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1 Introduction

The IKKT-matrix model [1] can be considered as an alternative and constructive description
of type IIB superstring theory. It also provides a promising approach towards a quantum
theory of gravity in 3 + 1 dimensions, since both spacetime and physical fields emerge
from the same matrix degrees of freedom; see e.g. [2] for a review. Recently, it was shown
that the Einstein-Hilbert action can be obtained from the one-loop effective action on non-
commutative branes in the presence of fuzzy extra dimensions [3, 4]. From this perspective,
the gravitational theory induced by the IKKT-matrix model is closely related to the idea of
induced gravity of Sakharov [5, 6].

Some natural backgrounds of the IKKT model are given by covariant fuzzy spaces such
as the fuzzy 4-sphere S4

N [7] or fuzzy 4-hyperboloid H4
N [8]. These are the total spaces of

quantized sphere P1
N -bundle over the base manifold S4 or H4, respectively. From this point

of view, S4
N can be viewed as a compact fuzzy twistor space P3

N while H4
N is understood as

a non-compact fuzzy twistor space P1,2
N . What is significant about these fuzzy spaces is that

their algebra of functions C is truncated. As a result, the higher-spin algebra ths, which is
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a subspace of C , is also truncated for finite N [7, 9]. Since this truncated symmetry must
be accompanied by higher-spin gauge fields,1 it is obvious that the IKKT-matrix model can
induce a higher-spin gauge theory (HS-IKKT) whose spectrum is finite.

The connection between (HS-)IKKT matrix model and twistor theory naturally leads
to a spinorial formulation of the resulting gauge theory, which was explored for the case of
S4

N in [10]. However this only leads to a background with Euclidean signature. To overcome
that limitation, we generalize in the present paper the analysis in [10] to backgrounds
defined using H4

N . Indeed, it is known that H4
N can be projected to a fuzzy FLRW

cosmological spacetime with Lorentzian signature. Then the IKKT-matrix model defined
on this background becomes a more ‘conventional’ field theory.2

In this work we will consider two projections of H4
N : (i) a stereographic projection to a

4-hyperboloid (or equivalently Euclidean AdS) as the base manifold, and (ii) a SO(1, 3)-
invariant projection which defines a FLRW type cosmology [13–15]. In the first case, we
essentially recover the same results of [10] (up to signs) for the spinorial formulation of
the IKKT-matrix model on H4. In the second case, we provide a novel formulation of the
IKKT-matrix model in terms of twistor/spinor variables on the FLRW spacetime. However,
in that case the spinorial description turns out to be rather unconventional, making it hard
to study scattering processes in the flat limit.

As an application of the spinorial formulation, we compute tree-level on-shell scattering
amplitudes of massless fields of the Yang-Mills (YM) sector of HS-IKKT theory in the
complexified Euclidean case, and show that all n-point tree-level amplitudes of this sector
vanish for n ≥ 4 in the flat limit. To obtain an alternative understanding of this result, we
also project all vertices of this sector to the light-cone gauge, and observe that the MHV
sector can be removed by a local field redefinition. Due to the unconventional space-like
spinor formalism in the Lorentzian case, we compute the tree-level scattering amplitudes of
HS-IKKT theory only in Euclidean signature in the present paper, and set the stage to
elaborate the Lorentzian case elsewhere.

The paper is structured as follows. Section 2 provides a brief review of the IKKT-
matrix model and almost-commutative 4-hyperboloid. Section 3 elaborates the relation
between H4

N and P1,2
N using spinor formalism from the stereographic projection point of

view. Section 4 studies the spinorial description of the SO(1, 3)-invariant projection. The
gauge-fixing procedure and decompositions of modes are specified in section 5. Section 6
derives spacetime action of HS-IKKT. Section 7 computes the scattering amplitudes of the
HS-IKKT. We conclude in section 8 and collect some technicalities in the appendices.

Notation. Throughout the paper, we use a, b as SO(1, 4)-indices where a, b = 0, 1, 2, 3, 4
while â, b̂ stand for SO(2, 3)-indices for â, b̂ = 0, 1, 2, 3, 5. The Sp(4) and twistorial indices
will be denoted as A, B where A, B = 1, 2, 3, 4. Note that α, β = 0, 1 while α̇, β̇ = 0̇, 1̇. We
will use the strength-one symmetrization convention, e.g. AaBa = 1

2(Aa1Ba2 + Aa2Ba1); and
write fully symmetric rank-s tensor as Ta(s) = Ta1...as for short.

1Note that the truncated higher-spin algebra ths coincides with the usual higher-spin algebra hs of
4-dimensional target space in the semi-classical (large N) limit as discussed in e.g. [2, 10].

2See also [11, 12] for somewhat related realization of twistor geometry in similar matrix models.
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2 Review on the IKKT matrix model and the fuzzy 4-hyperboloid

We consider the following SO(1, 9)-invariant action functional

S = Tr
(
[Y I , Y J ][YI , YJ ] + 2m2Y IYI + ΨA(γ̃I)AB[YI , ΨB]

)
, I = 0, 1, . . . , 9 , (2.1)

known as IKKT model amended by a mass term.3 This model describes 9+1 hermitian
N × N matrices Y I , as well as matrix-valued Majorana-Weyl spinors ΨB associated with
SO(1, 9). Since Y I are matrices, they generically do not commute. This non-commutativity
can naturally be interpreted in terms of a quantized Poisson structure θIJ on a brane
embedded in target space R1,9 viz.

[Y I , Y J ] =: i θIJ . (2.2)

To extract classical coordinate functions {yI} describing R1,9, it is reasonable to assume
that there are localized quasi-coherent states |y⟩ ∈ H (with H being some Hilbert space on
which the matrices act) such that the yI arise as expectation value of Y I viz.

yI = ⟨y|Y I |y⟩ ∈ R1,9 . (2.3)

The resolution of the coordinate functions yI will increase with the size of the matrices Y I ,
which suggests to consider the large N (or semi-classical) limit or regime where matrices
are almost-commutative [17–20]. In this regime, we can replace (2.2) with Poisson brackets

{yI , yJ} := θIJ . (2.4)

Here yI can be used to define an almost-commutative variety embedded in target space via
yI : M ↪→ R1,9. Then classical functions in terms of y are related to matrices via

C (M) ∼ Mat(H)
f(y) = ⟨y|F (Y )|y⟩ ∼ F (Y ) .

(2.5)

The matrix algebra (Mat(H), [ , ]) generated by Y I is interpreted as quantized version of
the Poisson algebra defined by the pair (C (M), { , }). Furthermore, the trace in (2.1) will
be replaced by some appropriate integral, as discussed below.

For our purpose of constructing a higher-spin theory from the IKKT-matrix model on
H4

N , it is sufficient to consider the semi-classical limit or -regime, where we can work with
ordinary functions as familiar from field theory. The non-commutativity then reduces to
the explicit Poisson brackets

{ya, yb} =: θab = −ℓ2
pmab , a, b = 0, 1, 2, 3, 4 , (2.6)

where mab are functions on twistor space P1,2 (as explained below) arising from the semi-
classical limit of so(1, 4) generators in certain representations [8], and ℓp is a natural
length scale.

3The mass term is added in order to stabilize the background under consideration as a classical solution.
This mass should be considered as parametrically small, and will be negligible for the local physics in the
flat limit, which is the focus of the present this paper. Ultimately, quantum effects are expected to stabilize
a slightly deformed version of the present background, cf. [16].
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It is worth noting that the Poisson bracket (2.6) involves two derivatives in ya. This
means that even though the IKKT-matrix model has the structure of a Yang-Mills gauge
theory, it behaves like a gravitational theory. To study the IKKT model perturbatively [21],
we will consider fluctuations ya = ȳa + aa of a background ȳa on H4

N [22]. This defines an
almost-commutative Yang-Mills-type gauge theory on H4

N [8] that is invariant under the
gauge transformations U−1(ȳa +aa)U where U is any unitary matrix, replacing commutators
by Poisson brackets.

Algebra of functions on semi-classical H4
N . Endowing the ambient space R1,4 with

the metric ηab = (−, +, +, +, +) allows us to describe a 4-dimensional hyperboloid H4
N of

radius R in terms of a space of functions C with the following so(1, 4)-covariant semi-classical
relations [8]:4

{mab, mcd} = +(madηbc − macηbd − mbdηac + mbcηad) , (2.7a)

{mab, yc} = +(yaηbc − ybηac) , (2.7b)

{ya, yb} = −ℓ2
p mab , (2.7c)

yaya = −y2
0 + yaya = −R2 = −

ℓ2
pN2

4 , a = 1, 2, 3, 4 , (2.7d)

ϵabcdemabyc = −4N

ℓp
mde (2.7e)

with large N . Here the curvature radius of H4
N is set by the mass parameter in (2.1) via

R2 = 3
m2 . (2.8)

The relation (2.7e) is a self-duality relation, which allows us to restrict the space of functions
on H4

N to

C (ya, mab) =
∑
k,m

fc(k)a(m),b(m)y
c(k)mab . . . mab =

⊕
k,m

m
m + k (2.9)

corresponding to two-row Young tableaux, where the convention ya(m) means y(a1 . . . yam).
Within C , we can find a subspace

ths(so(1, 4)) =
∑
m

ga(m),b(m)m
ab . . . mab =

⊕
m

m
m , (2.10)

which consists of polynomials purely in terms of mab, thus defining a truncated higher-spin
algebra ths. Note that ths coincides with the usual higher-spin algebra hs of Euclidean
AdS4 in N → ∞ limit.

The above algebra of function implies that the IKKT-matrix model on a H4
N background

induces a higher-spin gauge theory (HS-IKKT) [8]. Remarkably, the higher-spin fields
mitigate the violation of Lorentz invariance through noncommutativity (cf. (2.6)), while

4Note the sign difference with the case of S4
N [7].
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parity invariance is broken due to the presence of ϵabcde tensors [7]. This causes the HS-
IKKT to exhibit some sort of ‘chiral’ feature [8], and reflects the fact that HS-IKKT can be
formulated on twistor space [10].

Twistor realization of semi-classical H4
N . It is manifest that (2.7) is related to the Lie

algebra so(2, 4); more precisely, they arise in the semiclassical limit of a specific “doubleton”
representation HN of so(2, 4).

Instead of working with so(2, 4), it is sometimes more convenient to use the su(2, 2)
formulation. As is well-known, the non-compact twistor space P1,2 can be realized either
as SO(1, 4)-equivariant bundle over H4, or a 6-dimensional co-adjoint orbit of SU(2, 2), i.e.
OΞ = {g Ξ g−1 , g ∈ SO(2, 4)} where Ξ = (N, 0, 0) has the stabilizer U(1) × SU(1, 2) [8].
This allows us to identify H4

N with the non-compact P1,2. More explicitly, consider the
following identifications:

yAB = −yBA = ℓ−1
p yaγAB

a , lAB = lBA = 1
2mabΣAB

ab , (2.11)

where γa = −2Σa5 are the gamma matrices of so(1, 4) realized by the following basis adapted
to the compact SU(2)L × SU(2)R ⊂ SU(2, 2) subgroup:

(γ0)A
B =

(
1l2 0
0 −1l2

)
, (γm)A

B =
(

0 −(σm)α
β̇

(σm)α̇
β 0

)
, (γ4)A

B = i
(

0 1l2
1l2 0

)
,

(2.12)

for m = 1, 2, 3, and

{γa, γb}A
B = −2ηabδ

A
B , ΣAB

ab = −ΣAB
ba = ΣBA

ab = 1
4 i [γa, γb]AB . (2.13)

This allows us to express the H4
N using su(2, 2) representation as:

{lAB, lCD} = +(lACCBD + lADCBC + lBDCAC + lBCCAD) , (2.14a)

{lAB, yCD} = +(yACCBD + yBCCAD − yADCBC − yBDCAC) , (2.14b)

{yAB, yCD} = −(lACCBD − lADCBC − lBCCAD + lBDCAC) , (2.14c)

yAByAB = lABlAB = −4R2 , (2.14d)

ϵABCDyAB = yCD (2.14e)

where

CAB = −CBA = diag(ϵαβ , ϵα̇β̇) (2.15)

is the so(1, 4)-invariant matrix and we use ϵ01 = −ϵ10 = 1 , ϵαβ = ϵαβ as our sp(2)-invariant
matrix. These matrices allow us to raise and lower su(2, 2) and/or sp(2) indices as

VBCAB = UA , V BCBA = UA , uα = uβϵαβ , uα = uβϵβα . (2.16)

The Poisson algebra in su(2, 2) representation becomes

C (yAB, lAB) =
∑
k,m

fA(k)B(2m)|C(k)y
AC . . .yAC lBB . . . lBB =

⊕
k,m

k
k+2m . (2.17)

– 5 –



J
H
E
P
1
2
(
2
0
2
3
)
0
1
0

We can identify the following subspace:

ths(sp(4)) =
∑
m

gB(2m)l
BB . . . lBB =

⊕
m

2m (2.18)

as the truncated higher-spin algbera ths(sp(4)). This allows us to identify semi-classical
H4

N with the non-compact semi-classical twistor space P1,2
N spanned by the su(2, 2) vectors

ZA and their complex conjugate Z†
A.

For later convenience, we also note that by lowering the indices of the gamma matrices
in (2.12), we obtain

γ0
AB =

(
ϵαβ 0
0 −ϵα̇β̇

)
, γm

AB =

 0 σ̃m
αβ̇

−σ̃m
β̇α

0

 , γ4
AB = i

(
0 ϵαα̇

−ϵα̇α 0

)
. (2.19)

The Hilbert space HN underlying H4
N is the lowest-weight irreducible representation

(0, 0, N)su(2,2) (2.20)

which can be realized using an oscillator construction in terms of operators ZA, Z̄A subject
to the constraint

N̂ := Z̄AZA = Z†
A(γ0)A

BZB = N = 2R

ℓp
(2.21)

where Z̄A = Z†
•(γ0)•A is the Dirac conjugate of ZA; and the “number operator” N̂ is

invariant under SU(2, 2) rather than SU(4) (cf. section 3.3 in [8]). Note that the A indices
are chiral w.r.t. SU(2, 2).

The space of operators

C (P1,2
N ) = End(HN ) = (N, 0, 0)su(2,2) ⊗ (0, 0, N)su(2,2) =

N∑
n=1

(n, 0, n)su(2,2)

=
N∑

n=0
fA(n)

B(n)ZA . . . ZAZ̄B . . . Z̄B

(2.22)

is given by the space of polynomials in ZA, Z̄B with equal number of Z and Z̄. Its semi-
classical limit is given by the space of commutative functions generated by ZA, Z̄B with
equal number of Z and Z̄ subject to the constraint (2.21) modulo U(1) endowed with the
Poisson structure

{ZA, Z̄B} = δA
B i.e. {ZA, Z̄B} = −CAB . (2.23)

This is nothing but the space of functions on C (P1,2). We can check that

{N̂ , ZA} = −ZA , {N̂ , Z̄A} = +Z̄A . (2.24)

Thus N̂ gives the Poisson algebra defined by the pair (C (P1,2), { , }) a gradation as shown.
Moreover, we can use N̂ to define an H3,4 ⊂ C4 as

H3,4 ≃ H7 := {ZA ∈ C4 | Z̄AZA = N} . (2.25)

– 6 –
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This allows us to understand P1,2 from the point of view of the following Hopf fibration:5

P1 ↪−→ P1,2 = H3,4/U(1) → H4 ⊂ R1,4 ,

ZA 7→ ya := ℓp

2 Z̄A(γa)A
BZB ,

(2.26)

where γa = 2Σa5. This means that P1,2
N can be understood as P1

N -bundle over H4. Here the
subscript N indicates not only the radius constraint (2.21) but also the origin of P1

N as a
fuzzy sphere S2

N in the non-commutative regime, as explained further in section 3. Note
that H4 has Euclidean signature even though the ambient space R1,4 is endowed with a
SO(1, 4) metric [8]. The P1

N will be described in terms of ‘negative chirality’ spinors which
transform under the local SU(2)L.

