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ABSTRACT

In this work, the wave optics is employed to investigate the Einstein ring of
a deformed AdS-Schwarzschild black hole (BH). When the source is fixed
on the AdS boundary, one can obtain the corresponding response function
generated on the antipodal side of the boundary. By utilizing a virtual opti-
cal system equipped with a convex lens, we are able to capture an image of
the BH’s holographic Einstein ring on the screen. The influence of the
relevant physical parameters and the observer’s position on the character-
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istics of the Einstein ring is also investigated, revealing that variations in
the observer’s position result in a transition of the displayed image from
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an axisymmetric ring to an arc, ultimately converging into a solitary point

of luminosity. In addition, variations in the relevant physical parameters "

naturally exert influences on the Einstein ring. The photon ring of the BH
was also investigated from a geometric optics perspective, and the numeri-
cal results indicate that the incident angle of the photon ring aligns with °5
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that of the Einstein ring. In the context of modified gravity theories, the E I oo

investigation of Einstein rings formed by deformed AdS-Schwarzschild el R

BH is expected to not only contribute to advancing the development of

gravitational theories but also facilitate a more comprehensive under-
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standing of spacetime geometry and the physical properties of BHs,
thereby distinguishing them from Schwarzschild BH.
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different disciplinary fields [2]. The relevant research in
the field of holographic duality not only serves to test
the internal consistency of the theory, but also provides

1 Introduction

The AdS/CFT correspondence [1], also known as holo-

graphic duality or gauge/gravity duality, establishes a
profound connection between classical gravitational
theory in Anti-de Sitter (AdS) spacetime and quantum
field theories (QFTs). Due to its particularity, it has
been a focal point of research for numerous physicists
over the past few decades and serves as a bridge spanning
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a novel platform for advancing the study of strongly
coupled field theory. The concept of holographic duality
has been extensively utilized in the investigation of holo-
graphic superconductivity [3-5], Fermi and non-Fermi
liquids [6-8], exotic metals [9-11] and Metal insulation
phase transition in quantum phase transition [12-14].
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The black hole (BH) shadow, being an observable
characteristic of a BH, has consistently remained a
prominent subject in the realms of theoretical physics
and astronomy. The Event Horizon Telescope (EHT)
project successfully captured images of BH shadows
located at the center of both the M87 galaxy and our
Milky Way [15, 16], marking a significant milestone in
astronomical observations. Currently, the study of BH
shadows is extensive in various spacetime, including
binary BH shadows [17], different configurations of BHs
[18-24], dynamically evolving spacetimes [25], wormholes
[26-28], and naked singularities [29]. The presence of a
luminous ring positioned beyond the event horizon of
BHs has been demonstrated through images and associated
research. The ring structure, resulting from the extensive
accumulation of high-energy matter surrounding the BH,
is commonly referred to as the photon ring. Not only
does the photon ring serve as a valuable tool for testing
general relativity (GR), but it also provides crucial
insights into the structural composition of spacetime.

The current research on BH shadows primarily relies
on geometric optics, focusing on the behavior of photons
in close proximity to BHs. Recently, Hashimoto et al.
[30] employed wave optics to investigate the shadows
cast by BHs, presenting a captivating and innovative
approach. Especially in Ref. [31], a significant break-
through was made concerning the existence of a
sequence of luminous ring structures, known as Einstein
rings, which encircling the AdS Schwarzschild BH based
on the principle of holographic duality. It has been
observed that holographic images of the BH, which
result from its gravitational lensing effect, can be
constructed using the response function for a thermal
state on a two-dimensional sphere which is dual to the
Schwarzschild-AdS BH. Furthermore, clear observation
of Einstein rings is possible. This methodology has also
been employed in holographic superconductivity models
[32], wherein researchers have unveiled a discontinuous
alteration in the size of the photon ring. The charged
BHs [33] have also been studied accordingly, and the
result showed that the chemical potential has no influence
on the radius of the Einstein ring, and the temperature
dependence of the Einstein ring exhibits a unique char-
acteristic. In the context of other modified gravity
theory, the study of holographic Einstein rings of BHs
has yielded some interesting results, which can be found
in Refs. [34-41].

