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Introduction

Particle physics is a fairly new branch of physics. It started out in the early 20th century
and is one of the branches on the edge of modern research. Despite huge achievements, there
still are enormous tasks to be done: dark matter and dark energy, super symmetry and string
theory, quantum theory of gravitation, masses of neutrinos, etc. This thesis is concerned with
the last problem — masses of neutrinos. Not too long ago the neutrinos were thought to be
massless, but after confirming neutrino oscillations their masslessness became impossible. The
usual Higgs mechanism does not seem to be suitable, since the masses of neutrinos are very
small as compared to other particles and that implies unnaturally small couplings. In addition,
right-handed neutrinos are decoupled from the Standard Model and not observed, making it hard
to know if the Higgs mechanism is in effect. In general, there are many models trying to solve
not only neutrino related problems, which require a lot of complex computations and the usage
of various software becomes mandatory if one wants to look at the phenomenology of the model.
In the thesis we introduce a plausible solution to the neutrino mass problem, the Grimus-Neufeld
model [1], and look at its implementation using software.

The goal of the thesis is to finish the implementation of the Grimus-Neufeld model started in
the coursework [2] in FlexibleSUSY [3, 4, 5, 6] and SPheno [7, 8], and to perform a comparison
of the two software packages in various aspects of the model.

In Sec. 1 the necessary theoretical background is introduced: basic concepts in particle physics
and the elements of the Grimus-Neufeld model. We also describe the used software packages
more generally. In Sec. 2 we finish implementing the model and briefly describe the process
of doing parameter scans. In Sec. 3 scans in various parts of the model are performed and the
packages are compared.
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1 Review of theory and software

In this section we introduce the relevant topics for understanding the thesis. The larger part
is dedicated to physics: concept of symmetries, properties of mass terms in the Lagrangian, a
brief review of the Standard Model, and a detailed description of the Grimus-Neufeld model,
which is the core component of the thesis. Sections about symmetries, the Standard Model, and
the Grimus-Neufeld model are mostly based on the previously written coursework [2] with some
minor additions as well as some cuts. In the non-physical part the software packages that were
used are briefly introduced.

1.1 Symmetries

With the help of the mathematical formalism of group theory symmetries play a key role in
particle physics. In general, an object is considered to be symmetric if it remains unchanged, or
invariant, under some transformation. In our case that object is the Lagrangian. Via Noether’s
theorem symmetries imply conservation laws and vice versa. The four fundamental forces are
described using gauge fields, which are symmetric under transformations of a specific group.
Therefore, we begin by providing some detail and necessary concepts of symmetries in particle
physics.

In essence, there are two types of continuous symmetries: global and local. Global means
that the transformation is uniform and affects every point in spacetime equally, while local trans-
formations smoothly vary from point to point. Since local transformations are a bit complicated
we first describe the global case.

While the following subsections about symmetries are based on [2], the textbook material
was originally taken from [9] and [10].

1.1.1 Global symmetries

As an intuitive explanation for introducing such symmetries one could think about a global
shift in spacetime. Due to such a shift the physics do not change. Quite similarly, in particle
physics a phase shift is considered for a Lagrangian of a massive complex scalar (boson):

−L = ∂µφ
†∂µφ+m2φ†φ. (1.1.1)

Here, and everywhere else, L is the Lagrangian density, but will be referred to as the Lagrangian
for simplicity. φ is the complex scalar field, the first term in the Lagrangian is the kinetic term
and the second term is the potential term. Consider the transformation:

φ′ → eiαφ,

φ′† → φ†e−iα.
(1.1.2)

α is an arbitrary phase. This transformation is a U(1) transformation, because eiα is an element
of the group of all 1× 1 unitary matrices. We can easily see that under this transformation the
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Lagrangian does not change:

−L′ = ∂µφ
′†∂µφ′ +m2φ′†φ′ = −L. (1.1.3)

We now consider changing the potential term:

m2φ†φ→ λ

(
φ†φ− v2

2

)2

. (1.1.4)

Here v and λ are real constants. With this potential the Lagrangian is still invariant under U(1)

transformations, but now the potential also has an extremum at |φ|2 = v2, which is a minimum.
Expanding the fields around the minimum we get:

φ =
1√
2

(v + ρ+ iσ) (1.1.5)

Here ρ and σ are both real fields that represent the two degrees of freedom. Plugging in equation
(1.1.5) into Eq.(1.1.1) with the new potential and expanding we get:

−L =

(
1

2
∂µρ

†∂µρ+
1

2
∂µσ

†∂µσ

)
+

1

4
λ
(
ρ4 + 4vρ3 + 4v2ρ2 + 4vρσ2 + ρ2σ2 + σ4

)
. (1.1.6)

The procedure of expanding fields around the minimum might seem to not have a very clear
reason at this point. First of all, the altered potential has the famous „Mexican hat“ form and
there is a circle with the radius v, which marks the minimum of the potential. v is also known as
the Vacuum Expectation Value (VEV). Secondly, the Lagrangian no longer has an obvious U(1)

symmetry, though it is still there, therefore, this procedure is called the spontaneous symmetry
breaking. With this procedure we acquire a massive field ρ, we see that from the bilinear term
λv2ρ2. We also get a massless field σ, because terms of higher powers than 2 in ρ and σ

describe interactions. It turns out that by breaking a global symmetry of some group we always
get an amount of massless particles equal to the number of vacuum non-annihilating generators
of that group. Such particles are called Goldstone bosons and the statement is the Goldstone
theorem. Proofs and derivations of the theorem can be found in [11] and [12].

1.1.2 Local symmetries

Requiring the Lagrangian to be invariant under local symmetries is a bit strange at first sight,
but the benefits are immense. We use a similar example to that of the global case. We consider
the Dirac Lagrangian for a fermion field ψ:

L = ψ̄ (iγµ∂µ −m)ψ (1.1.7)

and use the transformation:
ψ′ → eiα(x)ψ. (1.1.8)

Here ψ̄ = ψ†γ0, γµ are the Dirac gamma matrices and α is a function of the 4 spacetime
components x. Unfortunately, the Lagrangian is not symmetric under this transformation since
we get an extra term:

L′ = ψ̄ (iγµ∂µ −m)ψ − ψ̄γµψ∂µα (x) . (1.1.9)
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In order to cancel out this term the covariant derivative together with the additional vector field
Aµ is introduced. The vector field is such that under local U(1) transformation it transforms in
the following way:

Aµ → Aµ −
1

q
∂µα (x) . (1.1.10)

The covariant derivative is:
Dµ = ∂µ + iqAµ. (1.1.11)

Here q is the charge that couples ψ to the field Aµ. With these changes we get the new
Lagrangian which has the same form as the Lagrangian we started with and is invariant under
local U(1) transformations:

LD = ψ̄ (iγµDµ −m)ψ. (1.1.12)

Introduction of covariant derivatives may seem strange at this point, but they do have a
deeper meaning which is geometrical as well as physical. Covariant derivatives transform linearly,
because they have connection terms (or gauge fields) that cancel non-linear terms. For the physical
part, by making the symmetries local or „gauging“ them we have made the jump from inertial
frames of reference to non-inertial frames. Also, with the introduction of a covariant derivative
we have made the form of the equation invariant with respect to the frames of reference. By
making spacetime symmetries, which are external, local we allow the curvature of spacetime. In
analogy, by making internal symmetries, such as U(1), local we also allow non-inertial reference
frames in the additional space of U(1). Geometrically we introduce connection terms (Christoffel
symbols) in the derivative and in this way form a covariant derivative, physically we introduce
gauge fields, Aµ in this case. Gauge fields play the role of force carrying particles and therefore
it makes sense that these fields change the geodesics just like the connection terms.

However, the new gauge field still has a problem: there is no kinetic term, which means that
the field is a constant background and does not change a thing. To account for this, we introduce
the strength tensor:

F µν =
i

q
[Dµ, Dν ] = ∂µAν − ∂νAµ. (1.1.13)

Using the strength tensor to form the kinetic term we get the final Lagrangian:

L = ψ̄ (iγµDµ −m)ψ − 1

4
FµνF

µν . (1.1.14)

By requiring the Lagrangian to be invariant under local symmetry transformations we were
forced to introduce the field Aµ. With this new field we get the Lagrangian of electromagnetism.
As briefly mentioned above, gauge fields represent force carrying particles and so Aµ is the
photon. We also easily see that Aµ is massless since there are no terms bilinear in Aµ. Theories
that generate forces by specifying a Lie Group are called Gauge Theories or Yang-Mills Theories.

As in the case of global symmetries, we also want to break the local symmetry and observe
the results. For the sake of simplicity, we now switch to the Lagrangian of a complex scalar:

L = −
[
(∂µ − iqAµ)φ†

]
[(∂µ + iqAµ)φ]− 1

4
FµνF

µν − V
(
φ†, φ

)
. (1.1.15)
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Here the potential V
(
φ†, φ

)
is of the „Mexican hat“ form in Eq.(1.1.4). Analogically to global

symmetries we write the field around its minimum:

φ =
1√
2

(v + h(x)) . (1.1.16)

Once again v is the Vacuum Expectation Value and h(x) is the perturbation. Both the VEV and
h(x) are real, because we are able to choose eiα(x) in such a way that this holds. Choosing a
specific eiα(x), or more generally a specific gauge transformation, is referred to as „gauge fixing“.
We get:

L =− 1

2
[(∂µ − iqAµ) (v + h)] [(∂µ + iqAµ) (v + h)]− 1

4
FµνF

µν−

− 1

4
λ
[
(v + h) (v + h)− v2

]2
.

(1.1.17)

The sign difference in covariant derivatives is of geometrical meaning which can be found in
[10]. Skipping the tedious expansion we acquire:

L = −1

2
∂µh∂µh−

1

4
4λv2h2 − 1

4
F µνFµν −

1

2
q2v2A2 + Linteractions. (1.1.18)

By analysing the new Lagrangian we can see that we have a real massive scalar field h and
our massless force carrying particle gained mass. Before symmetry breaking we had a complex
scalar field and a massless gauge field. One degree of freedom from the complex scalar turned
into the longitudinal polarisation of Aµ.

By breaking global symmetries we get massless Goldstone bosons and by breaking local
symmetries gauge fields acquire masses and get longitudinal polarisations. It is worth to mention,
that in the case of local symmetry breaking we get as many masses for the gauge fields as we
would have gotten Goldstone bosons if we were to break global symmetries. „Would-be Goldstone
bosons“ are absorbed into gauge fields to give masses.

1.1.3 Electroweak symmetry breaking

In this next and final part on symmetries we use local symmetry breaking to break the
electroweak symmetry and get massive gauge fields for the weak force while keeping the photon
of electromagnetism massless. This section also introduces a Higgs doublet. With foresight it
can be said that Higgs doublets are one of the essential parts in the upcoming discussion of
the Grimus-Neufeld model. In this section we also follow [9] with some minor changes and
comments.

We first begin by motivating our choices. Our goal is to break some specific symmetry in
such a way that we end up with 3 massive bosons, namely W± and Z bosons, and the massless
photon. As a result, the final symmetry we are left with has to be U(1). This particular set up
is already a hint to the Standard Model which is briefly introduced later on. To get this outcome
we need 3 „would-be Goldstone bosons“ to be absorbed into 3 massless bosons, therefore we
need to break 3 generators. One simple and familiar group with 3 generators is SU(2). Since the
final Lagrangian is invariant under U(1), our Lagrangian before symmetry breaking is invariant
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under SU(2) ⊗ U(1). At this point we also require a complex electroweak Higgs doublet. This
doublet holds 4 degrees of freedom. One of them is to become the scalar Higgs, while the other
3 are to be absorbed into the masses of W± and Z.

First of all, we need to construct the covariant derivative for the Higgs doublet. In the very
same way as we did in Sec.1.1.2 we form the covariant derivative by adding gauge fields that
interact with the Higgs, i.e. have non-zero charges of a particular group. We also expand gauge
fields in terms of their generators, as an example:

Aµ = AµaT
a. (1.1.19)

Here T a are the generators, Aµ is some gauge field which is described by a matrix. By doing
this expansion we start treating Aµa as individual fields. Generators of the SU(2) group are the
Pauli matrices:

T a =
1

2
σa (1.1.20)

and the generator of U(1) is:

Y = yH

(
1 0

0 1

)
, (1.1.21)

here yH is the hypercharge. In this case the Higgs doublet has yH = −1
2
assigned. We are now

ready to write down the covariant derivative. Keep in mind that now we are not dealing with a
simple complex scalar, but with a doublet, therefore we have an additional index i.

