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ABSTRACT

Quantum skyrmions as topologically structured entangled states have the potential to be a pathway toward robustness against external per-
turbations, but so far no theoretical framework exists to validate this. Here, we introduce the notion of a new entanglement observable based
on such topologies and develop a theoretical framework for studying its evolution in general quantum channels. Using photons entangled
in orbital angular momentum and polarization as an example, we show that the noise affecting both photons can be recast as a position-
dependent perturbation affecting only the photon in the polarization state, restricting the noise to a finite-dimensional Hilbert space. From
this we predict complete resilience for both non-depolarizing and depolarizing noise, the former by rigorous arguments based on homotopic
maps and the latter by numerical simulation. Finally, we identify sources of local noise that can destabilize the topology and suggest why this
may be ignored in practical situations. Our work sets a solid foundational framework for understanding how and why topology enhances
the resilience of such entanglement observables, with immediate relevance to the distribution of information through entanglement in noisy
environments, such as quantum computers and quantum networks.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0271868
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I. INTRODUCTION

Entanglement is a key enabler for a wide range of quan-
tum technologies, including quantum key distribution,'~ quan-
tum secret sharing,”” quantum superdense coding,”” and quantum
computing,w promising enhanced secure communication networks
and computing platforms. Its functionality can be enhanced by tai-
loring the correlations using various degrees of freedom of photons
beyond just polarization, for instance orbital angular momentum
(OAM)"""" and temporal/wavelength,'” " and by mixing them
to produce hybrid'”'® and hyper'” ** entangled states. However,
entanglement is fragile and decays rapidly when subjected to deco-
herence and dephasing channels, resulting in actions such as a
change of basis, phase errors, or evolution from pure and entangled
to noisy and mixed states.” >’

An exciting prospect is the use of topologies®® to preserve
entanglement, often enabled by topological matter.”” ' Recently

the notion of optical topologies has emerged in the form of
skyrmions, ”"” with exciting opportunities for using structured mat-
ter for topology creation’”” as well as exchanging topology between
light and matter.””” One manifestation of optical skyrmions is
as tailored quantum photonic wave functions,’ with the prospect
of preserving quantum information encoded in topology. How-
ever, unlike its magnetic counterpart, there is no natural interaction
mechanism or energy barrier to photonic topology, so the question
of its resilience remains open.”” As yet, classical topology through
complex channels has returned some positive*’ and some negative®’
results, while in the quantum case only a unitary amplitude-damping
channel®® and isotropic noise have been considered.*” It remains
unknown whether quantum topology is preserved in the presence of
general quantum channels, essential if it is to be utilized for quantum
information processing and communication.

Here, we outline a foundational theoretical treatment for quan-
tum topologies in quantum channels. In particular, we answer the
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question of the robustness of quantum skyrmions, predicting which
channels they are resilient to while unveiling the intricacies and
nuances of dealing with maps to which the states are not robust. For
non-depolarizing sources of noise, our description employs a quan-
tum channel with a single Kraus operator, allowing for a rigorous
argument based on homotopies between the noisy and noise-free
density matrices, substantiating the topological noise rejection prop-
erty. For decoherence channels where the operators are convex
sums of Kraus operators, we show that although noise rejection is
not simply established using homotopies, transitions between dis-
tinct topological numbers are not easily induced by noise, thereby
enabling our scheme to benefit from a topological encoding of the
entangled states. Our framework will be essential in the under-
standing and deployment of topology as a mechanism for resilience
of quantum information in noisy environments, such as quantum
computers and quantum networks.

Il. THE SKYRMION WAVE FUNCTION

The skyrmion wave function is a pure state of two entangled
photons. The first, photon A, occupies an orbital angular momen-
tum state in a Hilbert space #Ha. The second, photon B, is in a
polarization state in a Hilbert space Hp. The two photon state
belongs to the tensor product Ha ® Hg. A typical skyrmion wave
function takes the form

v) = 1) (s GOl + GO Va)dras (D

where « is an arbitrary phase, I} and l, are orbital angular
momentum quantum numbers, and the Laguerre-Gaussian modes
are

11l 2 2
ub(p ) =\ [ =~ (ﬁp) exp(—%)%'(zi)exp(ilrb),

]! UTO Wo 0 wé
(2)

where L is the generalized Laguerre polynomial and wy is the Gaus-
sian width. This state is described by the density matrix p = |y){y|.**
In terms of this density matrix, the Stokes parameters are

Sj(7a) = Trp((Falplra) os;) j=xyz 3)

where o is a Pauli matrix o; acting on H3,

Y (U W (A W £ @
1o 7 \i o) T \o 1)
Normalize the Stokes parameters to define a unit vector (§;) that

describes a point on a two sphere S? at each 74,
> 88 =1, (5)
J

Si=aS;  j=xyz

where a is fixed by the normalization condition S-S = 1.

The map S;(x,y) plays a central role. Its base space is the set
of all points on a two dimensional plane, which itself maps to a
two sphere after compactifying and employing a stereographic map.
Since Sj(x,y) is a normalized vector, the target space of this map is
also a two sphere—the Poincaré sphere. Consequently, S;(x, y) maps

ARTICLE pubs.aip.org/aip/apq

a two sphere to a two sphere. Any map of this type has an associated
winding number, which counts how many times the first two spheres
are wrapped around the second. In this context, the winding number
is called the skyrmion number, and it may be computed as

1 oo oo
=— Zz(x, )

- ~ (6)
< 08, 0S;
Zl(x>y) = SPQ’SP axq 8}1 .

For the wave function given earlier, we can easily verify that
N=1L-L @)

A product wave function, which is, therefore, not entangled,
would map all points in the base space to a single point on the
Poincaré sphere. This is a map with winding number zero. A non-
zero winding number indicates that the map cannot be reduced to
a trivial (constant) map without tearing or discontinuity. Therefore,
the map wraps around the target space in a non-trivial way, which
cannot be undone by any smooth deformation. This non-trivial
wrapping is simultaneously a manifestation of non-trivial topology
and the fact that the wave function is not a product, i.e., that it is
entangled. This observation reveals a profound connection between
topology and entanglement, and it is the winding number N that
provides the discretization of entanglement. The key question we
address in this study is how noise affects the value of N.

lll. NOISE MODEL

In this section, we aim to introduce a noise model that is com-
prehensive enough to accurately reflect real-world physical systems.
To begin, we might consider a scenario where photons A and B are
analyzed separately, as depicted in Fig. 1(a). This approach involves
understanding how the states of photons A and B transform under
various types of spatial and polarization noise, respectively. Given
the complexity of the infinite-dimensional Hilbert space for pho-
ton A, this task can be daunting. Instead, by leveraging the explicit
form of the skyrmion wave function (1), we simplify our analy-
sis.** This approach confines the effect of noise to the polarization
state of photon B, streamlining the problem. To ensure that our
description remains comprehensive, we must allow for position-
dependent noise, as illustrated in Fig. 1(b). Our model captures
the impact of noise on the density matrix, and accounting for its
effect on the skyrmion number is then a straightforward extension
using formulas (3), (5), and (6). In our analysis, we model realis-
tic environmental noise acting on OAM and polarization photons
as position-dependent polarization noise. To avoid confusion, we
emphasize that this differs from the conventional notion of noise,
which typically refers to the environment’s tendency to convert pure
states into mixed states.

Noise can, in general, affect the states of both photons in the
entangled skyrmion state (1). To account for this, consider noise
induced perturbations of the form™

i=1,2,
P=H,V.

L~ li =~ I =
uO(rA) - MO(TA) + upert(rA)
IP)g = |P)g + [Ppert)
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FIG. 1. Skyrmion noise model. Photons A and B are entangled in space and polarization, respectively, such that their entanglement exhibits non-trivial topological features.
(a) Investigating the general behavior of such features under the influence of noise requires passing photon A (spatial) through a noise channel (T’s(x, ¥)), which modulates
the amplitude and phase of the photon at different points in space, and photon B (polarization) through a channel (T5), which transforms its polarization. (b) By exploiting
the explicit form of the skyrmion wave function, a more convenient model can be used that considers the noise as only influencing the polarization of photon B at different
points in space (Tp(x, ¥)), i.e., a position-dependent source of noise acting only on the polarization degree of freedom.

Our notation is to denote the change in a quantity due to a per-
turbation with a subscript “pert.” In the above-mentioned formula,
ugert(FA) is the change in (74 due to the perturbation, and |Pper) 5
is the change in |P) due to the perturbation. These changes due to
the perturbation are not all independent since the trace of the density
matrix must always be preserved. This gives a constraint written as
an equation for the integral over the fluctuations. Since it is not very
constraining or illuminating, we do not explore it further. The most
practical way to proceed is simply to ignore the constraint and then
normalize the trace of the noisy density matrix to 1 before it is inter-
preted. By adding the noise perturbations, we obtain the following
noisy state:

Whasoy = [174) (1 Gt (F)2 + Hr),)

g (Fa) " (IV)y + [ Vo)) )7, ©)
where
L= L=
ul (7a) Ul (Fa)
[Hpert) g = T%'H)B + [Hpert) g + T%IHpert)B,
ug (7a) ug (7a)
I, = 1l =
u r(rA) u ert(rA)
[Vipert) g = etV + [Voert )y + o Vpert)
pert/p uf)z(rA) B pert/p uéz(rA) pert/p

We have manipulated the noisy state (9) so that it looks as if
photon A is completely unaffected by noise. The price for this is
that the polarization vectors of photon B suffer position dependent
noise. This manipulation relies heavily on the detailed form of the

skyrmion wave function (1). This is not a loss of generality, since
the skyrmion number itself is tied to this state. The clear advan-
tage of this point of view is that we are now adding noise to the
finite dimensional Hilbert space of polarization states of photon B.
This immediately allows us to profitably employ both the language
and ideas developed to study noisy qubits, as well as recent advances
in quantum polarimetry. Note that if the OAM space is treated
as two-dimensional, then many such subspaces would exist, all
potentially giving rise to their own topological numbers, i.e., the
measurement choice itself will affect the outcome. The entangle-
ment itself could appear to decrease if only a reduced space is used,
even for unitary channels. Specifically, the fact that we add noise to a
finite dimensional Hilbert space allows us to phrase the discussion in
terms of noise channels, using the notion of a quantum operation &,
which maps density matrices to density matrices. The operator sum
representation of £ is

E(p) = Y EipE| M EE =1, (10)

i

where the E; are known as Kraus operators. Quantum polarimetry
will determine the structure of the Kraus operators. For further ref-
erences dealing with open quantum systems in general and with the
Kraus theorem, see Refs. 46-49.

It is important to clarify certain aspects of our noise model
to pre-empt potential misconceptions. In our earlier discussion,
we introduced position-dependent polarization noise. However, it
would be incorrect to conflate this with standard polarization noise.
Our reformulation was not intended to directly model specific phys-
ical noise sources, but rather to ensure that all such sources are
collectively described by a position-dependent completely positive
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trace-preserving (CPTP) map. This provides the most general trans-
formation applicable to the density matrix of photon B, enabling
a universal framework for describing perturbations to the system.
Therefore, this framework makes no explicit assumptions about any
particular noise channel configuration, thereby rendering it appli-
cable to any real-world scenario where photons may propagate
through noisy quantum channels in a variety of different ways.

In the special case where perturbations exhibit no position
dependence, they can be interpreted as affecting only photon B.
Likewise, if the perturbations do not mix the polarization states
|V) and |H) and affect both identically, they correspond to a per-
turbation of photon A. More generally, when the model yields a
perturbation that is both position-dependent and acts differently
on the two polarization states, both photons undergo a non-trivial
transformation.

Finally, we previously stated that our model is rewritten in a
form where photon A appears to be completely unaffected by the
noise. A natural objection to this claim is that tracing over photon B
results in a reduced density matrix for photon A that is undeniably
altered. How, then, can we assert that photon A remains unaffected?

The key point is that whenever we have an entangled state
of two particles, any operation acting solely on one particle—and
subsequently tracing it out—will inevitably influence the reduced
density matrix of the other particle. This fundamental property of
entanglement is precisely what we leverage in constructing our noise
model.

