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Abstract.

High error-rates preclude the preparation of fully error-corrected logical qubit state

on Noisy Intermediate Scale Quantum (NISQ) computers. When operand logical

qubits inherit large state-preparation noise, it is difficult to show that subsequent

logical gate fails less frequently than its physical (unprotected) version. We articulate

a scheme of decoupling transversal logical gate errors from state-preparation noise and

experimentally validate its use-case for IBMQ quantum processors. We find that in

the absence of state preparation noise, the IBMQ processors significantly raise the

likelihood of certain two-qubit errors in the operand(s) of [[7, 1, 3]] transversal gates.

Yet, encoding can still be shown to improve the gate fidelity provided that the gate

operands are strategically decoded/corrected for the likely two-qubit errors in lieu of

their less likely single-qubit counterparts. This trade-off enables quantum CSS code

to principally correct longer strings of errors without increasing the codeword size and

paves new avenues of investigating fault-tolerance in NISQ computers.

1. Introduction

Accurate characterization of noise in the encoded gates is a challenging yet promising

avenue of research experiments [43, 50, 27, 47, 35] on real quantum processors. The

challenge lies in distinguishing errors on the logical (encoded) gate from those in the

faulty preparation of operands initial logical state. Encoding physical qubits into high

fidelity logical state remains at odds with hardware limitations including (i) limited

number of ancillary qubits and (ii) sparse qubit-qubit connectivity [16, 38, 53]. These



2

constraints realize unreliable non-local CNOT gates on the encoding qubits, leading to

the preparation of noisy encoded state, particularly in case of universal quantum error-

correcting code. Recently, a pioneering attempt [20] of preparing [[5, 1, 3]] encoded

basis state has reported state-preparation fidelity no higher than 0.57 on 5-qubits

superconductor quantum processor. When operands are pre-loaded with large state

preparation noise, how can we efficiently uncover logical gate intrinsic errors and show

that it can achieve higher fidelity than the same physical (un-encoded) gate?

A two-fold contribution of this work is follows. First, it provides efficient

experimental means of indirectly estimating probability distribution of errors (pde)

of the transversal logical gate. The scheme does not require encoded state

preparation, instead, it suffices to transversally initialize the encoding qubits in the

equal superposition state. Therefore, noisy logical gate ε is directly applied to the

superposition state and pde is computed by transversally measuring encoding qubits in

X-basis. This pde is obtained from experimental statistics and is transformed into

the pde of noisy encoded operand by using codespace projector P. The validity of

proposed scheme is conditioned upon [P, ε] = 0 whereby ε commutes back to act on

the qubits equal superposition state. A remarkable feature of this method is that it

offloads the noisiest and the most complicated section of logical state preparation—

the projective transformations of superposition state and its pde—onto classical post-

processing, leaving quantum device tasked with only transversal gates execution.

Secondly, we analyze the error probability distribution and show that Steane [45]

logical gate significantly elevates the likelihood of certain two-qubit errors in the

operand. These are degenerate errors and can be easily corrected when converted into

non-trivial (other than Identity) codespace Stabilizers. Appendix A provides proof-

of-principle examples of distance-3 CSS codes [8] capable of correcting weight-2 bit-

flips/phase-flips or both. All two-qubit errors in case of Steane code can be corrected,

although, at the expense of their corresponding co-syndrome single-qubit counterparts

transform into logical errors. We find that the gate can achieve higher fidelity by virtue

of encoding if, instead of dogmatically decoding its operand for single-qubit errors—as

occurs in conventional fault-tolerant schemes—a given syndrome is decoded into more

likely two-qubit errors instead of less probable single-qubit error. In comparison to the

strict single-qubit decoding schemes, our proposed strategy achieves 2-3 fold reduction

in the logical failure probability of the operand. It is the probability that decoding and

correction of errors in classical post-processing reveals the incorrect qubit logical state.

Most importantly, this multi-fold reduction provides critical leverage to demonstrate

that Steane code can practically improve the gate fidelity, although only modestly.

This idea is prefaced in Fig-1; it shows example pde of an encoded qubit protected

by phase-flip code: |+̄〉 −→ |+ ++〉 (where |+〉 = 1√
2
(|0〉+ |1〉)). The pde was obtained

from the results of two experimental circuits: (a) shows transversal logical operation:

CNOT |+̄〉,|+̄〉 −→ |+̄〉,|+̄〉 gate executed on ibmq 16 melbourne (b) shows |+̄〉 state

undergoing identity gate on ibmqx4 tenerife. The probability distribution of phase-

flip errors, obtained by decoding the operand logical qubits, clearly shows that the
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Figure 1. (Color online) The probability distribution (shown using logarithmic

ordinates) over the phase-flipped qubits in an IBM Superconductor quantum

computers. Both circuits prepared their qubits in equal superposition state (i.e. |+〉⊗3)

and Measured these in X-basis after their respective gates. Two or more qubit errors

are shown by red textured bars while fewer than two errors are represented by solid

blue bars. In (a) ibmq 16 melbourne qubits 1,8 and 11 were control operand of three

CNOT gates. Their corresponding target qubits were 0, 7 and 3, each prepared in

equal superposition state. In (b) we applied a sequence of 24 Identity gates to each

one of the qubits 2,4 and 5 on ibmqx4 tenerife device. Ideally, both circuits stabilize

initial state (i.e. |+〉) of the qubits. However, the decoherence due to real noisy gates,

was projected onto phase-flip errors when qubits were Measured in the X-basis. The

qubit phase-flip error probabilities were obtained using 8192 x 3 = 24576 shots for

each circuit. The Pearson correlation matrix Γ obtained from respective Measurement

statistics, indicates correlations among qubits errors

joint failure of noisier qubit pairs (1, 11) and (4, 5) is significantly higher than several

single-qubit errors (e.g. qubit-8 in ibmq 16 melbourne and qubit-2 in ibmqx4 tenerife).

Clearly, one can significantly improve the fidelity of logical state of encoded qubit by

correcting it for more probable two-qubit errors.

Organization of remaining discussion is follows: Section-2 describes the framework

of experimentally calculating pde in the logical qubit protected by Steane code. The

details of experiment setup are given in Section-3 while experimental results are

presented and discussed in Section-4. Section-5 situates this work within relevant prior

studies on fault-tolerance and error-correction in real quantum computers. Section-6

summarizes the manuscript with possible directions of the future work.

2. Calculating Phase-Flip Error Distribution for the Steane Encoded State

The Steane encoded |+〉 state contains equal superposition of all sixteen codewords

of classical [7, 4, 3] Hamming code C1. Its dual code C2 = C⊥1 ⊂ C1 is a classical
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[7, 3] code (minimum code-distance = 3) whose codewords constitute the support of

X- and Z-Stabilizers of the Steane code. It is a distance-3 code and was originally

invented to correct arbitrary single-qubit errors. However, Appendix A shows that it is

possible to correct arbitrary two-qubit errors by sacrificing corresponding single-qubit

error-correction. The trade-off provides leeway to select dominant high-weight errors

for correction and improve the fidelity of Steane logical gates. Because of their crucial

role in limiting the overall/average gate fidelity, only phase-flip errors are taken into

consideration in our experimental results and analysis.

Fig-2 outlines Noise Operator Commute-Back method as experimental means of

calculating probability distribution over errors in Steane logical gates by initializing its

operand(s) in the equal superpositon state: ρsup := ⊗7
i=1|+〉〈+|. The preparation of a

operand logical states ρenc := |+̄〉〈+̄| = 1
16

∑
x,y∈C⊥

2
|x〉〈y| proceeds by applying an ideal

codespace projection P to ρsup, which converts it into the ρenc (later, it will be shown

how projection part can be simulated as classical post-processing step). Afterwards,

as encoded state undergoes processing, the corresponding noisy logical gate operator

ρenc may commute back to act on superposition state ρsup if [P, ε] = 0. This crucial

commutation property lies at the heart of this work and exploits the fact that dephasing,

being recognized as one of the most potent source of noise in transmon superconductor

qubits [9, 32, 29], can be described as qubit-environment interaction shown in Fig-

2 and Fig-A2 for logical identity and CNOT gate respectively. Hence, these logical

gates can be directly applied to ρsup state and error statistics can be collected from the

transversal Measurement of operand (physical) qubits. These statistics are converted

into error probability distribution of encoded operand state ρenc by simulating ideal

code-space projection P applied to ρsup carrying phase-flip errors. We would like to

caution that Fig-2 and Fig-A2 show template noise operator which commute with P ;

other possibilities also exist. The error probability distribution remains valid for any ε

that satisfies [P, ε] = 0.