(Dµφ)i = ∂µφi − i
[
g2W

a
µT

a + g1BµY
]
ij
φj. (1.1.22)

Here summation over a, as well as j, is still assumed, but since these are not Lorentz indices it
does not really matter if both of the indices are raised or lowered. g1 and g2 are the appropriate
coupling constants. Already by the usage of generators we can tell that W a

µ are the SU(2) gauge
fields while Bµ is a U(1) field. Since we know the generators we can easily write down the full
covariant derivative in matrix form:

Dµφ
.
=

(
Dµφ1

Dµφ2

)
=

(
∂µφ1 + i

2

(
g2W

3
µ − g1Bµ

)
φ1 + ig2

2

(
W 1
µ − iW 2

µ

)
φ2

∂µφ2 + ig2
2

(
W 1
µ + iW 2

µ

)
φ1 − i

2

(
g2W

3
µ + g1Bµ

)
φ2

)
. (1.1.23)

The Lagrangian has to have kinetic as well as potential terms:

Lφ = −(Dµφi)
†(Dµφi)− V (φ†, φ). (1.1.24)

We also assume the potential to have the same form as in Eq.(1.1.4):

V (φ†, φ) = λ

(
φ†φ− v2

2

)2

. (1.1.25)

With λ > 0 the minimum is at:
|φ| = v√

2
. (1.1.26)
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Just like we chose our gauge to be real when breaking the local U(1) symmetry, in a similar
fashion we now choose the doublet to be:

φ(x) =
1√
2

(
v + h(x)

0

)
. (1.1.27)

This particular choice is called the unitary gauge and it was first introduced by S. Weinberg
[13, 14]. Now we plug Eq.(1.1.27) into the Lagrangian. Since we are mostly concerned with
mass terms we only write down the relevant part:

Lm = −1

8

(
v 0

)( g2W
3
µ − g1Bµ g2

(
W 1
µ − iW 2

µ

)
g2

(
W 1
µ + iW 2

µ

)
−g2W

3
µ − g1Bµ

)2(
v

0

)
. (1.1.28)

We multiply and get:

Lm = −1

8
v2
[
g2

2|W 3|2 + g2
1|B|2 − 2g1g2WµB

µ + g2
2

(
|W 1|2 + |W 2|2

)]
. (1.1.29)

Now Lm can be easily rewritten in a different matrix form:

Lm = −1

8
v2V T

µ


g2

2 0 0 0

0 g2
2 0 0

0 0 g2
2 −g1g2

0 0 −g1g2 g2
1

V µ. (1.1.30)

Here we have defined Vµ =
(
W 1
µ ,W

2
µ ,W

3
µ , Bµ

)
. In this form it is even easier to see that W 1,2

are already in mass eigenstates and that W 3 and B mix. Also, the sub-matrix which mixes W 3

and B has a determinant of zero and, therefore, one of the eigenvalues is 0. In other words we
get a massless boson. We now redefine the fields (and normalise them) according to the matrix
in Eq.(1.1.28):

W+
µ =

1√
2

(
W 1
µ − iW 2

µ

)
,

W−
µ =

1√
2

(
W 1
µ + iW 2

µ

)
,

Zµ = cos θWW
3
µ − sin θWBµ,

Aµ = sin θWW
3
µ + cos θWBµ.

(1.1.31)

Here θW is the Weinberg angle, or the Weak Mixing angle, and is defined as:

tan θW =
g1

g2

. (1.1.32)

From the definition of θW the expressions for the sine and cosine can be easily derived with the
help of a right triangle. Next we turn to the study of the mass terms of gauge fields. To do that
we rewrite Eq.(1.1.28) in terms of the new fields:

Lm = −1

8

(
v 0

)(√g2
1 + g2

2Zµ g2

√
2W+

µ

g2

√
2W−

µ −
√
g2

1 + g2
2Aµ

)2(
v

0

)
. (1.1.33)
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Multiplying everything we get:

Lm = −v
2

8

(
g2

1 + g2
2

)
ZµZ

µ − v2g2
2

4
W+
µ W

−µ = −M2
WW

+
µ W

−µ − 1

2
M2

ZZµZ
µ. (1.1.34)

The masses are:

MW =
vg2

2
,

MZ =
v
√
g2

1 + g2
2

2
.

(1.1.35)

From these definitions a very nice relation of masses arises:

MW

MZ

=
g2√
g2

1 + g2
2

= cos θW . (1.1.36)

This concludes the mathematical part of electroweak symmetry breaking and we note a few
things. First of all, we have succeeded in retrieving the correct structure of boson masses from
local symmetry breaking: we have three massive bosons corresponding to the weak force and
one massless boson, which is the photon, corresponding to the electromagnetic force. In addition,
the ratio of Z and W± masses allows to determine the weak mixing angle θW . Secondly, the
theory works in two energy regimes. In the high energy regime we have four massless fields
that in essence behave like the photon, after symmetry breaking, in the low energy regime, three
of the four fields gain mass. We now move on to discuss mass terms in more detail.

1.2 Mass terms and mass matrices

So far, we have talked quite a bit about masses of particles and mass terms in the Lagrangian.
At this point, it is appropriate to discuss a few features of mass terms as well as to introduce
the mass matrices and the way to deal with them, since this is important when performing actual
computations. This section mostly contains information found in textbooks on Quantum Field
Theory (QFT)[15].

We introduce the mass matrix by considering the potential for an arbitrary number of scalar
fields and denote the kinetic energy as K and the potential as V :

L = K − V (φ). (1.2.1)

When the potential is at the minimum the first derivative is equal to zero:

∂V

∂φi

∣∣∣∣
φmin

= 0. (1.2.2)

From this we get the minimum conditions and we are able to expand the potential around this
minimum:

V (φ) = V (φmin) +
1

2

∂2V

∂φi∂φj

∣∣∣∣
φmin

(φi − φi,min)(φj − φj,min) + ... (1.2.3)
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At this point we redefine the fields in terms of variations around the minimum φ̃i = φi − φi,min
and see that the second term is bilinear in terms of φ̃:

V (φ̃) = V (φmin) +
1

2

∂2V

∂φi∂φj

∣∣∣∣
φmin

φ̃iφ̃j + ... (1.2.4)

In turn, this means that the coefficient matrix is the mass matrix containing the mass parameters:

Mij =
1

2

∂2V

∂φi∂φj

∣∣∣∣
φmin

. (1.2.5)

We see that in general the matrix is not diagonal and it is impossible to easily read out the masses.
In order to find the masses one needs to diagonalize the mass matrix to get its eigenvalues. As
an example, we used scalar fields (spin 0), but the approach stays the same for other kind of
fields as well.

However, the mass dimensions of fermionic and bosonic fields differ and in turn the mass
dimension of the mass matrix is also different for the respective fields. This comes from
dimensional analysis. First of all, in natural units, where c = 1 and ~ = 1, mass has the
dimension of energy, which is easily seen from

E = mc2 → E = m. (1.2.6)

In these units mass is obviously of dimension [m] = 1, velocities are dimensionless [v] = 0,
which leads to the fact that time and spatial coordinates are of equal dimensions. To find out
the mass, or energy, dimension of spacetime we do the following:

E = ~ω → 2π~
λ
→ 2π

λ
. (1.2.7)

We see that spatial dimensions are of energy dimension [λ] = −1. We also note that derivatives
with respect to spacetime have energy dimension [∂µ] = 1.

To find out the dimensions of fields we are going to analyse the action principle:

S =

∫
d4xL. (1.2.8)

The action S is a power of an exponent in the path integral formulation and it has to be
dimensionless. Since [d4x] = −4, the Lagrangian density has to have energy dimension [L] = 4,
which means that every term in the Lagrangian also has to have dimension equal to 4. Now
we only need to analyse the Lagrangians in Eq.(1.1.1) for bosons and Eq.(1.1.7) for fermions, in
both cases we take their kinetic terms. For bosonic fields we have

[∂µφ
†∂µφ] = 4→ [φ†φ] = 2→ [φ] = 1 (1.2.9)

and for fermionic fields

[ψ̄iγµ∂µψ] = 4→ [ψ̄ψ] = 3→ [ψ] =
3

2
. (1.2.10)

After these evaluations we see that energy dimensions really do differ for bosonic and fermionic
fields. This also leads to the difference in mass matrix dimensions. For boson fields the
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eigenvalues of the mass matrix correspond to masses squared, while for fermion fields the
eigenvalues correspond to masses themselves.

The mass matrices for bosons differ not only in terms of mass dimensions, they also have
different properties as matrices. For example, since the mass term has to be Hermitian, it follows
that the mass matrix for bosons also has to be Hermitian:

Mijφ
†
iφj =

(
Mijφ

†
iφj

)†
= φ†jφi(M

†)ij →Mij = (M †)ij. (1.2.11)

Here we used the property:

φ†iφj =
(
φ†iφj

)†
= φ†jφi. (1.2.12)

For fermions mass terms arise from the Yukawa coupling to the Higgs, as seen in the discussion
about the Grimus-Neufeld model in Sec. 1.4. The important thing is that the Yukawa couplings
are arbitrary and do not have to be real, symmetric or Hermitian as the Hermiticity is ensured by
having hermitian conjugated terms in the Lagrangian [16]. Yet, in order to have real eigenvalues
for the masses one needs to diagonalize a Hermitian matrix. A Hermitian matrix is formed via
simple multiplication:

M = M †M. (1.2.13)

This is all well and good in theory but numerical problems arise when calculations need to be
done and the energy (mass) dimensions of mass matrices are taken into account. In case of
fermions the eigenvalues of matrix in Eq.(1.2.13) correspond to masses squared, which means
that numbers grow rapidly and might become too big or too small for the precision used in
computers. This problem emerges in Sec. 2.2, where we discuss implementation in SPheno, but
we move on to introduce the Standard Model.

1.3 The Standard Model

The Standard Model (SM) is the most successful theory and has the best agreement with
experimental data [17]. The SM describes electromagnetic, weak and strong interactions while
only excluding gravity at this point. The SM also provides fundamental building blocks of our
universe, organized in the quarks, the leptons, the gauge bosons, and the Higgs boson. The quark
sector contains quarks, which are the constituents of particles such as the proton and neutron.
Leptons are the particles that do not interact strongly and in the lepton sector there are neutrinos
together with their charged counterparts, such as the electron. The Gauge sector contains particles
that mediate forces. There are 8 gluons that mediate the strong force, W± and Z bosons that
mediate the weak force and the photon which mediates the electromagnetic force. The newest
block is the scalar sector and contains the Higgs boson, which gives masses to the particles. The
quark and lepton sectors contain half-integer spin particles (fermions), while the scalar and gauge
sectors hold particles with integer spins (bosons). The two former sectors are also arranged into
3 generations. These sectors are summarised in Table 1 and Table 2.

In table 1 we have adopted the notation from [9]. In SU(3)C and SU(2)L columns the
numbers denote representations, for example, 1 means that the field is a singlet and does not
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Table 1. Summary of non-force-carrying particles in the SM [17]

Particle content Generations SU(3)C SU(2)L U(1)Y

H 1 1 2 −1
2

νR 3 1 1 0

uR 3 3̄ 1 −2
3

dR 3 3̄ 1 1
3(

νL

eL

)
3 1 2 −1

2(
uL

dL

)
3 3 2 1

6

transform, while 2 and 3 denote doublets and triplets. Bold numbers simply denote that the
representation’s dimension matches the group’s dimension and the bar tells about the complex
conjugate representation. In case of U(1)Y column the numbers simply denote the hypercharge.

Table 2. Summary of the gauge sector in the SM [17]. Masses are given in terms of GeV, the
electromagnetic charge in multiples of the electron charge.

Gauge sector
Force Group Particles Mass EM Charge Isospin Hypercharge Color charge
EM U(1)e γ 0 0 0 0 0

Weak SU(2)L
W± 80.385 ±1 ±1 0 0

Z 91.1876 0 0 0 0

Strong SU(3)C 8× g 0 0 0 0 SU(3) octet

The Standard Model is a chiral theory, meaning that fields of different handedness couple
differently. In the high energy regime the SM Lagrangian is invariant under SU(3)⊗ SU(2)L ⊗
U(1)Y transformations. The index Y denotes the hypercharge. The index L in SU(2)L means
„Left“ and in the high energy regime the electro-weak force couples only to the left-handed
fields. This difference is expressed in the mathematical description of particles. Left handed
particles are arranged into doublets while right-handed particles are written as singlets:

lα =

(
ναL

eαL

)
, qα =

(
uαL

dαL

)
, eαR, u

α
R, d

α
R,

α = 1, 2, 3.

(1.3.1)

α is the generation index, l is the left-handed lepton doublet and q is the left-handed quark
doublet. eR, uR, dR , with the generation index suppressed, are the right-handed charged lepton,
up type quark, and down type quark singlets, respectively. The SM does not yet include right-
handed neutrinos, because they were thought of as massless, completely decoupled and therefore
irrelevant. With the discovery of neutrino oscillations the problem of their mass incorporation is
still an open question.
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In the low energy regime the electro-weak symmetry SU(2)L ⊗ U(1)Y is broken into the
U(1)e symmetry of electromagnetism. The e index denotes electric charge. The Higgs mechanism
enables right and left handed particles to mix and in this way the weak force is able to affect
the right-handed counterparts of left-handed particles.

1.4 The Grimus-Neufeld model

After introducing a more general physics background we are now ready to start discussing
the Grimus-Neufeld model. Neutrinos were treated as massless until the discovery of neutrino
oscillations, which prove that they are massive. Yet, the source of neutrino masses is not
conclusive at this point. Additionally, the masses are very small compared to other particles
(e.g., the electron neutrino is lighter than 2 eV, while the electron’s mass is ≈ 511 keV [17]),
hence why they were held massless. The Grimus-Neufeld model aims to explain neutrino masses
and why they are so small. The model uses a couple of extensions and mechanisms beyond the
SM, but is not supersymmetric and kept as simple as possible. The extensions are a second
Higgs doublet and a single heavy right-handed Majorana neutrino. These extensions use the
seesaw mechanism and 1-loop corrections to explain small masses. In the following sections all
of these components are discussed in more detail and the discussion is based on the course work
[2] with the additional introduction of theoretical and physical parameters.