Semi-classical H2,2
N . For later discussion related to a matrix-model cosmology with

Lorentzian signature, we recall that P1,2 can be also viewed as P1
N -bundle over a split

signature 4-hyperboloid H2,2. This is realized by the following Hopf map:

P1 ↪−→ P1,2 = H3,4/U(1) → H2,2 ⊂ R2,3

ZA 7→ tâ = 1
R

Z̄A(Σâ4)A
BZB = 1

R
mâ4 , â = 0, 1, 2, 3, 5 ,

(2.27)

where tâ transform as vectors under SO(2, 3) whose generators are mâb̂. They satisfy the
following relations

{tâ, tb̂} = 1
R2 mâb̂ , â, b̂ = 0, 1, 2, 3, 5 , (2.28a)

ηâb̂t
âtb̂ = −t2

0 + t̂it
î − t2

5 = 1
ℓ2

p

, î = 1, 2, 3 , (2.28b)

yâtâ = 0 = yµtµ , µ = 0, 1, 2, 3 , (2.28c)

where the metric of R2,3 is ηâb̂ = diag(−, +, +, +,−). Due to the last relations, the tµ can
be understood as generators of the internal S2

N underlying the higher spin structure. They
are associated with the gamma matrices Σµ4 =: 1

2 iγ
µγ4 = 1

2γµ given by

(γ0)A
B = 1

2

(
0 1l2

−1l2 0

)
, (γ î)A

B ≡ (γi)A
B = 1

2

(
σi 0
0 −σi

)
, î = 1, 2, 3 . (2.29)

We also note that the above definitions imply y4 = −ℓpR t5 .

Flat limit of semi-classical H4
N . In the later sections of this paper, we will focus on

the flat limit R → ∞ of the semi-classical H4
N . If ya, a = 1, . . . , 4 are local coordinates

near the “south pole” ya = (R, 0, 0, 0, 0), it is natural to consider a second set of vector
generators ta (different from but analogous to the generators tâ in (2.27)) which arises from
the underlying representation of so(2, 4):

ya = ℓpma5

ta = 1
R

ma0 (2.30)

5Note that for so(1, 4) both indices of the gamma matrices are equivalent since the spinor representation
is self-dual due to CAB , unlike for so(2, 4).
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for a = 1, . . . , 4, which satisfy

{ya, yb} = −ℓ2
pmab , a, b = 1, 2, 3, 4 , (2.31a)

yaya = −R2 + y2
0 = −

ℓ2
pN2

4 + y2
0 , (2.31b)

{ta, tb} = 1
R2 mab , (2.31c)

δabtatb = 1
ℓ2

p

, (2.31d)

yata = 0 . (2.31e)

Due to the last relations, ta can be considered as generators of the internal S2
N underlying

the higher spin structure. We will use this representation of “momentum” on H4 to analyze
the degrees of freedom for higher-spin fields in section 5.

Semi-classical M1,3
N spacetime. To get the desired Lorentzian signature from either

H4 or H2,2, we can consider the following projections to a SO(1, 3)-covariant spacetime:

πy : mab 7→ yµ = ℓpmµ5 , (2.32a)

πt : mâb̂ 7→ tµ = 1
R

mµ4 . (2.32b)

The projections (2.32) can be realized explicitly as follows:

ηµνyµyν = −R2 − y2
4 = −R2 cosh2(τ) , (2.33a)

ηµνtµtν = 1
ℓ2

p

+ y2
4

ℓ2
pR2 = +ℓ−2

p cosh2(τ) , (2.33b)

where ηµν = diag(−, +, +, +) and τ is a time parameter that defines a space-like foliation
for a cosmological FLRW spacetime with k = −1. In particular, τ is defined by

y4 = R sinh(τ) , (2.34)

which features a big-bounce at τ = 0. Here, tµ defines internal space-like sphere S2 with
radius ℓ−2

p cosh2(τ) (cf., (2.28c) and (2.33b)) whose local stabilizer is SO(3) ≃ SU(2). For
this reason, one may use tµ as auxiliary vectors to describe higher-spin modes. Further
relations include [8, 15]:

{tµ, yν} = +ηµν

R
y4 = ηµν sinh(τ) , (2.35a)

{tµ, y4} = −yµ

R
, (2.35b)

mµν = R2{tµ, tν} = 1
cosh2(τ)

(
sinh(τ)(yµtν − yνtµ) + ϵµνσρyσtρ

)
. (2.35c)

The above suggests that we can identify yµ as coordinates on M1,3
N , and tµ as momentum

generators. In fact, by virtue of (2.35a), we have

{tµ, ϕ(y)} = sinh(τ)∂µϕ(y) . (2.36)

– 8 –
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There is an important global time-like vector field:

T = yµ∂µ (2.37)

which describes the time evolution of the FLRW cosmological background with k = −1 and
is compatible with SO(1, 3) isometry. The coordinates of the FLRW patch read [13]:

y0

y1

y2

y3

 = R cosh(τ)


cosh(χ)

sinh(χ) sin(θ) cos(φ)
sinh(χ) sin(θ) sin(φ)

sinh(χ) cos(θ)

 , (2.38)

for which the metric can be computed as

ds2 = −R2 sinh3(τ)dτ2 + R2 sinh(τ) cosh2(τ)dΣ2

= −dt2 + a2(t)dΣ2 .
(2.39)

Here, dΣ2 = dχ2 + sinh2(χ)dΩ2 is the metric on the unit hyperboloid H3; and the scale
parameter a(t) is determined by

a(t)2 = R2 sinh(τ) cosh2(τ) , (2.40a)

dt = R sinh(τ)
3
2 dτ . (2.40b)

One can show that around

early time : a(t) ∼ t1/5 , (2.41a)
late time : a(t) ∼ t . (2.41b)

The above features a FLRW cosmology that is asymptotically coasting at late times, and
has a Big Bounce at the initial time t = 0 since the timeline changes its direction as it
‘jumps’ from one sheet of M1,3 to the other [23, 24].

3 Fuzzy twistor geometry and 4-hyperboloid

We now study the spinorial versions of H4
N in a stereographic projection which naturally

admits a smooth flat limit. The spinorial effective vielbein and metric are also derived. We
begin with a brief review of twistor geometry following [25].

3.1 Twistor space

We define the commutative twistor space PT to be an open subset of P1,2 (for a review, see
e.g. [26] and [27–30])

PT = {ZA = (Z1, Z2, Z3, Z4) = (λα, µα̇) ∈ P1,2 | N̂ ̸= 0} . (3.1)

Here ZA ∼ r ZA , ∀r ∈ C∗ are homogeneous coordinates of P1,2, and λα, µα̇ transform in
the fundamental of the compact subgroups SU(2)L × SU(2)R of SU(2, 2). Note that these
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are not Weyl spinors, as any non-compact transformation (such as boosts in SO(1, 3)) will
mix these two spinors. The complex conjugation of the twistor ZA denoted as Z†

A:

Z†
A =

(
λ̄α

µ̄α̇

)
(3.2)

transforms in the anti-fundamental representation of su(2, 2) so that the Dirac conjugation
of ZA reads

Z̄A = Z†
B(γ0)B

A =
(

λ̄α

−µ̄α̇

)
. (3.3)

Restricting ourselves to so(1, 4) ⊂ su(2, 2), we can also use the anti-symmetric matrix CAB

to define the ‘quaternionic’ conjugate twistor ẐA of ZA as

ẐA = (λ̂α, µ̂α̇) = Z†
BCAB , (3.4)

which is manifestly compatible with SO(1, 4). Note that the hat conjugation acts on spinors
with the following rules

λα = (λ0, λ1) 7→ λ̂α = λβεαβ = (λ1,−λ0) ,

µα̇ = (µ0̇, µ1̇) 7→ µ̂α̇ = µβ̇εα̇β̇ = (µ1̇,−µ0̇) . (3.5)

It is useful to check that

⟨λ λ̄⟩ = λβϵαβλ̄α = −λβλ̂β = ⟨λ λ̂⟩ , (3.6a)
ˆ̂
λα = −λα , (3.6b)
ˆ̂µα̇ = −µα̇ . (3.6c)

This means at the level of spinors, we can interchangeably use (λ̂, µ̂) for (λ̄, µ̄). In terms of
spinors, the number operator N̂ = Z̄AZA becomes

N̂ = ⟨λ λ̂⟩ − [µ µ̂] = N , (3.7)

where the angle and square brackets are defined by ⟨u v⟩ = uαvα , [u v] = uα̇vα̇.
The correspondence between PT and H4 is given by the incidence relations

µα̇ = xαα̇λα ⇔ xαα̇ = λαµ̂α̇ − λ̂αµα̇

⟨λ λ̂⟩
, (3.8)

which state that a point x ∈ H4 corresponds to a holomorphic embedded Riemann sphere.
We emphasize that all spinors and the 2×2 matrix xαα̇ are dimensionless [10]. Furthermore,
we have the following reality condition:

x̂αα̇ = xαα̇ . (3.9)

The Poisson structure (2.23) in terms of spinors read:

{λα, λ̄β} = −ϵαβ , {µα̇, µ̄β̇} = +ϵα̇β̇ , (3.10)
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which leads us to the following gradations:

{N̂ , λα} = −λα , {N̂ , µα̇} = −µα̇ , (3.11a)
{N̂ , λ̄α} = +λ̄α , {N̂ , µ̄α̇} = +µ̄α̇ , (3.11b)
{N̂ , xαα̇} = 0 . (3.11c)

The algebra of functions (2.22) on P1,2 in this language becomes:

C (P1,2) =
∑

n+m=p+q

fα(n)α̇(m)
β(p)β̇(q)λα(n)µα̇(m)λ̄β(p)µ̄β̇(q) , (3.12)

which can be reduced further to polynomials in terms of λ, λ̂:

C (P1,2) =
∑

n

fα(n)
β(n)(x)λα(n)λ̄β(n) (3.13)

by using the incident relation (3.8). Due to the constraint {N̂ , f} = 0 where f ∈ C (P1,2),
the number of λ and λ̄ generators must be the same at this point. Therefore, all higher-spin
modes can be viewed as functions on the internal (fuzzy) Riemann sphere P1

N .

3.2 The stereographic projection to H4

Following the lines of [10], we can recover the above twistorial construction and the
incidence relations from the Hopf map (2.26) P1,2 → H4 (or Euclidean AdS4) followed by a
stereographic projection H4 → R4. Using (2.26), we get

ya = ℓp

2 Z̄A(γa)A
BZB = −ℓp

2 ⟨λ λ̄⟩(σ̂a)αα̇xαα̇ , a = 1, 2, 3, 4 , (3.14a)

y0 = ℓp

2 Z̄A(γ0)A
BZB = +ℓp

2 ([µ µ̄] + ⟨λ λ̄⟩) = R + ℓp[µ µ̄] ≥ R (3.14b)

where σ̂a
αα̇ = (σ̃m

αα̇, ϵαα̇) for m = 1, 2, 3. Note that when the spinors µα̇ = (0, 0), we will be at
the center y0 = R of the projection, reflecting the fact that the underlying doubleton irrep
HN of so(4, 2) is a lowest-weight representation [8]. Furthermore, y0 can be also written as

y0 = −R + ℓp⟨λ λ̄⟩ = −R + ℓp⟨λ λ̂⟩ . (3.15)

It is then convenient to define

xa = R

ℓp⟨λ λ̄⟩
ya , ya =

(
1 + y0

R

)
xa (3.16)

for a = 1, 2, 3, 4. We obtain

y0 = R(x2 + R2)
(R2 − x2) , ya = 2R2xa

(R2 − x2) , x2 = xaxa < R2 . (3.17)

It is a simple matter to show that

−y2
0 + yaya = −R2 , a = 1, 2, 3, 4 , (3.18)
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so that the above xa define a stereographic projection H4 → R4. The conformally flat
metric corresponding to H4 can then be obtained by the pullback:

ds2 =
(

∂ya

∂xa
∂yb

∂xb ηab

)
dxadxb := gabdxadxb = 4R4ηabdxadxb

(R2 − x2)2 = Ω2ηabdxadxb (3.19)

thus defining the conformal factor Ω2, where ηab = diag(+, +, +, +). Although this
coordinate system does not give us the desired Lorentzian signature, the metric (3.19) can
have a smooth flat limit where R → ∞. Lastly, it is worth noting that (3.14b) implies

⟨λ λ̂⟩ = N

2

(
1 + y0

R

)
= NR2

(R2 − x2) = N

2 Ω , (3.20a)

[µ µ̂] = Nx2

(R2 − x2) , (3.20b)

which allows us to parametrize λα, λ̂α fiber coordinates as

λα := R√
R2 − x2

(
z

−1

)
, λ̂α := R√

R2 − x2

(
+1
z̄

)
, (3.21)

where 1 + |z|2 = N for z ∈ C∗.

Effective vielbein and metric. Using the explicit form of the gamma matrices we
recover the incidence relation (3.8), which takes a simpler form in terms of

yαα̇ := ⟨λ λ̂⟩xαα̇ = λαµ̂α̇ − λ̂αµα̇ , y0 := ⟨λ λ̂⟩ . (3.22)

The reality condition of yαα̇, which is ŷαα̇ = yαα̇, follows directly from (3.9) since ˆ̂
λ = −λ

and ˆ̂µ = −µ.
It is convenient to work with the projective spinor bundle P1,2 ≃ PS = P1 × R4 where

PS has coordinates (λα, yαα̇) and is a trivial bundle [10]. Note that we can make a conformal
transformation to recover H4 whenever it is appropriate. From this consideration, the
algebra of functions C (P1,2) reduces to:

C (PS) = C (P1) × C∞(R4) . (3.23)

As in [10], we will consider H4
N as a background in the IKKT model via the matrix

configuration given by the (fuzzy version of) ya. Such a background defines an effective
frame or vielbein via the Hamiltonian vector field {ya,−} [8]. Using (3.10), we obtain the
spinorial form of the effective vielbein in analogous to [10]:

Eαα̇|ββ̇ := {yαα̇, yββ̇} = 2(−λ(αλ̂β)ϵα̇β̇ + µ(α̇µ̂β̇)ϵαβ) , (3.24a)

E0|αα̇ := {y0, yαα̇} = −(λ̂αµα̇ + λαµ̂α̇) . (3.24b)

We also find

{yαα̇, λβ} = +ϵαβµα̇ , {yαα̇, λ̂β} = −ϵαβµ̂α̇ . (3.25a)
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If φ(y) is a hs-valued smooth section of C (PS), then

{yαα̇, φ(y|λ, λ̂)} : =
(
{yαα̇, yββ̇}∂ββ̇ + {yαα̇, λβ}∂β + {yαα̇, λ̂β}∂̂β

)
φ

=
(
Eαα̇|ββ̇∂ββ̇ + Eαα̇|β∂β + Êαα̇|β ∂̂β

)
φ ,

(3.26)

where ∂αα̇ := ∂/∂yαα̇, ∂α := ∂/∂λα and ∂̂α := ∂/∂λ̂α. Similarly, we define

{y0, φ(y|λ, λ̂)} : =
(
{y0, yββ̇}∂ββ̇ + {y0, λα}∂α + {y0, λ̂α}∂̂α

)
φ

=
(
E0|ββ̇∂ββ̇ + E0|β∂β + Ê0|β ∂̂β

)
φ .