The equal superposition state requires only single qubit Hadamard gates which

can be executed with very high fidelity—their failure probability is reported to be

an order of magnitude smaller than that two-qubit gates and measurements in IBM

calibration data. The execution time of single qubit-rotation gates (usually in ns) is

negligibly small compared to decoherence time constant T2 (typically in tens of µs)

which attributes lower decoherence noise to Hadamard gate. Therefore, small infidelity

of superposition state can be safely ignored compared to those in case when qubits site

idle for several no-ops(identity gates) or undergo CNOT gates. One caveat regarding

phase-flip errors decoding is the readout noise which can significantly vary across IBMQ

qubits—by nearly an order of a magnitude. This limits the choice of our operand

qubits to those with acceptable readout failure probability. Alternatively, we either

apply IBMQ readout noise compensation scheme or indirectly Measure qubit error by

propagating these to qubits having lower readout noise. Corresponding experiment

setup and relevant constraints are elaborated in the next section. For now, we return to

the development of analytical tool for computing probability distribution of phase-flip
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errors.

Figure 2. Noise Operator Commute-Back Method circumvents encoded state

preparation for obtaining logical Identity gate error statistics. Noise corrupted [[7, 1, 3]]

encoded |+〉 state can be envisioned as an equal superposition state subject to non-

unitary codespace P, followed by application of identity gate noise operator ε. If

[P, ε] = 0 then noise operator ε commutes back to act on the superposition state. In

case of dephasing channel, the controlled-Ui becomes controlled rotation about Z-axis.

After obtaining ε induced probability distribution of phase-flip errors in superposition

state from experimental statistics, the subsequent mapping of these errors onto encoded

|+〉 state is offloaded to classical post-processing step which implements ideal projection

P. The commutation relation [P, ε] = 0, provides reliable and efficient experimental

means of indirectly computing phase-flip error probability distribution of the logical

state

Note that in the framework of this study, error-correction (EC) means decoding

errors on the logical qubit operand after its Measurement, followed by classical post-

processing of 7-bit string. It is a (noisy) codeword in either C2 (which maps to logical

|+〉 state) or in C⊥2 \C2 (which maps to logical |−〉 state). Error-correction is declared

successful if decoding recovers codeword of correct logical state. High-Weight EC is

a strategy that prefers to correct the bit-string for two errors occurring with higher

probability than corresponding low-weight counterparts (single errors). It is contrasted

and quantitatively compared with Low-Weight EC which always corrects the bit-string

for single errors.

2.1. Noise Operator Commute-Back Method

Define vector k ∈ Z7
2 that identifies phase-flip errors in |+̄〉 state by setting corresponding

indices of error- and error-free qubits to 1 and 0 respectively. The calculation of
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probability distribution over set k phase-flipped qubits in the noisy |+̄〉, can be parsed

into three-step procedure (1) preparation of an ideal encoded state ρenc = |+̄〉〈+̄|
(2) Applying noise to ρenc and obtain noisy ε(ρenc) state (3) measuring the resulting

noisy state for k errors. The ρenc = 1
16

∑
x,y∈C⊥

2
|x〉〈y| is prepared by projecting equal

superposition state of seven qubit ρsup = |+〉⊗7 onto [[7, 1, 3]] codespace by using ideal

projection P. We first write density matrix of ideal encoded state as

ρenc = 8PρsupP
†

Where pre-factor 8(=1/0.125) comes from the denominator in quantum Measurement

expression that outputs ρenc with probability 0.125. Upon successful projection, the

addition of noise converts the state into ε(ρenc). The probability Prk that k qubits are

phase-flipped in the noisy state is calculated by using quantum measurement expression:

Prk = tr(MkM
†
kε(ρenc))

where Mk = 1
16

∑
x,y∈C⊥

2
(−1)k.(x⊕y)|x〉〈y|. Express ρenc in the form of ρsup to rewrite

above expression as:

Prk = 8tr(MkM
†
kε(PρsupP

†)) (1)

When noise operator ε commutes with P, it enables crucial reordering of operators in

(1) so that experimentally infeasible preparation of ρenc state can be avoided. Then,

reordering peddled by [P, ε] = 0, yields

Prk = 8tr(MkM
†
kPε(ρsup)P

†) ∴ [ε, P ] = 0 (2)

Being interested in phase-flipped errors only, we expand Kraus operator representation

of ε(ρsup) such that each operator Zi =
∑

x∈Z7
2
(−1)i.x|x〉〈x| flips qubits specified by the

binary vector i, in the ρsup state with probability pi i.e. ε(ρsup) =
∑

i∈Z7
2
piZiρsupZ

†
i where∑

i∈Z7
2
ZiZ

†
i = I. Substituting ε(ρsup) in (2) and bringing P, P † inside the summation

will give

Prk = 8tr(MkM
†
k

∑
i∈C⊥

2
piPZiρsupZ

†
iP
†)

Note that pi is an experimentally measurable quantity and our goal is write Prk in terms

of pi. It is clear from Fig-2 that ∀i [P,Zi] = 0, since phase errors in ρsup commute with

the controlled-Z gates implementing P , and enter ρenc untransformed. Swap P with Zi

(thus also P † with Z†i ), bring trace operator, Mk,M
†
k inside the summation and invoke

permissible reordering of matrices insider trace operator to obtain:

Prk = 8
∑

i∈C⊥
2
pitr(MkZiPρsupP

†Z†i )

=
∑

i∈C⊥
2
pitr(MkZiρencZ

†
i )
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where we have used the fact that Mk is hermitian and MkM
†
k = Mk.

Write trace input as product of two summations i.e. MkZiρencZ
†
i =

1
256

∑
u∈C⊥

2
(−1)u.(i⊕k)

∑
x,y∈C(−1)k.x⊕i.y|x〉〈y|. The first summation is non-zero only

when i ⊕ k ∈ C2. This leads to
∑

u∈C⊥
2

(−1)u.(i⊕k) = |C⊥2 | = 16 and∑
x,y∈C⊥

2
(−1)k.x⊕i.y|x〉〈y| = ZiρencZ

†
i since (−1)k.x⊕i.y = (−1)k.x⊕k.y. Hence

MkZiρencZ
†
i =

{
ZiρencZ

†
i i⊕ k ∈ C2

0 otherwise

Since tr(ZiρencZi) = 1, the final expression of Prk simplifies to

Prk =
∑

i|i⊕k∈C2

pi (3)

Therefore, the probability distribution over k phase-flipped qubits in the n−qubits

encoded state can be calculated from the probability distribution (pi) of phase-flipped

qubits in the n−qubit equal superposition sate which can be transversally prepared

on the quantum processor hardware. The same procedure and the result applies

to |−〉 logical state, except that first three operand qubits are phase-flipped (Steane

Z̄ = Z1Z2Z3) after initialization in the superpositon state.

2.2. Connection with Error-Transparent Gates

Coincidentally, a condition similar to [P, ε] = 0, makes a pre-requisite of passively

error-corrected logical gates known as error-transparent gates [51, 26, 36]. It requires

gate Hamiltonian to commute with the noise operator throughout its evolution in order

to uniquely identify and neutralize otherwise indistinguishable random qubit errors,

occurring at different time instances during the gate execution. As a result, the error-

transparent gates, in theory, have been shown to exhibit nearly an order of magnitude

lower failure probability [26] without increasing the qubit life-times (T1 or T2). On the

other hand, our study utilizes commuting noise operator to accurately uncover errors

on logical gate so that it can be shown to have lower failure probability compared to

its unprotected counterpart. Inspite of these similarities, noise operator commute-back

condition has a very different goal—to completely skip operand state-preparation circuit

for the exclusive quantification of logical gate failure probability.

Nevertheless, if error-transparent gates become physically realizable in future, it

will be possible to incorporate noise models of the form other than ε shown in Fig-2.

On such enhancement will encapsulate amplitude damping noise which is one of the

main source of random errors in superconducting quantum computers. The canonical

form of amplitude damping operator (Fig-8.13 in Ref [40]) does not seem to commute

with CNOT gates in P. An error-transparent construction [26] of two-qubit gates robust

to photon loss channel (a type of amplitude damping noise) may find a possible remedy

to this problem. Therefore, our approach can indeed benefit from the said and other

work in this direction.
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2.3. Connection with Quantum Process Tomography and Randomized Benchmarking

It is worth situating Noise Operator Commute-Back method withing the framework

of noise quantification schemes. One relevant scheme is logical randomized

benchmarking [11] that quantifies average failure probability of logical gates.

Unfortunately, it requires periodic application of error-correction in the random sequence

of logical Clifford gates. This approach seems infeasible considering severe resource

limitation of NISQ computers. If error-correction is skipped, it would let loose errors

in noisy initial logical state to infect logical gates and produce convoluted noise.

