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Abstract.

High error-rates preclude the preparation of fully error-corrected logical qubit state
on Noisy Intermediate Scale Quantum (NISQ) computers. When operand logical
qubits inherit large state-preparation noise, it is difficult to show that subsequent
logical gate fails less frequently than its physical (unprotected) version. We articulate
a scheme of decoupling transversal logical gate errors from state-preparation noise and
experimentally validate its use-case for IBM(Q quantum processors. We find that in
the absence of state preparation noise, the IBMQ processors significantly raise the
likelihood of certain two-qubit errors in the operand(s) of [[7, 1, 3]] transversal gates.
Yet, encoding can still be shown to improve the gate fidelity provided that the gate
operands are strategically decoded/corrected for the likely two-qubit errors in lieu of
their less likely single-qubit counterparts. This trade-off enables quantum CSS code
to principally correct longer strings of errors without increasing the codeword size and
paves new avenues of investigating fault-tolerance in NISQ computers.

1. Introduction

Accurate characterization of noise in the encoded gates is a challenging yet promising
avenue of research experiments [43, 50, 27, 47, 35] on real quantum processors. The
challenge lies in distinguishing errors on the logical (encoded) gate from those in the
faulty preparation of operands initial logical state. Encoding physical qubits into high
fidelity logical state remains at odds with hardware limitations including (i) limited
number of ancillary qubits and (ii) sparse qubit-qubit connectivity [16, 38, 53]. These
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constraints realize unreliable non-local CNOT gates on the encoding qubits, leading to
the preparation of noisy encoded state, particularly in case of universal quantum error-
correcting code. Recently, a pioneering attempt [20] of preparing [[5,1,3]] encoded
basis state has reported state-preparation fidelity no higher than 0.57 on 5-qubits
superconductor quantum processor. When operands are pre-loaded with large state
preparation noise, how can we efficiently uncover logical gate intrinsic errors and show
that it can achieve higher fidelity than the same physical (un-encoded) gate?

A two-fold contribution of this work is follows. First, it provides efficient
experimental means of indirectly estimating probability distribution of errors (pde)
of the transversal logical gate.  The scheme does not require encoded state
preparation, instead, it suffices to transversally initialize the encoding qubits in the
equal superposition state. Therefore, noisy logical gate ¢ is directly applied to the
superposition state and pde is computed by transversally measuring encoding qubits in
X-basis. This pde is obtained from experimental statistics and is transformed into
the pde of noisy encoded operand by using codespace projector P. The validity of
proposed scheme is conditioned upon [P,¢] = 0 whereby ¢ commutes back to act on
the qubits equal superposition state. A remarkable feature of this method is that it
offloads the noisiest and the most complicated section of logical state preparation—
the projective transformations of superposition state and its pde—onto classical post-
processing, leaving quantum device tasked with only transversal gates execution.

Secondly, we analyze the error probability distribution and show that Steane [45]
logical gate significantly elevates the likelihood of certain two-qubit errors in the
operand. These are degenerate errors and can be easily corrected when converted into
non-trivial (other than Identity) codespace Stabilizers. Appendix A provides proof-
of-principle examples of distance-3 CSS codes [8] capable of correcting weight-2 bit-
flips/phase-flips or both. All two-qubit errors in case of Steane code can be corrected,
although, at the expense of their corresponding co-syndrome single-qubit counterparts
transform into logical errors. We find that the gate can achieve higher fidelity by virtue
of encoding if, instead of dogmatically decoding its operand for single-qubit errors—as
occurs in conventional fault-tolerant schemes—a given syndrome is decoded into more
likely two-qubit errors instead of less probable single-qubit error. In comparison to the
strict single-qubit decoding schemes, our proposed strategy achieves 2-3 fold reduction
in the logical failure probability of the operand. It is the probability that decoding and
correction of errors in classical post-processing reveals the incorrect qubit logical state.
Most importantly, this multi-fold reduction provides critical leverage to demonstrate
that Steane code can practically improve the gate fidelity, although only modestly.

This idea is prefaced in Fig-1; it shows example pde of an encoded qubit protected
by phase-flip code: |+) — | +++) (where |[+) = %UO) +11))). The pde was obtained
from the results of two experimental circuits: (a) shows transversal logical operation:
CNOT |+),|+) — |+),|+) gate executed on ibmq_-16_melbourne (b) shows |+) state
undergoing identity gate on ibmqx4_tenerife. The probability distribution of phase-
flip errors, obtained by decoding the operand logical qubits, clearly shows that the



Probability of Error(s)

1.00
0.33
0.11
0.04
0.01
0.00

1.0 0.0042 0.0145 1.0 0506  —0.003
r=/0.0042 1.0 0.0275 o 1.00 = 0506 1.0  —0.0118
0.0145 0.0275 1.0 g 033 —0.003 —0.0118 1.0
na]
< 011
g 0.04
=
£ 0.01
=]
= 0.00
000 001 010 100 011 101 110 111 000 001 010 100 011 101 110

Outcome of Measuring qubits (8, 1, 11) in X-basis
(1—(Phase-flip) Error; 0 —No Error)

(1—(Phase-flip) Error; 0 —No Error)

(a) Transversal CNOT gate in ibmq 16 melbourne

Figure 1. (Color online) The probability distribution (shown using logarithmic
ordinates) over the phase-flipped qubits in an IBM Superconductor quantum
computers. Both circuits prepared their qubits in equal superposition state (i.e. |[+)®3)
and Measured these in X-basis after their respective gates. Two or more qubit errors
are shown by red textured bars while fewer than two errors are represented by solid
blue bars. In (a) ibmq-16_melbourne qubits 1,8 and 11 were control operand of three
CNOT gates. Their corresponding target qubits were 0, 7 and 3, each prepared in
equal superposition state. In (b) we applied a sequence of 24 Identity gates to each
one of the qubits 2,4 and 5 on ibmqx4_tenerife device. Ideally, both circuits stabilize
initial state (i.e. |[+)) of the qubits. However, the decoherence due to real noisy gates,
was projected onto phase-flip errors when qubits were Measured in the X-basis. The
qubit phase-flip error probabilities were obtained using 8192 x 3 = 24576 shots for
each circuit. The Pearson correlation matrix [' obtained from respective Measurement
statistics, indicates correlations among qubits errors

joint failure of noisier qubit pairs (1, 11) and (4, 5) is significantly higher than several
single-qubit errors (e.g. qubit-8 in ibmq_16_melbourne and qubit-2 in ibmqx4_tenerife).
Clearly, one can significantly improve the fidelity of logical state of encoded qubit by
correcting it for more probable two-qubit errors.

Organization of remaining discussion is follows: Section-2 describes the framework
of experimentally calculating pde in the logical qubit protected by Steane code. The
details of experiment setup are given in Section-3 while experimental results are
presented and discussed in Section-4. Section-5 situates this work within relevant prior
studies on fault-tolerance and error-correction in real quantum computers. Section-6
summarizes the manuscript with possible directions of the future work.

2. Calculating Phase-Flip Error Distribution for the Steane Encoded State

The Steane encoded |+) state contains equal superposition of all sixteen codewords
of classical [7,4,3] Hamming code C;. Its dual code Cy = Cll C C; is a classical

(b) Memory (Identity) gate in ibmqx4_tenerife
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Outcome of Measuring qubits (3, 4, 2) in X-basis
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[7,3] code (minimum code-distance = 3) whose codewords constitute the support of
X- and Z-Stabilizers of the Steane code. It is a distance-3 code and was originally
invented to correct arbitrary single-qubit errors. However, Appendix A shows that it is
possible to correct arbitrary two-qubit errors by sacrificing corresponding single-qubit
error-correction. The trade-off provides leeway to select dominant high-weight errors
for correction and improve the fidelity of Steane logical gates. Because of their crucial
role in limiting the overall/average gate fidelity, only phase-flip errors are taken into
consideration in our experimental results and analysis.