(3.27)

Note that all contributions from Eαα̇|β , Êαα̇|β and E0|β , Ê0|β are subleading in the flat limit
as in the case of S4

N (cf., [10]). Therefore, whenever we take a flat limit, they can be
neglected. Finally, to compute effective metric, say Gαα̇ββ̇, it is sufficient to consider a
scalar field ϑ(y) whose kinetic Lagrangian reads

−E0|αα̇∂αα̇ϑ E0|ββ̇∂ββ̇ϑ + Eζζ̇|αα̇∂αα̇ϑ Eζζ̇|ββ̇∂ββ̇ϑ := Gαα̇ββ̇∂αα̇ϑ ∂ββ̇ϑ . (3.28)

Proceeding as in [10], we get

Gαα̇ββ̇(y) = −
(
N2ϵαβϵα̇β̇ + yαα̇yββ̇

)
, (3.29a)

Gαα̇ββ̇(x) = −⟨λ λ̂⟩2
(

N2

⟨λ λ̂⟩2
ϵαβϵα̇β̇ + xαα̇xββ̇

)
, (3.29b)

which matches with the result of [31]. Note that in the flat limit where we send the
dimensionless ratio x2

R2 → 0, the effective metric Gαα̇ββ̇ 7→ N ϵαβϵα̇β̇, which is simply the
standard metric of flat space in spinor form.

4 Spinor description in the SO(1, 3)-invariant projection

So far we have developed a natural spinor formalism for the fuzzy 4-hyperboloid along
with a suitable stereographic projection to H4 and then R4 (when we consider the flat
limit), generalizing the framework in [10]. However, the corresponding fields of the gauge
theory resulting from the IKKT matrix model do not propagate, since the base manifold
H4 has all-plus (Euclidean) signature. This can be circumvented by considering a different
SO(1, 3)-invariant projection (2.32) as in [15], which leads to a FLRW type spacetime with
Lorentzian signature.

Recall that the projection (2.32) is realized in the IKKT model by choosing the
background to be (the fuzzy versions of) tµ defined as

tµ = 1
R

Z̄A(Σµ4)A
BZB = 1

2R
Z̄A(γµ)A

BZB , µ = 0, 1, 2, 3 . (4.1)

Furthermore, as discussed in section 3, the spinors λα, µα̇ are not Lorentz spinors here, but
spinors of the compact subgroups SU(2)L and SU(2)R of SU(2, 2) which are mixed by the
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SO(1, 3) generators Σµν . Using the gamma matrices (2.29), we obtain explicit spinorial
expressions for tµ:

t0 = 1
4R

(
[µ λ̄] + ⟨λ µ̄⟩

)
≡ 1

4R

(
µ†λ + λ†µ

)
(4.2a)

ti = 1
4R

(
λ̄α(σi)α

βλβ + µ̄α̇(σi)α̇
β̇µβ̇

)
, i = 1, 2, 3 . (4.2b)

This leads to the following Poisson brackets

{ti, λα} = + 1
2R

(σi)αβλβ , {ti, λ̂α} = + 1
2R

λ̂β(σi)βα , (4.3a)

{ti, µα̇} = − 1
2R

(σi)α̇β̇µβ̇ , {ti, µ̂α̇} = − 1
2R

µ̂β̇(σi)β̇α̇ . (4.3b)

We also provide the explicit spinorial expressions for the yµ (cf. (3.14)):

yi = −ℓp

2
(
λ̄α(σi)α

β̇µβ̇ + µ̄α̇(σi)α̇
βλβ) ≡ −ℓp

2
(
λ†σiµ + µ†σiλ

)
(4.4)

y0 = R + ℓp[µ µ̄] (4.5)

It is clear from these formulas that the spinorial representation of coordinates and
derivatives on the FLRW background is quite distinct — and perhaps less appealing — than
the familiar form on Minkowski space, because our spinors transform under the space-like
isometry group SU(2) × SU(2) ⊂ SO(1, 4) rather than the local SL(2,C). This reflects the
lack of manifest local Lorentz invariance in the model, which is expected to be recovered only
effectively for the physical fields. We delegate a full treatment this problem to future work,
and avoid this step in the following. However, we shall illustrate how the local relativistic
propagation is recovered properly in this spinorial setting.

Effective vielbein and metric. To derive the effective frame and metric on the FLRW
background6 M1,3 defined by tµ in the spinorial framework, we need an explicit realization
of general hs-valued fields on M1,3 in terms of spinors. We have just seen that in contrast
to the previous case of H4, it is no longer possible to define the tµ globally in terms of a
single pair of spinors. However since we are mainly interested in local scattering amplitudes,
we can choose (using the SO(1, 3) isometry of the FLRW background) some reference point
p = (p0, 0, 0, 0) ∈ M1,3. Then t0 = 0 and tµ|p ⇝ ti spans the local P1, which can be
described effectively in terms of spinors λα. To see this, the following observation is useful:
combining the above expression for t0 with (4.4) and recalling that t0 = 0 at the reference
point yµ = (y0, 0, 0, 0), it follows that

λ†σµµ = −µ†σµλ (4.6)

which implies λ† ⊗ µ = −µ† ⊗ λ and therefore λ ∝ µ. As a consequence, the generator of
the local P1

ti = λ†σiλ + µ†σiµ ∝ λ†σiλ (4.7)
6Note that the present background tµ play the role of momentum generators, while the ya in the case

of H4 are position generators. Nevertheless, both backgrounds define a higher-spin gauge theory on the
respective base manifold.
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can be expressed in terms of λ only. Hence we can choose an open subset Up ⊂ M1,3 around
the reference point p, with local trivialization P1,2|Up = P1 ×Up, and write the most general
function as (cf. (6.38))

φ = φ(y|t) =
∞∑

s=0
ti(s)φi(s) ≃

∞∑
s=0

λβ(s)λ̂β(s)φβ(2s) . (4.8)

This provides a spinorial representation for the hs modes on the FLRW background.
Now consider

{tµ, φ(y|λ, λ̂)|Up} =
(
{tµ, yν} ∂

∂yν
+ {tµ, λα} ∂

∂λα
+ {tµ, λ̂α} ∂

∂λ̂α

)
φ(y|λ, λ̂)|Up

=:
(

Eµν ∂

∂yν
+ Eµ|α ∂

∂λα
+ Êµ|α ∂

∂λ̂α

)
φ(y|λ, λ̂)|Up ,

(4.9)

where φ(y|λ, λ̂)|Up ∈ C (P1,2)|Up and Eµ|• is the effective vielbein in this coordinate. To
compute effective metric of FLRW patch, it is sufficient to consider a scalar field φ(y) and
the kinetic term {tµ, φ(y)}{tµ, φ(y)}. We obtain7

{tµ, φ(y)}{tµ, φ(y)} := γµν∂µφ(y)∂νφ(y) , γµν = ηµν sinh2(τ) . (4.10)

Flat limit. In the limit where R → ∞, it is obvious that

Eµν = ηµν sinh(τ) (4.11)

will be the only effective vielbein that survives. Since contributions resulting from the
Poisson bracket (3.10) on fiber coordinates λ, λ̄ are subleading in the flat limit (except in
the extreme IR regime), they can be neglected to a good approximation; this is denoted as
“asymptotic regime” in [32]. Hence, in the flat limit, we simply factorize all fiber coordinates
λ, λ̄ outside the Poisson brackets, which implies that the Poisson bracket only acts on
functions in the flat limit. This is also the limit where we can effectively replace ti for a
pair of spinors λα, λ̄β as discussed above. In particular, we will drop the mass term m2 in
the action henceforth, since it is negligible in the flat limit.

5 Vector description of higher-spin modes in the flat limit

Before analyzing higher-spin modes on semi-classical P1,2
N in the spinor formalism, it is

worthwhile to work out the vector description using ta and tµ as generators of the internal
S2

N to describe higher-spin modes in the flat limit. The goal of this section is to simplify
some of the results obtained using the group theory approach in [8].

If we consider H4 and M1,3 in the flat limit, then higher-spin valued functions can be
parametrized by the internal generators ta and tµ as:

ϕ =
∑

s

ϕa(s)(y)ta(s) , ϕ ∈ C (R4 × S2) ,

ϕ =
∑

s

ϕµ(s)(y)tµ(s) , ϕ ∈ C (R1,3 × S2) ,

7Strictly speaking the effective metric involves an extra conformal factor given by the dilaton, which we
can assume to be constant on the local patch.
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and we recall that ta is defined in (2.30) while tµ is defined in (2.32). The hs-valued gauge
potential Aa and Aµ can be defined analogously as

Aa =
∑

s

Ab(s)|atb(s) , Aµ =
∑

s

Aν(s)|µtν(s) . (5.1)

Since ta and tµ are generators of SO(3), we can use the Littlewood-Richardson rule to count
independent components in Aa or Aµ, respectively. It is worth noting that even though
HS-IKKT theory does not possess a mass parameter, its higher-spin modes should be viewed
as “would-be massive”. In the above representation, the tensors Aν(s)|µ are space-like (due
to (2.31e)) but not divergence-free.8 For instance, Aµ has a total of 4(2s + 1) off-shell
degrees of freedom as previously shown in [15].

Gauge fixing and propagating dof. To count the physical degrees of freedom in the
higher-spin gauge potential A, we must impose a gauge fixing condition.9 As usual in
Yang-Mills matrix models (see e.g. [33]), a suitable gauge fixing function on a fluctuating
background Y I + AI is given by

G(A) = {yI ,AI} . (5.2)

This is a good choice because there is always a gauge such that G(A) = 0, provided
□ = {yI , {yI , ·}} is surjective. Note that an admissible/integrable fluctuation mode A
satisfies the gauge-fixing condition {yI ,AI} = 0 if and only if it is orthogonal to all pure
gauge modes A(g), i.e.

⟨A(g),A⟩ = 0 , A(g)[ξ] = {yI , ξ} , (5.3)

for ξ ∈ C (M). Since the gauge fixing condition removes 2s + 1 modes, the gauge-fixed
potential Ab(s)|a has 3(2s + 1) degrees of freedom. Moreover, we can use (5.3) to remove
further (2s + 1) on-shell pure gauge components of Aν(s)|µ on the Lorentzian FLRW
background. As a result, the Lorentzian Aν(s)|µ has 2(2s + 1) physical dof. Note that in
contrast to more conventional gauge theories, these physical modes always include the extra
dof of the would-be massive higher-spin fields.

Mode ansatz and decomposition. In the flat limit, we can further decompose the
above into the following irreducible modes:

Aa =
∑

s

[
A(b(s)a) + δabÃb(s−1) + yaξb(s) + ∂aξ̃b(s)

]
tb(s) ,

Aµ =
∑

s

[
A(ν(s)µ) + ηµνÃν(s−1) + yµξν(s) + ∂µξ̃ν(s)

]
tν(s) .

(5.4)

Note that the last mode is the pure gauge mode in the Minkowski case, and the second
mode can be written as

ηµνÃν(s−1)t
ν(s) ∝ tµÃν(s−1)t

ν(s−1) (5.5)
8It is also possible to represent the modes in terms of divergence-free but not space-like tensors.
9We shall not discuss the corresponding ghost sector explicitly here but refer the readers to [33].
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and similarly in the Euclidean case, up to normalization. This is simpler and more coherent
than the organization of modes in the curved case [8, 34], which should be useful to study
the resulting physics. Since the Ab(s)a coefficient has 2s + 3 components while Ãb(s−1) has
2s − 1 components, we recover precisely all

(2s + 3) + (2s − 1) + 2(2s + 1) = 4(2s + 1)

components of the hs-valued gauge potential Aa (or Aµ, repsectively).10 Furthermore,
gauge-fixing removes 2 × (2s + 1) on-shell modes in Minkowski signature; essentially, the
higher-spin modes associated with the coefficients ξ and ξ̃ will be removed by gauge fixing.
To show that the two modes A and Ã are linearly independent, it suffices to show that their
inner product matrix is non-degenerate, which we will verify for the spin 1 modes below.

Kinetic action in the flat limit. Now, let us focus on the Lorentzian case and consider
the kinetic actions of the Aµ mode [9]

S =
∫
{tµ,Aν}{tµ,Aν} + 2{tµ, tν}{Aµ,Aν} − {tµ,Aµ}2 . (5.6)

Using (2.31), we obtain for instance

{tµ,Aν}{tµ,Aν} = EµiE j
µ ∂iAν∂jAν =: ∂iAµ∂iAµ . (5.7)

Here, we rise and lower coordinate indices with

γij = ηµνEµiEνj , i, j = 0, 1, 2, 3 , (5.8)

which we can consider as (locally constant) effective metric in the flat limit. On the other
hand, the term {tµ, tν}{Aµ,Aν} is sub-leading for local scales where {tµ, tν} ∼ θµν can be
treated as constant, i.e. for modes with wavelength much shorter than the curvature scale.
This is certainly true in the flat limit, where Aµ{{tµ, tν},Aν} (after partial integration)
is a one-derivative term with scale set by the geometric curvature, and therefore can be
neglected. This should be sufficient for the study of scattering amplitudes. Then the kinetic
action without the gauge fixing term is simply the Box operator, i.e.

Seff = −
∫

Aµ□Aµ , □ := ∂i∂
i (5.9)

as it should, since {yµ,Aµ}2 is removed upon gauge fixing. It is then sufficient to analyze
the physical modes using the expansion

aµ =
∑

s

Aν(s)|µtν(s) =
∑

s

(
A(ν(s)µ) + ηµνÃν(s−1)

)
tν(s) (5.10)

where A(ν(s)µ) and Ãν(s−1) are traceless, after gauge fixing and removing pure gauge modes.
This encodes the 2(2s + 1) physical components of the hs-valued gauge potential Aµ. Since

10Recall that a massive spin-s field in 4d has 2s + 1 degrees of freedom.
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tµ is space-like (2.31e), we can demand the tensors A(ν(s)µ) and Ãν(s−1) to be not only
traceless but also space-like11

AνT ν = 0 = ÃνT ν , (5.11)

but not divergence-free.12 This also shows that the resulting theory is ghost-free (cf., [34]),
even though (local) Lorentz invariance is not manifest, in accordance with the fact that the
matrix model defines a preferred frame.

