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Introduction

Mankind have achieved great success in sci-
ence by observing the physical phenomenon
around us. To develop a technology from the
gained knowledge requires the experimental
data and its uncertainties. In nuclear physics,
we mostly require values of physical quantities
which cannot be directly measured and they
have to be calculated from variables that can
be directly measured by using their functional
dependence on each other. It is pity that no
act of measurement can give true value of a
physical quantity and the outcomes of a mea-
surement are always associated with some un-
certainties [1]. We have to propagate the un-
certainties of known variables to find the un-
certainties of unknown variables based on the
function relationship between them. We will
discuss two methodologies for this task [2], one
is deterministic approach (Sandwich formula
of error propagation) and other is stochastic
approach (Monte Carlo method).

First order error analysis by using
Sandwich formula

The Sandwich formula for error propagation
is traditional first order sensitivity analysis
method. We will briefly discuss this method
first. Consider an independent variable vector
x of order n, and dependent variable vector y
of order m. Let y=f(x) then the mean value
of y is given as y ≈ f(x). The covariance ma-
trix for Sandwich formula is given as [2]

Cy ≈ HxCxH
T
x . (1)
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Here Cx is n × n covariance matrix of x, Cy

is m × m covariance matrix of y and Hx is
the sensitivity matrix with elements Hxij =(

∂fi
∂xj

)
(i = 1, 2, . . . ,m; j = 1, 2, . . . , n). This

method works quite good for functions with
small nonlinearity and small uncertainties. As
the nonlinearity increases it produces unsatis-
factory results. Higher order terms of Tay-
lor expansion can be involved in calculations
to have more accurate results. This can be
achieved by using stochastic method (Monte
Carlo method). In this method an m × m
covariance matrix can be approximated by a
sum of matrices, each corresponding to a dis-
tinct uncertainty attribute [3].

Uncertainty propagation by
Monte Carlo method

In Monte Carlo method individual histories
of the derived variables are simulated using
random variables from the probability distri-
butions of the primary variables. All events
are considered independent to each other, as
the number of histories become large, the av-
erage of the histories approach the true so-
lution [3]. Let x be the n-dimensional vec-
tor of primary variables and Vx be covariance
matrix representing covariance of the elements
of x. Consider a m-dimensional vector of de-
rived variables y, derived from m functional
relationships. This method involves produc-
ing a large number of xk, k = 1, 2, . . .K, vec-
tors by randomly varying each component xi
of x in accordance with the probability func-
tion P (xi) governing them. For each vector
(xk) produced the m values of elements of
vector y are calculated. Hence we get large
collection of vectors of derived variables from
which sample means are calculated as [2, 3]
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〈yi〉K =
(
∑K

K=1 yik)
K , i = 1, 2, . . .m. Sample

variance and covariance are given as

(vyik)K =

(∑K
K=1 yikyjk

)
K

−〈yi〉K 〈yj〉K (2)

where i, j = 1, 2, . . . nm.

Uncertainty propagation in effi-
ciency calculation of HPGe detec-
tor

In this experiment the efficiency of the de-
tector is determined at six different energies
of the calibration source 152Eu [4]. The num-
ber of counts (C) and gamma abundances (a)
are taken from [4] (Table I). The activity (A0)
of the source at the time of its manufacturing

TABLE I: Efficiency (ε) and their standard devi-
ations (∆ε) by using Sandwich and Monte Carlo
method.

Energy (keV) S A Method MC Method
ε(∆ε)(10−2) ε(∆ε)(10−2)

244.675 3.3262(0.0903) 3.3274(0.0904)
411.116 1.9954(0.1236) 1.9963(0.1236)
867.378 0.9042(0.0563) 0.9045(0.0562)
964.079 0.8563(0.0236) 0.8567(0.0237)
1112.074 0.7817(0.0220) 0.7820(0.0221)
1299.140 0.7459(0.0676) 0.7462(0.0677)

was 7767.67± 155.35. The time elapsed (t)
between manufacturing and the experiment
date was 9.893 years, half-life (T ) of 152Eu is
13.537±0.006 years. The efficiency (ε) is given
as [4]:

ε =
C

αA0e
(−0.693

T t)
(3)

In first order sensitivity analysis method four
attributes C, a,A0 and T were considered to
calculate their partial uncertainties. The mi-
cro correlation assigned were equal to identity
matrix for counts and gamma abundances at-
tributes, and one matrix, having all its en-
tries equal to one, for half-life and activity
attributes. To calculate efficiencies and co-
variance matrix using Monte Carlo method,
all the input parameters were considered to

follow normal probability distribution. The
10000 random variables having normal dis-
tribution, with mean and standard deviation
given in input data set were generated using
MATLAB command and then efficiency was
calculated for each gamma energy using their
corresponding random input variables.

Result and Discussion
Efficiencies calculated using Monte Carlo

method are free from errors due to lineariza-
tion and will be more accurate than calculated
using sandwich formula. Since errors due to
linearization are very small in this example,
so the values calculated using both methods
are close to each other.

TABLE II: Calculated covariance matrix
using Sandwich method and Monte Carlo
method(×10−7)

Covariance 8.145
matrix 2.655 15.266
using 1.203 0.722 3.165
Sandwich 1.139 0.684 0.31 0.559
method 1.04 0.624 0.283 0.268 0.486

0.992 0.595 0.27 0.256 0.233 4.567
Covariance 8.172
matrix 2.646 15.263
using 1.206 0.710 3.161
Monte 1.146 0.686 0.309 0.560
Carlo 1.047 0.624 0.284 0.269 0.487
method 0.997 0.586 0.267 0.256 0.234 4.589
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