IOPScience

Home

Search Collections Journals About Contactus My IOPscience

On Up q(gl(2)) and a (p,q)-Virasoro algebra

This content has been downloaded from IOPscience. Please scroll down to see the full text.

1994 J. Phys. A: Math. Gen. 27 2023
(http://iopscience.iop.org/0305-4470/27/6/025)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 188.184.3.52
This content was downloaded on 28/05/2015 at 16:29

Please note that terms and conditions apply.

jopscience.iop.org


iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/27/6
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience

1. Phys. A: Math. Gen. 27 (1994) 2023-2035. Printed in the UK

On U, 4(gl(2)) and a (p, g)-Virasoro algebra
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Abstract. The quantum algebra Up 4{gl{(2)), with two independent deformation parameters
(7. q), is studied and, in particular, its universal R-matrix is constructed using Reshetikhin’s
method. A contraction procedure then leads to the (p,q)-deformed Heisenberg algebra
Up g (r(1)) and its universal R-matrix. Using a Sugawara construction employing an infinite
number of copies of these Heisenberg modes, a (p, ¢)-deformed Virasoro algebra is obtained.
The closure property of the (p, g}-Virasoro aigebra necessitates two parameters (e, 5} for the
generators {Ln, (2, 8)}. While the parameter o may be taken as an integer, the parameter § is
continuous on a complex path and imparts an integral equation structure to the (p, g)-deformed
Virasoro algebra. :

1. Introduction

Recently there have been many attempts [1-11] to find quantum deformations of the Virasoro
algebra. Several aspects of the deformed Virasoro algebra, like the multiplicative structure,
the comultiplication rules for the generators [6, 10], the deformation of the central extension
term [3, 5,7, 10] and the deformed Kdv equation [4, 10], have been studied. Many of these
formulations [1, 3, 8,9] are based on using a deformed oscillator degree of freedom [8, 9, 12—
16]. Another approach is based on the deformation of the differential operator representation
of the centreless Virasoro algebra in a conformal dimension (A) dependent way {7, 10],
where the corresponding generators satisfy a deformed Jacobi identity. The generators of the
centrally extended deformed algebra are required to satisfy the same identity. This leadstoa
central extension term compatible with the well known result in the undeformed limit. These
problems have been studied in the context of a single deformation parameter and also for the
more general deformations involving two independent parameters [8—11]. The gennine two-
parameter nature of the deformations is exemplified, for instance, in the comuitiplication
rule for the functional generator in the comtinuum formulation of the deformed Virasoro
algebra. In the A = 0, 1 case such a comultiplication rule was found [10] to depend on
both parameters.

In the undeformed case the especially fruitful approach of the Sugawara construction
leads to a Virasoro algebra with central extension. The Virasoro generators are represented
as bilinears in an infinite set of bosonic operators satisfying an infinite Heisenberg algebra
h(oc). These bosonic creation and annihilation operators with a corresponding central
element generate a universal enveloping algebra U(h(oo)). The Virasoro generators are
elements of U(h{cc)). Paralleling the development in the undeformed case, Chaichian
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and Presnajdar [11] have obtained a Sugawara construction for the deformed Virasoro
generators using an infinite set of deformed bosonic degrees of freedom realized by taking
a suitable contraction limit [17, 18] of the quantum algebra U, (sz(2)) [19,20]. A pair of
deformed bosonic creation and annihilation operators along with a central element generate
a deformed Heisenberg algebra U,(h(1)). A universal enveloping algebra U, (h(c0))
generated by an infinite number of these deformed bosonic operators and the central element
has a Hopf algebra structure and may be viewed as a deformation of U(h(c0)). The g-
deformed Virasoro generators {L,(x)} are then expressed as normal ordered bilinears in
these deformed creation and annihilation operators. The extra index (&) may be taken
as an integer and is essential for the closure of the algebra. This is assumed to lift a
degeneracy present in the undeformed case. The g-Virasoro algebra is then realized by the
usual commutators among {L,, ()} and, in an #reducible representation, may be recognized
as a centrally extended infinite Lie algebra,

