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Abstract

Generalized supersymmetries with bosonic tensorial central charges are in-
vestigated w.r.t. their division algebra properties. It is shown that complex
and quaternionic supersymmetries admit compatible division-algebra induced con-
straints which are fully classified. In special cases constrained generalized super-
symmetries present a dual formulation. Constrained generalized supersymmetries
arise as the analytic continuation of the M -algebra to the Euclidean and as un-
derlying superalgebras of certain classes of supersymmetric dynamical models.

1. Introduction

This talk is based on a series of papers, [1, 2, 3, 4], devoted to the investi-
gation of generalized supersymmetries in connection with division algebras,
as well as the application of these results in the broad context of the M -
theory. The last two works, in particular, address the problem of classifying
the division-algebra compatible constraints that can be imposed on gener-
alized supersymmetries in presence of complex and quaternionic spinors.
It is further shown that, in certain specified cases, such constrained gener-
alized supersymmetries admit a dual description. Physical motivations for
this mathematical analysis are based on M -theory and its related topics.
It was indeed proven in [2] that a given constrained complex generalized
supersymmetry is required in order to perform the analytic continuation
of the Minkowskian M -algebra to the Euclidean. The present results are
further applicable to the construction and classification of various classes
of supersymmetric dynamical systems presenting bosonic tensorial central
charges.

It is worth recalling that the problem of classifying supersymmetries has
recently regained interest and found a lot of attention in the literature. We
can cite, e.g., a series of papers where the notion of “spin algebra” has been
introduced and investigated [5]. An even more updated reference concerns
the classification of the so-defined “polyvector super-Poincaré algebras” [6].
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The reasons behind all this activity are clear. In the seventies the H�LS
scheme [7] was a cornerstone providing the supersymmetric extension of the
Coleman-Mandula no-go theorem. However, in the nineties, the generalized
space-time supersymmetries going beyond the H�LS scheme (and admitting,
in particular, a bosonic sector of the Poincaré or conformal superalgebra
which could no longer be expressed as a tensor product Bgeom⊕Bint, where
Bgeom describes space-time Poincaré or conformal algebras, while the re-
maining generators spanning Bint are scalars) found widespread recognition
[8, 9] in association with the dynamics of extended objects like branes (see
[10, 11]). The eleven-dimensional M -algebra underlying the M -theory as
a possible “Theory Of Everything” (TOE), admitting 32-real component
spinors and maximal number (= 528) of saturated bosonic generators [8, 9]
falls into this class of generalized supersymmetries. The mathematical in-
gredients that have to be used have been known by mathematicians since
at least the sixties ([12], see also [13] and, for quite a convenient presen-
tation for physicists, [14]). They include the division-algebra classification
of Clifford algebras and fundamental spinors. It is quite rewarding that,
by using these available tools, we can conveniently formulate and solve the
problem of classifying generalized supersymmetries.

It is well-known that the Clifford algebra irreps [14] are put in corre-
spondence with the R,C,H division algebras. An analogous scheme works
for fundamental spinors (here and in the following, fundamental spinors
are defined to be the spinors admitting, in a given space-time, the maxi-
mal division algebra structure compatible with the minimal number of real
components). Both the eleven-dimensional M -algebra and the F -algebra
in (10 + 2) dimensions are based on real spinors. Their analytic contin-
uation to the Euclidean, however, see [2] and [3], are based on complex
spinors. The presence of both complex and quaternionic spinors allows
introducing division-algebra compatible extra-constraint on the available
generalized supersymmetries. The reason for that lies in the fact that in
these two extra cases one has at disposal the division-algebra principal
conjugation (which simply coincides, for real numbers, with the identity
operator) to further play with. It is of particular importance to determine
the biggest (“saturated”) generalized supersymmetry compatible with the
given division-algebra structure and constraint. For the sake of simplicity,
in this work we are only concerned with “generalized supertranslations”.
This means in particular that the bosonic generators are all abelian. The
construction of, e.g., Lorentz generators requires a bigger algebra than the
ones here examined. One viable scheme to produce them consists in in-
troducing a generalized superconformal algebra (which, in its turn, allows
recovering a generalized superPoincaré algebra through an Inonü-Wigner
type of contraction). Following [15], this can be easily achieved by tak-
ing two separate copies of “generalized supertranslations” and imposing
the Jacobi identities on the whole set of generators to fully determine the
associated superconformal algebra.
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2. Generalized supersymmetries: the M and F algebra ex-
amples

Let us introduce the notion of generalized supersymmetries by illustrating
the specific examples of the M and F algebras.

