
DESIGN OF DATA TRANSMISSION SCHEME BASED ON RDMA
Y. Q. Zhang, K. Zhou, M. Li, R. S. Mao, Institute of Modern Physics, Lanzhou, China

Abstract

With the development of precise radiotherapy, high-
throughput data transmission has become a critical compo-
nent of beam diagnostics. As the volume of generated
measurement data rapidly increase, the data transmission
mode that utilizes traditional Ethernet protocol, remote
CPU and operating system to control memory read and
write can not meet the transmission performance require-
ments. To break through these bottlenecks and achieve
more real-time and efficient data transmission and pro-
cessing, this paper designs a prototype data transmission
system based on RDMA technology. By directly transfer-
ring memory data between hosts, the system bypasses the
operating system kernel and CPU intervention, thereby
minimizing transmission latency and enhancing data
throughput. The system utilizes the RoCE v2 network pro-
tocol and is implemented through the libibverbs dynamic
link library to establish stable RDMA sessions and develop
corresponding network programs. Performance evalua-
tions in terms of transmission latency, throughput, and
CPU utilization indicate that the network transmission
scheme proposed in this paper offers lower latency, higher
throughput, and reduced CPU usage compared to schemes
using the TCP protocol during large-scale data transfers.

INTRODUCTION
RDMA is a network protocol that enables the rapid trans-

fer of data from one system to the memory of a remote sys-
tem over various network technologies (such as InfiniBand
or TCP/IP) without impacting the operating system. It
eliminates context switching and data copy operations,
thereby freeing up bus bandwidth and CPU cycles to en-
hance the performance of application systems. This paper
designs a data transmission scheme based on RDMA tech-
nology by utilizing the OFED (OpenFabrics Enterprise
Distribution) open-source project and the rdma-core user-
space library. After a comprehensive consideration of com-
patibility, cost, and performance, the RoCE protocol,
which offers a good balance of lower cost and satisfactory
performance, was selected. Based on considerations of data
integrity and transmission reliability, the Reliable Connec-
tion (RC) service type was selected.

DESIGN OF THE SYSTEM
The data transmission system is a server/client applica-

tion designed to establish a duplex data channel between
the communicating parties, allowing them to exchange
data. As illustrated in Figure 1, the network adapters are
physically connected to the transmission terminals via the
PCIe interface, enabling direct read/write access to termi-
nal memory through their DMA controllers. The network
adapters between terminals are directly connected by fiber
optics, serving as the physical data channel during the

transmission process. Resources like the work queue pairs
and completion queues created in the "registered memory"
of the terminals can be abstracted as the data interface with
the network adapters, forming the logical data channel for
transmission.

Figure 1: Transmission channel of the transmission system.

As shown in Figure 2, the client of the data transmission
system is divided into five modules: resource management,
communication establishment, RDMA operations, queue
pair management, and resource cleanup. The server intro-
duces a thread invocation module, which is used for con-
currently handling POSIX threads from different clients
for subsequent communication. Although the server and
client implement different functionalities, both are inte-
grated within the same system architecture.

The resource management module is responsible for
initializing, creating, and managing all necessary system
resources while controlling their lifecycle. This includes
handling device context structures, protection domains
(PD), completion queues (CQ), queue pairs (QP), memory
regions, and data buffers, among others. The system dy-
namically allocates RDMA-specific memory regions (MR)
within the associated PD to prevent resource leakage. At
the same time, it generates unique Local Key (L_KEY) and
Remote Key (R_KEY) fields for access permission verifi-
cation.

