 ∼= Z[1]. (3.481)
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Thus the closed string algebra is

Rc = F ∗[Rγ ]⊗F∗[R−γ ] (3.482)

= Z[aγ , ψ−γ ]/〈ψ2
−γ〉. (3.483)

aγ obeys bosonic statistics, and ψ−γ obeys fermionic statistics. Hence we have

R(0,•)
c = Span{anγ}n≥0 (3.484)

R(1,•)
c = Span{anγψ−γ}n≥0. (3.485)

The bilinear L∞-bracket is obtained by

[aγ , ψ−γ ] = Kγ(aγ , ψ−γ) = 1, (3.486)

and enforcing the Poisson identity for powers of aγ . The differential and all other operations

act trivially. There is no element of homological degree +2 and so β = 0.

Note that Rc is isomorphic to the space of B-model observables, namely holomorphic

functions and holomorphic vector fields on C, and our bracket simply corresponds to the

Schouten-Nijenhuis bracket. In the B-model, the observables are simply coming from the

perturbative modes of the chiral field Φ. Under mirror symmetry the fundamental field

gets mapped to a periodic soliton.

3.5.3 Mixed Case

We can now turn our attention briefly to the mixed case, namely when both periodic

and non-periodic solitons are present. The simplest such situation is one we have already

discussed: We have two vacua V = {i, j}, and Γ is rank one, generated by an element

γ ∈ Γ. The irreducible cyclic fans are easy to classify. First we have the identity fans (ui)
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and (uj) to which we assign the spaces

Ri = ⊗n6=0F [Rnγi ], (3.487)

Rj = ⊗n6=0F [Rnγj ]. (3.488)

Previously, in Section 3.4.2 we wrote Ri as F [Vγi ]⊗F [V−γi ] and Rj as F [Vγj ]⊗F [V−γj ].

Next we have (γij , γji) is an irreducible cylic fan for any (γij , γji) ∈ Γij × Γji. Supposing

that (Zγij , Zγ , Zγji) are in clockwise order then, the space we assign to such an irreducible

cyclic fan is

R(γij ,γji) = Rγij ⊗F [Vγj ]⊗Rγji ⊗F [V−γi ]. (3.489)

Summing over all irreducible cyclic fans (ui), (uj) and (γij , γji) indeed gives us the space

(3.71). Remarks on the expected L∞-structure were made in Section 3.4.2.

3.5.4 A∞-Category of Branes

The “open” analogue of Rc, used for the formalism of branes and boundary amplitudes is

also straightforward to define in terms of generalized half-plane fans. As in [GMW], we

proceed by first constructing the category of thimble branes

Vac
(
V, Z,Γ, {Rγij}, β

)
, (3.490)

which has objects {Ti}i∈V and then enlarging Vac to include general D-branes as solutions

of the A∞ Maurer-Cartan equation. Fix a half-plane H and let

(γi0i1 , . . . , γin−1in) (3.491)

be now an irreducible half plane-fan. The definition of this is self-explanatory. It means

that ik 6= ik+1 as usual for irreducible fans, and that

(Zγi0i1 , . . . , Zγin−1in
) (3.492)
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is a collection of clockwise phase-ordered complex numbers lying in the half-plane H. Let

±γH be an auxiliary vector such that ±ZγH is parallel to ∂H. Suppose γij is a vacuum

groupoid arrow with Zγij ∈ H such that the clockwise phase ordering is (γH, γij ,−γH). The

flavor factors are defined to be

F(γH,γij) = ⊗γH<γ<γijF
∗[Rγi ], (3.493)

F(γij ,−γH) = ⊗γij<γ<−γHF
∗[Rγj ]. (3.494)

A half-plane fan is then represented as in the closed-string case as an alternating tensor

product of F(·,·) and R· spaces, while making sure to include (3.493), (3.494) at the start

and end.

R̂(γi0i1 ,...,γin−1in
) = F(γH,γi0ii )

⊗Rγi0ii ⊗ · · · ⊗Rγin−1in
⊗F(γin−1in

,−γH). (3.495)

We then set

Hop(Ti,Tj) =
⊕

(γii1 ,...,γinj)
irreducible half-plane ij fans

R̂(γii1 ,...,γinj)
, (3.496)

and abbreviate R̂ij = Hop(Ti,Tj), as usual. Note that R̂ij in addition to the usual coho-

mological grading possesses a grading by the Γ-torsor Γij

R̂ij = ⊕γij∈Γij R̂γij . (3.497)

As before for the categorical monodromy, the categorified spectrum generator gives us a

product formula for the groupoid algebra (valued in Z-modules) element R̂.

Conjecture The pair (R̂, Rc) admits operations that obey the axioms of an open-closed

homotopy algebra. In particular β ∈ (Rc)
(2,0) provides canonically, an A∞-structure on R̂.
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Figure 3.34: The dashed line shows a cyclic fan of arrows (γij , γjk, γki) such that γij+γjk+
γki = γi. The dual shape in the W -plane is depicted, and it corresponds to a quasi-closed
polygon, meaning a polygon that only closed up to a Γ-translation.

R̂ and the conjectural A∞-structure on it, induced from β, gives us a framework to

discuss branes. A brane B carries Chan-Paton factors, a collection of graded Z-modules

Ei(B) for each i ∈ V. In addition to cohomological grading Ei(B) has an additional grading

by the Γ-torsor ΓB,i. A boundary amplitude B consists of a degree (1, 0) element of the

A∞-algebra R̂E

B ∈ ⊕i,j∈VEi(B)⊗ R̂ij ⊗ E∨j (B), (3.498)

that satisfies the A∞ Maurer-Cartan equation.

Finally, one could go on and discuss the relevant constructions for interfaces, but the

basic idea should be clear by now and we will not give further details. We end with a few

remarks about the dual polygon viewpoint.
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3.5.5 Remarks on the Polygon Viewpoint

Recall that cyclic fans of vacua, in the absence of twisted masses, correspond to polygons

in the W -plane with critical values as vertices [GMW]. In [KKS] a rival formulation to

the web formalism was developed in which polygons (and their secondary polytopes) play

a central role. This formalism has some advantages over the web formalism. We sketch

here some issues which must be addressed to generalize the approach of [KKS] to include

twisted masses. Given an LG model with non-trivial twisted masses, by working on the

universal abelian cover, one can still go the W -plane, so that each vacua i corresponds to

a Γ-torsor worth of critical values

i→ {Wi +M · γ}γ∈Γ, (3.499)

for some non-canonical Wi. An arbitrary cyclic fan of arrows however, does not correspond

to a closed polygon. A cyclic fan of arrows (γi0i1 , γi1i2 , . . . , γini0) with charge γ corresponds

to a shape in the W -plane that closes only up to a γ-translation. For instance, one could

consider a cyclic fan of the form (γij , γjk, γki) where

γij + γjk + γki = γi (3.500)

for some γi ∈ Γii, and i 6= j 6= k. In the W -plane this would correspond to a shape such

as the one shown in Figure 3.34. A dual formulation of the L∞-algebra Rc in terms of

polygons would have to account for such quasi-closed polygons and their subdivisions.