Averaging over the fiber. Following the procedure in [34], we can average over the
fiber coordinates tν to obtain the spacetime kinetic action of higher-spin modes in vectorial
description. We illustrate this for the spin 1 fields, whose modes expansion (5.10) gives

Seff = −
∫

Aµ□Aµ + (Aµ□Ãσ + Ãσ□Aµ)tµtσ + tνtνÃρ□Ãσtσtρ

= −
∫

Aµ□Aµ + 1
3ℓ2

p

(Aµ□Ãσ + Ãσ□Aµ)κµσ + cosh2(τ)
3ℓ4

p

Ãρ□Ãσκσρ (5.12)

using (2.33b), and averaging over fiber coordinates in the flat limit using

[tµtν ]0 = 1
3ℓ2

p

κµν . (5.13)

Here

κµν = cosh2(τ)ηµν + yµyν

R2 (5.14)

is the space-like projector orthogonal to the time-like FLRW vector field T cf. (2.37). By
virtue of the space-like constraints (5.11), the second term in (5.14) will not contribute
upon choosing space-like tensors as discussed above,13 and the kinetic action takes the form

Seff = −
∫

Aµ□Aµ + αAµ□Ãµ + αÃµ□Aµ + βÃµ□Ãµ , (5.15)

where α = cosh2(τ)/3ℓ2
p and β = cosh4(τ)/3ℓ4

p. The inner product of the modes (A, Ã) is
obtained similarly, dropping the □. This boils down to the matrix

M =
(

1 α

α β

)
(5.16)

with non-vanishing determinant det M = 2 cosh4(τ)
9ℓ4

p
̸= 0. Therefore these two modes are

independent, but not orthogonal.14

11The time-like component of A is contained in the third term in (5.4) which is unphysical.
12Note that since the fields are not divergence-free, one cannot introduce a shift-symmetry of type

ηµνϑν(s−1) to gauge away the second Ã modes as in standard approach in higher-spin literature, see e.g.
section 3 of [35].

13The restriction to time-like tensors might be avoided by absorbing the third mode in (5.4) into the first.
This issue will be avoided in the spinorial approach below.

14For a similar analysis of the full fluctuation spectrum on the curved FLRW background see [34].
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While the analysis can be continued also at non-linear level, we find it cumbersome to
integrate out fiber coordinates using vectorial description. This problem can be simplified
by using spinorial formalism (cf., sections 3 and 4 and appendix B). In particular, when the
two higher-spin modes A and Ã written in spinoral language will completely disentangle
with each others in the flat limit. As a result, we can make a field redefinition to bring
them into a “helicity” base and perform scattering amplitude calculation.

6 Spinorial reduction to 4 dimensions

In this section we rewrite the IKKT-matrix model in spinorial language and obtain its
spacetime actions for the massless sector from two aforementioned projections of H4

N .
Note that unlike [10], we will study the IKKT-matrix model in second-order formalism
as in [8]. Moreover, while the stereographic projection allows us to obtain the spacetime
action of HS-IKKT in a global manner, reducing the twistor action to spacetime one in
SO(1, 3)-invariant projection can only be achieved locally, i.e. around certain reference point
p ∈ M where we can set the temporal component t0 of the momentum tµ to zero.

6.1 Reduced Euclidean action on H4

We start with the SO(1, 4)-invariant action on the Euclidean hyperboloid H4
N , which is

embedded along the first 1 + 4 coordinates of the target space. The chiral basis of so(1, 4)
γ-matrices in (2.12) allows us to cast ya into spinorial form:

yAB = qAB + pAB =
(

qαβ 0
0 qα̇β̇

)
+
(

0 pαβ̇

−pβ̇α 0

)
(6.1)

where qAB represents the zeroth direction associated to γ0 matrix. Since the external
symmetry group SO(1, 4) acts on q0, supersymmetry will be broken by the background,
while the underlying matrix model is of course still supersymmetric. We also note that the
reality condition for yAB is

(yAB)∗ = −(C−1Y C)BA = (C−1Y C)AB . (6.2)

In terms of components, we have

(qαβ)∗ = −(ϵ−1qϵ)βα = (ϵ−1qϵ)αβ , (pαα̇)∗ = −(ϵ−1pϵ)α̇α = (ϵ−1pϵ)αα̇ (6.3)

due to anti-symmetry. Next, let the remaining 5 coordinates of SO(1, 9) in (2.1), which
SO(1, 4) does not act on, be the scalar fields ỹi on H4 associated to the internal symmetry
group SO(5) [36], where i = 5, 6, 7, 8, 9. The local isomorphism so(5) ≃ sp(4) allows us
to write:

ỹiγIJ
i 7→ ϕIJ , I,J = 1, 2, 3, 4 , (6.4)

where ϕIJ = −ϕJI can be written in terms of 2 × 2 block matrices ϕIJ .
Next, consider the fermions Ψ := ΨAI as 4-spinors of SO(1, 4). Let us clarify on the

notation of Ψ. Here, A is a 4-spinor index of SO(1, 4) and I is a spinor index of SO(5).
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Upon imposing the 9+1-dimensional Majorana-Weyl condition, this amounts to 4 Weyl
spinors on space-time. Using the decomposition (6.1) of bosonic coordinates, we can write
the Yukawa term as

Y = i Ψ̄AI{pAB, ΨB
I} + i Ψ̄AI{qAB, ΨB

I} + i Ψ̄AI{ϕIJ , ΨA
J } (6.5)

In terms of 2-spinors, ΨAI and Ψ̄AI := Ψ†
BI(γ0)B

A can be decomposed as

ΨAI = (χαI , χ̃α̇I) , Ψ̄AI = (χ̄αI ,− ¯̃χα̇I) (6.6)

where the two Weyl spinors for each I are related by the Majorana condition Ψ = CΨ̄t

through the charge conjugation matrix C in 9 + 1 -dimensions, which means that

χ̃α̇I = (C3+1)α̇
β(C6)IJ χ̄βJ . (6.7)

Then, the Yukawa term can be written in the following form:

Y = + i χ̄αI{pαβ̇ , χ̃β̇
I} − iχαI{pαβ̇ , ¯̃χβ̇

I} + iχ̄αI{qαβ , χβ
I} − i ¯̃χα̇I{qα̇β̇ , χ̃β̇

I}

+ iχ̄αI{ϕIJ , χα
J } − i ¯̃χα̇I{ϕIJ , χ̃α̇

J } (6.8)

where half of the terms are redundant due to the Majorana condition.
Let the H4 ⊂ R1,4 background be parametrized by yαα̇ (the tangential direction) and

y0 (the transversal direction). Then pαα̇ and qαβ can be decomposed as:(
pαα̇

qαβ

)
=
(

yαα̇

y0ϵαβ

)
+
(

aαα̇

ϕ̂ϵαβ

)
, (6.9)

where (aαα̇, ϕ̂) stand for hs-valued fluctuations, which are subject to reality conditions
analogous to (6.3). Together, (aαα̇, ϕ̂, ϕIJ) constitute the set of bosonic dynamical fields,
while (χ, χ̃) are fermionic dynamical fields. Note that we do not have a fermionic ‘background’
in our setup. Using the above organization, we arrive at the following spinorial action for
the IKKT-matrix model in the semi-classical limit on the projective spinor bundle PS:

S =
∫
PS

℧
(1

2 fααfαα + 1
2{pαα̇, ϕ̂}{pαα̇, ϕ̂} + 1

2{pαα̇, ϕIJ}{pαα̇, ϕIJ}

− i
2 χ̄α

I{pαβ̇ , χ̃β̇I} + i
2χα

I{pαβ̇ , ¯̃χβ̇
I} + i

2
¯̃χα̇I{y0, χ̃α̇I} − i

2 χ̄αI{y0, χαI}

+ 1
2{y0, pαα̇}{y0, pαα̇} + 1

2{y0, ϕ̂}{y0, ϕ̂} + 1
4{y0, ϕIJ}{y0, ϕIJ}

+ i
2

¯̃χα̇I{ϕ̂, χ̃α̇I} − i
2 χ̄αI{ϕ̂, χαI} − i

2 χ̄α
I{ϕIJ , χαJ } + i

2
¯̃χα̇

I{ϕIJ , χ̃α̇J }

+ 1
2{ϕ̂, ϕ̂}{ϕ̂, ϕ̂} + 1

2{ϕ̂, ϕIJ}{ϕ̂, ϕIJ} + 1
2{ϕIJ , ϕMN}{ϕIJ , ϕMN}

)
,

(6.10)

where

fαα = {pα
γ̇ , pαγ̇} , f̂αα = fαα , (6.11)
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and we have rescaled fields/coordinates appropriately. Here, the commutators [ , ] have
been replaced by the Poisson brackets i{ , }, and the ‘trace’ in (2.1) is substituted by an
appropriate integral on PS with the measure

℧ := D3Z ∧ D3Z̄ = R8

(R2 − x2)4 d4x
⟨λ dλ⟩ ∧ ⟨λ̂ dλ̂⟩

⟨λ λ̂⟩2
(6.12)

which comes from wedging the SU(4)-invariant holomorphic measure D3Z [37]:

D3Z = ϵABCDZAdZBdZCdZD = R4λαλβ⟨λ dλ⟩ ∧ dxαα̇ ∧ dxβ
α̇

(R2 − x2)2 , (6.13)

and the anti-holomorphic measure D3Z̄ = ϵABCDẐAdẐBdẐCdẐD. It can be easily checked
that {N̂ ,℧} = 0 where N̂ is the number operator defined in (2.21).

It is worth noting that the IKKT-matrix model on H4 admits a smooth flat limit where
R → ∞, and all contributions associated with y0 can be dropped as shown in [10]. We will
assume this limit from now on to study scattering amplitudes of the IKKT matrix model.

A sketch on self-dual sector. Let us look at the Yang-Mills term in the action (6.10).
In terms of ‘background’ coordinates yαα̇ and fluctuations a, the Yang-Mills term reads:

LYM = 1
2 fααfαα = L̄f

BG + 2{yα
γ̇ , aαγ̇}{yασ̇, aα

σ̇} + {yα
γ̇ , yαγ̇}{aασ̇, aα

σ̇}

+ 2{yα
γ̇ , aαγ̇}{aασ̇, aα

σ̇} + 1
2{aα

γ̇ , aαγ̇}{aασ̇, aα
σ̇} ,

(6.14)

which is analogous with the field strength term in non-commutative gauge theory, cf. [9, 33].
Here, the ‘background’ action L̄f

BG consists of terms that are 0th order or 1st order in
fields. The term {yα

γ̇ , yαγ̇}{aασ̇, aα
σ̇}, which always occurs in non-commutative field theory,

can be absored in the background by introducing an auxiliary field bαα, and writing the
Yang-Mills term in the first-order form as

SYM =
∫
PS

℧
(

bααfαα − 1
2bααbαα

)
. (6.15)

Note that we can also obtain the self-dual sector of (6.15) by dropping the bααbαα and
maintaining gauge-invariance. Intriguingly, in the flat limit, all higher-spin fields in the
self-dual sector of HS-IKKT theory are effectively massless since there is an ‘emergent’ shift
symmetry which can be used to gauge away the higher-spin modes Ã in A [10]. We discuss
below that this shift-symmetry, however, is not a symmetry of the full HS-IKKT model.

Higher-spin modes in spinor formalism. For concreteness, let us analyze the pure
Yang-Mills sector of the IKKT-matrix model in the flat limit.

If aαα̇ is a section with values in the algebra C (PS), it has the following expansion:15

aαα̇ =
∞∑

s=0
λβ(s)λ̂β(s)Aβ(2s)|αα̇ , λβ(s) := λ(β1 . . . λβs) etc. (6.16)

15Recall that the “time-like” fluctuations ϕ̂ drop out in the flat limit.
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Observe that

âαα̇ =
∞∑

s=0
(−)sλβ(s)λ̂β(s)Âβ(2s)|αα̇ , (6.17)

a†αα̇ =
∞∑

s=0
(−)sλβ(s)λ̂β(s) (Aβ(2s)|αα̇)† . (6.18)

Therefore, if we want aαα̇ to be hs-valued real field, Aβ(2s)|αα̇ need to be complex and
subject to the reality conditions

Âβ(2s)|αα̇ = i2sAβ(2s)|αα̇ , (Aβ(2s)|αα̇)† = i2sAβ(2s)|αα̇ (6.19)

As a consequence, if we expand the hs-valued field strength fαα in terms of A will become
complex. This fact will be exploited in appendix B when we obtained the interacting
vertices from the self-dual sector.

For now, we will decompose the coefficients Aβ(2s)|αα̇ into the following irreps:

Aβ(2s)|αα̇ = A(β(2s)α) α̇ + ϵαβÃβ(2s−1) α̇ . (6.20)

We therefore have
∑

s 2(2s + 2) + 2(2s) =
∑

s 4(2s + 1) off-shell degrees of freedom, in
complete agreement with the organization using the vector formalism in section 5. Notice
that when we integrate out all fiber coordinates, the coefficients Aα(2s−1) α̇ and Ãα(2s−3) α̇

will become tensorial fields in the maximally unbalanced/chiral representation [38, 39].16

This is in perfect agreement with the results in vector description [8] where the ϵabcde tensor
breaks parity-invariance (see the discussion in section 2).

Gauge fixing and dof. In spinorial language and in the flat limit, the gauge-fixing
condition takes the form

0 = {yαα̇,Aβ(2s)|αα̇} = {yαα̇, A(β(2s)α)α̇} + εαβ{yαα̇, Ãβ(2s−1)α̇}

= {yαα̇, A(β(2s)α)α̇} − {yβ
α̇, Ãβ(2s−1)α̇} .

(6.21)

The linearized gauge transformation for higher-spin gauge potentials Aβ(2s)|αα̇ reads

δξAβ(2s)|αα̇ = {yαα̇, ξβ(2s)} ≡ A(g)[ξβ(2s)] . (6.22)

We can then use (6.21) and (6.22) to remove (2s + 1) components of Aβ(2s)|αα̇ which leaves
us with 3(2s + 1) off-shell degrees of freedom of Aβ(2s)|αα̇ on H4 (without the ghosts).
To understand this, we recall from section 5 and [8] that even though the IKKT-matrix
model does not possess a mass parameter, it leads to three off-shell towers of “would-be
massive” higher-spin degrees of freedom on H4. These extra dof. arise from divergence-like
components, which are physical on the curved background [34], but expected to decouple in
the flat limit.17

16A representation features fields with more un-dotted and dotted indices and allows us to work with
lowest possible number of derivatives in the interactions.

17It would be interesting to understand whether they can be described by a more complicated net of
gauge symmetry as in Zinoviev’s system [40].
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On shift symmetry. Note that in other constructions of 3d or 4d higher-spin gauge
theories using spinor formalism (see e.g. [38, 39, 41]), one often imposes by hand an extra
“shift” gauge symmetry of the form

δϑAβ(2s)|αα̇ = ϵαβ ϑβ(2s−1) α̇ (6.23)

to remove the second mode Ãβ(2s−1) α̇ from Aβ(2s)|αα̇ given that aαα̇ is divergence-free. This
symmetry was shown to be a symmetry of the self-dual Yang-Mills sector in HS-IKKT theory
in the flat limit [10]. However, in the full matrix model, there is no such gauge symmetry
(see appendix A). As a result, we cannot use ϑ to remove the second higher-spin modes
Ãα(2s−3) α̇. This is consistent with the fact that all higher-spin modes are not divergence-free
a priori.