In the IB (InfiniBand) specification, the QP is a core
component of communication and can be abstracted as a
virtual interface between software and hardware. It sequen-
tially stores the Work Queue Elements (WQE) that the
hardware needs to execute, where WQE corresponds to the
Work Requests (WR) mentioned earlier from the software
perspective. From a data perspective, the interface of a QP
to the application layer is divided into “send (post_send)”
and “receive (post_recv)” operations. This means that ap-
plication layer software fills a WR into the QP, requesting
the underlying hardware to perform a “send” or “receive”
operation. This also helps distinguish whether the QP acts
as the “sender” or “receiver” in a particular communication
session. The queue pair management module triggers state

Proc. 13th International Beam Instrumentation Conference,Beijing

JACoW Publishing

ISBN: 978-3-95450-249-3

ISSN: 2673-5350

doi: 10.18429/JACoW-IBIC2024-WEP65

MC7: Data Acquisition and Processing Platforms

431

WEP: WEP: Wednesday Poster Session: WEP

WEP65

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

Figure 2: The basic structure of the transmission system.

transitions of the QP to make it available for invocation by
other modules. Once a queue pair (QP) is created, it auto-
matically enters the RST (Reset) state. To transition the QP
into the INIT (Initialized) state, the program sets a series of
QP attributes and then calls an interface to complete the
state transition. The RTR (Ready To Receive) state indi-
cates that the QP is ready to receive. The RTS (Ready To
Send) state signifies that the SQ can operate normally.

Communication establishment is a necessary prepara-
tory step for the local and remote QPs before exchanging
data. This paper utilizes the Socket API for establishing the
connection, allowing for more flexible

configuration of related parameters, which control the
communication pathway. The main control information in-
cludes the registered memory address, R_KEY, QP Num-
ber (QPN), and Global Identifier (GID), among others.
Once the Socket communication is established, the QP
state can be adjusted to create the data path.

Figure 3: Pathway of the RDMA transmission system.

As shown in Figure 3, the control pathway is used for the
creation, synchronization, and initialization of RDMA
basic elements, establishing the connection between the
server and client, and exchanging control information nec-
essary for transmission. The data pathway is established af-
ter the connection between the QPs on both ends is com-
plete and is primarily used for data transmission. Low-fre-
quency operations such as initialization and configuration
are executed in the operating system kernel mode and ex-
changed between the control pathway and the peer to avoid
impacting transmission efficiency. Data transmission oc-
curs directly through the data pathway, bypassing the ker-
nel to achieve kernel bypass.

The RDMA operations module requires asynchronous
operation of the send queue (SQ), receive queue (RQ), and
completion queue (CQ) during RDMA send and receive
operations. To ensure multithreaded concurrency, dedi-
cated worker threads are created for each of the three
queues. The basic workflow is illustrated in Figure 4.

Figure 4: Basic process of RDMA operations.

The send queue thread receives all resources necessary
for network communication and sets the operation code.
The Send Request (SR) is a structure that includes multiple
attribute fields, such as scatter/gather element pointer ad-
dresses to specify the data memory layout, the length of the
data to be sent, and the L_KEY for memory access. The SR
is then submitted to the hardware; if the submission fails,
an error handling pointer is returned, pointing to the prob-
lematic work request. Finally, the resource cleanup module
is invoked to destroy the thread. The receive queue thread
needs to define a Receive Request (RR) structure for

Proc. 13th International Beam Instrumentation Conference,Beijing

JACoW Publishing

ISBN: 978-3-95450-249-3

ISSN: 2673-5350

doi: 10.18429/JACoW-IBIC2024-WEP65

432

MC7: Data Acquisition and Processing Platforms

WEP65

WEP: WEP: Wednesday Poster Session: WEP

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

initialization before submitting the RR to the underlying
hardware.

The completion queue (CQ) stores Completion Queue
Elements (CQE), which can be abstractly viewed as the in-
terface between the underlying hardware and the upper-
level software, used to notify the software of the comple-
tion of an RDMA operation. Since the hardware asynchro-
nously places CQEs into the CQ, the software needs to ac-
tively retrieve the CQE through the data plane interface.
This paper employs a non-blocking polling method to han-
dle CQEs.

After the data transmission is complete, the system em-
ploys an event-driven communication framework for data
synchronization. This approach allows for the simultane-
ous handling of read and write events, which ensures the
reliability of data transmission.