The AdS-Schwarzschild BH, being a classical solution
in the AdS spacetime, has been extensively investigated
due to its profound insights into the nature of BHs,
gravity, and the universe’s structure within the AdS
framework [42-46]. In the context of modified gravity
theories, studies on AdS-Schwarzschild BHs, including
investigations of deformed solutions, are also of
paramount importance. In the work [47], the author
obtained deformed AdS-Schwarzschild BH solutions
using the gravity decoupling (GD) method, which

extends known solutions of the standard gravitational
action to additional sources and modified theories of
gravitation. Furthermore, the effects of deformation
parameters on the horizon structure, thermodynamics
and Hawking-Page phase transition temperature are also
studied. However, the shadow of the deformed AdS-
Schwarzschild BH remains unexplored.

However, the holographic Einstein rings associated
with deformed ADS-Schwarzschild BHs remains unchar-
ted territory, constituting the focal point of this paper.
In this study, we aim to investigate the Einstein rings of
the deformed AdS-Schwarzschild BH using wave optics,
based on the AdS/CFT correspondence, and explore the
impact of relevant physical parameters on the Einstein
rings.

The paper is organized as follows. In Section 2, we
briefly introduce the deformed AdS-Schwarzschild BH
and derive the lensing response function that describes
the diffraction of a wave source by the BH in this spacetime
background. In Section 3, we employ an optical system
equipped with a convex lens to observe the Einstein ring
formed on the screen. We pay particular attention to the
influence of the relevant physical parameters and the
observer’s position on the Einstein ring. Furthermore,
we compare the relevant conclusions obtained through
wave optics with those derived from geometric optics.
Finally, in Section 4, we summarize the key findings and
conclusions of our study.

2 The deformed AdS-Schwarzschild BH

and its response function

We consider the BH solution of a deformed AdS-
Schwarzschild BH with the following metric [46]

1
ds? = —F(r)dt* + @ dr? + r2(d6? + sin® 0de?), (1)
with
2M 2 2 2
F(r):1_7+2 B” +3r” + 3fr (2)

12 ta 3r(B+1)3

The parameter «, known as the deformation parameter,
modulates the influence of geometric deformations on
the background geometry by adjusting their intensity,
while M represents the ADM mass of the BH. In addi-
tion, the term B is a control parameter with a length
dimension that serves to prevent the occurrence of the
central singularity. I = /3/[A] is the AdS radius, where
A is the cosmological constant. In what follows, the
value of [ is taken as [ =1 for the purpose of simplifying
calculations. Substituting the metric function mentioned
above with the wvariable r=1/y and G(y)= F(1/r),
Eq. (1) can be written as
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ds? = = |—G(y)dt? + + sin® 9d<,02] . (3
y? @) G(y) 3) Response
(Q)

ya< 3ﬁ+62)
G(y) =1+ y? —2My> + vy 5 )
1
3(5+9)

At y = o0, a space-time singularity emerges, while at
y =0, the corresponding system resides on the AdS
boundary. Note that the temperature of the BH is
defined by the Hawking temperature, which is given by
the relation T = LG'(y,), where y =y, represents the
event horizon of the BH.

Next, we consider the dynamics of a massless scalar
field based on the following Klein—-Gordon equation [31]

(5)

In order to solve the Klein—Gordon equation more
conveniently, we use the incident Eddington—Finkelstein
coordinate system [33], which facilitates our observation
of the BH’s nature and ensures the continuity of physical
quantities at the event horizon. The coordinates can be
expressed as

(4)

D, DV = 0.

dy

V=Ett+ys=t— | 5,
/ G(y)

(6)
hence, the metric function in Eq. (3) can be expressed as
follows:

ds? = — [ — G(y)dv? — 2dydv + d6? + sin® 0dg?|. (7)

2
Near the AdS boundary, the asymptotic solution of
the scalar field is

T (v,y,0,0) = Jo(v,0,¢) +yduJo(v,0,¢)