IV. QUANTUM THEORY OF POLARIMETRY

In this section, we review relevant aspects of the framework of
polarimetry in terms of quantum mechanical operators acting on
quantum states of light, as developed in Ref. 50. Polarization is char-
acterized by four Stokes parameters, and polarimetry involves the
4 x 4 Mueller matrix, which governs the linear transformations of
these parameters under various optical elements. The approach in
Ref. 50 extends this to the quantum domain by describing quan-
tum channels that correspond to Mueller matrices. For the quantum
Stokes operators to align with the predictions of classical polarime-
try, they must transform according to Mueller calculus, irrespective
of the quantum state. A few basic quantum operations form the
building blocks of quantum polarimetry. These building blocks are
combined into composite quantum operations to realize the degrees
of freedom of an arbitrary Mueller matrix. One significant impli-
cation of the quantum channels described here is that polarimetry
can consistently be represented in a trace-preserving manner. This
ensures total probability conservation for both deterministic and
non-deterministic Mueller matrices, even though some information
may leak to the environment about the states and transformations
involved.

A. Stokes operators

The electric field of a monochromatic electromagnetic wave
propagating along the k direction is given by

E(7,t) = (hh + v5)e* 7, (1

ARTICLE pubs.aip.org/aip/apq

where h,v are two complex constants and h,J are two vectors

orthogonal to the direction of propagation k. The polarization
properties of the field E are characterized by the Stokes parameters

So= I e lofs = - loP, )
S, =h*v+v*h, S3 = —i(h*v—v*h),
as usual. Only three of these parameters are independent, since
SE=81+85+ 8% (13)
The Stokes vector
S=(51,5,5), (14)

after normalizing by So, spans the Poincaré sphere. For the descrip-
tion of stochastic light, the Stokes parameters are given as time
or ensemble averages. Consequently, S/S, typically lies inside the
Poincaré sphere. This motivates the definition of the degree of
polarization

S (15)

To develop a quantum mechanical description, it is cleanest to
consider the field in some finite volume, which renders the modes
of the field discrete. Toward this end, imagine the electric field is
contained inside a cavity (or region) of volume V. The field E is
quantized by promoting h and v to operators as follows:"’

hw hw
h — AT, al . 16
7V 2ve, U7V 2ve Y (16)

These are the usual bosonic oscillators, which obey the Fock space
algebra

[anal]=0;  [af,al]=0=[a,a]. 17)

50

Following™ transform to a circularly polarized basis

4 ag — iay 4 ag +iay
L= ——F=> R= —=.
V2 V2

In terms of these oscillators, we can define the Stokes operators as
follows:

(18)

§0 = {:l}iflL + ﬁ;&R,
5 (19)
$, = —i(alar — afar),
The classical Stokes parameters are recovered as expectation values
of these operators. It is not possible to do better: since the Stokes
operators do not commute, simultaneous eigenvectors with eigen-
values given by the classical values of the Stokes parameters simply
do not exist. The Stokes operators obey the u(2) algebra

3
(S 80] = 2i(1 = 8u0) (1= 640) > €wiS (20)
j=1
and respect the constraint

S+ +82=8+28,, (21)
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which is the quantum analog of (13). The reason why we obtain u(2)
and not su(2) is that S, is an extra generator commuting with S1,
Sy, and 8. It is interesting to note that since we are forced to use
expectation values to connect to the classical description, there are
many distinct quantum states that lead to the same set of classical
Stokes parameters.

B. Mueller matrices, Jones matrices,
and quantum channels

It is an empirical fact that different materials linearly transform
the polarization properties of the incident light. The four Stokes
parameters change as follows:

3
S# - S,: = Z lesv) (22)

v=0

where the 4 x 4 matrix M, is known as the Mueller matrix. Mueller
matrices are broadly categorized as either depolarizing or non-
depolarizing. Non-depolarizing Mueller matrices can be described
using Jones matrices J, which represent an SL(2, C)* transformation

on the electric field,
h Ju Jul|lh
- = J|E). 23
H [121 J]H ) @

The non-depolarizing Mueller matrices do not change the degree
of polarization of perfectly polarized incident light. The depolariz-
ing Mueller matrices are described as ensemble averages of Jones
matrices

|E)

N Z AJIENELTT, (24)

and they reduce the degree of polarization of perfectly polarized inci-
dent light. Partially polarized light can have its degree of polarization
both increase and decrease under the effect of both depolarizing
and non-depolarizing optical systems. Non-depolarizing systems are
also called deterministic since they are realized as pure Jones matri-
ces, while depolarizing systems are non-deterministic because they
are realized as ensemble averages of Jones matrices. This language
has a natural parallel for quantum systems.

It is straightforward to derive a relationship between the Jones
matrices and the Mueller matrices. In terms of the Pauli matrices (4)
and the 2 x 2 identity matrix gy, it is simple to verify that™

1 1 3 3
|E)<E| = E(O.OSO + 0'182 + 0'2S3 + 0'381) = EZ Z O'#A,WSV, (25)
=0 v=0
with
1 0 0 O
00 1 0
A= . (26)
0 0 0 1
01 0 0
This implies that
> T
Su =2 AuwTr (ov[E)(E), 27)
v=0

pubs.aip.org/aip/apq

where AT is the usual matrix transpose of A. Under the action of the
Jones matrix, we have

S = S, ZAWTr(avﬂE)(E\ﬂ)

33 3
= Z Z Z A:v Tr(av]%ﬂ)AaﬁSﬁ

= > MygSp (28)

From this, we can read off the relation between the Mueller matrix
and the Jones matrix (for a relevant and related textbook discussion,
see Sec. 8.3.2 of Ref. 46),

13 3
My EZZA
v=0 a=0

The density matrix for photon B will appear exactly as |E)(E| appears
in the above-mentioned discussion. This makes it clear that the Jones
matrices are the Kraus operators of the operator sum representation
for the noise channel. The discussion of the Kraus operators acting
on the density matrix of the state can be phrased, after using (28), in
terms of an affine mapping of the Stokes vectors.

Mueller matrices for common elements used to control polar-
ization are well known, and we will use these descriptions to
construct noise models. These elements include the following steps:

Tr (0uJ0a) ") Ag. (29)

1. Retarders: Maintain the intensity S and the degree of polar-
ization p, but they rotate the polarization vector S so that they
are deterministic. The Mueller matrix is

M - [OIT 12] (30)

where R is a 3 x 3 rotation matrix.

2. Diattenuators: Differentially transmit light incident with
different polarization directions. They take perfectly polar-
ized light to perfectly polarized light at a reduced intensity
so that they are also deterministic. The Mueller matrix is

(0<gr<1)
q+r q-r 0 0
2 2
q-r q+r
Mp=|">5 5 0 0 (31)
0 0 Vgr ©
0 0 0 Vi

Setting r =0 and g = 1 in Mp gives a Mueller matrix for the
linear polarizer.

3. Depolarizers: Maintain the total intensity So but reduce the
degree of polarization p of perfectly polarized light. The

Mueller matrix is

1 0

Md = [ T ]) (32)
0 m

where m is a 3 x 3 symmetric matrix with eigenvalues between
—-land 1.
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4. Arbitrary Mueller Matrices: Can be decomposed into the
sequential application of a diattenuator, a retarder, and a
depolarizer M = MyMpMg.

It is possible to derive the quantum operation that corresponds
to any given Mueller matrix. General quantum channels are rep-
resented by completely positive and trace preserving (CPTP) maps
acting on the density matrix p = |[E)(E]|,

E(p) = KipK] S RIK =1 (33)

1 1
This is called the operator sum representation of the channel, and
the operators K; are known as Kraus operators. Composite quan-
tum channels are produced as products or sums of other quantum

channels. The application of Mueller matrix M, followed by M,
constructs the composite channel

8M2M1 (p) = gMz ( ng (ﬁ))’ (34)

while a linear combination of matrices M; and M, constructs the
channel

gPlM1+P2M2 (/3) =p1 ng (/A)) +p2 gMz(p) (35)

Synthesizing more complicated quantum channels from simpler
building blocks reduces the problem of constructing the channel
for an arbitrary Mueller matrix to that of constructing channels

J

cos 0 cos ¢ cos Y —sin ¢ sin ¥
T

ARTICLE pubs.aip.org/aip/apq

for retarders, diattentuators, and depolarizers. This construction is
straightforward, as we now explain.

1. Quantum channels for retarders

To realize the retarder, (30) instructs us to construct a rotation.
The Mueller matrix in (30) acts on the Stokes parameters S, S, and
S3. We need to construct a Jones matrix, which will act on the state of
our polarization photon (photon B). The relevant argument is given
in (28). Concretely [i,j = 1,2,3 and Aj; is the lower right 3 x 3 block
of matrix A defined in (26)]

3
Si=> Aj; Tr (a]|E)E])

=
3 ; :
Aj; Tr (oj]or] ) AuS

M

1 3
DY

J=1 k=1

1

3
> RySi (36)
=1

so that we read off*

3

Rikzgz 23:

=1 k=1

[u—

T

Aij Tr (O’j](fk]f )Akl- (37)

M

1

This relation can be used to verify that the rotation is represented
using Euler angles

cos ¥ sin ¢ + cos 6 cos ¢ sin ¢y —cos ¢ sin 0

R =|[-cos 0 cosysingp—cosgsiny cosycosgp—cosfsingsiny singsinf |, (38)
cos ¥ sin 6 sin 6 sin y cos 0
(
corresponds to the Jones matrix™ then tracing out the auxiliary modes. The resulting Jones matrix is

given by

_i 0 _ip—uy . O )

€ () COSE € 07 Smi Ja(B, .1 ),l Va+Vr+(/4-r)cos 8 ew(\/‘?—\/;)sine

Jr(6, 9, v) = . (39) ABPR =5 eV (/G —/r)sin i+ NTF= (VG- /) cos 6]

_ex(o7V) sing e1 (9HY) cosg

This Jones matrix is the Kraus operator defining the quantum chan-
nel for a retarder. This channel is deterministic, so there is a single
Kraus matrix.

2. Quantum channels for diattentuators

The different components of the electric field are differen-
tially transmitted. For example, the transformations h — /gh and
v = +/rv correspond to transmission probabilities g and  for hori-
zontally and vertically polarized light. This transformation is imple-
mented by the diattenuator Mueller matrix My given in (31). A
natural guess is that ag — \/Z]&H and ay — \/;&V provide the chan-
nel for a diattenuator. This simple transformation does not preserve
the oscillator commutation relations. The paper™ constructs the
correct transformation by moving to an enlarged Hilbert space and

(40)

This provides the Kraus matrix needed to define the diattenua-

tion channel. To achieve diattenuation along a different direction,

apply a rotation followed by linear diattenuation and then the

inverse of the original rotation. The rotation is parameterized by

only two angles because only the direction of the diattenuation axis

needs to be varied. Consequently, the four parameters of a general

Mueller matrix representing diattenuation are captured by g, r, and

the two angles specifying the diattenuation axis. Since this channel
is deterministic, it involves a single Kraus matrix.

3. Quantum channels for depolarizers

Number conserving quantum operations account for the seven
parameters of non-depolarizing Mueller matrices. The remain-
ing nine free parameters are described by quantum operations
that do not conserve photon number.”’ Any map from the space
of density matrices back to the space of density matrices must
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be completely positive and trace-preserving (CPTP). The CPTP
requirement enforces the known constraints for Mueller matrices,
which were derived classically in Ref. 56. This strongly suggests
a quantum-mechanical origin for the constraint that depolarizing
Mueller matrices are formed from positive combinations of non-
depolarizing Mueller matrices.”” CPTP maps that transform Stokes
operators into linear combinations of Stokes operators always allow
a decomposition into convex combinations of CPTP maps cor-
responding to non-depolarizing Mueller matrices (since we study
maps that do not mix different photon-number subspaces, the
results of Ref. 56 validate this). In the single-photon subspace, the
CPTP maps precisely match the classical constraint requiring con-
vex combinations of non-depolarizing Mueller matrices. Therefore,
convex combinations of the described channels are sufficient to rep-
resent all classical Mueller matrices. If the Kraus operators {IA('l(i)}
correspond to Mueller matrix M (i), then the quantum channel

E(p) = X iy K(DpK ()], (41)
i 1
corresponds to the Mueller matrix

M= Z pi M(i). (42)

It is a proven result that no more than four weights p, are ever
needed.”

This provides a complete description of the channels needed for
a description of the polarization noise affecting photon B.