On kinetic action. Let us first look at the kinetic part of the action (6.14) in the flat
limit for the hs-valued gauge potential aαα̇:

S2 =
∫

℧
(
2{yα

γ̇ , aαγ̇}{yασ̇, aα
σ̇} + {yα

γ̇ , yαγ̇}{aασ̇, aα
σ̇}
)

. (6.24)

Let us first check gauge invariance explicitly: under a local gauge transformation, we get

δξS2 =
∫

℧
(
2{yα

γ̇ , aαγ̇}{yασ̇, {yα
σ̇, ξ}} + 2aασ̇{{yα

γ̇ , yαγ̇}, {yα
σ̇, ξ}}

)
, (6.25)

where we have made an integration by part. The second term can be rewritten as∫
{yα

γ̇ , yαγ̇}{aασ̇, {yα
σ̇, ξ}} = −

∫
{yα

γ̇ , yαγ̇}
(
{yα

σ̇, {ξ, aασ̇}} + {ξ, {aασ̇, yα
σ̇}}

)
=
∫
{yα

σ̇, {yα
γ̇ , yαγ̇}}{ξ, aασ̇} + {ξ, {yα

γ̇ , yαγ̇}}{aασ̇, yα
σ̇}

(6.26)

using Jacobi identity. The first term in (6.26) vanishes due to background eom

{{yα
γ̇ , yαγ̇}, yα

σ̇} = 0 . (6.27)

Furthermore, the second term in (6.26) cancels with the first tem in (6.25) if we use Jacobi
identity to write∫

{ξ, {yα
γ̇ , yαγ̇}}{aασ̇, yα

σ̇} = −
∫
{yα

γ̇ , {yαγ̇ , ξ, }}{aασ̇, yα
σ̇} , (6.28)

noting that
∫
{ξ,−} = 0. This establishes the gauge invariance of (6.24).

Gauge-fixed kinetic action. Note that the quadratic action (6.24) can be simplified
further in the flat limit by dropping the term {yα

γ̇ , yαγ̇}{aασ̇, aα
σ̇} in the flat limit (see

appendix B). Therefore, we can consider the following gauge-fixed quadratic action

S
gf
2 = S2 + 2

∫
{yαα̇, aαα̇}2 . (6.29)
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Here, the contributions from the gauge-fixing term removes certain contributions from S2
in the flat limit leaving us with the standard kinetic □ terms in the quadratic action as
shown in appendix B. In particular, we obtain

S
gf
2 =

∫
d4xAα(2s−1) α̇

− □A+
α(2s−1) α̇ , A±

α(2s−1) α̇ = Aα(2s−1) α̇ ± iÃα(2s−1) α̇ . (6.30)

This fact is convenient for us to compute the propagator of HS-IKKT theory using spinor
formalism. We detail this fact further below.

Euclidean action of massless sector. A complete action of the (HS-) IKKT matrix
model on H4

N can be obtained using the following integral over P1 [42–44]:

∫
P1

K
λ̂α(m) λβ(m)

⟨λλ̂⟩m
:=
∫
P1

⟨λdλ⟩∧⟨λ̂dλ̂⟩
⟨λλ̂⟩2

λ̂α(m) λβ(m)

⟨λλ̂⟩m
=− 2πi

(m+1)ϵ β
α . . . ϵ β

α . (6.31)

As discussed in [10, 25], in the present almost-commutative twistor construction, there
are more contributions (after integrating out fiber coordinates) than the usual twistor
construction using only holomorphic data on twistor space, see e.g. [45, 46]. The reason is
that the Poisson bracket (cf., (3.10)) acts both on spacetime fields and fiber coordinates.
However in flat limit, the effective vielbeins Eαα̇|β , Êαα̇|β and E0|β , Ê0|β are sub-leading, and
all contributions associated to µ, µ̂ spinors will be suppressed since they scale as 1/

√
R [10].

For this reason, we will only need to consider terms where all fiber coordinates factorized
outside the Poisson brackets. For example,

λα(s−1)λ̂α(s−1){yαα̇,Aα(2s−1)
α̇} = λα(s−1)λ̂α(s−1)Eαα̇,ββ̇∂ββ̇Aα(2s−1)

α̇ (6.32)

will be the leading contribution in the higher-spin extension for {yα
α̇, aαα̇} in the flat limit.

Below we only present the final result of the spacetime action of HS-IKKT on H4 for
massless sector, delegating the detail of the computation to appendix B.

The Euclidean gauge-fixed kinetic action for the hs-valued gauge potential aαα̇ reads

S2 =
∫
PS

℧
(

2{yα
γ̇ , aαγ̇}{yασ̇, aα

σ̇} + {yα
γ̇ , yαγ̇}{aασ̇, aα

σ̇} + 2
∫
{yαα̇, aαα̇}2

)
≃ 2

∑
s

∫
d4xAα(2s−1) α̇

− □A+
α(2s−1) α̇ .

(6.33)

where the composite field A, see (6.30). Here the □ = ∂αα̇∂αα̇ in the flat limit, cf. (3.28),
and we have integrated out all fiber coordinates in the second line of (6.33). We also note
that the Ãα(2s−1) α̇ component originate from the second higher-spin mode of the spin-(s+1)
gauge potential Aα(2s+1)|ββ̇ . This combination of higher-spin fields allows us to diagonalize
the □ operator in the flat limit in a trivial way using spinorial formalism. Intriguingly, one
may think of A+ as a positive helicity field while A− as a negative helicity field in the flat
limit. It is worth emphasizing once again that even though A± may look massless, they
have more degrees of freedom than usual massless higher-spin fields due to the fact that
their original twistor fields are not divergence-free a priori.
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Next, we find at cubic order that

S3 ≃ 4
∑

s2+s3=s1+2

∫
d4x ∂αα̇A±

α(2s1−1)
α̇∂αγ̇A

α(2s2−1) σ̇
± ∂α

γ̇Aα(2s3−1)
± σ̇ + S̃3 , (6.34)

where S̃3 are terms that are irrelevant for scattering process of massless modes as they vanish
upon plugging in the plane-wave solutions with higher-spin polarization tensors in (7.4).
Unlike the usual story of higher-spin Yang-Mills [39], here all helicity configurations are
allowed. However, most of the 3-pt amplitudes resulting from gluing the cubic vertices (6.34)
with external states vanish on-shell (see section 7). One can check that the above cubic
vertex has two transverse derivatives ∂01̇ = ∂̄ in the light-cone gauge by following the
procedure in [38, 47]. For this reason, the HS-IKKT matrix model can be referred to as a
two-derivative higher-spin theory. Lastly, the quartic term reads

S4 ≃ 2
∫

d4x
(

∂αγ̇1A
α(2s1−1) σ̇
± ∂α

γ̇1Aα(2s2−1)
± σ̇

)(
∂α

γ̇2A
±
α(2s3−1)

τ̇ ∂αγ̇2A±
α(2s4−1) τ̇

)
+S̃4 . (6.35)

Similar to S̃3, S̃4 contains irrelevant terms that do not contribute in scattering amplitudes
upon plugging plane-wave solutions (7.4); and thus can be ignored in the flat limit. We
use the above action to compute scattering amplitudes of the HS-IKKT in section 7. Note
that while the above action is defined on a background with Euclidean signature, it is
nevertheless possible to use some of the standard techniques in quantum field theory to
compute the scattering amplitudes if we work with complexified kinematics. In fact, it
is natural to do so since our ‘spacetime’ fields are generically chiral, i.e. they have more
un-dotted indices than dotted ones.

It is worth emphasizing that although there are more structures after integrating out
fiber coordinates in almost-commutative twistor approach compared to the conventional
twistor construction (see e.g. [46]), the non-vanishing contributions of the massless sector
in spacetime action on flat space S-matrix in both approaches turn out to be the same.18

The main advantage of the present non-commutative twistor approach in [7–10, 15] is that
it allows us to study quantization of twistor space, and to consider models which appear to
define a well-defined quantum theory.

6.2 Reduced action on the FLRW spacetime

Now we consider similarly the HS-IKKT theory on the FLRW-like spacetime after doing an
SO(1, 3)-invariant projection as described in section 4. Using the spinorial description of
tµ in (4.2) where we set t0 = 0 at the referent point p ∈ M1,3, we can effectively replace
the “momentum” generators ti by a pair of fiber coordinates (λα, λ̂α) in the flat limit.
Recall that by flat limit, we simply mean the limit where we can factorize all other fiber
coordinates (λ, λ̂) outside the Poisson brackets, and drop the explicit µ, µ̂ spinors for the
x-dependent fields.

Consider a local trivialization at p ∈ M1,3 such that P1,2|Up = P1 × Up, where Up is an
open subset around p. Then the measure on our twistor space is given by [15]

℧ = K ρM d4y = K
1

| sinh(τ)| d4y (6.36)

18We leave the study of the scattering of extra divergence modes for future study.
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where K is again the top form on P1 fiber (cf., (6.31)). This measure is invariant under
symplectomorphism on PT, and it is in fact globally well defined. The local split allows us
to average over fiber coordinates of P1 on an open subset Up around p ∈ M, and to obtain
a spacetime action for the HS-IKKT matrix model on our background defining a FLRW
cosmology.

Recalling that the background M1,3 is defined in terms of ‘momentum’ generators tµ,
the action for the fluctuations aµ of the (HS-)IKKT model in the semi-classical limit reads

S =
∫
℧
(1

2{tµ, aν}{tµ, aν} + {tµ, tν}{aµ, aν} + 1
2{tµ, aµ}2 + 1

2{tµ, ϕI}{tµ, ϕI}

+ {tµ, aν}{aµ, aν} + {tµ, ϕI}{aµ, ϕI}

+ 1
4{aµ, aν}{aµ, aν} + 1

2{aµ, ϕI}{aµ, ϕI} + 1
4{ϕI, ϕJ}{ϕI, ϕJ} + . . .

)
+ SBG (6.37)

where I = 4, 5, . . . , 9 indicates the 6 extra dimensions and SBG are the ‘background’ action
which consists of zeroth or first order in fluctuations. Note that we have identified tI ≡ ϕI

as scalar fields in non-commutative N = 4 SYM and we have suppressed the fermionic
terms by using the ellipses.

Higher-spin modes and dof. As pointed out above, we can realize ti in terms of the
pair of (λα , λ̂α) fiber coordinates. This allows to parametrize the higher-spin modes of the
Yang-Mills gauge potential aµ around a reference point p ∈ M (cf., (4.2)) as follows

aµ =
∞∑

s=0
ti(s)Ai(s)|µ ≃

∞∑
s=0

λβ(s)λ̂β(s)Aβ(2s)|µ . (6.38)

cf. (5.10), which encodes
∑

s 4(2s + 1) off-shell degrees of freedom of the higher-spin valued
gauge potential aµ. The degeneracy of the kinetic term is removed as usual by imposing
the gauge-fixing condition

0 = {tµ, aµ} (6.39)

and factoring out the pure gauge modes, defining the physical Hilbert space as

Hphys = {gauge-fixed on-shell modes}/{pure gauge modes} (6.40)

(at ghost number zero). This removes two towers of higher-spin modes, leaving us with∑
s 2(2s + 1) physical degrees of freedom.19 A more detailed analysis in vectorial form is

given in [34], where Hphys was shown to be free of negative modes, i.e. ghosts. The basic
reason is that t0 = 0 around the reference point p, so that there are no time-like higher-spin
components in (6.38).

In the following, we will focus on certain specific degrees of freedom among these modes.

19Recall that these spinorial modes are not divergence-free here.
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Spacetime action in the flat limit. Let us focus on the Yang-Mills sector of the
action (6.37) in quadratic, cubic and quatic orders as:

S =
∫
P1,2

℧
(1

2{tµ,aν}{tµ,aν}+ 1
2{tµ, tν}{aµ,aν}+{tµ,aµ}{tν ,aν}

+{tµ,aν}{aµ,aν}+ 1
4{aµ,aν}{aµ,aν}+. . .

)
.

(6.41)

where un-hatted indices are contracted with ηµν . The last term in the first line drops out
upon gauge fixing. Using the effective metric (4.10) and (2.36), we can write the gauge-fixed
kinetic term explicitly as

S2 =
∫
P1,2

d4y K
[1

2 sinh(τ)
(
γµν∂µaρ∂νaρ+(∂µaµ)2

)
+ mµν

2R2|sinh(τ)|{aµ,aν}
]

, (6.42)

where mµν = R2{tµ, tν} defined in (2.35c), and the metric γµν is given in (4.10), which
locally reduces to ηµν . As explained above, the term 1

2{tµ, tν}{aµ, aν} is suppressed in the
flat limit of the FLRW matrix model-like spacetime, where R → ∞ and sinh(τ) can be
treated as (large) constant at late time τ . Therefore, in the flat limit

S2 ≃ −1
2

∫
PS

d4y K
(

aµ□aµ + (∂µaµ)2
)

, µ = 0, 1, 2, 3 (6.43)

where the last term drops out upon gauge fixing. The fluctuations aµ are real functions on
PT, since the matrices of the IKKT model are hermitian. In particular, the d’Alembertian
is given by

□ = γµν∂µ∂ν (6.44)

where µ, ν = 0, 1, 2, 3 dropping a conformal factor from the FLRW background, which can
be considered as locally constant in the present context.

The appropriate spinorial formulation of this action is not evident, since the spinors on
the present background transforms under the SU(2)L × SU(2)R space-like isometry group
rather than SL(2,C). Then the time-like components take a non-standard form, and local
Lorentz-invariance is not manifest. Nevertheless, a close relation with the Euclidean case
on H4 is expected, since the underlying space of functions on PT is the same, given by
(principal series) unitary irreps of so(2, 4). Therefore the interactions arising from the
matrix model are the same in both signatures, while the kinetic terms should be related by
some sort of Wick rotation. We expect that this relation should work most naturally for the
physical fields, because then the time-like components of aµ are unphysical, while for the
space-like components we do recover the ususal spinorial representation due to (4.4). We
could thus declare that the spinors transforms as SL(2,C) spinors under the local Lorentz
group, thereby extending the local SO(3) to SO(1, 3). Since the averaging over the local
S2 fiber is uniquely defined by SO(3) invariance for irreducible fields, it should respect the
local Lorentz invariance automatically.

Another possible strategy would be to perform an analytic continuation in the y0y4

plane, so that the actions on two different coordinates can be analytically continued into
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each others in the flat limit. Moreover for irreducible (divergence-free) tensor fields, there is
a natural map from the FLRW background to the H4 background. This could also provide
some sort of Wick rotation, relating these two backgrounds with different signature via the
embedding in R1,4. However, a thorough treatment of this issue is left for future work.

7 Amplitudes of the Yang-Mills massless sector in Euclidean signature

In this section, we start with the reduced action of the HS-IKKT matrix model on H4 in
the flat limit elaborated in section 6 (see also appendix B), and study tree-level scattering
amplitudes of the higher-spin modes

A±
α(2s−1) α̇ = Aα(2s−1) α̇ ± i Ãα(2s−1) α̇ . (7.1)

Of course, fields do not propagate on a manifold with Euclidean signature, instead they
“decay” with the distance. Nevertheless, it is possible to study scattering amplitudes by
analytic continuation of the real kinematics into the complex domain. This will allow us to
compute scattering amplitudes using well-known recursion techniques as in [48]. Note that
all higher-spin fields with s > 1 thereby become complex-valued.