In another development, the construction and the representation theory of guantum
algebras with multiple deformation parameters have been studied extensively [8,21-32].
While considering a two-parameter deformation of the matrix group GL(2), it has been noted
[26] that even though the algebra U/, ;(gl(2)), which is a two-parameter deformation of the
universal enveloping algebra corresponding to the Lie algebra gI(2), may be mapped onto
the standard Up(gl(2)) with a single deformation parameter Q = ./pg, the parameters p
and g are genuinely independent as exhibited by the comultiplication rules and the structure
of the R-matrix. For the quasitriangular Hopf algebras [33], Reshetikhin has developed [32]
a general formalism to introduce multiple deformation parameters. Following [32] we obtain
here the universal R-matrix for U, ,(g1(2)). By construction, the Yang-Baxter equation is
readily satisfied by R. We will later comment on the difference between our result for the
universal R-matrix and the one in [30]. An appropriate contraction limit of U, 4(gI(2)) &
la Celeghini et al [17,18] then yields the quantum Heisenberg algebra U, ,(A(1)), which
is spanned by a pair of (p, g)-deformed creation and annihilation operators together with
two central elements. Using the procedure in [18], we calculate the universal R-matrix for
Up,4(R(1)). By the standard Yang—Baxterization method [34], we obtain the corresponding
spectral parameter dependent R-maitrix which satisfies the spectral parameter dependent
Yang-Baxter equation.

For the purpose of obtaining a (p, g)-deformed Virasoro algebra using a Sugawara
construction we mimic the procedure in [11] to introduce an infinite number of (p, g)-
deformed creation and annihilation operators. These modes, along with the two independent
central elements, generate the universal enveloping algebra U/, ;(h(c0)) which has a Hopf
algebra structure. OQur ansatz for the (p,g)-Virasoro gemerators {L,(a, 8)} involves
normal-ordered bilinears in these (p, g)-deformed Heisenberg operators and the additional
parameters (&, 8) are necessitated by the closure property. Following [11], this may be
viewed as lifting the two-fold degeneracy present in the undeformed case. The parameter
o may be considered an integer as in the single parameter case [111. The parameter §,
in contrast to &, is complex in general. The closure property imparts an integral equation
structure to the algebra in the parameter space of 8. By inspection, it follows that the
generators {L,. (o, B)} and the resultant algebra ((4.10)-(4.13) below) cannot be mapped to
corresponding structures pertaining to a single effective deformation parameter @. This is
a consequence of the multimode expansion in the Sugawara scheme and, we believe, that
the multiparameter deformations are of importance in models involving multiple modes.

The plan of this paper is as follows, In section 2, we describe the algebra U, 4(2I(2))
and subsequently, in section 3, obtain the deformed Heisenberg algebra U, 4 (2(1)) for the
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appropriate contraction limit. In section 4, we assume 2 Sugawara ansatz for the generators
L (o, 8)} and obtain the resulting aloebra. We present our conclusions in section 5.

2. Aspects of Up,q(gl(2))

First, let us recall some well known results [8,21-32] for the (p, g)-deformed umversal
enveloping algebra Uy ,(g1(2)).

The R-matrix
gt 0 0 0
0 A0 0
Rg=0"| o oi_g & o o=@  r=(@/a)”
0 0 0 ot (2.1}

satisfies the defining relation of the quantum inverse scattering method [35]
RpgTOHUART) = (IS TNT @ )R, 4 (2.2)

where the quantum matrix

a b .
r= (c d) @3)

has non-commuting elements exhibiting braiding properties
ab=plba cd = p~lde
ac=q ca  bd=gq-\db g
ghe = pch ad —da = (p~' —q)bc

that may be understood following Manin’s hyperplane approach [36] to the general
construction of the matrix quantum groups. It may be noted that a conjugate R-matrix

g 0 0 0
= - apl 0 AT g-gt 0
Ba=@®i=ge| 0 A0 272 0 @)
0 0 0 o

also fits (2.2) with elements of T obheying (2.4). The matrix R},‘f‘,} is defined by

gl o 0 0\ -
0 A 0l-0 0
R =PR,,P=0Q"} o o % 5% | 26)
0 0 0 0!
where
1000
0010
P= 0 {1) 0 0 2.7
0 601
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is the permutation matrix. The elements of T obeying (2.4) generate the matrix quantum
group GL, ;(2) [21-31]. )