Fig-2 outlines Noise Operator Commute-Back method as experimental means of
calculating probability distribution over errors in Steane logical gates by initializing its
operand(s) in the equal superpositon state: pg, = ®7_;|+)(+|. The preparation of a
operand logical states penc := |+)(+| = 15 >_.yect [2)(yl| proceeds by applying an ideal
codespace projection P to pgy,, which converts it into the pe,. (later, it will be shown
how projection part can be simulated as classical post-processing step). Afterwards,
as encoded state undergoes processing, the corresponding noisy logical gate operator
Pene Mmay commute back to act on superposition state pg,, if [P,e] = 0. This crucial
commutation property lies at the heart of this work and exploits the fact that dephasing,
being recognized as one of the most potent source of noise in transmon superconductor
qubits [9, 32, 29], can be described as qubit-environment interaction shown in Fig-
2 and Fig-A2 for logical identity and CNOT gate respectively. Hence, these logical
gates can be directly applied to ps,, state and error statistics can be collected from the
transversal Measurement of operand (physical) qubits. These statistics are converted
into error probability distribution of encoded operand state pe,. by simulating ideal
code-space projection P applied to ps,, carrying phase-flip errors. We would like to
caution that Fig-2 and Fig-A2 show template noise operator which commute with P;
other possibilities also exist. The error probability distribution remains valid for any e
that satisfies [P, ¢] = 0.

The equal superposition state requires only single qubit Hadamard gates which
can be executed with very high fidelity—their failure probability is reported to be
an order of magnitude smaller than that two-qubit gates and measurements in IBM
calibration data. The execution time of single qubit-rotation gates (usually in ns) is
negligibly small compared to decoherence time constant T (typically in tens of us)
which attributes lower decoherence noise to Hadamard gate. Therefore, small infidelity
of superposition state can be safely ignored compared to those in case when qubits site
idle for several no-ops(identity gates) or undergo CNOT gates. One caveat regarding
phase-flip errors decoding is the readout noise which can significantly vary across IBMQ
qubits—by nearly an order of a magnitude. This limits the choice of our operand
qubits to those with acceptable readout failure probability. Alternatively, we either
apply IBMQ readout noise compensation scheme or indirectly Measure qubit error by
propagating these to qubits having lower readout noise. Corresponding experiment
setup and relevant constraints are elaborated in the next section. For now, we return to
the development of analytical tool for computing probability distribution of phase-flip
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Figure 2. Noise Operator Commute-Back Method circumvents encoded state
preparation for obtaining logical Identity gate error statistics. Noise corrupted [[7,1, 3]]
encoded |+) state can be envisioned as an equal superposition state subject to non-
unitary codespace P, followed by application of identity gate noise operator e. If
[P,e] = 0 then noise operator ¢ commutes back to act on the superposition state. In
case of dephasing channel, the controlled-U; becomes controlled rotation about Z-axis.
After obtaining ¢ induced probability distribution of phase-flip errors in superposition
state from experimental statistics, the subsequent mapping of these errors onto encoded
|+) state is offloaded to classical post-processing step which implements ideal projection

P. The commutation relation [P,e] = 0, provides reliable and efficient experimental
means of indirectly computing phase-flip error probability distribution of the logical
state

Note that in the framework of this study, error-correction (EC) means decoding
errors on the logical qubit operand after its Measurement, followed by classical post-
processing of 7-bit string. It is a (noisy) codeword in either Cy (which maps to logical
[4) state) or in C;\C; (which maps to logical |—) state). Error-correction is declared
successful if decoding recovers codeword of correct logical state. High-Weight EC is
a strategy that prefers to correct the bit-string for two errors occurring with higher
probability than corresponding low-weight counterparts (single errors). It is contrasted
and quantitatively compared with Low-Weight EC which always corrects the bit-string
for single errors.

2.1. Noise Operator Commute-Back Method

Define vector k € Z5 that identifies phase-flip errors in |+) state by setting corresponding
indices of error- and error-free qubits to 1 and 0 respectively. The calculation of
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probability distribution over set k phase-flipped qubits in the noisy |+), can be parsed
into three-step procedure (1) preparation of an ideal encoded state pen,. = |+)(+|
(2) Applying noise to pe,. and obtain noisy €(pen.) state (3) measuring the resulting
noisy state for k errors. The pe,e = &= Y wyeC . |z)(y| is prepared by projecting equal
superposition state of seven qubit pg,, = |[+)®7 onto [[7, 1, 3]] codespace by using ideal
projection P. We first write density matrix of ideal encoded state as

Penc = SIDpSUpIDJr

Where pre-factor 8(=1/0.125) comes from the denominator in quantum Measurement
expression that outputs pe,. with probability 0.125. Upon successful projection, the
addition of noise converts the state into £(pene). The probability Pry that k qubits are
phase-flipped in the noisy state is calculated by using quantum measurement expression:

Pl"k = tl"(MleJLg(penc))

where My = 4 Zaz,yeCé—(_l)k'(z@y”x) (y|l. Express pen. in the form of pg,, to rewrite
above expression as:

Pry. = 8tr( MM e(Ppa, P)) (1)

When noise operator ¢ commutes with P, it enables crucial reordering of operators in
(1) so that experimentally infeasible preparation of p.,. state can be avoided. Then,
reordering peddled by [P, ¢] = 0, yields

Pry = 8tr(M M, Pe(pop)PY) e, P] =0 (2)
Being interested in phase-flipped errors only, we expand Kraus operator representation
of e(psup) such that each operator Z; = erzg(—l)i“’”|x><x| flips qubits specified by the
binary vector 4, in the ps,, state with probability p; i.e. e(pgup) = Ziezg DiZ; ,osupZiT where
Zzezg Z;Z1 = I. Substituting £(psy,) in (2) and bringing P, P! inside the summation
will give

Pric = 8tr(MiM{ 3 o1 piPZipsupZ) PF)
Note that p; is an experimentally measurable quantity and our goal is write Pry in terms
of p;. It is clear from Fig-2 that V; [P, Z;] = 0, since phase errors in pg,, commute with
the controlled-Z gates implementing P, and enter p.,. untransformed. Swap P with Z;

(thus also P! with ZZT ), bring trace operator, My, Mli inside the summation and invoke
permissible reordering of matrices insider trace operator to obtain:

Pric =83 ccr Pitr(MiZi Ppay, P Z))

= ZiEC% pztr(MkZzpencZzT)
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where we have used the fact that My is hermitian and Mlei = M.
Write trace input as product of two summations i.e. MkZipeij =
2—;62%(3%(—1)“'("@1‘) Y eyec (=D ] z)(y|.  The first summation is non-zero only
when i @ k € C,.  This leads to Zueci(_l)u.(i@k) = |Cy] = 16 and

Zx,yeC%(_l)km@i.”x) <y| — ZipencZiT since (_1)k.m®i.y — (_1)k.x@k.y‘ Hence

ZipencZi idk e Cy

M, Zz enchr =
k&if ¢ { 0 otherwise

Since tr(Z;pencZ;) = 1, the final expression of Pry simplifies to

Pry = Z i (3)
i|ipkeCa

Therefore, the probability distribution over k phase-flipped qubits in the n—qubits
encoded state can be calculated from the probability distribution (p;) of phase-flipped
qubits in the n—qubit equal superposition sate which can be transversally prepared
on the quantum processor hardware. The same procedure and the result applies
to |—) logical state, except that first three operand qubits are phase-flipped (Steane

7 = 7,Zy7s3) after initialization in the superpositon state.

2.2. Connection with Error-Transparent Gates

Coincidentally, a condition similar to [P,¢] = 0, makes a pre-requisite of passively
error-corrected logical gates known as error-transparent gates [51, 26, 36]. It requires
gate Hamiltonian to commute with the noise operator throughout its evolution in order
to uniquely identify and neutralize otherwise indistinguishable random qubit errors,
occurring at different time instances during the gate execution. As a result, the error-
transparent gates, in theory, have been shown to exhibit nearly an order of magnitude
lower failure probability [26] without increasing the qubit life-times (77 or 7). On the
other hand, our study utilizes commuting noise operator to accurately uncover errors
on logical gate so that it can be shown to have lower failure probability compared to
its unprotected counterpart. Inspite of these similarities, noise operator commute-back
condition has a very different goal—to completely skip operand state-preparation circuit
for the exclusive quantification of logical gate failure probability.

Nevertheless, if error-transparent gates become physically realizable in future, it
will be possible to incorporate noise models of the form other than ¢ shown in Fig-2.
On such enhancement will encapsulate amplitude damping noise which is one of the
main source of random errors in superconducting quantum computers. The canonical
form of amplitude damping operator (Fig-8.13 in Ref [40]) does not seem to commute
with CNOT gates in P. An error-transparent construction [26] of two-qubit gates robust
to photon loss channel (a type of amplitude damping noise) may find a possible remedy
to this problem. Therefore, our approach can indeed benefit from the said and other
work in this direction.



