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ABSTRACT: The physics of the SYK model at low temperatures is dominated by a soft mode
governed by the Schwarzian action. In [1] the linearised action was derived from the soft
mode contribution to the four-point function, and physical arguments were presented for
its nonlinear completion to the Schwarzian. In this paper, we give two derivations of the
full nonlinear effective action in the large p limit, where p is the number of fermions in the
interaction terms of the Hamiltonian. The first derivation uses that the collective field action
of the large-p SYK model is Liouville theory with a non-conformal boundary condition that
we study in conformal perturbation theory. This derivation can be viewed as an explicit
version of the renormalisation group argument for the nonlinear soft mode action in [2].
The second derivation uses an Ansatz for how the soft mode embeds into the microscopic
configuration space of the collective fields. We generalise our results for the large-p SYK
chain and obtain a “Schwarzian chain” effective action for it. These derivations showcase
that the large-p SYK model is a rare system, in which there is sufficient control over the
microscopic dynamics, so that an effective description can be derived for it without the need
for extra assumptions or matching (in the effective field theory sense).
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1 Introduction and summary

The Sachdev-Ye-Kitaev (SYK) model [1, 3-5] and its generalisations [6-17] provide a rare
analytically solvable window into many-body quantum chaos. The computation of out-of-
time-ordered correlation functions in these models has led to many new insights into the
quantum butterfly effect [18-20] and operator growth [21-23]. Its low energy description in
terms of the Schwarzian effective theory uncovered the Nearly-CF'T universality class of
quantum dynamics, and its holographic dual JT gravity description [24, 25].

In the low temperature limit, the dynamics of the SYK model is dominated by a soft
mode that encodes the reparametrisations of time. In quantum mechanics the analog of the
infinite dimensional conformal symmetry of two-dimensional CFTs is the reparametrisation
symmetry of time: however it cannot be a true symmetry in a system with nontrivial
dynamics.! The breaking of this symmetry is controlled by the Schwarzian action for the
reparametrisations of time with a prefactor that scales linearly with the temperature, which
explains the importance of this mode at low temperatures:

Nag
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where N is the number of fermions, ag is a dimensionless number, 3 is the inverse temperature,

J is the dimensionful coupling strength of the SYK model, u = %TT, f(u) is the time

" 1" 2
reparametrisation mode, and Schlh,u] = };ﬂ ((u")) - % (Z,((;L))) is the Schwarzian derivative.

/027r du Sch [tan (f/2) ,u] , (1.1)

Tt is however consistent with H = 0, which is topological quantum mechanics, the physics of ground states.



The results described above were argued for convincingly in several different ways [1, 2, 26,
27]: we give a quick review of the two most detailed arguments below. The key complication
in these derivations is the matching between the UV and the IR, low temperature behaviour
of the collective fields, which can only be done indirectly (and involves the constant ag that
can only be determined numerically). In the large p limit of the SYK model the UV to IR
connection is under much better control. In this paper we capitalise on this fact to give two
explicit analytical derivations of the nonlinear Schwarzian action, including its prefactor.

In [1], the leading connected contribution to the four point function of fermions was
computed by summing ladder diagrams. Taking a strict IR limit of the ladder diagrams

2 The origin of this divergence is that reparametrisations of time

produces a divergence.
is a spontaneously broken symmetry, and the associated Goldstone boson has zero action
(due to the low dimensionality of the problem). Backing away from the IR leads to explicit
breaking and makes time reparametrisations pseudo-Goldstone bosons. They contribute
to the four point function through the propagator of small fluctuations around the saddle
(0f(u)of(0)), where §f(u) is defined through f(u) = u + df(u). This propagator can be
read off from the ladder diagrams, and it matches with the prediction of the linearisation
of (1.1), with numerical input required to fix ag for general p, and ag = ﬁ for large p.
In [1] a further symmetry argument is presented for the nonlinear completion to the full
Schwarzian action (1.1).

In [2], an alternative argument is presented for the nonlinear Schwarzian. The collective
field formulation gives rise to a nonlocal action, which then is separated into two parts, one
that is time reparatmetrisation invariant, and a deformation that breaks this symmetry. The
latter term is large, but it is argued that it can be replaced by a small deformation in the
IR regime (with ag fixed by numerics), and the Schwarzian action is obtained this way. We
regard our first argument as a close relative of the argument of [2]. However the large p limit
we consider is more controlled: the collective field formulation leads to a local conformal
action (in two times), and it is only boundary conditions that break the reparametrisation
symmetry. We can then use boundary CFT (BCFT) renormalisation group technology to
derive the Schwarzian action.