We recall from section 5 that the bosonic higher-spin gauge fields carry 3(2s+1) degrees
of freedom in Euclidean signature, and 2(2s + 1) propagating dof on the physical FLRW
space-time. Since these are more degrees of freedom compared to the usual cases of massless
with 2 and massive with 2s + 1 degrees of freedom in 4 dimension, there will be more
higher-spin modes to consider when computing scattering amplitudes. For simplicity, we
will only consider the massless sector in this section which contains the fields that satisfy
the Lorenz gauge condition ∂αα̇Aβ(2s−2)α α̇ = 0. Our notation for an n-point scattering
amplitude is then Mn(1h1

s1 , . . . , nhn
sn

), where hi = ± indicates whether the ith particle of
spin-si has positive or negative helicity.

To determine helicity of the external states, we note that the kinetic action can be
written in the form [39]:

S2 =
∫
M

d4xAα(2s−1) α̇
− □A+

α(2s−1) α̇ , s ≥ 1 , (7.2)

for the appropriately chosen integration domain M, in terms of the complex fields (7.1),
where ± denotes positive/negative helicity fields. Then by imposing the Lorenz gauge

∂γα̇Aα(2s−2)γ α̇ = 0 , (7.3)

on the base manifold M, we can select only massless modes out of 3(2s + 1) components of
the Aα(2s−1) α̇

± fields. Suppose kαα̇ = κακ̃α̇ is an on-shell complex 4-momentum. We define
positive and negative helicity polarization tensors associated to external higher-spin states
as [39]:

ϵ+
α(2s−1) α̇ =

ζα(2s−1)κ̃α̇

⟨κ ζ⟩2s−1 , ϵ−α(2s−1) α̇ =
κα(2s−1) ζ̃α̇

[κ̃ ζ̃]
, (7.4)
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where ζα, ζ̃α̇ are constant/reference spinors. The above representatives for polarization
tensors are chosen such that they obey the normalization [49]

ϵ+
α(2s−1) α̇ϵ

α(2s−1) α̇
− = −1 . (7.5)

With the choice of polarization tensors in (7.4), it can be checked that

∂α
γ̇A+

α(2s−1) γ̇ = 0 , (7.6a)

∂βα̇∂(β
γ̇A−

α(2s−1)) γ̇ = 0 . (7.6b)

The propagator between positive and negative helicity fields in the Lorenz gauge (7.3) is

⟨A+
α(2s−1) α̇(p)Aβ(2s′−1) β̇

− (p′)⟩= δ4(p+p′)δ̃(s−s′)
δ(α1

(β1 . . . δα2s−1)
β2s′−1)δα̇

β̇

p2 , (7.7)

where δ̃ is a Kronecker delta:

δ̃(x) =

0 , x ̸= 0 ,

1 , x = 0 .
(7.8)

Note that since the standard linearized gauge transformation δAα(2s−1) α̇ = ∂αα̇ξα(2s−2) is
not a symmetry of HS-IKKT theory a priori,20 there is no restriction on the positive helicity
of a massless field compared to the cases studied in [39, 50]. To this end, we recall that
since Aα(2s−1) α̇ has more un-dotted than dotted spinorial indices, they belong to what is
so-called chiral representation (see footnote 16).

7.1 Tree-level amplitudes

Since we are working with complex-valued fields and complex kinematics, the on-shell
tree-level 3-point amplitudes are not vanishing a priori. They will act as seeds to construct
higher-point tree-level S-matrices.

3-point amplitudes. There are eight possible helicity configurations:

(+, +, +) , (−, +, +) , (+,−, +) , (+, +,−) , (−,−, +) , (−, +,−) , (+,−,−) , (−,−,−) ,

at 3-points, where we recall that the positions of fields in the cubic vertices are important.
Since we work with complex kinematics where κ̃α̇ is not the complex conjugate of κα, the
momentum conservation implies:21

3∑
i=1

ki =
3∑

i=1
κα

i κ̃α̇
i = 0 ⇔ ⟨i j⟩ = 0 or [i j] = 0 , ∀ i, j = 1, 2, 3 . (7.9)

As a result, there can be non-vanishing 3-point amplitudes with complex kinematics whose
forms must be written explicitly only in terms of angled or square brackets (cf., [51–53]).

20Recall that all higher-spin fields in HS-IKKT are “would-be massive” fields with more degrees of freedom
than the massless ones.

21It is important to recall that ki is dimensionless since we work with dimensionless spinors.
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This analytic continuation between real momentum and complex kinematics is significant
for constructing higher-multiplicity scattering amplitudes from 3-point building blocks [48].

The tree-level 3-point amplitudes of the Yang-Mills sector are given by substituting the
polarization tensors (7.4) to the cubic interaction:

δ̃(2−(s2+s3−s1))
∫
M

d4x
(
∂α

γ̇Aα(2s1−1) γ̇ ∂ασ̇Aα(2s2−1) β̇∂α
σ̇Aα(2s3−1)

β̇

)
. (7.10)

It is a simple computation to show that both M3(1+, 2+, 3+) and M3(1−, 2−, 3−) vanish.
Therefore, we can concentrate on the six others helicity configurations.

Notice that M3(1+, 2h2 , 3h3) vanishes on-shell, which leaves us with only three possible
non-vanishing contributions at cubic order. Namely,

(−, +, +) , (−,−, +) , (−, +,−) . (7.11)

These are the vertices that feature minimal couplings — the couplings with lowest number
of derivatives given a triplet of external spins (s1, s2, s3).

Upon substituting (7.4) to the cubic vertex (7.10), we obtain the (−, +, +) or MHV3
scattering amplitude as:

M3(1−s1 , 2+
s2 , 3+

s3) = δ̃(s1 − s2 − s3 + 2) [2 3]2 ⟨ζ2 1⟩2s2−2 ⟨ζ3 1⟩2s3−2

⟨ζ2 2⟩2s2−2 ⟨ζ3 3⟩2s3−2 , (7.12)

where the overall momentum conserving delta function has been suppressed, and we ignored
the overall factor of i. The following useful relation:

⟨ζ2 1⟩ [1 3] + ⟨ζ2 2⟩ [2 3] = 0 , ⟨ζ3 1⟩ [1 2] + ⟨ζ3 3⟩ [3 2] = 0 , (7.13)

can be obtained on the support of momentum conservation. Then taking advantage of (7.13),
we arrive at the following result for the MHV3 amplitude:

M3(1−s1 , 2+
s2 , 3+

s3) = δ̃(s1 − s2 − s3 + 2) [2 3]2s2+2s3−2

[1 2]2s3−2 [3 1]2s2−2 . (7.14)

This is in agreement with the 3-pt amplitudes of the self-dual higher-spin gravity [10, 38].
Next, we find the following MHV3 amplitudes:

M3(1−s1 , 2−s2 , 3+
s3) = δ̃(s1 − s2 − s3 + 2) 1

2
⟨1 2⟩2(s2+s3)−2[3 1]
⟨2 3⟩2s3−2⟨3 1⟩ + (1 ↔ 2) , (7.15)

where we have symmetrized the positions of two negative helicity external fields. The result
of M3(1−s1 , 2+

s2 , 3−s3) is similar where we simply swap (2 ↔ 3).
Observe that while all constant spinors have dropped out of the final MHV3 amplitudes,

due to the appearance of both angled and square brackets in (7.15), it is obvious that the
above MHV3 amplitude vanishes even with complex kinematic. In fact, we can directly
verify this statement by writing

[3 1]
⟨3 1⟩ ∼ (k1 + k3)2

⟨3 1⟩2 = 0 (7.16)

– 30 –



J
H
E
P
1
2
(
2
0
2
3
)
0
1
0

by virtue of (7.9) and momentum conservation. In the next subsection, by projecting
the MHV3 amplitudes to light-cone gauge, we argue that they are spurious and can be
removed by a local field redefinition. This is the general feature of any (higher-spin)
gauge theories described by the chiral representation whose interactions have two or higher
number of derivatives [50]. It would be interesting to investigate the gauge-matter and
matter-matter sectors in the HS-IKKT matrix model to see if this pattern persists. We
leave this investigation for future work.

4-point amplitudes. Besides contributions from the exchanges, we also have potential
contributions from the contact interaction:

δ̃(s1 +s2−s3−s4)
∫
M

d4x
(
∂αγ̇1Aα(2s1−1) σ̇∂α

γ̇1Aα(2s2−1)
σ̇

)(
∂α

γ̇2Aα(2s3−1)
τ̇ ∂αγ̇2Aα(2s4−1) τ̇

)
(7.17)

when considering 4-point scattering amplitudes. Below we consider different cases of
the 4-point scattering amplitudes between massless modes in the Yang-Mills sector of
HS-IKKT theory.

Case 1: consider the 4-point amplitudes with helicity configuration (+, +, +, +). The ex-
change channels of this amplitude are obtained by gluing (+, +, +) and (−, +, +) ver-
tices together. Since M3(1+

s1 , 2+
s2 , 2+

s1) = 0, one can show that all M4(1+
s1 , 2+

s2 , 3+
s3 , 4+

s4)-
related exchange channels in the Yang-Mills sector of HS-IKKT theory are zero. By
making suitable choices for the reference spinors, the contributions from the contact
terms also vanish. As a result, the 4-point amplitude M4(1+, 2+, 3+, 4+) = 0.

Case 2: next, consider the 4-point M4(1−, 2+, 3+, 4+) amplitude:

M4(1−s1 , 2+
s2 , 3+

s3 , 4+
s4) = As

4 + At
4 + Au

4 + Acont
4 ,

where A•
4 = {As

4 ,At
4 ,Au

4 ,Acont} is the set of contributions coming from the s, t, u-
channel exchanges and the contact interaction. Let us keep the spins arbitrary
for now, and denote the spin of the exchange as ω. It is a simple computation to
show that:

As
4 = (−)Λ4 δ̃(4 − s2 − s3 − s4 + s1) [12]−s1+s2+ω[34]s3+s4−ω

(k1 + k2)2 f(ζ2, ζ3, ζ4) ,

(7.18)

where Λ4 = −s1 + s2 + s3 + s4, and

f(ζ2, ζ3, ζ4) =
(⟨ζ2 1⟩
⟨ζ2 2⟩

)s2 (⟨ζ4 1⟩
⟨ζ4 2⟩

)s1 (⟨ζ3 4⟩
⟨ζ3 3⟩

)s3 (⟨ζ4 3⟩
⟨ζ4 4⟩

)s4 (⟨ζ3 1⟩⟨ζ4 2⟩
⟨ζ3 3⟩⟨ζ4 4⟩

)ω

(7.19)

is a rational function f whose homogeneity in reference spinors of the positive
helicity external particles is zero.
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Using residue gauge freedom to set ζα
2 = ζα

3 = ζα
4 = κα

1 , it follows that f(ζ2, ζ3, ζ4) =
0. Thus, As

4 = 0. Similarly, we also obtain At
4 = 0 and Au

4 = 0. Lastly, the
contribution of contact interaction reads

δ̃(s1+s2−s3−s4) [12][ζ̃ 2][34]2⟨1ζ3⟩2s3−2s2⟨1ζ4⟩2s4−2⟨ζ2 ζ3⟩2s2−2

[1 ζ̃1]⟨2ζ2⟩2s2−2⟨3ζ3⟩2s3−2⟨4ζ4⟩2s4−2 − (2↔ 3) . (7.20)

Since we have chosen ζi = κ1 (for i ̸= 1), the contributions from the contact terms
also vanish in this case. Therefore, the final result is M4(1−s1 , 2+

s2 , 3+
s3 , 4+

s4) = 0.
The vanishing of this amplitude reflects the deep connection between chiral field
representations and self-dual theories such as self-dual Yang-Mills, self-dual gravity,
or self-dual/chiral higher-spin theories [54–60]. Namely, tree-level amplitudes
compose of (−, +, +) vertices with all but one positive (or negative) helicity vanish
for any number of external legs greater than or equal to three.

Case 3: next, we consider the 4-point MHV amplitude M4(1−s1 , 2−s2 , 3+
s3 , 4+

s4). We shall fix

ζα
3 = ζα

4 = κα
1 ,

ζ̃α̇
1 = ζ̃α̇

2 = κ̃α̇
4 ,

(7.21)

to simplify the computation. The s-channel contribution is given by:22

As
4 = δ̃(s1 − s2)δ̃(4 − s3 − s4)

2
⟨1 2⟩2s1−2 ⟨ζ3 1⟩2 ⟨ζ3 2⟩2 [3 4]2

⟨3 ζ3⟩2s3−2 ⟨4 ζ3⟩2s4−2 + (1 ↔ 2) . (7.22)

Here the spin constraints fix the two negative helicity particles to have identical
spin, while the spins of the two positive helicity particles have to sum up to four.
Since ζα

3 = κα
1 , the s-channel vanishes. Similar computations also lead to the

vanishing of the t- and u- channels, as well as the contributions coming from the
contact terms. As a result, the 4-point MHV amplitude is

M4(1−s1 , 2−s2 , 3+
s3 , 4+

s4) = 0 . (7.23)

We find similar results in the case where the negative helicity particles are not
consecutive, e.g. M4(1−s1 , 2+

s2 , 3−s3 , 4+
s4) = 0.

n-point amplitudes. As a consequence of the above considerations, we conclude that all
n-point tree-level amplitudes of the Yang-Mills sector in HS-IKKT model vanish, since they
cannot be constructed from lower point amplitudes.

7.2 HS-IKKT vertices in the light-cone gauge

The fact that (7.23) is vanishing for generic higher-spin fields with s > 1 is, in fact, not
a surprise. As observed in [50], what determines the existence of non-trivial higher-spin
tree-level scattering is not spin but rather the number of transverse derivatives in the cubic
interactions of type V−±+

3 . In particular, if the number of transverse derivatives is greater
22Once again, we ignore overall factor.
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than or equal to two, non-trivial tree-level scattering amplitudes would be very unlikely
to exist. To support this statement, let us project the cubic interactions (7.10) to the
light-cone gauge in momentum space using the dictionary in [61, 62]. In particular, the
map between spinors and momenta in the light-cone gauge are:

i] = 21/4
(

k̄i β
−1/2
i

−β
1/2
i

)
, i⟩ = 21/4

(
ki β

−1/2
i

−β
1/2
i

)
, (7.24)

where k+
i ≡ βi and

kαα̇
i =

(
βi k̄i

ki k−
i

)
. (7.25)

Note that k̄i and ki are referred to as transverse derivatives. Using the above, we can
express the square and angle brackets as

[i j] =
√

2
βiβj

Pij , ⟨i j⟩ =
√

2
βiβj

Pij (7.26)

for Pij = k̄iβj − k̄jβi and Pij = kiβj − kjβi. By virtue of momentum conservation, one can
show that

P12 = P23 = P31 = P = 1
3
[
(β1 − β2)k̄3 + (β2 − β3)k̄1 + (β3 − β1)k̄2

]
(7.27)

at the level of 3-point amplitudes.23 Thus, in terms of these new variables, the cubic
vertices (7.10) reduce to

V HS-IKKT
3 = (xP + y P2s2−1)P , (7.28)

schematically, and x, y are coefficients in terms of βi variables. According to light-cone
recipe (see e.g. [54–56, 63]), one can always make a local field redefinition at cubic order if
there is a combination of type PP to remove unnecessary data from the interactions. This
goes hand in hand with the fact that there must be only one type of bracket in the final
form of cubic amplitudes (cf., (7.9)): either angled or square bracket, but not both of them
at the same time. As a result, the cubic interaction of HS-IKKT theory reduces further to

V HS-IKKT
3 ⇝ xP2 ≃ V self-dual HSGR

3 (7.29)

Thus, HS-IKKT theory in the flat limit is ‘secretly’ a supersymmetric chiral higher-spin
theory with two-derivative interactions (see e.g. [58–60]).24

8 Discussion

In this work, we established the connections between the almost-commutative 4-hyperboloid
and non-compact semi-classical twistor space P1,2

N in the spinor formalism. Using this as
23Note that this effect can also be achieved in the spinor formalism if we use the parametrization (3.21).
24We choose the word chiral instead of self-dual here because the HS-IKKT theory has scalar fields in

the spectrum.
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a background in the IKKT model, we studied the resulting higher-spin gauge theory for
two spaces with distinct signatures: (i) a Euclidean 4-hyperboloid; (ii) and a FLRW-like
cosmological spacetime. We also furnished a simple vectorial description of HS-IKKT in
the flat limit of these two cases, which simplifies some of the technical steps in counting
and organizing the degrees of freedom of higher-spin modes in HS-IKKT in [8] and [34].