2.3. Connection with Quantum Process Tomography and Randomized Benchmarking

It is worth situating Noise Operator Commute-Back method withing the framework
of mnoise quantification schemes. One relevant scheme is logical randomized
benchmarking [11] that quantifies average failure probability of logical gates.
Unfortunately, it requires periodic application of error-correction in the random sequence
of logical Clifford gates. This approach seems infeasible considering severe resource
limitation of NISQ computers. If error-correction is skipped, it would let loose errors
in noisy initial logical state to infect logical gates and produce convoluted noise.
Consequently, it becomes difficult to separate gate errors from State Preparation And
Measurement (SPAM) noise. Secondly, large state preparation noise will limit the length
of randomized gate sequence; it will take only few gates to drive rapidly decohering
logical qubit state to maximally mixed state. Both consequences severely undermine
basic spirit and applicability of randomized benchmarking schemes [17, 31, 37, 14, 52].
In addition, these schemes are known to show inaccurate estimate of average error
probability for unitary (coherent) [33] and correlated errors [6].

On the other hand, protocols based on quantum process tomography [42, 10] can
accurately quantify any type of noise in the logical gate, although, at the expense of
number of experimental runs scaling exponentially in the number of logical qubits.
However, small size of NISQ computers is expected to limit near-term experiments to
gate-level fault-tolerant circuit employing no more than two logical qubits. In this
context, quantum process tomography, therefore, resurfaces as viable option for the
in-depth investigation of noise patterns in the logical gate noise, provided that we can
effectively address its main limitation—the sensitivity to SPAM errors. Fortunately,
the Noise Operator Commute-Back method abridges the gap by eliminating logical
state preparation of the gate operands. Together with quantum tomography approach,
it becomes a valuable tool for exploring noisy patterns in small size logical circuits.

2.4. Scope of Noise Operator Commute-Back Method

The generality of proposed method empowers it to subsume variety of realistic noise
models that can commute with code-space projection operator P. One interesting case
is that of spatially and temporally correlated noise given in Ref [2]. Their noise operator
(see Fig-3 and Fig-4 in Ref [2]) has the same form as that of ¢ used in this study,
except for the unitary noise component. The mapping is very simple; the control
unitary gate of ¢ become controlled rotations about z-axis where (small) rotation
angle approximates the strength of correlated noise (please find detailed discussion
on correlation strength parameter Ly in Section-4 of Ref [2]). Another example of
commuting noise is the depolarizing operation, its admissibility considerably broadens
applicability of the method. By applying twirl operations to the operand qubits, one
can easily convert arbitrary noise channel into depolarizing channel.



10-3 10-2 10 100 10-2 10! 10°
The probability that single Identity gate The probability that CNOT gate (I:[’)
phase-flips the qubit (O) phase-flips the control qubit

Figure 3. The error probability of ibmq-16_melbourne qubits (shaded circles) due
to (a) Single Identity gate (b) CNOT gates (shaded arrows). These probabilities
were obtained from Qiskit (https://qiskit.org) quantum state tomography routine.
Although, these error-probabilities varied over time, this snapshot is most consistent
with our experimental results and recent IBM(Q calibration data. Note that the
indicated error probabilities include respective qubit state-initialization and read-out
errors

3. Experiment Setup

We designed our experiments for investigating errors in the [[7,1,3]] encoded qubit
subject to logical CNOT and Memory (Idle) gate. The nature of logical operations
dictated the choice of quantum computing device—expected to be large enough to store
at least two logical qubits and facilitated sufficiently large number of transversal physical
CNOT gates. Another selection problem was the identification of operand physical
qubits suitable for achieving considerably higher gate fidelity by High-Weight EC. We
generated error profile of physical qubits and gates so that these could be discriminated
on the basis of their respective noise levels. For quantitative comparison, we defined
fidelity gain as the ratio of logical failure probability of Low-Weight EC to the logical
failure probability of High-Weight EC. We noticed that fidelity gain was highlighted
when logical operand contained noisier physical qubits in certain optimal proportions.
Based on selective operand compositions, our experimental results showed that strict
single-qubit error-correction frequently failed to reduce the failure probability of the
logical gate below the break-even point i.e. average failure probability of corresponding
physical gates (the discussion on computing this crucial parameter will appear shortly).
By contrast, strategic correction of likely two-qubit errors achieved far more encouraging
results by frequently lowering the logical failure probability below the break-even point.
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3.1. Selecting the Quantum Computing Device

At the time of writing, the ibmq_16_melbourne superconductor quantum computer was
the largest IBMQ quantum computer in our access, that can store up to two [[7,1, 3]]
logical qubits and execute logical CNOT gate with a minor constraint to be discussed
later. The device features ease of programming, accessibility, daily calibration, fast
execution of quantum circuits and reproducibility of their results. Our six months
long experimental study of this machine began soon after its introduction in Nov 2018.
Nearly 500 experiments were spent in rigorously authenticating the substantial disparity
in qubits decoherence levels. Although, bulk of our final results summarize findings from
the most recent set of executions, large number of earlier experiments proved handful
in systematically identifying an appropriate set of noisy qubits set (and CNOT gates)
to constitute credible evidence of high-weight errors and the fidelity gain obtained by
their correction.

3.2. Scheduling Experiments Around Device Calibration

The computer maintenance routine, in the form of periodic device calibration,
significantly dictated the schedule our experiments. We note that the qubits error
probability generally increased with the time elapsed since last calibration, mainly due
to its increasing accumulated usage. Apparently, this two hours long process runs special
quantum state/process tomographic as well as randomized benchmarking routines to
determine noise levels in the hardware and reboots the device after retuning and
refreshing the qubits. During the calibration interval, the device does not perform user
experiments, instead, these are stored as long queue of pending jobs. Once calibration
is complete, the device forthwith resumes execution of pending user experiments, the
first job in the queue is likely executed with highest quality qubits and gates. To
minimize the time-dependent coherence loss effect, we attempted to carefully schedule
our experiments in order to minimize their wait time in the queue. To further increase
the validity of our results displayed in Section-4, each data point on the graph was
collected from the median output of at least three different executions of the exact same
logical gate circuit.

3.3. Generating Qubits Errors Profile

The IBMQ platform also updates device calibration data after quantifying noise levels
in the form of average-case error probabilities of single- and two-qubit gates. Although,
average-case data is a valuable indicator of an overall performance of circuit components
(qubits and gates), we independently generated their error profile based on the specific
needs of our experiment setup. The profile was generated by running quantum state
tomography routine provided by the Qiskit (https://qiskit.org) platform. It computed
the likely density matrix of the qubit prepared in equal superposition state subject
to memory or CNOT gate, both would ideally leave its state unchanged. The Fig-
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3 uses gray-scale image to identify higher decoherence noise with dark shaded circles
(qubits) and arrows (CNOT gates). It shows that qubit-11 is the noisiest qubit followed
by qubits 1, 3 and 7. The indicated error probabilities were statistically computed
by counting the fraction of times a qubit prepared in the |+) state, collapsed to —1
eigenstate of X operator upon Measurement i.e. it acquired phase-flip error. On the
other hand, the CNOT gate induced qubit error probability was calculated from the
statistical likelihood of the control qubit flipping from |+) to |—) state when both its
operand qubits were initialized in |+) states. It was also obtained by quantum state
tomography of the control qubit as it undergoes following circuit: State initialization—
CNOT—Measurement. From the comparison given in the map, the CNOT gates
specified by their (control, target) qubit pairs (13,1), (12, 2) (11,3), (11,10) and (11,12)
are more likely to phase-flip their control operand than the rest. Note that the likelihood
of faulty state initialization and Measurement is included in the qubit error-probabilities
of shown in Fig-3. Nevertheless, the error probability profile generated by our statistics
are in close agreement with those published on the IBM(Q website.