The outline of the paper is as follows. In section 2 we provide a brief review of the SYK
model, highlighting the infrared regime and the emergence of a time reparametrisation soft
mode and how its action breaks reparametrisation invariance. In section 3 we then describe
the large p limit, which is characterised by a Liouville action with non-conformal boundary
conditions. In particular, in section 4 we show that the saddle point of this theory behaves
like the one point function of a bulk vertex operator in a BCFT, deformed by an irrelevant
boundary operator that we identify to be the displacement operator D. Our first derivation
consists of evaluating D on the reparametrisations of the saddle, finding that the deformation
is, as expected, the Schwarzian. Our second derivation presented in section 5, is less elegant,
but more hands-on. We expect that this method can be generalised to other systems, where
the Schwarzian is expected to emerge. It consists of building an Ansatz for the microscopic
field configuration, and plugging it into the Liouville action. In particular, we look for a
configuration that obeys the following criteria: its starting point is the reparametrisation

2In the dual gravity setup this phenomenon was elegantly discussed in [28].



of the thermal saddle restricted to obey the Kubo-Martin-Schwinger (KMS) condition and
deformed to satisfy the non-conformal boundary conditions. Having found a configuration
that follows the outlined criteria, we can compute its action: once again we recover the
Schwarzian action. Finally, we study the SYK chain in section 6. We derive its soft mode
action using both of our methods: from the perspective of conformal perturbation theory the
inter-site coupling in the chain corresponds to the addition of a marginal operator to two
decoupled Liouville BCFTs, while it is straightforward to make our Ansatz space-dependent
and to evaluate the SYK chain action on it. Both methods lead to the same soft mode action
that we call the Schwarzian chain following [12]:
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where f, is the reparametrisation degree of freedom for site x, M is the number of lattice
sites, and « is the inter-site coupling. Note that the inter-site coupling leads to an action
is non-local in time, as was discussed before in [11, 12, 14, 15, 29].

Note added. During the final stages of our work we learned about an independent work
by Berkooz, Frumkin, Mamroud, and Seitz [30] that also derives the nonlinear Schwarzian
using a similar Ansatz to the one we use in our second derivation. We comment briefly on
the differences between the two Ansétze in section 5.

2 Brief review of the SYK model

The Sachdev-Ye-Kitaev model is an ensemble of quantum mechanical models. A member
of the ensemble consists of N Majorana fermions with p-body interactions and is described
by the following Hamiltonian:

H = > Jivig.ip Wiy - Wiy, (2.1)
1< <ip<...<ip<N
where the coupling J;, ., has a Gaussian distribution with
(Jiy..ip) =0,
s -1t 2L 72 (p 1) (2.2)
<le zp> - Np_l - D Np—l .

In the large IV limit with annealed disorder, we can realise the average over the disorder ensem-

ble for J;,, . i , by directly averaging the partition function [31]. We find the following action:

Jips

1G,3) = —flog det(0r — ) + / / (EG JQGP> (2.3)



The field G is the Euclidean bilinear:
1
G(r) =+ ;T\I/i(T)\I]i(O) (2.4)

and X is the self energy. Note that G, 3 are fluctuating fields.
The classical equations of motion derived by extremising (2.3) are the Schwinger-Dyson

equations:
G=10,-%",
¥ =JGr L. (25)

The solutions to these equations give the leading large N value for the propagator (G(7))
and self-energy. It is easy to see that for zero coupling we get the propagator:

<Gfree(7')> = %sgn(T), (2.6)

whose small 7 behaviour follows from the anticommutation relation of Majorana fermions,
and hence G(7) — %sgn(T) as 7 — 0 will be imposed as a constraint in what follows.

2.1 Low energy limit and the Schwarzian

We are interested in studying the IR regime of the SYK model. We notice that, since X is
proportional to J2, in the low energy limit the term 0, in equation (2.5) is negligible and can
be dropped. We can then write a new set of IR equations of motion:

/dTQG(T, T9)3(12, 1) = —0(T — 1),
S(r,m) = J2G(r, )P L.

