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Abstract
In this research paper, we have examined the impact of a gravitomagnetic charge on extracting
energy from a rotating Kerr-Taub-NUT black hole and Kerr-MOG (MOdified Gravity known as
Scalar-Tensor-Vector-Gravity (STVG)) black hole embedded in the magnetic field via the magnetic
Penrose process (MPP). Our findings demonstrate that the gravitomagnetic monopole and MOG
parameters both significantly influence the extraction of energy from a rotating black hole,
exceeding the MPP for the Kerr black hole in terms of energy efficiency. After comparing the results
of this study with the observational data, we were confident that our findings on the amplification
of MPP by MOG and NUT parameters are nearly in line with the observations of ultrarelativistic
particles in the cosmic rays.

1. Introduction

The Kerr spacetime is a vacuum solution to Einstein’s field equation describing gravity around a rotating
compact object that is both stationary and axisymmetric. It is described by two parameters: the total mass
and spin of the collapsed object. Among various axisymmetric vacuum solutions, the Kerr geometry holds
exceptional significance in the field of astrophysics. Recent observations conducted by the Event Horizon
Telescope (EHT) [1] have successfully mapped the central compact radio source within the elliptical galaxy
M87 [2] to a Kerr black hole, achieving an unprecedented level of angular resolution.

Nonetheless, alternative models to the Kerr black hole have not been conclusively dismissed, leading to
suggestions to investigate whether the observed data aligns with other potential explanations for the central
object in M87∗. One proposal, for example, involves considering the potential existence of black holes with
NUT (Newman-Unti-Tamburino) charges as an alternative to the Kerr black hole [3]. The goal of authors of
[4] is to determine whether the presence of the NUT charge can be confirmed or ruled out in the central
compact radio source of M87, an elliptical galaxy. To accomplish this, the observational parameters obtained
from the initial image of M87∗, made available by the EHT collaboration, are utilized. Additionally, a second
vital aim of this study is to impose restrictions on the values of the spin parameter and the NUT parameter of
M87∗ if a non-zero gravitomagnetic monopole does indeed exist [5]. By analyzing the data and observations,
this investigation seeks to provide insights into the potential presence and characteristics of the NUT charge
in M87∗, while also evaluating the influence of the Kerr parameter [6].

If gravitomagnetic monopoles were to exist and exert an influence on the gravitational field, it could have
significant implications for our understanding of spacetime. The Kerr-Taub-NUT spacetime represents a
solution to Einstein’s field equations describing a rotating black hole with a gravitomagnetic monopole
charge. The presence of a gravitomagnetic monopole within the Kerr-Taub-NUT spacetime gives rise to
several intriguing characteristics. Firstly, the spacetime no longer exhibits asymptotic flatness, indicating that
it does not approach a flat spacetime at infinity [7–9]. This departure from asymptotic flatness has
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consequences for the behavior of particles and fields in the vicinity of the black hole. Another consequence is
the emergence of closed timelike curves (CTCs). CTCs represent paths through spacetime that, if followed by
an object, would enable it to travel back to its own past. In the context of the Kerr-Taub-NUT spacetime, the
existence of gravitomagnetic monopoles can create regions where CTCs become possible.

Evidence supporting the existence of dark energy and dark matter in the Universe has been established
through various observations, such as galactic rotation curves and the accelerated expansion of the Universe.
These phenomena can be accounted for by introducing the cosmological constant Λ into the cosmological
solutions of general relativity, along with hidden mass in the form of cold dark matter, constituting the
standard ΛCDM cosmological model. Despite this, there are alternative theories that modify general
relativity to explain these phenomena through intrinsic effects within extended gravity theories.

One such modification is known as Scalar-Tensor-Vector Gravity (STVG), also referred to as MOG
(Modified Gravity), proposed by Moffat [10]. This theory has been applied to various astrophysical
phenomena, including galaxy rotation curves [11, 12], black hole shadows [13, 14], and gravitational
lensing [15–17]. Solutions for non-rotating and rotating black holes in MOG, identified as
Schwarzschild-MOG and Kerr-MOG, respectively, have been derived in [18]. In order to prevent the
breakdown of the MOG theory at short distances, a massive vector field has been incorporated into the
theory, featuring a source charge denoted as Q=

√
αGM. Here, G stands for the gravitational constant,M

represents the mass of the central object, and α signifies the new coupling parameter. This inclusion
introduces an extra repulsive force that gains prominence at the quantum level.

In the STVG theory, the vector field introduces an additional force beyond the scalar field, providing an
extra contribution to the gravitational interaction. The vector field is associated with a preferred frame of
reference and influences the behavior of gravity in a manner distinct from general relativity [10]. The
inclusion of the vector field in STVG allows for modifications to gravitational phenomena beyond what can
be explained by scalar-tensor theories alone. This additional degree of freedom can impact the dynamics of
astrophysical systems, cosmological expansion, and other gravitational phenomena [19, 20]. The α
parameter plays a crucial role in the STVG theory. It is a fundamental parameter that determines the strength
of the additional gravitational forces introduced by the scalar and vector fields in STVG. The presence of a
scalar field introduces a fifth force, which goes beyond the gravitational force described by general relativity.
The magnitude of this additional force is determined by the α parameter [18]. A higher value of α
corresponds to a more potent fifth force, whereas a lower value results in a weaker fifth force. Essentially,
the α parameter governs the degree of interaction, or coupling strength, between the scalar field and
matter.

Energy extraction from rotating black holes is a fascinating concept in theoretical astrophysics and has
been the subject of various scientific studies and approaches. The energy extraction mechanisms (see for
example [21–23] mainly revolve around exploiting the immense rotational energy of a rapidly spinning Kerr
black hole. Two notable mechanisms for the energetics of black holes are the Penrose and Blandford–Znajek
processes.

The Penrose process (PP) is a theoretical concept proposed by Roger Penrose in 1969 see, for details, [24].
It involves extracting energy from a rotating Kerr black hole by taking advantage of the ergosphere which is a
region just outside the event horizon where the space-time is dragged along with the rotation of the Kerr
black hole. In the Penrose process, a particle splits into two parts in the ergosphere of the black hole, with one
part falling into the black hole and the other escaping to infinity. By carefully arranging the initial conditions
of this process, the escaping part can gain more energy than the initial particle had. The energy gain of the
escaping particle comes at the expense of the black hole’s rotational energy, causing it to slow down its
rotation. However, PP has some limitations, such as the difficulty of getting the extracted energy back to a
useful form for practical applications due to the low cross section of the collision process [25].