3.4. Calculating Failure Probabilities

The error-correction logical failure probability of the Steane code utilizes expression
given in (3). Define Pr® := Pri_, and Pr'™) := 2 kH k—0,k/=3 PTk as probabilities of
no error and all undetectable logical errors, respectively. Similarly, define Prﬁ( ==

Ik|=2
Pry. k=1 and Pry

:= Pry. =2 as probabilities of single-qubit and two-qubit errors
respectively; the binary vector k locates error qubits in the codeword by 1 at the
corresponding indices. These probabilities can be easily derived from (3). Then, by

definition, the logical failure probability of Low-Weight EC (P,,) becomes:

Py =Y Prp= 4 pr(® (4)
k

Likewise, the logical failure probability of High-Weight EC (F,,) becomes:

- ' [k|=1 |m|=2 i ©0) pp@)
Pry = k:IIrilll{ric(Prk , Z Prot=%) + min(Pr'™, Pr'™) (5)
CEZg m:H(m+k)=0

The expression (5) represents convex optimization problem with simple solution. It
says that one should prefer to correct two-qubit errors whenever their cumulative
probability exceeds that of their low-weight counterparts. Next, in order to quantify
the improvement (or degradation) in the fidelity of logical gate when protected by
error-correction, we compare the logical failure probability with un-encoded qubit error
probability. However, the substantial disparity in physical error rates, complicates
the selection of an appropriate statistical metric that faithfully mirrors the fidelity of
physical gate which is un-encoded by definition. For comparison, we want a single figure
of merit p. to (i) reflect overall (in)fidelity of multi-qubit encoded state (ii) distributes
overall infidelity identically among individual qubits on the basis of per-qubit error
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probability [2]. For transversal Steane gate, we mathematically define p, as solution to
following set of non-linear equations:

(1—pe)" =Pr® (6)

Tpe(1 —p)® = Z P]."Lk|:1 (7)
k

21p2(1 — p.)° = ZPrLk‘:Z (8)
k

(1 = pe)t = Prt 9)

It is evident that p. not only encapsulates error probability distribution of multi-qubit
state and but also inherits a sense of per-qubit error probability. In practice, the four
equality constraints from equations (6)—(9) generally lead to an approximate solution—
one that minimizes the cumulative mean-square difference. The best-fit p, was computed
by solving above set of equations as an instance of non-convex optimization, and provides
reference error-probability of un-encoded qubit, for comparison with P, and Py, in
Fig-4,5 and 6. The p,. value calculated this way, represents average un-encoded qubit
error-probability.

3.5. Making High- Weight Error-correction Decisions

Which set of the two-qubit errors needs to corrected? the decision is based on
experimental error-statistics collected from execution of the given circuit. If device error
rates remain sufficiently stable, statistical variation in multiple experiments executing
the same circuit (logical gate, operand qubits and their initial state remain unchanged)
only cause inconsequential changes in the failure probability computations and does
not impact error-correction decisions. Under this condition, strategy formulated by
using statistics of an experiment remains adequate when it is subsequently reproduced
multiple times. The Qiskit batched execution feature significantly reduces the delay
between successive of the same logical gate and help achieve stable error profile. We
extensively employed batched execution in our experiments to reduce standard deviation
less than 10% of the computed failure probabilities values, which is lower enough to draw
reliable conclusions. Therefore, High-Weight error-correction strategy, based on the
error-statistics of first experiment was formulated and invariantly applied to the result
of all experiments in the batch. In addition to the batch-level temporal invariance, the
strategy also featured batch-level state-invariance. Same High-Weight error-correction
scheme applied to the outcome of experiments dealing with |+) as well as |—) states for
the given logical gate and operand qubits.
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Figure 4. (Color online) Steane High-Weight EC lowers the failure probability of
the CNOT gate for logical |+) state operands. Only control operand is referenced for
comparison of failure probabilities. The graph plots triple (Phray, Pe, Piw) against Ppy,.
The triple plotted on the graph is the median of three triples, each obtained from
logical CNOT gate experiment results. Each experiment computed its triple from the
statistics collected from 8192 executions(shots) of the same logical gate. The logical
failure probabilities were computed from these statistics by using expression given in (4)
and (5). For the encircled data points, the syndrome-wise comparison between single-
qubit error and their corresponding two-qubit errors, is listed in the table (all errors
in each row yield same syndrome value). The shaded rectangles present components
of failure probability of High-Weight EC, whereas those inside large thick outlined
rectangle, represent components of Low-Weight EC failure probability

4. Experimental Results

The main objective of our experiments is the statistical calculation of logical failure
probabilities for evaluating proposed error-correction scheme. Again, it is reminded
that an error-correction (EC) procedure simply applies correction to the classical bit-
string obtained from transversal Measurement of seven qubits initialized in the equal
superposition state and processed by [[7, 1, 3]] logical gates. We consider gate execution
to be successful if the corrected readout yields a codeword either in (i) Cy, when the
intended state of the operand is logical |+), or in (ii) C3\Cy, when the intended state
of the operand is logical |—). Otherwise, it is counted towards logical failure. By
statistically calculating the fraction of instances resulting in logical failures, we obtain
P, and Py, as described in the previous section.

For the sake of completeness, the section also includes experiments of preparing
Steane logical |+) and |—) states using non fault-tolerant encoding circuit. It requires no
additional qubits and maps large fraction of CNOT gates on adjacent encoding qubits



14

in ibmq_16_melbourne. With careful scheduling, circuit can be executed with small
overhead of SWAP gates. The logical failure probability is quantified by the fraction of
instances in which logical state is incorrectly interpreted upon readout and subsequent
classical post-processing, described previously. One of the main reasons to include the
results of non fault-tolerant logical state preparation is to show the effectiveness of
High-Weight EC in removing correlated errors on the encoding qubits. Additionally,
it benchmarks the performance of state preparation without the burdensome task of
obtaining state fidelity from large number of experiments. Instead, it leverages more
realistic figure of merit for the quantification of noise: the ability to distinguish between
logical basis states, which can be achieved with significantly fewer error statistics of
encoding circuit.

Contrary to some prior studies that control magnitude of noise by adjusting the rate
at which pauli error gates are inserted into the circuit, our aim is to uncover intrinsic
hardware errors. Naturally, such investigation cannot utilize noise control knob which
can vary noise levels and makes a useful reference for generating and comparing the
trends of P, and P,. In the absence of such reference, we have found it convenient
to compare these probabilities on graphs whose abscissa is set to P,. It is because
Py, has higher variation compared to Py, (or p.), not only for different experimental
configurations (e.g. selected device qubits) of the circuit but also for different runs of
the same circuit (e.g. execution before or after device calibration). Wide range abscissa
elegantly spreads data points and provides clearer visualization of failure probability
patterns.

4.1. Logical CNOT

The first set of experiments is designed to calculate the probability distribution of the
control operand of the Steane logical CNOT with both operands in the |+) state. Based
on the Section-2 analysis, actual preparation of logical state is not required, instead,
gate can be directly applied to operand qubits initialized in equal superposition state
as shown in Fig-A2. The gate is mapped to the subset of seven (out of eighteen)
device-level CNOT gates indicated by edges in Fig-3. The qubit-qubit connectivity
constraints can be understood by visualizing the device as a directed graph mapping
qubits and CNOT gates to its vertices and edges, respectively. The vertex(qubit) at
the arrow head is the recommended target operand of the corresponding edge (CNOT
gate). IBMQ platform invites users to achieve high fidelity gate execution by mapping
operand qubits in recommended control-target order specified by edge direction. The
accuracy of the gate may be slightly lower if it is executed while its operands are
mapped opposite to the edge direction (arrow pointing towards control qubit). We relax
the operand order constraint at the expense of incurring some nominal gate infidelity.
Then, the edge direction becomes unimportant and directed graph turns into fully
connected (undirected) graph allowing any pair non-adjacent qubits to undergo CNOT
gate by means of successive swap gates. Although, this flexibility expands numerous
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permutations of encoding physical qubits placement, these can be shortlisted by the
constraints of our experiment setup for logical CNOT gate, which require:

(i) Each constituent physical CNOT gate has unique control-target qubit pair.

(ii) None of the gates acts on non-adjacent qubit pair. Otherwise, arbitrating (non
fault-tolerant) swap gate can convert single qubit error into multi-qubit errors.

The first requirement is relatively straightforward; it arises from the innate transversal-
ity of Steane CNOT gate, and can be readily fulfilled. However, the second condition
cannot be entirely met due to the structure of device connectivity graph. Essentially,
it requires that matching number (size of maximum independent edge set) of the graph
is at least seven. However, it is easy to show that Fig-3 graph has matching number
= 6. This means we can only execute six physical CNOT gates transversally satisfying
both conditions. Our analysis shows that the missing gate barely alters our results and
conclusions whenever its error probability is set to the average error-probability of other
six gates. We validate this conclusion in the execution results to be described shortly.
Before proceeding, we list typical gate operands in the form of (control, target) encoding
qubit pairs, in the decreasing order of their contribution to the results:

o {(13,1),(12,2), (10,11), (4,3),(5,9), (6,8), (0, 7)}
o {(13,1),(12,11),(2,3), (4,10), (5,9), (6,8), (0, 7)}
o {(13,1),(12,11),(2,3), (4,5), (8,7), (9, 10), (6,0) }
o {(1,2),(13,12),(11,3), (4,5), (6,8), (9,10), (0, 7)}

The list shows that our preferred compositions of logical control operands, contains
qubits bearing lower state initialization failure probability, for example: 0,2,4,6,9 and
13). It is because error statistics obtained from logical CNOT experiments (|+)®7 state-
initialization — CNOT — Measurement) always contain some inseparable component
of unwanted state initialization and Measurement errors. Selection of mentioned
qubits ensures that the contribution of undesired error probability remains reasonably
smaller—about an order of magnitude lower in comparison to that of the respective
CNOT gates. All compositions allowed six transversal gates on adjacent qubits. How
to deal with the gate on the non-adjacent qubit-pair? will be answered next.