1.4.1 Additional Higgs doublet

We start by introducing an additional complex scalar Higgs doublet. This additional doublet
has identical properties as the one in the SM and now the two of them are denoted as:

φa =

(
φ+
a

φ0
a

)
. (1.4.1)

Here a can take the values 1 and 2, φ+ denotes the charged part and φ0 denotes the neutral
part of the doublet. It is important to form the Higgs potential. We do this by considering that
the potential, as well as the Lagrangian, has to be a scalar, operators of mass dimension > 4

are suppressed and that the mass dimension of scalar fields is 1. Having that in mind the most
general potential of the Higgs doublets is [18]:

V = Yab̄φ
†
āφb + Zab̄cd̄

(
φ†āφb

)(
φ†c̄φd

)
. (1.4.2)

Parameters of the potential have the following symmetries:

Yab̄ = (Yāb)
?,

Zab̄cd̄ = Zcd̄ab̄ = (Zābc̄d)
?.

(1.4.3)

This potential is invariant under SU(2) and U(1) gauge transformations:

φa → φ′a = exp

[
iyφφB +

i

2
σkφkW

]
φa. (1.4.4)
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Here yφ is the hypercharge generator, σk are the Pauli matrices, φB and φW are the gauge
parameters of U(1)Y and SU(2)L, respectively. Hypercharge yφ = 1

2
is assigned to the doublets.

The potential is also invariant under the Higgs doublet symmetry:

φa → φ′a = Uab̄φb with Uab̄ ∈ U(2). (1.4.5)

This Higgs doublet symmetry is valid if the parameters transform as tensors:

Yab̄ = Uac̄Ycd̄U
†
db̄

and Zab̄cd̄ = UaēUb̄fZef̄gh̄U
†
ḡcU

†
hd̄
. (1.4.6)

Under electroweak symmetry breaking Higgs doublets acquire VEVs and give mass to particles.
In general, both of the doublets can have different VEVs that have the constraint:

vSM =
√
v2

1 + v2
2. (1.4.7)

Yet, in our case we choose a basis where only one of the doublets acquires a non-zero VEV:

v1 = vSM = v and v2 = 0. (1.4.8)

This particular basis is called the Higgs basis. In this basis we rewrite our doublets and leave
the „would-be-Goldstone“ bosons without rotating them away:

H1 =
1√
2

(
G+
r + iG+

i

v + h+ iG0

)
and H2 =

1√
2

(
H+
r + iH+

i

H0
r + iH0

i

)
. (1.4.9)

Here we wrote all of the Goldstones in the first doublet. At this point, we can say that the two
complex scalar doublets have 8 degrees of freedom and according to Goldstone’s theorem we
are breaking the SU(2) symmetry which has 3 generators, hence the number of massless gauge
bosons gaining mass in our case. In SM we had only one doublet and only one massive scalar
boson remained, now we have two doublets and 5 massive non-gauge bosons remain. In other
words, the first doublet is responsible for the „would-be-Goldstone“ bosons, but since we have
an additional doublet there are four more physical Higgses: A, H and H±. By assigning a zero
VEV to the second doublet we are able to distinguish doublets and we are also fixing the Higgs
doublet symmetry of the potential to a rephasing symmetry [18]:

H1 → H ′1 = H1 and H2 → H ′2 = eiθ23H2. (1.4.10)

After going to a different basis the coefficients also transform and are functions of the old
coefficients. We will explicitly name the coefficients later on.

Kinetic terms of the Higgs doublets are assumed and will not be discussed, because they are
not relevant to the work.

At this point the purpose of an additional doublet might and should be unclear, but this is
resolved after discussing the Majorana neutrino.
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1.4.2 Heavy Majorana neutrino

As mentioned previously the model has a heavy neutrino, which is chosen to be a Majorana
particle. We note that these particles have a single fermionic degree of freedom since we want
the least amount of degrees of freedom possible to keep things simple. We incorporate the
Majorana neutrino and add the Majorana mass term:

LM = −1

2
MRN̄RN

(c̄)
R + h.c. =

1

2
MRN̄RCN̄T

R + h.c. (1.4.11)

Here NR is the right chiral projection of the Majorana field N , C is the charge conjugation
matrix. Details about Majorana particles and C can be found in [2], [9], and [19]. Here we have
only used this definition:

N (c̄) = γ0CN?. (1.4.12)

It is important to note, that by writing the mass term in this way we are choosing only the
right-handed part of N to couple to the neutral fermions. The SM is a left chiral theory and
without Yukawa couplings right-handed particles would completely decouple. This is emphasised
in following sections.

By using the Majorana constraint it is possible to rewrite this Majorana mass term like a
Dirac mass term:

LM =
1

2
MRN̄RCN̄T

R + h.c. = −1

2
MRN̄RNR + h.c. =

− 1

2
MR

(
N̄PLN + N̄PRN

)
= −1

2
MRN̄N.

(1.4.13)

Here PL,R are the projection operators that give the left-handed or right-handed part of a spinor:

PL,R = 1∓ γ5 with γ5 = γ0γ1γ2γ3. (1.4.14)

One last thing to say before moving on to the actual interplay of the mentioned elements is
the necessity of a heavy neutrino. Phenomenologically we do not observe this neutrino, because
it is heavy and beyond our energy scale. In terms of theory, this heavy neutrino is integrated
out and gives an effective description. The big mass of a Majorana neutrino is one of the key
factors in the seesaw mechanism to which we now turn.

1.4.3 Seesaw mechanism

The seesaw mechanism works by coupling a heavy particle to the presumably light particles,
acquiring the mass matrix and then diagonalizing it. We start by writing down the relevant terms
from the Lagrangian:

−LM+D =
1

2
MRN̄PLN

(c̄) +
1

2
MRN̄

(c̄)PRN +
(
ν̄Lj(MD)jPRN + N̄(M †

D)kPLνLk

)
. (1.4.15)

The first two terms essentially are the Majorana mass term from Eq.(1.4.13), while the second
term comes from the coupling of left-handed neutrinos to the Majorana neutrino. With foresight,
it can be mentioned that the second term is from the Yukawa couplings, that couple the Higgs
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to left-handed and right-handed fermions and gives a Dirac mass term, when the Higgs acquires
a vacuum expectation value. (MD)k come from Yukawas and the VEV and are the mass
parameters of light neutrino flavour states. We also state that the Majorana neutrino couples to
the superposition of light neutrinos and because of this coupling we will be able to obtain the
neutrino mixing matrix and their masses. To get the mixing matrix we rewrite our spinors in
Weyl (chiral) basis in terms of two component Weyl spinors. The Majorana field is:

N =

(
χN

ε̄χ?N

)
(1.4.16)

and the chiral neutrino fields are:

νk =

(
χk

0

)
and ν̄k =

(
0 χ†k

)
. (1.4.17)

Here ε/ε̄ is the spinor metric defining the Lorentz invariant product of two left/right chiral spinors.
In this basis the charge conjugation matrix is given by:

γ0C = ηCγ
2 =

(
0 iσ2

iσ̄2 0

)
=:

(
0 ε

ε̄ 0

)
. (1.4.18)

We can choose the phase ηC so that the spinor metrics ε are real. In Weyl basis we choose
ηC = ±i and get ε̄ = −ε, from antisymmetry relation εT = −ε we also get ε̄T = ε and ε · ε = −1.
We note that we write ε instead of iσ2 simply because we have chosen a specific representation.
With this we can check that N fulfils the Majorana condition with N (c̄):

N (c̄) =

(
0 ε

ε̄ 0

)(
χ?N

ε̄χN

)
=

(
εε̄χN

ε̄χ?N

)
=

(
χN

ε̄χ?N

)
= N. (1.4.19)

We can now expand the neutral fermion mass terms in Eq.(1.4.15):

−LM+D =
1

2
MR

(
χTNεχN + 0

)
+

1

2
MR

(
0 + χ†N ε̄χ

?
N

)
+
(

0 + χ†j(MD)j ε̄χ
?
N + χTNε(M

†
D)kχk + 0

)
=

1

2

(
MRχ

T
NεχN + (M?

D)kχ
T
Nεχk + (M?

D)j χ
T
j εχN

)
+

1

2

(
MRχ

†
N ε̄χ

?
N + (MD)k χ

†
N ε̄χ

?
k + (MD)j χ

†
j ε̄χ

?
N

)
=

1

2
[MR(χNχN) + (M?

D)k(χNχk) + (M?
D)j(χjχN)]

+
1

2

[
MR(χ?Nχ

?
N) + (MD)j(χ

?
jχ

?
N) + (MD)k(χ

?
Nχ

?
k)
]
.

(1.4.20)

Where we took care of the antisymmetric nature of fermion fields with respect to swapping fields
by using properties of ε:

(χNχj) = χTNεχj =
(
χTNεχj

)T
= −χTj εTχN = χTj εχN = (χjχN). (1.4.21)
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We can rewrite Eq.(1.4.20) to get a clear view of the mass matrix:

−LM+D =
1

2


χ1

χ2

χ3

χN


T

ε


0 0 0 (M?

D)1

0 0 0 (M?
D)2

0 0 0 (M?
D)3

(M?
D)1 (M?

D)2 (M?
D)3 MR



χ1

χ2

χ3

χN



+
1

2


χ?1

χ?2

χ?3

χ?N


T

ε̄


0 0 0 (MD)1

0 0 0 (MD)2

0 0 0 (MD)3

(MD)1 (MD)2 (MD)3 MR



χ?1

χ?2

χ?3

χ?N

 .

(1.4.22)

At this point we reinforce the choice of a Majorana neutrino once again. If we were to add a
Dirac particle, the mass matrix would be larger due to the additional independent spinor in a
Dirac bi-spinor. Also, we would not be able to reproduce the upcoming seesaw relations, because
the bottom right corner of the mass matrix would be zero.

To find masses of the neutrinos we have to diagonalize the mass matrix. With foresight,
we can already tell that the mass matrix has rank 2 and that means that only two of the
four eigenvalues are non-zero. We also want to get the neutrino mixing matrix and not just
the eigenvalues of the mass matrix, to do so we start by defining the Weyl spinors in mass
eigenstates:

ξa = Uajχj + UaNχN . (1.4.23)

This way we also get the inverse transformation:

χj = U?
ajξa and χN = U?

aNξa. (1.4.24)

Inserting these inverse transformations into Eq.(1.4.20) and requiring the mass terms to be
diagonal we get:

−LM+D =
1

2
ξTa εξb

(
U?
aNM

?
RU

?
bN + U?

aN(M?
D)kU

?
bk + U?

aj(M
?
D)jU

?
bN

)
+

1

2
ξ†aεξ

?
b (UaNMRUbN + Uaj(MD)jUbN + UaN(MD)kUbk)

=
1

2
m?
cξ
T
a εξb +

1

2
mcξ

†
aεξ

?
b .

(1.4.25)

We also require the masses to be real:

m?
c = mc. (1.4.26)

From this we get the seesaw condition:

UaNMRUbN + Uaj(MD)jUbN + UaN(MD)kUbk = maδab. (1.4.27)

We note that the Dirac mass parameters (MD)k can be renamed to (MD)1 = (MD)e, (MD)2 =

(MD)µ, (MD)3 = (MD)τ , since these neutrino flavour states are already defined by charged
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fermion mass eigenstates. With this slightly changed notation we can rewrite the seesaw condition
in matrix form:

(
Uae Uaµ Uaτ UaN

)


0 0 0 (MD)e

0 0 0 (MD)µ

0 0 0 (MD)τ

(MD)e (MD)µ (MD)τ MR


(
Ube Ubµ Ubτ UbN

)T

=
[
U(ν)M(ν)U

T
(ν)

]
ab

= m̂ab =


m1 0 0 0

0 m2 0 0

0 0 m3 0

0 0 0 m4

 =


0 0 0 0

0 0 0 0

0 0 m3 0

0 0 0 m4

 .

(1.4.28)

By rewriting Eq.(1.4.28) like U(ν)M(ν) = m̂U?
(ν) we are able to get conditions for elements of the

matrix U(ν):

U1N(MD)e = U1N(MD)µ = U1N(MD)τ = U2N(MD)e = U2N(MD)µ = U2N(MD)τ = 0, (1.4.29)

which tells us that U1N = U2N = 0. We also get:

U1e(MD)e + U1µ(MD)µ + U1τ (MD)τ = U2e(MD)e + U2µ(MD)µ + U2τ (MD)τ = 0 (1.4.30)

and this tells us that the vectors U1j , U2j and ((MD)j,MR) are orthogonal. Orthogonality of
U1j and U2j follows from the unitarity of U(ν), since both of these vectors belong to the same
eigenvalue of 0.

Because the components of U1N and U2N are equal to 0 and the unitarity of matrix U(ν)

requires |UjN | = 1 we can parametrize this vector in the following way:

U3N = eiα3 sin θ = η3s and U4N = eiα4 cos θ = η4c. (1.4.31)

With this parametrization we rewrite U(ν)M(ν) and get:
U1e U1µ U1τ 0

U2e U2µ U2τ 0

U3e U3µ U3τ η3s

U4e U4µ U4τ η4c

M(ν) =


0 0 0 0

0 0 0 0

η3s(MD)e η3s(MD)µ η3s(MD)τ (UM)34

η4s(MD)e η4s(MD)µ η4s(MD)τ (UM)44

 . (1.4.32)

With abbreviations:

(UM)34 = U3e(MD)e + U3µ(MD)µ + U3τ (MD)τ + η3sMR,

(UM)44 = U4e(MD)e + U4µ(MD)µ + U4τ (MD)τ + η4cMR.
(1.4.33)

We now solve m̂U(ν) using Eq.(1.4.32) and get:

m3U
?
3j = η3s(MD)j and m4U

?
4j = η4c(MD)j. (1.4.34)

Plugging these relations into abbreviations (UM)34 and (UM)44 we get:

(UM)34 = η?3s
m2

D

m3

+ η3sMR,

(UM)44 = η?3c
m2

D

m4

+ η4cMR.