(2.7)

This set of equations is invariant under 7 — f(7), provided that the fields transform as
G(r1,m2) = [f/(m) ' (22)] P G(f (1) f(72))
(71, 72) — [f/(Tl)f/(Tz)](p_l)/pE(f(Tl)f(Tz))-

This reparametrisation invariance is then explicitly broken once we take into account the 9,

(2.8)

term that we discarded in the IR limit. In particular, the violation of this symmetry was
argued to be described by the following action [1-4]:

_Nag
J

where Sch[f,u] is the Schwarzian derivative and o = ﬁ in the large p limit. In the following,

S = /du Sch[f,u], (2.9)

we strengthen and generalise its derivation in the large-p SYK model.

3 Liouville action

To achieve better analytical control, after the large N limit we take the large p limit. This

order of limits means that the ratio A\ = % is infinitesimal.® In order to do so, it is

3The double scaling limit in which X is held fixed is also very interesting [32-34]. However in the double
scaling limit all modes of the collective field fluctuate strongly, hence the Schwarzian cannot dominate
the dynamics.



convenient to define the following field g:

Glr.m) = Sgn<ﬁ2—72> (1 N 9<ﬁ;2>) _ (3.1)

From this definition we see that, in order for (3.1) to be consistent with the small time
separation limit discussed below (2.6), we will need to enforce the boundary condition
g(m1 = 12) = 0. Furthermore, since the bilinear should be antisymmetric for 71 — 72, g needs
to be symmetric: g(m,72) = g(72,71). g also needs to satisfy the KMS boundary conditions:
g(t1, 72+ B) = g(71,72) and g(m1 + B,72) = g(11,72). As shown in [33], the action for g is

N 1
Ig] = 4p2/d71d7'2 [—\7269(7”2) + 15719(7'1,72)3729(7'1,7'2) ; (3.2)

which has the form of a Liouville action. Enforcing both KMS and the symmetry condition
for g restricts our region of integration to the shaded diamond in figure 1, with the boundary
condition g(1; = 72) = 0 = g(11 = 72 — ) and the identification g(x, 5 —z) = g(8 — z, 5 + z),
and with the prefactor in equation (3.2) now becoming %. Since this prefactor is large,
it is useful to analyse the saddle point:

2
«(T1,72) _ COS [Lv}
= ( o (3 —Q'ﬂf')}) ’ >

where v is defined through the equation:

™

BT = : (3.4)
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Note that the low energy limit, 3J > 1, corresponds to the regime where v — 1. It will
then be convenient to redefine v = 1 — §v and then take dv — 0. We will also work with
the following set of coordinates:

0T =T —T1,

- T+ T (3.5)
T= :
2
It is convenient for us to work with a rescaled field, ~:
2
A(577) _ W) 9(677)
e ( 5 ) ¢ . (3.6)

From now on we set 8 = 27, which can be reinstated using dimensional analysis. The action
for v can be derived from (3.2):

N 1
Il] = 2})2/61710372 [—67(71’72) + 13717(71772)5727(71772) . (3.7)

Note that in equation (3.7), the explicit dependence on J has been reabsorbed into 7: now
it only appears in the boundary conditions

7(0,7) = log[J?]. (3.8)
The saddle point for this field is

2
o (0T7) Y _ (3.9)
(2 CoS [v (%)} )
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Figure 1. Region of integration when S is set to 2w. Taking into account both KMS and the symmetry
condition for g, we need to integrate only over the shaded region to get the correct action. Moreover,
these conditions imply the identification of the two blue points g(z, 27 — x) = g(27 — z, 27 + z).

3.1 Reparametrisations for the Liouville action

We note that the Liouville action is invariant under reparametrisations of the form
1 —)f(’l‘l), T2—>h(7'2), (3.10)
provided that:

'y(ﬁ, 7’2) — ")/(Tl,TQ) + log [f/(Tl)} + log [h,(Tg)] . (3.11)

This statement is equivalent to (2.8).
Let us start by looking at the reparametrised saddle:

2

v / /
{vw—l—f(ﬂ)—h(n)} f (Tl)h (T2)'
2

el =
4 cos?