On the other hand, of particular interest to us is the subalgebra of charge zero elements

(Rc)
(∗,0), because this is where the interior amplitude β resides. For the subalgebra of

charge zero states, the dual formulation would indeed only include traditional closed poly-

gons in the W -plane, and their subdivisions. The notion of polygons and their subdivisions

in the presence of twisted masses is a bit subtle however. As we have stressed in Section
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Figure 3.35: The dashed lines on the left depict a cyclic fan (γij , 2γj , γji) such that γij +
2γj + γji = 0. Its dual is a triangle with vertices (Tγ ·Wi,Wj , T2γ ·Wj). The dashed lines
in the right depict a cyclic fan (γij , γj , γj , γji) which once again has charge zero. Its dual
consists of a degenerate four-gon with vertices (Wi,Wj , Tγ ·Wj , T2γ ·Wj). The left figure
is viewed as carrying a single periodic soliton of charge 2γj whereas the right is viewed as
carrying two periodic solitons, each of charge γj .

4.1, when talking about polygons in the W -plane in the presence of twisted masses one has

to be careful about vertices lying along a common line. The same underlying polygon can

correspond to different cyclic fan of arrows depending on what we consider as vertices. For

instance suppose that we have three groupoid arrows such that γij + 2γj + γji = 0. Then

(γij , 2γj , γji) and (γij , γj , γj , γji) are distinct cyclic fans of charge zero. In terms of dual

polygons, the first of these would correspond to a triangle with three vertices, whereas the

second one would correspond to a degenerate four-gon, with four vertices. The convex hull

of these two sets of vertices coincides, but they must considered distinct in the formalism.

See Figure 3.35. The right triangle admits a non-trivial subdivision, whereas the left one

does not.

It is entirely possible that one would arrive at a satisfactory theory of interior amplitudes

by working in the W -plane with closed polygons, while being careful of distinctions such

as the ones mentioned above when formulating such polygons and their subdivisions. This
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we must leave to future work.
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Chapter 4

Future Directions: Algebraic Knot Invariants, 4d N = 2 BPS

States

4.1 Introduction

The purpose of this chapter is to give a somewhat detailed account of two future directions

that naturally follow from the rest of the considerations in this thesis. One can be viewed

as an application of the technology we have developed and discussed in Chapter 3 on

twisted masses to the study of three-manifolds and homological knot invariants via the

Chern-Simons Landau-Ginzburg model. The other direction is the extension of the two-

dimensional formalism of categorical wall-crossing and the algebra of the infrared to BPS

states and wall-crossing in four-dimensional N = 2 theories.

The discussion in Section 4.2 will appear in a preprint being written jointly with D. Gaiotto,

G. W. Moore and F. Yan, whereas the discussion of Section 4.3 is independent work of the

author, with useful input from D. Gaiotto and G. W. Moore.

4.2 Algebraic Knot Invariants

We begin with a quick review of Witten’s formulation [Wit8] of Khovanov homology. The

reader is directed to the original paper [Wit8] along with the review articles [Wit6, Wit7]

for a more detailed account. Another useful review, especially with regards to the relation
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with Landau-Ginzburg models appears in Section 18.4 of [GMW].

Witten’s formulation of Khovanov homology is most cleanly stated in terms of the six-

dimensional N = (0, 2) theory. We let g be a simply laced Lie algebra and consider the 6d

N = (0, 2) theory of type g on M4 ×D where M4 is a four-manifold, and D is an oriented

surface with a U(1) action that has a fixed point. We fix D = R2 with the standard

SO(2) = U(1) rotation with the origin as a fixed point in what follows. As mentioned

before, the theory admits a holomorphic-topological twist so that the theory is holomorphic

along D and topological along M4. Furthermore in this holomorphic-topological theory,

we can consider topological surface operators: they are supported on Σ × {0} ⊂ M4 ×D

and are labeled by a representation ρ of g. Because these are placed at the U(1)-invariant

point of D, they preserve the U(1)D rotational symmetry. To get the right setup for knot

theory, we specialize M4 to be of the form M3 ×R, where M3 is a three-manifold and R is

viewed as time. Furthermore, we take the support Σ of the topological surface operator to

be along L×R×{0} ⊂M3×R×D where L is a colored link inside M3. We therefore find

a six-dimensional system with a nilpotent supercharge Q, along with two U(1) symmetry

generators F and P , the fermion number (generator of an appropriate R-charge) and the

rotational symmetry generator along D respectively. Furthermore, our setup involves a

time direction and therefore has a Hilbert space. Witten’s proposal is that when M3 = R3,

the Q-cohomology of this Hilbert space, which is a Z×Z-graded vector space is isomorphic

to K(L, ρ, g), the colored Khovanov homology of the link L.

K(L, ρ, g) can be given a more concrete construction by equipping D with a U(1) invari-

ant cigar-like metric, and reducing the 6d theory along U(1) orbits of D. The resulting

theory is a twisted version of 5d super Yang-Mills on M3×R×D/U(1) = M3×R×R+ with

an important L-dependent boundary condition at the origin of R+. The five-dimensional
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theory on M3 × R× R+ in turn admits a convenient description as an “A-model with su-

perpotential”, namely as a Landau-Ginzburg model where the supercharge Q is identified

as an A-type supercharge in the N = (2, 2) algebra on R × R+. This Landau-Ginzburg

description allows us to give a description of K(L) in terms of solving classical four and five-

dimensional BPS equations. These equations are the ζ-soliton and ζ-instanton equations,

respectively, of the Landau-Ginzburg model [GMW].

The Landau-Ginzburg model with A-type supercharge can further be described as a

supersymmetric quantum mechanics with a real superpotential, that is as a Morse theory

problem. In this case the Morse theoretic problem has a target space consisting of four-

dimensional gauge fields on V = M3 × R+ and an adjoint valued one-form on V . Denote

the coordinates on V as (xi, y) with i = 1, . . . , 3. We must specify the boundary conditions

at y = 0 and y =∞. At y →∞ we simply require the gauge field A = A+ iφ to approach

a GC-flat connection σi on M3. The boundary conditions at y = 0 are more subtle to

describe. They can be deduced from an M-theoretic construction of the 6d N = (0, 2)

theory 1. The result is simplest to state for the gauge group G∨ = SO(3). Let’s first

describe the boundary condition for the empty link L = ∅. Pick a metric on M3 and

let (e, ω) be the dreibein and associated spin connection respectively. We require that as

1The 6d theory of type Ar−1 is the worldvolume theory of r parallel M5 branes supported on M4 ×D

in eleven-dimensional M-theory on X × T ∗D where X is the total space Ω2,+(M4)→M4. Upon reduction

to a circle we get type IIA string theory with an additional D6 brane supported on X × {0}. The M5

brane maps to a D4-brane on M4 × R+. Therefore we find a D4-D6 brane system. Three of the scalar

fields describe fluctuations of the D4 brane along the D6 brane and carry Nahm pole behavior, whereas the

remaining two scalars describing the transverse motion are set to vanish.
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y → 0, the fields approach

φ =
e

y
+ . . . , (4.1)

A = ω + . . . . (4.2)

For a more general link L, away from L the fields have similar Nahm pole behavior as

y → 0, but close to the link the fields should behave like a particular singular model

solution. For details see Section 3.6.4 of [Wit8]. Let’s denote the target space with these

boundary conditions as Xσi(L,M3). Now that we have described the target space, let’s

describe the superpotential of the Morse theory problem. The superpotential is

S =

∫
dyd3xTr

(√
g gijφiFyj +

1

2
εijk(Ai∂jAk +

2

3
[Ai, Aj ]Ak − φiDjφk)

)
. (4.3)

