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THE EXCLUSIVE DECAY B — pev
BEYOND MODEL CALCULATIONS

Patricia Ball
CERN, Theory Division, CH-1211 Geneve 23, Switzerland

Due to its comparatively theoretical “simplicity”, the decay channel B — pev
offers one of the best possibilities to determine the CKM matrix element | V|
accurately. I present a new calculation of the relevant hadronic form factors
from light-cone sum rules. I also review the results from lattice calculations
and find that they agree with the results from light-cone sum rules where com-
parison is possible.

This paper relies on work done in collaboration with V.M. Braun.
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Figure 1: A sample of predictions for A;(t) from quark models and QCD sum
rules. Solid line: light-cone sum rules [2]; long dashes: three-point sum rules
[1]; short dashes with short spaces: BWS model [3]; short dashes with long
spaces: ISGW model [4].

With the increasing statistics of experimental data from CLEO, the determina-
tion of |V,| from the decay channel B — pev becomes more and more fea-
sible. Experimentally, b — u transitions are visible only above the kinemat-
ical threshold for charm production, i.e. for electron energies E, > 2.3 GeV
in semileptonic decays. The theoretical description of inclusive decays being
exceedingly difficult in that region, it seems more promising to look into the
exclusive channels. Here it is naturally the B — 7 and B — p transitions that,
if at all, are tractable theoretically, and of these the latter is the most prospective
one, as it is expected to be strongly peaked in the observable region, cf. Fig. 11
in Ref. [1]. It is thus timely to review the existing theoretical predictions for
these decays.

Let us begin with definig the relevant hadronic matrix elementfor B — p
transitions:

(0, AN(V = A)u|B) = —i(mp +m,) A1 ()™
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where the four form factors A; 2 and V' depend on the momentum transfer ¢ =
(pB — p,)? to the leptons; in the limit of vanishing lepton mass the remaining



367

form factor signified by dots does not contribute to the semileptonic decay rate
and will not be considered in this note. A is the polarization of the p meson.

Fig. 1 shows a sample of predictions for the form factor A1, the situation
with the others is similar. It is obvious that the spread of predictions prevents
any reliable prediction of the decay rate. The problem is essentially the large
range of physical values of ¢, 0 < t < 20.3 GeV?2, which are all relevant for
the observable electron spectrum. The lack of predictiveness of the dynamical
properties of form factors is a common feature of most quark models [3, 4, 5]
and forces them torely on ad hoc assumptions on the ¢-dependence like the pole
dominance hypothesis. However, for B decays an accurate prediction of the
t-dependence is absolutely mandatory. At present there are only two methods
that can claim some right to make such predictions founded in QCD, that is the
QCD sum rules method on the one hand and lattice calculations on the other
hand.

Let us shortly review the status of the latter ones. Due to the restricted size
of presently tractable lattices, typical masses of simulated hadrons are around
1.5 to 3 GeV. Extraction of B physics from the lattice thus requires the ex-
trapolation of the results obtained for small quark masses to the B scale. For
form factors the situation is even more complicated due to the presence of a
second potentially large scale, the momentum transfer ¢. The extrapolation
in the heavy mass mpy can be done either “naively”, by fitting to the ansatz
F = A + B/mpy, where F stands for a generic form factor [6, 7] (the ex-
trapolation is done at fixed three-momentum of the final state meson in the rest
system of the decaying particle, i.e. ¢ scales with the heavy mass, too), or by us-
ingthe guidance provided by heavy quark effective theory, according to which
near maximum ¢ the form factors behave apart from logarithmic corrections in
the heavy mass as [8]:

Al(tma.x) Lol 1/\/ mmg, A2(tmax) oy V(tma.x) ~ \/TTL_H (2)

The quantity constant in the heavy quark limit, i.e. me{l/ 2 is then fitted bya
polynomial in the inverse heavy mass, cf. [7, 9]. Working near ¢, poses how-
ever certain problems: first it is not clear in which range of ¢ the above scaling
laws remain valid. Second, one is clearly interested in the form factors in the
full range of ¢, or, as for B — K *~, only in the value at ¢ = 0. Thus, without
knowledge of the functional ¢-dependence of the form factors the extrapola-
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tion to smaller values of ¢ becomes model-dependent!. For B — T transitions
it was attempted to restrict the functional ¢-dependence, given some values at
large ¢, from unitarity arguments [10], but to my knowledge no similar bounds
for the B — p form factors exist to date.