The Blandford–Znajek process is another valuable theoretical mechanism for extracting energy from
rotating black holes, proposed by Blandford and Znajek in 1977 [26]. This process operates on the principle
of electromagnetic induction in the vicinity of the black hole. In the presence of a magnetic field that is
anchored in the rotating black hole, the rotation of the black hole generates an electric potential difference
across the magnetic field lines. As charged particles, such as ions or electrons, move along the magnetic field
lines, they experience this electric potential difference, which can accelerate them to extremely high energies.
Part of this energy can be extracted and utilized, similar to a generator in an electric power plant.

The Blandford–Znajek process is expected to be more efficient than the Penrose process for extracting
energy from black holes, particularly for supermassive black holes found in the centers of galaxies. The
powerful jets observed in active galactic nuclei (AGN) and quasars are believed to be the result of this
process, where energy is extracted and funneled away in the form of relativistic jets of particles and radiation.
During the three and half decades since its theoretical discovery, the Blandford–Znajek process of extracting
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the rotational energy of black holes has become one of the foundations for explaining highly energetic
phenomena in relativistic astrophysics.

It is important to underline that both the Penrose process and the Blandford–Znajek process are highly
theoretical and have not been observed directly. The extreme conditions near rotating black holes make them
difficult to study in detail, and their practical applications, if any, remain speculative. Nonetheless, exploring
these mechanisms provides valuable insights into the behavior of black holes and the potential sources of
energy in the Universe.

Since the original PP is not very efficient for its astrophysical applications for powering the central engine
of highly energetic quasars and AGNs it was proposed in [27, 28] that in the presence of a test magnetic field
in the hole vicinity of the magnetic Penrose process (MPP) occurs where the weak magnetic field could
provide the energy required for a fragment to ride on negative energy orbit thereby overcoming the stringent
velocity constraint of the original PP. In this sense, MPP is analogous to the Blandford–Znajeck (BZ)
mechanism in which the rotational energy of the Kerr black hole is extracted through a purely
electromagnetic process. Though both processes use the magnetic field as a catalyzation to extract rotational
energy from the Kerr black hole, their kernel is quite different in spirit. For the former magnetic field
provides the threshold energy for a particle to get into a negative energy orbit so that the other fragment goes
out with enhanced energy while for the latter it generates an electric potential difference between the
equatorial plane and the polar region, and it is the discharge of which that drives the energy flux out of the
hole. In other words, MPP is still rooted in the spacetime geometry while BZ is essentially driven by
electromagnetic interaction [29].

It was demonstrated that the MPP operates in three efficiency regimes, namely low, moderate, and ultra,
depending on the magnetization and charging of spinning black holes in an astrophysical scenario. In ultra
regime, MPP could power engines of such phenomena as ultra-high-energy cosmic rays, relativistic jets, fast
radio bursts, quasars, AGNs, etc [21]. The distinguishing feature of the MPP is its super high efficiency
exceeding 100 per cent (which was established in mid 1980 s for discrete particle accretion) of extraction of
rotational energy of a rotating black hole electromagnetically for a magnetic field of milli Gauss order.
Blandford–Znajek mechanism (BZ) could be treated as a high magnetic field limit MPP requiring a
threshold magnetic field of order 104 G [30].

Motivated by our preceding studies [25, 31] on the analogue of gravitational synchrotron radiation by a
massive particle rotating black hole in MOdified Gravity (MOG) known as Scalar-Tensor-Vector-Gravity
(STVG) and classical Penrose process from Kerr-MOG and Kerr-Taub-NUT black holes we study here MPP
on energy extraction from these black holes.

The paper is organized in the following way. In the next section 2 we study the dynamics of charged
particles around the Kerr-Taub-NUT black hole in an asymptotically uniform magnetic field. Section 3 is
devoted to the MPP of energy extraction from the Kerr-MOG and Kerr-Taub-NUT black holes. The last
section 4 is devoted to the summary and discussion of the main results.

2. Dynamics of charged particles around the Kerr-Taub-NUT black hole in an
asymptotically uniformmagnetic field

The aim of this section is to examine the motion and dynamics of the charged particles orbiting around a
Kerr-Taub-NUT black hole embedded in an asymptotically uniformWald magnetic field.

2.1. Background spacetime
In the Boyer-Lindquist coordinates, the spacetime metric that characterizes the rotating Kerr-Taub-NUT
black hole is presented as follows, see e.g. [32]

ds2 =− 1

Σ

(
∆− a2sin2θ

)
dt2 +

Σ

∆
dr 2 +Σdθ2 +

2

Σ

[
∆χ − a(Σ+ aχ) sin2θ

]
dtdϕ

+
1

Σ

[
(Σ+ aχ)2 sin2θ−χ2∆

]
dϕ2 , (1)

where the parameters Σ,∆, and χ are determined by the definition of the aforementioned variables

Σ= r 2 +(l+ acosθ)2 ,

∆= r 2 − 2Mr− l2 + a2 ,

χ = a sin2 θ− 2lcosθ . (2)
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Figure 1. The relationship between the maximum spin of the black hole and the dimensionless gravitomagnetic charge l∗ using
the equation a∗max =

√
1+ l2∗.

The quantitiesM, a, and l correspond to the total mass, the specific angular momentum of the black hole,
and the gravitomagnetic NUT parameter of the central object, respectively. In [7] the Kerr-Taub-NUT metric
has been described incorporating a non-zero constant denoted as c. This constant determines the position of
the singularity. When c is equal to 1, the singularity is situated at θ = π, while for c=−1, it is located at
θ= 0. For all other values of c, both singularities coexist. To establish symmetry between the north and south
poles, the value of c is specifically chosen as 0. This decision is motivated by the observation that the
Kerr-Taub-NUT metric demonstrates asymptotic flatness at spatial infinity [33], following the principles
outlined by [34]. Therefore, by setting c equal to 0, we maintain the symmetrical relationship between the
north and south poles in this particular case.