Consequently, it becomes difficult to separate gate errors from State Preparation And

Measurement (SPAM) noise. Secondly, large state preparation noise will limit the length

of randomized gate sequence; it will take only few gates to drive rapidly decohering

logical qubit state to maximally mixed state. Both consequences severely undermine

basic spirit and applicability of randomized benchmarking schemes [17, 31, 37, 14, 52].

In addition, these schemes are known to show inaccurate estimate of average error

probability for unitary (coherent) [33] and correlated errors [6].

On the other hand, protocols based on quantum process tomography [42, 10] can

accurately quantify any type of noise in the logical gate, although, at the expense of

number of experimental runs scaling exponentially in the number of logical qubits.

However, small size of NISQ computers is expected to limit near-term experiments to

gate-level fault-tolerant circuit employing no more than two logical qubits. In this

context, quantum process tomography, therefore, resurfaces as viable option for the

in-depth investigation of noise patterns in the logical gate noise, provided that we can

effectively address its main limitation—the sensitivity to SPAM errors. Fortunately,

the Noise Operator Commute-Back method abridges the gap by eliminating logical

state preparation of the gate operands. Together with quantum tomography approach,

it becomes a valuable tool for exploring noisy patterns in small size logical circuits.

2.4. Scope of Noise Operator Commute-Back Method

The generality of proposed method empowers it to subsume variety of realistic noise

models that can commute with code-space projection operator P. One interesting case

is that of spatially and temporally correlated noise given in Ref [2]. Their noise operator

(see Fig-3 and Fig-4 in Ref [2]) has the same form as that of ε used in this study,

except for the unitary noise component. The mapping is very simple; the control

unitary gate of ε become controlled rotations about z-axis where (small) rotation

angle approximates the strength of correlated noise (please find detailed discussion

on correlation strength parameter L0 in Section-4 of Ref [2]). Another example of

commuting noise is the depolarizing operation, its admissibility considerably broadens

applicability of the method. By applying twirl operations to the operand qubits, one

can easily convert arbitrary noise channel into depolarizing channel.
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Figure 3. The error probability of ibmq 16 melbourne qubits (shaded circles) due

to (a) Single Identity gate (b) CNOT gates (shaded arrows). These probabilities

were obtained from Qiskit (https://qiskit.org) quantum state tomography routine.

Although, these error-probabilities varied over time, this snapshot is most consistent

with our experimental results and recent IBMQ calibration data. Note that the

indicated error probabilities include respective qubit state-initialization and read-out

errors

3. Experiment Setup

We designed our experiments for investigating errors in the [[7, 1, 3]] encoded qubit

subject to logical CNOT and Memory (Idle) gate. The nature of logical operations

dictated the choice of quantum computing device–expected to be large enough to store

at least two logical qubits and facilitated sufficiently large number of transversal physical

CNOT gates. Another selection problem was the identification of operand physical

qubits suitable for achieving considerably higher gate fidelity by High-Weight EC. We

generated error profile of physical qubits and gates so that these could be discriminated

on the basis of their respective noise levels. For quantitative comparison, we defined

fidelity gain as the ratio of logical failure probability of Low-Weight EC to the logical

failure probability of High-Weight EC. We noticed that fidelity gain was highlighted

when logical operand contained noisier physical qubits in certain optimal proportions.

Based on selective operand compositions, our experimental results showed that strict

single-qubit error-correction frequently failed to reduce the failure probability of the

logical gate below the break-even point i.e. average failure probability of corresponding

physical gates (the discussion on computing this crucial parameter will appear shortly).

By contrast, strategic correction of likely two-qubit errors achieved far more encouraging

results by frequently lowering the logical failure probability below the break-even point.
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3.1. Selecting the Quantum Computing Device

At the time of writing, the ibmq 16 melbourne superconductor quantum computer was

the largest IBMQ quantum computer in our access, that can store up to two [[7, 1, 3]]

logical qubits and execute logical CNOT gate with a minor constraint to be discussed

later. The device features ease of programming, accessibility, daily calibration, fast

execution of quantum circuits and reproducibility of their results. Our six months

long experimental study of this machine began soon after its introduction in Nov 2018.

Nearly 500 experiments were spent in rigorously authenticating the substantial disparity

in qubits decoherence levels. Although, bulk of our final results summarize findings from

the most recent set of executions, large number of earlier experiments proved handful

in systematically identifying an appropriate set of noisy qubits set (and CNOT gates)

to constitute credible evidence of high-weight errors and the fidelity gain obtained by

their correction.

3.2. Scheduling Experiments Around Device Calibration

The computer maintenance routine, in the form of periodic device calibration,

significantly dictated the schedule our experiments. We note that the qubits error

probability generally increased with the time elapsed since last calibration, mainly due

to its increasing accumulated usage. Apparently, this two hours long process runs special

quantum state/process tomographic as well as randomized benchmarking routines to

determine noise levels in the hardware and reboots the device after retuning and

refreshing the qubits. During the calibration interval, the device does not perform user

experiments, instead, these are stored as long queue of pending jobs. Once calibration

is complete, the device forthwith resumes execution of pending user experiments, the

first job in the queue is likely executed with highest quality qubits and gates. To

minimize the time-dependent coherence loss effect, we attempted to carefully schedule

our experiments in order to minimize their wait time in the queue. To further increase

the validity of our results displayed in Section-4, each data point on the graph was

collected from the median output of at least three different executions of the exact same

logical gate circuit.

3.3. Generating Qubits Errors Profile

The IBMQ platform also updates device calibration data after quantifying noise levels

in the form of average-case error probabilities of single- and two-qubit gates. Although,

average-case data is a valuable indicator of an overall performance of circuit components

(qubits and gates), we independently generated their error profile based on the specific

needs of our experiment setup. The profile was generated by running quantum state

tomography routine provided by the Qiskit (https://qiskit.org) platform. It computed

the likely density matrix of the qubit prepared in equal superposition state subject

to memory or CNOT gate, both would ideally leave its state unchanged. The Fig-
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3 uses gray-scale image to identify higher decoherence noise with dark shaded circles

(qubits) and arrows (CNOT gates). It shows that qubit-11 is the noisiest qubit followed

by qubits 1, 3 and 7. The indicated error probabilities were statistically computed

by counting the fraction of times a qubit prepared in the |+〉 state, collapsed to −1

eigenstate of X operator upon Measurement i.e. it acquired phase-flip error. On the

other hand, the CNOT gate induced qubit error probability was calculated from the

statistical likelihood of the control qubit flipping from |+〉 to |−〉 state when both its

operand qubits were initialized in |+〉 states. It was also obtained by quantum state

tomography of the control qubit as it undergoes following circuit: State initialization→
CNOT→Measurement. From the comparison given in the map, the CNOT gates

specified by their (control, target) qubit pairs (13,1), (12, 2) (11,3), (11,10) and (11,12)

are more likely to phase-flip their control operand than the rest. Note that the likelihood

of faulty state initialization and Measurement is included in the qubit error-probabilities

of shown in Fig-3. Nevertheless, the error probability profile generated by our statistics

are in close agreement with those published on the IBMQ website.

3.4. Calculating Failure Probabilities

The error-correction logical failure probability of the Steane code utilizes expression

given in (3). Define Pr(0) := Prk=0 and Pr(L) :=
∑

k:H⊥
2 k=0,|k|=3 Prk as probabilities of

no error and all undetectable logical errors, respectively. Similarly, define Pr
|k|=1
k :=

Prk:|k|=1 and Pr
|k|=2
k := Prk:|k|=2 as probabilities of single-qubit and two-qubit errors

respectively; the binary vector k locates error qubits in the codeword by 1 at the

corresponding indices. These probabilities can be easily derived from (3). Then, by

definition, the logical failure probability of Low-Weight EC (Plw) becomes:

Plw =
∑
k

Pr
|k|=2
k + Pr(L) (4)

Likewise, the logical failure probability of High-Weight EC (Phw) becomes:

Phw =
∑
c∈Z3

2

min
k:Hk=c

(Pr
|k|=1
k ,

∑
m:H(m+k)=0

Pr|m|=2
m ) + min(Pr(0),Pr(L)) (5)

The expression (5) represents convex optimization problem with simple solution. It

says that one should prefer to correct two-qubit errors whenever their cumulative

probability exceeds that of their low-weight counterparts. Next, in order to quantify

the improvement (or degradation) in the fidelity of logical gate when protected by

error-correction, we compare the logical failure probability with un-encoded qubit error

probability. However, the substantial disparity in physical error rates, complicates

the selection of an appropriate statistical metric that faithfully mirrors the fidelity of

physical gate which is un-encoded by definition. For comparison, we want a single figure

of merit pe to (i) reflect overall (in)fidelity of multi-qubit encoded state (ii) distributes

overall infidelity identically among individual qubits on the basis of per-qubit error
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probability [2]. For transversal Steane gate, we mathematically define pe as solution to

following set of non-linear equations:

(1− pe)7 = Pr(0) (6)

7pe(1− pe)6 =
∑
k

Pr
|k|=1
k (7)

21p2e(1− pe)5 =
∑
k

Pr
|k|=2
k (8)

7p3e(1− pe)4 = Pr(L) (9)

It is evident that pe not only encapsulates error probability distribution of multi-qubit

state and but also inherits a sense of per-qubit error probability. In practice, the four

equality constraints from equations (6)—(9) generally lead to an approximate solution—

one that minimizes the cumulative mean-square difference. The best-fit pe was computed

by solving above set of equations as an instance of non-convex optimization, and provides

reference error-probability of un-encoded qubit, for comparison with Plw and Phw in

Fig-4,5 and 6. The pe value calculated this way, represents average un-encoded qubit

error-probability.

