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Abstract We study supersymmetric AdS4 black holes in
matter-coupled N = 3 and N = 4 gauged supergravities
in four dimensions. In N = 3 theory, we consider N = 3
gauged supergravity coupled to three vector multiplets and
SO(3) x SO(3) gauge group. The resulting gauged super-
gravity admits two N = 3 supersymmetric AdSs vacua
with SO(3) x SO(3) and SO(3) symmetries. We find an
AdS> x H? solution with SO(2) x SO(2) symmetry and
an analytic solution interpolating between this geometry and
the SO(3) x SO(3) symmetric AdS4 vacuum. For N = 4
gauged supergravity coupled to six vector multiplets with
SO4) x SO(4) gauge group, there exist four supersym-
metric AdS4 vacua with SO(4) x SO4), SO4) x SO(3),
SOB)xSO4)and SO3) x SO(3) symmetries. We find a
number of AdS; x S* and AdS, x H? geometries together
with the solutions interpolating between these geometries
and all, but the SO3) x SO(3), AdS4 vacua. These solu-
tions provide a new class of Ad Sy black holes with spherical
and hyperbolic horizons dual to holographic RG flows across
dimensions from N = 3,4 SCFTs in three dimensions to
superconformal quantum mechanics within the framework
of four-dimensional gauged supergravity.

1 Introduction

String/M-theory has provided a number of insights to various
aspects of quantum gravity for many decades. In particular, a
resolution for a long-standing problem of black hole entropy
has been proposed in [1]. After this pioneering work, many
other papers followed and clarified the issues of microscopic
entropy of asymptotically flat black holes. For asymptotically
Ad Sy black holes, a concrete result on the corresponding
microscopic entropy, using AdS/CFT correspondence [2—4],
has appeared recently in [5-7], see also [8—12].
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On the gravity side, an important ingredient along this line
is Ad S4 black hole solutions interpolating between asymp-
totic AdS4 and AdS» x £ spaces with ¥? being a Riemann
surface. The latter describes the geometry of the black hole
horizon with the values of scalars determined by the attrac-
tor mechanism. These solutions holographically describe
RG flows across dimensions from three-dimensional SCFTs,
dual to the Ad S4 vacua, to superconformal quantum mechan-
ics, dual to the AdS, factor of the horizons. The latter is
obtained from twisted compactifications of the former which
play an important role in computing Bekenstein—Hawking
entropy of the black holes via twisted indices.

In this paper, we are interested in supersymmetric Ad Sy
black holes with the horizon geometry AdS, x S? and
AdS; x H?* with §? and H? being a two-sphere and a two-
dimensional hyperbolic space, respectively. We will work in
matter-coupled N = 3 and N = 4 gauged supergravities.
This type of solutions has been extensively studied in N = 2
gauged supergravity for along time [13-19], see also [20] for
some results in N = 8 gauged supergravity. Similar studies
in other gauged supergravities have appeared only recently
in [21-24]. In particular, a study of AdS> x %2 solutions
in N = 3 with only magnetic charges has been initiated in
[21]. We will extend this result by performing a more sys-
tematic analysis and including a possible dyonic generaliza-
tion. We will consider a particular case of N = 3 gauged
supergravity coupled to three vector multiplets with a com-
pact SO (3) x SO (3) gauge group. We will see that only one
magnetic AdS> x H? solution with SO(2) x SO(2) sym-
metry exists. This is very similar to solutions in N = 5 and
N = 6 gauged supergravities given in [23,24].