(3.12)

Imposing v(7y, 27 — 71) = v(27 — 11, 27 4+ 71) results in the following set of equations:

—f(n)+h@2r—m7)=f2r—7)—h@2r+m7)+27, (3.13)
f(r)N 2 — ) = f2n — )W (27 + 1),

which in turn imply

f(m) = h(m),
f(m +2m) = f(m1) + 27, (3.14)
flr+2m) = f'(n).
Thus we are left with one reparametrisation symmetry. This is also explicitly broken by the
boundary condition y(7; = 73) = log[J?]. However, in the strong coupling J — oo limit
the boundary condition is conformal and the symmetry is restored. This fact motivates
our first approach.



4 Boundary CFT approach to the Schwarzian

We can give a short, abstract derivation of the Schwarzian action based on boundary CFT
(BCFT). The Liouville theory in (3.1) is a CFT. Here we are considering it on a Mobius
strip, equipped with non-conformal boundary conditions

67(?,6720) — jZ ) (41>

Below we explain that for small dv this boundary condition is close to the ZZ conformal
boundary condition,* and we can account for the difference using (boundary) conformal
perturbation theory.

The ZZ BCFT on the half space d7 > 0 (and 7 unrestricted) is defined by the boundary
condition

1

T~ —. 4.2
e (4.2)
The behaviour of the saddle point (3.9) in the regime dv < 07 < [ is:
- 1
Y (T,07) — (7N = L.
© (”) (mév + 07)2 + (4.3)
_ 1 2mbv '
62 673

We observe that this is the one point function of the bulk vertex operator e in the ZZ BCFT
deformed by an irrelevant operator, since the perturbation grows towards the boundary
07 — 0 and is negligible for large 7.

Let us denote the irrelevant boundary operator as O. We can then write

(€7) =(e")zz + )\/d?‘ (OF)e gz + ...

= (e")zz + )\/d%

1 Ao/
o 57—2 5T1+A T

o
sr2-A (012 4+ ?Q)A

)

where in the second line we used the general form of a boundary bulk two point function
from [35] and in the third line we have absorbed some A dependent factors into o/. We
conclude that we are looking for a boundary operator with dimension A=2.

Either from this computation or from simply looking at the first line of (4.3) we identify
0= ﬁ, the displacement operator. The displacement operator has a nice geometric action:
it locally moves the boundary inwards by a unit distance. Since the ZZ boundary was
moved outwards by wdv, we find that A = —wdv. We conclude that we are studying the
deformed BCFT®

Sy —msv/d%ﬁ(%) 4+ (4.5)

4The conformal boundary conditions four Liouville theory have been classified, besides ZZ there is a one
parameter family of FZZT boundary conditions.

5Tt would be interesting to verify this result in the double scaled SYK model, where the Liouville theory is
in the quantum regime by matching its free energy with that of the SYK model computed in [33, 34].



Liouville theory with ZZ boundary conditions has an infinite set of saddle points, since
the reparametrisations of v, (see section 3.1),

O f(r) f'(12)
sin? (L T(m))

(4.6)

also satisfy the ZZ boundary conditions. Hence they have the same action as ~,.. To first
order in perturbation theory, we then only need to evaluate 15(%) on this family of saddle
points. To do so, we recall that D= T‘ST‘ST](;TZO, where T is the stress tensor.® Using the
classic result from [36] that the Liouville stress tensor evaluated on a saddle - is

N on v N o0 v
T11(7'1) = 471)2 67/ 6116 v/ s TQQ(TQ) = @ 67/ 8226 v/ 5 (47)
and plugging in the saddle (4.6), we obtain that”
N
TU(T) = TQQ(T) = 87]?2 Sch[tan(f/Q), T] . (4.8)

Transforming these components into 7977 = T; +T53,% and evaluating at 67 = 0, we get that

. mov
—wév/d?D(%)lw(f) = —]\Zw/d% Schltan(f/2),7], (4.9)

which is, as expected just the thermal Schwarzian, Sch[tan(f/2),7]. We now need to compare
Névr to Nas _ _N
4p? J 4% T
% = mév + O(dv)?: it is then clear that the two coefficients are the same. Note that from

the 67 = 0 boundary we get an integral over 7 € (m, 27), while from the 7 = 27 boundary

from equation (2.9). From eq. (3.3), we can see that, in the IR limit,

we get an integral over 7 € (0,7): together they complete the thermal circle.

