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Abstract
The goal of this work is to present the concept and the

model for the reconstruction of the beam emittance from
the spectrum of the Compton scattered photons using a ma-
chine learning procedure. The Compton process is the back-
scattering of a laser pulse on the relativistic electron beam
and is at the base of X-ray sources, as for instance, the project
STAR. In the scattering process, the scattered photons get
energy boost. The energy boosted photons carry also infor-
mation about the transverse momentum of the initial electron
bunch. In this work we present theory, model implemen-
tation and simulations on how the beam emittance can be
estimated from the radiation spectrum.

INTRODUCTION
The measurement of beam emittance, which characterizes

the size and shape of a charged particle beam, is essential for
the performance optimization of particle accelerators and
other high-energy physics experiments. One of the most
common methods for measuring beam emittance is through
the use of destructive techniques, such as wire scanners or
beam profile monitors. However, these methods are limited
in their ability to provide precise and accurate measurements,
and can also be time-consuming and costly.

An alternative method for non-destructive emittance mea-
surements is through the use of Compton back scattering
(CBS), which involves the back-scattering of a laser pulse
on a relativistic electron beam [1–6]. In this process, the
scattered photons gain energy and carry information about
the transverse momentum of the initial electron bunch. The
spectrum of the scattered photons can be used to reconstruct
the beam emittance, providing a non-destructive and accu-
rate measurement technique.

In this article, we present the concept and model for
the reconstruction of beam emittance using Compton back-
scattering and Artificial Intelligence (AI) machine learning.
Our work focuses on the implementation of the theory be-
hind the Compton process and the use of machine learning
algorithms to analyze the scattered photon spectrum and re-
construct the beam emittance and spot size in the Compton
interaction point (IP).

The presented method can be applied to a wide range of
accelerator and X-ray source projects, such as the project
STAR [7], and has the potential to revolutionize the field
of beam diagnostics and characterization. With its non-
destructive nature and high precision, the Compton scat-
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tering technique combined with machine learning analysis
provides a powerful tool for optimizing the performance of
particle accelerators and high-energy physics experiments.
For the working point we take the high energy branch of
STAR at 140 MeV. The list of parameters is presented in
Table 1.

Table 1: STAR Parameters

Electron beam parameters

Energy (MeV) 140
Bunch charge (pC) 500
Energy spread (rms, %) 0.24
𝜖𝑛,𝑥,𝑦 (mm mrad) 1.32
𝜎𝑒, 𝑥, 𝑦 (𝜇𝑚) 18
Bunch length (rms, mm) 0.66
Laser pulse parameters

Interaction angle (deg) 5
Pulse Energy (J) 0.5
Wave length (nm) 1030
𝜎𝑙, 𝑥, 𝑦 (𝜇𝑚) 10
Pulse length (rms, ps) 1

THEORETICAL APPROACH
In the field of Compton backscattering (CBS) or inverse

Compton scattering (ICS), the spectrum of scattered photons
depends on various parameters of the initial electron bunch
and laser pulse. The spectral bandwidth can be approximated
by the scaling laws shown in Equation 1,
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where each term represents a corresponding contribution
by kinematics of scattering (𝜎𝜃
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). A
more detailed discussion of this formula can be found in the
works [8, 9].

The dependence of the spectrum on the spot size of the
electron bunch at the interaction point (IP) is directly pre-
sented by the luminosity into the acceptance angle Ψ =
𝛾𝜃𝑚𝑎𝑥 (collimated) [10]:
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Figure 1: Effect of emittace on the spectrum of scattered
photons. 𝜎𝑥,𝑦 = 15 𝜇𝑚
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where 𝜎 is the Compton cross section [11], 𝑁𝑒, 𝑁𝐿 are the
number of interacting electrons and laser photons, 𝜎𝑥 (𝜎𝑒,𝐿)
and 𝜎𝑦 (𝜎𝑒,𝐿) are the rms electron (laser) transverse dimen-
sions at waist, 𝜎𝑧(𝜎𝑒,𝐿) is the electron (laser) beam length
and 𝜃𝑚𝑎𝑥 is the maximum acceptance angle.