For our purposes we should recall, at first, that three matrices, denoted
as A, B, C, have to be introduced in association with the three conjuga-
tions (hermitian, complex and transposition) acting on Gamma matrices
[16]. Since only two of the above matrices are independent we choose here,
following [1], to work with A and C. A plays the role of the time-like
Γ0 matrix in the Minkowskian space-time and is used to introduce barred
spinors. C, on the other hand, is the charge conjugation matrix. Up to
an overall sign, in a generic (s, t) space-time, A and C are given by the
products of all the time-like and, respectively, all the symmetric (or an-
tisymmetric) Gamma-matrices1. The properties of A and C immediately
follow from their explicit construction, see [16] and [1].

In a representation of the Clifford algebra realized by matrices with real
entries, the conjugation acts as the identity, see [1]. In this case the space-
like gamma matrices are symmetric, while the time-like gamma matrices are
antisymmmetric, so that A can be identified with the charge conjugation
matrix CA.

For our purposes the importance of A and the charge conjugation ma-
trix C lies on the fact that, in a D-dimensional space-time (D = s + t)
spanned by d × d Gamma matrices, they allow to construct a basis for
d × d (anti)hermitian and (anti)symmetric matrices, respectively. It is in-
deed easily proven that, in the real and the complex cases (the quaternionic

case is different), the
(

D
k

)
antisymmetrized products of k Gamma ma-

trices AΓ[μ1...μk] are all hermitian or all antihermitian, depending on the
value of k ≤ D. Similarly, the antisymmetrized products CΓ[μ1...μk] are all
symmetric or all antisymmetric.

For what concerns the M -algebra, the 32-component real spinors of
the (10, 1)-spacetime admit anticommutators {Qa, Qb} which are 32 × 32
symmetric real matrices with, at most, 32 + 32×31

2 = 528 components.
Expanding the r.h.s. in terms of the antisymmetrized product of Gamma
matrices, we get that it can be saturated by the so-called M -algebra

{Qa, Qb} = (AΓμ)ab Pμ +
(
AΓ[μν]

)
ab

Z [μν] +
(
AΓ[μ1...μ5]

)
ab

Z [μ1...μ5].

(1)

Indeed, the k = 1, 2, 5 sectors of the r.h.s. furnish 11 + 55 + 462 = 528
overall components. Besides the translations Pμ, in the r.h.s. the anti-

1Depending on the given space-time (see [16] and [1]), there are at most two charge
conjugations matrices, CS , CA, given by the product of all symmetric and all antisym-
metric gamma matrices, respectively. In special space-time signatures they collapse into
a single matrix C.
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symmetric rank-2 and rank-5 abelian tensorial central charges, Z [μν] and
Z [μ1...μ5] respectively, appear.

The (1) saturated M -algebra admits a finite number of subalgebras
which are consistent with the Lorentz properties of the Minkowskian eleven
dimensions. There are 6 such subalgebras which are recovered by setting
either one or two among the three sets of tensorial central charges Pμ, Z [μν],
Z [μ1...μ5] identically equal to zero (a completely degenerate subalgebra is
further obtained by setting the whole r.h.s. identically equal to zero).

The fact that the fundamental spinors in a (10, 2)-spacetime also admit
32 components is due to the existence of the Weyl projection. This implies
that the saturated M -algebra admits a (10, 2) space-time presentation, the
so-called F -algebra, in terms of (10, 2) Majorana-Weyl spinors Q̃ã, ã =
1, 2, . . . , 32.

In the case of Weyl projected spinors the r.h.s. has to be reconstructed
with the help of a projection operator which selects the upper left block in
a 2 × 2 block decomposition. Specifically, if M is a matrix decomposed in

2 × 2 blocks as M =
( M1 M2

M3 M4

)
, we can define

P (M) ≡ M1. (2)

The saturated M -algebra (1) can therefore be rewritten as
{
Q̃ã, Q̃b̃

}
= P

(
ÃΓ̃μ̃ν̃

)
ãb̃

Z̃ [μ̃ν̃] + P
(
ÃΓ̃[μ̃1...μ̃6]

)
ãb̃

Z̃ [μ̃1...μ̃6], (3)

where all tilde’s are referred to the corresponding (10, 2) quantities. The
matrices in the r.h.s. are symmetric in the exchange ã ↔ b̃. This time the
rank-2 and selfdual rank-6 antisymmetric abelian tensorial central charges,
Z̃ [μ̃ν̃] and respectively Z̃ [μ̃1...μ̃6], appear. Their total number of components
is 66 + 462 = 528, therefore proving the saturation of the r.h.s.. The
saturated equation (3) is named the F -algebra.