For N = 4 case, we will consider N = 4 gauged super-
gravity coupled to six vector multiplets with SO (4) x SO (4)
gauge group. Unlike the N = 3 theory with a purely electric
gauging, any N = 4 supergravity that admits supersymmet-
ric Ad S4 vacua must be dyonically gauged [25]. In this case,
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apart from an AdS> x H 2 golution similar to N = 3,5, 6
gauged supergravities, there exist a number of supersym-
metric AdS> x S? and AdS, x H? solutions. It should also
be pointed out that some AdS, x X2 solutions in N = 4
gauged supergravity obtained from a truncation of eleven-
dimensional supergravity have also been found in [22]. How-
ever, in that case, the gauge group is of non-semisimple
form, and the resulting BPS equations are highly compli-
cated. In the present work, we provide a number of much
simpler examples of supersymmetric AdS4 black holes in
N = 4 gauged supergravity. In particular, the two-form fields
required by the consistency of incorporating magnetic gauge
fields can be truncated out in the present case.

The paper is organized as follows. In Sect. 2, we
will review the structure of N = 3 gauged supergravity
after translating the original construction in group mani-
fold approach to the usual formulae in space-time. This
is followed by a general analysis of relevant BPS equa-
tions for finding supersymmetric Ad S4 black hole solutions.
An AdS> x H? solution with SO(2) x SO(2) symmetry
together with the full flow solution interpolating between
this fixed point and the supersymmetric AdS4 vacuum with
SO(3) x SO (3) symmetry are also given. Similar analysis is
then performed in Sect. 3 in which we will find a number of
Ad S, x §? and Ad S, x H? fixed points and solutions interpo-
lating between them and supersymmetric AdS4 vacua with
various unbroken symmetries in N = 4 gauged supergravity.
We end the paper by giving conclusions and comments on
the results in Sect. 4.

2 AdS4 black holes from N = 3 gauged supergravity

In this section, we consider matter-coupled N = 3 gauged
supergravity and possible supersymmetric Ad S4 black holes.
We begin with a review of N = 3 gauged supergravity and
the analysis of relevant BPS equations. These are followed
by the explicit solutions at the end of the section.

2.1 Matter-coupled N = 3 gauged supergravity

We now give a description of N = 3 gauged supergravity
coupled to n vector multiplets. This has been constructed by
the geometric group manifold approach in [26], see also [27,
28]. However, the final form of the space-time Lagrangian
has not been given, and the supersymmetry transformations
of fermions have been given in a rather implicit form. We
will first collect all these ingredients and specify to the case
of n = 3 vector multiplets later on. The interested reader
can find a more detailed construction and some discussions
on the structure of the scalar manifold and electric-magnetic
duality in [26]. We will mostly follow the notations of [26]
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but in a mostly plus signature for the space-time metric and
a slightly different convention for the gauge fields.

For N = 3 supersymmetry in four dimensions, there are
two types of supermultiplets, the gravity and vector multi-
plets. The former consists of the following component fields

(€. Y. Ay ).

e}, is the graviton, and v, 4 are three gravitini. Space-time
and tangent space indices will be denoted by w, v, ... and
a,b, ..., respectively. The gravity multiplet also contains
three vector fields Aﬁ withindices A, B, ... =1, 2, 3 denot-
ing the fundamental representation of the SU (3) g part of the
full SU (3)r x U(1) g R-symmetry. There is also an SU (3) g
singlet spinor field .

N = 3 supersymmetry allows the gravity multiplet to
couple to an arbitrary number of vector multiplets, the only
matter fields in this case. The component fields in a vector
multiplet are given by the following field content

(A/L9 )"A’ )\'7 ZA)

consisting of a vector field A, four spinor fields A and A4
which are respectively singlet and triplet of SU(3)g, and
three complex scalars z 4 in the fundamental of SU (3) g. We
will use indices i, j,... =1, ..., n tolabel each vector mul-
tiplet.

The fermionic fields are subject to the chirality projection
conditions

b= —ysi. (1)

These also imply Wﬁ‘ = —y51/f/f and A4 = —ysA4 for the
corresponding conjugate Spinors.