(1.4.35)
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Here we have defined:
m2

D = |(MD)e|2 + |(MD)µ|2 + |(MD)τ |2. (1.4.36)

We assume the hierarchy m3 � m4 ∼MR with which Eq.(1.4.35) can be solved if η2
3 = −1 and

η2
4 = 1. The masses that we get are:

m3,4 =
1

2

[
∓MR +

√
M2

R + 4m2
D

]
(1.4.37)

and produce the usual seesaw relations:

m3m4 =
1

4

[
−M2

R + (M2
R + 4m2

D)
]

= m2
D and m4 −m3 = MR. (1.4.38)

Using the unitarity of U(ν) as well as the seesaw relations we determine the seesaw angle θ

which was introduced in Eq.(1.4.31):

1 = |U3e|2 + |U3µ|2 + |U3τ |2 + s2 = s2m
2
D

m2
3

+ s2 = s2m4 +m3

m3

,

1 = |U4e|2 + |U4µ|2 + |U4τ |2 + c2 = c2m
2
D

m2
3

+ c2 = c2m4 +m3

m4

.

(1.4.39)

The solutions are:

c2 = cos2 θ =
m4

m4 +m3

and s2 = sin2 θ =
m3

m4 +m3

. (1.4.40)

These solutions allow to rewrite U3j and U4j:

U3j = ic
s

c

(M?
D)j
m3

= ic

√
m3√
m4

(M?
D)j
m3

= ic
(M?

D)j
mD

and U4j = s
(M?

D)j
mD

. (1.4.41)

We can finally write down our neutrino mixing matrix:

U(ν) =


U1e U1µ U1τ 0

U2e U2µ U2τ 0

ic
(M?

D)e
mD

ic
(M?

D)µ
mD

ic
(M?

D)τ
mD

−is

s
(M?

D)e
mD

s
(M?

D)µ
mD

s
(M?

D)τ
mD

c

 ≈


U1e U1µ U1τ 0

U2e U2µ U2τ 0

ic
(M?

D)e
mD

ic
(M?

D)µ
mD

ic
(M?

D)τ
mD

0

0 0 0 1

 . (1.4.42)

Here we neglected the terms with sine of θ and approximated the cosine to 1. With this
approximation we get a block diagonal matrix, which tells us that the light states do not mix
with the Majorana neutrino. The bigger block is also the traditional neutrino mixing matrix - the
UPMNS [20, 21] matrix. This 0th order seesaw approximation also relates the Dirac mass term
with the third row of the neutrino mixing matrix U(ν).

Looking back at the diagonalized mass matrix, we restate that we still have two degenerate
massless states. We are going to deal with this in the following section where we discuss 1-loop
corrections.



21

1.4.4 1-loop corrections

As briefly mentioned above, we use one loop corrections to generate masses to the yet
massless neutrino states. Going into full detail about 1-loop corrections is beyond the scope of
this thesis and mostly simple explanations and quotation of results [1] are presented.

In essence, there are two types of Feynman diagrams, tree and loop. In most cases tree
level diagrams are the basis, or lowest order, diagrams for a certain process that do not contain
any loops, while loop diagrams describe corrections to that process. They are considered to
be corrections, because higher powers of coupling constants arise as there are more vertices in
Feynman diagrams. In more technical terms, loop diagrams correspond to higher order terms of
the series expansion of the path integral. Though, even being called corrections, these terms do
not necessarily have contributions smaller than tree level terms.

As a well-known example, vacuum polarization can be mentioned. It is impossible to measure
the real electric charge of the electron due to electron positron pairs being created by the
propagating photon. The electron-positron pairs are the loops in the photon propagation diagram
and screen the real charge of the electron. Loop corrections do not only screen the electron or
give a more accurate branching ratio, but can also give corrections to masses. In the case of the
Grimus-Neufeld model the base mass is 0 and loop corrections actually generate the mass.

We move on to indicate the mechanism by which the degenerate neutrinos are distinguished in
the Grimus-Neufeld model [1]. The key element to this kind of mass generation are the Yukawa
couplings. Yukawas allow interactions that couple bosons and fermions. In our model each of
the Higgs doublets have their own Yukawas that couple the left handed doublets to right-handed
singlets. In fact, after electroweak symmetry breaking charged fermions acquire masses due to
these terms. The Yukawa terms that produce the fermionic mass terms are:

−LD1 = l̄0jφaY
ā
jke

0
Rk + l̄0j φ̃āỸ

a
j N + h.c. (1.4.43)

Here j and k are generation indices. We have ignored terms with quarks and the 0 superscript
indicates that the fields are not in their mass eigenstates. We also used the definition of an
adjoint doublet:

φ̃ā = εφ?a =

(
0 1

−1 0

)(
(φ+

a )?

(φ0
a)
?

)
=:

(
φ0?
ā

−φ−ā

)
. (1.4.44)

Since the Lagrangian is invariant under the Higgs doublet symmetry the Yukawa couplings also
have to transform under the same symmetry:

Ỹ a
jn → Ỹ a′

jn = Uab̄Ỹ b
jn and Y ā

jn → Y ā′
jn = Y b̄

jnU
bā. (1.4.45)

To fix the Yukawas we explicitly choose the Higgs basis from Sec.1.4.1. After the first Higgs
doublet acquires the VEV we get the fermionic mass terms (without quarks once again):

−LD1|Ha→0 = − v√
2

(
ē0

LjY
1̄
jke

0
Rk + ν̄0

LjỸ
1
j N + h.c.

)
. (1.4.46)

As we can see, since the second doublet does not acquire a VEV, the Yukawa couplings to the
second doublet do not play a role in mass terms. In Eq.(1.4.46) we know we have mass terms,
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but the mass matrix is not diagonal at this point and we want to rewrite these terms in mass
eigenstates. To do so we decompose the mass matrix of the charged leptons:

(Me)jl :=
v√
2
Y 1̄
jl = U eL†

jk diag (me,mµ,mτ )k U
eR
kl (1.4.47)

and redefine the fermion fields:

e0
Lj = U eL†

jk eLk , e0
Rj = U eR†

jk eRk and ν0
Lj = U eL†

jk νLk. (1.4.48)

Inserting these into relations into Eq.(1.4.46) we get:

−LD1 |Ha = mek (ēLkeRk + ēRkeLk) +

(
v√
2
ν̄LmU

eL†
mj Ỹ

1
j N + h.c.

)
. (1.4.49)

Here mek is the diagonal charged lepton mass matrix. With these terms we can see how to
define the coupling of neutral fermions to the first doublet already with a hint from Eq.(1.4.15):

Ỹ 1
j = U eL

jk

√
2

v
(MD)k = U eL

jk (Y
(1)
N )k. (1.4.50)

At this point we have a very good hint on how to define the Yukawa coupling to neutral fermions
of the second Higgs doublet as well:

Ỹ 2
j = U eL

jk (Y
(2)
N )k. (1.4.51)

Now we are about to parametrize the Yukawa couplings to the neutral fermions, but before that
we restate our neutrino mixing matrix for clarity:

U(ν) =


U1e U1µ U1τ 0

U2e U2µ U2τ 0

ic
(M?

D)e
mD

ic
(M?

D)µ
mD

ic
(M?

D)τ
mD

−is

s
(M?

D)e
mD

s
(M?

D)µ
mD

s
(M?

D)τ
mD

c



=


U1e U1µ U1τ 0

U2e U2µ U2τ 0

ic v√
2

(Y
?(1)
N )e
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ic v√
2

(Y
?(1)
N )µ
mD

ic v√
2

(Y
?(1)
N )τ
mD

−is

s v√
2

(Y
?(1)
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mD

s v√
2

(Y
?(1)
N )µ
mD

s v√
2

(Y
?(1)
N )τ
mD

c

 .

(1.4.52)

According to the paper by Grimus and Neufeld [1], with one loop corrections only one additional
neutrino gets a mass, while the other of the two degenerate neutrinos remains massless. Having
that in mind, we choose our first neutrino to remain massless after loop corrections. Since it
remains massless the second Higgs doublet should not couple to it and we can write down the
equality:

U1e(Y
(2)
N )e + U1µ(Y

(2)
N )µ + U1τ (Y

(2)
N )τ = 0. (1.4.53)

Using the unitarity of the neutrino mixing matrix we can express the Yukawa of the second
Higgs doublet to neutral fermions as a linear combination of two other orthonormal vectors:

(Y
(2)
N )k := dU2k + d′U3k. (1.4.54)
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Here 0 < d ∈ R and d′ ∈ C are free parameters in the Yukawa coupling.
Now we merely quote the results from Grimus and Neufeld[1]: after diagonalizing the matrix

contribution from one loop diagrams we get a mass contribution to the second, previously
massless, state which is proportional to d2. Eq.(4.9) in [1]:

M̂ (1)
ν = diag(0, |µ|d2,m3,m4). (1.4.55)

Here µ is a function describing the loop contribution. We see, that we were able to break the
degeneracy of the two massless states by generating mass for one of the neutrinos by 1-loop
corrections.

1.4.5 Recap of the model

Before discussing parameters of the model we do a brief recap and mention the main ideas.
The Grimus-Neufeld model has a heavy Majorana neutrino and two Higgs doublets. Together
with the Majorana neutrino a Majorana mass term is added to the Lagrangian. This heavy
neutrino couples to a superposition of SM neutrinos with the help of Yukawa couplings from
the Higgs doublets. Only one of the Higgs doublets gets a VEV and generates masses at tree
level. Rewriting the Majorana mass term together with the Dirac mass terms that couple the
light neutrinos with the heavy Majorana neutrino we get the non-diagonal mass matrix. By
diagonalizing the matrix we get two massless and two massive states via the seesaw mechanism.
At this point the second Higgs doublet and its Yukawa couplings come into play. Loop corrections
are proportional to Yukawa couplings and if the Yukawas of first and second doublet are not
aligned we are able to generate mass for one of the massless neutrinos.

1.4.6 Theoretical and physical parameters in the model

In order to compare the results of packages we want to do parameter scans, therefore in this
section the parameters are introduced. First of all, we want to make a distinction between theoret-
ical and physical parameters. Theoretical parameters are in essence parameters of the Lagrangian,
for example, Yukawa couplings, mass parameters and parameters of the Higgs potential. On the
other hand, physical parameters are such as masses of observed particles. Software packages take
theoretical parameters as input and expressions relating physical and theoretical parameters are
needed to do scans over physical parameters. We do have such expressions at tree level for the
Higgs sector and at 1-loop level for neutrinos from private discussion with the supervisor [22].
Since showing all of the derivations is simply too much, we only list the parameters and make
a few comments concerning the steps taken to arrive at the expressions.

We begin by listing the theoretical part, which at this point should be more or less clear:

• Yukawa couplings to neutrinos

• All the Zabcd parameters of the Higgs potential, that are reduced to 7 parameters in the
real case and to 10 in the complex case instead of 16
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• The Y22 parameter in the Higgs potential, which is denoted as M222 in the code because it
is the mass parameter squared

• Majorana mass parameter

• Yukawa couplings to quarks

• Phase of the second Higgs doublet

We note that not all of the Lagrangian parameters have been listed, since they are related via
tadpole equations, which are given by the minimum condition in Eq.(1.2.2). Tadpole equations
at tree level give these relations:

Y11 = −v
2Z1111

2
(1.4.56)

and
Y12 = −v

2Z1112

2
. (1.4.57)

Yukawa couplings to leptons, the vacuum expectation value and coupling constants are missing
from the parameter list, since they are fixed by the matching to the Standard Model. In addition
to the parameters that we do not put in, we also have parameters that are not interesting at the
moment. Since in the Grimus-Neufeld model we are mainly interested in the masses of neutrinos
we do not scan over Yukawa couplings to quarks and leave them constant. Also, since the phase
of the second Higgs doublet is not physical we simply set it to 0, which simplifies expressions
and calculations.