Now we can apply the usual Morse theoretic recipe. We build a vector space KCσi(L)

by assigning a generator to each critical point of S. In turn the critical points δS = 0

correspond to solutions of the equation

Dyφi =
√
g−1 gijε

jkl(Fkl − [φk, φl]), (4.4)

Fyi =
√
g−1 gijε

jklDkφl. (4.5)

Because we are really doing G = Map(M3, G)-equivariant Morse theory, these equations

are supplemented with the zero moment map condition

Diφ
i = 0. (4.6)

Together these give the Kapustin-Witten equations which in four-dimensional notation are

written as

F − φ ∧ φ = ∗dAφ, (4.7)

dA ∗ φ = 0. (4.8)
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In matching with the above, we must set φy = 0. In doing this we actually don’t lose

any information since φy = 0 holds for any solution of the above equations as discussed in

[Wit8]. Each solution is graded by instanton number and fermion number and thus we can

construct a bigraded vector space KCσi(L). Next let’s discuss instantons. The relevant

equation is the gradient flow equation

∂φai
∂τ

=
√
g−1gij

δS

δφaj
, (4.9)

∂Aai
∂τ

=
√
g−1gij

δS

δAaj
, (4.10)

∂Aay
∂τ

=
δS

δAay
. (4.11)

The first and third of these equations are

F ayi +
∂φai
∂τ

+
√
g−1gijε

jklDkφ
a
l = 0, (4.12)

Fyτ − gijDiφj = 0, (4.13)

whereas the middle equation is

(
F a0i +

√
g

2
εijkF

ajk
)
−
√
g−1

2
gijf

abcεjklφbkφ
c
l −Dyφ

a
i = 0. (4.14)

These can be written more succintly if we define a self-dual two-form Ba
µν on (0, 1, 2, 3)

(does not include the y coordinate) space given by

Ba
0i = φai , (4.15)

Ba
ij =

1

2

√
g εijkφ

ak. (4.16)

Also, we consider the gauge field A0, A1, A2, A3 and the self-dual part of the curvative F+.

Then the first and third equation combine into

Fyµ +DνBνµ = 0, (4.17)
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whereas the middle equation becomes

(F+)a0i −
1

4
(B ×B)a0i −DyB

a
0i = 0. (4.18)

In the above the cross-product of two self-dual two forms is

(B ×B)aµν := fabcBb
µαg

αβBc
βν . (4.19)

Thus we find that the gradient flow equations are the Haydys-Witten equations

Fyµ +DνBνµ = 0, (4.20)

F+ − 1

4
B ×B − 1

2
DyB = 0. (4.21)

We use the HW equations to compute tunneling amplitudes between solutions of the KW

equations that differ by unit fermion and vanishing instanton degrees. Therefore modulo

analytic assumptions, we have a well-defined Q-cohomology

Kσi(L) = H∗Q
(
KCσi(L)

)
(4.22)

for each flat connection σi and each link L ⊂ M3. Khovanov homology is expected to be

reproduced for M3 = R3 where the only flat connection is the trivial one, σi = 0. Namely

one expects Kσ=0(L) to be isomorphic to the Khovanov homology of the link L. This

construction also tells us why things are more subtle when M3 6= R3. There is no unique

choice of flat connection and therefore it is not clear if Kσi(L) is a topological invariant.

Namely the choice of a flat connection might break topological invariance of these Hilbert

spaces.

Having reviewed the physical construction of Khovanov homology from both the five

and six dimensional viewpoints, let us now present our proposal for homological invariants

associated to links L ⊂ M3. One of the main points of [Wit8], as we just reviewed, is
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that there is a canonical “Nahm pole” boundary condition BNahm(L) of the twisted five-

dimensional Yang-Mills theory on M3 × R × R+ for each link L ⊂ M3 that preserves the

supercharge Q. Our proposed link invariant is

L ⊂M3  A[L,M3] = Hom
(
BNahm(L), BNahm(L)

)
, (4.23)

the space of self-morphisms of the brane BNahm(L). Moreover the Landau-Ginzburg view-

point, in particular the technology of [GMW] and Chapter 3, allow a construction of

A[L,M3] in terms of solving the Kapustin-Witten equations in a similar spirit to the con-

struction of the BPS Hilbert spaces Kσi(L).

Assume for simplicity thatM3 has only a finite number ofGC flat connections {σ1, . . . , σn}

and that they are all isolated. Recall that the Landau-Ginzburg model has a thimble

boundary condition Tσi for each flat connection σi. Let

K̂σiσj := Hom(Tσj , Tσi). (4.24)

Then our proposed invariant A[L,M3] as a vector space is given explicitly by

A[L,M3] =
⊕
σi,σj

KCσi(L)⊗ K̂σi,σj ⊗KC∨σj (L). (4.25)

We have already explained how to construct KCσi(L) in terms of solutions of partial dif-

ferential equations. We are thus left with the task of providing K̂σiσj with a similar con-

struction.

The first step in constructing K̂σi,σj the space of morphisms between Tσj and Tσi is to

define complexes KCσi,σj for any pair of flat connections. This is done by modifying the

Morse theoretic problem discussed before by a little bit. The first modification is to change

the target space to be not complex connections on M3 × R+, but on M3 × R. We require
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that A approach σi as y → −∞ and σj as y → +∞. The space of such configurations

Xσi,σj actually has infinitely many connected components labelled by (relative) instanton

number

Xσi,σj =
⊔
n∈Z

Xn
σi,σj , (4.26)

where the integer n is only well-defined up to some global shifts2. Next we consider the

Morse function

Sζ =

∫
dyd3xTr

(√
g gijφiFyj −

1

2
Im(ζ−1εijk(Ai∂jAk +

2

3
[Ai,Aj ]Ak)

)
(4.27)

where ζ = eiα is a phase. In terms of real fields this is

Sζ =

∫
dyd3xTr

(√
g gijφiFyj + sinα ε ijk(Ai∂jAk +

2

3
[Ai, Aj ]Ak − φiDjφk)+

−cosα ε ijk(φiFjk −
2

3
[φi, φj ]φk)

)
.

(4.28)

The action discussed previously is the special case with ζ = i or α = π
2 . It is straightforward

to show that δSζ = 0 leads to the Kapustin-Witten equations

(F − φ ∧ φ)+ = t(dAφ)+, (4.29)

(F − φ ∧ φ)− = −t−1(dAφ)−, (4.30)

where

t =
sinα

1− cosα
. (4.31)

As usual these are supplemented by the condition

dA ∗ φ = 0. (4.32)

2It is conceptually cleaner to say that the sectors are labeled by a Z-torsor.



229

These can be expressed more compactly in terms of the complex curvature F of the complex

connection A. The equations then take a complex form of the self-duality equation

F = ∗ζF . (4.33)

In order to construct the complexes Kσiσj we fix the phase ζ to coincide with the phase of

Z =
1

4π

∫
R×M3

Tr(F ∧ F). (4.34)

The quantity Z obeys a modified quantization condition for fields in Xσi,σj . It takes the

form

Zij(n) = WCS(σi)−WCS(σj) + 2πn (4.35)

where n is some integer and WCS(σi,j) are values of the complex Chern-Simons functional

evaluated on the flat connections σi,j . Note that WCS is multivalued, so the expression

above has ambiguities. Nevertheless we make some non-canonical choices, and refer to the

phase of Zij(n) as ζnij . A standard argument shows that Sζ will not have any critical points

in Xσi,σj unless the phase ζ is chosen to coincide with one in the set {ζnij}n∈Z. We refer to

Zij as the relative instanton number in the ij-sector. We thus find that Xσi,σj decomposes

into infinitely many disjoint sectors labelled by distinct relative instanton numbers. We

can define Knσi,σj as the Morse complex of Sζ with ζ = ζnij . Note that the description above

makes sense for both σi 6= σj and σi = σj .