(Q)y* +QWY),
(8)

where D% denotes the scalar Laplacian on the unit S2.
Based on the AdS/CFT framework, Jg can be interpreted
as the material source on the boundary [48]. We select a
monochromatic and axisymmetric Gaussian wave packet
as the wave source, located at the South pole (6 = 7) of
the AdS boundary, as shown in Fig. 1:

1
- §y2D§JQ(v,9, ©) +

JQ(’U,@) =¢

—iwv(

2mn?) " Lexp {—

e " CioXio(6)
1=0

where n denotes the width of the wave generated by the
Gaussian source, and n < 7. The parameter w represents

9)

Black hole

Fig. 1 Diagram of the response function and the source.

the frequency of the incident wave. X;o(0) is the spherical
harmonics function, and Cjy is the coefficients of X;o(6),
which can be expanded as

o= (- g [ L2

Then, considering the symmetry of spacetime, the scalar
field (v, y,6,¢) can be decomposed into

(10)

U(v,y,9, Z Z e YOl Yi(y) Xin(0, ). (11)
1=0 n=—1
The corresponding response function (Q) can be
expanded as
(Q) = e " Cio(Q)i Xin(0). (12)
1=0
In Eq. (11), the radial wave function Y; satisfies the

equation of motion as follows:

y’GW)Y," + (°G'(y) — 290G (y) + 2iwy®)Y/
+ [—2iwy — y21(I + 1)]Y; = 0. (13)

According to the AdS/CFT correspondence, near the
AdS boundary Y; can be expanded as

y* (=11 +1))

5 +(Q), 3 + Q).

(14)

limY, =1—iwy+
y—0

Obviously, the function Y; has two boundary conditions,

one of which is at the event horizon y =y, and has the

following form
(G + 2iwy?)Y, —

Riwyn + 1211+ 1)V =0.  (15)

The other is at y =0, namely the AdS boundary. In
this case, the wave source Jg is the asymptotic form of
the scalar field at infinity, and ¥;(0) = 1, which can be
seen from Eq. (13). We get the corresponding numerical
solution of Y¥;, and extract (Q), by using the pseudo-
spectral method [30, 31]. Subsequently, using Eq. (12) to
get the wvalue of the total response function. In
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Fig. 2 (a) Effect of different o on the response function, where 8 =1, y, =1, w=90. (b) Effect of different w on the

response function, where a=1.6, y, =1, 8=1.

(c) Effect of different T on the

response function, where a=1.6, 3=1,

w=90. (d) Effect of different 8 on the response function, where a =1, y, =1, w=90. (e) Effect of different w on the
response function, where a =1, y;, =1, 8 = 1. (f) Effect of different T on the response function, where a =1, =1, w = 90.

Figs. 2(a)—(c), fixing the control parameter 4 at 1 and
varying the deformation parameter a and other parameters
to observe the amplitude of the response function. It can
be observed from Fig. 2(a) that the amplitude of the
response function increases with the increase of the
deformation parameter «. Meanwhile, Fig. 2(b) indicates
that the period of the response function decreases with
the increase of the wave source frequency w. As can be
seen from Fig. 2(c), the amplitude of the response function
exhibits a notable variation with temperature, yet the
relationship is not linear. For instance, at 7= 0.310, the
amplitude of the response function attains its peak, and
subsequently diminishes at 7= 0.268 and T = 0.514.

For simplicity and without loss of generality, we fix
the deformation parameter o =1 and change the control
parameter 3 and other parameters, as shown in
Figs. 2(d)—(f). The amplitude of the response function
decreases with the increase of the control parameter /3
and the wave source frequency w, as shown in Figs. 2(d)
and (e), respectively. In Fig. 2(f), the amplitude of the
response function reached its maximum when 7= 0.313
and decreased smoothly when 7= 0.272 and T = 0.515.