TEST AND RESULTS
The system testing aims to compare the performance of

the RDMA-based data transmission system designed in
this paper with that of traditional TCP-based data transmis-
sion, focusing on three performance metrics: transmission
latency, throughput, and CPU load. The experimental en-
vironment is set up based on the slow control network of
the CEE (CSR External Target Experiment) project at the
Institute of Modern Physics, Chinese Academyof Sciences.
Both the server and client run on PCs equipped with the
Ubuntu 20.04 operating system, and RDMA-related driv-
ers (MLNX_OFED_LINUX-5.8-3.0.7.0) are loaded on
both ends. The RDMA test network cards used on both
sides are high-speed cards based on the Mellanox
MT28908A0, specifically the M2890-2QSFP 200G model,
with optical fiber serving as the transmission medium. The
RDMA-based data transmission system using the RoCE
protocol serves as the experimental group, while the tradi-
tional data transmission system utilizing the TCP protocol
serves as the control group, both groups perform 10,000
data transmission trials.

Transmission latency is defined as the time interval be-
tween the start of data transmission and the completion of
data transmission. Data packets ranging from 64 bytes to
128 KB are transmitted, ensuring that the RoCE send and
receive queues are sufficiently long and that the traffic is
adequate. The average transmission latency test results for
both groups are shown in Figure 5.

Figure.5: Comparison of average transmission latency be-
tween RoCE and TCP.

The test results indicate that for packet sizes smaller than
16 KB, the average transmission latencies for both systems
are relatively stable, with RoCE latency being significantly
lower than that of TCP, averaging a difference of 74.99 mi-
croseconds. When the packet size exceeds 16 KB, the TCP
latency begins to increase significantly, while the RoCE la-
tency also increases but with a less pronounced rise, result-
ing in an average difference of 257.95 microseconds be-
tween the two. The calculations show that the transmission
latency of the RDMA-based data transmission system is
reduced by an average of 96.3% compared to the TCP
transmission method.

Under conditions ensuring that the RoCE send and re-
ceive queues are sufficiently long and that there is adequate
traffic, throughput tests are conducted for both the experi-
mental group and the control group. The test results are
shown in Figure 6.

The test results indicate that as the size of the transmitted
data packets increases, both the experimental and control
groups exhibit a linear growth in throughput. Moreover, the
throughput of RoCE significantly surpasses that of TCP.
Calculations reveal that the transmission throughput based
on the RDMA data transfer system shows an average im-
provement of 95.1% compared to the TCP transfer method.

Figure.6: Comparison of throughput between RoCE and
TCP.

CPU load tests were conducted on both the experimental
and control groups, and the test results are presented in Fig-
ure 7.

Figure.7: Comparison of CPU Load between RoCE and
TCP.

The test results show that across all data packet length
ranges, the CPU load for RoCE remains extremely low,
significantly lower than that of the TCP mode. The trans-
mission CPU load based on the RDMA data transfer

Proc. 13th International Beam Instrumentation Conference,Beijing

JACoW Publishing

ISBN: 978-3-95450-249-3

ISSN: 2673-5350

doi: 10.18429/JACoW-IBIC2024-WEP65

MC7: Data Acquisition and Processing Platforms

433

WEP: WEP: Wednesday Poster Session: WEP

WEP65

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

system demonstrates an average reduction of 85.6% com-
pared to the TCP transmission method.

CONCLUSIONS
This paper designs and implements a data transmission

system based on RDMA technology. A testing environment

was constructed to conduct long-term stability transmis-
sion tests using this system. The test results indicate that
the proposed system significantly outperforms the TCP
transmission mode in transmission latency, throughput,
and CPU load. These findings demonstrate the superior
performance and reliability of the system.

Proc. 13th International Beam Instrumentation Conference,Beijing

JACoW Publishing

ISBN: 978-3-95450-249-3

ISSN: 2673-5350

doi: 10.18429/JACoW-IBIC2024-WEP65

434

MC7: Data Acquisition and Processing Platforms

WEP65

WEP: WEP: Wednesday Poster Session: WEP

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2024). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /All
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 40
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 40
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 40
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 40
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENG ()
 /ENU (Setup for JACoW - paper size, embed all fonts, compression, Acrobat 7 compatibility.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.000 792.000]
>> setpagedevice