We conclude that the infinite set of saddle points (4.6) are lifted at linear order in
ov. The set of field configurations is vastly larger than this soft direction. However, the
orthogonal “hard directions” have an action that is O(N/p?), which is large in the large-p
SYK model. The fluctuations in these directions can then be set to their saddle point value
zero.” Fluctuations in the reparametrisation direction in field space are enhanced by their
small action (relative to other modes), and become O(1) in the ultra-low temperature regime
dv = O(p?/N), where their action is O(1).

5 An alternative derivation for the Schwarzian

As outlined in section 3.1, the Liouville action is invariant under independent reparametrisa-
tions of 71 and 79, which then get restricted to one reparametrisation by the KMS condition.
The remaining diagonal reparametrisation symmetry is broken by the boundary conditions

5When working on the diamond shaped fundamental region, there is of course another boundary at 67 = 27
whose contribution we have to take into account.

"This calculation was done already in [36].

8This equation holds, since the tracelessness of the stress tensor in the light cone coordinates 71,2 is written
as T12 =0.

9These fluctuations then contribute an O(1) amount to the free energy through their functional determinant.



at 71 = 1. The goal for this section is to find the action that describes the behaviour of
the reparameterisation modes, starting from (3.7): this is an alternative way of deriving
the Schwarzian action. In order to perform this computation, we first want to find a field
configuration that includes reparametrisations of the saddle point and that obeys both the
boundary conditions and KMS.

5.1 Field configuration

We start from the reparametrised saddle (3.12), but with the constraint f(m) = h(m)
imposed by the KMS symmetry discussed in (3.14):

2
5 v
67:

Al (5.1)

4 cos2 [U 7T+f(T12)*f(T2

This field configuration violates the boundary conditions. However, if we take the v — 1
limit, we get that the violation is f independent:
& f(r) f'(12) 1

v—1 = {f(n)gf(m)} = (52)

4sin?
(This is the same equation as (4.6).) If we divide this with the v = 1 saddle, we get a field

configuration that goes to 1 at the boundary:

sin? (25™)

2 [fln) 1] fr)f (). (5:3)
2

sin

We then multiply this with the v # 1 saddle to enforce the boundary conditions and produce
our Ansatz (see figure 2):

e (Tm) —

v? sin” (LZH) / /
))f (1) f' (72) . (5.4)

Lo [0 (2] e (A 112

This Ansatz is designed to embed the soft reparametrisation mode into the microscopic field
configuration 7 (71, 72), and hence capture the soft mode. This mode is special, a generic
configuration instead has a large O(N/p?) action, and fluctuations in the hard directions
can be set to zero.

Admittedly, our construction of the Ansatz is ad hoc. However, it satisfies all conditions
on the field configuration, and it is a “small deformation” of the v = 1 family of saddle points.
—wnT

Also, for linearised reparametrisations f(u) = u + ce it gives:

e~ 0T OTT) — 1 4 24e £,(87)e ™™ + O(N?),

sin % noT (5.5)

fn(oT) =

The f,(d7) functions are identical to those defined in eq. (3.109) of [1]. They realise
infinitesimal reparametrisations of the v = 1 saddle. We conclude that our Ansatz is accurate
to linear order. At nonlinear order, the goal is to capture the soft direction in field space.



(a) Field Configuration for v = 0.8 (b) Saddle Point solution for v = 0.8

Figure 2. Three dimensional plots of ?#(7:72) and e7=(7:72) for v = 0.8. On the left we have our
Ansatz for the field configuration when f(7) =7 4 0.1sin(27) + 0.2 cos(37) and on the right we are
plotting the saddle point solution. By construction, both €?/(7:72) and e?+(":72) are equal to J2 on
the boundary.

The potential issue with the Ansatz could be that at nonlinear order in ¢ f it mixes with the
“hard” directions. The output of our calculation will be an action that is small, O(dv), which
a posteriori confirms that there is no large mixing with the hard directions. However, an
O(6v) action is also consistent with an O(v/6v) mixing with hard directions. We can verify
that this does not happen in the region §7 > dv, where our Ansatz behaves as

(67,7) or? 3
eFOTT) = e |1 + TSCh [tan (f/2),u] + O (57' ) ) (5.6)

which is the expected IR behaviour of the soft mode. We conclude that in the worst case
the Ansatz deviates from the true soft mode in the region é7 ~ dv, which can only result in
O(dv) mixing, which is negligible. Indeed, we obtain the Schwarzian action from this Ansatz,
which we know, from our first method and earlier literature, is the correct result.