3 The formation of holographic ring

Although the response function has been derived, it does
not exhibit holographic image. To achieve this goal, it is
necessary to incorporate an optical setup equipped with
a convex lens. The convex lens converts a plane wave
into a spherical wave, and the angle observed at the

AdS boundary is 6.,s. A new coordinate (¢',¢') is
obtained by rotating coordinate (6, ), and the following
relation is satisfied [33]:

cos ¢’ +icos @ = e (sin cos p + icosh), (16)

where ¢ =0,¢0' =0 correspond to the observational
center. A Cartesian coordinate system (z,y, z) is established
such that (z,y) = (0'cosy’,0'siny’) at the boundary
where the observer located, for a virtual optical system.
The convex lens is adjusted on a two-dimensional plane
(x,7),in which the focal length of the lens and corresponding
radius are denoted by f and d, respectively. Further,
the coordinates on the spherical screen are defined as
(,y,2) = (x50, ysc, zs0), satisfying a3 + y3c + 240 = 2.
The relationship between the incident wave ¥(z) before
passing through the convex lens and the outgoing wave
Ur (%) after passing through the convex lens satisfies
12|

Ur(@)=¢ “2F U(3). (17)

The wave function on the screen can be represented as

[33]
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Fig. 3 Observational appearance of the response on the screen for different o at various observation angles, where y;, = 5,
w =90.

3.1  The effect of deformation parameter o on the

images

where R is the distance from the point (z,y,0) on the
lens to the point (z%.,y2%,2%-) on the screen. In the

formula, (%) is the window function, which is defined as . o ) )
Initially, holographic images obtained by varying the

deformation parameter o and the observer’s position 6,
are presented in Fig. 3. When 6,,, = 0, it indicates that
the wave source is fixed at the south pole of the AdS
boundary, while the observer is situated at the north
pole, observing a series of axisymmetric concentric rings.
As 0., = /6 (see the second column), the holographic
ring transitions from strict spherical symmetry to
axisymmetry, accompanied by a decrease in brightness.

1, 0< |zl <d;
o(i) = | OSllsd

19
0, |Z| > d. (19)

From Eq. (18), it is evident that the observed wave
on the screen is associated with the incident wave
through the Fourier transform. In this article, the
response function is considered as the incident wave

U(z), and we can observe the holographic images on
this screen, using Eq. (18). The effects of the deforma-
tion parameter «, control parameter 3, and Gaussian
wave source on holographic images are investigated,
with the source width n = 0.02 and radius of convex lens
d=0.6.

As it increases to 6,5, = /3 and 0,5, = 7/2, the holographic
ring gradually disappears, especially at 6,,, = 7/2 where
only bright spots are visible. This demonstrates that the
shape of the holographic ring strongly depends on the
observer’s position. In the leftmost column of Fig. 3,
despite variations in the value of «, a brightest circular

Jin-Yu Gui, et al., Front. Phys. 20(2), 025202 (2025)
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Fig. 4 Effect of o on the brightness, where 6,55 = 0, yn = 5,
w =90.

ring persists, known as the Einstein ring. In addition, to
further investigate the impact of the deformation param-
eter o on the Einstein ring, the brightness is plotted in
Fig. 4, in which the distance between the two peak
trajectories corresponds to the diameter of the Einstein
ring. The increase in « results in a gradual increase in
the radius of the Einstein ring. When o = 0.1, the radius
of the ring is 0.49, and when « = 15.1, the radius of the
ring is 0.56. Furthermore, the luminosity represented on
the y-axis of Fig. 4 gradually decreases as « increases.
Next, the impact of the event horizon on the Einstein
ring of BH is investigated. For simplicity, only the case

.0 I
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Fig. 5 Effect of y, on the Einstein ring, where 6,5 =0,
a=1.6, w=090.