Using the FRT approach [35] the commutation relations for the algebra U, ,(gi(2)), dual
to the Hopf algebra generated by the non-commuting elements of the matrix T, are obtained
[8,21,25,27,28,30] from the relations for the generators

RN @ DA® L) = 1o L) @ DR 2.8)
where (61' 62) = (+s +), (_’ _)’ (+s _) and

L (Q""K"”"‘z’ Q'3 (g" — Q)J_)
0 QJg ;L—(Jo+2)

L) Q-’u 3~ {Jo—2) 0
T\gHE -0, grhanUnD )

The cotresponding commutation relations read

2.9

[Jo, Jel = T3 Jp o —pg T = [20),,
[Z, Jp]=0 [Z, /]1=0

(2.10)

where

gx - p—x

. 2.11
g —p! (2.11)

[x]p,q =

Let us choose the copreduct rules for the generators as
Alle) = Jo @ QA~0F2) 4 g=lo)~thED) g 1,
Al(.Ig) =Lhel+i@d (2.12)
AZY=Z@1+1QZ
which follow from the relation
ALy = LOGLD, (2.13)
with & denoting the tensor product combined with the usual matrix multiplication. The
centre Z in the algebra (2.10) plays an important role in imparting the two-parametric
nature to the deformations, as is evident from the fact that if we equate it to zero then both

the algebraic and the coalgebraic structures may be simultaneously transformed to depend
on the single parameter Q. To see this, we observe the following. The map

Jo=Juah®t fi=d  Z=2z (2.14)
reduces the algebra (2.10) to the standard form
o, Ju) = £ [y, T = 120010
[Z,7.]1=0 [Z,7]=0

(2.13)
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with

[xlg = %_‘QL_—I ' - S (2.16)

For the choice Z # 0, ‘the induced coproducts for the generators (2.14)}, however, depend
on both the deformation parameters

AL =Je ® 0Rat? 1 g~ Rl g ],
A= hLel+18 J (2.17)

AMZy=Z2@1+1®Z.

In the limit A = 1 we recover the standard result for U (gf(2)).
Let us now consider the universal 7X-matrix for the algebra Up ,(gI(2)) (or Ug 1 (gI(2))).
For a quasitriangular Hopf algebra I{ the universal R-matrix, € U4 @14, satisfies the relations

(AR =R;zRy . (dBAIR=RiRp
7-AX) =RAX)R™? (2.18)
(X@Y)=Y®X VX, Yeld -

where the subscripts in R;; indicate the embedding of R in U @4 ® 4 [33]. For Up{gl(2))

the explicit expression for the universal R-matrix [37] is

= Q2heh) Z %.?'_)Qn(u 1)/2(Qlo Fo@Q i )" (2.19)

where [nlg! = [nlplr — 11p- - - [21g[1]g. Employing the Reshetikhin procedure [32] one
can obtain the universal R-matrix, say Kg,», for the algebra U, ,(gl(2)). To this end, we
note that the coproduct relations (2.17) for the generators of the algebra U, 4(gl(2)) and
the corresponding relations for Ug(gl(zj), obtained in the limit X = 1, are related by a
similarity transformation

A(X) = F(Ap=n(X)F! VX € (Ji, Jo, Z) (2.20)
where

F o yheZ-2ek (2.21)
Then, following Reshetikhin [32], one can write down

Roa=F1RoF™! (2.22)

which, by construction, satisfies the required relations (2.18). Explicitly, the universal R-
matrix for Up ;(gl(2)) reads

Roa = Q¥ h) \2(E00—heZ)