The mixing issue could be further investigated by linearising around the Ansatz with a
finite f and finding that the zero mode of the linearised equation is indeed in the direction of
the Ansatz with f 4+ §f; we leave this computation for the future.

Note added. We briefly comment on the parallel work [30]. The authors consider an Ansatz
distinct, but close to ours in spirit. Their Ansatz for linearised f(u) gives F,(d7), which are
the generalisation of f,,(d7) for finite v and reduces to them as Jv — 0.!9 This difference is
immaterial for getting the correct soft mode action at O(dv), since it amounts to a negligible
O(6v) mixing with hard modes. The important difference between our Ansatz and that
of [30], is that the latter only satisfies the boundary conditions approximately at small dv,
which the authors remedy by adding a boundary term to their action.

0Consider the finite v saddle and linearise around it. The eigenfunctions of the resulting differential
operator are ¥, (57’)6_””: with eigenvalue proportional to n? — m?2, where n € Z and m is a solution of a
transcendental equation [37]. Let us denote the m closest to n as m(n): this gives the softest eigenmode. For
small 0v we get m(n) = n(l —dv+...). We then define F,(67) = () (67).

,10,



Before we proceed it is important to emphasise the following issue. We are interested in
considering the limit for v — 1: let us start by rewriting the saddle point solution as:
1

e OmT) = : (5.7)
4cos? [(1 — ov) (”‘T‘ST)}
For finite values of 7, taking the limit for dv infinitesimal is straightforward:
- 1
- 6r7) (5.8)

4cos? [%‘ST] .
However, when we are close to the boundary, i.e. when 07 ~ dv, things become more delicate.
As in (4.3) we find

1
(dvm +67)%

As a result, in the following computation we will consider contributions from the bulk and

67*(57,77) ~ (59)

from the boundary separately, paying close attention to the regime in which 7 ~ Jv.

5.2 Near-boundary contributions

To find the action for the reparametrisations, we plug (5.4) into the Liouville Lagrangian: the
expression we find is not particularly illuminating, so we will not report it. As discussed, we
need to consider contributions from the near-boundary region separately: we thus perform
two rescalings, 07 — 07/6v and 07 — 27 — §7'0v, and we expand around dv — 0. We find:

N A T ) (<8R ()2 () ()
/odT/o doT

Soay (=57 12(67/+m)2 f/(7)2 !
N /7 A 6TI(07T42m) (—3f”(%+7r)2+f’(%+7r)4+2f(3> (%+7r)f’(%+7r))
+— d?/ dér’ _ ov,
2p? Jo 0 12(07"+m)2 f(T4m)?
(5.10)
where A is a large cutoff in the rescaled time d7’. Integrating in 67’ we get:
N pr N3P F (2O @) (7))
dey(A) = 7/ dr — ov
N A (—3f”(7"+7r)2+f’(7_'+7r)4+2f(3)(7_""7T)f,(7_'+7r))5 |
o fy O 12(A+7) /(7472 v

Looking at the second contribution, by performing a change of variable 7 — 7 — 27 we
can rewrite it as:

N /271_ 7A2 (_3f”(7’—)2 + f/(f)4 + 2f(3) (%)f/(%)> v (512)

22 ), 7 12(A+7) f'(7)2
Adding the two contributions together we get
N R (SEP 0 2000 0)
_ = ) 5.13
ol 12(A + ) f'(7)2 ! (5.13)

Note that the action in equation (5.13) depends on the presence of a cutoff, A, and is

dey (A)

divergent for A — oo; this divergence, however, will be cured once we consider contributions
from the bulk.

— 11 —



5.3 Bulk contributions

To compute the bulk contributions we can directly expand our Lagrangian in dv as Lpuk =
Liulk,0 + 0vLpuik,1 + ... and consider the contributions order by order. When integrating, to
avoid double counting we will include a cutoff by considering only the interval 67 € [Adv, 27 —
Adv]. Since the cutoff depends on dv, when integrating the term Ly, we expect to get
contributions at every order v with m > n. First, we integrate Lyu 0, and after some
lengthy manipulations (see appendix A) we find:

A(=3f"()2 + F(o) 4 2fO(r) (7))

N |- 5U]. (5.14)

Shulk,0(A) = 27 Jo dr

12f(7)?