We now also list the physical parameters:

• Neutrino data [23]: mass squared differences and the measured PMNS matrix

• Masses of yet unobserved Higgses: mH, mA and mH±

• Fixed mass of the observed Higgs mh

• Mixing angle θ12 between the lightest and heavier scalar Higgses and the mixing angle θ13

between the light scalar and pseudo scalar Higgses

In our case normal mass hierarchy is assumed and we also have one massless neutrino because
only 1-loop corrections are used, therefore mass differences squared give masses of the 2 heavier
neutrinos:

m̃2 =
√

∆m2
atm and m̃3 =

√
∆m2

atm + ∆m2
sol. (1.4.58)

Here tildes indicate that these are loop corrected and not tree level masses, ∆m2
atm and ∆m2

sol

correspond to atmospheric and solar neutrino data. The masses that we get for the neutrinos are
as follows:

m̃2 = 8.695× 10−12 GeV

m̃3 = 5.124× 10−11 GeV.
(1.4.59)

For the PMNS matrix we set the possible phase to 0 due to large uncertainties.
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To relate Higgs masses to the Higgs potential we have tree level relations that come from
diagonalizing the Higgs mass matrix. In order to leave the possibility to have mixing of the
pseudo scalar Higgs A to the lightest Higgs we allow the parameters to be complex, which
means that we have three additional parameters coming from the imaginary parts. Because of
this choice we have a few unconstrained parameters since the Higgs mass matrix provides a
limited number of relations. The known relations are as follows:

Z1111 =
c2

12c
2
13m

2
h + s2

12c
2
13m

2
H + s2

13m
2
A

v2
, (1.4.60)

Z2112 =
c2

12c
2
13m

2
h + s2

12c
2
13m

2
H + s2

12 (m2
h + s2

13m
2
H) + c2

13m
2
A − 2mH±

v2
, (1.4.61)

Re(Z2121) =
c2

12 (−s2
13m

2
h +m2

H) + s2
12 (m2

h − s2
13m

2
H)− c2

13m
2
A

v2
, (1.4.62)

Im(Z2121) =
2c12s12s13 (−m2

h +m2
H)

v2
, (1.4.63)

Re(Z1112) =
c12c13s12 (m2

h −m2
H)

v2
, (1.4.64)

Im(Z1112) =
c13s13 (−c2

12m
2
h − s2

12m
2
H +m2

A)

v2
. (1.4.65)

Here c12 and s12 are shorthand notations for cos(θ12) and sin(θ12). Analogically we have the
same notation for the pseudo scalar Higgs A and lightest Higgs h mixing angle θ13. At all
times θ13 is set to 0 and we immediately see that the imaginary parts become equal to 0. These
parameters are plotted in Fig. 1 for a specific set of masses as a dependence on the mixing angle
θ12. The unconstrained parameters are: Z2222, Z2211, Z2212, real and imaginary parts of Z2212.
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Figure 1. Dependence of known quartic couplings Zabcd on the mixing
angle θ12 with mh = 125.09 GeV, mH = 450 GeV, mA = 350 GeV,

mH± = 400 GeV, and v = 246 GeV

The mass matrix of the Higgses provides not only some of the quartic couplings, but also
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the Y22, or M222, parameter:

M222 = m2
H± −

v2Z2211

2
. (1.4.66)

For the neutrino sector the PMNS matrix and mass differences have to transform into the
Yukawa couplings to the Higgs doublets. Already in Sec.(1.4.4) we saw that the Yukawa coupling
to the first Higgs doublet is related to Dirac mass parameters and the Yukawa coupling to the
second Higgs doublet is parametrized with the help of d and d′. Yet, it is not so simple as the
parametrization is done at 1-loop level, these parameters depend on the Higgs sector as well as
on the neutrino sector and in turn they become huge functions of masses and mixing angles.
During calculations d′ is parametrized as:

d′ = |d′| exp [iφ] . (1.4.67)

The absolute value of d′ not only depends on the phase φ, but also involves dealing with a fourth
order polynomial during every calculation. The polynomial has 4 solutions, which we have to
filter since |d′| has to be real, positive and we also limit it to be < 1. d is a bit more simple
and has a defined expression:

d2 =
v2m̃2m̃3

m2
D|f1f3 + f 2

2 |
. (1.4.68)

Here f1, f2 and f3 are functions depending on physical input, tildes over masses of the neutrinos
denote that these are the measured masses. m2

D comes from Eq.(1.4.38), but since this is no
longer tree level we have an additional parameter λD to account for that:

m2
D → m2

D = λDm̃3m̃4. (1.4.69)

In essence m2
D is a free parameter, but it should be similar to the tree level relation and therefore

we limit λD to range 0.5 < λD < 1.5.
One other change that arises due to an additional massive neutrino after loop corrections is

the relation of the neutrino mixing matrix to the measured PMNS matrix:

U †ab = V PMNS
ab → U =

(
V PMNSRT

)†
. (1.4.70)

Here R is the matrix used to rotate the tree level mass eigenstates into the new and loop corrected
mass eigenstates. R does not affect the massless and heaviest states. This rotation matrix is
parametrized by one angle and three phases and their expressions in terms of physical parameters
become quite complicated. Since writing out huge equations will not give much of insight, we
only mention that some of the values cannot be uniquely determined and can differ by a sign.
On the other hand, quite often parameters get squared and the non-uniqueness with respect to
the sign can be fairly safely ignored.

This concludes our discussion of the Grimus-Neufeld model.

1.5 Software

In this final introductory section we mention the more general background of software used
in particle physics and specify the packages that we have used in the thesis.
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We begin by stating their purpose: software is phenomenology (mostly LHC phenomenology)
oriented and is created to speed up the process of calculating observables. In principle, there
are quite a few steps before it is possible to have detector specific output. It all starts with
the theoretical description and analytical expressions, then using spectrum generators numerical
values of masses, branching ratios and specific observables are calculated. Further, using event
generators (Pythia, Herwig) collisions are generated and only then detector simulation (GEANT)
is done. In this work only the first two steps, i.e. before event generation, are considered and
only the first two types of software are used.

For the analytical part (given the particle content, Lagrangian and mixings) SARAH-4.13.0 [24,
25, 26, 27] provides expressions for mass matrices, tadpole equations, interaction vertices, renor-
malization group equations, some of loop corrections, etc. These are further employed by the
two spectrum generators that we have used. Since the model was fully implemented in SARAH

during the coursework [2] it will not be of much concern through the remaining part of this
paper, except for the parts where we remind about the need to have two slightly different model
files for the two spectrum generators.

The spectrum generators that we are using are SPheno-4.0.3 [7, 8] and FlexibleSUSY-

2.1.0 [3, 4, 5, 6]. Both of them rely on analytical expressions from SARAH and the SPheno code
is even generated by SARAH. FlexibleSUSY is a C++ and Mathematica framework, while SPheno

is written in Fortran. As mentioned above, the spectrum generators calculate the mass spectrum,
branching ratios, physical observables as well as mixing matrices. Using these generators it is
not only possible to check parameter points one by one, but also to do parameter scans over
a range, though that can require additional effort. In this work using two spectrum generators
has two purposes: first of all, we want to compare them as the name of the thesis suggests and
secondly, they should more or less match if the model is implemented correctly in both of them
and that works as a safety measure.

With this we conclude our introduction and move on to the next section, where we describe
the problems, that occurred when implementing the model in FlexibleSUSY and SPheno.
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2 Implementation of the model

In this section we describe how we have finished the implementation of the model and we
describe how parameter scans are done with each software package, which also required an
additional step of implementation.

Before discussing the spectrum generators we note that we did refine the implementation
in SARAH, but did not change the previously described parts. The changes were made to the

particles.m and parameters.m files. Since these files were based on stock model files, which
had a couple of slight mistakes, we fixed them just to be sure that everything is correct. Fixes
included giving or correcting names to particles and parameters, defining parameter SLHA (SUSY
Les Houches Accord) [28] blocks, changing where and how certain particles were described. In
the main model file we have also defined the spinors in the high energy regime. Though, that
is a relic coming from older SARAH versions and is supposedly not used any more. SARAH’s
CheckModel[] command and the SARAH Forum [29] guided the process.

2.1 Implementation in FlexibleSUSY

We begin by describing FlexibleSUSY since this is the package that failed to run previously:
it either did not compile at all or would not perform calculations. Before we thought that the
explicit 0 VEV causes problems, but that turned out to be not the case. Problems were caused
by tadpole equations, a small bug in the package and the interplay with SARAH definitions. In
addition, the way complex parameters are described in the FlexibleSUSY model file also caused
a bit of trouble when describing complex parameters.

We start with the more simple part of complex parameters. As long as parameters are defined
as complex in SARAH no additional steps are required in SPheno, but FlexibleSUSY requires
to define the real and imaginary parts separately. In addition, it is important to add the line in
FlexibleSUSY model file:

RealParameters={};

Code 1. Definition of real parameters

Without this line all of the parameters are treated as real, since that is the default. When no
parameters are given, definitions from SARAH are used. To have the imaginary parts included it
is needed to define the real and complex part separately. For example, the definition of Yukawa
coupling to the first Higgs doublet looks like this:

FSAuxiliaryParameterInfo={

{Yv1rIN, { InputParameter->True,

ParameterDimensions-> {3},

LesHouches -> YV1IN

} },

{Yv1iIN, { InputParameter->True,

ParameterDimensions-> {3},
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LesHouches -> IMYV1IN

} }

<...>

}

Code 2. Defining real and imaginary parts of complex input parameters

Hereinafter <...> indicates skipped lines. The definition is more or less obvious, it is needed to
specify whether the parameter is an input parameter, parameter’s dimensions (scalar, vector and
etc.) and the corresponding Les Houches input block. Later on these definitions are supplied to
the original input parameter:

LowScaleInput = {

{v, LowEnergyConstant[vev]},

<...>

{Yv1, Yv1rIN+I*Yv1iIN},

<...>

};

Code 3. Connecting real and imaginary parts to the input parameter

Here I stands for the imaginary unit.
In the case of the more complicated problem of tadpole equations the problem hid in numer-

ically ill-defined solutions to the equations. The tadpole equations get a bit complicated due to
the included phase of the second Higgs doublet and the default solution method is not sufficient.
Even though the solutions are analytically correct, when numerical calculations are done for
the phase of 0 division by 0 occurs and that in turn stops the calculation. To overcome this,
alternative solutions have to be provided in the FlexibleSUSY model file [30]:

TreeLevelEWSBSolution = List @@@ {

M112 -> -((v^3 Z1111 - tadpole[1])/v),

Re[M12] -> (1/(4 v)) E^(-I eta) (-E^(I eta) v^3 Z1112 -

E^(I eta) v^3 conj[Z1112] +

2 tadpole[2] + 2 E^(2 I eta) tadpole[2] - 2 I tadpole[3] +

2 I E^(2 I eta) tadpole[3]),

Im[M12] -> -(1/(4 v)) E^(-I eta) (-I E^(I eta) v^3 Z1112 +

I E^(I eta) v^3 conj[Z1112] + 2 I tadpole[2] -

2 I E^(2 I eta) tadpole[2] +

2 tadpole[3] + 2 E^(2 I eta) tadpole[3])

};

Code 4. Alternative solutions to the tadpole equations

Here we can see that the solutions are given for the parameters M112 and M12. These solutions
behave normally and do not cause problems. Though, they do look more complicated than in
Eq.(1.4.56) and Eq.(1.4.57) due to the phase η (eta) not yet set to 0, not separating the real and
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imaginary parts of parameters as well as for having the tadpole[i], which are internally used
by FlexibleSUSY.

At this part also emerges a small error, or a bug, in the software package. When solving
the tadpole equations for complex parameters it is needed to specify to solve for the real and
imaginary parts separately. This caused a duplicate line in the code generated by FlexibleSUSY,
which caused compilation failures. Of course, it is quite hard to identify that an error is caused
by a bug in the package and a lot of time was spent trying to overcome this compilation failure
by refining the model file. Eventually, we contacted dr. A.Voigt and dr. P.Athron, who are the
co-developers of the package, for guidance [30]. They did help with both problems related to
the tadpole equations and a few other questions that we had. The bug with duplicate lines was
in the version 2.0.1 and is fixed in the new 2.1.0 release.

With these issues, that took a huge amount of time, cleared FlexibleSUSY is now fully
functioning. We now move on to describe the scanning of parameters.

2.1.1 Mathematica interface

In this part we introduce the scanning interface, how the physical parameters are transformed
into theoretical and are passed to the package.

Fortunately, in addition to the terminal based interface FlexibleSUSY also provides a
Mathematica interface, which makes everything a lot easier and performing simple scans is not
a problem. In essence, there are two steps needed to do a scan: 1) defining a function to put in
specified parameters, 2) using Mathematica’s built-in tools to generate parameter ranges, save,
and plot the output.

For the first step the general structure of the scanning function is quite straightforward and
is written out in Code 5. The Mathematica’s Module[local,expression] environment comes
in handy, since it is possible to localize the calculation. Inside the Module we first do the
necessary calculations and transform the parameters, then the FlexibleSUSY interface is called.
A calculation specific handle is opened, which consists of fsSettings, fsSMParameters, and
ModelParameters. In fsSettings settings are passed to the package by giving values for
various flags, such as inclusion of 2-loop Higgs mass corrections, calculation precision, forcing
positive masses and etc. We will specify the used flags in sections concerning the actual scanning.
In SMParameters, as the name suggests, Standard Model-specific parameters, such as the Higgs
mass, masses of electron, muon and tau, are passed down. In ModelParameters the theoretical
parameters of the model are passed and this is where our input goes in. In all three parts the
passing down is done via Mathematica’s replacement rules. After specifying the handle the
spectrum is calculated and the handle is closed. Further, the If[] statement checks whether
the calculation succeeded or not and gives appropriate output. In this example the model name is
Flexible312 and the spectrum is given as the replacement rule for the model name. After the
replacement the model name becomes a list of other replacement rules, that now have the values
of various output parameters. Using the Mathematica-specific syntax this example outputs a
multiplet (list) of Higgs masses Pole[M[hh]].
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ScanOver[<input_parameters>] :=

Module[{<local>},

<Precalculations_and_passing_input>

handle = FSFlexible312OpenHandle[

fsSettings -> {Setting->Value,

<...>},

fsSMParameters -> {SMparameter->Value,

<...>},

fsModelParameters -> {ModelParameter->Value,

<...>}

];

spectrum = FSFlexible312CalculateSpectrum[handle];

FSFlexible312CloseHandle[handle];

If[spectrum === $Failed,

Array[invalid&, 1],

Pole[M[hh]]/.(Flexible312 /. spectrum)

]

]

Code 5. General layout of the scanning function

For the second part we use the tools provided by Mathematica and layout the general
structure in Code 6. At first we generate a range of values for a certain parameter, then
we launch multiple kernels in order to use parallel computing and save some time. In the
ParallelTable[expression, range] we scan over the range and as output we get a list of
lists, which is a Mathematica structure, containing the input parameter from the range and
outputs of the ScanOver[]. We can also have n-dimensional parameter scans over multiple
ranges and have the ScanOver[] function take in more arguments. Though, doing n-dimensional
scans takes a lot more time and does not necessarily give additional insight. Additionally, we
monitor the overall progress of the scan, but this is not implemented in the example. Later on
we delete invalid outputs and export the data into a text file for later access. That concludes the
implementation in FlexibleSUSY and we move on to to discuss SPheno.

range=Range[start, end, step];

LaunchKernels[];

DistributeDefinitions[ScanOver];

data=ParallelTable[

{range[[k]],ScanOver[ range[[k]] ]},{k, Length[range]}

];

Code 6. Structure of performing the scan
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2.2 Implementation in SPheno

Even though SPheno was said to be fully working in the course work, in this section we
return to make a few remarks and introduce changes.