Remark The complexes KCστ categorify the integer mστ discussed briefly in Section

4.1.2 of [Wit5].

The final step involved in defining K̂σiσj involves some wall-crossing formalism. We take

the complexes {KCnσi,σj} and use them to form the categorified 2d-4d spectrum generator

[GMN4, GMW, KM2] as discussed in Chapter 3. We recall the basic ingredients here for
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completeness. The categorified spectrum generator is a product of “categorified Stokes

factors” associated to the phases ζnij . It is formed as follows. Let eσi,σj be elementary

matrices with indices being flat connections. For σi 6= σj we let

Snσi,σj = 1⊕KCnσiσjeσiσj , (4.36)

known as the categorified S-factor, and we let

Kn = ⊕σiF∗(KCnσi,σi)eσiσi (4.37)

where F∗(V ) denotes the graded Fock space of V , denote the categorified K-factor. The

categorical spectrum generator is then the product, clockwise ordered by the phases, of the

elementary S and K-factors for all phases that lie in the upper-half plane

K̂ :=

y⊗
ζnij∈H

: Snij Kn : . (4.38)

The individual K̂σiσj are then just the matrix elements of K̂

K̂ =
⊕
σi,σj

K̂σiσjeσiσj . (4.39)

Remark In notation of [GMW] and previous chapters, the complex on M3 × R namely

KCσiσj and its hatted counterpart K̂σi,σj defined as above would be denoted as Rσi,σj and

R̂σiσj respectively. Similarly the Khovanov compelexes on M3×R+ namely KCσi(L) would

be written as Eσi
(
BNahm(L)

)
, the Chan-Paton factors of the brane BNahm(L).

Now that we have defined all relevant quantities it is time to state our main conjectures.

Conjecture 1 Let Ob
(
T [M3]

)
= {Tσ1 , . . . , Tσn} and

Hom(Tσi , Tσj ) = K̂σjσi . (4.40)

T [M3] carries canonically the structure of an A∞-category. The homotopy class of T [M3]

is a topological invariant of M3.
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The idea of assigning a Fukaya-type category as a three manifold invariant by using

the complex Chern-Simons functional goes back to work of A. Haydys [Hay]. However,

we believe Conjecture 1 is essentially new, and we have provided explicit formulas for

the morphism spaces in terms of Morse complexes on R ×M3. Let us also sketch some

ideas about how the actual A∞-structure on T [M3, G] will be constructed. Recall that the

differential on KCσi(L) was constructed by counting rigid solutions of the Haydys-Witten

equation. Here the idea is similar. The A∞-structure on T [M3] will come from counting

solutions of the Haydys-Witten equation with a particular type of boundary conditions.

It is a standard fact that a solution to the KW equations on R ×M3 that interpolates

between σi and σj maps to a straight line between points in the {WCS(σi) + 2πk} and

{WCS(σj) + 2πk}-towers. The crucial idea in constructing the A∞-structure on T [M3]

involves counting solutions of the Haydys-Witten equations on M3×R2 that map to convex

polygons in the WCS-plane. Let’s consider the simplest case to illustrate. Let σ, τ, ρ be

labels corresponding to flat connections and suppose there are points in the corresponding

towers of critical points W (Aσ),W (Aτ ),W (Aρ) that form clockwise oriented vertices of a

triangle. Moreover, fix particular elements of Aστ ∈ KCστ ,Aτρ ∈ KCτρ and Aρσ ∈ KCρσ.

We would like to consider solutions of the Haydys-Witten equation on M3 × R2 such that

at a large circle at infinity M3 × S1
∞ ⊂M3 × R2 the solution consists of broken paths

Aστ#Aτρ#Aρσ. (4.41)

In other words, in the WCS plane the image of M3 × S1
∞ traces out the boundary of this

triangle. The full solution is required to fill out the interior of the triangle. Specifying the

boundary conditions for n-gons is straightforward. See for instance Figure 4.1 for n = 5.

We conjecture that moduli spaces of the Haydys-Witten equation with such polygonal

boundary conditions are well-defined and that one can make sense of counting the rigid
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Figure 4.1: The image of a solution of the Haydys-Witten equation with “pentagonal”
boundary conditions the W = WCS-plane.

solutions. Supposing this is the case, we expect that counts of such solutions combined

with appropriate web combinatorics [GMW, KM2] leads to the conjectured canonical A∞

structure on T [M3].

Next we come to the counting relevant for the quantity A[L, ρ, g,M3]. In the definition

of A[L,M3] a crucial role is played by the Khovanov complexes KCσi(L). Elements of

these complexes, being solutions of the Kapustin-Witten equation at ζ = i map to vertical

half-lines between −i∞ and terminating at WCS(σi) in the W -plane. Now fix a collection

of flat connections σi1 , . . . , σin and points WCS(σi1), . . . ,WCS(σin) such that the

(−i∞,WCS(σi1), . . . ,WCS(σin),−i∞) (4.42)

are vertices of a semi-infinite polygon in the W -plane. We count solutions of the HW

equation on M3 × R × R+ such that on M3 times the large semi-circle at infinity the

solution behaves like broken paths

AL,σi1#Aσi1σi2# . . .#Aσin−1
σin#Aσin ,L (4.43)

where AL,σi is an element of KCσi(L) and so on, and M3×R×R+ maps to the “interior.”

See Figure 4.2.
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Figure 4.2: The image of a solution of the Haydys-Witten equation on M3×R×R+ relevant
to constructing the conjectured knot invariant B(L) of L ⊂M3.

Note that the A∞-structure on T [M3] coming from counting bulk/closed polygons gives

A[L,M3] an A∞-structure; it is given simply by combining the A∞-structures on T [M3]

with “matrix multiplication” (evaluating the dual complexes KC∨ on the complexes KC).

Given an A∞ algebra with structure maps (m1,m2,m3, . . . ) a Maurer-Cartan element γ is

defined to be a degree one element that satisfies the A∞ Maurer-Cartan equation∑
n≥1

mn(γ, . . . , γ) = 0. (4.44)

Conjecture 2 Counting rigid half-polygons associated to a link L ⊂ M3 determines a

canonical a Maurer-Cartan element

B(L) ∈ A[L,M3]. (4.45)

The gauge equivalence class of the Maurer-Cartan element B(L) is an isotopy invariant of

L ⊂M3.

We can state Conjecture 2 in a slightly different way. The main property of a Maurer-

Cartan element γ is that it deforms the structure maps {mn} to deformed versions

{mn} → {mn[γ]} (4.46)
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that also satisfy the A∞ axioms. Therefore B(L) deforms the A∞-structure on A[L,M3]

to a new one. We can then state

Conjecture 2′ A[L,M3] carries a canonical A∞-structure. The homotopy class of this

A∞-algebra is an isotopy invariant of L ⊂M3.

Conjectures 1, 2 and 2’ are being developed further in the work in the progress [GKMY].

In particular, we have the tools to compute the characters of our various homological

knot invariants by relating the five-dimensional twisted super Yang-Mills theory to three-

dimensional N = 2 theories of class R [DGG1, DGG2].