3.5. Making High-Weight Error-correction Decisions

Which set of the two-qubit errors needs to corrected? the decision is based on

experimental error-statistics collected from execution of the given circuit. If device error

rates remain sufficiently stable, statistical variation in multiple experiments executing

the same circuit (logical gate, operand qubits and their initial state remain unchanged)

only cause inconsequential changes in the failure probability computations and does

not impact error-correction decisions. Under this condition, strategy formulated by

using statistics of an experiment remains adequate when it is subsequently reproduced

multiple times. The Qiskit batched execution feature significantly reduces the delay

between successive of the same logical gate and help achieve stable error profile. We

extensively employed batched execution in our experiments to reduce standard deviation

less than 10% of the computed failure probabilities values, which is lower enough to draw

reliable conclusions. Therefore, High-Weight error-correction strategy, based on the

error-statistics of first experiment was formulated and invariantly applied to the result

of all experiments in the batch. In addition to the batch-level temporal invariance, the

strategy also featured batch-level state-invariance. Same High-Weight error-correction

scheme applied to the outcome of experiments dealing with |+〉 as well as |−〉 states for

the given logical gate and operand qubits.
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Figure 4. (Color online) Steane High-Weight EC lowers the failure probability of

the CNOT gate for logical |+〉 state operands. Only control operand is referenced for

comparison of failure probabilities. The graph plots triple (Phw, pe, Plw) against Plw.

The triple plotted on the graph is the median of three triples, each obtained from

logical CNOT gate experiment results. Each experiment computed its triple from the

statistics collected from 8192 executions(shots) of the same logical gate. The logical

failure probabilities were computed from these statistics by using expression given in (4)

and (5). For the encircled data points, the syndrome-wise comparison between single-

qubit error and their corresponding two-qubit errors, is listed in the table (all errors

in each row yield same syndrome value). The shaded rectangles present components

of failure probability of High-Weight EC, whereas those inside large thick outlined

rectangle, represent components of Low-Weight EC failure probability

4. Experimental Results

The main objective of our experiments is the statistical calculation of logical failure

probabilities for evaluating proposed error-correction scheme. Again, it is reminded

that an error-correction (EC) procedure simply applies correction to the classical bit-

string obtained from transversal Measurement of seven qubits initialized in the equal

superposition state and processed by [[7, 1, 3]] logical gates. We consider gate execution

to be successful if the corrected readout yields a codeword either in (i) C2, when the

intended state of the operand is logical |+〉, or in (ii) C⊥2 \C2, when the intended state

of the operand is logical |−〉. Otherwise, it is counted towards logical failure. By

statistically calculating the fraction of instances resulting in logical failures, we obtain

Plw and Phw as described in the previous section.

For the sake of completeness, the section also includes experiments of preparing

Steane logical |+〉 and |−〉 states using non fault-tolerant encoding circuit. It requires no

additional qubits and maps large fraction of CNOT gates on adjacent encoding qubits
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in ibmq 16 melbourne. With careful scheduling, circuit can be executed with small

overhead of SWAP gates. The logical failure probability is quantified by the fraction of

instances in which logical state is incorrectly interpreted upon readout and subsequent

classical post-processing, described previously. One of the main reasons to include the

results of non fault-tolerant logical state preparation is to show the effectiveness of

High-Weight EC in removing correlated errors on the encoding qubits. Additionally,

it benchmarks the performance of state preparation without the burdensome task of

obtaining state fidelity from large number of experiments. Instead, it leverages more

realistic figure of merit for the quantification of noise: the ability to distinguish between

logical basis states, which can be achieved with significantly fewer error statistics of

encoding circuit.

Contrary to some prior studies that control magnitude of noise by adjusting the rate

at which pauli error gates are inserted into the circuit, our aim is to uncover intrinsic

hardware errors. Naturally, such investigation cannot utilize noise control knob which

can vary noise levels and makes a useful reference for generating and comparing the

trends of Plw and Phw. In the absence of such reference, we have found it convenient

to compare these probabilities on graphs whose abscissa is set to Plw. It is because

Plw has higher variation compared to Phw (or pe), not only for different experimental

configurations (e.g. selected device qubits) of the circuit but also for different runs of

the same circuit (e.g. execution before or after device calibration). Wide range abscissa

elegantly spreads data points and provides clearer visualization of failure probability

patterns.

4.1. Logical CNOT

The first set of experiments is designed to calculate the probability distribution of the

control operand of the Steane logical CNOT with both operands in the ¯|+〉 state. Based

on the Section-2 analysis, actual preparation of logical state is not required, instead,

gate can be directly applied to operand qubits initialized in equal superposition state

as shown in Fig-A2. The gate is mapped to the subset of seven (out of eighteen)

device-level CNOT gates indicated by edges in Fig–3. The qubit-qubit connectivity

constraints can be understood by visualizing the device as a directed graph mapping

qubits and CNOT gates to its vertices and edges, respectively. The vertex(qubit) at

the arrow head is the recommended target operand of the corresponding edge (CNOT

gate). IBMQ platform invites users to achieve high fidelity gate execution by mapping

operand qubits in recommended control-target order specified by edge direction. The

accuracy of the gate may be slightly lower if it is executed while its operands are

mapped opposite to the edge direction (arrow pointing towards control qubit). We relax

the operand order constraint at the expense of incurring some nominal gate infidelity.

Then, the edge direction becomes unimportant and directed graph turns into fully

connected (undirected) graph allowing any pair non-adjacent qubits to undergo CNOT

gate by means of successive swap gates. Although, this flexibility expands numerous



15

permutations of encoding physical qubits placement, these can be shortlisted by the

constraints of our experiment setup for logical CNOT gate, which require:

(i) Each constituent physical CNOT gate has unique control-target qubit pair.

(ii) None of the gates acts on non-adjacent qubit pair. Otherwise, arbitrating (non

fault-tolerant) swap gate can convert single qubit error into multi-qubit errors.

The first requirement is relatively straightforward; it arises from the innate transversal-

ity of Steane CNOT gate, and can be readily fulfilled. However, the second condition

cannot be entirely met due to the structure of device connectivity graph. Essentially,

it requires that matching number (size of maximum independent edge set) of the graph

is at least seven. However, it is easy to show that Fig-3 graph has matching number

= 6. This means we can only execute six physical CNOT gates transversally satisfying

both conditions. Our analysis shows that the missing gate barely alters our results and

conclusions whenever its error probability is set to the average error-probability of other

six gates. We validate this conclusion in the execution results to be described shortly.

Before proceeding, we list typical gate operands in the form of (control, target) encoding

qubit pairs, in the decreasing order of their contribution to the results:

• {(13, 1), (12, 2), (10, 11), (4, 3), (5, 9), (6, 8), (0, 7)}
• {(13, 1), (12, 11), (2, 3), (4, 10), (5, 9), (6, 8), (0, 7)}
• {(13, 1), (12, 11), (2, 3), (4, 5), (8, 7), (9, 10), (6, 0)}
• {(1, 2), (13, 12), (11, 3), (4, 5), (6, 8), (9, 10), (0, 7)}

The list shows that our preferred compositions of logical control operands, contains

qubits bearing lower state initialization failure probability, for example: 0,2,4,6,9 and

13). It is because error statistics obtained from logical CNOT experiments (|+〉⊗7 state-

initialization → CNOT → Measurement) always contain some inseparable component

of unwanted state initialization and Measurement errors. Selection of mentioned

qubits ensures that the contribution of undesired error probability remains reasonably

smaller—about an order of magnitude lower in comparison to that of the respective

CNOT gates. All compositions allowed six transversal gates on adjacent qubits. How

to deal with the gate on the non-adjacent qubit-pair? will be answered next.