The equation∆= 0 determines the locations of the horizons, specifically at r± =M+
√
M2 + l2 − a2

and in most cases, r+ = rh represents the outer horizon of the black hole, commonly referred to as the event
horizon. The point at which the time-translation Killing vector ξ(t) = ∂

∂t becomes null is known as the static
limit. The characteristics of the black hole’s ergosphere can be explained as follows [25, 35]

re =M+
√
M2 + l2 − a2 cos2 θ . (3)

The equations provided above reveal that at the poles (θ= 0 or π), the radius of the ergoregion aligns with
the event horizon. However, on the equatorial plane (θ = π/2), the ergoregion’s radius is affected by both the
NUT parameter and the mass, resulting in re =M+

√
M2 + l2. In contrast, within the Kerr spacetime, the

ergoregion radius at θ = π/2 is given by re = 2M. By setting the denominator of the metric component gtt to
zero, we can deduce the following expression [4]

r= 0 , θ = cos−1 (−l/a) . (4)

In the Kerr-Taub-NUT spacetime, the singularity is located at this point [4, 35]. It is important to note that
spacetime becomes free from singularities when l> a, indicating the presence of a regular black hole. On the
other hand, for l⩽ a, the Kerr-Taub-NUT spacetime describes a black hole with |a|⩽

√
M2 + l2 and a naked

singularity when |a|>
√
M2 + l2 . For simplicity, we will frequently utilize the dimensionless parameters

a∗ = a/M and l∗ = l/M. In theory, for a Kerr-Taub-NUT black hole, the values of a∗ and l∗ can be arbitrarily
large (subject to the condition |a∗|⩽

√
1+ l2∗). However, in this study, we assume that the gravitomagnetic

charge values are constrained to l∗ ⩽ 1 for selected black hole candidates. This restriction also limits the
range of the black hole’s spin to |a∗|⩽ 2. Figure 1 illustrates the correlation between the maximum spin of
the black hole and the dimensionless gravitomagnetic charge l∗. It is commonly understood that a Kerr black
hole has a maximum spin of a∗max = 1, but in the presence of a gravitomagnetic charge, this maximum spin
increases to a∗max =

√
1+ l2∗.

2.2. Circular orbits
In this section, we are specifically studying the motion of a charged particle. The particle has a mass of m and
an electric charge of q. This motion takes place in the presence of a Kerr-Taub-NUT gravitational field, which
possesses axial symmetry. Moreover, there is a magnetic field surrounding the black hole, which is
distributed uniformly and aligned parallel to the black hole’s axis of rotation. The behavior of charged
particles interacting with magnetic fields remains fundamentally unchanged despite the curvature of
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spacetime. The gravitational field in curved spacetime alters the trajectory of a charged particle, causing
deviations from a straight path.

A Killing vector is a vector field on a manifold that generates an isometry, representing a symmetry of the
spacetime. It captures the conserved quantities associated with the symmetries of the spacetime [36]. In this
spacetime, we will take advantage of the presence of a timelike Killing vector ξµ(t) and a spacelike Killing

vector ξµ(ϕ). These vectors play a crucial role in maintaining the stationarity and axial symmetry of the
geometry, satisfying the Killing equations [37, 38]

∇µξν +∇νξµ = 0 , (5)

where ξµ represents the components of the Killing vector and∇µ denotes the covariant derivative. The
conserved quantities associated with Killing vectors are derived by applying Killing’s equation to the
equations of motion of particles or fields in the spacetime. The presence of stationarity and axial symmetry
in the Kerr-Taub-NUT black hole spacetime allows for the selection of the vector potential for the weak
magnetic field, as discussed in. This vector potential, which satisfies the vacuumMaxwell equations with a
Lorentz gauge condition (Aα

;α = 0), can be represented as a linear combination of the spacetime Killing
vectors [38]

Aµ = C1ξ
µ
(t) +C2ξ

µ
(ϕ) . (6)

Due to the weak nature of the magnetic field, which can be characterized as a test field, we have the liberty to
freely select the magnetic field configuration. Additionally, the parameters C1 and C2 can be readily derived
by considering the asymptotic properties and ensuring the electrical neutrality of the source (appendix B), as
well as the uniformity of the external magnetic field [39]

C1 = aB , C2 =
B

2
. (7)

Consequently, the non-zero components of the four-vector potential for the asymptotically uniform
magnetic field can be expressed as follows [21]

At =
B
2
(gtϕ + 2agtt) , Aϕ =

B
2
(gϕϕ + 2agtϕ) . (8)

The presence of the rotation parameter ‘a’ leads to terms that contribute to the Faraday induction, thereby
generating an electric potential and producing an induced electric field [38]. The resulting potential
difference between the black hole horizon and infinity can be described as [39, 40]

∆ϕ = ϕH −ϕ∞ =
Q− 2aMB+ 2lMB

2M
. (9)

As a result, charged particles are selectively accreted into the rotating black hole. This process resembles the
phenomenon observed in the presence of a rotating conductor immersed in a magnetic field. Therefore, it is
necessary to rephrase the expressions (8) that represent the non-zero covariant components of the
four-vector potential [41–43]

At =
B
2
(gtϕ + 2agtt)−

Q

2M
gtt −

Q

2M
,

Aϕ =
B
2
(gϕϕ + 2agtϕ)−

Q

2M
gtϕ . (10)

In the context of Kerr-Taub-NUT spacetime, the maximum value of the induced black hole charge,
denoted as Q ([39]), corresponds to 2(a− l)BM when accounting for the influence of the induced electric
charge Q on the black hole. Consequently, the electromagnetic potential is reduced compared to the Wald
charge

At =
B
2
(gtϕ + 2lgtt − 2(a− l)) , Aϕ =

B
2
(gϕϕ + 2lgtϕ) . (11)

It is crucial that, even under these restrictive circumstances, the At component remains nonzero, leading to a
potentially powerful acceleration effect near massive black holes situated within intense magnetic fields
([23]).
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If we disregard the effects of radiation-reaction force, we can determine the equation of motion
governing a massive particle as follows [21, 30]

Duµ

dτ
=

q

m
Fµνu

ν . (12)

An alternate way to express this is

ẍµ +Γµ
νλẋ

ν ẋλ =
q

m
Fµν ẋ

ν , (13)

resulting from the Lagrangian given by

L=
1

2
gµν ẋ

µẋν +
q

m
Aµẋ

µ . (14)

The given expressions pertain to a test particle, withm representing its mass and ẋµ denoting its
four-velocity. An anti-symmetric tensor is defined as Fµν = ∂µAν − ∂νAµ.