3. Real, complex and quaternionic generalized supersym-
metries.

For real n-component spinors Qa, the most general supersymmetry algebra
is represented by

{Qa, Qb} = Zab, (4)

where the matrix Z appearing in the r.h.s. is the most general n × n

symmetric matrix with total number of n(n+1)
2 components. For any given

space-time we can easily compute its associated decomposition of Z in
terms of the antisymmetrized products of k-Gamma matrices, namely

Zab =
∑
k

(AΓ[μ1...μk])abZ
[μ1...μk], (5)
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where the values k entering the sum in the r.h.s. are restricted by the
symmetry requirement for the a ↔ b exchange and are specific for the
given spacetime. The coefficients Z [μ1...μk] are the rank-k abelian tensorial
central charges.

When the fundamental spinors are complex or quaternionic they can
be organized in complex (for the C and H cases) and quaternionic (for
the H case) multiplets, whose entries are respectively complex numbers or
quaternions.

The real generalized supersymmetry algebra (4) can now be replaced by
the most general complex or quaternionic supersymmetry algebras, given
by the anticommutators among the fundamental spinors Qa and their con-
jugate Q∗

ȧ (where the conjugation refers to the principal conjugation in
the given division algebra, see ([1])). We have in this case

{Qa, Qb} = Pab ,
{
Q∗

ȧ, Q
∗
ḃ

}
= P∗

ȧḃ, (6)

together with
{
Qa, Q

∗
ḃ

}
= Raḃ, (7)

where the matrix Pab (P∗
ȧḃ is its conjugate and does not contain new

degrees of freedom) is symmetric, while Raḃ is hermitian.

4. Constrained generalized supersymmetries and their du-
ality relations.

Let us investigate and classify now the set of consistent constraints that can
be imposed on the complex generalized supersymmetries (the quaternionic
case was investigated in [3]).

The saturated complex generalized supersymmetries (i.e. the ones ad-
mitting as bosonic r.h.s. both the most general symmetric matrix P enter-
ing (6) and the most general hermitian matrix R entering (7)) contain the
same number of bosonic degrees of freedom as the corresponding saturated
generalized supersymmetries realized with real spinors [3]. In this respect
the big advantage of the introduction of the complex formalism, whenever
this is indeed possible, consists in the implementation of some constraint
that cannot be otherwise imposed within the real framework.

The bosonic r.h.s. can be expressed in terms of the rank-k totally anti-
symmetric tensors denoted as Mk, see the previous section. It is clear that
any restriction on the saturated bosonic generators which allows all possi-
ble combinations of the rank-k antisymmetric tensors entering the r.h.s. is
in principle allowed by Lorentz-covariant requirement. On the other hand,
few particular combinations of the rank-k antisymmetric tensors have more
compelling reasons to appear than just arising as a hand-imposed restric-
tion on the saturated bosonic r.h.s. They can indeed be present due to
a division-algebra constraint based on an underlying symmetry. It is ex-
pected that restrictions of this type offer a protecting mechanism towards
the arising of anomalous terms, in application to the supersymmetries re-
alized by certain classes of dynamical systems. This is an important reason
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to analyze and classify these constraints. Their whole class is presented in
the table below. It consists of all possible combinations of restrictions on
the P, R matrices of (6) and (7) (e.g. whether both of them are present
or just one of them, if a reality or an imaginary condition is applied). The
entries in the table below specify the number of bosonic components (in
the real counting) associated with the given constrained supersymmetry
realized by n-component complex spinors. The columns represent the re-
strictions on R, the rows the restrictions on P (an imaginary condition on
P is equivalent to the reality condition and therefore is not reported in the
table below). We have

P\R 1) Full 2) Real 3) Imag. 4) Abs.
a) Full 2n2 + n 3

2(n2 + n) 1
2(3n2 + n) n2 + n

b) Real 1
2(3n2 + n) n2 + n n2 1

2(n2 + n)
c) Abs. n2 1

2(n2 + n) 1
2(n2 − n) 0

(8)

Some comments are in order. The above list of constraints is not neces-
sarily implemented for any given supersymmetric dynamical system. One
should check, e.g., that the above restrictions are indeed compatible with
the equations of motion. On a purely algebraic basis, however, they are
admissible restrictions which require a careful investigation.