The non-local CNOT is converted into classically-controlled NOT gate after
commuting it with the subsequent operand X-basis Measurement. It flips the control
qubit Meaurement result when target qubit is readout in |1) state. This additional
transformation is also carried out off-line and precedes error-correction applied to
the readout result in software post-processing. While this transformation adequately
captures error propagation feature of the gate, it may fall short of capturing (phase)
errors introduced by the gate itself. Fortunately, it is possible to compensate for the
CNQOT gate noise by pulling qubits having higher readout noise into the control operand
of CNOT gate. In Fig-3, a large fraction of nosier qubits (dark shaded circles) also
accrue large readout noise; their Measurement and CNOT error rates have comparable
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Figure 5. (Color online) Extrapolation of Fig-4 in low-noise (Low-Weight EC failure
prob. < 0.1) regime, was achieved by skipping some (but not all) CNOT gates. The
missing gates were simulated as ideal CNOT gates (in classical post-processing) and
corresponding both compensated and uncompensated triples points are included in
the graph. Logistics of plotting the graph and calculations of probabilities remain the
same as those described in Fig-4. The table shows breakdown of failure probabilities
of encircled data points

probabilities ranging: 2.5 x 1072 — 5 x 1072, Higher readout noise in the control qubit
of the missing non-local CNOT gate, adequately compensates for the noise that would
have been accumulated had the missing gate had been executed without relocating its
operand qubits. Our experimental results show that the missing CNOT gate noise
compensation does not substantially impact general trends of comparison between Low-
Weight EC and High-Weight EC failure probabilities, (shown in Fig-4), to be described
shortly. Therefore, although majority of our data points are based on uncompensated
CNOT configurations, a few compensated data points, both plotted and un-plotted, will

be analyzed for their alignment with the general trend.

Fig-4 plots data triples (Phy,Pe, Pw) against P, FEach triple corresponds to
median statistics of three logical CNOT experiments with same qubits composition
of its operands. The three tuples (one from each CNOT experiment) were sorted
by Py, value and only median tuple was plotted on the graph. The comparison of
logical failure probabilities evince fidelity gain of 2x-3x providing enough reduction
to lower in Py, just below p.—the break-even point. = Thus Steane code has
improved the reliability of CNOT gate whose both operands are initialized in
|+) state. Detailed insights can be obtained by comparing the logical failure

probabilities of the triple (P, = 0.116,p. = 0.161, P, = 0.283) for the gate
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operands composition:{(13, 1), (12,11), (2, 3), (4, 10), (5,9), (6,8),(0,7)}. The table in
Fig-4 elaborates breakdown of logical failure probabilities shown as encircled H and L

data points for High- and low-Weight EC respectively.

Table 1. High-Weight error-corrected [[7,1,3]] CNOT gate fails less often than
physical CNOT gate. Both control and target operands are considered for comparison.
The table lists readout-noise compensated probabilities, for selected control, target
operands configurations used in Fig-4. Only one physical CNOT gate—on the non-
adjacent qubits—was skipped from hardware execution in the first five table entries.

The last logical CNOT, marked by *, executed all seven constituent gates

Composition of operands Failure Probability
Control H Target H Overall
Control , Target Physical | Logical || Physical | Logical || Physical | Logical
{13,12,10,5,4,9,0},{1,2,11,6,3,8,7} 0.251 0.152 0.066 0.043 0.3 0.188
{8,5,9,4,12,13,2},{7,6,10,3,11,1,0} 0.116 0.076 0.05 0.027 0.161 0.101
{8,9,12,13,2,4,6},{7,10,11,1,3,5,0} 0.115 0.06 0.047 0.002 0.156 0.061
{13,12,10,4,5,6,0},{1,2,11,3,9,8,7} 0.144 0.009 0.139 0.063 0.262 0.071
{0,2,13,10,5,6,9},{1,3,12,11,4,8,7} 0.1 0.046 0.121 0.026 0.208 0.071
x{7,9,12,2,4,5,13},{8,10,11,1,3,6,0} | 0.139 0.095 0.070 0.020 0.199 0.113

The syndrome-wise comparison between single- and two-qubits error probabilities
shows that qubits 13, 12 and 6 are distinctly noisier in the control operand; their
two-qubit errors combinations e.g. (13,12),(13,6) and (12,6), are more probable then
their corresponding single-qubit counterparts (qubits 2,4 and 0). By prioritizing the
correction of faultier pair of qubits, significant reduction in P, becomes possible.
Therefore, by virtue of High-Weight EC, control operand fails less frequently for logical
CNOT gates for all the triples. Furthermore, it should be noted that encircled data point
does not aberrantly deviate from trend-line for compensated CNOT configuration. For
example, when the operands qubits are swapped on the last pair and qubit-7 becomes
control qubit (and 0 becomes target), then the high readout noise on qubit-7 adequately
fills the shoes of missing CNOT gate. The corresponding triple simply drifts along the
trend-line and is re-situated within close vicinity of existing triples. On one instance,
the compensated version relocates it to (P, = 0.092, p. = 0.11, P, = 0.162), on other,
it maps it to (Pp, = 0.16, p. = 0.2, P, = 0.35). Shown as black diamonds on the
Fig-4, both triples reinforce the existing trend-line. Thus, the figure accurately reflects
the fidelity gain of High-Weight EC for the complete logical CNOT gate.

The missing CNOT problem actually proves to be a valuable tool of extrapolating
Fig-4 curves for comparison in the low noise regime where P, < 0.1. When multiple
physical CNOTs are replaced with ideal gates in post-processing, their corresponding
control qubits gather lesser noise and lower F,,. The corresponding p. and Py, values
are shown in the Fig-5 for uncompensated version of logical CNOT. It shows that Py,
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remains consistently lower than p. and so do the smaller P, values. However, as their
respective trend-lines approach 0.1, P, converges to p., while P, remains notably
smaller as shown by the gap between corresponding trend lines at the end (P, = 0.12).
Upon extrapolation in high-noise regime (higher P, values), these data triples and
trend lines faithfully transform into those in Fig-4 (where P,, > 0.11). The encircled
data point presents an example in which two CNOT gates (12,2) and (11,10) were
physically executed, whereas, the remaining five gates (13,1), (5,4), (6,8), (9,3), (0,7)
were classically executed. The table shows that elimination of the two-qubit errors (12,5)
and (10,12) at the expense of uncorrected co-syndrome single-qubit errors on qubits 9
and 13, provides nearly three-fold reduction on logical failure probability.

4.1.1. Suppression of Readout Noise Above results describe the performance of logical
gate without taking target operand into consideration. However, since several qubits,
with high readout noise, enter the target operand, it is important to correct the
operand error probabilities for large readout noise. Fortunately, this can be efficiently
accomplished by invoking Qiskit readout noise filtration routines. We apply these
routines in a way that qubits readout noise was directly profiled by executing prescribed
test circuits on the device hardware. For each set of seven physical qubits comprising the
target operand, a total of 128 test circuits are executed. Apparently, each test initializes
the qubits in one of 128 possible classical states (0000000...1111111) and Measure these
in Z—basis to compute corresponding readout error-probability distribution. After
computing a set of 128 distributions, one routine seems to register complete readout
noise profile in the form of 128 x 128 conditional error probabilities. Another routine
then uses this profile to correct the results of separately executed user-defined circuit
to yield new statistics compensated for readout noise. The p. and P, of the target
operands of selected Fig-4 logical CNOT gates, are obtained from the readout noise
compensated error probability distribution and listed in Table-1.