Another possibility advocated in Refs. [9, 11] is to fix £ = 0 and then to ex-
trapolate the datain the heavy mass. As stressed in [11], this method avoids the
model-dependence from extrapolating down to ¢ = 0, but it introduces another
one, namely the leading behaviour of the form factors at £ = 0 in the heavy
mass, which cannot be obtained from heavy quark effective theory. Ref. [9]
fitsto A1(0) ~ m;13/ 2 (plus 1/mpy corrections), which relies on the scaling
law (2) and an assumed monopol pole behaviour of A;(¢). Ref. [11] tries three
different fits with F'(0) ~ m;ll/ 20.1/2 Unfortunately, the data available to
date do not allow to distinguish between different powers of m gy, although the
extrapolated values are rather sensitive to it. In view of this difficulty, I would
like to draw the lattice community’s attention to the fact that the leading be-
haviour of form factors at £ = 0 in the heavy quark limit can be extracted from
QCD and turns out to be a decrease with m%z. This behaviour follows from
the asymptotic form of the leading twist p meson light-cone wave functions in
QCD. A comprehensive review on light-cone wave functions can be found in
Ref. [12], whereas the heavy quark mass limit of form factors at t = 0 was
elaborated on in Refs. [13, 14, 2]. I hope that in future calculations this be-
haviour will be taken into account and lattice simulations will yield form fac-
tors both at ¢ = 0 and large ¢, which would thus allow to replace the hitherto
used extrapolations in t by interpolations.

Let me now turn to QCD sum rules. For the calculation of heavy-to-light
transition form factors there exist actually two types of them. The more “tradi-
tional” ones are the “three-point sum rules” based on the classical approach of
Shifman, Vainshtein and Zakharov [15] and rely on the expansion of a three-
point correlation function in terms of local operators, whose vacuum matrix
elements, the condensates, reflect the complicated nature of the QCD vacuum
and, following Ref. [15], are used to describe non-perturbative corrections to
the perturbative three-point functions. This method was applied to B — p
transitions in Refs. [16, 1].

! Actually most collaborations use a monopole behaviour, cf. [6,7,9], with which the avail-
able data at different (large) ¢ are consistent, without, however, being conclusive.
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A modification of that classical approach are the “light-cone sum rules”
[17, 13, 18] that combine the QCD sum rule technique with an expansion in
terms of (non-local) operators of definite twist (instead of dimension), whose
matrix elements over the vacuum and the light hadron are described by light-
cone wave functions. Predictions for B — p form factors from this approach
were given in Refs. [14, 2].

As discussed in Ref. [2], reliable predictions of form factors from three-
point sum rules are restricted to large values of ¢, but fail for small ¢, i.e.
t ~ O(myp). Atsmall t the condensate contributions to these sum rules di-

verge in the heavy quark limit (for instance A;(0) blows up as m;/ 2), which is
in contradiction to what one would expect intuitively and also different from the
behaviour of the perturbative contributions to the sum rules. Technically, three-
point sum rules fail to describe large transverse distances in the hadroniza-
tion of the p meson, which, however, are essential to one of the two dominant
hadronization processses, the Feynman mechanism, cf. [13, 2]. These contri-
butions are taken into account correctly in the light-cone sum rules approach,
whose central objects are matrix elements of non-local operators that are ex-
pressed in terms of light-cone wave functions. For the p meson there are four
wave functions up to twist three, which are of the generic type

1
(0l Td(O)|p(p))|ag ~ [ e B(u) Q
0

Here T’ is some Dirac structure and u is the momentum fraction of the p car-
ried by the quark. The wave function ® can be interpreted as the probability
amplitude to find the p in a state with minimum number of Fock constituents
and at small transverse separation. The twist two wave functions of the p were
reexamined recenctly in Ref. [19].

The results for the form factors both from light-cone sum rules and lattice
calculations? are shown in Fig. 2. The agreement of light-cone sum rules and
lattice results within the error-bars is striking, in particular for A1, which dom-
inates the decay rate at large ¢t. Comparing with the pole-dominance hypothe-
sis, I find that A4; increases, but less than a monopole, A2 is comparable with

2] only give the results from the UKQCD collaboration [9], which are the only ones that do
not rely on the pole dominance hypothesis.
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a monopole, whereas V increases nearly as a dipole. As for the errors, there
exists a very sophisticated error-analysis from lattice, whereas a corresponding
analysis for the light-cone sum rule results it is not that easy. Neglecting possi-
ble systematic errors of the method, I obtain from varying the input parameters
within reasonable ranges, in particular mp = (4.8 £+ 0.2) GeV:

AA; = £0.06, AAdy =109 AV =010

nearly independent of ¢. For the integrated rates I obtain
B(B — pev) = (21.8 £ 6.5)|Ves|?,
I'y/Tr =0.52+0.10, I'y/T_ =0.016 &+ 0.003. 4

In Fig. 3 I also show the spectra dI" /dF over the eleciron energy and dI'/dt. It
is now up to my experimental colleagues to provide better data that would al-
low to confirm or exclude the predictions from light-cone sum rules and lattice
calculations.
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Figure 2: The semileptonic form factors as functions of ¢ from light-cone sum
rules [2] (solid lines) and lattice calculations (UKQCD) [9] (crosses).
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Figure 3: The spectrum dI'/dt for the decay B — pev from light-cone sum
rules (solid line) and lattice calculasions (crosses). (b) The electron spectrum
from light-cone sum rules (not available from lattice due to restricted informa-
tion in £).
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