1-0~ ) n{n—1)/2 J'olZJ “-’0}_2] 2.23
",,Z.; gt & @L @ 0TRELY >
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For the coproduct of two identical fundamental representations (j = %), with the choice
Z= 12 for both, the Rg,x in (2.23) reduces to the matrix

o 0 0 0
i - _ 0 l-l — -1 0 ”
,Rg';/z,z 112 _ g-in 0 o A.Q 1= B @.24)

0 0 0 o

The identity of the matrix R in (2.24) with ﬁp,q, embodying the endomorphisms of the
matrix quantum group GL, (2} acting on the undetlying non-commutative Manin plane,
expresses an aspect of the duality of the algebra Up 4 (g1(2)) to the Hopf algebra generated by
the non-commuting elements of the quantum matrix T € GLp 4(2). The duality condition
is expressed by the pairing

(L¥QL18T)=R) (2.25)

where R = R>7.

In view of the above discussion we may now look at the results in [30] wherein also
the construction of the universal R-matrix for Up ,{g!(2)) has been discussed. The algebra
considered in [30] is not a genuine two-parameter deformation of U(gi(2)) as, after a
simple transformation of its generators, both the algebraic and coalgebraic structure may
be simultaneously made to depend on a single quantization parameter. Consequently, by a
suitable choice of representation, the expression for the universal R-matrix in [30] can also
be made to depend on a single deformation parameter.

Regarding the other aspects of the Hopf algebraic structure of Up 4(gl(2)), besides the
comultiplication, namely, the antipede and counit operations, we note the following. Using
Reshetikhin’s theory [32] one can see that in the deformation Ug(gl(2)) — Uga(gl(2)),
effected by changing the coalgebraic structure through the transformation (2.20), (2.21), the
antipode and counits are not altered. We shall not discuss them any further.

For later use, we consider the representations of the algebra (2.10) with the generators
(Jo, J+) obeying the Hermiticity properties Jg = Jo and Jf_ = J_; or, in other words, we are
dealing with U, 4 (su(2) ®u(1)). The requirement for the coproduct rules (2.17) to preserve
the above Hermiticity properties selects the parameters (@, A) to be real and the central
element Z to take purely imaginary values. Then, for generic real values of the deformation
parameters {p, g), one obtains [8] a (25 -+ 1)-dimensional irreducible representation for an
integral or half-integral j

Qoljmz) = m|jmz) m=jj—1...,—(—-1),—-j
Jeljmz) = {(g py U=V f 2l gl £ m 4 10} j(m £ 1z) (2.26)

Zljmz) = z|jmz)

where z is an arbitrary imaginary constant.

3. The algebra U, ,(h(1)) as a contraction limit of U, ,(gl(2))

The well known contraction technique for obtaining the non-semisimple Lie algebras and
their representation properties as the limiting behaviour of their semisimple analogues,
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has been generalized by Celeghini et a! [17,18] in the context of quantum algebras. In
particular, they have obtained a deformed Heisenberg algebra U, (2(1)) containing a single
central element as a contraction limit of the algebra U, (su(2)). Following their procedure we
study the contraction limit of the quantum algebra U, p 4(gi(2)) and extract the two-parameter
deformation of the Heisenberg algebra, namely, U, ,(2(1)). We scale the generators and
the quantization parameters as

Ar =iy H=2ely { =2¢Z (3.1)
w, =¢ lng oy=¢Tlnp 3.2)

and define
= o +w2) v = Lo — wg). (3.3)

The commutation relations and the coproduct rules for the algebra U, , (2(1)) are obtained
by studying the ¢ — 0 limit of the corresponding structures of U, ,(g/(2)} in (2.10) and
(2.12) respectively. Thus the structure of U, o{A(1)) is defined by

[H,Az]=0  [Ay, A_1=Q"'exp(vH)sinh(QH)

(3.4)