V. TOPOLOGICAL NOISE REJECTION

A central message of this study is that the skyrmion num-
ber demonstrates remarkable resilience in the presence of noise.
In this section, we aim to build intuition for how this robustness
emerges from encoding information into topological features, which
are inherently sensitive only to the global structure of the wave
function. The key idea is that noise tends to perturb local details,
while topological invariants remain unchanged under such local dis-
tortions. Consequently, encoding information topologically offers a
natural protection mechanism against noise. The arguments pre-
sented here are intended to provide conceptual insight and do not
provide a formal proof of invariance under perturbations.

Topology is a systematic approach to characterizing quantities
that are insensitive to smooth deformation. In our problem, this is
the statement that the skyrmion number is unchanged by a change
of coordinates 74 for photon A. To demonstrate this, start from the
formula for the skyrmion number

m%
- = f f b e g, ey 43)

—oo —oo

and consider a smooth change of coordinates from x,y to
x' =x'(x,y) and y' = y'(x,y). After some simple manipulations, we
find the following transformation of the integrand:

L 08,05 (X 0y dy v\ 05,05
PP By dy Ox 9y  Ox Oy Prp oy’ oy

ARTICLE pubs.aip.org/aip/apq

The integration measure transforms as dxdy = Jdx'dy’, where the
Jacobian is given by

Putting these transformation rules together, consequently

17 BN as,
E‘[ \/5 pqup i dxdy
17 1 3S, O,
- E_/ B oy (44)

proving that the skyrmion number is independent of the choice
of coordinates used for the calculation. This demonstrates that the
skyrmion number remains invariant under smooth deformations, as
any such deformation is effectively equivalent to a carefully selected
change of coordinates. Consequently, the skyrmion number is per-
fectly robust against all sources of noise that can be modeled as a
coordinate transformation.

This concept is illustrated in Fig. 2(a), where noise distorts
the original skyrmion map, S(x,y), into a noisy map, S'(x,y),
potentially altering the topology from N to N’. Since we are work-
ing with maps to unit spheres, S?, we perform a normalization

to ensure that S$'(x,y)-S'(x,y) = 1. After this normalization, we
check whether a coordinate transformation (smooth deformation),
(%) = (x',y), exists such that §'(x,y) — S(x’,y"). If such a trans-
formation exists, then the noise is a smooth deformation, leaving the
topology unchanged.

This intuitive argument can be formalized using the concept
of homotopy. In topology, two continuous functions between topo-
logical spaces are said to be homotopic if one can be continuously
deformed into the other. The continuous deformation connecting
them is called a homotopy. More precisely, a homotopy between
two continuous functions, f(x) and g(x), from a topological space
X [represented as a loop in Fig. 2(b)] to a space Y (depicted as a
deformed loop) is a continuous function H: X x [0,1] - Y such
that H(x,0) = f(x) and H(x,1) = g(x) for all x € X. Since topo-
logical invariants—such as the skyrmion number—are preserved
under homotopy, demonstrating robustness of our discrete signal
against noise [denoted by T(5t) in Fig. 2(c)] requires showing
the existence of a homotopy between the noisy function, 1(s;1),
and the noise-free function, T(§, 0). Coordinate transformations,
which shuffle points in the domain of the map, represent a spe-
cial class of smooth deformations. We have already shown that the
skyrmion number remains invariant under such transformations,
confirming invariance under this subset of homotopies. However,
this class is limited in scope and does not encompass all possible
homotopies. For instance, consider a constant field configuration:
any reshuffling of domain points leaves the map unchanged, so
in this case such transformations clearly cannot produce any non-
trivial homotopies.” Therefore, coordinate transformations alone
do not establish robustness against perturbations. To address this
limitation, we adopt a two-pronged strategy. First, we explicitly
demonstrate that the quantum channels modeling noise can be
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FIG. 2. Origin of topologically protected wave functions. (a) The map S(x, y) (left panel), derived from the skyrmion wave function, is a map from the plane to the sphere

R? — S$2. The map is distorted when the wave function is exposed to noise (middle panel), S(x, y) — S’(x,y). However, (right panel) if this distortion can be inverted with
a smooth coordinate transformation (x,y) — (x’, "), then the noise will not alter the topology of the state N — N’ = N, realizing topological protection. (b) To demonstrate

that transformation 7 is a smooth deformation of topological space X into topological space Y, we construct a smooth homotopy H(t, x) with t € [0, 1] that enjoys the
properties H(0,x) =1 and H(1,x) = T. (c) The noise channel distorts the initial map as T(S(x,y)) = S’(x,y). If this channel can be smoothly parameterized with

parameter t such that 7(0, S(x,y)) = S(x,y) is the identity and at t = 1, (1, S(x,y)) = S”(x,y), then the noise channel induces a smooth deformation of the map
defined by the skyrmion wave function, proving topological protection of the skyrmion topology.

continuously deformed into the identity channel, which trivially pre-
serves the skyrmion number. Second, we substantiate this argument
with numerical simulations that directly confirm the invariance of
the skyrmion number in the presence of perturbations.

It is encouraging to note that in prior classical studies of vec-
torial light,”” homotopy invariance has been successfully invoked to
argue for noise resilience in a classical context. A key outcome of
our work is the demonstration that these topological ideas extend
naturally to the quantum regime. By explicitly constructing homo-
topies between noisy and noise-free density matrices, we establish
the existence of a smooth deformation from the original quantum
state to its noisy counterpart. This confirms that topological pro-
tection through homotopy invariance remains valid even at the full
quantum level.

In the following analytic arguments, we restrict our analysis to
noise parameters that vary smoothly with spatial coordinates (x,y).
This assumption simplifies the derivations and allows for a more
transparent theoretical treatment. However, this analytic approach
does not address whether the skyrmion number remains resilient
when the noise exhibits non-smooth or stochastic dependence on
(x,5). To investigate this, we extend our analysis through numeri-
cal experiments, where we allow the noise parameters to acquire a
stochastic spatial dependence. In all such cases, our results consis-
tently demonstrate that the skyrmion number remains remarkably
robust against the effects of noise.

A. Global considerations

The maps S(x,y) considered in this work are functions from
R? to §%. A subtle but important omission in our earlier discussion
is the lack of explicit specification of the topology assumed for R,
Two interpretations are logically consistent. One can work with the
compactified plane—that is, R* with a point added at infinity—which
is topologically equivalent to $. Alternatively, one may work with

the non-compact R?; in this case, the map is from a disk to a subset
of §%.

In our analysis, we adopt the compactified plane. This choice
is motivated by the fact that, in this setting, the skyrmion num-
ber defines a bona fide topological invariant. Since we are studying
homotopies of maps from §* to §%, the skyrmion number is guaran-
teed to be integer-valued and invariant under smooth deformations.
This is why it is conceptually advantageous to endow R? with the
topology of the sphere.

However, this choice comes with limitations. As discussed in
Ref. 40, realistic noise can perturb the field configuration in such a
way that compactification ceases to be valid. In such scenarios, the
skyrmion number may fail to be homotopy invariant or integer-
valued. In other words, the noise-induced deformation takes us
outside the space of maps from S to %, on which we focus.

Of course, adopting the compactified plane is not the only con-
sistent approach. As emphasized in Ref. 40, one may instead work
with the uncompactified plane, R?. The advantage of this approach
is that any continuous deformation remains within the space of
maps considered, so this discussion is general. However, the cost
is that one no longer has a guarantee that the skyrmion number is
an integer-valued, homotopy-invariant quantity. This property only
holds when the homotopy on R? descends to a homotopy on §2,
in which case the skyrmion number is an integer and homotopy
invariant. If this descent fails, the skyrmion number is not in general
homotopy invariant and will in general take non-integer values.

Ultimately, we have chosen to endow the plane with the topol-
ogy of the sphere in order to clearly distinguish two effects: (1) local
smooth deformations that preserve the space of maps from S* to
$? and, therefore, the integer-valued topological invariant, and (2)
global perturbations that can violate the topological structure and
disrupt the quantization of the skyrmion number. For our purposes,
this distinction is conceptually useful, as it isolates the role of topo-
logical protection from the effects of global breakdown. We will
return to the latter in Sec. VIII.
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VI. TOPOLOGICAL PROTECTION AGAINST
NON-DEPOLARIZING CHANNELS

The non-depolarizing channels are described by pure Mueller
matrices, and they correspond to retarders and diattenuators. For
pure Mueller matrices, there is a single term in the quantum channel.
Topological invariance is established with a homotopy that inter-
polates between the original density matrix and the density matrix
output of the quantum channel. For these channels, the Kraus oper-
ator is simply given by the Jones matrix associated with the Mueller
matrix. The noise model of Sec. I1I allows the parameters of the Jones
matrix to depend on position 74. Denote the space of 74 = (x,y)
points R, where A is for photon A. Denote the space of polarization
states, the Poincaré sphere, as SIZ;, where B is for photon B.

The formula for the Stokes parameters (3) uses the diagonal
matrix element of the density matrix with respect to the position
space basis of photon A,

pp = (Faly)(yl7a) = (Falpl7a), (45)

ppisa2 x 2 matrix and it is a density matrix in the sense that it is not
negative

(v|pslv) >0 V|v). (46)

Furthermore, it is natural to normalize pp at each point s since
the Stokes parameters computed with the normalized pp will be
correctly normalized.

A. Retarder homotopy

A retarder is described using the Jones matrix given in (39).
Notice that this Jones matrix is an element of SU(2). The angles
¢, ¥, 0 characterizing the retarder are all functions from Ri to
the interval [0,27]. We now define the homotopy Hg : R34 x [0,1]
— SU(2) as follows:

e‘é(ﬂ”t‘*‘%) COS% e_é(ﬁat—%) Sil’l%
Hr(t,x,y) = ) (47)

i 6 i 0,
_ez(‘Pt i) sm—t ez(%"‘%) COSEt

where 0 < ¢ < 1 and

0 =t0(xy)  @i=to(xy)  yi=ty(ny).  (48)

Notice that Hg(0,x,y) = 1 and Hr(1,x,y) = Jr(0, ¢, v), where 1 is
the 2 x 2 identity matrix and Jz (6, ¢, y) is the Jones matrix defined
in (39). The sin(-), cos(-), and e’ functions are all infinitely differen-
tiable; thus, as long as the functions defined in (48) are smooth func-
tions of (x, y), we obtain a smooth homotopy from the undeformed
state

HR(0,x,y)psHr(0,%,y) = ps, (49)

to the noisy state

Hr(1,%,y)psHr(1,%y) = Je(6, 0, v)psJr(6, 9, 9)".  (50)

Since every element in a connected Lie group can be smoothly
deformed to the identity,®” one might be tempted to conclude that
the ability to deform the Kraus operator—represented by a Jones

pubs.aip.org/aip/apq

matrix implementing a rotation—to the identity follows trivially
from the fact that SU(2) is a connected Lie group. However, this
conclusion is not correct. The key point is that the Jones matrix
depends on spatial coordinates x, y and, therefore, potentially defines
a different element of SU(2) at each point in space. Constructing
a homotopy in this context means building a smooth deformation
of the entire map (i.e., the field of Jones matrices) to the identity
matrix in such a way that smoothness with respect to x and y is pre-
served throughout the deformation. While each individual matrix
may be deformable to the identity, global obstructions may pre-
vent the existence of a single smooth homotopy that achieves this
simultaneously across the full domain. This is precisely what must
be addressed when demonstrating homotopy invariance in a spa-
tially varying setting.”’ The continuous deformation to the identity
given earlier is the homotopy establishing that the skyrmion number
is unchanged by the action of a retarder. Furthermore, the exis-
tence of this smooth mapping demonstrates that this invariance is
a consequence of topological noise rejection against the effects of
retarders.

A comment is in order regarding the choice of the parameters
0(x,y), ¢(x,¥), and y(x,y). To illustrate the comment we wish to
make, imagine we choose 8(x, y) = tan™" (y/x), aligning 0 with the
angular coordinate in polar coordinates on the plane. The function
t8(x,y) = t tan™'(y/x) is continuous in x and y only at £ = 0 and
t = 1. Continuity at f = 1 uses the fact that 6 = 0 and 0 = 27 corre-
spond to the same angular direction. On the other hand, the Jones
matrix implementing the rotation is not continuous at ¢ = 1. This is
due to the fact that vectors at angles 0 = € and 0 = 2w — e—which
are close in angle—undergo vastly different rotations: the former
rotates by a small amount, while the latter performs nearly a full
27 rotation. As a result, the Jones matrix is not continuous across
6 =0 even though 6(x,y) is. To further support this claim, note
that applying a rotation with 8(x, y) = tan™'(y/x) to a constant field
configuration with skyrmion number zero produces a configuration
with skyrmion number one. This discontinuous behavior indicates
that such a transformation is not a homotopy of maps from $* — §2.
To ensure a smooth deformation, one must require that nearby
points undergo nearly identical rotations. This continuity condition
ensures that the resulting deformation defines a sensible homotopy
and rules out choices like 8(x, y) = tan™" (y/x).