The non-local CNOT is converted into classically-controlled NOT gate after

commuting it with the subsequent operand X-basis Measurement. It flips the control

qubit Meaurement result when target qubit is readout in |1〉 state. This additional

transformation is also carried out off-line and precedes error-correction applied to

the readout result in software post-processing. While this transformation adequately

captures error propagation feature of the gate, it may fall short of capturing (phase)

errors introduced by the gate itself. Fortunately, it is possible to compensate for the

CNOT gate noise by pulling qubits having higher readout noise into the control operand

of CNOT gate. In Fig-3, a large fraction of nosier qubits (dark shaded circles) also

accrue large readout noise; their Measurement and CNOT error rates have comparable
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Figure 5. (Color online) Extrapolation of Fig-4 in low-noise (Low-Weight EC failure

prob. < 0.1) regime, was achieved by skipping some (but not all) CNOT gates. The

missing gates were simulated as ideal CNOT gates (in classical post-processing) and

corresponding both compensated and uncompensated triples points are included in

the graph. Logistics of plotting the graph and calculations of probabilities remain the

same as those described in Fig-4. The table shows breakdown of failure probabilities

of encircled data points

probabilities ranging: 2.5× 10−2 − 5× 10−2. Higher readout noise in the control qubit

of the missing non-local CNOT gate, adequately compensates for the noise that would

have been accumulated had the missing gate had been executed without relocating its

operand qubits. Our experimental results show that the missing CNOT gate noise

compensation does not substantially impact general trends of comparison between Low-

Weight EC and High-Weight EC failure probabilities, (shown in Fig-4), to be described

shortly. Therefore, although majority of our data points are based on uncompensated

CNOT configurations, a few compensated data points, both plotted and un-plotted, will

be analyzed for their alignment with the general trend.

Fig-4 plots data triples (Phw, pe, Plw) against Plw. Each triple corresponds to

median statistics of three logical CNOT experiments with same qubits composition

of its operands. The three tuples (one from each CNOT experiment) were sorted

by Phw value and only median tuple was plotted on the graph. The comparison of

logical failure probabilities evince fidelity gain of 2x–3x providing enough reduction

to lower in Phw just below pe—the break-even point. Thus Steane code has

improved the reliability of CNOT gate whose both operands are initialized in

|+〉 state. Detailed insights can be obtained by comparing the logical failure

probabilities of the triple (Phw = 0.116, pe = 0.161, Plw = 0.283) for the gate
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operands composition:{(13, 1), (12, 11), (2, 3), (4, 10), (5, 9), (6, 8), (0, 7)}. The table in

Fig-4 elaborates breakdown of logical failure probabilities shown as encircled H and L

data points for High- and low-Weight EC respectively.

Table 1. High-Weight error-corrected [[7, 1, 3]] CNOT gate fails less often than

physical CNOT gate. Both control and target operands are considered for comparison.

The table lists readout-noise compensated probabilities, for selected control, target

operands configurations used in Fig-4. Only one physical CNOT gate—on the non-

adjacent qubits—was skipped from hardware execution in the first five table entries.

The last logical CNOT, marked by *, executed all seven constituent gates

Composition of operands
Failure Probability

Control Target Overall

Control , Target Physical Logical Physical Logical Physical Logical

{13, 12, 10, 5, 4, 9, 0}, {1, 2, 11, 6, 3, 8, 7} 0.251 0.152 0.066 0.043 0.3 0.188

{8, 5, 9, 4, 12, 13, 2}, {7, 6, 10, 3, 11, 1, 0} 0.116 0.076 0.05 0.027 0.161 0.101

{8, 9, 12, 13, 2, 4, 6}, {7, 10, 11, 1, 3, 5, 0} 0.115 0.06 0.047 0.002 0.156 0.061

{13, 12, 10, 4, 5, 6, 0}, {1, 2, 11, 3, 9, 8, 7} 0.144 0.009 0.139 0.063 0.262 0.071

{0, 2, 13, 10, 5, 6, 9}, {1, 3, 12, 11, 4, 8, 7} 0.1 0.046 0.121 0.026 0.208 0.071

∗{7, 9, 12, 2, 4, 5, 13}, {8, 10, 11, 1, 3, 6, 0} 0.139 0.095 0.070 0.020 0.199 0.113

The syndrome-wise comparison between single- and two-qubits error probabilities

shows that qubits 13, 12 and 6 are distinctly noisier in the control operand; their

two-qubit errors combinations e.g. (13,12),(13,6) and (12,6), are more probable then

their corresponding single-qubit counterparts (qubits 2,4 and 0). By prioritizing the

correction of faultier pair of qubits, significant reduction in Phw becomes possible.

Therefore, by virtue of High-Weight EC, control operand fails less frequently for logical

CNOT gates for all the triples. Furthermore, it should be noted that encircled data point

does not aberrantly deviate from trend-line for compensated CNOT configuration. For

example, when the operands qubits are swapped on the last pair and qubit-7 becomes

control qubit (and 0 becomes target), then the high readout noise on qubit-7 adequately

fills the shoes of missing CNOT gate. The corresponding triple simply drifts along the

trend-line and is re-situated within close vicinity of existing triples. On one instance,

the compensated version relocates it to (Phw = 0.092, pe = 0.11, Plw = 0.162), on other,

it maps it to (Phw = 0.16, pe = 0.2, Plw = 0.35). Shown as black diamonds on the

Fig-4, both triples reinforce the existing trend-line. Thus, the figure accurately reflects

the fidelity gain of High-Weight EC for the complete logical CNOT gate.

The missing CNOT problem actually proves to be a valuable tool of extrapolating

Fig-4 curves for comparison in the low noise regime where Plw < 0.1. When multiple

physical CNOTs are replaced with ideal gates in post-processing, their corresponding

control qubits gather lesser noise and lower Plw. The corresponding pe and Phw values

are shown in the Fig-5 for uncompensated version of logical CNOT. It shows that Phw
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remains consistently lower than pe and so do the smaller Phw values. However, as their

respective trend-lines approach 0.1, Plw converges to pe, while Phw remains notably

smaller as shown by the gap between corresponding trend lines at the end (Plw = 0.12).

Upon extrapolation in high-noise regime (higher Plw values), these data triples and

trend lines faithfully transform into those in Fig-4 (where Plw > 0.11). The encircled

data point presents an example in which two CNOT gates (12,2) and (11,10) were

physically executed, whereas, the remaining five gates (13,1), (5,4), (6,8), (9,3), (0,7)

were classically executed. The table shows that elimination of the two-qubit errors (12,5)

and (10,12) at the expense of uncorrected co-syndrome single-qubit errors on qubits 9

and 13, provides nearly three-fold reduction on logical failure probability.

4.1.1. Suppression of Readout Noise Above results describe the performance of logical

gate without taking target operand into consideration. However, since several qubits,

with high readout noise, enter the target operand, it is important to correct the

operand error probabilities for large readout noise. Fortunately, this can be efficiently

accomplished by invoking Qiskit readout noise filtration routines. We apply these

routines in a way that qubits readout noise was directly profiled by executing prescribed

test circuits on the device hardware. For each set of seven physical qubits comprising the

target operand, a total of 128 test circuits are executed. Apparently, each test initializes

the qubits in one of 128 possible classical states (0000000...1111111) and Measure these

in Z−basis to compute corresponding readout error-probability distribution. After

computing a set of 128 distributions, one routine seems to register complete readout

noise profile in the form of 128 x 128 conditional error probabilities. Another routine

then uses this profile to correct the results of separately executed user-defined circuit

to yield new statistics compensated for readout noise. The pe and Phw of the target

operands of selected Fig-4 logical CNOT gates, are obtained from the readout noise

compensated error probability distribution and listed in Table-1.

To show that high-weight error-correction improves the reliability of quantum gate,

the overall Phw of logical CNOT gate must be less than the pe value (average failure

probability of physical CNOT gates). To this end, we also recompute control operand

readout-noise compensated Phw for the selected set of logical CNOT gates. The new Phw

of both logical operands and their corresponding pe are also juxtaposed in Table-1. The

comparison reveals that overall failure probabilities are smaller in case of logical gates.

The last entry of the table contains failure probabilities for the complete Steane CNOT

gate executing all seven constituent physical gates. The seventh gate is a non-local gate

containing non-adjacent operand qubits: 13 and 0. It was realized by applying local

CNOT(13,1) after swapping qubits 1 and 0. The lower failure probability of complete

Steane CNOT gate further reinforces the efficacy of High-Weight EC.