4.3 Holomorphic-Topological Twists and BPS States in 4d N = 2 Theo-

ries

We now briefly discuss a second future direction. We recall the basic mathematical setup

of BPS states in four dimensional theories with N = 2 supersymmetry. For physical

background we refer the reader to the review [M1, M3]. The basic data consists of

1. A symplectic lattice Γ, of electromagnetic charges where the anti-symmetric pairing

〈·, ·〉 : Γ× Γ→ Z is the Dirac-Schwinger-Zwanziger (DSZ) pairing.

2. A homomorphism Z : Γ→ C known as the central charge.

3. A collection of BPS degeneracies

{Ω(γ; y)}γ∈Γ (4.47)

where y is a formal variable Ω(γ; y) ∈ Z[y, y−1].

Ω(γ; y) =
∑
n∈Z

Ωn(γ)yn (4.48)

is known as the protected spin character (PSC).
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This is parallel to the setup of Chapter 3 with the additional data of a non-trivial DSZ

pairing which plays a crucial role as we will see.

We now introduce the four-dimensional spectrum generator SH(q). The additional tool

needed in four dimensions is the quantum torus algebra, the algebra of formal variables

{Xγ}γ∈Γ that satisfy the quantum torus algebra relations

XγXγ′ = q〈γ,γ
′〉Xγ′Xγ = q

〈γ,γ′〉
2 Xγ+γ′ , (4.49)

where q is a formal variable. Let

Φq(z) =
∞∏
n=0

(1 + qn+ 1
2 z)−1 (4.50)

be the quantum dilogarithm. For each γ ∈ Γ we then introduce the factor

Uγ =
∏
n∈Z

Φq((−1)nq
n
2Xγ)(−1)nΩn(γ). (4.51)

The four-dimensional spectrum generator is then by definition

SH(q) =

y∏
{γ|Zγ∈H}

Uγ . (4.52)

We can also introduce the trace

M(q) = Tr
(
Sopp
H (q)SH(q)

)
(4.53)

as the coefficient of Xγ=0 in the expansion of Sopp
H (q)SH(q).

Motivated by the properties of the BPS monodromy and its traces in two-dimensional

LG models, the trace of the four-dimensional monodromy M(q) (and its higher powers,

including fractional ones) was studied in [CNV]. It was discovered, by explicit computation

in a class of examples that M(q) often coincides with the characters of non-unitary RCFTs.
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For instance, M(q) for the (A1, A2) theory, coincides with the character of the Lee-Yang

model, the (p, p′) = (2, 5) minimal model with c = −22
5 . It was further studied in [CoSh]

where it was observed to be related to the Schur index of the superconformal fixed point. In

addition to the trace of the monodromy M(q), the spectrum generator SH(q) itself, has also

been examined by both mathematicians and physicists. From a mathematical viewpoint

it shows up as the “Motivic DT Series” of a cohomological Hall algebra, introduced in

[KoSo5]. From a physics perspective SH(q) was interpreted in terms of RG flow boundary

conditions of [DDR] of the 4d N = 2 theory in [CGS].

Therefore an exciting direction for future research is the categorification of the four-

dimensional spectrum generator SH(q) and the trace of the BPS monodromy M(q). The

categorification of these wall-crossing invariant quantities is expected to uncover novel

physical quantities in four-dimensional N = 2 theories, and their supersymmetric defects.

In order to make any headway into this categorification one must answer two key questions.

Question 1 What algebraic structure do we expect the categorification of M(q) and the

categorification of SH(q) to carry? Are these algebraic structures generalizations of the L∞

and A∞-structures found in the BPS sector of two dimensions?

Question 2 How does one physically construct the differentials, and more generally

higher maps, in these algebraic structures?

One may attempt to answer the first question as follows. The first observation is about

the nature of the supercharge that is preserved by BPS states. Recall the 4d N = 2
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supersymmetry algebra

{QAα , Q
B
α̇ } = σµαα̇Pµε

AB, (4.54)

{QAα , QBβ } = εαβε
ABZ, (4.55)

{QAα̇ , Q
B
β̇ } = −εα̇β̇ε

ABZ, (4.56)

where as usual α, α̇ denote the indices under the Lorentz group SO(3, 1), and A denotes

the SU(2)R index. We let α, α̇ to go from 1, 2 and A to be ±. The BPS supercharge is3

QBPS = Q
+
1̇ +Q+

2 . (4.57)

It has well-defined SU(2)R charge being +1. It is straightforward to show that QBPS is

topological in the (x0, x3) plane, whereas it is holomorphic in the (x1, x2) plane.

Indeed, let us write the supersymmetry algebra out in components. We work in con-

ventions of Wess and Bagger, where σµ = (−1, σi), so that the explicit list of non-zero

commutators of type {Q,Q} is

{Q+
1 , Q

−
1̇ } = −P0 + P3, (4.58)

{Q+
1 , Q

−
2̇ } = P1 − iP2, (4.59)

{Q+
2 , Q

−
1̇ } = P1 + iP2, (4.60)

{Q+
2 , Q

−
2̇ } = −P0 − P3 (4.61)

{Q−1 , Q
+
1̇ } = P0 − P3, (4.62)

{Q−1 , Q
+
2̇ } = −(P1 − iP2), (4.63)

{Q−2 , Q
+
1̇ } = −(P1 + iP2), (4.64)

{Q−2 , Q
+
2̇ } = P0 + P3. (4.65)

3More generally the BPS supercharge is Q
+

1̇ + ζQ+
2 for ζ a phase, but the phase ζ does not affect the

nature of the supercharge.
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Wick rotating sets P0 = iP4, and we let w = x3+ix4 and z = x1+ix2. Using the shorthand

Q = QBPS, we find

{Q,Q−1 } = −Pw + Z (4.66)

{Q,Q−2̇ } = −Pw + Z, (4.67)

{Q,Q−1̇ } = −{Q,Q−2 } = Pz. (4.68)

so that Q is holomorphic in the z-plane and topological in the w-plane.

Therefore we ask: what type of algebraic structure can one can expect on the space

of Q-closed local operators in a holomorphic-topological cohomological field theory? We

answer this following the references [CDG, OY]. Suppose our spacetime is Rd × C with

coordinates (x1, . . . , xd, z, z). We have a supercharge Q along with a one-form supercharge

Q =
∑d

µ=1Qµdxµ +Qz̄dz such that

Q2 = 0, [Q,Qµ] = Pµ, [Q,Qz̄] = Pz̄. (4.69)

Given a Q-closed local operator O we can form its kth descendent

O(k) =
1

k!
Qµ1 . . . QµkO dxµ1 ∧ · · · ∧ dxµk+

1

(k − 1)!
QzQµ1 . . . Qµk−1

O dz ∧ dxµ1 ∧ · · · ∧ dxµk−1 .
(4.70)

The action of the nilpotent supercharge Q then is

QO(k) = (dRd + ∂C)O(k−1). (4.71)

This is not quite what we want, since the right hand side doesn’t have the full exterior

derivative on Rd × C. This has a simple remedy: if we consider O(k) ∧ dz then we indeed

find

Q(O(k) ∧ dz) = d(O(k−1) ∧ dz). (4.72)
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Indeed, more generally for any holomorphic one-form ω on C we have

Q(O(k) ∧ ω) = d(O(k−1) ∧ ω). (4.73)

Then for any (k + 1)-cycle Γk+1 we can form a Q-closed operator given by∫
Γk+1

O(k) ∧ ω (4.74)

that only depends on the Q-cohomology class of O and the homology class of Γk+1.