First of all, it would be ideal to have the same SARAH model file for SPheno and Flex-

ibleSUSY where we have the vacuum expectation value of the second Higgs doublet set to 0

explicitly. Yet, after consulting with dr. F.Staub [31], the developer of SARAH and co-developer
of SPheno, we got the answer that this is impossible for our model and we continue to use the
previous approach, where we have a temporary vacuum expectation value.

One change that we had to make in the model file is related to the masses of neutrinos.
Double precision (64 bit) is not enough, when it is needed to calculate the masses of neutrinos.
This is related to the discussion about mass matrices in Sec.(1.2). Though, double precision is
enough in case of real parameters since then it is enough to diagonalize M instead of M †M .
To have quadruple precision (128 bit) enabled a few alterations have to be made. First of all, in
the SPheno model file we have to specify for which particles quadruple precision will be used:

QuadruplePrecision = {Fv};

Code 7. Quadruple precision in the SPheno model file

Here the neutrinos are called Fv and we enable quadruple precision for them. To really have
quadruple precision enabled it is also needed to edit the Makefile in SPheno’s src directory and
recompile everything. The edit is quite simple, it is only needed to remove the -DONLYDOUBLE

flag as shown below:

# PreDef = -DGENERATIONMIXING -DSEESAWIII -DONLYDOUBLE

PreDef = -DGENERATIONMIXING -DSEESAWIII

Code 8. Quadruple precision in the Makefile

Here the commented line starts with #.
Unfortunately, due to the approach that SPheno uses to diagonalize complex symmetric

matrices in order to get real and positive eigenvalues, even quadruple precision falls short for
neutrino masses. With quadruple precision in SPheno, according to F.Staub, approximately 30

digits come out correctly. Now, in the neutrino mass matrix we have the mass MR of a Majorana
neutrino, which is heavy and starts at order of hundreds of GeV, and the previously mentioned
light neutrinos, for which we expect masses on the order of 10−10 − 10−12 GeV. Due to the
limited amount of significant digits, we cannot have the ratio of the squared masses of light
neutrinos to the heavy neutrino smaller than ≈ 10−30, or, in other words, MR can be up to
≈ 103. So far, everything would be fine, but after some investigation, we have found that in the
process SPheno computes eigenvalues to the fourth power and the available light neutrino masses
are limited to the minimum of 10−6 − 10−5 GeV. As to why exactly SPheno computes fourth
order eigenvalues would require further investigation, which is not in the range of the thesis. The
conclusion is that at this moment SPheno is not sufficient in the neutrino sector, which is the
most important part of the Grimus-Neufeld model.
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However, FlexibleSUSY uses a different approach in dealing with the masses of neutrinos,
or with complex symmetric matrices in general. Despite the fact that double precision is used, it
is possible to calculate the masses of the neutrinos. FlexibleSUSY uses Takagi’s factorization,
which is implemented via [32]. In essence, by using this type of factorization it is possible to
diagonalize the mass matrix and get square roots of M †M eigenvalues without actually having
M †M matrix and that avoids having higher orders of powers for the masses.

2.2.1 Scanning and the SSS package

In this part we discuss the way scanning is done with SPheno and how it was implemented.
First of all, we note that SPheno does not have a native Mathematica interface like Flex-

ibleSUSY, but on the other hand there is a special Mathematica package SSP-1.2.5[33] for
doing scans. However, even being a Mathematica package SSP is not able to use all of the
tools provided by Mathematica and that greatly complicated all of the needed precalculation.
In fact, due to the specific way the scanning parameters are entered, SSP cannot use any of the
functions like If[], Solve[], etc. In other words, it became impossible to deal with the fourth
order polynomial required for d′. To overcome this we have made our own scanning tool, which
is called the SSS, or Simono SPheno Scan. In making the package we had two goals in mind:
1) to be able to use Mathematica’s built-in fucnctionality and 2) to have the scanning process
as similar to FlexibleSUSY as possible. It also turns out that the package can be easily adapted
to any other SPheno model by simply defining new parameters. We have succeeded in our goals
and here we describe the working principle and main elements of the package as well as mention
a couple of differences as compared to FlexibleSUSY.

The idea behind the operation of the package is to take in a list of replacements, write an
appropriate input file, call SPheno, read the output file and eventually return a list of required
values. The package consists of three files: Cutter, SPhenoParams.m and SSS.m. Cutter is
a little bash script that cuts away the unnecessary blocks of the output file in order to make it
shorter and therefore shrink the amount of data the package has to go through when searching
for specific blocks. In SPhenoParams.m, as the name suggests, we have the names for flags
and parameters defined, as well as default values and some permanent values, for example, the
Standard Model parameters. For a quick glance we show the general structure of defining the
names:

ParamBlocks:={

{"Block␣NAME",{

{Parameter_Number,Parameter_Name},

<...> },

<...> }

Code 9. Structure used in SPhenoParams.m

t simply denotes a space. Here one entry in the ParamBlocks is a list that contains the name
of the block as the first entry and the second entry contains a list of parameter names, which are
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numbered according to SLHA conventions and definitions in the SPheno model file. It is worth
to mention, that for defining matrices and vectors we use a slightly different approach:

ParamBlocks:={

<...>

{"Block␣MATRIX", Table[{n,m,Matrix[[n,m]]},{n,3},{m,3}]

}

<...> }

Code 10. Matrix entries in SPhenoParams.m

Here we have the Table[] generating necessary entries, in this example entries for the 3 × 3

matrix Matrix. In this way we save some time in writing all of the entries one by one, though
at every start of a scan there is a warning message which informs that Mathematica does
not know the size of Matrix. Despite that the package functions as intended. As mentioned,
SPhenoParams.m also has a list of default values, which are simply implemented as:

DefReps={

Parameter_Name->Value,

<...> }

Code 11. Default values SPhenoParams.m

The SSS.m file contains all the functions: WriteLH, ReadLH, Saver and GetSpectrum. The
first function writes an input file, the next one reads an output file. Saver is used to cut down the
produced data even more. It takes in a list of block names that are to be saved, while discarding
everything else. Finally, GetSpectrum uses the writing and reading functions to call SPheno and
acquire the output. The GetSpectrum takes in the paths to SPheno executable, input and output
files and a list of replacement rules that are later passed down to writing and reading functions.
This part is written in a general way and is independent of changes made to SPhenoParams.m.
Just like FlexibleSUSY’s handle is opened for a single calculation, GetSpectrum is also called
for each calculation separately.

As noted above, we have succeeded in making the usage of SSS.m similar to that of Flex-

ibleSUSY and that is shown in Code 12. We can see that the implementation is very much
like in the case of FlexibleSUSY. The difference being that we do not have to open handles

and pass down the theoretical parameters together with the flags for settings in a single list of
replacement rules. If some of the parameters are not in the list, default values are used, which
can also be easily edited. We also clearly see how GetSpectrum and Saver are used to get the
final output. We note that in the real case we do have some safety measures in case of bad
parameter points or non-existence of solutions to the absolute value of d′. In the latter case we
skip the calculation entirely and write invalid as output.

KeepEntries={<blocks_to_be_kept>};

ScanOver[<input_parameters>]:=

Module[{<local_variables>},

<precalculations>
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replace={

<setting_flag>->Value,

<parameter_name>->Value,

<...>

}

out=GetSpectrum[<SPheno_dir>,<input_file_dir>,

<output_file_dir>,replace];

out=Saver[out,KeepEntries]

]

Code 12. Usage of the SSS.m package

The part where the scanning is performed differs from FlexibleSUSY only by not using
parallel computing. It was not implemented due to the limited amount of time.

With this we finish the part of implementation and move on to discuss the performed scans
and how FlexibleSUSY compares to SPheno.
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3 Scans and comparisons

In this final section we compare FlexibleSUSY and SPheno in the Grimus-Neufeld model.
This section is divided into two main parts: the Higgs and neutrino sectors.

We note that constant and relevant settings used by both packages during scanning can be
found in Appendix A.

3.1 Higgs sector

We first start by doing comparisons in the Higgs sector by setting the Yukawa couplings to
neutrinos to zero. Since we do have tree level relations, we try to get back our input from the
packages at tree level. Next, we see how much the loop corrections alter our results and how
the packages compare.

3.1.1 Tree-level

In this part we do parameter scans at tree level, meaning that the loop corrections to masses
are turned off. The flags relevant to loop corrections and their values are listed below. The
LesHouches column denotes the number of the flag in the specified block, in SLHA input
format.

Table 3. Flags in Block FlexibleSUSY at tree level

LesHouches Mathematica name Value
4 poleMassLoopOrder 0

5 ewsbLoopOrder 0

Table 4. Flag in Block SPhenoInput at tree level

LesHouches Mathematica name Value
55 LoopMass 0

The flags poleMassLoopOrder and ewsbLoopOrder in FlexibleSUSY correspond to Loop-

Mass in SPheno and control the order of loop corrections applied to masses.
Before beginning the comparison of packages, we note that we had to slightly alter the

parameters of the Higgs potential described in Sec. 1.4.6. The change comes from trying to pin
down parameter ranges where the mass of the lightest Higgs boson is closest to the measured
mass. We did this by matching the inputs and outputs to the Inert Two Higgs Doublet Model
(iTHDM) provided in the stock SARAH model files, since it is also written in the Higgs basis.

We have compiled iTHDM and taken a look at the default working point. We tested that
point in iTHDM as well as in the Higgs potential in our model and got out only slightly differing
masses. The important thing is that the mass of the lightest Higgs boson was around 125 GeV.
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We then inserted the masses that we got out from the default working point into our expressions
for the Zabcd parameters and the masses that we got out were different from what was expected.
After comparing the default iTHDM working point and the calculated parameters it was clear
that two of them needed a little tweak. The changes are as follows:

Z1111 →
Z1111

2
(3.1.1)

and
Z2121 → −

Z2121

2
. (3.1.2)

We see that these alterations are not essential and are merely a matter of used conventions. With
the newly defined inputs we were able to get back the masses that we have put in. At this point
we also note that since we do not have relations for all the parameters of the Higgs potential we
borrow some from the iTHDM while setting the unknown parameter to 0:

Z2222 = 0.27, (3.1.3)

Z2211 = 1, (3.1.4)

Re(Z2212) = Im(Z2212) = 0. (3.1.5)

We note that iTHDM was compiled with SPheno and for the Higgs potential in the Grimus-
Neufeld model we mainly looked at FlexibleSUSY.

With the altered parameters we scan over the mass mH of the heavier scalar Higgs H and
the results can be seen in Fig. 2. The parameter point is further specified in the caption of the
figure, though we notice that the selected range of min

H starts at min
A and is according to the

constraints specified in [34]. Mass of the charged Higgs is chosen to be larger than the highest
excluded mass in Particle Data Group review [17]. Mass of the pseudo scalar Higgs is chosen to
be similar to the mass used in the analysis of d′ by [35], which is also higher than the excluded
masses in PDG review.

In Fig. 2 it is immediately seen that we are able to get back the input at tree level from both
packages. The masses stay constant for h,A and H± over the whole range of min

H and mout
H

nicely follows the line min
H = mout

H . Yet, while FlexibleSUSY returns input masses precisely,
SPheno shows small deviations of up to 0.24 %, that amount to a difference of 0.3 GeV. These
differences are not visible in the plot of mout

H due to the scale. At this point we also note, that
it was indeed useful to have two software packages, because at first we had differences of over
20 GeV for the mass of h. This eventually lead to finding typos in the SSS package when writing
down the Standard Model parameters. Now the required SM parameters are matched for both
packages and can be found in Appendix A, Table 12. Previously, the typos introduced incorrectly
calculated vacuum expectation value, which differed from the one used in the calculation of the
Higgs potential parameters and the one used in FlexibleSUSY. For calculations of the Higgs
potential parameters we use the same VEV as in FlexibleSUSY

vSM = 246.22 GeV (3.1.6)
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which also matches the numerical value of [36]

vSM =

√
1√
2G0

F

≈ 246.22 GeV (3.1.7)

with the value of reduced Fermi’s constant from Table 12. The vSM used in SPheno is probably
still a little different as there is more than one way to calculate the VEV and the used values bring
in numerical inaccuracies. The used expressions can be found in [4], Eq. (35) for FlexibleSUSY
and in [37], Eq. (A.15) for SPheno. After trying different VEVs for SPheno, the difference was
drastically shrunk which proves that the numerical differences in VEVs are the source of this
inconsistency. The plot with a different VEV for SPheno can be found in Appendix B, Fig. 10.
In the following scans we have kept the vSM = 246.22 GeV for both packages.

400 600 800

124.6

124.7

124.8

124.9

125.

125.1

400 600 800

200

400

600

800

400 600 800

349.8

349.9

350.

350.1

400 600 800

399.6

399.8

400.

Figure 2. Tree level scan over min
H with θ12 = 0, min

h = 125.09 GeV, min
A = 350 GeV and

min
H± = 400 GeV. The solid line represents output from FlexibleSUSY and the dashed line is

for SPheno. The outputs of masses are arranged as follows: Top left) lightest Higgs h, Top right)
heavier scalar Higgs H , Bottom left) pseudoscalar Higgs A, and Bottom right) charged Higgs
H±.