1.0
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0.0

Yh

Fig. 6 The relationship between temperature and event
horizon vy, where a = 1.6, 8 = 1.

where 6,,, = 0 is considered, as depicted in Fig. 5. When
yn = 0.5, a bright spherically symmetric ring appears on
the screen. Additionally, as y, increases from 0.5 to
higher values, such as y;, = 3 and y;, = 5.5, the ring gradually
contracts. Notably, when y;, = 8, the ring radius reaches
its minimum. The observation indicates that as yj
increases, the ring radius decreases. However, there is no
apparent pattern of change in the ring radius with
temperature. In Ref. [33], the authors discussed the vari-
ation of ring radius with temperature. Here we argue
that the variation of ring radius with the event horizon
radius is more reasonable, as the relationship between
the BH temperature and the event horizon is not mono-
tonic, as depicted in Fig. 6.

Similarly, Fig. 7 depicts the relationship between
luminosity and the event horizon. When 1y, =0.5,
xs/f =1, the luminosity is maximum. With increasing
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Fig. 7 Effect of T on the brightness,
a=1.6, w=090.

where 0., =0,
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Einstein ring, where 6, =0,

yn, the value of wxs/f corresponding to the maximum
luminosity decreases, indicating a decreases in the
Einstein ring’s radius.

The impact of wave sources, such as the wave source
frequency w, on the Einstein ring can also be analyzed.
As demonstrated in Fig. 8, a discernible trend emerges
where the resolution of the Einstein ring improves as the
wave source frequency increases. At w =40, multiple
diffraction rings are observable, indicating significant
interference effects. However, as the frequency rises to
w =100, these additional diffraction rings gradually
fade, leaving only the primary Einstein ring distinct.
This transition can be attributed to the increasing domi-
nance of geometric optics at higher frequencies. To
complement our understanding of these findings, Fig. 9
depicts the correlation between luminosity and angular
frequency in Fig. 9. It is evident that high frequencies
are crucial for effectively observing and resolving the
radius of the ring.

3.2 The effect of control parameter 8 on the images

Similarly, as the control parameter 3 changes, a series of
concentric rings can be observed in the leftmost column
of Fig. 10. As the observer’s position 6,,, varies from
Oobs =0 10 O,p5 = 7/2, the Einstein ring transitions from
strict spherical symmetry to axial symmetry, accompanied
by a decrease in partial brightness. Subsequently, the
ring gradually diminishes, ultimately leaving only a
single light spot. Figure 11 indicates that the radius of
the Einstein ring gradually decreases as B increases.
Specifically, when = 0.3, the radius of the ring is 0.6,
and when 3 =0.75, the radius of the ring decreases to
0.5. Furthermore, as g8 increases, the luminosity gradually
intensifies.
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Fig. 9 Effect of w on the brightness, where 6., =0,

a=1.6, y, =5.

In Fig. 12, we analyze the impact of the event horizon
on the Einstein ring of a BH. The results reveal a reciprocal
relationship as v, increases, the radius of the ring
decreases correspondingly. Figure 13 illustrates the rela-
tionship between luminosity and the radius of the event
horizon. As y; gradually increases, the horizontal coordi-
nate corresponding to the maximum luminosity gradually
decreases, indicating that the radius of the Einstein ring
diminishes with the increase of y;.

3.3 Images from the viewpoint of geometric optics

In this section, we will discuss Einstein rings from the
perspective of geometric optics. Our primary focus is on
studying the incidence angle of photons, based on the
spherically symmetric spacetime background described
in Eq. (1) and Eq. (2). We define conserved quantities
within the metric framework as w = G(r)dt/o) and
L =1r20p/0t, where w represents the energy of the
photon, L denotes the angular momentum of the photon
and ) is the affine parameter. Due to the spherical
symmetry of spacetime, it is only necessary to consider
the case where photon orbits are located at the equator.
6 = w/2. The four-velocity v¢ = (d/d))¢ is satisfied

— G(r)(dt/dN)? + G(r) " (dr/d))?