To show that high-weight error-correction improves the reliability of quantum gate,
the overall Py, of logical CNOT gate must be less than the p. value (average failure
probability of physical CNOT gates). To this end, we also recompute control operand
readout-noise compensated Py, for the selected set of logical CNOT gates. The new P,
of both logical operands and their corresponding p. are also juxtaposed in Table-1. The
comparison reveals that overall failure probabilities are smaller in case of logical gates.
The last entry of the table contains failure probabilities for the complete Steane CNOT
gate executing all seven constituent physical gates. The seventh gate is a non-local gate
containing non-adjacent operand qubits: 13 and 0. It was realized by applying local
CNOT(13,1) after swapping qubits 1 and 0. The lower failure probability of complete
Steane CNOT gate further reinforces the efficacy of High-Weight EC.

The logical failure probability can be shown lower than p. for one or more |—)
state operand(s). Our more recent experiments on upgraded ibmq-16_melbourne device
for more comprehensive quantification of logical gate noise by taking into account
fidelity gains for all four combinations of |+),|—) state operand(s). Upgraded device
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(available online since Dec 26, 2019) added a qubit (qubit-14) adjacent to qubit-0 and
13, enabling execution all 7 physical CNOT gates on disjoint qubit pairs without SWAP
gate. For (control, target) = ({13,7,2,4,5,11,1}, {14,8,12,10,6,3,0}) configuration,
we compared P, with p, considering total noise in both operand (as in the last column
of Table-1) in states: (|+), |+)), (|+), |=)), (|-), |[+)) and (]—), |—)). Corresponding
Py = 0.25,0.22,0.21, 0.22 while p. = 0.30,0.26,0.28,0.29. By averaging over four pairs
of states (assuming these are equally probable), we obtained Py, (avg) = 0.225 while
pe(avg) = 0.282. On the other hand, P, (avg) = 0.45 significantly exceeded p.. This
shows that although |—) state operands may raise failure probabilities, these do not
undermine overall efficacy of High-Weight EC. It is vital to note that High-Weight EC
strategy must be kept same for all four pairs, since error-correction must be completely
oblivious to the logical state. Therefore, in each of the four cases, we corrected single-
qubit errors in the control operand for only two syndrome values: {—1,+1,—1} and
{—1,—1,—1}. By contrast, target operand was corrected for the two-qubit errors when
syndrome was either {+1,—1,+1} or {—1,—1,—1}.

4.2. Logical Memory

The memory errors arise due to the decoherence in logical operand as it undergoes
sequence of identity (no-operation) gates. The complete experiment executes: State
initialization — Identity gate sequence — Measurement. Before proceeding, we
consider it important to point out a noteworthy behavioral variation observed in
ibmqg_16_melbourne qubits. In early days, the error-probabilities of device qubit,
increased with the length of identity gates sequence. However, since May 4, 2019,
this trend has been gradually fading—perhaps due to the systematic improvement in
in qubits coherence time—and has now become somewhat difficult to reproduce. Yet,
occasional device overuse still results in accelerated decoherence of more vulnerable
qubits. Fig-6 shows data triples for various idle time intervals (ranging from single to 250
identity gates). Approximately half of all data triples predate May-4 and remain more
or less trend-wise indistinguishable from those of later experiments. Several different
subsets of seven qubits participated in the comparison, some of which are listed in the
decreasing order of their contribution in the plots:

e {0,7,2,11,12,8,4}

e {1,3,7,13,11,6,5}

e {13,12,11,3,7,6,5}

o {13,12,11,3,8,6,5}
The figure shows that High-Weight EC provides significant fidelity gain for several values
of P,,. More crucially, it keeps logical failure probability below p. even when P, > p..
In this region, an encircled data point has been selected for deeper insight into the

fidelity gain, while its comparison breakdown is shown in the table. The data point is
an output of experiment (dated July 6) applying five identity gates to the qubits set
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Figure 6. (Color online) High-Weight error-correction lowers the failure probability
of [[7,1,3]] encoded qubit in logical |+) state as it undergoes sequence of Identity
gates (consisting of 1—250 gates). While Low-Weight EC becomes counterproductive
(Ppw > pe) after the cross-over point (intersection between p. and Py, trend-lines),
High-Weight EC continues to keep P, lower than p. before eventually converging
to p. at the end. Logistics of plotting the graph and calculations of probabilities
remain the same as those described in Fig-4. The table shows breakdown of failure
probabilities of encircled data points

{13,12,11,3,8,6,5}. In this case, the elevated likelihood of High-Weight errors can be
ascribed to the joint failure of qubits selected from the subset {11, 5,3} containing three
noisier qubits. The table shows that correcting logical operand for errors on qubit pairs
(11,5),(11,3) and (3,5), in place of those on qubits 8, 13 and 6 delivers nearly six fold
reduction in logical failure probability.

A crucial constraint in the logical memory experiment setup was the mitigation of
readout noise due to the inclusion of several high state initialization and Measurement
error encoding qubits (for example qubits: 1,3,7 and 11). If these qubits had been
directly (destructively) Measured, the likely read-out inaccuracy would have artificially
raised the joint failure probability of two (or more) qubits. We solved this problem
by deploying unused qubits for indirectly (non-destructively) Measuring dark shaded
qubits (Fig-3) with higher accuracy. Fortunately, these auxiliary qubits (e.g. 0,2,8
and 10) contain lower state initialization/Measurement noise and can reliably replicate
phase-error from memory (identity) gate qubits through the CNOT gate (whose control
operand is the auxiliary qubit initialized in the |+) state, the memory qubit acts as
target operand). A good indicator of reduction in readout noise is the decrease in P,
since inflated high-weight error probability is discounted. Therefore, non-destructive
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Measurements were applied whenever reduction in P, was possible. It lowers the failure
probabilities in several triples including (P, = 0.0625, p. = 0.125, P,,, = 0.18) for the
experiment containing memory qubits set {1,12,11,3,7,6,5}. In this case, auxiliary
qubits: 0, 13, 10, 2 and 8 destructively Measure memory qubits: 1,12,11,3 and 7
respectively, reducing triple to (P, = 0.045,p. = 0.098, P, = 0.109). Yet, High-
Weight EC continues to lower the decoherence rate of logical memory.

Finally, it should be noted that Qiskit readout noise compensation routines can be
used to further suppress the readout noise. Preliminary comparative analysis reveals
that enhanced noise reduction lowers all the curves in Fig-6 by approximately the same
factor and does not introduce meaningful change in their overall trends. Since the
principle advantage of High-Weight EC remains intact, therefore, these plots become
somewhat superfluous and have been excluded from the manuscript.

4.3. State-Preparation and Measurement of Logical |[+), |—) States

The last set of experiments describes the role of two-qubit error correction in
distinguishing between Steane |+) and |—) states prepared on ibmq_16_melbourne.
Immediately after its preparation, the encoded state was transversally readout in X-
basis using Steane type Measurement. The resulting seven bits string—a noisy codeword
of [7,4,3] Hamming code—is error-corrected and decoded to reveal outcome of the
Measurement. A mismatch between prepared encoded state and Measurement outcome
was counted as logical error. The probability of logical error was computed from the
fraction of experimental runs ending in the mismatch. Higher logical error probability
value increases the likelihood misinterpreting the encoded state. Hence, our ability
to distinguish between the logical |+),|—) states, determines the magnitude of logical
phase-flip noise gathered by the encoding circuit [19].

Fig-A3 shows circuit for encoding |+) state. Once mapped to ibmq_16_melbourne
hardware, it has one CNOT gate on non-adjacent qubits 9 and 12 (see Fig.A3(a)), which
requires translation with the help of SWAP gates in order to comply with qubit-qubit
connectivity constrains. After reordering the gates in original circuits and canceling
some CNOT gates with those in the SWAP gates, the optimized circuit was obtained
(Fig.A3(b)) and executed on the hardware. This optimization was powered by the
commutation property of gates in the original circuit, that is, all CNOT gates commute
with one another and can be scheduled in any arbitrary order. It is worth noting that
in comparison with the circuit compiled by the Qiskit, our optimized circuit contains
significantly fewer overall CNOT gates. The Fig-7 provides execution results of the
optimized circuit for the comparison between two error-correction strategies.