The parameter space is widely larger as this is just a single slice at θ12 = 0 and the interested
reader can find a scan over mH and θ12 in Appendix B, Fig. 12 to get a better view. Here
we only note that the space is restricted by θ12 and solutions do not exist throughout the whole
range. If one wants to select physical points, the same angle restricts the choices even more.

As concluding remarks on the tree level Higgs potential, we note that both packages produce
consistent results with little deviations from one another and from the input values in case of
SPheno. The differences have occurred due to differences in calculating the vacuum expectation
value of the Standard Model.
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3.1.2 1-Loop corrected

In this part packages at 1-loop level are compared. Flags used in this part are listed in
Tables 5 and 6 and other parameters remain as at tree level. We note, that as we do not have
the expressions of Zabcd parameters for the 1-loop corrected case, there are no expectations of
perfectly matching the input and we simply take a look at the changes with respect to the tree
level. Yet, the parameters do serve as a rough guide when scanning.

Table 5. Flags in Block FlexibleSUSY for the loop corrected case

LesHouches Mathematica name Value
4 poleMassLoopOrder 1

5 ewsbLoopOrder 1

Table 6. Flag in Block SPhenoInput for the loop corrected case

LesHouches Mathematica name Value
55 LoopMass 1
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Figure 3. 1-loop level scan over min
H with θ12 = 0, min

h = 125.09 GeV, min
A = 350 GeV and

min
H± = 400 GeV. The outputs of masses are arranged as follows: Top left) lightest Higgs h, Top

right) heavier scalar Higgs H , Bottom left) pseudoscalar Higgs A, and Bottom right) charged
Higgs H±. Output is from FlexibleSUSY

In Fig. 3 we see that the 1-loop corrected case is very different from the tree level from
the previous section. Starting from the plot in the top right corner, it is clear that the input of
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the mass of the heavier scalar Higgs H is no longer equal to the output mass mout
H through the

whole range. Up to the input of 600 GeV the dependence is almost linear, but at 1000 GeV

the output mass is already ≈ 400 GeV bigger than the input. Other Higgs bosons also deviate
more and more as the input mass min

H increases. Mass of the lightest Higgs becomes as much
as 5 times the input value at the end of the range of mout

H , mass of the pseudo scalar Higgs A
is doubled by the time mout

H reaches 1000 GeV, while the charged Higgs additionally gains only
half of the input value.

As the goal of the thesis is to compare the packages we do not dive deeply into the nature
of loop corrections and instead compare how different are the outputs of packages. In Fig. 3
only the output of FlexibleSUSY is plotted as the scale is to big and the differences would be
invisible, which is already a good sign. In order to see the differences we look at the ratios of
output masses from the packages:

ri =
mFS
i

mSP
i

− 1. (3.1.8)

Here i enumerates the Higgses, mFS
i is the output mass from FlexibleSUSY, mSP

i is from
SPheno and we subtract 1 to look just at the deviation.
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Figure 4. Higgs mass ratios ri between FlexibleSUSY and SPheno outputs. The same scan and
same layout as specified in Fig. 3.

In Fig. 4 the plots of ri are shown. At first, we note that on vertical axes we have ri × 102,
or percent, and in turn it means that the differences really are small — not more than a percent.
However, these parts of percent can become a difference of 8 GeV between the packages for
the given masses. We note, that these deviations are not caused by the vacuum expectation
value in SPheno and plots with a different VEV can be found in Appendix B, Fig. 11. We
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only state that with a different VEV for SPheno the plots change visually and SPheno outputs
bigger values than FlxibleSUSY in a bigger range, but the maximum amplitude of deviation
does not change. Since both packages use the same analytical 1-loop expressions from SARAH,
inconsistencies could be caused by different iterative approaches. Even in FlexibleSUSY alone
there are three precision regimes that use different techniques and the output masses differ. The
reported deviation was around 0.3 % for a certain model at a single point and can be found in
[3]. Evidently, the difference between SPheno and FlexibleSUSY is also of the same order and
can be accounted to different approaches. In addition, the dependencies are fairly complicated
and discontinuous as they have a lot of breaks that do not change in amount or positions when
the VEV is adjusted for SPheno. These breaks could mean very slight shifts of some bending
points between packages, as the one near 800 GeV mark in Fig. 3 in plots of mout

h and mout
H .

Even though we are unable to adequately compare input and output at 1-loop level, we are
still able to see that the output of FlexibleSUSY and SPheno differs by up to 0.5%.

3.2 Neutrino sector

As mentioned above, SPheno breaks down with complex Yukawa couplings and it is impos-
sible to compare FlexibleSUSY and SPheno in the neutrino sector. However, we can see how
the output of FlexibleSUSY compares to neutrino data, namely the expected neutrino masses
and the PMNS matrix. While masses of neutrinos are briefly inspected at tree level and in full
with 1-loop corrections, we take a look at the PMNS matrix only at 1-loop level. The flags for
tree level and 1-loop corrected cases are the same as in the Higgs sector.

3.2.1 Neutrino mass outputs

For the tree level we only want to check one feature of the model and whether FlexibleSUSY
is able to reproduce it. As mentioned in Sections 1.4.3 and 1.4.4, at tree level there are two
massless neutrinos and we try to see if this feature is existent.

In Fig. 5 the two lower plots nicely show the heavy state with the mass m4 ∼ MR as well
as the massive state m3 already at ∼ 10−11 GeV and near the expected value from Eq. (1.4.59).
Two upper plots show very small and random numbers at ∼ 10−20 GeV, which mean nothing
more but a numerical zero. In other words, the tree level property of the Grimus-Neufeld model
is reproduced by FlexibleSUSY. We only note here that for this check we did a scan over the
Higgs sector, used the 1-loop corrected relations in the neutrino sector, and did not have the
intention to hit any physical points. Input parameters used at tree level are specified in the
caption of Fig. 5.

With one loop corrections included we want to reproduce more properties than just the amount
of massless neutrinos. To be able to probe the neutrino sector at 1-loop level, unlike at tree
level, we first need to select a working point for the Higgs potential. As seen in the previous
section, the parameters of the Higgs potential give out masses that are off by a huge margin
from the input values when loop corrections are included. To achieve consistency between values
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Figure 5. Masses of neutrinos at tree level, while scanning over the mass of H boson. The
parameter point is as follows: min

h = 125.09 GeV, min
A = 350 GeV, min

H± = 450 GeV, θin
12 = π

2
,

MR = 104, λD = 0.9, φ = π
2
.

used internally in FlexibleSUSY and the values we use in calculations of the neutrino sector
parameters, we first scan over the Higgs potential and select points where the lightest Higgs has
the mass of 125 GeV within 3 GeV. In addition, we have

mH± > 400 GeV,

mH± −mA > 8 GeV and

mH −mA > 8 GeV

(3.2.1)

to be consistent with [34]. At selected points we take Zabcd parameters and the output masses of
Higgses. When scanning over the neutrino sector, the potential parameters go directly into the
potential without any recalculation and the output masses are used in calculations of the neutrino
sector parameters. This way we are able to be consistent at 1-loop level between what we put in
and what the software uses internally.

However, there is one parameter, θ12, that needs a little extra work. Additional effort is
needed, because θ12 is not part of the usual FlexibleSUSY output parameters and needs to be
calculated from the Higgs mixing matrix. This matrix, UZH, was only briefly mentioned in the
coursework when defining the MatterSector in SARAH. UZH is a 4 × 4 matrix that mixes the
scalar and pseudoscalar parts of Higgs doublets into physical Higgses. In addition to h,A and
H , the Higgs multiplet also contains the Goldstone boson that is absorbed into the Z boson.
Because we have chosen to deal with the real case, where the scalar and pseudo scalar parts do
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not mix, the matrix UZH has a calculations-friendly form:

UZH =


0 0 cos θ34 sin θ34

cos θ12 sin θ12 0 0

− sin θ12 cos θ12 0 0

0 0 − sin θ34 cos θ34

 (3.2.2)

Here θ34 is the angle that mixes pseudo scalar parts. From the matrix it is easily seen that we
only need to take arcsin (UZH)22 to get the angle θ12. For the neutrino sector we have selected
to analyze two points with noticeably different masses of the heavier scalar H boson. The points
are specified in Tables 7 and 8. Masses are given in GeV, θ12 in radians, M222 in GeV2 and
the quartic couplings are dimensionless.

Table 7. Higgs potential parameters of working points p1 and p2

Point Z1111 Z2222 Z2211 Z2112 Z2121 Z1112 Z2212 M222

p1 0.193934 0.27 1 -0.748326 -0.244401 0.540498 0 129 688
p2 3.43181 0.27 1 -0.927979 -0.154575 3.69926 0 129 688

Table 8. Physical parameters of working points p1 and p2 used during the pre-calculation phase
for the neutrino sector

Point mh mA mH mH± θ12

p1 125.72 365.072 391.43 402.421 0.295065
p2 126.568 390.574 1033.99 417.703 1.14823

0
π

2

π 3 π

2

125

125.72

126.568

Figure 6. Output masses of h bosons when scanning over the phase φ of the d′ parameter. The
solid line represents p1 and the dashed line represents p2 parameter points of the Higgs potential.
MR = 104 GeV and λD = 1.3

To justify our approach for having consistent calculations we check whether the mass of the
lightest Higgs stays the same throughout the range of scanning, the output can be seen in Fig. 6.
Ticks on the vertical axis denote the numerical input values, to better see if the output matches.
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Obviously, the output perfectly matches our input for both points and because of that we also get
the same mixing angle θ12. In other words, our procedure worked out.

Just like at tree level, we check the number of massless neutrinos in Fig. 7, where we scan
over the phase φ, set MR = 104 GeV and λD = 1.3. It is easily seen that we get one massless
state (top left plot), two light neutrinos and one heavy neutrino as predicted at both working
points p1 and p2. We note that the masses of light neutrinos noticeably differ at different Higgs
sector parameter points. However, none of the points become small enough as they are still
missing a desired factor of 10−1.
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Figure 7. Output masses of neutrinos when scanning over the phase φ of the d′ parameter.
Filled circles represent the point p1 and empty circles represent the point p2 of Higgs parameters.
MR = 104 GeV and λD = 1.3

We try to find more suitable parameter points by selecting a few different values of the
seesaw scale, MR, and seeing what changes. In Fig. 8 we look at the output masses of the two
light neutrinos m2 and m3. In the two upper plots, that are produced at the parameter point p1,
the masses of neutrinos do not get down to the desired values. For m2 the mass does not reach
the 10−12 GeV mark and m3 does not fall below 10−11 GeV. However, the situation is quite
different at the point p2. The output mass m3 does fall below 10−11 GeV while m2 gets closer
to, but does not cross, the wanted threshold. When comparing the two points: p1 and p2, it is
seen that qualitatively the mass outputs look different, in addition, the parameter space becomes
restricted at the point p2 for MR = 105 GeV and MR = 106 GeV. The breaks in these plots
are most probably brought in by |d′|, when solving the 4th order polynomial and filtering the
unwanted or alternative solutions as there can be 4 of them. It could be that at π

2
and 3π

2
there

is a switch to another branch of solutions and that causes the breaks, however, mass functions
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remain 2π-symmetric.
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Figure 8. Output masses of neutrinos when scanning over the phase φ of the d′ parameter.
For filled circles MR = 104 GeV, for empty circles MR = 105 GeV and stars represent MR =

106 GeV. In all cases λD = 1.3. Two upper plots are for the parameter point p1 and the two
lower plots are for the parameter point p2

We also try lower values of MR and start looking from 200 GeV to 103 GeV with the
step of 100 GeV. For the parameter point p1 FlexibleSUSY gives output at the lowest of
MR = 900 GeV, while at p2 the lowest value is MR = 200 GeV. However, the next smallest MR

value to produce output at p2 is MR = 104 GeV. In addition to the strangely separated lowest
value, the outputs of neutrino masses are 2 − 3 orders of magnitude lower than at p1 and the
parameter space is restricted to π < φ < 2π. All of this can be seen in Fig. 9.

Evidently, this proves that FlexibleSUSY is able to calculate neutrino masses at the required
order of 10−11 − 10−12 GeV even with double precision. Also, theoretical properties of neutrino
masses were reproduced: two massless states at tree level, only one massless state with 1-loop
corrections and one heavy state with m4 ≈MR in both cases. However, we were not able to pin
down parameter points where both of the neutrino masses are as expected, but that is a matter
of complexity of the parameter space and made assumptions.
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Figure 9. Mass outputs of light neutrino states m2 and m3 when scanning over the phase φ with
λD = 1.3. Two upper plots are for the parameter point p1 and have MR = 900 GeV, the lower
plots are for p2 and have MR = 200 GeV.

3.2.2 Comparison of PMNS matrices

Before concluding the thesis we do a brief comparison of the measured PMNS matrix and
the one we get as output from FlexibleSUSY.

For the comparison we take the lowest point from the bottom right plot in Fig. 7 with MR =

104 GeV. At that point the mass m4 of the heavier light neutrino is equal to 5.255×10−11 GeV,
which is close to the desired value of 5.124× 10−11 GeV, while m3 = 2.628× 10−11 GeV and
is a bit off from the expected value of 8.695× 10−12 GeV. Nonetheless, it makes sense to select
this point for the comparison, as the masses are quite close to the expected values, which are
based on the measured mass differences squared and the assumption of a massless neutrino.

For the measured PMNS matrix we choose the parametrization from [23]:

θ12 = 34.5 deg,

θ13 = 8.44 deg,

θ23 = 41 deg,

δ = 0 deg .