In the matter-coupled supergravity with n vector multi-
plets, there are 3n complex scalar fields z% parametrizing
the coset space SU(3,n)/SU(3) x SU(n) x U(1). These
scalars are conveniently described by the coset representa-
tive L% The coset representative transforms under the global
G = SU@3,n) and the local H = SU(3) x SU(n) x U(1)
symmetries by left and right multiplications, respectively.
The SU(3, n) indices A, X, ... will take values 1, ..., n+3.
On the other hand, it is convenient to split the SU(3) x
SU(m) x U(1)indices A, X, ...as (A, i). We can then write
the coset representative as

Yua = vs¥ua, X =Vs5X, *A=V5ha,

L= =LA, L)), )

The n + 3 vector fields from both the gravity and vec-
tor multiplets are combined into Al‘} = (A4, AL)- These
are called electric vector fields that appear in the Lagrangian
with the usual Yang—Mills (YM) kinetic terms. Accompa-
nied by the corresponding magnetic dual A, these vector
fields transform in the fundamental representation n + 3 of
the global symmetry group SU (3, n), also called the duality

group.



Eur. Phys. J. C (2021) 81:1010

Page 3 of 27 1010

For the gaugings of the matter-coupled N = 3 supergrav-
ity, we will follow the original result of [26] since the com-
plete modern approach using the embedding tensor has not
been worked out so far. For general gaugings obtained from
the embedding tensor formalism, both electric and magnetic
gauge fields can participate in the gaugings. The construc-
tion of [26], called electric gaugings, with only electric vector
fields becoming the gauge fields results in gauge groups that
only account for a smaller class of all possible gaugings. All
gauge groups considered in [26] are subgroups of SO (3, n)
which is the electric subgroup of the full global symmetry
SU(3, n).

After gauging a particular subgroup Gy of SO(3,n) C
SU (3, n), the corresponding non-abelian gauge field strengths
are given by

FA =dA™ + fsr AT A AT (3)

where fax! denote the structure constants of the gauge
group. The gauge generators T, satisfy

[Ta, Ts] = frsTr. 4)

Indices A, X, ... can be raised and lowered by the SU (3, n)
invariant tensor

Jas = JME = (8ap, —8ij) o)

which will become the Killing form of the gauge group Gy.In
order for the gaugings to be consistent with supersymmetry,
the structure constants fayxr need to satisfy the following
constraint

fasr = fAsJar = fiazr (6)

which is equivalent to the linear constraint in the embedding
tensor formalism. Some examples of possible gauge groups
are SO(3)x H,,SO(3, 1) x H,_3and SO (2, 2) x H,,_3 with
H, being an n-dimensional compact subgroup of SO (n) C
SU (n). These gaugings together with possible supersymmet-
ric AdS4 vacua and domain walls have already been studied
in [33].

With the fermion mass terms and the scalar poten-
tial included as required by supersymmetry, the bosonic
Lagrangian of the N = 3 gauged supergravity can be written
as

11
'L = TR ZP;AP/Q‘i —apns FLN P20
—flAzF;L_uAF_EW - V. )

This Lagrangian is obtained from translating the first-order
Lagrangian in the geometric group manifold approach given
in [26] to the usual space-time Lagrangian. We have also

multiplied the whole Lagrangian by a factor of 3 resulting in
a factor of 3 in the scalar potential given below as compared
to that given in [26].

The self-dual and antiself-dual field strengths are defined
by

1 [ :
Fa' =5 <Ff,, F EeabchA“’> ®)

which satisfy the following relations

1

+Acd oA +A A
EeadeF “C=4iF ;" and F0 = (F}™™ )
To write down the explicit form of the scalar matrix apy
in terms of the coset representative, we first identify various
components of the coset representative as

La% Ly

LA2=< B ). (10)
L;” Lj

The symmetric matrix apy can be written as
-1

apy = (" h'),x (11)

in which the matrices fo= = (Lp?%, (LA")*) and hpy =
—(JfJ)ax are given explicitly by

s (La® (@A) (LA —(LaD*
g _<LjB (Lji)*> nd hA§_<_LjB (L;H* )
(12)