One can notice that certain numbers appear twice as entries in the
above table. This is related with the fact that the same constrained su-
peralgebra can admit a different, but equivalent, presentation. We refer
to these equivalent presentations as “dual formulation” of the constrained
supersymmetries. Dual formulations are expected in correspondence of the
constraints

a3 ↔ b1,

a4 ↔ b2,

b3 ↔ c1,

b4 ↔ c2. (9)

It is worth stressing that in application to dynamical systems, which need
more data than just superalgebraic data, one should explicitly verify whether
the above related constraints indeed lead to equivalent theories.

The inequivalent constrained generalized supersymmetries can be listed
as follows

I (a1) 2n2 + n, k = 3, l = 1
II (a2) 3

2(n2 + n), k = 3, l = 0
III (a3 & b1) 1

2(3n2 + n), k = 2, l = 1
IV (a4 & b2) n2 + n, k = 2, l = 0
V (b3 & c1) n2, k = 1, l = 1
V I (b4 & c2) 1

2(n2 + n), k = 1, l = 0
V II (c3) 1

2(n2 − n), k = 0, l = 1
(10)
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The integral numbers k, l have the following meaning. For the given con-
strained supersymmetry the bosonic r.h.s. can be presented in the following
form

Z = kX + lY, k = 0, 1, 2, 3, l = 0, 1, (11)

where X and Y denote the bosonic sectors associated with the V I and
respectively V II constrained supersymmetry.

In association with the maximal Clifford algebras in D-dimensional
spacetimes (with no dependence on their signature), the X and Y bosonic
sectors are given by the following set of rank-k antisymmetric tensors

X Y
D = 3 M1 M0

D = 5 M2 M0 + M1

D = 7 M0 + M3 M1 + M2

D = 9 M0 + M1 + M4 M2 + M3

D = 11 M1 + M2 + M5 M0 + M3 + M4

D = 13 M2 + M3 + M6 M0 + M1 + M4 + M5

(12)

Formula (11) specifies the admissible class of division-algebra related,
constrained bosonic sectors.

This analysis concludes the investigation of constrained complex gen-
eralized supersymmetries for maximal Clifford algebras (i.e. the Clifford
algebras associated to the maximal number of Clifford algebras of given
size that can be constructed). The extension of these results to the case of
non-maximal Clifford algebras (obtained form the previous ones through a
dimensional-reduction procedure) can be easily recovered, see [4] .

An example of application of a constrained generalized supersymmetry
was given in [2], where the analytical continuation of the M -algebra to the
11-dimensional Euclidean space was made possible by the introduction of
a holomorphic complex generalized supersymmetry.

5. Conclusions.

In this paper we discussed the classification of (real, complex and quater-
nionic) generalized supersymmetries. The notion of constrained (complex
and quaternionic) generalized supersymmetry was given. Constrained com-
plex generalized supersymmetries have been explicitly classified. It was
further shown that, in some given cases, they can be presented in a dual
formulation, according to the choice of decomposition of the bosonic de-
grees of freedom in the two matrices P and R entering formulas (6) and
(7).

Physical implications of these mathematical structures are quite obvi-
ous. The classification of generalized supersymmetries allow to understand
the web of interrelated dualities of different classes of theories which can
be either analitically continued (let’s say, to the Euclidean) or recovered
through dimensional reduction.
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As an example, we can cite that the analytic continuation of the M
algebra was proven in [2] to correspond to an eleven-dimensional complex
holomorphic supersymmetry. It was further shown in [3] that the same alge-
bra also admits a 12-dimensional Euclidean presentation in terms of Weyl-
projected spinors. These two examples of Euclidean supersymmetries can
find application in the functional integral formulation of higher-dimensional
supersymmetric models.

There is an interesting class of models which nicely fits [4] in the frame-
work here described and is currently under intense investigation. It is the
class of superparticle models, introduced at first in [17] and later studied in
[18], whose bosonic coordinates correspond to tensorial central charges. It
was shown in [19] that a 4-dimensional theory of this kind leads to a tower
of massless higher spin states, concretely implementing a Fronsdal’s pro-
posal [20] of introducing bosonic tensorial coordinates to describe massless
higher spin theories (admitting helicity states greater than two). This is an
active area of investigation, the main motivation being the investigation the
tensionless limit of superstring theory, corresponding to a tower of higher
helicity massless particles (see e.g. [21]).

In a somehow “orthogonal” direction, a class of theories which can be
investigated in the present framework is the class of supersymmetric ex-
tensions of Chern-Simon supergravities in higher dimensions, requiring as
a basic ingredient a Lie superalgebra admitting a Casimir of appropriate
order, see e.g. [22].
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