SIMULATION AND DATA
In general, the dependence of the spectrum on the spot

size (sigma) is more complicated due to the correlation
between emittance and sigma, which becomes even more
complex when the source is not a point-like. Analyzing all
of these dependencies analytically can be extremely chal-
lenging. However, Monte Carlo simulations can be used
to demonstrate these dependencies. Figure (1) presents the
spectra (by default in this article we use collimation aper-
ture 𝜃 = 1 𝑚𝑟𝑎𝑑) for a fixed value of 𝜎𝑒,𝑥,𝑦 = 15 𝜇𝑚 and
varying emittance, instead, on fig 2, the value of emittance
is fixed 𝜀𝑥,𝑦 = 2.02 𝑚𝑚𝑟𝑎𝑑.

From these two plots we can see that the effect of emit-
tance is mainly to change the slope of the spectrum, while
the effect of the spot size can be seen on the intensity. Fig.
3 presents a sample of 10 random spectra from 2500 used to
educate the AI machine learning model. This set of simula-
tions was done using code CAIN developed by Yokoya [12].
Parameters of the electron beam and the laser pulse are pre-
sented in table 1. To create the set of 2500 spectra, the
emittance and the spot size were both varied; the emittance
covered a range 𝜀𝑥,𝑦 = 1 − 3 𝑚𝑚𝑟𝑎𝑑 with 50 equal 50 steps;
for each value of emittance, 50 simulations with varying
beam spot size at IP in the range 𝜎𝑒,𝑥,𝑦 = 15 − 50 𝜇𝑚 were
performed. In parallel a similar set of simulations was done
to create test data representing the output from experimental

Figure 2: Effect of sigma on the spectrum of scattered pho-
tons. 𝜀𝑥,𝑦 = 2.02 𝑚𝑚𝑟𝑎𝑑

Figure 3: Sampling spectrums for random pair of spot sizes
and emittances.

installation. The main difference in creation the set of the
test data was that emittance and spot size was linearly spaced
in 17 points each instead of 50. Using 17 as prime number
give us set of values for emittance and spot size what will
be not repeated in the education set.

On this figure 3 we can already notice that each spectrum
has its own unique ”finger print” in the shape of slop and
intensity.

Based on this we will build our model. The main idea of
our model is to measure the emittance (𝜀𝑥,𝑦) and spot size
(𝜎𝑒,𝑥,𝑦) using the dependence described above by combining
it with the AI based on machine learning.

Modern models of machine learning can work with dif-
ferent type of data. But since we are interested in low errors
and getting high efficiency in definition of emittance and
spot size, we need to prepare the set of spectra from simula-
tions. Each spectrum (originally an histogram) was saved as
one-dimensional vector with fixed minimal (𝐸𝑝ℎ = 280 𝑘𝑒𝑉)
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Figure 4: Distribution of errors in spot size predicting in the
testing data

and maximal(𝐸𝑝ℎ = 280 𝑘𝑒𝑉) values of photon energy and
fixed number of binnings (𝑁𝑏𝑖𝑛 = 20). Here it is important
to notice that we do not need to normalise our spectra since
we are interested in the number of photons per bin, and this
will save information on how our spectrum depend from spot
size. In addition, we add to each vector, as a label, values
of emittance and spot size used as initial parameters for the
simulation.

Thus, our original physic problem is reduced to a standard
regression problem in Machine Learning.

Sklearn [13] model random forest regressor was chosen
as Machine learning system, as one of the simplest and most
suitable for working with our data.

For the educational stage of the process (in Sklearn, the
”model.fit” routine), we use our prepared list of spectrum
vectors as the training input samples and values of the emit-
tance and spot size as the target values.

Errors
In our case, the most important error is the error in defi-

nition of emittance and spot size. In the figures 5 and 4 we
present the distribution of errors in the definition of emit-
tance and spot size, respectively by machine learning com-
pared with initial values used in the simulations for testing
data set. As we can see, the rms error for beam spot size
at IP is 1.5% and just 3% for definition of emittance value.
The proposed method can be one of the precise diagnostic
tools for the particle accelerators.

CONCLUSION
In conclusion, this article presented a non-destructive

method for measuring beam emittance using Compton back-
scattering (CBS) and AI machine learning. The concepts
behind the CBS technique were explained, and the theory
was implemented to reconstruct the beam emittance from the

Figure 5: Distribution of errors in emittace predicting in the
testing data

Figure 6: Example of prediction emittace and sigma for
spectrum from tested data

spectrum of scattered photons. The authors demonstrated
the potential of this method in optimizing the performance of
particle accelerators and high-energy physics experiments,
making it a valuable tool for the field of beam diagnostics
and characterization.
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