It is worth noting that we can give an independent analytic
demonstration of the independence of the skyrmion number against
the effects of the retarder when the parameters of the retarder are
constant. The Mueller matrix from the retarder, given in Eq. (30),
shows that the retarder simply rotates the spatial components of the
Stokes vector: S; — ; R;;S;. The skyrmion number density therefore
becomes

> €SiOSiOSk > D > €jRiRimRinSi0xSmOySn.
ijk ijk Imn

Now, use the identity

> €kRiRimRiy = det (R) € = s (51)
ijk

to conclude that the skyrmion number density is invariant under the
action of the retarder.
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The analysis in this subsection demonstrates that, assuming the
functions defined in (48) are smooth functions of (x,y), we can
construct a smooth homotopy from the undeformed state to the
noisy state. It is straightforward to test this conclusion numerically
with a few conveniently chosen smooth functions. For this exer-
cise, it proves useful to move to polar coordinates x = p cos ¢ and
y = psin¢$. Assume that the angle parameters of the retarder have
the following coordinate dependence:

6= 906_[3“02 cos (n19),
9= (p067ﬁ2P2 cos (n2¢), (52)
v= l,l/oe_ﬁ”’2 cos (n3¢).

Using the Jones matrix (39) as the Kraus matrix for a quantum
channel, we can evaluate the skyrmion number after the channel is
applied. When the angle parameters 6, ¢, and y vanish, the Jones
matrix evaluates to the identity. The constant parameters f3; for
i =1,2,3 control how rapidly the angle parameters fall to zero with
increasing p so that the retarder acts in some local region centered
on the origin p = 0. The constant parameters §; for i = 1,2,3 con-
trol the spatial variation of the retarder parameters when p is fixed
and ¢ is varied. Finally, the constant parameters 6o, ¢,, and v, set
the magnitude of the retarder angles. In this section and Sec. VI B,
we will numerically evaluate the effect of different noise types on
the skyrmion number of a given state. We note that deviations from
the initial skyrmion number are expected due to two main fac-
tors: (1) the discretization of the component fields, ué, of Py and
(2) the truncation of the integrand in Eq. (6) (further simulation
details are given in the Appendix). Collectively, these two numeri-
cal factors lead to calculated skyrmion numbers with a slightly lower
magnitude than the expected value. However, both factors can be
mitigated by increasing the local pixel density (the number of pixels
used to describe the field) as well as increasing the region of inter-
est with respect to the Gaussian width, wy, of the fields at the cost

J

1
Hy(t,xy) = 5[

where 0 <t < 1and

0 = t0(x, ),
q[=(1—t)+tq,

v =ty(xy),

re=(1-1t)+1r. (54)

This homotopy obeys Hy(0,x,y) =1 and Hy(1,x,y) = J4(6,v,7.9),
where 1 is the 2 x 2 identity matrix and J;(6,y,7,q) is the Jones
matrix defined in (40). The sin(+), cos(+), and ¢ functions are all
infinitely differentiable, so as long as the functions defined in (54)
are smooth functions of (x,y). The \/6 functions have square root
branch points when their argument vanishes, so they are not analytic
(i.e., smooth) at these points. It is, however, clear that this singular-
ity is only reached for t = (1 - r)™" or for t = (1 - g)~". Since both r

ﬁ+ﬁ+(ﬁ—ﬁ)cos@t
e V' (/g — /1) sin 6,

pubs.aip.org/aip/apq

of computational resources. Furthermore, it should be noted that
the proceeding simulations do not account for additional errors that
may arise in realistic scenarios due to the Poissonian statistics asso-
ciated with single photon measurements, faulty detectors, etc. Such
errors are best mitigated by appropriately choosing sufficient inte-
gration times, which may vary from one experimental configuration
to the next, and ultimately map realistic experiments to the noise
models studied in this work. Numerical results for various skyrmion
topologies passed through a spatially varying retarder channel are
shown in Fig. 3. In Fig. 3(a), the initial map S(x, y) with a skyrmion
number of N = 1 is shown as a covered sphere with regions of inter-
est (ROIs) highlighted and correlated by color to the corresponding
ROIs in the plane. After passing the state through a spatially varying
retarder, S(x,y) is transformed to §’(x,y). The only effect of this
transformation is a rotation of the Stokes vectors as indicated by the
shift in position of the ROIs on the sphere. Importantly, the full cov-
erage of the sphere is maintained, thus leaving the skyrmion number
unaltered, as shown in Fig. 3(b). Numerical results for states possess-
ing skyrmion numbers N = {-3,-2,-1,1,2,3} before (initial) and
after (final) they were passed through the spatially varying retarder
channel are shown. From these results it is clear that the initial
state’s topology is invariant under the action of the spatially varying
retarder, thus confirming that the skyrmion number is invariant for
the above p, ¢ dependence of the retarder parameters, in agreement
with the homotopy construction.

B. Diattenuator homotopy

The channel corresponding to a diattenuator has a Kraus
matrix given by the Jones matrix in (40). The channel parameters
are angles 6, , which are functions from R} to the interval [0, 27),
as well as the non-negative parameters g, r, which are functions from
R to (0, 1). We now define the homotopy H; : R3 x [0,1] = SU(2)
as follows:

(53)

V' (/q — /7)) sin 6, ]
Var+ /o= (V@ = /1) cos 0, |

and q are less than 1, we never reach these singularities. Therefore,
we obtain a smooth homotopy from the undeformed state

Hy(0,x,y)psHy(0,x,y) = ps, (55)

to the noisy state

Hy(1,%,9)psHa(0, %) = Ja(6, v, 1, @)ps)a(6, 1, q)". (56)

This proves that the skyrmion number is resilient against the
effects of a diattenuator and that topological noise rejection is the
mechanism behind this resilience.

We have argued that, under the assumption that the func-
tions defined in (54) are smooth functions of (x,y), we obtain a
smooth homotopy from the undeformed state to the noisy state. We
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FIG. 3. Skyrmion resilience against the retarder channel. (a) Skyrmion map for
N = 1 shown before (left panel) and after (right panel) passing through a spatially
varying retarder channel. Although the mapping is altered, S(x,y) — S’(x,y),
the net effect is a shifting of points on the sphere without changing the wrap-
ping number. Indeed, the calculated skyrmion number for the noisy signal is
N ~ 0.97. To illustrate the movement of points under the influence of noise, we
have color-coded regions of interest on the plane and the sphere. These points
can be returned to their original configuration by transforming points in the plane,
ie., S(x,y) = S’(x,y) — S(x',y"). This explains why the skyrmion number is
robust. (b) Numerically calculated skyrmion number before (initial) and after (final)
passing the state through the noisy channel, compared to the expected skyrmion
number for various topologies N € {-3,-2,—1,1,2,3}. The plot demonstrates
the invariance of the topology under the influence of the spatially varying retarder
channel.

can again test this conclusion numerically with conveniently chosen
smooth functions for the channel parameters. The functions we use
are given by
0= 6P cos (m¢),
2
¥ = yoe PP cos (ma¢),
2
q=(1-¢"" cos(mg)),
r=(1- ¢ PP cos (n4¢)).

(57)

As p — oo, the channel parameters assume the limit values = 0 = y
and g = 1 = r. At these limiting values, the Jones matrix (40) reduces
to the two dimensional unit matrix, and the channel acts trivially.
The constant parameters f; for i=1,2,3,4 control how rapidly
these limiting values are attained as p increases. Therefore, with this
choice of functions, the channel again acts non-trivially in a finite
region centered on p = 0. The constant parameters n; fori = 1,2,3,4

ARTICLE pubs.aip.org/aip/apq

control the spatial variation of the channel parameters at fixed p as
¢ is varied. Finally, the constant parameters 6y and vy, set the mag-
nitude of the two angles defining the diattenuator. Using the Jones
matrix (40) as the Kraus matrix for a quantum channel, with the
above spatially varying channel parameters, it is simple to evaluate
the skyrmion number after the channel acts. Numerical results for
various skyrmion topologies after the action of a spatially varying
diattenuator channel are presented in Fig. 4. In Fig. 4(a), the ini-
tial map S(x, y) with a skyrmion number of N = 1 is transformed
into S’(x,y). This transformation induces a rotation of the Stokes
vectors, as shown by the shift in the position of the ROIs on the
sphere. Despite this shift, the full coverage of the sphere is preserved,
leaving the skyrmion number virtually unchanged, with N ~ 0.99.
Figure 4(b) shows the numerical results for states with skyrmion
numbers N = {-3,-2,-1,1,2,3} before (initial) and after (final)
passing through the spatially varying diattenuator channel. These
results demonstrate that the topology of the initial state is unal-
tered, confirming that the skyrmion number is invariant under the
specific p, ¢ dependence chosen for the diattenuator parameters, in
agreement with the homotopy construction.

(a) . N=1 _

- N =0.99
Sz Sz
Sx,y) §'tx,y) ‘J\
Sx Sy Noise Sx Sy
N->N
y_-T-° y.-I-3I-
<:k <;

(b) 5

Skyrmion number
o

[0 Initial N |
I Final N

-3 -2 -1 1 2 3
Expected Skyrmion Number

FIG. 4. Skyrmion resilience to diattenuator channel. (a) Skyrmion map for N = 1
before (left panel) and after (right panel) passing through a spatially varying
diattenuator channel. While the mapping is altered, S(x,y) — S’(x,y), points
on the sphere merely shift without changing the wrapping number, leaving the
skyrmion number intact at N ~ 0.99. This is highlighted by color-matching corre-
lated regions of interest on the plane with those on the sphere, illustrating that the
shifts on the sphere can be compensated for using a transformation of the plane,
ie., S(x,y) = S’(x,y) = S(x',y"). (b) Numerically calculated skyrmion num-
bers (before and after passing the state through the noisy channel) compared to
expected skyrmion numbers for various topologies, N € {-3,-2,-1,1,2,3}. The
results show clear invariance of the topology to the spatially varying diattenuator
channel.
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VIl. DEPOLARIZING CHANNELS

The depolarizing channels are realized as more general CPTP
maps, which necessarily involve a sum over multiple Kraus oper-
ators. This requires an extension of the formalism developed in
Sec. VI B, as we now explain. Each term in the sum contributes to
the overall noise affecting the density matrix. To establish a smooth
deformation between the noisy and noise-free density matrices, it is
necessary to construct a homotopy for each term in the sum. How-
ever, even if such a collection of homotopies exists, it is not sufficient
to fully describe the interference effects between different Kraus
operators. The challenge arises from the non-linear dependence of
the skyrmion number on the Stokes parameters. While the Stokes
parameters, as defined in (3), are linear in the density matrix, the
skyrmion number (6) is cubic in the Stokes parameters. This implies
that different Kraus terms interfere in a non-trivial way, making it
insufficient to consider homotopies independently for each term.