Armed with this setup, we then shown that all tree-level n-point on-shell amplitudes
(for n ≥ 4) with an appropriate analytic continuation of the massless sector within the
Yang-Mills part of the Euclidean HS-IKKT theory vanish in the flat limit. This result is
expected, since HS-IKKT is a ‘parity-violating’ higher-spin theory featuring two-derivative
interactions when we express it in terms of chiral representation.25 Indeed, as observed
in [50], massless higher-spin theories constructed from the chiral representation in the
flat space with the number of derivatives in the cubic vertices higher than one must have
trivial tree-level scattering amplitudes. Thus, the massless sector of HS-IKKT is also in
argreement with the result of [50]. This can be explained by projecting the cubic vertices
of the Yang-Mills sector in the flat limit to the light-cone gauge, we observe that the
MHV3 amplitudes vanish so no other higher-point amplitudes can be formed using just the
non-vanishing MHV3 amplitudes.

This allows to identify the massless YM sector with self-dual higher-spin gravity with
2-derivative interactions considered in [38]. In this sense, the massless sector of HS-IKKT
theory in the flat limit falls into the class of (quasi-)chiral theories. We conclude that
S = 1 at tree-level, at least for the modes under consideration. However, the triviality
of the S-matrix at tree level does not imply that the theory is trivial or not interesting;
rather, it should be viewed as a consistency check. It would be then interesting to study
the scattering amplitudes of HS-IKKT or any other higher-spin theories at loop-level, see
the discussions in e.g. [39, 66, 67].

The structure of the higher-spin gauge theory under consideration is quite interesting.
In contrast to more conventional attempts to formulate higher-spin gauge theory using free
differential algebra (see e.g. [68–71]) and the chiral formulation (see e.g. [41, 47, 72–76]),
the framework of (HS-)IKKT matrix model leads naturally to a local action, albeit at the
expense of manifest local Lorentz invariance and a larger number of propagating degrees of
freedom compared to massless or massive higher-spin gravities in 4-dimensional spacetime.
This is due to the fact that the higher-spin fields are not divergence-free as discussed26 in
section 5. The lack of local Lorentz invariance is also reflected in the preferred frame, which
encodes not only a metric but also a dilaton and an axion. The Levi-Civita connection is
accordingly replaced by the Weitzenböck connection, whose torsion encodes the Riemannian
curvature; see e.g. [32, 77, 78]. Nevertheless, the propagation of all modes is governed
by a universal effective metric, and the preferred frame naturally leads to a Cartan-type
framework to describe gravitational couplings in (HS-)IKKT model. While the bare action

25This representation gives the lowest number of derivatives in the interactions, and unveils an intrigu-
ing relation between standard No-go theorems [64, 65] in flat space and the number of derivatives in
the interaction.

26Recall that in Lorentzian signature we have 2(2s + 1) dof. and in Euclidean signature we have 3(2s + 1)
dof. for the would-be massive higher-spin fields of HS-IKKT theory.
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is of Yang-Mills type, the Einstein-Hilbert action does arise at one loop, under certain
assumptions for the background [3, 4]. Non-Abelian gauge theory would then arise on a
stack of such background branes, coupled to the effective metric. It is hence clear that the
theory does contain interesting physics, even if the local scattering of its abelian sector
vanishes at tree level.

From the physics point of view, it would be important to elaborate in more detail the
spinorial formulation on the FLRW background with Minkowski signature. This leads to an
unusual type of spinors adapted to the space-like isometries rather than the local Lorentz
invariance, which we have only briefly touched upon. Due to the common origin from
PT, a close relation with the present Euclidean computation is expected. Moreover, the
rather complicated organization of modes in [15, 34] is expected to simplify in the spinorial
formalism, which needs to be studied in more detail. This may allow to compute amplitudes
directly in Minkowski signature, while avoiding complexification of the Euclidean case. This
problem will be addressed in future work.
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A On the shift symmetry in the flat limit

We verify that the ϑ transformation (6.23) is not a symmetry of HS-IKKT model in the
flat limit. Recall that

aαα̇ =
∞∑

s=0
= λβ(s)λ̂β(s)Aβ(2s)|αα̇ =

∞∑
s=0

λβ(s)λ̂β(s)
[
A(β(2s)α) α̇ + ϵαβÃβ(2s−1) α̇

]
, (A.1)

and

δϑAβ(2s)|αα̇ = ϵαβ ϑβ(2s−1) α̇ . (A.2)

Using the above, the linearized action in the flat limit transforms as

δϑS2 = 2
∑
si

∫
℧λβ(s1)λ̂β(s1)λτ(s2)λ̂τ(s2){yα

γ̇ ,Aβ(2s1)
α γ̇}{yασ̇, ϵατ ϑτ(2s2−1)

σ̇} , (A.3)

where we note that the term {yα
γ̇ , yαγ̇}{aασ̇, aα

σ̇} vanishes in the flat limit using spinorial
description of HS-IKKT theory (see appendix B) and therefore can be neglected henceforth.
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The above can be reduced further to

δϑS2 =
∑
si

∫
℧λβ(s1)λ̂β(s1)λτ(s2)λ̂τ(s2){yτ γ̇ ,Aβ(2s1)

α γ̇}{yασ̇, ϑτ(2s2−1)
σ̇}

+
∑
si

∫
℧λβ(s1)λ̂β(s1)λτ(s2)λ̂τ(s2){yα

γ̇ ,Aβ(2s1)τ
γ̇}{yασ̇, ϑτ(2s2−1)

σ̇} .
(A.4)

The first term denoted as I in (A.4) can be written as

I = −
∑
si

∫
℧λβ(s1)λ̂β(s1)λτ(s2)λ̂τ(s2) ϑτ(2s2−1)

σ̇{yασ̇, {yτ γ̇ ,Aβ(2s1)
α γ̇}} . (A.5)

after integrating by part. Since

{yτ γ̇ ,Aβ(2s1)
αγ̇} ≃ (λτ λ̂δ + λδλ̂τ )∂δγ̇Aβ(2s1)

αγ̇ , (A.6)

we get

I ≃
∫
⟨λλ̂⟩λβ(s1)λ̂β(s1)λτ(s2)λ̂τ(s2−1)λ̂δ[λαλ̂ζ +λ̂αλζ ]ϑτ(2s2−1)

σ̇∂ζσ̇∂δγ̇Aβ(2s1)
αγ̇

−
∫
⟨λλ̂⟩λβ(s1)λ̂β(s1)λτ(s2−1)λ̂τ(s2)λδ[λαλ̂ζ +λ̂αλζ ]ϑτ(2s2−1)

σ̇∂ζσ̇∂δγ̇Aβ(2s1)
αγ̇

(A.7)

Observe that by grouping the red and green terms in (A.7) together and using the identity
λ[αλ̂β] = −1

2ϵαβ⟨λ λ̂⟩, we can simplify the above to

I ≃− 1
2

∫
λαλ̂ζ⟨λλ̂⟩2λβ(s1)λ̂β(s1)λτ(s2−1)λ̂τ(s2−1) ϑτ(2s2−2)δ

σ̇∂ζσ̇∂δ
γ̇Aβ(2s1)

αγ̇

+ 1
2

∫
λ̂αλζ⟨λλ̂⟩2λβ(s1)λ̂β(s1)λτ(s2−1)λ̂τ(s2−1) ϑτ(2s2−2)δ

σ̇∂ζσ̇∂δ
γ̇Aβ(2s1)

αγ̇ ,
(A.8)

which can be reduced one more time to

I ≃ 1
4

∫
⟨λ λ̂⟩3λβ(s1)λ̂β(s1)λτ(s2−1)λ̂τ(s2−1) ϑτ(2s2−2)δ

σ̇∂ζσ̇∂δ
γ̇Aβ(2s1)

ζ γ̇ . (A.9)

Decomposing Aβ(2s)|αα̇ = Aβ(2s)α α̇ + ϵαβÃβ(2s−1) α̇, we get

∂ζσ̇∂δ
γ̇Aβ(2s1)

ζ γ̇ = ∂ζσ̇∂δ
γ̇Aβ(2s1)

ζ γ̇ − ∂βσ̇∂δ
γ̇Ãβ(2s1−1)

γ̇ . (A.10)

The contribution associated with Aβ(2s1)
ζ γ̇ vanishes since there are a pair of λβλ̂β that

contract with Aβ(2s1)
ζ γ̇ . Therefore, after integrating out fiber coordinates we obtain a trace

in Aβ(2s1)
ζ γ̇ which is zero due to tracelessness. This means that

I = −1
4

∫
⟨λ λ̂⟩3λβ(s1)λ̂β(s1)λτ(s2−1)λ̂τ(s2−1) ϑτ(2s2−2)δ

σ̇∂βσ̇∂δ
γ̇Ãβ(2s1−1)

γ̇ . (A.11)

Notice that I ̸= 0. So the only way ϑ can be a symmetry of HS-IKKT theory is that
I combines with other contributions in (A.4) to give zero. We show below that it is not

the case.
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Consider the second line of (A.4) for which we denote as II . Using (3.24), we get

II ≃
∫

℧λβ(s1)λ̂β(s1)λτ(s2)λ̂τ(s2)[λαλ̂δ + λδλ̂α][λαλ̂ζ + λζ λ̂α
]
×

× ∂δγ̇Aβ(2s1)τ
γ̇∂ζσ̇ϑτ(2s2−1)

σ̇

≃
∑
si

∫
℧λβ(s1)λ̂β(s1)λτ(s2)λ̂τ(s2)⟨λ λ̂⟩

(
λ̂δλζ − λδλ̂ζ)∂δγ̇Aβ(2s1)τ

γ̇∂ζσ̇ϑτ(2s2−1)
σ̇ ,

(A.12)

which can be simplifed further to

II ≃ 1
2
∑
si

∫
℧λβ(s1)λ̂β(s1)λτ(s2)λ̂τ(s2)⟨λ λ̂⟩2ϵδζ∂δγ̇Aβ(2s1)τ

γ̇∂ζσ̇ϑτ(2s2−1)
σ̇

≃ −1
2
∑
si

∫
℧λβ(s1)λ̂β(s1)λτ(s2)λ̂τ(s2)⟨λ λ̂⟩2Aβ(2s1)τ γ̇□ϑτ(2s2−1)

γ̇
(A.13)

where we have made an integration by part and used the identity ∂δγ̇∂δ
σ̇ = −□ϵγ̇σ̇.

Since one of the spinors λτ or λ̂τ is contracted with Aα(2s1)τ γ̇ , it results in a trace of
this coefficient when we integrate out fiber coordinates. However, based on the decompo-
sition (A.1), it is clear that we will obtain Aα

αβ(2s−2) α̇ which is traceless. The remaining
contribution from the second modes Ã gives

II ≃
∫

℧⟨λ λ̂⟩2λβ(s1)λ̂β(s1)λτ(s2)λ̂τ(s2)ϵβτ Ãβ(2s1−1) γ̇□ϑτ(2s2−1)
γ̇ , (A.14)

which clearly does not vanish by itself. In addition, I and II will not cancel each others.
As such ϑ is not a symmetry of the HS-IKKT model in the flat limit.27 As a result, there
are more propagating degrees of freedom in HS-IKKT compared to massless higher-spin
fields in (A)dS4,5. Intriguingly, in the flat limit, the would-be massive degrees of freedom
modes can be mapped into a helicity basis. We can further select all the massless modes by
imposing the Lorenz gauge condition ∂γγ̇Aα(2s−2)γ γ̇ = 0 as discussed in the main text.

B Averaging over the fibers

The explicit spacetime action of the Yang-Mills sector in the Euclidean case can be obtained
by avaraging over the P1 fiber using (6.31). Consider the first term in (6.33) where

I1 = 2
∫
P1

K {yα
γ̇ , aαγ̇}{yασ̇, aα

σ̇} , K = ⟨λ dλ⟩ ∧ ⟨λ̂ dλ̂⟩
⟨λ λ̂⟩2

. (B.1)

In the flat limit, the main contribution from the Poisson brackets yield

I1 = 2
∑
s,s′

∫
P1

K Eα
γ̇,ββ̇∂ββ̇aα γ̇Eασ̇,δδ̇∂δδ̇aα

σ̇ , (B.2)

where Eαα̇ββ̇ ≃ 2λ(αλ̂β)ϵα̇β̇ . The contraction between two effective spinor vielbein gives

Eα
γ̇,ββ̇Eασ̇,δδ̇ = −2⟨λ λ̂⟩λ[βλ̂δ]ϵγ̇β̇ϵσ̇δ̇ = ϵβδϵγ̇β̇ϵσ̇δ̇ ⟨λ λ̂⟩2 , (B.3)

27Note that ϑ is nevertheless a symmetry of the self-dual sector of HS-IKKT in the flat limit [10].
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where 2λ[αλ̂β] = −ϵαβ⟨λ λ̂⟩. We obtain

I1 = +2
∫
P1

K ⟨λ λ̂⟩2∂◦γ̇aα γ̇ ∂◦
σ̇aα

σ̇ − 8
∫
P1

K λ(α2 λ̂◦)λ(α1 λ̂•)∂
◦

γ̇aα1γ̇∂•
σ̇aα2σ̇ . (B.4)

Observe that the second term above cancels the gauging fixing term∫
2{yαα̇, aαα̇}2 = 8

∫
P1

λ(α2 λ̂◦)λ(α1 λ̂•)∂
◦

γ̇aα1γ̇∂•
σ̇aα2σ̇ . (B.5)

Thus,

I1 +
∫

2{yαα̇, aαα̇}2 = 2
∫
P1

K ⟨λ λ̂⟩2∂◦γ̇aα γ̇ ∂◦
σ̇aα

σ̇ . (B.6)