[£, Ax]=0 ¢ H]=
and
AlAz) = A= @ exp (J(@+ WH F )} +exp{ — H@ - wH Fop)} @ 4x
A(H)=H®]17+]1®I.’i _ (3.5)
AGQ)=¢(@i+1®¢.
The algebra (3.4) has two central elements (H, ¢). A map

Ap = Apexp(—ivH) H=H r=t¢ (3.6)

reduces the commutation relations (3.4) and the coproduct rules (3.5) to the following forms,
respectively :

[A,, A 1= 'sinh(@B)  [A,1=0 [£]=0 @&
and - ‘
A(Aw) = A @exp {1 QA F D)} +exp{ - é(ﬁﬁ FvH)} ® As. (3.8)

It is seen that the coproduct rules (3.8) depend on both the parameters (2, v) independently,
even though the commutation relations (3.7) depend only on €.

Paralleling the argument in [18], the universal R-matrix for the algebra U, ,(k(1)) is
obtained at the contraction limit of the universal R-matrix (2.23) for the algebra U, ; (gl @)).
The final result is

R=exp{ - QAN+ N@H) —v(N®! - ® N)}exp(B. ® B.) (3.9)
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where

Be =2Qexp{ — LI QA }Ax (3.10)
and the operator N is defined through an e-expansion of J; such that

- 1 - .,

Jo=—H-N (3.11)

2e

and

¥, Ax] = FAs. (3.12)
Using (3.7), an explicit expression for N follows

¥ =A_A.(sinh@m)™. (3.13)

As explained in [18] in the context of a single deformation parameter, the algebra U, ,(2(1))
is not a quasitriangular Hopf algebra when N, as in (3.13), is considered a composite
operator. The quasitriangular nature is, however, restored when N is thought of as a
primitive generator with a coproduct rule

AN)=N@1+1®@N (3.14)

which is distinct from the induced coproduct suggested by (3.5) and (3.13). The latter
point of view explains the existence of a Reshetikhin-type of transformation [32] relating
the coproduct rules (3.8) and the universal R-matrix (3.9) to the comesponding guantities
in the v = ¢ limit )

A(Az) = F(A(As, =) F (3.15)

R=F 1Ry F! (3.16)
where

F=exp{v(¥0i-f0 M} @17

The transformation operator ¥ follows from the parent operator F in (2.21) for the
Up.o(gl(2)) algebra at the contraction limit. Following [18], a spectral parameter dependent
R-matrix may be obtained [34] from the universal R-matrix (3.9). Through the action of
the operator T on the generators

TeAL = x*lAi TxH =H ._ Tx; ={ (318)
we define

Rx) = (L@ HR

=exp{-QUESN+NQH) —v(N® - ®N)}exp(xBy ® B).
- (3.19)
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A direct calculation then proves that the matrix R{x) satisfies the Yang—Baxter equation

Riz(xYR13(xy)Rz(y) = Rz (YR (xy)R12(x) (3.20)
when, explicitly
Rizx) =exp{~QUAQNQ@I+ N HQ)

~-HWN®IRL-{®N® n)}exp(x}}f@ B.o (321
Rus(xy) =exp{—QUA @I N+ N @ 1® A)

—vN®I®: -t ® 1@ Miexp(ryB, ®1® B) (3.22)
Roa(y) =exp(-QUIRHRN+ 10 N® H)

~v(IRN®{—1®7®N)}exp(y1® B, ® B_). (3.23)

The contraction procedure may be used to obtain the representation properties of
Upg(h(1)} from the corresponding relations (2.25) for Up 4(gi(2)). For this purpose, we
define

h=2% n=j-m (3.24)

and let ¢ - 0, j — oo to obtain for an infinite dimensional irreducible representation,
labelled by constants 4 and &p

- Aslhngo) = {(n + 301 F 1) explvh) sinh(@h)} 7k (n F Do) |
Hhnio) = hlhno) ¢lhnio) = bolhnio) _ (3.25)
n=0,12,...
where the vacuum is given by
AL|RDG) = 0. - (3.26)