The conservation of the generalized four-momentum Pµ =muµ + qAµ implies that its two components,
which correspond to the energy and angular momentum of the particle, are preserved. These components
can be linked to the Killing vectors in a particular manner

ξµ(t)
Pµ
m

= gtt
dt

dτ
+ gtϕ

dϕ

dτ
+

q

m
At =−E ,

ξµ(ϕ)
Pµ
m

= gϕϕ
dϕ

dτ
+ gtϕ

dt

dτ
+

q

m
Aϕ = La , (15)

where E = E/m and La = L/m.
The equation for Hamilton–Jacobi of a particle with massm can be expressed as [44]

gµν
(
∂S
∂xµ

− qAµ

)(
∂S
∂xν

− qAν

)
=−m2 . (16)

The solution to the above equation is related to the energy, E, and angular momentum, L, of the test particle.
It can be decomposed as S =−Et+ Lϕ+Sr +Sθ. By substituting this solution into equation (A.6), one
obtains

grr
(
∂Sr

∂r

)2

+ gθθ
(
∂Sθ

∂θ

)2

+ gtt (E+ qAt)
2 − 2gtϕ (E+ qAt)(L− qAϕ)+ gϕϕ (L− qAϕ)

2
=−m2 . (17)

By performing certain basic algebraic calculations, we get the ensuing expression(
E +

q

m
At

)2
− 2ω

(
E +

q

m
At

)(
La −

q

m
Aϕ

)
+

gtt
gϕϕ

(
La −

q

m
Aϕ

)2
+
(
grrṙ

2 + gθθ θ̇
2 + 1

)
ψ = 0 . (18)

To put it differently, Sθ and Sr represent functions that depend on θ and r, respectively, and the conditions
are satisfied when ω =−gtϕ/gϕϕ is greater than zero and ψ = gtt − g2tϕ/gϕϕ is less than zero.

Based on the given conditions of a massive particle in a circular orbit with zero radial velocity and zero
angular velocity, it can be observed that the motion of the particle is confined within a certain range. This
can be further understood by studying the effective potential as described in [21, 45]

Veff =− q

m
At +ω

(
La −

q

m
Aϕ

)
+

[
(−ψ)

((
La − q

mAϕ

)2
gϕϕ

+ 1

)] 1
2

. (19)

Meeting the requirement of Veff = E, which is a widely recognized method for comprehending the behavior
of test particles in the vicinity of black holes, can be achieved through effective potential. The effective
potential plays a critical role in determining the allowed orbits around a black hole, making it of utmost
importance. By examining the shape of the effective potential, we can acquire a comprehensive understanding
of the particle’s motion characteristics and the stability of its orbits. In most cases, circular orbits manifest at
the minima of the effective potential. The radius of a circular orbit is determined by the exact position of the
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minimum within the effective potential. By determining the minimum value of the effective potential, we
can establish the position of the innermost stable circular orbit (ISCO). The ISCO is the smallest possible
path where a massive particle can maintain a stable circular trajectory without being drawn into the black
hole or ejected into space. To simplify the analysis, we can focus on the movement of a massive particle in the
equatorial plane, which means the effective potential only depends on the radial coordinate, denoted as
Veff(r). Using the conventional approach, we can find the position of the ISCO by meeting the following
criteria: the effective potential is equal to the particle’s energy (Veff(r) = E), the derivative of the effective
potential for r is zero (V ′

eff(r) = 0), and the second derivative of the effective potential concerning r is less
than or equal to zero (V ′ ′

eff(r)⩽ 0). It is worth noting, however, that computing equation (19) analytically is
extremely challenging. Nevertheless, it is crucial to emphasize the significance of the ISCO in astrophysical
observations, as it can greatly impact the emission of radiation and the behavior of matter that enters the
black hole. Furthermore, studying the ISCO can provide valuable insights into the characteristics of black
holes and serve as a platform for investigating both general relativity and alternative theories of gravity.

To provide a more straightforward explanation, the behavior of particles near the Kerr-MOG spacetime
with a magnetic field is described in appendix A.

3. Magnetic Penrose process

Now, let us consider a situation where particle 1, which could possess a charge, undergoes decay near the
horizon in the equatorial plane, resulting in the formation of two charged fragments 2 and 3. By adhering to
the principles of energy and angular momentum conservation after the decay process, we can represent this
phenomenon in the following manner

E1 = E2 + E3 , m1ṙ1 =m2ṙ2 +m3ṙ3 , (20)

L1 = L2 + L3 , 0=m2θ̇2 +m3θ̇3 , (21)

q1 = q2 + q3 . (22)

If the dot represents differentiation to the proper time of the particle, and particle 2 has negative energy
compared to infinity, then particle 3 obtains energy E2 = E1 − E2 that is greater than the energy of incident
particle 1. The absorption of negative energy into the black hole leads to an extraction of its rotational
energy. Now, we once again analyze the circular motion of a massive particle, which has a four-velocity
denoted as ẋµ = ṫ(1,v,0,Ω), where v= dr/dt and Ω= dϕ/dt. By making use of the normalization of the
four-velocity, [31, 45] calculate the angular velocity of particle 1 as

Ω1 =
−
(
u2t + gtt

)
gtϕ + ut

√
(−ψ)(u2t + gtt)gϕϕ

u2t gϕϕ + g2tϕ
. (23)

In this context, the quantity ut =−(E1 + q1Φt)/m1, represents a specific parameter. Moreover, the angular
velocity of the divided fragments is denoted as Ω2 =Ω+ and Ω3 =Ω−, where the symbols Ω± are defined
as [46]

Ω± =− gtϕ
gϕϕ

±

√
− ψ

gϕϕ
. (24)

By applying the principles of conservation laws, it is possible to demonstrate that the angular velocities of
particles at the splitting point obey a certain relationship

m1u
ϕ
1 =m2u

ϕ
2 +m3u

ϕ
3 . (25)

Using equation (15), we obtain the following expression

uϕi =−
(
Ei +

qi
mi

At

)
Ωi

Xi
, (26)

where Ei = Ei/mi and Xi = gtt +Ωi gtϕ. As a consequently, equation (25) can be expressed as
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m1

(
E1 +

q1
m1

At

)
Ω1

X1
=m2

(
E2 +

q2
m2

At

)
Ω2

X2
+ m3

(
E3 +

q3
m3

At

)
Ω3

X3
. (27)

Following various algebraic manipulations, the energy of the particle that escapes can be obtained in the
following representation

E3 = Ξ (E1 + q1At)− q3At , (28)

where

Ξ =
Ω1 −Ω2

Ω3 −Ω2

X3

X1
, Xi = gtt +Ωi gtϕ . (29)

The efficiency of the MPP can be defined by the equation ηMPP = E3/E1 − 1, where E3 represents the
energy of the outgoing particle and E1 represents the energy of the incident particle. Using equation (28), we
can write the energy efficiency of the MPP as

ηMPP = Ξ − 1+(q1Ξ − q3)
At

E1
. (30)

Plugging in the expressions for (Ω1,Ω2,Ω2) and (X1,X3) into equation (29), we obtain the following result

Ξ =
1

2

(
1+

√
1+

gtt
u2t

)
, (31)

where, it is important to note that the velocity component ut is connected to the energy E through the
expressionmut =−(E+ qAt), and performing some fundamental algebraic operations, we can express the
energy efficiency for the MPP as follows

ηMPP =
1

2

(√
1+

gtt
u2t

− 1

)(
1+

q1
E1

At

)
+

q1 − q3
E1

At . (32)

3.1. A comparison between Kerr-MOG and Kerr-Taub-NUT for two different energy extractionmodels
We also know that there is another type of energy extraction model, well-known as the Blandford–Znajek
mechanism [26]. However, the MPP and the Blandford–Znajek mechanism are different mechanisms for
extracting energy from a rotating black hole. The MPP involves the interaction between the black hole’s
magnetic field and the plasma around it ([30]). In contrast, the Blandford–Znajek mechanism involves the
extraction of energy from the black hole’s spinning magnetic field. Both mechanisms are related to the black
hole’s rotation and magnetic field, but they operate in different ways and have different efficiencies [47].