For the case of four-dimensional N = 2 theories with Q = QBPS, the one-form super-

charge is given by

Q = Q−1 dw +Q
−
2̇ dw + (Q

−
1̇ +Q−2 )dz. (4.75)

The space of holomorphic one-forms on C is infinite-dimensional, but we can consider the

“coherent state” α(λ) = eλz dz. In particular, the “secondary product” in a holomorphic-

topological field theory is defined to be

[O1 λO2](z2) =

∫
Sd+1
(~x2,z2)

eλ(z1−z2)dz1 ∧ O(d)
1 (~x1, z1)O2(~x2, z2). (4.76)

Because we are forming the dth descendent, the bracket carries cohomological degree −d.

As demonstrated in [OY], [·λ·] satisfies a generalized version of the Jacobi identity. The

algebraic structure on the Q-cohomology of local operators along with the operation [·λ·]

can be summarized in terms of the axioms of a (graded) Lie conformal algebra [Kac].

A Lie conformal algbera is a C[∂]-module4 A along with a λ-bracket [·λ·] : A⊗ A→

A[λ] = C[λ]⊗A that satisfies the axioms

4∂ = ∂z with z being the complex coordinate in the holomorphic plane.



240

1. Conformal sesquilinearity:

[∂aλb] = −λ[aλb]. (4.77)

[aλ∂b] = (∂ + λ)[aλb]. (4.78)

2. Skew-symmetry:

[aλb] = −[b−λ−∂a]. (4.79)

3. Jacobi identity:

[aλ[bµc]] = [[aλb]λ+µc] + [bµ[aλc]]. (4.80)

By using the skew-symmetry axiom, we can write the Jacobi identity in a way that will be

more convenient later. It reads

[[aλb]λ+µc]− [[aλc]−∂−µb] + [[bµc]−∂−λa] = 0. (4.81)

We refer the reader to the book [Kac] for a discussion of the basic properties and examples

of Lie conformal algebras.

Let us recap. In two dimensions, the BPS superchargeQ is topological, and the secondary

product [BBBDN] equips the Q-cohomology of local operators with the structure of a

graded Lie algebra. Equipped with the two-dimensional BPS indices {µij}, one can consider

the trace of the BPS monodromy M2d = Tr(SoppS) as a wall-crossing invariant quantity.

It can be categorified to a Z-module Rc = Tr
(
R̂opp ⊗ R̂

)
. The space Rc is viewed as being

generated by fans of solitons which can be viewed as local operators in an appropriate sense

[GMW], and therefore one might expect it to carry a graded Lie algebra type structure.

Indeed, as we have discussed in Chapters 2 and 3, Rc carries the structure of an L∞-

algebra, an off-shell or “derived” version of a graded Lie algebra that we expect from
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the Q-cohomology of local operators with Q being a topological supecharge. Carrying

over this reasoning to the four-dimensional case, in four-dimensional N = 2 theories, the

BPS supercharge is holomorphic-topological, and the secondary product via holomorphic-

topological descent equips the Q-cohomology of local operators in such a theory with

the structure of a graded Lie conformal algebra. It is natural then to expect that the

categorification of the wall-crossing invariant M4d(q) = Tr(SoppS) carries the structure of

a derived version of a graded Lie conformal algebra, an L∞-conformal algebra.

Motivated by the Hochschild complex of Lie conformal algebras [BKV], we propose the

following definition of an L∞-generalization of a Lie conformal algebra.

An L∞ conformal algebra consists of a graded C[∂]-module A along with a collection

of multilinear ~λ-brackets

γ(n) : A⊗n → A[λ1, . . . , λn−1] (4.82)

of degree d+1−dn (with d being the number of topological directions) that obey conformal

linearity, graded skew-symmetry and the conformal L∞-axioms. Individually these axioms

read as follows.

Conformal linearity The maps are “anti-linear” with respect to the action of ∂.

γλ1,...,λi,...,λn−1(a1, . . . , ∂ai, . . . , an) =

−λiγλ1,...,λi,...,λn−1(a1, . . . , ai, . . . , an)

(4.83)

for 1 ≤ i ≤ n− 1 and

γλ1,...,λn−1(a1, . . . , an−1, ∂an) =

(∂ + λ1 + · · ·+ λn−1)γλ1,...,λn−1(a1, . . . , an−1, an).

(4.84)
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Skew symmetry γ picks up signs under simultaneous interchanges ai ↔ aj and λi ↔ λj :

γλ1,...,λi,...,λj ,...,λn−1(a1, . . . , ai, . . . , aj , . . . , an) =

±γλ1,...,λj ,...,λi,...,λn−1(a1, . . . , aj , . . . , ai, . . . , an)

(4.85)

for 1 ≤ i < j < n and

γλ1,...,λi,...,λn−1(a1, . . . , ai, . . . , an) =

±γλ1,...,−∂−λ1−···−λn−1,...,λn−1(a1, . . . , an, . . . , ai).

(4.86)

L∞ Axioms The collection of maps {γ(n)
λ1,...,λn−1

}n≥1 are required to satisfy the conformal

L∞-axioms. For each d ≥ 1 we require∑
p+q=d

I,J shuffles of {1,...,n}

εγ
(q+1)
λi1+···+λip ,λj1 ,...,λjq−1

(γ
(p)
λi1 ,...,λip−1

(ai1 , . . . , aip), aj1 , . . . , ajq) = 0.

In the L∞ axioms we note that we are working with shuffles of (a1, . . . , ad−1, ad) and

matching them with shuffles of
(
λ1, . . . , λd−1,−(∂ + λ1 + · · ·+ λd−1)

)
. More generally we

can reduce the number of axioms we write down by pretending that each map γ(n) carries

λ1, . . . , λn as long as we remember to set

λn = −(∂ + λ1 + · · ·+ λn−1). (4.87)

Thus we are working with the “reduced” version of the space of cochains as defined in

[BKV].

The first few axioms L∞-axioms are written down as follows. At d = 1 we have

γ(1)(γ(1)(a)) = 0. (4.88)

At d = 2 we have

γ(1)(γ
(2)
λ1

(a1, a2))± γ(2)
λ1

(γ(1)(a1), a2)± γ(2)
−∂−λ1(γ(1)(a2), a1) = 0. (4.89)
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At d = 3 we have

γ
(2)
λ1+λ2

(γ
(2)
λ1

(a1, a2), a3)± γ(2)
−∂−λ2(γ

(2)
λ1

(a1, a3), a2)± γ(2)
−∂−λ1(γ

(2)
λ2

(a2, a3), a1)

±γ(3)
λ1,λ2

(γ(1)(a1), a2, a3)± γ(3)
λ2,λ1

(γ(1)(a2), a1, a3)± γ(3)
−∂−λ1−λ2,λ1(γ(1)(a3), a1, a2)

±γ(1)(γ
(3)
λ1,λ2

(a1, a2, a3)) = 0.

(4.90)

Comparing with (4.81), we note that the d = 3 axiom is saying that γ
(2)
λ is a λ-bracket up

to homotopy.

Having defined an L∞-conformal algebra, we can now state precisely the expected result.

Conjecture The trace of the BPS monodromy

M(q) = Tr(Sopp
H SH) (4.91)

can be categorified to a vector space

M(q) Ac. (4.92)

Moreover the space Ac naturally carries the structure of an L∞-conformal algebra.