4. A (p, g)-Virasoro algebra

To obtain a (p, g)-deformation of the Virasoro algebra through a Sugawara construction we
" closely follow the well known route for the undeformed case. For this purpose, we introduce
an infinite number of deformed creation and annihilation operators, {4y | &'= %1, £2,...},
for a fixed £y, The commutation relations (3.4) and the coproduct rules for the single mode
example translate for the multimode case as follows

[Ak, Al = oy (H,All=0  [§,A] =0 ‘ 4.1)
where

oy = Q" exp(|k|vH) sinh(kQH )8t | 4.2)
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and

AlAr) = A @ exp {SIKIQH + v(H — sgnlE)e)}
+exp { — LEWQH — v(H +sgn(k)))} ® Ay (4.3)

The algebra (4.1) is homomorphic under the map (4.3). The modes {A;} and the central
elements (H, {)-generate the universal enveloping algebra Uy, 4(R{co)). The normal-
ordering rule for the bilinear products is

ARA = AkAj bl e(k)mk;. (4.4)

For the purpose of later computation we exXpress wy in an alternate form, To this end,
we note that for a unitary irreducible representation, H is a real constant. Henceforth we
consider these representations and assume vH > O for notational simplicity, The case
vH < 0 may be treated parallely. Using an integral representation for the step function

1 o« eixs
8(x} = lim —
&) 60 27l Jooo & — i€

ds 4.5)

and after suitable rescaling, we have

® cosh((1 + ikvH) |

exp(klv) = Jim — [~ CED @)
which leads to the expression

wy = 3515 sinh:giZH) _: coéh((i __l_ i.:)ka) Sp+1,0 ds ‘ 4.7
in the commutator (4.2).

We define the (p, g)-Virasoro generators as

Lo, B) =1 ; exp {1k — D(Qa + vBYH} : ArA; : Sratm- (4.8)
To make the meaning of the additional indices clearer, we define

§ = exp(er) P = exp(an) (4.9)
and wnte (4.8) in a more transparent form |
Ln{er, B) = 3 Y (PO DB (B1gy“DPEI : LAt : Sptm. (4.8)

i

Notice that the deformed Virasoro generators in [11] may be constracted by taking a linear
combination of the generators {4.8') in the appropriate single deformation parameter limit
§ = 4. Following [11], we note that all elements in U, 4(2(00)) of the type (pg)*#/* and
(p/§)PH7, together with their integer powers, become degenerate with the unit element in
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the undeformed iimit. The deformation may then be thought of as an elimination of this two-
fold degeneracy. The (p, g)-Virasoro algebra may now be computed in a straightforward
way, and has the structure

1

[==]
1
|26+ 55£0) + o Comim

F foalhy 1
[Lm(et, B), Lw (&', B)] = . 167

8x Q2
(4.10)

where the symmeh‘ized integrand in- the non-central part reads
£(s) = 2sinh {%((m’a —me’ +m—mH

+ '8 — mf' + (1 +is)(m — mNW)H}
X Ly (@ +o —1, 8+ p —1~is)
+ 2sinh {1 ((W'e — me/ +m —m')Q
+ '8 — mp' — (1 +is)iom — m'))v)H] ,
X Lpimle+a — 1,8+ 8 + 1 +is)
— 2sinh {1 ((n'e — ma’ — m + m)SQ2
+ (m'8 —mf' + (1 +is)(m — m))v)H}
X Lope( +e' +1, 84+ 8 — 1 —is)
— 25inh {%((m’a —ma’ —m+mQ
+ (m'B —mp’ — (1 +is)(m — mv)H}
X Lypame(@+0/ +1, B+ 8 + 1 +is)
+ sinh {1((m'e + med +m —m')$2
+ (n'B + mp' + (1 +is)(m— m))H}
X (Lpym(—a+a' +1,—B+ 8 +1+1i5)
+ Lonim(@—a' =1, —p' —1—is))
+ sink {3 + mo + m —m"Q
+ @B+ mp — (1 +is)(m — m")Ww)H]}
X (L (—0t + 0 +1, -8+ ' =1 —is)
+ Ly (@ — 0 ~ 1, 8 — '+ 1+ 1is))
— sinh {1{(m'e + mo/ = m+m)H2
+ ('8 +mp' + (1+is)(m —m'))v)H}
X (Lo (=t + 0o — 1, =+ '+ 1 +is)
+ Ly =0/ +1,8— ' — 1 —is))