Even though these ideas exist, it is feasible to compare these two energy extraction models with each
other under certain conditions. We will attempt to complete this task in the following subsubsection.

3.1.1. Classification of magnetic Penrose process
The efficiency of the MPP in extracting energy from a black hole varies depending on the strength of the
magnetic field and can be classified into three regimes with different levels of energy efficiency. These
regimes range from low to moderate to ultra-high.

If there is no magnetic field present, the MPP reverts back to the ordinary Penrose process, which has a
lower limit for maximum efficiency. So, this is called the low regime of the MPP, and it can be expressed as

ηlowMPP = η
(Kerr−Taub−NUT)
PP =

1

2

(√
1+ gtt − 1

)
. (33)

The absence of a magnetic field is depicted in figure 2, and it illustrates that the maximum efficiency of
energy extraction from the Kerr-Taub-NUT black hole can reach approximately∼036% for a specific value
of the dimensionless gravitomagnetic charge. By contrast, if the gravitomagnetic charge of a black hole is

absent, then we can return to the original Penrose process, ηlowMPP = η
(Kerr)
PP =

(√
2− 1

)
/2≈ 0.207 or 20.7%

[24, 45]. This value corresponds to the Kerr black hole that is extremely rotating.
If each particle is charged (q1 ̸= 0), the efficiency can be computed using equation (32) in its entirety.

However, in the presence of magnetic fields affecting elementary particles, electromagnetic forces take

8
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Figure 2. In the absence of a magnetic field, the extent to which a black hole can achieve its maximum energy efficiency is dictated
by how it relates to the dimensionless gravitomagnetic charge l/M (represented by the blue solid line) and the STVG parameter α
(represented by the red solid line).

precedence within the system, indicating that
∣∣ q
mAt

∣∣≫ ∣∣mut
∣∣. By linking this observation to equation (32), it

becomes feasible to streamline the expression into the following form

ηmod
MPP ≈

q3
q1

− 1+ ηlowMPP ≈
q3
q1

+
1

2

(√
1+ gtt − 3

)
. (34)

The moderate regime of the MPP is in operation when q3 is greater than q1, effectively counteracting the
gravitational electric field produced by a black hole. If we consider two particles with charges q3 and q1,
respectively, and the ratio q3/q1 is an integer, it aligns with the principle of charge quantization. From a
theoretical standpoint, in the vicinity of a black hole undergoing the MPP, the presence of multiple protons
can result in various interactions, including proton-proton scattering and particle-antiparticle annihilation.
These interactions can lead to the generation of secondary particles or the alteration of the initial proton
trajectories. Secondary particles produced in these interactions, such as proton-proton scattering or
particle-antiparticle annihilation, typically possess charge values that are integer multiples of the elementary
charge. Consequently, their charges can be positive, negative, or zero, contingent upon the specific particles
involved and the conservation of charge in the given interaction. For instance, in proton–proton scattering,
the resulting secondary particles may include positively charged particles like protons or positively charged
pions (π+), as well as negatively charged particles like negatively charged pions (π−) or antiprotons. All
these charges correspond to integer multiples of the elementary charge.

This moderate regime of the MPP bears a direct resemblance to the well-known Blandford–Znajek
mechanism. In both instances, the driving force is a quadrupole electric field resulting from the twisting of
magnetic field lines caused by the black hole’s frame-dragging effect [26]. It is crucial to mention that the
efficiency of both the Blandford–Znajek mechanism and the moderate regime of the MPP cannot achieve
excessively high levels due to inherent limitations imposed by the surrounding plasma’s overall neutrality
near the black hole. In the moderate regime of the MPP, it closely approximates the Blandford–Znajek
mechanism, which clarifies why numerical simulations of the process do not display exceptionally high
efficiency [47, 48].

The MPP has the potential for a third stage that is extremely efficient and deserves close investigation,
leading to important predictions [23]. When particle 1 has no charge (q1 = 0) and an energy of E1 =m1,
then splits into two fragments with electrical charges, it becomes apparent that the efficiency equation (32)
can be simplified as

ηultraMPP = ηlowMPP −
q3
m1

At =
1

2

(√
1+ gtt − 1

)
− q3

m1
At . (35)

The efficiency of the mechanical Penrose process, indicated by ηlowMPP in equation (35), depends entirely on
geometric factors. In the absence of a gravitomagnetic charge, its value varies from 0 when a= 0 to 0.207
when a= 1. Additionally, when the spin and magnetic field are aligned (aB > 0), it is evident that the At

component of the vector potential assumes negative values above the horizon. For elementary particles like
electrons and protons, which typically have high charge-to-mass ratios (q/m), the term−q3At/m1 has the
most significant impact on equation (35). Consequently, in this specific scenario, the expression for
efficiency can be reformulated as follows

9
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Figure 3. Efficiency in the ultra-high regime of the MPP is observed for two types of black holes: (above) a black hole with a
stellar mass of 10 times the solar mass; and (bottom) a supermassive black hole weighing 109 times the solar mass. The efficiency
is evaluated with respect to the original Penrose process for a black hole with an extremal spin, indicated by the dashed horizontal
line. The colored curves represent different gravitomagnetic charges.

ηultraMPP ≈− q3
m1

At . (36)

If the alignment between spin and magnetic field exists, the escaping particles must have charges in opposite
directions (aB < 0), which can be significantly large for elementary particles. In this case, q3 must be
negative to achieve positive energy efficiency. Consequently, the MPP enters a state of ultra-high efficiency,
resulting in the transfer of exceptionally high energy to the escaping particle. Figure 3 illustrates the
assessment of the MPP’s effectiveness in the ultra-high regime for two categories of black holes: a stellar mass
black hole weighing ten times that of the Sun and a supermassive black hole weighing 109 times that of the
Sun. The efficiency evaluation is based on a comparison with the original Penrose process for a black hole
with maximum spin, indicated by the dashed horizontal line. The various gravitomagnetic charges are
represented by the colored curves. The results we have obtained align with the observations made. The
following section will demonstrate how our findings correspond with the observed words.