The logical failure probability can be shown lower than pe for one or more |−〉
state operand(s). Our more recent experiments on upgraded ibmq 16 melbourne device

for more comprehensive quantification of logical gate noise by taking into account

fidelity gains for all four combinations of |+〉, |−〉 state operand(s). Upgraded device
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(available online since Dec 26, 2019) added a qubit (qubit-14) adjacent to qubit-0 and

13, enabling execution all 7 physical CNOT gates on disjoint qubit pairs without SWAP

gate. For (control, target) = ({13, 7, 2, 4, 5, 11, 1}, {14, 8, 12, 10, 6, 3, 0}) configuration,

we compared Phw with pe considering total noise in both operand (as in the last column

of Table-1) in states: (|+〉, |+〉), (|+〉, |−〉), (|−〉, |+〉) and (|−〉, |−〉). Corresponding

Phw = 0.25, 0.22, 0.21, 0.22 while pe = 0.30, 0.26, 0.28, 0.29. By averaging over four pairs

of states (assuming these are equally probable), we obtained Phw(avg) = 0.225 while

pe(avg) = 0.282. On the other hand, Plw(avg) = 0.45 significantly exceeded pe. This

shows that although |−〉 state operands may raise failure probabilities, these do not

undermine overall efficacy of High-Weight EC. It is vital to note that High-Weight EC

strategy must be kept same for all four pairs, since error-correction must be completely

oblivious to the logical state. Therefore, in each of the four cases, we corrected single-

qubit errors in the control operand for only two syndrome values: {−1,+1,−1} and

{−1,−1,−1}. By contrast, target operand was corrected for the two-qubit errors when

syndrome was either {+1,−1,+1} or {−1,−1,−1}.

4.2. Logical Memory

The memory errors arise due to the decoherence in logical operand as it undergoes

sequence of identity (no-operation) gates. The complete experiment executes: State

initialization → Identity gate sequence → Measurement. Before proceeding, we

consider it important to point out a noteworthy behavioral variation observed in

ibmq 16 melbourne qubits. In early days, the error-probabilities of device qubit,

increased with the length of identity gates sequence. However, since May 4, 2019,

this trend has been gradually fading—perhaps due to the systematic improvement in

in qubits coherence time—and has now become somewhat difficult to reproduce. Yet,

occasional device overuse still results in accelerated decoherence of more vulnerable

qubits. Fig-6 shows data triples for various idle time intervals (ranging from single to 250

identity gates). Approximately half of all data triples predate May-4 and remain more

or less trend-wise indistinguishable from those of later experiments. Several different

subsets of seven qubits participated in the comparison, some of which are listed in the

decreasing order of their contribution in the plots:

• {0, 7, 2, 11, 12, 8, 4}
• {1, 3, 7, 13, 11, 6, 5}
• {13, 12, 11, 3, 7, 6, 5}
• {13, 12, 11, 3, 8, 6, 5}

The figure shows that High-Weight EC provides significant fidelity gain for several values

of Plw. More crucially, it keeps logical failure probability below pe even when Plw ≥ pe.

In this region, an encircled data point has been selected for deeper insight into the

fidelity gain, while its comparison breakdown is shown in the table. The data point is

an output of experiment (dated July 6) applying five identity gates to the qubits set
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Figure 6. (Color online) High-Weight error-correction lowers the failure probability

of [[7, 1, 3]] encoded qubit in logical |+〉 state as it undergoes sequence of Identity

gates (consisting of 1—250 gates). While Low-Weight EC becomes counterproductive

(Plw > pe) after the cross-over point (intersection between pe and Plw trend-lines),

High-Weight EC continues to keep Phw lower than pe before eventually converging

to pe at the end. Logistics of plotting the graph and calculations of probabilities

remain the same as those described in Fig-4. The table shows breakdown of failure

probabilities of encircled data points

{13, 12, 11, 3, 8, 6, 5}. In this case, the elevated likelihood of High-Weight errors can be

ascribed to the joint failure of qubits selected from the subset {11, 5, 3} containing three

noisier qubits. The table shows that correcting logical operand for errors on qubit pairs

(11,5),(11,3) and (3,5), in place of those on qubits 8, 13 and 6 delivers nearly six fold

reduction in logical failure probability.

A crucial constraint in the logical memory experiment setup was the mitigation of

readout noise due to the inclusion of several high state initialization and Measurement

error encoding qubits (for example qubits: 1,3,7 and 11). If these qubits had been

directly (destructively) Measured, the likely read-out inaccuracy would have artificially

raised the joint failure probability of two (or more) qubits. We solved this problem

by deploying unused qubits for indirectly (non-destructively) Measuring dark shaded

qubits (Fig-3) with higher accuracy. Fortunately, these auxiliary qubits (e.g. 0,2,8

and 10) contain lower state initialization/Measurement noise and can reliably replicate

phase-error from memory (identity) gate qubits through the CNOT gate (whose control

operand is the auxiliary qubit initialized in the |+〉 state, the memory qubit acts as

target operand). A good indicator of reduction in readout noise is the decrease in Plw

since inflated high-weight error probability is discounted. Therefore, non-destructive
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Measurements were applied whenever reduction in Plw was possible. It lowers the failure

probabilities in several triples including (Phw = 0.0625, pe = 0.125, Plw = 0.18) for the

experiment containing memory qubits set {1, 12, 11, 3, 7, 6, 5}. In this case, auxiliary

qubits: 0, 13, 10, 2 and 8 destructively Measure memory qubits: 1,12,11,3 and 7

respectively, reducing triple to (Phw = 0.045, pe = 0.098, Plw = 0.109). Yet, High-

Weight EC continues to lower the decoherence rate of logical memory.

Finally, it should be noted that Qiskit readout noise compensation routines can be

used to further suppress the readout noise. Preliminary comparative analysis reveals

that enhanced noise reduction lowers all the curves in Fig-6 by approximately the same

factor and does not introduce meaningful change in their overall trends. Since the

principle advantage of High-Weight EC remains intact, therefore, these plots become

somewhat superfluous and have been excluded from the manuscript.

4.3. State-Preparation and Measurement of Logical |+〉, |−〉 States

The last set of experiments describes the role of two-qubit error correction in

distinguishing between Steane |+〉 and |−〉 states prepared on ibmq 16 melbourne.

Immediately after its preparation, the encoded state was transversally readout in X-

basis using Steane type Measurement. The resulting seven bits string—a noisy codeword

of [7, 4, 3] Hamming code—is error-corrected and decoded to reveal outcome of the

Measurement. A mismatch between prepared encoded state and Measurement outcome

was counted as logical error. The probability of logical error was computed from the

fraction of experimental runs ending in the mismatch. Higher logical error probability

value increases the likelihood misinterpreting the encoded state. Hence, our ability

to distinguish between the logical |+〉,|−〉 states, determines the magnitude of logical

phase-flip noise gathered by the encoding circuit [19].

Fig-A3 shows circuit for encoding |+〉 state. Once mapped to ibmq 16 melbourne

hardware, it has one CNOT gate on non-adjacent qubits 9 and 12 (see Fig.A3(a)), which

requires translation with the help of SWAP gates in order to comply with qubit-qubit

connectivity constrains. After reordering the gates in original circuits and canceling

some CNOT gates with those in the SWAP gates, the optimized circuit was obtained

(Fig.A3(b)) and executed on the hardware. This optimization was powered by the

commutation property of gates in the original circuit, that is, all CNOT gates commute

with one another and can be scheduled in any arbitrary order. It is worth noting that

in comparison with the circuit compiled by the Qiskit, our optimized circuit contains

significantly fewer overall CNOT gates. The Fig-7 provides execution results of the

optimized circuit for the comparison between two error-correction strategies.