Consider the noisy density matrix puisy resulting from the
application of nc quantum channels,

ne ne
puoisy = >, EPE! =" pipi, (58)
i=1 i=1

where the coefficients p; are positive and satisfy >, p; = 1. Each
channel density matrix p;, as well as the total density matrix pnoisy,
has unit trace. Consequently, the Stokes parameters associated with
each channel

$17(7a) = Tra((FalpilFa o), (59)
and those associated with the total density matrix
Si(7a) = Tra({Fa|Pnoisy|Fa ) 0B; ) (60)
are correctly normalized,
$D(7a)- 3D =1, S(7a)-8(7a) = L. (61)

The total Stokes parameters are related to the individual channel
contributions via

S =3 pi 8D, (62)
i=1

Several of the noise channels discussed below induce discrete
transformations on the Stokes parameters. For example, the bit-flip
and phase-flip channels generate the following transformations:

Sx - Sx>
Sx - _S~x>

Sz - _§Z>
S, =S,

5, - -5, )
5, - -5,

A model incorporating bit-flip and phase-flip channels, with
position-dependent channel parameters, results in the transforma-
tion

Sx = (1 _ prhaseﬂip)s'x’
S"y N (1 _ 2pphaseﬂip _ zpbitﬂip)s"y’ (64)
S"’Z N (1 _ 2pbitﬂip)S"Z.
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This transformation effectively deforms the sphere into an ellipsoid,
a process that preserves the winding number. A closely analogous
argument applies to the depolarizing channel induced by isotropic
noise. In this case, the noise introduces a mixed term in the den-
sity matrix, proportional to the identity matrix, with a magnitude
determined by the noise strength. Consequently, the entangled com-
ponents of the density matrix are reduced, leading to a uniform
rescaling of the Stokes parameters, which in turn shrinks the sphere.
Since this transformation does not alter the topological structure, the
wrapping number remains unchanged.

The noise channels discussed earlier all reduce to a scaling of
the components of the Stokes vector. Consequently, while interfer-
ence terms are non-zero, their cumulative effect is merely an overall
normalization factor, which does not alter the wrapping number.
We now turn to more intricate models in which, for example, the
components of the Stokes vector may be permuted among one
another. Toward this end, recall that our wave function (1) leads to
the Stokes vector,

|11 [+1l | +2 =l — w
Sy =2 = cos (¢(h —lz)P“llJrllzl'LUollll -2 _* ____ )
N
2
1y [+ [ +2 Ll+IL| —lh|-lbl-2 € wj
Sy=2 1 sin(p(h - b))plHlEly

/LG
2|lz\|ll|!wé|ll\p2|lz| _ (2\11||12|!p2|11|w§|lz|)

7T|l]|!|lz|!

- 2(Jh|+l+1)
T o —2(|h |+ L]+
Se=e "o, "

(65)
A discrete transformation mapping {Si,S,,S.} into either
{8y, 8+, S} or {S., ), Sx} cannot be modeled as a simple rescaling of
the Stokes parameters. Using relation (62), the topological number
density is given by

nc 3 i as’(]) ag(k)
(xy) = § e Zor (66)
i,j,;:l p,q%zzl Poox Oy

The diagonal terms (i = j = k) capture contributions from individual
channels, whereas the off-diagonal terms encode interference effects
between different channels. The resilience of the diagonal terms fol-
lows, as argued in Sec. VI B, if a homotopy can be established for
each channel. For now, we assume the existence of such a homotopy
and focus our attention on the interference terms.

For the interference terms to contribute a non-zero wrapping
number, the evolution of the three components of the Stokes vec-
tor must be carefully choreographed. Random oscillations of these
components will initially induce winding, only to later unwind, and
so forth, ultimately canceling out. Indeed, the S, component of (65)
depends on cos (¢(I) — 1)), while S, depends on sin (¢(l1 - 1)). As
¢ varies, the signs of these two components are correlated in such a
way that the tip of the Stokes vector orbits the origin /; — I, times.
However, in the presence of noise, such oscillations will generally be
randomized, leading to an overall vanishing winding number.

To illustrate this, consider a simple model consisting of an iden-
tity channel (with probability p) and a second channel that swaps
Sxand Sy, ie., {Sx, Sy, Sz} = {S)> x> S¢}, with probability 1 — p. One

potential interference term involves the selection {S,(cl), SJ(,Z),SEI) }.
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Since both S and S;,Z) =stM vary with ¢ as cos (¢(l; — 1)), the tip
of the Stokes vector first winds and then unwinds, resulting in a net
wrapping number of zero. A direct evaluation using this triple con-
firms that the skyrmion number vanishes. Moreover, selecting other
off-diagonal triples does not alter this conclusion, reinforcing the
idea that uncoordinated oscillations suppress non-trivial topological
contributions.

The arguments presented earlier are not rigorous but serve to
build intuition regarding the resilience of the skyrmion number to
depolarizing channels. To establish this claim more definitively, we
employ numerical methods to analyze the impact of depolarizing
channels on the skyrmion number. For a comprehensive investiga-
tion, we consider the full set of quantum channels listed in Ref. 46.
Our numerical results consistently demonstrate that the skyrmion
number exhibits remarkable robustness against the introduction of
depolarizing noise.

Our goal is to model the most general source of noise expe-
rienced by the abstract qubit with states |H)s, |V)5. The channels
described in Ref. 46 have been shown to be relevant for the descrip-
tion of depolarization of qubits. Typically, these models use decoher-
ence to model the decorrelation that occurs during depolarization.
While decoherence is usually accompanied by dissipation, depo-
larization specifically considers pure decoherence (or dephasing),
where energy dissipation is negligible. In the terminology of Ref. 46,
the resulting depolarizing channel is a decoherence process induced
by unbiased noise generating bit-flip and phase-flip errors.

A. Bit flip channel
The bit flip channel is described by the operators

oty ) we ) o

which obey EJEo + ElE; = 1 with 1 the 2 x 2 identity matrix. With
a probability p, states |H) and |V) remain what they are, and with a
probability 1 — p, they are swapped. To get a local model, we must
allow p to be a smooth function of x and y. Note that 0 < p < 1. A
simple choice for p is

p=(a+pcos (ngb))e_ypz, (68)

where we have again employed polar coordinates. As p — oo, we
find that p — 0. The constant parameter y controls how quickly p
approaches 0. At p = 0, the states H and V are swapped so that this
channel is not confined to a local region but rather continues to
have an effect even at p = co. Acting on the Stokes parameters, this
channel takes

S¢ = S S > =8 S > =S, (69)

at large p where p = 0. It is simple to see that the skyrmion number is
invariant under this transformation. The constant parameters & and
B are needed, with « > f3, to enable p to oscillate but remain positive.
The constant parameter n controls this oscillatory behavior as ¢ is
varied for fixed p. We only consider integer n. For the above choice
of p, we can easily evaluate the action of the channel on the density
matrix. Using the noisy density matrix, we have numerically veri-
fied that the skyrmion number is robust against the polarization flip
channel.
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There is an interesting point that deserves discussion. Taking p
constant, we find the Stokes parameters, before normalization, are
given by

S, = zm(l +62i¢(11—12))p|11\+\12|

x =

2
-2 —ig(h-h)

w,
0

—|h|-|h|-2€
0 /L]t

11+l .
Sy = i(2p — 1)2 5 (82"45(11—12) _ I)PlllH“Zl

_%_i‘ﬁ(ll—lz) (70)
w?

X w,

—|h|-|h|-2€

0 NI

2’

_
SZ - (ZP _ 1)6 wé w(;z(“ll*'llz‘*'l)
I 1
(2|11\|12|!p2|11\w(2)|2| _ z\lzl‘lluw(z)\ 1|p2|lz\)

7T|11|'|lz|'

X W,

X

1
3
number vanishes. Therefore, for a constant p = J, the skyrmion
number is completely destroyed. The reason for this anomalous
behavior is simply that for p = , the channel sums the original den-
sity matrix with the density matrix obtained by swapping |V) and
|H). This obviously renders the density matrix symmetric so that it
admits a decomposition

It is clear that choosing p = >, we have S, = S, = 0, and the skyrmion

L1
pP= 500+610'1, (71)

with one undetermined coefficient c¢;. From formula (3), it is now
apparent why both S, and S, vanish. It is also clear that this does not
happen at any other value of p # % Pertinent to this is how likely

it is that realistic conditions might result in exactly p = 1? First, we
can anticipate that the value of p will fluctuate. Second, note that the
isolated points or even lines when p = % are all lower dimensional
(0-dimensional or 1-dimensional) compared to the set (2-
dimensional) we are integrating over, so they are all sets of measure
zero. Changing an integrand on a set of measure zero will not affect
the value of an integral. These theoretical and practical consider-
ations lead us to surmise that this p = ; anomalous behavior will
not play any role, and consequently that the skyrmion number will
remain robust in such channels.

Further numerical results for various skyrmion topologies
passed through both constant and spatially varying bit-flip chan-
nels are presented in Figs. 5 and 6, respectively. In Fig. 5(a), the
initial map S(x, y) with a skyrmion number N = 1 undergoes trans-
formation to S’ (x, y) after passing through a bit-flip channel with a
noise probability of p = 0.35. This introduces noticeable distortion
in the spherical geometry of S(x, y), as the S, and S, components are
scaled by a factor of 1 — 2p, giving the geometry an elliptical appear-
ance. However, following a renormalization to ensure S’(x,y) -
S '(x, ¥) = 1, we observe that the noise-induced transformation sim-
ply rotates the Stokes vectors, shifting the regions of interest (ROIs)
on the sphere without altering the overall coverage. Consequently,
the skyrmion number remains unchanged at N ~ 0.97. Figure 5(b)
shows the numerical results for initial and final states possessing
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FIG. 5. Skyrmion resilience against constant bit-flip channels. (a) Skyrmion map for N = 1 before (left panel) and after (middle panel) passing through a constant bit-flip
channel with noise parameter p = 0.35. The mapping is Visibly distorted, S(x,y) — S’(x,y). To properly evaluate the skyrmion number, S’(x, y) is normalized (right
panel) such that §’(x, ¥) - S’(x,y) = 1. The distortion due to noise is a simple shifting of points on the sphere that preserves the wrapping number, so that the calculated
skyrmion number is N ~ 0.97. This is highlighted by matching colors to correlate regions of interest on the plane with those on the sphere, emphasizing that the movement
of points on the sphere can be corrected by a coordinate transformation of the plane, i.e., S(x,y) — S’(x,y) = S(x’, y"). (b) Numerically calculated skyrmion numbers
before and after passing through the noisy channel (p = 0.35) for various topologies, N € {-3, -2, -1, 1,2, 3}, demonstrate clear invariance of the topology to the bit-flip
channel. (c) The calculated skyrmion number plotted against the noise parameter p shows the robustness of the topology across all bit-flip noise seftings, with the only

exception occurring at p = 0.5, where entanglement is completely lost.

skyrmion numbers N € {-3,-2,-1,1,2,3} after passing through
the same constant bit-flip channel, while Fig. 5(c) explores these
results across various bit-flip noise settings. The data reveal that the
topology remains fully invariant to bit-flip noise, with the skyrmion
number only vanishing at the singular limit of p = 0.5. At this limit,
the state becomes unentangled, and by definition, N = 0. Intuitively,
we find that at p = 0.5, S, = S, = 0, meaning that after renormaliza-
tion, § = [1,0,0]" for all positions (x, y), so that the initial topology
has been lost. In Fig. 6(a), numerical results illustrate the distortion
of S(x,y) with N = 1 as it passes through a spatially varying bit-flip
channel with a spatially dependent noise parameter, p(x, y), defined
by (68). Although the new map S’(x, y) parametrizes a highly dis-
torted geometry relative to the original spherical form, the initial
skyrmion number of N ~ 0.99 is preserved, as expected, due to the
smooth spatial dependence of the noise. Figure 6(b) confirms this
robustness across different topological numbers passed through the
same noise channel, demonstrating that skyrmion topology remains
invariant under both varying noise levels and spatially dependent
noise.

B. Phase flip channel
The phase flip channel is described by the operators

Ey = \/]_7((1) (l)), E;=+/1 —p((l) _01), (72)

which obey EgEo + EIEl =1 with 1 the 2 x 2 identity matrix and
again we must allow p to be a smooth function of x and y. It is
again useful to consider the simple choice (68). With this choice,
our numerical results confirm that the skyrmion number is robust
against noise introduced by the phase flip channel.

In Subsection VII A, we found that the bit flip channel with the
specific parameter choice p = J completely destroyed the skyrmion
number, reducing it to zero. There is a similar result for the phase
flip channel: choosing p = %, we have S, = S, = 0, and the skyrmion
number vanishes. Just as for the bit flip channel, even though the
parametrization (68) leads to p = % at some isolated points or even
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FIG. 6. Skyrmion resilience against a spatially varying bit-flip channel. (a) Skyrmion
map for N =1 before (left panel) and after (right panel) passing through a
spatially varying bit-flip channel. Although the mapping is significantly distorted,
S(x,y) = S’(x,y), the calculated skyrmion number remains close to the
expected value at N ~ 0.99, indicating that the topology is preserved despite
the deformation. To aid in visualization, the point clouds representing S(x, )

and S’(x,y) have been plotted with a color gradient indicating the change in
S; and S;. Furthermore, projections onto the planes Sy — S; and Sy — S; were
performed on both maps, shown as gray shadows, further highlighting the distor-
tion caused by noise. This visualization is repeated overall for the spatially varying
channels that follow. (b) Numerically calculated skyrmion numbers for various
topologies, N € {-3,-2,-1,1,2,3}, before and after passing through the spa-
tially varying bit-flip channel, demonstrating the clear invariance of the topology
even under spatially dependent bit-flip noise.

lines, these bad values do not disturb the skyrmion number under
realistic situations: once again, in practice the value of p will fluctu-
ate, so we do not expect that this p = % anomalous behavior will play
any role.