Adding this contribution to eq. (5.13), we get:

A (3" (1) +f/(r) +2/D(r) (7))

- 12(A+7) /()2 51}] . (5.15)

N 2
Sbulk,O(A)+dey(A):2])2/() dr

Taking the limit for A — oo yields

20 T _3f//(72+f/74+2f(3)7'f/7'
Sbulk,O + dey = 2];[2/0 dr [_ ( ) 12;,27—)2 ( ) ( )) (51)] . (516)

As expected, adding contributions from the bulk cures the divergence that we had from the

boundary. It is reasonable to expect that the cutoff dependence cancels at higher orders in
ov as well, and we have explicitly verified this to second order in dv.

Next, when integrating Lyuk,1 we can set the cutoff to zero, since keeping it would only
result in subleading contributions. After some manipulations (see again appendix A), we
can rewrite the contribution at first order as:

o (SRR P 2O () (e
5vsbulk,1_2NpQ/02 dr (— (c3) 6(,()7)2 0/ ))&)). (5.17)

Adding everything together we get:

N durm 27Td7'<1 @ () 3f”(7)2> ~ Ndvm 27

_ s — g 2 _ _
20?2 2 Jo 2T T 2 4p?

dr Schltan(f/2), 7],
(5.18)

which is in complete agreement with (4.9).

6 The nearest neighbour coupling in the SYK chain at low temperatures

The SYK chain consists of a chain of coupled SYK sites, with nearest neighbour interactions [6].
The Hamiltonian has the form:

M
H = Z ( Z Jx,hiz...ip\yil,x ce \Ilip,m+

r=1

!/
Z $7i1"'i73/2j1---jp/2\Ilil7l' st \Pip/27x\:[lj1am+1 st \Ijjp/27m+1> ? (6'1)
1<i1<i9<... <ty /o <N

1<51<52<. <Jpj2<N
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with:

(-1

2 p
< wyily---ip> - Np—1 op—1

2p—1

2
2 [(p/Q)!] 2 2 _
J:::,il...ip/le...jp/2> =———Ji, Jo1=

2
JO ? < pr_l

I3 (6.2)

2

We will identify J = Jp from previous sections and define a = %.11 In the large p limit

we can write the action as [6, 38]:

N & 1
I[g]zrp2 Z /dTldT2 {_‘726%(7—1’7—2)_\71265(gm(71772)+gz+1(7—1’72))+487'191(7—177—2)67'2930(7—177—2) .
=0

(6.3)

From the perspective of conformal perturbation theory, we have started from M decoupled

Liouville theories on the Mobius strip and added a bulk (marginal) perturbation e3(9rtgz+1)

To leading order in this bulk coupling and zeroth order in Jv we can incorporate its effect by

evaluating it in the reparametrised saddle configuration (4.6); see [11] for a more detailed

discussion. Alternatively, our Ansatz for the field configuration in the IR regime (5.4) gives
the same result. We get:

M-1
Névr 27 N g (rim o
Igl = Z [— w7 dr Schltan(fz/2), 7] — ‘71274])2 /dTldTQ [62(91( 172)+ge+1(71, 2))H

=0

M—-1

Névm [27
=3 |- bftan(f../2),
> |- | dr Sebftan s /2), 71+

xr=

~rmor Y | VIOV e (0 Fi ()
1\ U) 5 dridrs
w ot (EOL0)  fine (Linl fenie)

(6.4)

Note that we are only justified in keeping the second nonlocal term if it is the same order as
the first one, since there are other modes orthogonal to f that we discarded and that would

give an O(N/p?) action, not reduced by an additional factor dv < 1. Thus, we demand that
2

JE(mév)? < 1. Note that in the IR regime J% ~ Tév, 80 we can write J£(mdv)? ~ % ~ Q.
0

Our requirement simply becomes a < 1, with the final form of the action:

M-1 o

I[ﬂ:_zgﬂ; (mov) ; dr Schltan(f,/2), 7]+
(6.5)
+a [ dndn VIEEOWVTE ) Ve () Fea ()

\/sin2 (Ltnlph) \/sm2 (frlnlfenin))

We refer to this action as the Schwarzian chain following [12].