" _sinh {%((m’a +mo’ —m+mHQ2
+(m'B+mp' — (1 +is)(m — m)v)H}
X (Lppm(—a+a’ —1, -+ —1—is)
+ Lopym{e —a' + 1,8 = g+ 1 +is)) @.11)
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and the ceniral element is given by
C=Ca o B, B +C(~a. o' ~B. B) (4.12)
with
Cle, &'; B, B) = sgn(m) exp(lmlvH){Zcosh(mﬂH)

sinh (3 (Im| — 142 + o) + v(B + BN H)
sinh (Z(Q (@ + &) + v(B + BN H)

_sinh (5(Im| — D(Q(e+ e’ +2) + v(B + FNH)
sinh (J(Qa + o' +2) +v(8 + BN H)
__sinh (FUm] — D(Qe + o —2) + v(B + ) H) }
sioh (L1(Q (e + o —2) +v(8 + B H)

(4.13)

We do not carry out the integral in the right-hand side of (4.10) as it would spoil the
operator structure required by our ansatz {(4.8) for the reconstruction of the (p, g)-Virasoro
generators, From (4.10) and (4.11), it is evident that the parameters o and § are necessary
for the closure of the (p, g)-Virasoro algebra. The parameter «, much as in the g-deformed
case [11], may be taken to be an integer. The parameter g is complex and imparts an integral
equation structure to (4.10). In the single deformation parameter limit 5 = g (or v = 0) the
principal value integral on the right-hand side of (4.10) vanishes, and the previously known
results [11] may be obtained from (4.10)~(4.13). In the undeformed limit (2 =0, v =0)
the standard results are reproduced. The ordering of the limits in the central charge term
(4.13} is important: we have to first evaluate (4.13) at v = Q and then approach the limit
2 = 0. A non-cocommutative induced coproduct rule for the (p, ¢)-Virasoro generators
(4.8) may be obtained following (4.3).

As we mentioned earlier in the context of the Uy, ; (R(1)) algebra the individual operators
{A}, after a suitable map of the type (3.6), follow a comumutation relation depending on
a single deformation parameter £2. The multimode expansion (4.8) for the {p, g)-Virasoro
generators {Ly(x, 8)}, however, demands that no such transformation can be found relating
them to the corresponding set {L¥=%(a)} obtained in the limit v = 0. Thus the (p, g)-
Virasoro algebra (4.10) is essentially dependent on two deformation parameters and cannot,
by a transformation, be reduced to the algebra at the v = 0 limit. This is irrespective of the
coalgebraic structure and is to be contrasted with [10], where the essential distinction in the
single- and two-parameter deformations of the Virasoro algebra lies in the comultiplication
rules of the corresponding functional generators.

5. Conclusion

Following the Reshetikhin procedure we have constructed the universal R-matrix for the
algebra Uj 4(gI(2)). Using a contraction limit of the algebra U, 4(gl(2)) we have obtained
a (p, g)-deformed universal enveloping algebra of the Heisenberg algebra, U, (k(1)),
generated by a conjugate pair of deformed creation and annihilation operators along with
two central elements. The universal R-matrix has also been constructed for U/, ,(h(1)).
Using an infinite number of copies of these deformed Heisenberg modes, we have obtained
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a (p, g)-Virasoro algebra by employing a Sugawara construction procedure. The closure
property of the algebra demands the introduction of two parameters (&, 8) one of which
(8} has to be taken as continuous on a complex path. This enforces an integral equation
structure on the (g, g)-Virasoro algebra. As the Sugawara construction employs the multiple
modes of (p, g)-deformed bosonic operators one cannot find a transformation relating the
{p, g)-Virasoro generators and the corresponding algebra to their counterparts in the single
deformation parameter (v = 0} case.