Further numerical results for various skyrmion topologies
passed through constant and spatially varying phase-flip channels
are shown in Figs. 7 and 8, respectively. In Fig. 7(a), the initial
map S(x,y), with skyrmion number N = 1, is passed through a
phase-flip channel with noise parameter p = 0.35 to give the noisy
S’(x,y) signal. This channel induces a noticeable distortion in the
spherical geometry of the initial wave function. This is as expected,
as the Sy and S, components are scaled by a constant factor of
1 - 2p, giving the appearance of an elliptical deformation. How-
ever, after renormalizing the Stokes parameters so that S'(x,y) -
§’(x,y) = 1, it is evident that the noise simply rotates the Stokes
vectors. Consequently, the coverage of the sphere is intact and the
skyrmion number is preserved. In Fig. 7(b), numerical results for
skyrmion numbers N € {-3,-2,-1,1,2,3}, before and after pass-
ing through the constant phase-flip channel, show that the topology
is unchanged. Figure 7(c) illustrates this invariance across a range
of phase-flip noise settings. The topology is unaffected by phase-

pubs.aip.org/aip/apq

flip noise, except at the critical point p = 0.5, where the entangle-
ment vanishes, and by definition, N = 0. Intuitively, at this point,
Sx = S, = 0, and after renormalization, § = [0,0,1] for all positions
(x,y), indicating a complete collapse of the original topology. In
Fig. 8(a), numerical results illustrate the deformation of S(x, y) with
N =1 after passing through a spatially varying phase-flip channel,
where the noise parameter p(x,y) is defined according to (68).
Despite the apparent significant distortion of the geometry of the
wave function when compared to the initial state, the skyrmion
number is intact at N ~ 0.99, as expected for a noise parameter
that varies smoothly with changing values of the spatial coordinates.
Figure 8(b) presents results for different topological numbers passed
through the same spatially varying noise channel, confirming the
complete robustness of the skyrmion topology to phase-flip noise
across different noise levels and spatial variations.

C. Depolarizing channel

The depolarizing channel is described by the quantum opera-
tion (0<p<1),

&) = L1+ (1-p)p (73)

This channel is very similar to the case of isotropic noise consid-
ered in Ref. 42. The present analysis generalizes the discussion of
Ref. 42 since we allow p to be a smooth function of x and y. Since
our density matrix lives in the tensor product of a two dimensional
polarization Hilbert space, with a two dimensional position Hilbert
space we must be careful to choose the coefficient of the term 1 in
such a way that our state remains normalizable. A suitable choice is
to take p to be of the form

p(p9) = (o + B cos (ng)) exp (~yp”), (74)

with a and 8 chosen to ensure that 0 < p < 1. With the above choice,
we find that p — 0 as p — oo so that the channel acts in a local region
centered on p = 0. The parameter n controls how p fluctuates at fixed
p as ¢ is varied. We assume that # is an integer. Our numerical results
confirm that the skyrmion number is completely robust to the depo-
larizing channel. The discussion is exactly as in Ref. 42. That analysis
proves that the depolarizing channel induces a smooth deforma-
tion of the skyrmion state that leaves the topology unchanged. The
topology only collapses when the state is maximally mixed and no
entanglement remains.

In the depolarizing channel, the density matrix is perturbed by a
maximally mixed state, which corresponds to adding a term propor-
tional to the identity. This maximally mixed term gives a vanishing
contribution to the Stokes parameters, so that in the end the net
effect is to multiply the Stokes parameters by an overall constant.
This change in the magnitude of the Stokes vector is a smooth defor-
mation of the Stokes parameters, so that for this channel it is also
possible to give a homotopy between the noisy and noise-free Stokes
parameters. This is the only depolarizing channel we have consid-
ered that admits a homotopy analysis. The reason why the homotopy
analysis continues to be useful is simply that the maximally mixed
term [i.e., the term on the RHS of (73) proportional to 1] gives a
vanishing contribution to the Stokes parameters, so there are no
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FIG. 7. Skyrmion resilience against constant phase flip channels. (a) Skyrmion map for N = 1 before (left panel) and after (middle panel) passing through a constant phase flip
channel with a noise parameter of p = 0.35. The mapping is clearly distorted, S(x, ) — S”(x,y). However, after normalizing S’ (x, ) such that S”(x,y) - S’ (x,y) = 1
(right panel), it is evident that the points have merely shifted without altering the wrapping number. The calculated skyrmion number remains close to the original, N = 0.99.
This is further illustrated by matching colored regions of interest (ROIs) on the plane with corresponding regions on the sphere, highlighting the shifts that can be corrected
by coordinate transformation, i.e., S(x,y) — S”(x,y) — S(x’,y"). (b) Numerically calculated skyrmion numbers (before and after passing through a noisy channel with
p = 0.35) compared to the expected skyrmion numbers for various topologies, N € {-3, -2, -1, 1,2, 3}, showing clear invariance to the phase flip channel. (c) Skyrmion
number plotted against the noise parameter p, demonstrating topological invariance across all phase flip noise settings except at p = 0.5, where entanglement is completely

lost, reducing N to 0.

interference effects between the signal and noise in the non-linear
formula (6).

Further numerical results for various skyrmion topologies
passed through constant and spatially varying depolarizing channels
are shown in Figs. 9 and 10, respectively. In Fig. 9(a), application of
the depolarizing channel with parameter p = 0.35 to the initial state
S(x,y), with a skyrmion number N = 1, produces the noisy state
S’(x,y). This modulation reduces S’ (x, y) - ' (x, y) < 1, as expected
from the uniform scaling of all components by the factor 1 — p. This
results in a reduction of the radius of the original spherical geom-
etry encoded in the skyrmion wave function. After renormalizing
the Stokes parameters so that S’ (x,y) - S’ (x, ) = 1, it is evident that
the depolarizing noise does not affect the orientation of the Stokes
vectors. Consequently, the skyrmion number is unaltered, N ~ 0.99.
In Fig. 9(b), numerical results are presented for skyrmion numbers
N e {-3,-2,-1,1,2,3} before (initial) and after (final) passing the
state through the constant depolarizing channel, demonstrating the
invariance of the topology. Figure 9(c) shows how the skyrmion

number remains robust across various depolarizing noise settings,
with the topology only breaking down at the extreme limit of p = 1.
At this point, the state is completely mixed, and entanglement
is lost, resulting in N = 0. In this scenario, Sx =S, =S, =0, and
the initial topology cannot be recovered. In Fig. 10(a), numerical
results illustrate the distortion of S(x, y), with a skyrmion number N
= 1, after passing through a spatially varying depolarizing channel,
where the noise parameter p(x,y) is a smooth function of spatial
coordinates defined in (74). Despite the apparent significant dis-
tortion of the geometry encoded in the noisy wave function, as
compared to the original spherical structure, the skyrmion num-
ber remains intact at N ~ 0.99. This is again not surprising, as the
noise varies smoothly. Figure 10(b) presents results for different
topological numbers passed through the same spatially varying noise
channel, confirming the robustness of skyrmion topologies against
depolarizing noise at various noise levels and with spatially varying
noise.
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FIG. 8. Skyrmion resilience against a spatially varying phase flip channel. (a)
Skyrmion map for N = 1 before (left panel) and after (right panel) passing through
a spatially varying phase flip channel. Although the mapping is significantly dis-
torted, S(x,y) — S’(x,y), the calculated skyrmion number remains close to
the expected value, with N ~ 0.93. This suggests that despite the heavy dis-
tortion, the topological structure is largely preserved. (b) Numerically calculated
skyrmion numbers before and after passing through the noisy channel are com-
pared to the expected values for various topologies, N € {-3,-2,-1,1,2,3}.
The results demonstrate a clear invariance of the topological number, confirming
the robustness of the skyrmion topology to spatially varying phase flip noise.

D. Amplitude damping channel
The amplitude damping channel is described by the operators

E - (g ?) (75)

)

which obey E(];Eo + EIEl =1 with 1 the 2 x 2 identity matrix, and
again we must allow p to be a smooth function of x and y. Using
this channel, the noisy density matrix is given by

p= (,011 +pp /1 _PPIZ)' (76)

1-ppa1 (1-p)p2

The form of the channel parameter p assumed in the numerical
analysis is

p=(a+pcos(ng))exp (~yp’). (77)

When p = 0, this channel acts as the identity. Notice that as p — oo,
p — 0 with the falloff controlled by the parameter y. We choose
B < a to ensure that p remains positive. The integer n controls how

pubs.aip.org/aip/apq

p oscillates for fixed p as ¢ is varied. Our numerical results con-
firm that the skyrmion number is completely robust to amplitude
damping.

For the amplitude damping channel, the Stokes parameters
with a constant p are given by

I+l Il =11 =2
272 P|ll|+|12|w0|1| 52|

Sx=y/1-p
2 N
(1 + ezi¢(11*lz))e_%_l¢(ll_12)
7T\/|l1|!|lz|!
[+ =1l | —
Sy=i /1 -p 2%P‘ll|+|lz|wo [h]=|k]-2

2 .
(_1 + Pi(h=b) )e_%ﬁ —ig(h—h)

(78)

T |ll|'|lzl'

S, = ((2P _ 1)2|12||ll|!wglll|[)2“2| + 2|11\|Zzllp2“1|w§|lz|)

oy 2l

7'[|l1mlz|!

e

Notice that at p = 1, both Sy =0 and S, = 0. The skyrmion num-
ber vanishes at this value. The discussion is again parallel to the bit
flip and phase flip channels: even though the reparametrization we
use for p does pass through p = % and p = 1 values, the skyrmion
number is robust to the amplitude damping channel, and we do not
expect these particular channel parameter values to play any role in
practice.

Further numerical results for various skyrmion topologies
resulting after the state is passed through both constant and spa-
tially varying amplitude damping channels are shown in Figs. 11
and 12, respectively. In Fig. 11(a), the initial map S(x,y) with
skyrmion number N =1 is transformed into S’(x,y) after pass-
ing the density matrix through an amplitude damping channel
with p = 0.35. This produces a geometric distortion of the sphere
encoded by the state, with points shifted toward the North Pole while
maintaining S’ (x,y) - S(x, ) < 1. This behavior is expected since
the components of the map transform as follows: Sy = Sx\/1 - p,
Sy =8,\/1-p,and S, = p+ S.(1 - p), indicating that the x,y com-
ponents are scaled and S; is shifted by a positive constant. At p =1,
all points collapse to the North Pole, i.e., $'(x,y) = [0,0,1]". After
renormalizing the Stokes parameters, it is evident that noise does
not affect the Stokes vectors’ orientation, so the skyrmion num-
ber is unchanged at N ~ 0.99. A subtle point should be noted
here. Unlike other noise channels studied in this work, amplitude
damping channels yield a shift of the Stokes vectors, which may
induce numerical errors when normalizing the field; therefore, this is
corrected for before normalizing and calculating the skyrmion num-
ber. More details are provided in the Appendix. In Fig. 11(b), the
numerical results show skyrmion numbers for various topologies
Ne{-3,-2,-1,1,2,3} before and after passing through the con-
stant amplitude damping channel, establishing the topological
robustness. Figure 11(c) displays skyrmion numbers across differ-
ent amplitude damping noise levels, revealing that the topology is
unaffected by noise except at the extreme limit where p = 1. At
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FIG. 9. Skyrmion resilience against constant depolarizing channel. (a) Skyrmion map defined by the density matrix for N = 1 before (left panel) and after (middle panel)
passing through a constant depolarizing channel with a noise parameter p = 0.35. The mapping §(x, y) - S "(x,y) shows that the density matrix has suffered a clear
distortion due to depolarizing noise, which reduces the magnitude of S(x,y), i.e., S(x,y) - S(x,y) < 1. After renormalizing S’(x,y) such that S’(x,y) - S’(x.y)
=1 (right panel), the Stokes vectors recover their spherical orientation, and the skyrmion number remains unchanged at N ~ 0.99. (b) Numerically calculated skyrmion
numbers (before and after passing the wave function through the noisy channel with p = 0.35) compared to expected skyrmion numbers for various topologies,
Ne {-3,-2,-1,1,2,3}, demonstrate the topology’s invariance to depolarizing noise. (c) The calculated skyrmion number as a function of the noise parameter p shows
the robustness of the topology across all depolarizing noise levels, except at p = 1, where the state becomes completely mixed and entanglement is lost, which reduces

the skyrmion number to N = 0.

this point, the state is completely mixed and loses all entangle-
ment, which reduces the skyrmion number to N = 0. Intuitively,
atp=1, S =S, =S, =0, and the initial topology cannot be recov-
ered. In Fig. 12(a), numerical results are shown for the distortion of
S(x,y) with skyrmion number N = 1 induced by passing the density
matrix through a spatially varying amplitude damping channel with
a spatially dependent noise parameter p(x, y), defined according to
(74). Despite significant geometric distortion compared to the initial
spherical geometry, the skyrmion number remains N ~ 0.99. This
is a consequence of the fact that the noise parameter is a smooth
function of the spatial coordinates. In Fig. 12(b), results for vari-
ous topologies are shown, demonstrating complete robustness of the
skyrmion topology to amplitude damping noise at different noise
levels and with spatial variation. These results confirm the invari-
ance of skyrmion topology against amplitude damping noise across
a range of conditions.