Next, the second contribution in (6.33) reads

I2 =
∫
P1

K {yα
γ̇ , yαγ̇}{aασ̇, aα

σ̇} = −2
∫
P1

K{yαγ̇ , aα
σ̇}{yα

γ̇ , aασ̇} (B.7)

where we have made an integration by parts and used Jacobi identity. In the flat limit, I2
reduces to

I2 = 1
4

∫
P1

K⟨λ λ̂⟩2ϵα1α2
(
aα1

σ̇□aα2σ̇ − aα2σ̇□aα1
σ̇
)

= 0 . (B.8)

Therefore, the contribution coming from the term {yα
γ̇ , yαγ̇}{aασ̇, aα

σ̇} vanishes in the flat
limit. We conclude that the kinetic action in the flat limit reduces to

S2 =
∫

d4x
∫

K aα α̇□aα α̇ . (B.9)

Expanding aαα̇ = λβ(s)λ̂β(s)
[
Aβ(2s)α α̇ + ϵαβÃβ(2s−1) α̇

]
, we can elaborate the following

explicit cases:

• Spin 1. The kinetic action (B.9) consists of the following contributions coming from
spin-1 fields:

S
(1)
2 =

∫
Aαα̇□Aαα̇−Ãβα̇□Aβ

α̇λβλ̂β +Aβ
α̇□Ãβα̇λβλ̂β +⟨λλ̂⟩2Ãαα̇□Ãαα̇ . (B.10)

Making an appropriate field redefinition to fit with the form of the integral (6.31),
we get

S
(1)
2 = −

∫
Aαα̇□Aαα̇ + Ãαα̇□Ãαα̇ . (B.11)

Thus, the two modes decouple from each others at the quadratic level, and hence are
two independent modes. Intriguingly, we can make the following change of variables

Aαα̇
± = Aαα̇ ± i Ãαα̇ , (B.12)

to bring the kinetic term at level-1 to a more standard form:

S
(1)
2 = −

∫
Aαα̇
− □A+

αα̇ . (B.13)
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• Spin 2. There are the following contributions at level 2:

S
(2)
2 =

∫
Aβ(2)αα̇□Aζ(2)αα̇λβλ̂βλζ λ̂ζ−Ãβ(3)α̇□Aβ

ζ(2) α̇λβ(2)λ̂β(2)λ
ζ λ̂ζ

+
∫

Aβ
ζ(2) α̇□Ãβ(3) α̇λβ(2)λ̂β(2)λζ λ̂ζ +⟨λλ̂⟩2λβλ̂βÃβ(2)αα̇□Ãζ(2)αα̇λζ λ̂ζ ,

(B.14)

which gives

S
(2)
2 = −

∫
Aα(3)α̇□Aα(3) α̇ + Ãα(3) α̇□Ãα(3) α̇ . (B.15)

Inductively, we get the full kinetic term as

S2 = −
∑
s≥1

∫
d4x

(
Aα(2s−1) α̇□Aα(2s−1) α̇ + Ãα(2s−1) α̇□Ãα(2s−1) α̇

)
= −

∑
s≥1

∫
d4xAα(2s−1) α̇

− □A+
α(2s−1) α̇ .

(B.16)

where

Aα(2s−1) α̇
± := Aα(2s−1) α̇ ± i Ãα(2s−1) α̇ . (B.17)

The same change of variables can also be made at cubic and quartic interactions. Therefore,
we may interpret A± as higher-spin fields with positive/negative “helicity”.

We can now understand better the role of the “would-be massive” higher-spin fields.
These extra dof arise because the above fields Aα(2s−1) α̇ etc. are not divergence-free. Hence
they contain extra dof arising as pure divergence mode, which should behave like ordinary
pure gauge modes in the flat limit, and are thus expected to decouple. This is consistent
with the lack of a scale parameter in the flat limit.

Next, the cubic vertices read:

I3 = 2
∫
P1

K {yα
γ̇ , aαγ̇}{aασ̇, aα

σ̇} = 2
∫
P1

K Eα
γ̇,ββ̇∂ββ̇aαγ̇ E◦◦̇,••̇∂◦◦̇aασ̇ ∂••̇aα

σ̇

= −2
∫
P1

K
(
λαλ̂β + λβλ̂α)∂β

γ̇aαγ̇(λ◦λ̂• + λ•λ̂◦)∂◦◦̇aασ̇∂•
◦̇aα

σ̇ .
(B.18)

This means that

I3 =−2
∫

(λαλ̂βλ◦λ̂•+λαλ̂βλ•λ̂◦+λβλ̂αλ◦λ̂•+λβλ̂αλ•λ̂◦)∂β
γ̇aαγ̇∂◦◦̇aασ̇∂•

◦̇aα
σ̇ . (B.19)

From here, we can reposition indices to obtain ϵ symbols using (6.31). While there is no
shortcut to contract indices, we observe that there are many contributions cancel each
others, as well as contributions vanish on-shell (cf., (7.4)). For instance, contributions
such as

A∂αα̇B∂αα̇C , (B.20)

can be discarded since it vanishes on-shell on support of momentum conservation in the flat
limit. Furthermore, contributions that produce both types of angled and square brackets
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in terms of physical (but complex) spinors at 3-points will also vanish (see discussion in
section 7). The vertices that produce these contributions will be ‘irrelevant’ when computing
scattering amplitudes, and thus can be neglected.

Notice that due to gravitational interactions coming from the Poisson structure (3.10),
the lowest possible spins entering the cubic vertices should be (1, 1, 2). In expanding
higher-spin modes, we obtain

I3 = 4
∑
si

∫
P1

𭟋α,β|◦,•|ζ(2s2)|ρ(2s3)
τ(2s1) ∂β

β̇Aτ(2s1)α
β̇∂◦⋄̇Aζ(2s2)α σ̇∂•

⋄̇Aρ(2s3)α
σ̇ , (B.21)

where we have introduced the notation

𭟋α,β|◦,•|ζ(2s2)|ρ(2s3)
τ(2s1) = λ(αλ̂β)λ(◦λ̂•)λζ(s2)λ̂ζ(s2)λρ(s3)λ̂ρ(s3)λτ(s1)λ̂τ(s1) (B.22)

etc., for convenience. The results can be summarized into the form

∂A{A, A} + ∂A{A, Ã} + ∂A{Ã, A} + ∂Ã{A, A}
+∂Ã{Ã, A} + ∂Ã{A, Ã} + ∂A{Ã, Ã} + ∂Ã{Ã, Ã}

where { , } indicate the contributions coming from the Poisson brackets. Here, the positions
of fields are important since we are working with almost-commutative field theory. In terms
of A± we have all possible configuration of “helicities” at cubic order. Very roughly,

I3 ∼ V+++ + V−++ + V+−+ + V++− + V−−+ + V−+− + V+−− + V−−− . (B.23)

Without specifying the ± subscript below A, we can write the cubic action as

S3 ≃ 4
∑

s2+s3=s1+2

∫
d4x ∂αα̇Aα(2s1−1)

α̇∂αγ̇Aα(2s2−1) σ̇∂α
γ̇Aα(2s3−1)

σ̇ + S̃3 , (B.24)

where S̃3 denotes the irrelevant part of the action for massless sector, i.e. contributions
that vanish on-shell. Here, the un-dotted indices in the partial derivatives are contracted
to those of the gauge potentials in all possible way. This way of writing is possible due to
our symmetrization convention, i.e. the sum of all coefficients coming from contracting of
ϵ tensors in (6.31) with fields and derivatives is one. While the non-commutative twistor
approach produces more contributions than the standard approach in twistor literature, we
observe that the non-vanishing contributions in non-commutative twistor approach coincide
with the ones using the standard approach of twistor theory in the flat limit.

Finally, let us look at the quartic term:

I4 = 1
2

∫
P1

K {aα
γ̇ , aαγ̇}{aασ̇, aα

σ̇} = 1
2

∫
P1

K E◦◦̇,••̇∂◦◦̇aα
γ̇∂••̇aαγ̇ E⋄⋄̇,♦♦̇∂⋄⋄̇aασ̇∂♦♦̇aα

σ̇

= 2
∑
si

∫
P1

K𭟋◦,•|⋄,♦|ζ(2s3)|τ(2s4)
ρ(2s1)|δ(2s2) ∂◦◦̇Aρ(2s1)α

γ̇∂•
◦̇Aδ(2s2)αγ̇∂⋄⋄̇Aζ(2s3) σ̇∂♦

⋄̇Aτ(2s4)α
σ̇ .

(B.25)

– 40 –



J
H
E
P
1
2
(
2
0
2
3
)
0
1
0

Thanks to the plane-wave solutions (7.4) and the specific gauge choice we made in section 7,
all contributions resulting from the integral over P1 vanish on-shell. For this reason, we can
either ignore the quartic, or write it as

S4 ≃ 2
∫

d4x
(
∂αγ̇1Aα(2s1−1) σ̇∂α

γ̇1Aα(2s2−1)
σ̇

)(
∂α

γ̇Aα(2s3−1)
τ̇ ∂αγ̇2Aα(2s4−1) τ̇

)
+S̃4 . (B.26)

Unlike the construction of higher-spin Yang-Mills [39], all possible configuration of helicities
are allowed due to the helicity-like solutions A±.

Vertices from the self-dual sector. To obtain the above result, one can also start from
the self-dual sector. This provides a simpler way to contract indices in the interactions. But
we first need to know how the higher-spin modes of the bαα field talk to each others. Recall
that the action of the YM sector in first order formalism has the form cf. section 6

SYM =
∫
PS

℧
(

bααfαα − 1
2bααbαα

)
(B.27)

Now, we let bαα to have the following higher-spin expansion (see the discussion around (6.19)
for the reality condition of hs-valued fαα and bαα):

bαα =
(
Bβ(2s)αα − iϵβαB̃β(2s−1)α

)
λβ(s)λ̂β(s) . (B.28)

It can be checked that there is no mixed term between B and B̃. For instance, consider
spin-1 case∫

bααbαα
∣∣
s=1 =

∫
BααBαα + iBααϵβαB̃βαλβλ̂β − iBααϵβαB̃βαλβλ̂β + λβλ̂βϵβαϵγαB̃βαB̃γαλγ λ̂γ

=
∫

BααBαα + λβλ̂βϵβαϵγαB̃βαB̃γαλγ λ̂γ . (B.29)

We can shorten the last term in (B.29) to∫
−1

4⟨λ λ̂⟩2B̃ααB̃αα + 1
2λβλ̂βB̃β

γB̃β
γλγ λ̂γ ∼

∫
d4x B̃ααB̃αα . (B.30)

Therefore, the B and B̃ modes do not couple to each other (other higher-spin cases are
analogous). Observe that we can use B̃ as Lagrangian multipliers for the fuzzy Lorenz gauge
condition (6.21) ∫

℧ B̃β(2s){yαα̇,Aβ(2s)|αα̇} (B.31)

so that only the first modes Bα(2s) propagate and B̃ becomes non-dynamical. Therefore,
it is suggestive to treat Bα(2s) as negative helicity modes. To proceed, we will look at the
kinetic terms ∑

s1,s2

∫
℧λβ(s1)λ̂β(s1)Bβ(2s1)αα{yα

α̇,Aγ(2s2)|αα̇}λγ(s2)λ̂γ(s2) . (B.32)
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By decomposing Aβ(2s)|αα̇ = Aβ(2s)α α̇ + iϵαβÃβ(2s−1) α̇, we can check that

L2 =
∫

℧λβ(s)λ̂β(s)λγ(s)λ̂γ(s)Bβ(2s)αα

(
{yα

α̇, Aγ(2s)α α̇} + iϵαγ{yα
α̇, Ãγ(2s+1) α̇}

)
=
∫

d4xBα(2s)∂
α

α̇A
α(2s−1) α̇
+ . (B.33)

Thus, as always, the kinetic terms decrible the coupling between negative and positive
helicity fields. From here, we can express A and Ã in terms of A± as

Aα(2s−1) α̇ =
Aα(2s−1) α̇

+ +Aα(2s−1) α̇
−

2 , Ãα(2s−1) α̇ =
Aα(2s−1) α̇

+ −Aα(2s−1) α̇
−

2i (B.34)

to study the cubic interactions
∫

b{A,A}.
In this first-order formalism, the interaction terms have much less structure compared

to the second-order case. In particular, after integrating out fiber coordinates, we end up
with three main structures

B−
α(2s1)∂

α
γ̇A

α(2s2−1) α̇
± ∂αγ̇Aα(2s3−1)

± α̇ , (B.35a)

B−
α(2s1)∂αγ̇A

α(2s2−1) α̇
± ∂αγ̇Aα(2s3−1)

± α̇ , (B.35b)

B−
α(2s1)∂αγ̇A

α(2s2−1) α̇
± ∂α

γ̇Aα(2s3−1)
± α̇ , (B.35c)

where, as always, all un-dotted indices of the lower level are understood to be contracted in
all possible way with the indices of the upper level. Notice that the difference between the
above structures are merely the positions of the undotted indices in the partial derivatives.

Besides the polarization tensors (7.4) for the A± fields, we set

ϵ−α(2s) = λα(2s) (B.36)

to the polarization tensor associated with the Bα(2s) negative helicity fields [38]. Note
that there is no auxiliary/reference spinors ϵ−α(2s). Then, upon plugging in the plane-wave
solutions, it can be checked that (B.35c) is the only structure that survives. It is worth
mentioning that there are no combination such as

Bα(2s1){Aα(2s2−1−m)β(m) α̇,Aα(2s3−1−m)
β(m) α̇} (B.37)

where un-dotted indices of the A fields contracted with each others since it results in trivial
amplitudes. In fact, this can also be understood from the light-cone point of view where
we set Aα(2s−2)0 0̇ = 0 and choose A1(2s−1) 0̇ to be the components carry physical degrees of
the A fields. Then, for any combination such as (B.37), it will vanish on the nose in the
light-cone gauge.

Further scrutiny shows that non-trivial cubic amplitudes will come from

B−
α(2s1)∂αγ̇A

α(2s2−1) α̇
+ ∂α

γ̇Aα(2s3−1)
+ α̇ . (B.38)

These are the vertices that give us the MHV3 amplitudes (7.14) in the main text. As a
result, the bααfαα can be written as∫

℧ bααfαα ∼
∫

d4xB−
α(2s)F

α(2s) (B.39)
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where for convenience we have defined

F
α(2s)
+ := ∂αα̇Aα(2s−1)

+ α̇ + 1
2

∑
m+n=s+2

∂αγ̇A
α(2s2−1) σ̇
+ ∂α

γ̇Aα(2s3−1)
+ σ̇ . (B.40)

Of course, the above BF action (B.39) in flat space is only the self-dual sector which
features the MHV3 amplitudes. To go back to the second-order formalism, we can integrate
out the B−

α(2s) which results in

SYM =
∫

Fα(2s)F
α(2s) (B.41)

As this stage, one can give the higher-spin fields Aα(2s−1) α̇ all possible helicity when we
consider cubic and quartic interactions. The reason is that the negative helicity modes
B−

α(2s) need to be replaced by Aα(2s−1) α̇
− . Lastly, so as not to forget about other structures,

we can write the final action as

SYM =
∑

s

∫
d4x Fα(2s)F

α(2s) + S̃3 + S̃4 , (B.42)

where S̃i for i = 3, 4 denote terms that are irrelevant when studying scattering amplitudes.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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