Due to the non fault-tolerant nature of the circuit, logical failure probabilities of

encoded state have acquired expectedly large values. Unlike transversal construction

of logical CNOT and Memory, the non fault-tolerant state preparation allows error on

single encoding qubit to transform into errors on encoding qubits, eventually causing
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Figure 7. (Color online) High-Weight EC reduces Steane |+〉, (or |−〉) SPAM failure

probability below the reference physical qubit SPAM error probability reference labeled

as Unencoded (Noisiest). The reference was set to highest SPAM error probability of

all the encoding qubits, averaged over seven sampling days. Each plotted data point

represents the median failure probability of three experimental results. Each result

consisted of Measurement statistics collected from 8192 executions(shots) of the same

logical CNOT circuit. For the encircled data points, the syndrome-wise comparison

between single-qubit error and their corresponding two-qubit errors, is given in the

table (all errors in each row yield same syndrome value).

uncorrectable error. The noisiest encoding qubit, therefore, crucially determines the

fate of decoding outcome, hence, the logical failure probability. For State Preparation

And Measurement (SPAM) of logical qubit, we benchmark error-correction schemes by

setting our reference to the error probability of the noisiest encoding qubit, instead of

average error probability of encoding qubits, used for logical operations. However, a

meaningful comparison requires us to juxtapose logical qubit SPAM failure probability

with physical qubit SPAM error probability. Therefore, the criterion of selecting

noisiest qubit eventually restricts us to select encoding qubit with highest SPAM error

probability. The plotted data points are obtained from experiments executed in the last

two months. In this period, the highest SPAM error probability in ibmq 16 melbourne

hardware has remained more or less stable (mean value = 0.26 with std = 0.013). This

value was obtained from the runs of Qiskit quantum state tomography routines on seven

different days for qubits initialized in |+〉, |−〉 logical states. The encoding circuit always

contained highest SPAM error qubit for the each data point in Fig-7. The plotted data

is obtained from circuits containing only following two sets of encoding qubits:

(i) {3, 4, 5, 9, 10, 11, 12}
(ii) {4, 5, 6, 7, 8, 9, 10}
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The figure shows that High-Weight EC successfully lowers the logical failure

probability below physical noise threshold—the error probability of noisiest qubit

encoding qubit. As before, the table sheds detailed insights into a sample (encircled)

data points for comparison based on encoding qubits set (i). It shows that correcting

the readout result for weight-2 errors for as many as five error syndromes, halves the

logical failure probability. The data points in the figure can be loosely classified into

two groups, one has fidelity gain (2 or higher) and the other in which fidelity gain is

marginally higher than 1. Their corresponding encoding qubits are contained in sets

(i) and (ii) respectively. It should be noted that our experiment produced more or less

same logical failure probabilities irrespective of the intended logical state to be prepared

and decoded. In this vein, data points are evenly split between |+〉, |−〉 logical states,

although, without explicit labels. Yet, same High-Weight EC strategy was applied to

the given encoding qubits set for both logical states.

The encoding circuit was executed without additional verification gates for

preventing correlated errors. Therefore, one may be tempted to map unchecked noise

correlation onto high-weight errors in this case. To this end, we refer back to the table in

Fig-7 and find that high weight errors manifest higher probabilities for the majority of

error syndromes (5/7), when contrasted with the previous experiments (only 3/7 error

syndromes). This observation alludes to the likely connection between noise correlation

and elevated probability of the two-qubit errors, although precise share of correlation

needs more investigation and remains integral part of our future research.

5. Background and Previous Work

The theory of fault-tolerant quantum computation [30] enables error correction to lower

decoherence rate of the encoded qubit by preventing faulty gate operations to accumulate

errors on the encoding qubits. Founded on the assumptions that qubit-environment

interaction keeps decoherence rate per qubit below certain limit [1, 4] and confines

errors to exponentially small subset of qubits, it has naturally steered conventional

error-correction schemes towards correcting logical qubit for small number of encoding

qubits in errors—the defining attribute of the local noise model [4, 48]. Unfortunately,

real quantum hardware invalidate these assumptions by significantly raising decoherence

levels among certain qubits and elevating joint probability of noisier qubits in error [50].

Such behavior is clearly visible in qubits error probability distribution shown in Fig-1.

For a distance d = (2de − 1) code, an occurrence of errors on de or more codeword

qubits likely belongs to a set of uncorrectable error events that result in the incorrect

decoding of faulty qubits, followed by undetectable alteration of the logical qubit state

during recovery phase. If a quantum hardware distributes decoherence rates unevenly

among the encoding qubits, the likelihood of logical qubit failure is at least the joint

probability of de noisiest qubits failing to escape uncorrectable errors. For example, the

logical qubit protected by the phase-flip code (Fig-1) has logical failure probability

dictated by elevated likelihood of errors on frequently failing qubit pairs (1,11 in
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experiment (a)) and (4,5 in experiment (b)). Whenever this joint failure probability

exceeds physical qubit error probability, the encoding can only increase decoherence rate

of logical qubit. That is when error-correction becomes counterproductive by gathering

errors faster than the rate of their correction. To date, despite numerous efforts of

realizing small-size fault-tolerant logical qubits [39, 34, 46] (when d ≤ 3), practical

error-detection [12, 28, 43] and correction [13, 41, 23] have shown qualified success in

counteracting arbitrary noise patterns in real quantum computers.

Thus, it comes as no surprise that only a few studies have attempted to evaluate

fault-tolerance on recently showcased quantum computing devices that can easily fit

Gottesman’s [[4, 2, 2]] encoded qubit [21]. Among these studies, even fewer [49, 35,

22, 47] have managed to show that encoded qubits and gates exhibit higher fidelity.

However, Gottesman’s [[4, 2, 2]] being an error-detecting code, finds limited applications

in a more realistic scenario in which logical qubit can only be discarded upon final read-

out instead of on each occasion when an error has been detected. For practical purposes,

error-correction, active [44] or passive [24], is expected to remain an indispensable

tool of increasing longevity of the logical qubit. The latter form of error-correction

is a contemporary pragmatic concept wherein qubit-environment interaction is carefully

engineered [25] so that the occurrence of multi qubit errors (e.g. two photon loss in

Ref [34]) helps preserve logical qubit state. Ideas presented in our study partly shares

the theme of passive error-correction in a sense that higher likelihood of certain multi-

qubit errors can improve our ability to discriminate between orthogonal encoded qubit

states, which lowers logical noise level.

6. Conclusion

Error correction is an indispensable tool of protecting quantum information from noise.

In this paper we presented a novel approach of error-correction, that convert errors into

non-trivial code space Stabilizers. It allows quantum error-correcting codes to correct

longer strings of errors contrary to what has been previously envisioned. The efficacy of

proposed approach was validated by experiments on IBMQ quantum processor executing

[[7, 1, 3]] noisy logical gates. These experiments were designed to indirectly infer

probability distribution of errors in the logical gate operand, from the Measurement of

encoding qubits after the application of gate. Remarkably, these qubits were not required

to encode experimentally infeasible [[7, 1, 3]] logical state, instead, their initialization in

an equal superposition state sufficed. In this sense, the logical state-preparation errors

were discounted from distribution; however, errors in qubits initialization logical and

Measurements were duly taken into consideration.

In this setting, our experimental results showed that the new approach led logical

gate circuit to output intended state with higher probability than the corresponding

physical gate. For completeness, we included experiments to analyze error distribution in

the complete [[7, 1, 3]] state preparation and Measurement circuits. Their error-statistics

were used to examine the efficacy of high-weight error-correction strategy in the non
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fault-tolerant circuits. Although our work delineates novel approach of countering noise

patterns expected in NISQ era devices, we believe that it merits further investigations

on device technologies other than superconductors. In particular, what type of device-

specific environments raise high-weight noise floor to justify application of proposed

scheme? Apparently, if decoherence rates shrink in future, multi-qubit errors are unlikely

to sustain large enough value, unless qubits and gates correlate their errors or establish

their interdependencies in some unknown manner. Moreover, fault-tolerant preparation

of a logical state, protected by full error-correcting code, has remained a daunting task

to date. These and other relevant challenges indeed deserve more insights and tools to

achieve fault-tolerance in real quantum processor.
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Table A1. Correcting two-qubit phase-flip errors in [[7, 1, 3]] code

Two phase-flips errors
Syndrome Product of the pairs of

phase-flips errorsSX
1 SX

2 SX
3

(Z1Z2),(Z5Z6),(Z4Z7) −1 −1 +1 SZ
1 S

Z
2 , SZ

3 , SZ
1 S

Z
2 S

Z
3

(Z1Z5),(Z2Z6),(Z3Z7) +1 +1 −1 SZ
1 S

Z
2 , SZ

1 , SZ
2

(Z1Z3),(Z5Z7),(Z4Z6) +1 −1 +1 SZ
1 , SZ

1 S
Z
3 , SZ

3

(Z1Z4),(Z3Z6),(Z2Z7) −1 +1 −1 SZ
1 S

Z
3 , SZ

2 , SZ
1 , S

Z
2

(Z1Z6),(Z3Z4),(Z2Z5) −1 −1 −1 SZ
1 S

Z
3 , SZ

2 S
Z
3 , SZ

1 S
Z
2

(Z1Z7),(Z2Z4),(Z3Z5) +1 −1 −1 SZ
1 S

Z
2 S

Z
3 , SZ

1 , SZ
2 S

Z
3

(Z2Z3),(Z4Z5),(Z6Z7) −1 +1 +1 SZ
2 S

Z
3 , SZ

2 , SZ
3

Appendix A. Proof-of-Concept High-Weight Error Correction using

Distance-3 CSS Codes

A distance-3 CSS code can decode single syndrome into multiple two-qubit errors. These

can be corrected by mutually augmenting a pair of these errors to enact Stabilizer on

the encoded state. This section exemplifies High-Weight error correction using Steane

[[7, 1, 3]], Bacon-Shor [[9, 1, 3]] and Kitaev [[13, 1, 3]] surface code.