We expect similar remarks to apply to the spectrum generator itself, where the structure

we expect is that of an A∞-conformal algebra. The latter notion can also be defined

explicitly, but we omit the details.

We now turn to the second question: what is the physical construction of the differentials

and multiplication maps in four-dimensional N = 2 theories? In two dimensions, say in

Landau-Ginzburg models, the L∞-products on Rc, in particular the differential, are entirely
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determined by studying the ζ-instanton equation. A concrete question one can ask then is

what is the analogue of the ζ-instanton equation in, say class S theories5?

Recall that in a class S theory with UV curve C, BPS states admit a description as

pseudo-holomorphic maps

φ : D2 → T ∗C, (4.93)

in an appropriate almost complex structure on T ∗C determined by ζ [M]. Fortunately, this

description is precisely the correct one to admit a Morse theoretic description. Namely,

formulated this way, the BPS states coincide with the critical points of a Morse functional.

This was already discussed in Chapter 1, when discussing the holomorphic Liouville su-

perpotential on a complex symplectic manifold (Y,Ω). The corresponding gradient flow

equation is the three-dimensional BPS equation

∂φA

∂τ
+ JAB

(∂φB
∂x

+ IBC
∂φC

∂y

)
= 0. (4.94)

For our application, we take Y = T ∗C, and expect that counting solutions of the 3d

instanton equation (4.94) with appropriate boundary conditions will provide us with the

relevant differentials on the categorified BPS monodromy and the categorified spectrum

generator. We leave the development of this as an exciting and challenging problem for

the future.

5Recall that a four-dimensional N = 2 theory is called “a theory of class S” if it admits a construction

as the low energy limit of six-dimensional N = (0, 2) theory compactified on a Riemann surface C.



245

Appendix A

Some Basic Homological Algebra

A.1 Some Basic Homological Algebra

The categorical wall-crossing formula is most cleanly stated using some standard homolog-

ical algebra. We summarize the concepts we need below and refer the reader to [Weib] for

further details.

Homotopy Equivalence of Complexes Two complexes (C, d) and (C ′, d′) are said to

be homotopy equivalent if there are chain maps f : C → C ′ and g : C ′ → C such that

gf = 1C + {d, s}, (A.1)

fg = 1C′ + {d′, s′}, (A.2)

for some degree −1 maps s : C → C and s′ : C ′ → C ′. s and s′ are known as chain

homotopies.

Mapping Cone Recollection Given two chain complexes (A•, dA) and (B•, dB) along

with a chain map

f : A• → B•, (A.3)

there is a canonical chain complex Cone(f) defined as follows. The underlying space

consists of

Cone(f) = B ⊕A[−1]. (A.4)
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Writing an element of Cone(f) as a column vector b

a[−1]

 , (A.5)

the differential on Cone(f) is

d[f ] =

dB f

0 −dA

 . (A.6)

d[f ] is nilpotent as a consequence of f being a chain map. The projection map

π : Cone(f)→ A[−1], (A.7)

and the inclusion map

i : B → Cone(f), (A.8)

are chain maps that fit into the exact sequence

0 −−−−→ B
i−−−−→ Cone(f)

π−−−−→ A[−1] −−−−→ 0. (A.9)

Mapping Cylinder Recollection Suppose we are in the setting of the mapping cone

of a morphism f : A→ B, i.e consider Cone(f). Note that the projection map

π :
(
Cone(f)

)
[1]→ A (A.10)

is a chain map. The mapping cylinder of f is then by definition

Cyl(f) := Cone(π). (A.11)

More explicitly, we can write

Cyl(f) = B ⊕A[−1]⊕A (A.12)
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The differential on Cyl(f) reads

d =


dB f 0

0 −dA 0

0 id dA

 . (A.13)

The following is standard in homological algebra and topology (for instance see Lemma

1.5.6 in Weibel [Weib] ).

Proposition Suppose (A, dA), (B, dB) are chain complexes and f : A → B is a chain

map. Then B and Cyl(f) are canonically homotopy equivalent. The map i : B → Cyl(f)

is given by inclusion and its homotopy inverse j : Cyl(f)→ B is given by

j


b

a[−1]

a′

 = b+ f(a′). (A.14)

Remark The mapping cone and mapping cylinder constructions have their origins in

topology. If f : (X, p∗) → (Y, q∗) is a continuous map of topological spaces we can define

topological spaces

Cyl(f) = (X × I) ∪ Y/(x, 1) ∼ f(x), (A.15)

Cone(f) = Cyl(f)/(x, 0) ∼ p∗. (A.16)

These spaces are related to the previous constructions as follows. If C∗(X), C∗(Y ) denote

the singular chain complexes of X and Y , then

C∗(Cyl(f)) ∼= Cyl
(
f∗ : C∗(X)→ C∗(Y )

)
, (A.17)

C∗(Cone(f)) ∼= Cone
(
f∗ : C∗(X)→ C∗(Y )

)
, (A.18)

f∗ being the induced map on complexes.
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Triangularity Lemma: Let A,B,C be chain complexes and f : A→ B be a chain map.

Suppose that

C ' Cone(f : A→ B). (A.19)

Then we can construct chain maps

g : B → C, (A.20)

h : C[1]→ A (A.21)

such that

A[−1] ' Cone(g : B → C), (A.22)

B ' Cone(h : C[1]→ A). (A.23)

The maps g and h can be written down explicitly. We set

g = u ◦ i (A.24)

where u : Cone(f)→ C is one of the maps provided by homotopy equivalence and i : B →

Cone(f) is the inclusion map (also a chain map). Similarly

h = π ◦ v (A.25)

where v : C → Cone(f) is the homotopy inverse of u and π : Cone(f) → A[−1] is the

projection map (also a chain map). These maps may be remembered from the commutative

diagram

C

v

y
0 −−−−→ B

i−−−−→ Cone(f)
π−−−−→ A[−1] −−−−→ 0

u

y
C

. (A.26)
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Appendix B

A∞ and L∞ Algebras and Their Morphisms

B.1 A∞ Algebras and Morphisms

This appendix serves as a reminder of some elementary formulas in A∞ theory. We refer the

reader to the (unpublished) book of Kontsevich-Soibelman [KoSo4], Keller’s notes [Kel],

and appendix A of [GMW] for more details.

A∞-algebra Given a graded vector space A, denote by T •(A) the tensor algebra of A,

and T •+(A) the positive part of the tensor algebra:

T •(A) = ⊕n≥0A
⊗n, (B.1)

T •+(A) = ⊕n≥1A
⊗n. (B.2)

A is called an A∞-algebra if there is a square-zero, degree one derivation,1

δ : T •+(A∗[1])→ T •+(A∗[1]). (B.3)

Extracting Taylor coefficients amounts to a collection maps

mn : A⊗n → A (B.4)

1Meaning δ is both a derivation of the tensor algebra δ(XaXb) = δXaXb ±XaδXb, and a differential,

a degree one map such that δ2 = 0.
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of degree 2− n satisfying the A∞-associativity axioms: for each d ≥ 1 we have∑
k+l=d+1

1≤i≤k

(−1)d1+...di−1−i+1mk(a1, . . . , ai−1,ml(ai, . . . , ai+l−1), ai+l, . . . , ad)

= 0.

(B.5)

ai is a homogeneous element and di = deg(ai).