Note added. After submission of the paper we have learnt that a coloured version of the R-matrix in (2.24} has been
obtained using a different derivation of the universal R-matrix in (2.23) (B Basu-Mallick, private communication).

References

(1]
[2]
(3]
(4]

Chaichian M, Kulish P P and Lukierski T 1990 Phys. Lers. 237B 401

Curtwright T and Zachos C 1990 Phys. Lett. 243B 237

Chaichian M, Ellinas D and Popowicz Z 1990 Phys, Lert, 2488 95

Chaichian M, Popowicz Z and Presnajder P 1990 Phys. Lert. 249B 185

Aizawa N and Sato H 1991 Phys. Lett. 256B 185

Devchand C and Saveliev M V 1991 Phys, Let. 258B 364

Chaichian M, Isaev A P, Lukierski J, Popowicz Z and Presnajder P 1991 Phys. Lerr. 262B 32

Chakrabarti R and Jagannathan R 1991 J. Phys. A: Math. Gen. 24 L711

Daskaloyannis C 1992 Mod. Phys. Lett, A 7 809

Chakrabarti R and Jagannathan R 1992 J. Phys. A: Math. Gen. 25 2607

Chaichian M and Presnajder P 1992 Phys, Lett, 277B 109

Macfarlane A J 1989 J. Phys. A: Math. Gen. 22 4581

Biedenharn L C 1989 . Phys. A: Math. Gen, 22 L873

Hayashi T 1990 Commun. Math. Phys. 127 129

Chaichian M and Kulish P P 1990 Phys. Lett, 234B 72

Jannussis A, Brodimas G and Mignani R 1991 J, Phys. A: Math. Gen. 24 L775

Celeghini E, Giachetti R, Sorace E and Tarlini M 1991 J. Math. Phys. 31 2548

Celephini E, Giachetti R, Sorace B and Tadini M 1991 J. Math. Phys. 32 1115

Drinfeld V G 1985 Sov. Math. Dokl. 32 254

Jimbo M 1985 Lest. Math. Phys. 10 63

Kulish P P 1990 Zap. Nauch. Semin. LOM! 180 89

Demidov E E, Manir Yu I, Mukhin E E and Zhadanovich D V 1990 Prog. Theor. Phys. Suppl. 102 203

Sudbery A 1990 J. Phys. A: Math. Gen. 23 L6897

Takenchi M 1990 Proc. Japan Acad. A 66 112 .

Chaichian M and Kulish P P 1990 Quantum -superalgebras, g-oscillators and applications Preprint TH-
5969/90 CERN

Schirrmacher A, Wess J and Zumino B 1991 Z. Phys. C: Particles and Fields 49 317

Schirrmacher A 1991 J. Phys. A: Marh. Gen. 24 L1249

Burdik C and Hlavaty L 1991 J. Phys. A: Math. Gen. 24 L1653 i

Chakrabarti R and Jagannathan R 1991 J. Phys. A: Math. Gen. 24 5683

Burdik C and Hellinger P 1992 J. Phys. A: Math. Gen. 25 LG22

Dobrev V K 1993 J. Geom. Phys. 11 367

Reshetikhin N Yu 1990 Letr. Marh. Phys. 20 331

Drinfeld V G 1986 Proc. Int. Cong. Marh. (Berkeley) ed A M Gleason (Providence, RI: American
Mathematical Society) p 798

Jimbo M 1989 Int. J. Mod. Phys. A 4 3759

Reshetikhin N Yu, Takhtajan L A and Faddeev L D 1990 Leningrad Math. J. 1 193

Manin Yu I 1988 Quantum groups and noncommutative geometry Report CRM-1561 Montreal University

Kirillov A N and Reshetikhin N Yu 1988 Representations of the algebra U, (sl2), g-orthogonal polynotmials
and invariants of links Preprint LOMI-E9-88 Leningrad