Appendix A.1. Steane [[7, 1, 3]] code

The Steane code [8, 45], non-degenrate by design, can correct for arbitrary two-qubit

errors. It confines logical qubit within the Stabilizer space spanned by six Stabilizers:

SX
1 : X1X3X5X7; S

X
2 : X2X3X6X7; S

X
3 : X4X5X6X7; S

Z
1 : Z1Z3Z5Z7; S

Z
2 : Z2Z3Z6Z7;

SZ
3 : Z4Z5Z6Z7. While correcting weight-2 errors, it becomes a degenerate code; the

product of any two co-syndrome errors constitutes the Stabilizer operation on the code

space. Table-A1 enumerate all possible weight-2 phase-flip errors. Each row lists

degenerate errors along with their combinations leading to the non-trivial Stabilizers

(trivial Stabilizers are omitted). Since all two-qubits bit- and phase-flip errors are shown

to be corrected, therefore, Steane [[7, 1, 3]] code corrects arbitrary two-qubit phase-flip

errors. Likewise, it can be easily shown that it also corrects arbitrary two-qubit bit-flip

errors.

Table A2. Gauge operators of [[9, 1, 3]] Bacon-Shor code

X-Gauge operators Z-gauge operators

GX
1,4 = X1X4 GX

2,5 = X2X5 GZ
1,2 = Z1Z2 GZ

4,5 = Z4Z5

GX
4,7 = X4X7 GX

5,8 = X5X8 GZ
2,3 = Z2Z3 GZ

5,6 = Z5Z6
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Appendix A.2. Bacon-Shor [[9, 1, 3]] code

The nine-qubits Bacon-Shor code is a sub-system code [5] containing four stabilizers:

SX
1 : X1X2X3X4X5X6, SX

2 : X4X5X6X7X8X9, SZ
1 : Z1Z2Z4Z5Z7Z8, SZ

2 :

Z2Z3Z5Z6Z8Z9. It encodes five logical qubits; one belongs to the system, used for

storage and computation, while the rest comprise sub-system [3]. The state of system

qubit remains unaffected by the applying logical X and Z gates to sub-system qubits.

The Measurement of these logical operators, provides redundant means of syndrome

extraction that gauges system for the presence of likely errors. The sub-system qubits

are gauge qubits and their corresponding logical Pauli operations are gauge operators [3],

listed in Table-A2. These can be leveraged to simplify the error correction procedure,

might it be Low-Weight or High-Weight by nature. In latter case, these gauge operators

compensate for the weight deficit when a pair of two-qubits errors to completes weight-

6 Stabilizers. For Bacon-Shor code, the task of completing the code space stabilizer

becomes a task of completing the its Stabilizer(s) modulo gauge operators.

A small subset of correctable two-qubits phase-errors are listed in Table-A4. It

shows both the Stabilizers and concomitant gauge operators which become prominent

when the pair of errors only enacts trivial Stabilizers on the code space (e.g. when

SX
1 = +1 and SX

2 = −1). In general, these pairs comprise non-trivial Stabilizer upto

appropriately chosen gauge operators. Finally, note that the table contains only handful

of errors to exemplify proof-of-concept generalized error correction. However, like Steane

code, it can be shown that one can correct arbitrary two-qubit errors in the Bacon-Shor

code as well.

Table A3. Correcting two-qubit phase-flip errors in [[13, 1, 3]] code

Two phase-flips errors
Syndrome Product of the pairs of

two phase-flips errorsS1
x S2

x S3
x S4

x S5
x S6

x

(Z4Z6), (Z7Z9) +1 -1 +1 -1 +1 +1 S3
Z

(Z4Z9), (Z6Z7) -1 -1 +1 -1 -1 +1 S3
Z

(Z4Z9), (Z6Z9) -1 +1 +1 +1 -1 +1 S3
Z

(Z5Z7), (Z8X10) +1 +1 -1 +1 -1 +1 S4
Z

(Z5Z10), (Z7X8) +1 -1 -1 +1 -1 -1 S4
Z

(Z5Z8), (Z7Z10) +1 -1 +1 +1 +1 -1 S4
Z

(Z9Z11), (Z10Z13) +1 +1 +1 +1 -1 +1 S5
ZS

6
Z

(Z9X10), (X11X13) +1 +1 +1 -1 +1 -1 S5
ZS

6
Z

(Z9Z13), (Z10Z11) +1 +1 +1 -1 -1 -1 S5
ZS

6
Z

(Z1Z3), (Z4Z5) -1 +1 -1 +1 +1 +1 S1
ZS

2
Z

(Z1X4), (Z3Z5) +1 -1 +1 +1 +1 +1 S1
ZS

2
Z

(Z1Z5), (Z3Z4) -1 -1 -1 +1 +1 +1 S1
ZS

2
Z
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Table A4. Correcting two-qubit phase-flip errors in [[9, 1, 3]] Bacon-Shor code

Syndrome Two phase-flips errors Stabilizers Gauge Operators

SX
1 = +1, SX

2 = −1

(Z1Z4), (Z2Z5) I GZ
1,2, G

Z
4,5

(Z2Z5), (Z3Z6) I GZ
2,3, G

Z
5,6

(Z1Z5), (Z3Z6) I GZ
1,2G

Z
2,3G

Z
5,6

SX
1 = −1, SX

2 = +1

(Z5Z8), (Z4Z7) SZ
1 GZ

1,2

(Z5Z8), (Z6Z9) SZ
2 GZ

2,3

(Z4Z9), (Z6Z7) SZ
1 S

Z
2 GZ

1,2G
Z
2,3

SX
1 = −1, SX

2 = −1

(Z1Z7), (Z2Z8) SZ
1 GZ

4,5

(Z2Z8), (Z3Z9) SZ
2 GZ

5,6

(Z1Z9), (Z3Z7) SZ
1 S

Z
2 GZ

4,5G
Z
5,6

Appendix A.3. Kitaev [[13, 1, 3]] Surface code

The surface codes [7], known for very high accuracy threshold [18, 15, 18], can efficiently

decode errors on the codewords qubits, mapped to a two-dimensional grid, using nearest-

neighbor parity check operations. The resulting local Stabilizer Measurements can not

only correct less than de weight errors, but can also decode high-weight errors on the

qubits located sufficiently far apart. In case of High-Weight error-correction, this spatial

non-locality conditions resurfaces with far greater importance with crucial implications.

On one hand, the local Stabilizer Measurement stipulates that the degenerate errors are

located in vicinity to yield the same syndrome. On the other hand, these local errors can

string a chain of faults realizing unwanted logical operation on the code space. Thus,

while Table-A3 enumerates several correctable two-qubit phase-flip errors which can

mutually constitute a Stabilizer operation, Fig-A1 depicts a situation in which a pair

of these errors enacts logical-Z operation on the encoded qubit. This counter example

shows that surface code [[13, 1, 3]] can only correct a subset of two-qubit errors.
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Figure A1. (Color online) A pair of co-syndrome two-qubit errors doesnot constitute

Stabilizer operation. Instead, it afflicts logical Z-operation on the codespace. The

counterexample example shows that surface code doesnot correct arbitrary two-qubit

errors
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Figure A2. Noise operator commute-back procedure for estimating error probability

distribution in the noisy Steane CNOT gate. In (a) the noisy CNOT gate operator

ε is applied to the encoded state |+〉 obtained by projecting superpositon state

onto codespace by the projector P. This is equivalent to first applying ε to the

superposition state, followed by its projection (by applying P) onto the code-space. We

ascribe this reordering is to an important property of CNOT gates: CNOT(op1, op2)

CNOT(op2, op3) = CNOT(op1, op3) CNOT(op2, op3) CNOT (op1, op2) shown in (b).

Afterwards, (b) reduces to (c) since P remains unchanged by the superfluous joint

projection of both operands onto the codespace. Note that P is considered ideal

projection and it is simulated in the classical post-processing, whereas, ε is enacted in

quantum hardware
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Figure A3. (Color online) Steane |+〉 encoding-decoding circuit. Original circuit

(a) contains a CNOT on non-adjacent qubits which requires swapping of qubits. The

equivalent optimized circuit (b) obtained by rearranging gates in the original circuit

and canceling some of these with those in the SWAP operations. It offers significantly

lower gate count compared to that outputted by the Qiskit transpiler. Note that Steane

|−〉 state can be prepared and Measured by the same circuit except that it phase-flip

all the qubits before Measuring them in X-basis (Hadamard gates followed by Z-basis

Measurement).