E. Phase damping channel
The phase damping channel is described by the operators

1 0 0 0
OV VI

which obey ESEO + EIEl =1 with 1 the 2 x 2 identity matrix and
again we must allow p to be a smooth function of x and y. The form
of the channel parameter assumed for the numerical analysis is

p=(a+pcos(ng))exp (~yp’), (80)

and we choose parameters so that p < 1. Notice that when p
=0, this channel acts as the identity. This channel again acts
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FIG. 10. Skyrmion resilience against a spatially varying depolarizing channel. (a)
Skyrmion map for N = 1 before (left panel) and after (right panel) passing the
density matrix through a spatially varying depolarizing channel. Despite significant
distortion in the mapping, S(x,y) — S”(x,y), the calculated skyrmion number
remains robust, with a value of N ~ 0.99, close to the expected value. (b) Numeri-
cally calculated skyrmion number, both before and after the state passes through
the noisy channel, plotted against the expected skyrmion number for various
topologies, N € {-3,-2,-1,1,2,3}. The results demonstrate a clear invariance
of topology, even under the influence of the spatially varying depolarizing channel.

non-trivially only in a local region centered on p =0, with the
falloff of p controlled by y. Our numerical results demonstrate that
the skyrmion number is completely robust to the phase damping
channel. Specializing to p constant, we find the Stokes parameters

e AR
Sx=\1-p2 2 p w,

2i¢(L-1) *%*@(h*lz)
(1+e 1R )e “o

7T\/|11|!|12“

LT T A |
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For p =1, S¢ and S, vanish so that the skyrmion number is zero.
Once again, we do not expect this particular channel parameter value
to play any role in practice.
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Numerical results for various skyrmion topologies computed
after the density matrix is passed through constant and spatially
varying phase damping channels are presented in Figs. 13 and 14,
respectively. In Fig. 13(a), the initial skyrmion map S(x,y) with
skyrmion number N = 1 is transformed into S’(x,y) by a phase
damping channel with noise parameter p = 0.35. There is a notice-
able distortion of the spherical geometry described by S(x, ). This
is expected since the Sy and S, components are scaled by a factor
\/1 — p, much like what occurred in the phase flip channel. After
renormalizing the Stokes parameters, it is evident that the noise
only produces a rotation of the Stokes vectors, as illustrated by the
shift in the positions of regions of interest (ROIs) on the sphere.
Therefore, the transformation does not alter the skyrmion number,
which is N ~ 0.99. In Fig. 13(b), numerical results for states with
skyrmion numbers N € {-3,-2,-1,1,2,3} are shown before and
after the action of the same phase damping channel. In Fig. 13(c),
results for these states across different phase damping noise levels
are displayed. These results confirm that the skyrmion topology is
invariant under phase damping noise, collapsing only at the singular
limit p = 1, where entanglement is lost and the skyrmion num-
ber vanishes. At p =1, Sy =S, =0, so it is not possible to recover
the initial topology. Figure 14(a) shows numerical results for the
distortion of S(x, y) with skyrmion number N = 1 induced by a spa-
tially varying phase damping channel with a spatially dependent
noise parameter, p(x,y), as defined in Eq. (68). Although the new
map S’(x,y) reflects a highly distorted geometry when compared
to the initial spherical geometry, the skyrmion number remains
robust at N ~ 0.98. This is expected since the noise parameter varies
smoothly with the spatial coordinates. In Fig. 14(b), the results
for various states with a range of topological numbers, all acted
on by the same spatially varying phase damping channel, demon-
strate the complete robustness of the skyrmion topology under the
influence of this type of noise, regardless of noise levels or spatial
variation.

Vill. GLOBAL EFFECTS

In Secs. [-VII, we have developed a description for noise that
affects only local features of the wave function. Under these con-
ditions it is reasonable to expect that noise leaves the topology
intact. However, as we will now explain, certain local noise effects
can disturb the topology of the wave function. To understand how
this can happen, recall that the integer skyrmion number is the
winding number of a map from S to S%. One of these spheres rep-
resents the space of polarization states, while the other is obtained
by compactifying the plane R? to a sphere. This compactification
is achieved by identifying the points at infinity®* with the North
Pole of an S?. Compactification is only possible if the wave func-
tion takes the same value for all points at infinity, as it is only in
this case that it makes sense to identify this collection of points with
a single point, the North Pole of a sphere. If the compactification
condition is not satisfied, the skyrmion number need not even be
an integer, and our scheme for the discretization of entanglement
fails.

We will discuss this effect in the simplest possible setting. Our
skyrmion wave functions lead to Stokes parameters of the following
generic form:
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FIG. 11. Skyrmion resilience against constant amplitude damping channel. (a) Skyrmion map for N = 1 before (left panel) and after (middle panel) passing the density

matrix through a constant amplitude damping channel with a noise parameter of p =

0.35. The mapping S(x,y) — S’(x,y) shows clear distortion. To properly evaluate

the skyrmion number, the map is renormalized (right panel) so that S’(x, y) - S”(x,y) = 1. Despite the distortion, the wrapping number is preserved, with a calculated
skyrmion number of N ~ 0.99. Matching colors highlight correlated regions of interest on the plane and sphere, exhibiting the movement of points on the sphere. This can
be corrected for with a coordinate transformation as S(x,y) — S’(x,y) — S(x’,y"). (b) Numerically calculated skyrmion numbers before and after passing the density
matrix through the noisy channel with p = 0.35, plotted against the expected skyrmion number for various topologies, N € {-3,-2,—1,1,2,3}. This demonstrates that
the skyrmion number is robust to noise from the amplitude damping channel. (c) The skyrmion number plotted against the noise parameter, p, demonstrates topological
invariance across all noise settings except at p = 1, where state entanglement is completely lost and the skyrmion number vanishes.

S - 2,/psin (ko)

X p+1 >
S - 2, /pcos (k¢) 82)
4 p+1 ’

_p-1

T+l

This particular solution has a skyrmion number of k. We now
present an argument that, we claim, holds generally for the Stokes
parameters under consideration but that uses the particular solution
discussed earlier. The justification for applying the specific formula
(82) while arriving at a general conclusion lies in the topological
nature of the problem. By employing topological methods, we parti-
tion the complete set of functions into distinct equivalence classes,
where any two functions within the same class can be smoothly
deformed into one another. Each equivalence class is characterized
by a topological invariant, which in our case is the skyrmion number.
Consequently, when making a topological argument about a func-
tion (which includes evaluating its skyrmion number), it suffices to

consider any representative from its equivalence class. A particu-
larly useful feature of the class of functions identified in (82) is that
as k varies over the integers, it spans the entire set of equivalence
classes, and solutions with different values of k belong to different
topological classes.

The important features of the Stokes parameters (82) are as
follows:

1. Sy and S, are responsible for all of the ¢ dependence.

2. The Stokes vector is normalized to 1: §- § = 1.
3. S:is —1at the origin p = 0, and it tends to 1 as p — oo.

These general features are all that are needed to discuss the
compactification condition, and they are all shared with the actual
skyrmion solutions we have considered. After a suitable smooth
deformation, all sensible skyrmion solutions must have these prop-
erties. The key observation is that any solution that enjoys these
three properties will obey the compactification condition. Indeed,
property 3 above tells us that S, = 1 for the points at infinity, while
property 2 then implies that Sy = 0 =S, for these points. Finally,
property 1 then establishes that there is no ¢ dependence in the
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(a) N=1 N =098 Stokes parameters as p — oo so that we can indeed compactify the
plane to S*. This provides a clean diagnostic of whether or not our
‘ Nose - ) solution respects the compactiﬁ‘ca.tion condition: we simply test if
$0oy) J\ NN Sy JZ\ the above-mentioned three conditions hold.
’ 52 s s, It may sound implausible that noise can affect the behavior of

the wave function at infinity. However, a key insight of Ref. 40 is that
in practice we never work with the entire plane, but rather with some
open subset U c R?. The compactification condition then amounts
to the requirement that on the boundary of the open subset U, the
Stokes parameters no longer have any ¢ dependence. Noise can dis-
rupt this property by introducing additional ¢ dependence. In this
case, the plane cannot be compactified to an §%, we lose the interpre-
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FIG. 12. Skyrmion resilience against a spatially varying amplitude damping chan- We can a?so examine a scenario VYhere both .con'ditioPs 2 an.d
nel. (a) Skyrmion map for N = 1 before (left panel) and after (right panel) passing 3 are violated in a practical setting, as illustrated in Fig. 15. In this
the density matrix through a spatially varying amplitude damping channel. Despite case, depolarizing noise reaches its maximum value, p = 1, at a finite
significant distortion in the mapping, S(x,y) — S”(x,y), the calculated skyrmion radius, r = a, as shown in Fig. 15(a). This situation can occur when
number remains essentially unchanged at N ~ 0.98. (b) Numerically calculated the signal-to-noise ratio at the periphery becomes too low to detect
skyrmion numbers before and after passing the density matrix through the noisy any meaningful signal, making the state appear maximally mixed,

channel are compared against expected values for various skyrmion topologies,
N e {-3,-2,-1,1,2,3}. The results demonstrate clear topological invariance of
the skyrmion number under the spatially varying amplitude damping channel.

in which case we cannot distinguish the vector of Stokes parameters
from the null vector. Within the region where r < 4, we can main-
tain " - §” = 1 after normalization. However, outside this region, for
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FIG. 13. Skyrmion resilience against constant phase damping channel. (a) Skyrmion map for N = 1 before (left panel) and after (middle panel) passing the density matrix
through a constant phase damping channel with noise parameter p = 0.35. The mapping is visibly distorted, with §(x, y) — S "(x,y). Despite the distortion, the skyrmion
number, when evaluated for the normalized but distorted map, remains nearly unchanged, N = 0.99. This is explained by noting that points on the sphere have merely
shifted, as can be seen from the correlated regions of interest (highlighted in matching colors). These shifts on the sphere can be corrected by a coordinate transformation
acting on the plane, i.e., S(x,y) — S’(x.y) — S(x’,y"). (b) Numerically calculated skyrmion numbers before and after application of the noisy channel (with p = 0.35)
compared to the expected skyrmion numbers for various topologies N € {-3,-2,-1,1,2,3}. This establishes the invariance of the skyrmion number to the effects of
phase damping noise. (c) The skyrmion number is plotted against the noise parameter p, demonstrating the robustness of the skyrmion topology across all phase damping
noise parameter values, except at p = 1, where entanglement is completely lost.
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FIG. 14. Skyrmion resilience against a spatially varying phase damping channel.
(@) Skyrmion map for N = 1 before (left panel) and after (right panel) the effects
of noise due to a spatially varying phase damping channel are included. Despite
the significant distortion of the map, S(x, ) — S’(x,y), the calculated skyrmion
number remains close to the expected value at N ~ 0.98. (b) Numerically cal-
culated skyrmion numbers, before and after the action of the noisy channel, are
compared for various topologies, N € {-3,-2,—1,1,2,3}. The results demon-

strate a clear invariance of the skyrmion topology to the spatially varying phase
damping channel.
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FIG. 15. Violation of the skyrmion compactification condition. (a) A spatially vary-
ing depolarizing noise function where p < 1 inside the outlined region (dashed
red circle) and p = 1 outside of it. (b) The noisy skyrmion map, §’(x, y), for
N = 1 after normalization, showing partial coverage of the Poincaré sphere, with
a calculated skyrmion number of N ~ 0.83. (c) Numerically calculated skyrmion
numbers before and after passing through the noisy channel for various topolo-
gies, N € {-3,-2,-1,1,2,3}, demonstrating the loss of integer discretization in
the topological signal.
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r > a, this condition can no longer be satisfied, as S’ - S’ = 0. This
breakdown is also depicted in Fig. 15(b), which shows a clear loss
of coverage of the Poincaré sphere by the map S’. Such violations
generally lead to maps with non-integer skyrmion numbers, as fur-
ther illustrated in Fig. 15(c), where states with different topologies
are passed through the same channel.