By using the MPP on the beta-decay of a neutron in the presence of a standard supermassive black hole
(SMBH) with a mass of 109M⊙ and a magnetic field strength of 104 G, it is possible to observe the release of
a proton from the extremely rotating black hole (Kerr-Taub-NUT) with a certain amount of energy

Ep+ = L∗
(q
e

)( m

mp+

)−1( B
104G

)(
M

109M⊙

)
eV , (37)

where L∗ = 1.62× 1020(l+
√
1+ l2∗) and, l∗—the dimensionless NUT parameter. Figure 4 presents the

correlation between proton energy and the magnetic field for different black hole masses and, in figure 5, it
has been illustrated that the relationship between proton energy and magnetic field for different values of
gravitomagnetic charge.

The MPP and the Blandford–Znajek mechanism share commonalities, but they differ in terms of the
physical processes involved and the areas in which they are applied. The MPP operates by causing particle
splitting near the event horizon, whereas the Blandford–Znajek mechanism relies on interactions with
magnetic fields. The MPP has primarily been studied in relation to phenomena like gamma-ray bursts and
cosmic rays [30], while the Blandford–Znajek mechanism is commonly used to explain active galactic nuclei
AGN and quasars, which exhibit powerful jets originating from supermassive black holes located at galaxies’
centers. In conclusion, despite their shared characteristics, these processes possess distinct mechanisms and
applications.
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Figure 4. The energy of a proton following neutron beta-decay relies on the magnetic field and different levels of the supermassive
black hole’s mass. The graph illustrates the outcomes of the Kerr-Taub-NUT black hole and Kerr-MOG black hole using solid and
dashed lines, respectively. Conversely, the results for the Kerr black hole are displayed as dotted lines.

Figure 5. Dependence of the energy of a proton after neutron beta-decay from the magnetic field for different values of
dimensionless gravitomagnetic charge.

The MPP finds an intriguing application in elucidating the origins and manufacturing process of
ultra-high-energy cosmic rays (UHECR) [49, 50]. The recent pieces of evidence indicate that UHECRs
consist of a combination of various particles, whereas earlier measurements indicated a prevalence of proton
flow at high energies ([51]). Prominent cosmic ray observatories such as the Pierre Auger Observatory have
detected cosmic rays with the highest energy levels originating from beyond our galaxy ([52]). The primary
difficulty encountered when investigating ultra-high-energy cosmic rays is their remarkably low occurrence.
The frequency of UHECRs possessing an energy surpassing 1020 eV is roughly one particle per square
kilometer per century. To tackle this challenge, a novel project known as the Cosmic Rays Extremely
Distributed Observatory has been suggested, seeking to harness the detection capabilities of countless mobile
smartphones worldwide [53]. The possibility of increasing the speed of UHECRs by subjecting them to
shock acceleration in the plasma present in relativistic jets exists, but it is uncertain whether this occurs
naturally due to the considerable distance required for acceleration and potential losses during interaction
within and outside the jet. In contrast, [21] have already utilized a different method called the MPP approach
to understanding ultra-high-energy cosmic rays, which does not require a large acceleration region. Instead,
their study focuses on the beta-decay of a neutron that is not bound near a supermassive black hole
surrounded by an external magnetic field [54]. The MPP can generate protons with energies exceeding
1020 eV by exploiting neutron beta-decay in the ergosphere of a supermassive black hole weighing 109 times
the mass of the Sun and possessing a magnetic field of 104 Gauss. We can conclude that the findings from our
observations are illustrated in figures 4 and 5, which was generated specifically for the Kerr-Taub-NUT black
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Figure 6. The constraints on the mass and magnetic field of the black hole are responsible for accelerating protons with different
energy levels. On the one hand, the solid lines in the upper panel represent the calculated constraints for the Kerr-Taub-NUT
black hole, while the dashed lines represent those for the Kerr-MOG black hole. On the other hand, the dotted lines in the center
of the bottom panel correspond to the constraints for the Kerr black hole. When comparing the constraints of the
Kerr-Taub-NUT black hole to those of Kerr, it becomes evident that the gravitomagnetic charge of the black hole has a significant
effect. The energy levels include 1020 eV (dashed and solid black), GZK-cutoff 1019.7eV (dashed and solid red), ankle 1018.5eV
(dashed and solid green), and knee 1015.5eV (dashed and solid blue). The four vertical bars, each with a different color, indicate
potential supermassive black hole candidates such as NGC4945 ([58]), SgrA∗ ([59]), NGC4151 ([60]), PKS 1830-211 ([61]),
NGC1052 ([54]), NGC1097 ([62]), M87∗ ([63]), NGC5866 ([64]) and M77([65]). The constraints for these candidates have been
determined through observation. We opt for the abbreviation BZ to denote the Blandford–Znajek mechanism of relativistic jets,
with a supermassive black hole mass of 109M⊙ and a magnetic field of 104 − 107G. In this scenario, the STVG parameter (α) and
the dimensionless gravitomagnetic charge are both set to 0.5.

hole and these results are consistent with recent observations. These primary ultra-high-energy cosmic rays
offer valuable insights into the mass, magnetic field, and proximity of the presumed source black hole [55].
Intriguingly, the knee energy of the cosmic ray spectrum around 1015.5 eV aligns with the maximum energy
attainable through the MPP in the supermassive black hole SgrA∗ located at the center of our galaxy [56, 57].
It is crucial to explore the connections between observed cosmic rays and nearby supermassive black holes
that possess predicted mass and magnetic field characteristics according to the MPP.

The acceleration of protons with varying energy levels is influenced by the restrictions imposed on the
mass and magnetic field of the black hole. The left panel of figure 6 illustrates the limitations calculated for
the Kerr-Taub-NUT black hole, while the right panel depicts those for the Kerr black hole. A comparison of
the two reveals that the gravitomagnetic charge of the black hole has a significant impact. The energy levels
shown in the figure range from 1020eV (dashed and solid black) to GZK-cutoff ([66]) 1019.7 eV (dashed and
solid red), ankle 1018.5eV (dashed and solid green), and knee 1015.5eV (dashed and solid blue). The four
vertical bars, each in a different color, represent potential supermassive black hole candidates like NGC4945,
SgrA∗, NGC4151, PKS1830− 211, NGC1052, NGC1097, M87∗, NGC5866 and M77, whose constraints have
been determined through observations ([58, 67–69]). The source identified as BZ aligns with the
Blandford–Znajek mechanism of relativistic jets, with a supermassive black hole mass of 109M⊙ and a
magnetic field of 104 − 107G.