Due to the non fault-tolerant nature of the circuit, logical failure probabilities of
encoded state have acquired expectedly large values. Unlike transversal construction
of logical CNOT and Memory, the non fault-tolerant state preparation allows error on
single encoding qubit to transform into errors on encoding qubits, eventually causing
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Figure 7. (Color online) High-Weight EC reduces Steane |+), (or |—)) SPAM failure
probability below the reference physical qubit SPAM error probability reference labeled
as Unencoded (Noisiest). The reference was set to highest SPAM error probability of
all the encoding qubits, averaged over seven sampling days. Each plotted data point
represents the median failure probability of three experimental results. Each result
consisted of Measurement statistics collected from 8192 executions(shots) of the same
logical CNOT circuit. For the encircled data points, the syndrome-wise comparison
between single-qubit error and their corresponding two-qubit errors, is given in the
table (all errors in each row yield same syndrome value).

uncorrectable error. The noisiest encoding qubit, therefore, crucially determines the
fate of decoding outcome, hence, the logical failure probability. For State Preparation
And Measurement (SPAM) of logical qubit, we benchmark error-correction schemes by
setting our reference to the error probability of the noisiest encoding qubit, instead of
average error probability of encoding qubits, used for logical operations. However, a
meaningful comparison requires us to juxtapose logical qubit SPAM failure probability
with physical qubit SPAM error probability. Therefore, the criterion of selecting
noisiest qubit eventually restricts us to select encoding qubit with highest SPAM error
probability. The plotted data points are obtained from experiments executed in the last
two months. In this period, the highest SPAM error probability in ibmq_16_melbourne
hardware has remained more or less stable (mean value = 0.26 with std = 0.013). This
value was obtained from the runs of Qiskit quantum state tomography routines on seven
different days for qubits initialized in |4-), |—) logical states. The encoding circuit always
contained highest SPAM error qubit for the each data point in Fig-7. The plotted data
is obtained from circuits containing only following two sets of encoding qubits:

(i) {3,4,5,9,10,11,12}
(i) {4,5,6,7,8,9,10}
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The figure shows that High-Weight EC successfully lowers the logical failure
probability below physical noise threshold—the error probability of noisiest qubit
encoding qubit. As before, the table sheds detailed insights into a sample (encircled)
data points for comparison based on encoding qubits set (i). It shows that correcting
the readout result for weight-2 errors for as many as five error syndromes, halves the
logical failure probability. The data points in the figure can be loosely classified into
two groups, one has fidelity gain (2 or higher) and the other in which fidelity gain is
marginally higher than 1. Their corresponding encoding qubits are contained in sets
(i) and (ii) respectively. It should be noted that our experiment produced more or less
same logical failure probabilities irrespective of the intended logical state to be prepared
and decoded. In this vein, data points are evenly split between |+), |—) logical states,
although, without explicit labels. Yet, same High-Weight EC strategy was applied to
the given encoding qubits set for both logical states.

The encoding circuit was executed without additional verification gates for
preventing correlated errors. Therefore, one may be tempted to map unchecked noise
correlation onto high-weight errors in this case. To this end, we refer back to the table in
Fig-7 and find that high weight errors manifest higher probabilities for the majority of
error syndromes (5/7), when contrasted with the previous experiments (only 3/7 error
syndromes). This observation alludes to the likely connection between noise correlation
and elevated probability of the two-qubit errors, although precise share of correlation
needs more investigation and remains integral part of our future research.

5. Background and Previous Work

The theory of fault-tolerant quantum computation [30] enables error correction to lower
decoherence rate of the encoded qubit by preventing faulty gate operations to accumulate
errors on the encoding qubits. Founded on the assumptions that qubit-environment
interaction keeps decoherence rate per qubit below certain limit [1, 4] and confines
errors to exponentially small subset of qubits, it has naturally steered conventional
error-correction schemes towards correcting logical qubit for small number of encoding
qubits in errors—the defining attribute of the local noise model [4, 48]. Unfortunately,
real quantum hardware invalidate these assumptions by significantly raising decoherence
levels among certain qubits and elevating joint probability of noisier qubits in error [50].
Such behavior is clearly visible in qubits error probability distribution shown in Fig-1.

For a distance d = (2d, — 1) code, an occurrence of errors on d, or more codeword
qubits likely belongs to a set of uncorrectable error events that result in the incorrect
decoding of faulty qubits, followed by undetectable alteration of the logical qubit state
during recovery phase. If a quantum hardware distributes decoherence rates unevenly
among the encoding qubits, the likelihood of logical qubit failure is at least the joint
probability of d, noisiest qubits failing to escape uncorrectable errors. For example, the
logical qubit protected by the phase-flip code (Fig-1) has logical failure probability
dictated by elevated likelihood of errors on frequently failing qubit pairs (1,11 in
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experiment (a)) and (4,5 in experiment (b)). Whenever this joint failure probability
exceeds physical qubit error probability, the encoding can only increase decoherence rate
of logical qubit. That is when error-correction becomes counterproductive by gathering
errors faster than the rate of their correction. To date, despite numerous efforts of
realizing small-size fault-tolerant logical qubits [39, 34, 46] (when d < 3), practical
error-detection [12, 28, 43] and correction [13, 41, 23] have shown qualified success in
counteracting arbitrary noise patterns in real quantum computers.

Thus, it comes as no surprise that only a few studies have attempted to evaluate
fault-tolerance on recently showcased quantum computing devices that can easily fit
Gottesman’s [[4,2,2]] encoded qubit [21]. Among these studies, even fewer [49, 35,
22, 47] have managed to show that encoded qubits and gates exhibit higher fidelity.
However, Gottesman’s [[4, 2, 2]] being an error-detecting code, finds limited applications
in a more realistic scenario in which logical qubit can only be discarded upon final read-
out instead of on each occasion when an error has been detected. For practical purposes,
error-correction, active [44] or passive [24], is expected to remain an indispensable
tool of increasing longevity of the logical qubit. The latter form of error-correction
is a contemporary pragmatic concept wherein qubit-environment interaction is carefully
engineered [25] so that the occurrence of multi qubit errors (e.g. two photon loss in
Ref [34]) helps preserve logical qubit state. Ideas presented in our study partly shares
the theme of passive error-correction in a sense that higher likelihood of certain multi-
qubit errors can improve our ability to discriminate between orthogonal encoded qubit
states, which lowers logical noise level.

6. Conclusion

Error correction is an indispensable tool of protecting quantum information from noise.
In this paper we presented a novel approach of error-correction, that convert errors into
non-trivial code space Stabilizers. It allows quantum error-correcting codes to correct
longer strings of errors contrary to what has been previously envisioned. The efficacy of
proposed approach was validated by experiments on IBMQ quantum processor executing
[[7, 1, 3]] noisy logical gates. These experiments were designed to indirectly infer
probability distribution of errors in the logical gate operand, from the Measurement of
encoding qubits after the application of gate. Remarkably, these qubits were not required
to encode experimentally infeasible [[7, 1, 3]] logical state, instead, their initialization in
an equal superposition state sufficed. In this sense, the logical state-preparation errors
were discounted from distribution; however, errors in qubits initialization logical and
Measurements were duly taken into consideration.

In this setting, our experimental results showed that the new approach led logical
gate circuit to output intended state with higher probability than the corresponding
physical gate. For completeness, we included experiments to analyze error distribution in
the complete [[7, 1, 3]] state preparation and Measurement circuits. Their error-statistics
were used to examine the efficacy of high-weight error-correction strategy in the non
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fault-tolerant circuits. Although our work delineates novel approach of countering noise
patterns expected in NISQ era devices, we believe that it merits further investigations
on device technologies other than superconductors. In particular, what type of device-
specific environments raise high-weight noise floor to justify application of proposed
scheme? Apparently, if decoherence rates shrink in future, multi-qubit errors are unlikely
to sustain large enough value, unless qubits and gates correlate their errors or establish
their interdependencies in some unknown manner. Moreover, fault-tolerant preparation
of a logical state, protected by full error-correcting code, has remained a daunting task
to date. These and other relevant challenges indeed deserve more insights and tools to
achieve fault-tolerance in real quantum processor.
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Table A1l. Correcting two-qubit phase-flip errors in [[7,1, 3]] code

Two phase-flips errors Syndrome Product of the pairs of
SE | S| S phase-flips errors

(Z129),(Z576),(Z4Z7) | =1 | =1 | +1 | SESZ, 5%, SESZ57
(Z125),(ZaZ6),(Z3Z7) | +1 | +1 | —1 S7sy, 8¢, SY
(Z173),(Z5Z7),(ZsZs) | +1 | —1 | +1 S¢, S¢Sz, 87
(Z124),(Z3Z¢),(ZoZ7) | =1 | +1 | —1 S¢Sz, Sz, SE,SZ
(Z126),(Z374),(Z2Z5) | =1 | =1 | =1 | SESZ, SZSZ SESZ
(Z127)(Z9Z4),(Z32Z5) | +1 | =1 | =1 | SESZSZ, SZ, 5257
(2225),(Z425),(Z6Z7) | —1 | +1 | +1 SyS%, S5, 5%

Appendix A. Proof-of-Concept High-Weight Error Correction using
Distance-3 CSS Codes

A distance-3 CSS code can decode single syndrome into multiple two-qubit errors. These
can be corrected by mutually augmenting a pair of these errors to enact Stabilizer on
the encoded state. This section exemplifies High-Weight error correction using Steane
[7,1,3]], Bacon-Shor [[9, 1, 3]] and Kitaev [[13, 1, 3]] surface code.