(3.2.3)

Here θij are parameters of the PMNS matrix and should not be confused with the Higgs sector
parameters, δ is the phase and, as mentioned previously, it is set to 0 due to big uncertainties.
With this parametrization the resulting PMNS matrix is real, but the matrix that we get from
FlexibleSUSY is complex, therefore we will compare absolute values of matrix elements.
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Before writing down the measured matrix we note a few things about the matrix from
FlexibleSUSY. First of all, the matrix that we get at the specified point is:

0.806− i0.123 −0.501 + i0.077 0.277− i0.042 (−5.31 + i9.52)× 10−14

0.084 + i0.425 −0.421 + i0.473 −0.516− i0.381 (−3.18− i0.78)× 10−8

0.316− i0.219 0.172− i0.559 −0.608− i0.375 (0.07− i8.86)× 10−8

(1.90 + i1.37)× 10−8 (5.94− i0.34)× 10−8 (5.22− i4.60)× 10−8 −1 + i10−17


(3.2.4)

Here we see that by neglecting small numbers the matrix easily reduces to the block diagonal
form mentioned in Sec. 1.4.3, Eq.(1.4.42). Though, the matrix did pick up a minus sign in
the bottom right corner element, which is a matter of definitions and can be ignored. For the
comparison to the measured PMNS matrix we use the reduced 3 × 3 block of this matrix and
take absolute values of matrix elements:

V PMNS
FS =

0.815 0.507 0.280

0.433 0.633 0.642

0.384 0.585 0.714

 . (3.2.5)

We now also write down the measured PMNS matrix and remind that the absolute values of
elements are shown:

V PMNS
meas. =

0.815 0.560 0.147

0.507 0.567 0.649

0.280 0.603 0.747

 . (3.2.6)

Evidently, the matching is quite good, as the elements of matrices V PMNS
FS and V PMNS

meas. do
not differ by more than 0.133, while, for example, the element

(
V PMNS

meas.

)
11

matches exactly
at shown accuracy. On the other hand, we do not expect to have a perfect match as there
are assumptions in the model, uncertainties in the measured mass square differences and the
measured PMNS matrix, which are not negligible. In addition, if we wanted to improve the
agreement of measurements and calculations, we would also have to include the phase δ, which
is poorly measured at the moment and was ignored. In other words, this level of matching is
enough to show that FlexibleSUSY is sufficient and gives consistent output.
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Conclusions

To conclude, during the thesis we have achieved quite a few results:

1. We dealt with all of the practical problems with software packages to fully implement the
Grimus-Neufeld model and that included:

• refining the SARAH model file for the Grimus-Neufeld model,

• overcoming bugs and finishing the model implementation in FlexibleSUSY,

• figuring out problems behind quadruple precision and masses of neutrinos in SPheno,

• writing a Mathematica package, SSS, for doing parameter scans with SPheno as
the original package was not sufficient for our needs, when calculating theoretical
parameters from physical input,

• figuring out correct flags for doing parameter scans in both packages.

2. In the Higgs sector and at tree level we were able to get back masses of Higgses that we
put in from the output and to show that quantitatively FlexibleSUSY and SPheno behave
exactly the same, whereas numerically the difference lies in SPheno internally using a
slightly different numerical value of the vacuum expectation value, and therefore, showing
a deviation from physical input and output of FlexibleSUSY.

3. At 1-loop level in the Higgs sector we have found that the deviation in our performed scan
was at most 0.5% between packages independently of the vacuum expectation value used
internally in SPheno and the deviation was amounted to different iterative approaches, as
both spectrum generators use analytical expressions for 1-loop corrections from SARAH.

4. In the neutrino sector, when using a parametrization that results in complex Yukawa cou-
plings, it is only possible to compare FlexibleSUSY to theoretical and experimental expec-
tations, as SPheno uses other methods of matrix diagonalization to find mass eigenvalues
and is numerically unable to deal with the neutrino sector.

5. At tree level and with 1-loop corrections included in the neutrino sector FlexibleSUSY

is able to reproduce the correct amount of massless neutrino states in the Grimus-Neufeld
model: 2 at tree level and 1 at 1-loop level.

6. FlexibleSUSY is able to calculate masses down to the order of 10−13 GeV, which is
enough for neutrinos in the Grimus-Neufeld model.

7. The measured PMNS matrix and the PMNS matrix from FlexibleSUSY output matches
to a satisfactory level, when the uncertainties of neutrino data and assumptions of the
Grimus-Neufeld model are considered.
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Santrauka

SPheno ir FlexibleSUSY palyginimas Grimus-Neufeld modelyje
Simonas Draukšas

Šiame darbe palyginami du programiniai paketai — spektrų generatoriai: FlexibleSUSY

ir SPheno, į juos suvedant Grimus-Neufeld modelį ir palyginant teorinius modelio bruožus,
eksperimentinius duomenis bei programinių paketų išvestį.

Teorinėje dalyje pateikta bendra ir reikalinga dalelių fizikos teorija, aprašytos pagrindinės
Grimus-Neufeld modelio dalys, jų veikimo principas, modelyje esantys teoriniai bei atitinkami
fizikiniai parametrai, taip pat trumpai pristatomi naudoti programiniai paketai ir jų paskirtis.

Antrojoje dalyje aprašoma po kursinio darbo likusi modelio suvedimo į spektrų generatorius
proceso dalis. Išsprendžiamos problemos kilusios FlexibleSUSY dėl kompleksinių parametrų
aprašymo, potencialo minimumo sprendinių bei dėl klaidų pačiame programiniame pakete, pateikia-
mas parametrų skenavimo procesas. Taip pat nurodyti pakeitimai, kuriuos reikia atlikti SPheno
modelio faile, norint skaičiuoti neutrinų mases. Tačiau net ir atlikus pakeitimus dėl SPheno

naudojamų metodų iškyla skaitmeninių problemų ir neutrinų masių neįmanoma apskaičiuoti
Grimus-Neufeld modelyje, kai naudojami kompleksiniai parametrai. Kadangi standartinio SSP

paketo, skirto parametrų skenavimui su SPheno, nepakanka reikalingiems fizikinių parametrų per-
skaičiavimams į teorinius, buvo parašytas specialus paketas SSS, kurio trumpas aprašymas taip
pat pateikiamas šioje dalyje.

Trečiojoje dalyje atliekamas programinių paketų palyginimas, kuris suskirstytas į dvi pa-
grindines dalis: Higgs’o ir neutrinų sektorius. Higgs’o sektoriuje nagrinėjamas tik Higgs’o
potencialas prilyginus Yukawos sąveikas su neutrinais nuliui. Iš pradžių palyginimas daromas
medžio lygmenyje (angl. tree level), kuriame tikriname teorinių Higgs’o potencialo formulių ati-
tikimą su paketų išvestimi, o taip pat ir paketų tarpusavio išvestį. Gautas atitikimas tarp fizikinių
parametrų įvesties ir FlexibleSUSY išvesties, o SPheno išvestis šiek tiek skyrėsi dėl skirtingos
skaitmeninės vakuumo reikšmės (angl. vacuum expectation value) paketo viduje. Įskaičius vienos
kilpos pataisas (angl. 1-loop correction) Higgs’o sektoriuje programų išvestis buvo palyginta
tarpusavyje naudojant apibrėžtą santykį ri ir gautas skirtumas tarp programų neviršijo 0.5%.

Neutrinų sektoriuje, medžio lygmenyje įsitikinta, jog FlexibleSUSY atkartoja teisingą masyvių
ir bemasių neutrinų skaičių. Tolimesni patikrinimai atlikti ties vienos kilpos lygmeniu, kadangi
turimi neutrinų sektoriaus parametrai aprašyti būtent ties šiuo lygmeniu. Darbe parodyta, jog
įskaičius vienos kilpos pataisas FlexibleSUSY atkartoja teisingą masyvių ir bemasių neutrinų
skaičių, be skaitmeninių sunkumų gali gauti mases net iki 10−13 GeV. Taip pat parodyta, jog
pasirinktame parametrų taške iš FlexibleSUSY gaunama neutrinų maišymosi matrica, kuri yra
pakankamai panaši į išmatuotą PMNS matricą.



53

Appendices

A Constant flags in FlexibleSUSY and SPheno

Flags used in all scans with FLexibleSUSY in Block FlexibleSUSY:

Table 9. Flags in Block FlexibleSUSY

LesHouches Mathematica name Value
0 precisionGoal 10−4

1 maxIterations 0

2 solver 0

3 calculateStandardModelMasses 1

6 betaFunctionLoopOrder 0

7 thresholdCorrectionsLoopOrder 0

8− 11 higgs2loopCorrection<...> 0

12 forceOutput 0

13 topPoleQCDCorrections 2

14 betaZeroThreshold 10−11

16 forcePositiveMasses 1

17 poleMassScale 0

18− 22 eft<...> Not applicable
23 calculateBSMMasses 1

25− 29 higgs3loopCorrection<...> 0

30 higgs4loopCorrectionAtAsAsAs 0

Flags used in all scans with SPheno in Block SPhenoInput:

Table 10. Flags in Block SPhenoInput

LesHouches Mathematica name Value LesHouches Mathematica name Value
1 Errorlvl 0 50 PositivMass 1
2 - 0 51 CKMbasis 0
7 TLHiggsCorr 1 52 TachyonicState 0
9 Gaugeless 1 57 LowEnergyConstr 0
10 SafeMode 0 61 RunningParam 0
19 ThreshLoop 0 62 RGESMRunningObs 0

34 MassPrec 10−4 63 RGERunningObs 0
35 MaxIterNum 40 65 TadSolut 1
36 IterDiscardNum 5 66 TwoScaleMatch 1
37 YukawaScheme 4 67 effHiggsMass 1
38 RGELoop 0 520 EffHiggsCoup 1
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SPheno also has a few specific settings in the Block MODSEL:

Table 11. Flags in Block MODSEL, in SPheno

LesHouches Mathematica name Value
1 LowIn 0

2 BoundaryCond 1

5 CP 2

6 - 1

12 ScaleQ 126

The implementation of parameter output scale differs a bit between packages, but the param-
eter output scale is set to 126 GeV in both packages. Second flag in Table 10 is not appointed a
flag name and is responsible for using conventions where the parameter output scale is 1000 GeV,
this is turned off by setting the flag to 0. Output scale of masses is equal to masses at poles.

For both packages we have matched their Block SMINPUTS with the values listed in [17] and
they are specified in Table 12. GF is the reduced Fermi’s constant, alphaSMZ is the strong force
coupling constant, MZ is the pole mass of the Z boson, mbmb is the runnning mass of the bottom
quark, Mt and Mtau are the pole masses of the top quark and tau lepton respectively. Masses are
written in GeV, Fermi’s constant has units of GeV−2 and strong force coupling is dimensionless.
As these flags were not assigned a name in Mathematica for SPheno, the table corresponds
to names used in FlexibleSUSY. In addition, FlexibleSUSY requires a lot more inputs in the
Block SMINPUTS, but these are left at default values as there is no way to compare with SPheno.
Though, we do set the masses of neutrinos to the ones we expect to get in FlexibleSUSY.

Table 12. Flags in Block SMINPUTS

LesHouches Mathematica name (FS) Value
2 GF 1.1663787× 10−5

3 alphaSMZ 0.1182

4 MZ 91.1876

5 mbmb 4.18

6 Mt 173.1

7 Mtau 1.77686
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B Additional parameter scans

In Sec. 3.1.1, Fig. 2 we show that the difference between the physical input and output
of SPheno is up to 0.3 GeV, while the output from FlexibleSUSY perfectly matches the
physical input, when the numerical value of the vacuum expectation value is 246.22 GeV for
both packages. In the figure below we show that, by adjusting the VEV used in SPheno to
245.6 GeV, we are able to reduce the difference between packages and, in turn, between output
and physical input. Further settings are specified in the package.
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Figure 10. Tree level scan over min
H with θ12 = 0, min

h = 125.09 GeV, min
A = 350 GeV and

min
H± = 400 GeV. The solid line represents output from FlexibleSUSY and the dashed line is

for SPheno. VEV’s are different for the calculation of Zabcd parameters in this case: 246.22 GeV

for FlexibleSUSY and 245.6 GeV for SPheno. The outputs of masses are arranged as follows:
Top left) lightest Higgs h, Top right) heavier scalar Higgs H , Bottom left) pseudo scalar Higgs
A, and Bottom right) charged Higgs H±.
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The figure below shows the mass ratios of FlexibleSUSY and SPheno, when the vacuum
expectation values are different for calculations of Zabcd parameters.
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Figure 11. Higgs mass ratios ri between FlexibleSUSY and SPheno outputs. Same parameter
point and layout as specified in Fig. 10, but 1-loop corrected.
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In the two following figures we show the full view of scans done over mH and θ12 at tree
level as well as with 1-loop corrections. These plots are meant to give a general idea of what
the parameter space is like, since the previous plots were only cross-sections at θ12 = 0. Because
the known Zabcd parameters are π-symmetric, we only scan up to π in θ12.
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Figure 12. Tree level scan over min
H and θ12 with min

h = 125.09 GeV, min
A = 350 GeV and

min
H± = 400 GeV. The outputs of masses are arranged as follows: Top left) lightest Higgs h, Top

right) heavier scalar Higgs H , Bottom left) pseudo scalar Higgs A, and Bottom right) charged
Higgs H±. These scans were done with FlexibleSUSY.
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Figure 13. 1-loop corrected scan over min
H and θ12 with min

h = 125.09 GeV, min
A = 350 GeV

and min
H± = 400 GeV. The outputs of masses are arranged as follows: Top left) lightest Higgs

h, Top right) heavier scalar Higgs H , Bottom left) pseudo scalar Higgs A, and Bottom right)
charged Higgs H±. These scans were done with FlexibleSUSY.
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