4. Conclusions

Our research focuses on energy extraction from black holes based on the circular motion of massive test
particles near the Kerr-Taub-NUT and Kerr-MOG black holes, where it has been observed that these
particles do not follow a geodesic line due to the presence of a magnetic field. This highlights the impact of
magnetic fields on particle motion around black holes. The trajectory of a charged particle is altered by the
gravitational field in curved spacetime, resulting in deviations from a standard path.

12



New J. Phys. 26 (2024) 023060 H Alibekov et al

We have explored the MPP in this context, analyzing the efficiency of energy extraction by applying
conservation laws to particle parameters before and after decay near a black hole. Relativistic charged
particles like electrons and protons experience synchrotron radiation loss in the presence of a magnetic field,
leading to significant changes in their energy and angular momentum. This allows for a comparison with
other energy extraction models, including the Blandford–Znajek mechanism. To begin with, our initial focus
was to analyze the MPP classification based on varying levels of energy efficiency. Through our study, we
demonstrated that these three categories of magnetic Penrose processes yield noteworthy outcomes that are
comparable to observational findings. We can offer insights to evaluate the entire process of our work:

(a) In figure 2, it can be seen that in the absence of a magnetic field, the Kerr-Taub-NUT black hole can
achieve a maximum energy extraction efficiency of about∼ 36% for a specific value of the
dimensionless gravitomagnetic charge. On the other hand, if the black hole does not have a
gravitomagnetic charge, we can go back to the original Penrose process, where the efficiency ηPP is
approximately 0.207, corresponding to around 20.7%. This efficiency value is for an extremely rotating
Kerr black hole.

(b) When a magnetic field is present, the moderate regime of the magnetic Penrose process occurs when the
charge q3 is greater than q1, effectively opposing the gravitational electric field generated by a black hole.
This requires certain conditions, namely, when magnetic fields are present for elementary particles, the
electromagnetic forces become dominant within the system, indicating that the product of the
charge-to-mass ratio ( q

m ) and the component of the magnetic vector potential (At) is much larger than
the product of the particle’s mass (m) and the component of the four-velocity vector in the time
direction (ut).

(c) It is important to note that equation (36) is crucial in understanding the behavior of the MPP in the
ultra-high efficiency regime. This equation provides insight into the transfer of energy to the escaping
particle and allows us to assess the effectiveness of the process. Figure 3 provides a visual representation
of the assessment of the MPP’s efficiency in the ultra-high regime for different types of black holes.
The two categories of black holes considered are a stellar mass black hole, which weighs about 10 times
that of the Sun, and a supermassive black hole, which weighs approximately 109 times that of the Sun.
Based on our observations, it can be inferred that the data presented in figure 6 pertains to the
Kerr-Taub-NUT black hole versus to Kerr-MOG black hole and the results obtained from our analysis
align with the observations made. They demonstrate that the gravitomagnetic charge and MOG
parameter can amplify the MPP in achieving a state of ultra-high efficiency ([70]). This assessment of
the MPP’s effectiveness in the ultra-high regime in the presence of the gravitomagnetic charge and
MOG parameter provides valuable insights into the behavior of black holes and their interaction with
surrounding particles. It deepens our understanding of the mechanisms at play in these extreme
astrophysical systems.

(d) The mass and magnetic field constraints of the black hole are responsible for accelerating protons at
various energy levels. However, it is important to note that, in figure 6, the left and right sides of the
upper panel specifically display calculated constraints for the Kerr-Taub-NUT black hole and Kerr-MOG
black hole, while the results in the center of the bottom panel pertain to the Kerr black hole. Comparing
the constraints of these two types of black holes reveals the significant influence of the gravitomagnetic
charge. The energy levels considered in the analysis include 1020eV (represented by dashed and solid
black lines), GZK-cutoff ([71]) 1019.7eV (represented by dashed and solid red lines), ankle 1018.5eV
(represented by dashed and solid green lines), and knee 1015.5eV (represented by dashed and solid blue
lines). Four colored vertical bars indicate potential supermassive black hole candidates such as
NGC4945, PKS1830− 211, SgrA∗, NGC4151, NGC1052, NGC1097, M87∗, NGC5866 and M77 ([54,
60, 63, 67, 72, 73]), with their respective constraints determined through observations. Additionally, the
source referred to as BZ aligns with the Blandford–Znajek mechanism of relativistic jets, characterized
by a supermassive black hole mass of 109M⊙ and a magnetic field ranging from 104 to 107G

The MPP has primarily been examined in connection with phenomena such as gamma-ray bursts and
cosmic rays, while the Blandford–Znajek mechanism is frequently employed to elucidate AGN and quasars.
These objects demonstrate formidable jets originating from supermassive black holes situated at the centers
of galaxies ([51]). In the presence of gravitomagnetic charge and MOG parameter, the MPP is capable of
producing protons with energy levels surpassing 1020eV by utilizing the ergosphere of an enormous
supermassive black hole, which is 1 billion times heavier than the Sun and possesses a magnetic field strength
of 104 Gauss. This process makes use of neutron beta decay. Figure 4 illustrates this phenomenon and it
serves as a crucial method for obtaining insights into the mass, magnetic field, gravitomagnetic charge, and
proximity of the assumed source black hole. Additionally, this offers valuable information concerning the
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primary ultra-high-energy cosmic rays. Examining the links between observed cosmic rays and neighbouring
supermassive black holes, as per the MPP, holds significant importance. In addition, the Kerr-MOG
spacetime exhibits higher energy extraction efficiency compared to the Kerr-Taub-NUT spacetime. This
conclusion is supported by the evidence presented in figure 6, which demonstrates that the magnetic field
strength surrounding the Kerr-MOG black hole is stronger in comparison to that surrounding
Kerr-Taub-NUT and Kerr black holes. This graph serves as the main basis for drawing this conclusion, and
additionally, the paper strives to provide further support for this relationship across potential supermassive
black hole candidates.
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Appendix A. Kerr-MOG black hole

In the Boyer–Lindquist coordinates, the exterior spacetime of the Kerr-MOG black hole is described by the
line element [18]:

ds2 =−∆

Σ

(
dt− a sin2 θdϕ

)2
+Σdθ2 +

Σ

∆
dr 2 +

sin2 θ

Σ

[(
r 2 + a2

)
dϕ− adt

]2
, (A.1)

where

∆= r 2 − 2(1+α)Mr+α(1+α)M2 + a2 ,

Σ= r 2 + a2 cos2 θ , (A.2)

M and a represent the total mass and spin of the black hole, respectively, while α denotes the parameter of
the STVG theory [10].