Appendiz A.1. Steane [[7,1,3]] code

The Steane code [8, 45], non-degenrate by design, can correct for arbitrary two-qubit
errors. It confines logical qubit within the Stabilizer space spanned by six Stabilizers:
SE X X3 X5 Xy S5 Xo X3 X6 Xq; S5 0 XyXsXeXv; SP 1 21237574, ST ZaZisZeZy;
SZ . 7,757ZsZ;. While correcting weight-2 errors, it becomes a degenerate code; the
product of any two co-syndrome errors constitutes the Stabilizer operation on the code
space. Table-A1l enumerate all possible weight-2 phase-flip errors. Each row lists
degenerate errors along with their combinations leading to the non-trivial Stabilizers
(trivial Stabilizers are omitted). Since all two-qubits bit- and phase-flip errors are shown
to be corrected, therefore, Steane [[7, 1, 3]] code corrects arbitrary two-qubit phase-flip
errors. Likewise, it can be easily shown that it also corrects arbitrary two-qubit bit-flip

erTrors.

Table A2. Gauge operators of [[9, 1, 3]] Bacon-Shor code

X-Gauge operators Z-gauge operators
Gfll - X1X4 Gé{S == X2X5 G1Z’2 == 21Z2 GZS == Z4Z5
Gf7 - X4X7 Ggfg - X5X8 GZZ’3 - ZQZg G5Z’6 - Z5ZG
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Appendiz A.2. Bacon-Shor [[9,1,3]] code

The nine-qubits Bacon-Shor code is a sub-system code [5] containing four stabilizers:
SE 0 X1 Xo X3 Xy X5 X, Sy ¢ XuXsXeX:XsXg, SE 1 21 ZyZyZs5Z:7gz, SZ
ZolslsZigZisZg. It encodes five logical qubits; one belongs to the system, used for
storage and computation, while the rest comprise sub-system [3]. The state of system
qubit remains unaffected by the applying logical X and Z gates to sub-system qubits.
The Measurement of these logical operators, provides redundant means of syndrome
extraction that gauges system for the presence of likely errors. The sub-system qubits
are gauge qubits and their corresponding logical Pauli operations are gauge operators [3],
listed in Table-A2. These can be leveraged to simplify the error correction procedure,
might it be Low-Weight or High-Weight by nature. In latter case, these gauge operators
compensate for the weight deficit when a pair of two-qubits errors to completes weight-
6 Stabilizers. For Bacon-Shor code, the task of completing the code space stabilizer
becomes a task of completing the its Stabilizer(s) modulo gauge operators.

A small subset of correctable two-qubits phase-errors are listed in Table-A4. It
shows both the Stabilizers and concomitant gauge operators which become prominent
when the pair of errors only enacts trivial Stabilizers on the code space (e.g. when
S¥ = +1 and S5* = —1). In general, these pairs comprise non-trivial Stabilizer upto
appropriately chosen gauge operators. Finally, note that the table contains only handful
of errors to exemplify proof-of-concept generalized error correction. However, like Steane
code, it can be shown that one can correct arbitrary two-qubit errors in the Bacon-Shor

code as well.

Table A3. Correcting two-qubit phase-flip errors in [[13,1, 3]] code

Two phase-flips errors Syndrome Product of the pairs of
St ‘ S2 ‘ S3 ‘ S ‘ S5 ‘ S8 | two phase-flips errors
(Z4Zs), (Z1Zy) +1 [ -1 [ +1] -1 | +1 ] +1 S3
(ZsZy), (ZsZq) QA+l S
(ZsZy), (ZsZo) SIS T R R | S3
(ZsZ7), (ZgX10) +1 [ 4+1] -1 | +1| -1 | +1 S7
(ZsZw), (Z:Xs) | +1] -1 -1 [+1]|-1]-1 St
(Zs23), (Z:Z10) +1| -1 | +1 | +1 | +1| -1 S5
(Z9Z11), (Z10Z13) +1 | +1 | +1 ] +1 | -1 | +1 5558
(ZoX10), (X11X13) |41 [ +1 [ +1] -1 | +1] -1 5358
(Z9Z13), (Z10Z11) 41| 41| +1 -1 ] -11]-1 555
(Z125), (Z4Z5) A4 [ 1]+ SLs2
(Z1X4), (Z37Z5) +1] -1 | 41 +1 |41 |+1 5152
(Z1Z5), (Z374) SIS S R | 5152




Table A4. Correcting two-qubit phase-flip errors in [[9, 1, 3]] Bacon-Shor code

Syndrome Two phase-flips errors | Stabilizers | Gauge Operators

(Z124), (Z2Z5) 1 G79, Gl

Sf=+1,55 = - (Z225), (Z3Z6) I G2Z,37G5Z,6
(Z17Z5), (Z3Zs) I G{,G3 3G
(Z5Zs), (Z4Z7) SZ G7,

S¥ = —1,5¢ = +1 (Z5Z3), (ZsZy) Sy G5
(Z12), (Z577) S G12Gis
(Z17Z7), (Z3Z3) S? GYs

51X - _1=SQX - = (Z2ZS>a (Z3Z9) Szz G5Z,6
(Z12y), (Z327) S7 8§ Gi:G5
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Appendiz A.3. Kitaev [[13, 1, 3]] Surface code

The surface codes [7], known for very high accuracy threshold [18, 15, 18], can efficiently
decode errors on the codewords qubits, mapped to a two-dimensional grid, using nearest-
neighbor parity check operations. The resulting local Stabilizer Measurements can not
only correct less than d. weight errors, but can also decode high-weight errors on the
qubits located sufficiently far apart. In case of High-Weight error-correction, this spatial
non-locality conditions resurfaces with far greater importance with crucial implications.
On one hand, the local Stabilizer Measurement stipulates that the degenerate errors are
located in vicinity to yield the same syndrome. On the other hand, these local errors can
string a chain of faults realizing unwanted logical operation on the code space. Thus,
while Table-A3 enumerates several correctable two-qubit phase-flip errors which can
mutually constitute a Stabilizer operation, Fig-A1l depicts a situation in which a pair
of these errors enacts logical-Z operation on the encoded qubit. This counter example
shows that surface code [[13, 1, 3]] can only correct a subset of two-qubit errors.



(a)

Both (Z,, Z,) and (Z,, Z,,) errors produce

same syndrome S;f =—
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(b)

Chain of Z-Errorsleading to Logical Error
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Figure A1l. (Color online) A pair of co-syndrome two-qubit errors doesnot constitute
Stabilizer operation. Instead, it afflicts logical Z-operation on the codespace. The
counterexample example shows that surface code doesnot correct arbitrary two-qubit
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Figure A2. Noise operator commute-back procedure for estimating error probability
distribution in the noisy Steane CNOT gate. In (a) the noisy CNOT gate operator
e is applied to the encoded state |+) obtained by projecting superpositon state
onto codespace by the projector P. This is equivalent to first applying ¢ to the
superposition state, followed by its projection (by applying P) onto the code-space. We
ascribe this reordering is to an important property of CNOT gates: CNOT(opy, op2)
CNOT(op3,0p3) = CNOT(op1,0p3) CNOT(0p2,0p3) CNOT (op1,0p2) shown in (b).
Afterwards, (b) reduces to (c) since P remains unchanged by the superfluous joint
projection of both operands onto the codespace. Note that P is considered ideal
projection and it is simulated in the classical post-processing, whereas, ¢ is enacted in
quantum hardware
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Figure A3. (Color online) Steane |+) encoding-decoding circuit. Original circuit
(a) contains a CNOT on non-adjacent qubits which requires swapping of qubits. The
equivalent optimized circuit (b) obtained by rearranging gates in the original circuit
and canceling some of these with those in the SWAP operations. It offers significantly
lower gate count compared to that outputted by the Qiskit transpiler. Note that Steane
|—) state can be prepared and Measured by the same circuit except that it phase-flip
all the qubits before Measuring them in X-basis (Hadamard gates followed by Z-basis
Measurement).



