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Introduction

Lattice QCD predicted a phase transition
to a new form of matter known as Quark
Gluon Plasma (QGP) at extreme temperature
and/or baryon density [1]. Due to its transient
lifetime the direct detection of QGP is impos-
sible, but one can study the properties of the
QGP indirectly from various signatures pro-
posed over the last few decades.

In heavy-ion collisions, centrality is a quan-
tity of significance as it is related to the size
and shape of the resulting medium created by
the colliding nuclei in the overlap region. The
impact parameter (b) between the two nuclei,
which is the separation between their centres
in a plane perpendicular to the beam axis, is
generally used to quantify the centrality of a
collision.

Various machine learning (ML) and deep
learning (DL) models were used to predict im-
pact parameter from intermediate to high en-
ergy heavy-ion collisions [2–6]. Xiang et al.
[7] used a Deep Neural Network (DNN) model
having four hidden layers with a considerable
number of neurons to predict imapct parame-
ter in Au+Au collisions at

√
s = 200 GeV in

the range 2 ≤ b ≤ 12.5 fm. One of the moti-
vations of our study is to achieve greater ac-
curacy in estimating impact parameter with
minimum number of layers and nodes such
that the computational resources could be
minimized. In the present investigation an
attempt has therefore been made to predict
the impact parameter using a DNN model
with minimum number of layers and nodes
by simulating Au+Au collisions at

√
s = 200
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GeV with the help of a multi-phase transport
model.

A Multi-Phase Transport (AMPT) model is
a Monte Carlo event generator generally used
for simulating heavy-ion collisions at relativis-
tic energies [8]. The AMPT model comprises
of four components: initial conditions, patron
interactions, hadronization, and hadron cas-
cade. In the default version of AMPT model,
hardronization process is implemented via the
Lund string fragmentation scheme and in the
string melting version, it is done by the quark
coalescence model.

In this work, string melting version of the
AMPT model (version 2.26t9b) is used to sim-
ulate Au+Au collisions at

√
s = 200 GeV with

impact parameter in the range 0 ≤ b ≤ 14 fm.

Methodology
Deep learning can predict the hidden cor-

relation between the input data and the out-
put target variable. The inputs for the present
study are the event-by-event 2D histograms of
pT weighted (η−φ) spectra of charged hadrons
with 30 × 30 bins. Charged hadrons with
|η| ≤ 1 and φ ∈ [0, 2π] are considered in the
analysis.

The DNN model considered in this study
consists of three dense layers with one input
layer, one hidden layer and one output layer.
The first two layers contain 16, 32 nodes re-
spectively, whereas the final layer contains a
single node. For the input and hidden layers,
rectified linear unit (ReLU) activation func-
tion is used while in the output layer the linear
activation function is considered. A dropout
layer with a dropout rate 0.2 is implemented
before the output layer in order to overcome
the overfitting problem. Flatten function was
also utilized to covert the 2D arrays to a sin-
gle dimensional array which is fed to the final
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layer. The Adam optimization algorithm with
learning rate 0.0001 is used for the training
of the network. Mean-squared-error (MSE) is
used as loss function and to check the per-
formance of the model, Mean Absolute Error
(MAE) metrics are used. The model is trained
for 50 epochs.

Results and discussion
The AMPT model is used to generate 150K

minimum biased Au+Au collisions at
√
s =

200 GeV. Simulated events are randomly di-
vided into train and test datasets of 120K
and 30K events respectively. 20% of the
test datasets were kept for the model valida-
tion. Fig. 1 shows the evolution of the train-
ing and the validation loss in terms of mean-
squared-error as a function of the number of
epochs. It is evident from the figure that both
the losses decrease as the number epochs in-
creases. Moreover, the training and validation
loss are also seen to be close to each other from
which it can be concluded that the model suit-
ably learns hidden features from the training
datasets and generalizes well in predicting the
target variable using the validation dataset.
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FIG. 1: Loss in terms of mean-squared-error as a
function of the number of epochs.

The trained model is now used for pre-
diction of impact parameter using the test
dataset. Fig. 2 hows a correlation plot be-
tween the true and the predicted values of the
impact parameter estimated using the DNN
model. From the figure it is seen that the pre-
dicted impact parameters are nicely populated
along the dashed line which corresponds to

btrue = bpred. The performance of the model
has been quantified by determining the mean-
absolute-error (MAE) in b given by the equa-
tion,

4b =
1

N

N∑
i=1

|btruei − bpredi |. (1)

where, N is the number of events in the test
dataset. The value of MAE calculated for the
current DNN model is found to be 0.45 fm.
As previously reported in ref. [7], the present
investigation also shows a slight deterioration
in performance for both in extreme central and
ultra-peripheral collisions and therefore needs
further investigation.
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FIG. 2: Correlation plot between the true and
predicted impact parameters.
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