IX. CONCLUSIONS

In this paper, we have examined a scheme that discretizes bipar-
tite entanglement by leveraging the non-trivial topology of the two
photon entangled wave function. Our primary focus has been to
investigate the robustness of the resulting discrete signal against
noise.

Discrete signals are inherently robust against noise because the
noise must induce a transition between discrete values before any
effects are observed. Moreover, since topology is encoded into the
global features of the wave function, noise that only induces local
changes is unlikely to disturb the topology. Intuitively, transitions
between discrete values are not easily affected by noise, allowing
our scheme to benefit from a natural topological noise rejection
property.

For non-depolarizing sources of noise, our description employs
a quantum channel with a single Kraus operator. In this scenario,
we constructed a rigorous argument based on homotopies between
the noisy and noise-free density matrices, which establishes the
topological noise rejection property. This theoretical argument was
corroborated by explicit numerical analyses.

Quantum channels that describe depolarizing noise inherently
involve a sum over Kraus operators, rendering a homotopy analysis
inapplicable. The basic point is that each term in the Kraus operator
sum contributes to the Stokes parameters, and since the skyrmion
number (6) is cubic in the Stokes parameters, there will be inter-
ference effects between the contributions from different channels.
Arguing that homotopies exist for the individual channel terms does
not constrain their interference so that the existence of homotopies
no longer implies the invariance of the skyrmion number. Neverthe-
less, numerical analysis can still be performed. Our findings confirm
that the skyrmion number remains robust even under the influence
of depolarizing noise.

Finally, the integer skyrmion number is the winding number
of a map from §” to S>. The base sphere is obtained by compactify-
ing the plane R?, and the target sphere is the space of polarization
states. Compactification of the plane identifies the points at infinity
(points with p = co and any ¢) as a single point. This is only possi-
ble if the wave function becomes independent of ¢ as p — oo. If the
wave function fails to meet this condition, the invariant computed
using (6) can no longer be considered a skyrmion number and is not
generically an integer: the discretization of entanglement through
the use of topology fails.

The results of this paper establish the conditions under which
the skyrmion topology is robust to the influence of noise. While our
study focused on the skyrmion topology derived from the entangle-
ment of spatially separated photons, it can readily be applied to clas-
sical non-separable vector states””** and single photon spin-orbit
coupled states.””* The advantage of studying non-local states is
that they offer extra noise mitigation strategies that involve the
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exploitation of the ability to spatially separate the DoFs in a given
noisy quantum channel. In channels where the topology may indeed
undergo transitions, non-local states may offer strategies to circum-
vent the loss of topology by altering how the photons are passed
through the channel. Our model for the noise is novel, and we
believe it gives a solid foundation for further investigations into the
topological resilience of carefully defined entanglement observables.
We hope our findings will motivate further developments in this
exciting field.
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APPENDIX: NUMERICAL SIMULATIONS

Here, we present important details concerning the numerical
evaluation of the Skyrmion number for hybrid states.

pubs.aip.org/aip/apq

1. Simulation calibration

The skyrmion number for a given state was calculated using
(6). This expression involves taking an integral over all of space;
therefore, numerically, it is necessary to ensure that the integrand
is adequately sampled (high enough resolution) and, furthermore,
that the finite domain over which we integrate is large enough,
thereby ensuring that we adequately approximate full coverage over
the entirety of the Poincaré sphere. To this end, we investigate the
behavior of the skyrmion number as the resolution of the field
and domain of integration is altered. From this we select adequate
simulation parameters for the evaluations undertaken in this work.

a. Resolution simulations

By altering the beam waist, wo, of the spatial LG modes given
in (2) with respect to the pixel size, dx, used in the simulation and
monitoring the behavior of the skyrmion number, we can inves-
tigate the impact of resolution on the evaluation of the skyrmion
number. These simulations are shown in Fig. 16(a), where the
skyrmion number is plotted as a function of the beam waist nor-
malized against the pixel size for states with skyrmion numbers
N ={-3,-2,-1,0,1,2,3}. Clearly, when the ratio, s, is below 20,
the evaluation of the skyrmion number is unreliable; therefore, we
have chosen wy and dx such that ;* > 20. This is further empha-
sized by the example plots shown for the skyrmion density, 2., for
7% values of 1, 23, and 58, respectively. Rather unsurprisingly, for
20 w1, the skyrmion number evaluation fails, returning a value of
N =-090 when N =3 was the expected theoretical value. For
0~ 23 and 4 ~ 58, we calculate values of N = 2.92 and N = 2.99,
respectlvely Dependlng on the desired degree of accuracy, one
can further increase %%, which better approximates the continuous
nature of the field, at the expense of computational resources.

b. Integration domain simulations

The integration radius, ro, of the integral given in (6) was
altered with respect to the beam waist, and the behavior of the
skyrmion number was monitored to investigate the impact of the
integration domain on the evaluation of the skyrmion number.
These simulations are shown in Fig. 16(b), where the skyrmion
number is plotted as a function of the integration radius nor-
malized against the beam waist for states with skyrmion numbers
N ={-3,-2,-1,0,1,2,3}. Clearly, when the ratio, ;—”ﬂ, is below 3,
the evaluation of the skyrmion number is unreliable; therefore, we
have chosen ry and wg such that ;—"0 > 3. This is further empha-
sized by the example plots shown for the skyrmion field, X;, for
;—00 values of 0.5, 2, and 10, respectively. For ;—"0 ~ 0.5, the skyrmion
number evaluation fails, returning a value of N = 0.25 when N =3
was the expected theoretical value. For > ~ 2 and ;> ~ 10, we cal-
culate values of N = 2.59 and N = 2.99, respectlvely Dependlng on
the desired degree of accuracy, one can further increase -, which
better approximates the full coverage over the sphere, at the expense
of computational resources.

c. Simulation parameters used

In the simulations presented in this paper, we have used a
pixel resolution of 500 x 500 with a pixel size, dx =8 ym, and a
beam waist of wo = 0.3 mm. These parameters guarantee accurate
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FIG. 16. Resolution and field truncation simulations for skyrmion number calculation. (a) Skyrmion number plotted as a function of the beam waist, wj, normalized against
the pixel size, dx, with some example plots shown for the Skyrme field, =, for % values of 1, 23, and 58, respectively. (b) Skyrmion number plotted as a function of the

integration radius, ry, normalized against the beam size, wg, with some example plots shown for the Skyrme field, =, for ;—00 values of 0.5, 2, and 10, respectively.

numerical calculations of the skyrmion number, as the values % ~
38 and - ~ 13 ensure that we are well within the regimes that
allow for an accurate numerical evaluation of the skyrmion num-
ber. It should be noted that the calibration results presented in
Fig. 16 may alter with the use of different fields used to produce
the same topological numbers; therefore, it is always necessary to
first perform a calibration simulation, which informs the selection of
simulation parameters in the experiment. Furthermore, evaluating
the skyrmion number through a line integral approach has also been
shown to yield advantages when calculating the skyrmion number
in noisy environments.®’

2. Amplitude damping

For most noise scenarios considered in this work, the quan-
tum Stokes parameters derived from a given state either rotate
or scale in magnitude after passing through the noise channel, a
process that only requires renormalization in order to correctly
evaluate the skyrmion number according to (6). However, in addi-
tion to scaling, amplitude damping channels also shift the quantum
Stokes parameters away from the origin according to S; = Sx/1 — p,

5, =S\/1—-p, and S, =p+S.(1-p), as depicted in Fig. 17(a)
(showing the initial “noiseless” state) and (b) (showing the state after
passing through an amplitude damping channel) for p = 0.75. If the
noise is sufficient to shift the map, S’, such that the origin is no
longer contained within the geometric object traced out by S, then
simply renormalizing the field will collapse the object to a portion
of the initial sphere, as shown in Fig. 17(c), from which a skyrmion
number N = 0 is calculated. This occurs because the local normal-

ization performed, $(x,y)" = S g performed about the origin

- SCey

* €30]

point, O = (0,0,0)”. Such an operation can lead to the premature
transition of the topology of the state. Instead, it is first necessary to

perform a simple translation operation on the map, thus shifting its
center back to the origin, and then performing the normalization,
depicted in Figs. 17(d) and 17(e), respectively. Such an operation
is perfectly consistent with homotopic arguments presented in this
work, as a constant shift over the map cannot alter its topology.
Furthermore, no additional prior information is necessary in order
to discern the appropriate shift, as it can be discerned from the
distorted map, S’

3. Stochastic simulations

When considering spatially varying noise functions, p(x, y), we
have considered simple analytic functions that describe the noise
variation as a function of x, y. However, the homotopic and topo-
logical resilience arguments provided within the text do not make
use of the functional form of these expressions; they were merely
considered out of convenience. More generally, p(x, y) may be cho-
sen as a stochastic spatially varying smooth field where the degree
of “randomness” can be directly controlled. To control this degree
of randomness, random matrices of size M x M containing values
0 and 1 were generated, where the size of this matrix relative to
the initial simulation matrix of size N x N (N =500 in this case)
dictates the degree of “randomness.” We define a controllable para-
meter, the correlation length, L, given as a ratio between wo and
the random matrix pixel sizes. The lower resolution random matrix
is then interpolated (using a bicubic interpolation routine) in order
to create a final random smoothly varying noise function, p(x,y).
Figure 18 shows simulation results for the illustrative example of
states in the presence of isotropic noise with varying randomness
and across different random noise iterations shown in Figs. 18(a)
and 18(b), respectively, verifying the invariance of topology in the
presence of stochastic spatially varying isotropic noise channels.
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FIG. 17. Numerical considerations for amplitude damping channels. Under the influence of amplitude damping noise, (a) the geometry traced out by the quantum Stokes
parameters (which forms a map, S : R2 — S2, characterized by the skyrmion number N) (b) shifts above the origin and scales in magnitude. (c) Renormalizing the quantum
Stokes parameters at this point yields a false evaluation of the topology, N1 ~ 0, of the state as the normalization is performed about the origin. If instead the (d) map is first
shifted back to the origin and then () the normalization is performed, this yields a corrected map from which the skyrmion number, N, = N, can be correctly calculated.
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FIG. 18. Stochastic noise simulations. (a) Skyrmion number plotted as a function of the correlation length, L, of the random (stochastic) noise functions, p(x,y), for a
depolarizing channel with 3 example noise functions of correlation lengths 2, 0.4, and 0.2, shown to illustrate increasing “randomness” with decreasing L. (b) Skyrmion
number plotted for different iterations of the random noise function p(x, y) with correlation length L. = 0.5, with 3 example iterations of noise functions with L; = 0.5,
showing the variation among different random iterations of p(x, y’) for the same L.
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orthochronous Lorentz group SO*(1, 3), which is the subgroup of the Lorentz
group that preserves the orientation of space and the direction of time. This
means that each element of SO*(1, 3) corresponds to two elements in SL(2, C).
Some of the manipulations below have a transparent interpretation, bearing this
connection in mind.
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level, the phase of the Jones matrix (which for us is a Kraus operator) is not
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