"This notation deviates from the convention of the literature, where the definition 72 = J¢& + J7 is used.
Since we will take J1 < Jo, this is an unimportant difference.
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A More on bulk contributions

At zeroth order in the expansion of Lyuk, we get the following bulk contribution:

N T 2 —Adv
Sbulk,O(A) = p2 A d%/ doT Ebulk,O((;Ta f‘), (Al)

2 Adv

where

Ll 0(67,7) = (cos(d7)+3) csc? (‘Z)

Rl (7 %) (f”(‘¥+f)+f’(‘¥+f)200t(% (1 (f—‘?)—f(‘?”))))
f

We can rewrite this in 71,7 coordinates:
121" (f"(72) + F/(72)? cot (3(f(m) = f(72))))
Liuik,0(T1, 72) = 8( ) (m2)

n 2f' (1) (f" () sin(f (1) — f(72)) + f'(12)*(cos(f (1) — f(72)) + 3))
f'(r2)(cos(f(m1) — f(m2)) — 1)

+ 4 csc? (Tl 27—2> — 2> 3 (A.3)
which can be rewritten as:

1" (71) (log (' (r2)?) 2log (sin? (§ (f () =/ (72)) ) ))
8f"(m1)

+0;, [if’(m) (f(71)+4sin (f(;’l)>csc (;(f(ﬁ)—f(m))) cse (f(Tz))> i

f"(ma)log (sin? (3 (f ()= £ (72))) ) 1
o 4f’(7’2) ]+

_|_

_l’_

Liuik,0(T1,72) = O,y [

1
1—cos(11—72) 4
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We can now evaluate the total derivatives at the boundaries of the integration intervals and
expand in dv: after some computations we get (5.14).
The first order contribution is:

N T 27
/ dr [ dsr Lo (67,7, (A.5)
0

S =—
bulk1 = 55 |,

with

Couien (57.7) = ;( I <T—527>
( ( T—47)cot (62 )+2> f ((ZTM) csc? (; (f <7‘—62T> —f <627+7'>>> +
— (=67 +sin(67)+7)csc? <62T> cot <; (f (7_'—627> —f <627+7_'>)>>
T 5

(=67 +sin(67)+7)csc?

(
fr(7—11) cos(07)—1
(=or+sin(0r)+) (7 (F+7)+1 (5+7) cot ( (F (F= )~ f (F+7))) )

+2

+cos(§72')—1>' (A.6)

As we noted in section 5.3, there is no need to consider a cutoff, as it would only result in
contributions that are subleading in dv. Rewriting eq. (A.6) in 71, 72 coordinates yields:

Lot (71,72) = é (f’(ﬁ) (2 <(71—TQ+7T)cot (;(Tg—n)> +2) £ () csc? (; (f(ﬁ)—f(Tz))> 4

(=7 a-tsin (71— 7)) csc? (; (7271)> cot @ (f(Tl)f(TQ)))>+

(Tl—Tz—sin(Tl—Tz)er)cch( (T2— T1))f"( 1)
GV
(11—To—sin(r—72)+) (f’/(72)+f/(72)2C0t (%(f(ﬁ)_f(m))))
1 (m2) (cos(m1—m2)—1)

(+2cos(7'1—Tz)+4(7'1—7'2+7T)COt( (T2— Tl))+6)>

cos(t1—7o)—1

_l’_

_l’_

+2

+2

which can be written as

[(Tl—Tngﬂ cot g% T — T2 )f"(ﬁ)] N

Liuik,1(T1,T2) = O,

1)
+ 0, [8f’1(72) ((n — 27y + 27) sin <T21> — T18in <; (r1— 2T2))>

cse (; (1 — 7'2)) cse (2) 1" (Tz)]—l—
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+on[2 (0 -2m 4205 (3 ) —misin (3 (- 20

ese (5= ) ese (2) 7 yeot (3£ ) £ o) |+

+ 0, [; <TQ sin (n - T;) + (r2 = 2 (71 + 7)) sin (2))

esc (721) s (; (1 — TZ)) F (71) cot (; (f(n)— f (Tz)))] +

40, (= meot (2) 1 () eon (5 (7 () = £ () |+
o[ (e meon () <) e (S - o) |+

cos (11 — 12) — 2 (11 — T2 + ™) cot (% (11 — 7'2)) +3

+ 2 (cos (11 —72) — 1)

(A.8)

As we did for the order zero contribution, we now need to evaluate the total derivatives at the

boundaries of the integration intervals and after some further manipulation, we get (5.17).
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