+72sinf(dp/dN)? = 0, (20)

and
72 = w — Lz(r). (21)

here z(r) = G(r)/r? and 7 =0r/0X. The incident angle
nS =0/0r¢ with boundary 6,, as normal vector is
defined as [33, 35]
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a,, B -2 G
cos 0;, Jap? T lr=c0 Tiﬂ lr—ccy (22)
lv| |n| 72/G + L/r?
further simplification leads to
L? L2
sinf? =1-—cosf? = & lrmco= —5-  (23)
72+ L22(r)

When the two endpoints of a geodesic are aligned
with the center of the BH, due to axial symmetry [31],
an observer will perceive a ring-shaped image with a
radius that corresponds to the incident angle 6;,. As a
photon reaches the location of the photon sphere, it
neither escapes nor falls into the BH, but instead begins
to orbit around it. At this point, the angular momentum
is denoted by L, and the equation of orbital motion for
the photon at the photon ring is determined by the
following conditions [30, 31, 33]:
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(24)

In the case, sinf;, = L/w is given, and from Fig. 14 sinfg
is observed to satisfy the relationship:

sin9R = TR/f.

(25)

The incident angle of the photon and the angle of the
photon ring both describe the angle of the photon ring
that can be observed by an observer, and they should be

essentially equal, that is

rr/f=L/w.

(26)

When relevant physical parameters undergo changes,
numerical methods are employed to verify the results

Screen

Ring

Incident wave Incident wave

Fig. 14 Relation between ring radius rr and ring angle 6g.

(2)

®) —o3
0.8 g

a=0.1

0.6
0.4
0.2

0.0

Fig. 15 (a) Comparing the Einstein ring radius between
the geometric optics and wave optics for different values of «
with w =90. Where the discrete red points represent the
Einstein ring radius derived from wave optics, while the blue
curve depicts the variation in the radius of the circular orbit
as the temperature changes, which is based on geometric
optics. (b) Comparing the Einstein ring radius between the
geometric optics and wave optics for different values of j
with w =90. Where the discrete magenta points represent
the Einstein ring radius derived from wave optics, while the
blue curve depicts the variation in the radius of the circular
orbit as the temperature changes, which is based on geometric
optics.
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obtained from Eq. (26). Figure 15(a) illustrates the
radius of the Einstein ring for various values of parameter
a, while Fig. 15(b) depicts the radius of the Einstein
ring for different values of parameter 3. it is evident
that the observed angle of the Einstein ring, obtained by
wave optics, closely approximates the incident angle of
the photon ring, which is derived from geometric optics.
Notably, this conclusion holds irrespective of the defor-
mation parameter o and the control parameter g3,
despite their influence on the fitting accuracy. In other
words, the Einstein ring can be constructed holographically
via wave optics.

4 Summary and conclusions

Using wave optics, the Einstein rings of the deformed
AdS-Schwarzschild BH investigated, based on
AdS/CFT correspondence. By solving the asymptotic
behavior of the wave function near the boundary, one
can obtain the response of a Gaussian wave source at
the south pole, measured at the north pole. The results
indicate that the response function is the diffraction
pattern formed by the scalar waves emitted from the
wave source after being scattered by the BH. When
B =1, the amplitude of the response function increases
with the increase of the deformation parameter o, but
the response function decreases with the increase of the
wave source frequency w, and varies significantly with
temperature. Similarly, when o = 1, the amplitude of the
response function decreases with the increase of both the
control parameter g and the wave source frequency w.
Moreover, the amplitude of the response function also
varies with temperature.

An optical system featuring a convex lens was
employed for observing the corresponding holographic
images. The result showed that when the control parameter
B is fixed, the radius of the holographic ring gradually
increases with the increase of the deformation parameter
a. Additionally, as the event horizon increases, the ring
radius decreases. Moreover, as the source
frequency increases, the image becomes clearer. On the
contrary, the deformation parameter o is fixed, the
radius of the Einstein ring gradually decreases with the
increase of control parameter 3. Similarly, as the horizon
radius increases, the ring radius decreases. Also, as the
wave source frequency increases, the ring image becomes
clearer.

Under the framework of geometric optics, a further
study was conducted on the incident angle of the photon
ring. Theoretical analysis and numerical simulation
revealed that this result is consistent with the observation
angle of the Einstein ring obtained through wave optics.
This conclusion does not depend on deformation parameter
a and control parameter 3, although the o and g affect
the fitting accuracy.

were

wave
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