In the preceding research, we analyzed the motion of massive charged particles around a black hole in the
STVG theory [31]. In contrast to other theories of gravity [18], these particles do not follow the geodesic line.
Hence, in the presence of the magnetic field, their equation of motion is governed by the equation stated in
[74]:

ẍµ +Γµ
νλẋ

ν ẋλ =
qg
m
Bµ

ν ẋ
ν +

q

m
Fµν ẋ

ν , ẋµ =
dxµ

ds
, (A.3)

the Lagrangian can be presented as the following expression

L=
1

2
gµν ẋ

µẋν +
qg
m
Φµẋ

µ +
q

m
Aµẋ

µ , (A.4)

where the particle’s mass is represented bym and its gravitational charge is expressed as qg =
√
αGNm, where

α is a dimensionless scalar field, also known as coupling constant of the interaction between the particle and
the fifth force in STVG theory, GN is Newton’s gravitational constant, and q is charge of the particle moving
in electromagnetic field. It is important to note that the vector potential Φα for the spacetime (A.1) plays a
significant role in representing the fifth interaction between a test body and an external vector field. In static
spacetime, this interaction is characterized by a Coulomb-like potential. However, in the spacetime of
rotating gravitational objects, further advancements can be made in the vector potential

Φµ =

√
αMr

Σ

(
−1,0,0,a sin2 θ

)
. (A.5)
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The equation governing the Hamilton–Jacobi formalism for a particle with massm can be represented in
the form given by [44].

gµν
(
∂S
∂xµ

− qgΦµ − qAµ

)(
∂S
∂xν

− qgΦν − qAν

)
=−m2 . (A.6)

As the above method in section 2, by considering the specific conditions of a massive particle in a circular
orbit with both zero radial velocity and zero angular velocity, it becomes evident that the particle’s motion is
limited within a specific range. This can be better comprehended by analyzing the effective potential, as
discussed in previous works such as [23, 31, 45]

Veff =− q

m
At −

qg
m
Φt +ω

(
L− q

m
Aϕ −

qg
m
Φϕ

)
+

[
(−ψ)

((
L− q

mAϕ − qg
mΦϕ

)2
gϕϕ

+ 1

)] 1
2

. (A.7)

The effective potential is a widely recognized method for understanding the behavior of test particles near
black holes and meeting the requirement of E= Veff allows for its implementation. By identifying the
minimum value of the effective potential, we can determine the ISCO, which represents the shortest path
where a particle can maintain a stable circular trajectory without being pulled into the black hole or thrown
into space. To simplify the analysis, we focus on the equatorial plane, and the effective potential becomes
solely dependent on the radial coordinate, denoted as Veff(r). The ISCO can be determined using the
conventional method by ensuring that the effective potential is equal to the particle’s energy (Veff(r) = E), the
derivative of the effective potential with respect to r is zero (V ′

eff(r) = 0), and the second derivative of the
effective potential with respect to r is less than or equal to zero (V ′ ′

eff(r)⩽ 0). However, it should be noted that
computing the equation (A.7) analytically is extremely challenging. Nevertheless, emphasizing the
significance of the ISCO in astrophysical observations is crucial, as it greatly affects radiation release and the
behavior of matter near the black hole. Furthermore, studying the ISCO can provide valuable knowledge
about the properties of black holes and can serve as a platform to investigate general relativity and alternative
theories of gravity.

Appendix B. Parameters C1 and C2

Electromagnetic field’s vector potential Aα, under the Lorentz gauge, in a simplified form [41]

Aµ = C1ξ
µ
(t) +C2ξ

µ
(ϕ) . (B.1)

here, we have the constant C2 denoted as B/2, which represents a uniform magnetic field B parallel to the
axis of rotation, surrounding the gravitational source. Determining the value of the remaining constant C1 is
a straightforward task accomplished by examining the asymptotic properties of spacetime as it extends
toward infinity. To establish the value of the remaining constant, one can rely on the electrical neutrality of
the source [39, 75]

1

2

˛
Fµν∗ dSµν = C1

˛
Γµ
µσuµm

νξσ(t) (uk)dS+
B

2

˛
Γµ
µσuµm

νξσ(ϕ) (uk)dS= 0 . (B.2)

By performing the integration over the spherical surface at asymptotic infinity, the value can be obtained. In
this calculation, we employ the equality ξν;µ=−ξµ;ν =−Γσ

µνξσ , which arises from the Killing equation.
Additionally, the element of an arbitrary 2-surface, dSµν , is expressed in a specific form [76]

dSµν =−uµ ∧mν (uk)dS+ ηµναβuµuν

√
1+(uk)2dS , (B.3)

where

mµ =
ηλµαβuλnαkβ√

1+(uk)2
, nµ =

ηλµαβuλkαmβ√
1+(uk)2

,

kµ =−(uk)uµ +
√
1+(uk)2ηαµγβuαmγnβ (B.4)

where, the triple of vectors k, m, n exhibit the following relationships: nµ denotes the vector normal to the
2-surface, nν represents a space-like vector within the given 2-surface that is orthogonal to the four-velocity
of the observer uν , and kν is a unit space-like four-vector that belongs to the surface and is orthogonal tomν .
The symbol dS corresponds to the invariant element of the surface, ∧ denotes the wedge product, ∗ is used
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for the dual element, and ηµνσδ represents the pseudo-tensorial expression for the Levi-Civita symbol ϵµνσδ .
By substituting u0 =−(1−M/r), m1 = (1−M/r), and the asymptotic values for the Christoffel symbols
Γ0
10 =M/r 2 and Γ0

13 =−3aM sin2 θ/r 2 − l(1− 2M/r)cosθ/r into the flux expression (6), we can determine
the value of the constant C1 = aB. The parameter l does not affect the constant C1 because the integral´ π
0 cosθ sinθ dθ = 0 results in its vanishing.
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[41] Tursunov A, Stuchlík Z and Kolǒs M 2016 Circular orbits and related quasiharmonic oscillatory motion of charged particles

around weakly magnetized rotating black holes Phys. Rev. D 93 084012
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[70] Tursunov A, Stuchlík Z, Kolǒs M, Dadhich N and Ahmedov B 2020 Supermassive black holes as possible sources of

ultrahigh-energy cosmic rays Astrophys. J. 895 14
[71] Greisen K 1966 End to the cosmic-ray spectrum? Phys. Rev. Lett. 16 748–50
[72] Kino M, Takahara F, Hada K, Akiyama K, Nagai H and Sohn B W 2015 Magnetization degree at the jet base of M87 derived from

the event horizon telescope data: testing the magnetically driven jet paradigm Astrophys. J. 803 30
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