A∞-morphism Given two A∞-algebras

(A1, {mn}) and (A2, {µn}) (B.6)

an A∞-morphism

f : A1 → A2 (B.7)

is an algebra homomorphism (respects tensor algebra structure)

f : T •+(A∗2[1])→ T •+(A∗1[1]) (B.8)

that is also a chain map: namely f is degree 0 map satisfying

fδ2 = δ1f. (B.9)

Again expanding out Taylor coefficients we get a collection of maps

fn : (A1)⊗n → A2 (B.10)

of degree 1− n satisfying the A∞-morphism axioms∑
k+l=d+1

1≤i≤k

(−1)d1+...di−1−i+1fk(a1, . . . , ai−1,ml(ai, . . . , ai+l−1), ai+l, . . . , ad) =

∑
n1+···+nk=d

k≥1

µk(fn1(a1, . . . , an1), . . . , fnk(ad−nk+1, . . . , ad)).

(B.11)
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The d = 1 relation is

µ1(f1(a1)) = f1(m1(a1)) (B.12)

which simply says that f1 is a chain map.

The d = 2 relation is

f1(m2(a1, a2))± µ2(f1(a1), f1(a2)) =

f2(m1(a1), a2)± f2(a1,m1(a2))± µ1(f2(a1, a2))

(B.13)

where the precise signs can be restored via (B.11). This says that the diagram

A⊗2
1

f1⊗f1−−−−→ A⊗2
2

m2

y yµ2
A1 −−−−→

f1
A2,

(B.14)

commutes up to homotopy, with f2 providing the chain homotopy.

Quasi-isomorphism of A∞-algebras An A∞-morphism {fn}n≥1 is said to be a quasi-

isomorphism if f1 : (A1,m1)→ (A2, µ1) is a quasi-isomorphism of chain complexes.

Homotopy Equivalence of A∞-algebras Two A∞-morphisms f, g : A1 → A2, between

A∞-algebras are said to be homotopic f ' g, if there is a degree −1 map

S : T •+(A∗2[1])→ T •+(A∗1[1]) (B.15)

such that

f − g = Sδ2 + δ1S. (B.16)

That is S provides a homotopy between the parent maps f, g of the tensor algebra. A1 and

A2 are said to be homotopy equivalent A∞ algebras if there are A∞-morphisms f : A1 → A2
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and g : A2 → A1 such that the compositions in either direction are homotopic to the

identities on the tensor algebras:

g ◦ f ' 1T+A∗2 , (B.17)

f ◦ g ' 1T+A∗1 . (B.18)

In particular, (A1,m1) and (A2, µ1) are homotopy equivalent chain complexes.

L∞-algebra A graded vector space L is called an L∞-algebra if there is a derivation

differential

δ : S•+(L∗[2])→ S•+(L∗[2]).

Extracting coefficients gives us that we have a collection of maps

λn : L⊗n → L (B.19)

of degree 3− 2n which are graded symmetric, and satisfy the L∞-associativity axioms: for

each d ≥ 1 we have

∑
k+l=d+1

σ∈Sh2(k−1,l)

ε(σ, ~̀)λk(λl(`σ(1), . . . , `σ(l)), `σ(l+1), . . . , `σ(d)) = 0. (B.20)

In the above σ ∈ Sh2(k, l) denotes a permutation σ ∈ Sk+l such that

σ(1) < · · · < σ(k), σ(k + 1) < · · · < σ(k + l). (B.21)

L∞-morphism Given

(L1, {λn}), (L2, {κn}) (B.22)

two L∞-algebras an L∞-morphism f : L1 → L2 is an algebra homomorphism

f : S•+(L∗2[2])→ S•+(L∗1[2]) (B.23)
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that is also a chain map with respect to the L∞-structures. Extracting coefficients we get

a collection of maps

fn : (L1)⊗n → L2 (B.24)

of degree 1− n satisfying axioms for an L∞-morphism: for each d ≥ 1∑
k+l=d+1

σ∈Sh2(k−1,l)

ε(σ, ~̀)fk(λl(`σ(1), . . . , `σ(l)), `σ(l+1), . . . , `σ(d)) =

∑
n1+···+nk

σ∈Shk(n1,...,nk)
k≥1

1

k!
ε′(σ)κn(fn1(`σ(1), . . . `σ(n1)), . . . fnk(`σ(d−nk+1), . . . , `σ(d))),

(B.25)

and ε(σ, ~̀) and ε′(σ) are suitable signs.

Quasi-isomorphism of L∞-algebras An L∞-morphism {fn}n≥1 from (L1, {λn}) and

(L2, {κn}) is said to be a quasi-isomorphism if

f1 : (L1, λ1)→ (L2, κ2) (B.26)

is a quasi-isomorphism of chain complexes.

Maurer-Cartan elements of L∞-algebras A Maurer-Cartan element γ of an L∞

algebra (L, {λn}) is a degree two element that solves the L∞ Maurer-Cartan equation

∑
n≥1

1

n!
λn(γ, . . . , γ) = 0. (B.27)

An infinitesimal gauge transformation of a Maurer-Cartan element γ is written as

δεγ =
∑
n≥1

1

n!
λn(γ⊗(n−1), ε) (B.28)

where ε is any degree one element of L. Indeed one checks that γ + δεγ solves the Maurer-

Cartan equation to first order in ε.
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Terminology: Algebras vs Categories In the bulk text of this paper we have often

used the terms “algebra” and “category” interchangeably. This is justified because we can

go between the two in a precise manner. Following the discussion in chapter 6 of [KoSo4],

given a linear category with a finite object set S, we can define a unital algebra to be

A = ⊕r,s∈SHom(r, s), (B.29)

with the unit being the direct sum of identity compositions and multiplications given by

compositions of morphisms. Conversely, if a unital algebra A is equipped with commuting

idempotents {Πi}i∈I such that 1A = ⊕iΠi, then we can construct a category C by setting

the object set to be I and letting

Hom(i, j) = ΠiAΠj . (B.30)
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Appendix C

BPS Degeneracies in One-Variable Polynomial

Superpotentials

C.1 Nij ∈ {0, 1} for W ∈ C[X]

We give a proof of the assertion that a Landau-Ginzburg model with target C and W (X)

a Morse polynomial has at most a single soliton between any pair of critical points. For

this we consider the relative homology group

V = H1(C,Re(ζ−1W )→∞;Z) (C.1)

where ζ is a phase not equal to any of the critical phases. V is easily constructed. Supposing

that the degree of W is n, we divide the complex plane C into 2n wedges of equal angle 2π
n

and shade alternating regions R1, . . . , Rn. A basis for V is provided by cycles γa,a+1 that

connect Ra and Ra+1 for a = 1, . . . , n − 1. On the other hand, Picard-Lefschetz theory

says that the homology class of the Lefschetz thimbles Li(ζ) for i = 1, . . . , n − 1 critical

points of W must also form a Z-module basis for V . In particular this implies that if Li(ζ)

connects Ra, Rb and Lj(ζ) connects Rc, Rd then {a, b} 6= {c, d} since otherwise they will

be multiples of each other by ±1 in homology, and thus linearly dependent elements of V .

Considering a point p on the ζ-ray emanating from Wi far out enough, W−1(p) ∩ Li(ζ)

is a pair of points lying in distinct regions Ra, Rb which are connected by Li. Therefore

|Li(ζjie−iε) ∩ Lj(ζjieiε)| is at most one, concluding the proof.
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