The scalar kinetic terms are written in terms of the vielbein
onthe SU(3,n)/SU3) x SU(n) x U(1) obtained from the
Maurer—Cartan one-form

Qp = (LH3dLy + (LHE fre ALY (13)
via the components
P =qf = (@)*. (14)

We also note that the upper and lower indices of SU (3) and
SU (n) are related by complex conjugation. Since L= is
an element of SU (3, n), the inverse (L") A = satisfies the
following relation

(L™HY = JanJZA LD (15)

The composite connections Qﬁ, Q{ and Q for the SU(3) x
SU(n) x U(1) local symmetry are given by

Qf = 08 —nsB0 and @ = 0/ +35/0 (16)
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with 04 = Q! = 0.
The scalar potential is given by

2 1 :
V= —ZSABSAB + 5uALtA + EMAMA +

1
-2 (icfer —ice?)  am

1
ngBM?B

2 PQ 2
- |C | —|cl- o
with Cp = —C f‘J’IM. Various components of the fermion-
shift matrices are defined in terms of the “boosted” structure
constants

Char = LAaL D @' fur® and

CALE = 0y BT (A (18)
as

Sap = (GBPQCA +6ABCC%C>

OOI—-BI'—‘

(CfQGBPQ + CgQEAPQ> .
1 1
UA = ——CHA, Nia = —seapoC) 2,
4 2 !
1
MGy = 365 Cly = 2T (19)

Finally, the fermionic supersymmetry transformations
obtained from the rheonomic parametrization of the fermionic
curvatures are given by!

8Yua = Dyuea — €apcGh,y" e + Sapyue®. (20)
1

8x = —ZGAVV””GA +U%en, 1)

Shi = —P/ytea + Niae®, (22)

Shia = —PEyrespce” — EGW;/“”eA + MPiep. (23)

The covariant derivative for € 4 is defined by

1 1
—w®ypes + 08ep + 5106 (24)

Dey =d
€A EA+4

The field strengths appearing in the supersymmetry transfor-
mations are given by
Gﬁv = ReaAgLEAF/jVA

G!,, =Reaps(Ls')*F} =

MAPLYEFL,, (25)

MI(LHYFy,,  (26)

where M/ and M5 are respectively inverse matrices of
Mij = @ HMLHMIan and

Map = (L™HA @ H T Ian. 27)

1 We also note an additional factor of % in the gauge field strengths
due to different conventions for differential forms, namely th;re =
FFAdx! ndx” while F¢ = FAdx* Adx.

@ Springer

2.2 BPS equations for supersymmetric AdS4 black holes

We now look at the BPS equations for supersymmetric Ad Ss
black holes with the near horizon geometry given by Ad S, x
%2, The metric ansatz is taken to be

ds®> = =T Ddi® + dr* + ' (d6? + F(0)’d¢?)  (28)

with F'(0) defined by
F(@) =sinf and F(0) = sinh6 (29)

for ¥ = S? and ©? = H?, respectively. The functions
f(r) and h(r) together with all other non-vanishing fields
only depend on the radial coordinate r. With the following
choice of vielbein

= edo, ¢ = "F(6)do,

(30)

e =eldt, & =dr,

it is straightforward to compute non-vanishing components
of the spin connection

&1V

For clarity, we have used the values of flat indices as
ab,...,=@{,76,p).

In the present paper, we are interested in a simple N = 3
gauged supergravity coupled to n = 3 vector multiplets with
a compact gauge group SO (3) x SO (3). The non-vanishing
components of faoxr are given by

fAs = (81€ABC 82€ijK)- (32)

We also recall that the SO (3) x SO (3) gauge group is elec-
trically gauged with the corresponding gauge fields being the
vector fields appearing in the ungauged Lagrangian with YM
kinetic terms. To avoid confusion, we will call the first S O (3)
factor SO (3) g since this factor is embedded in SU (3)g R-
symmetry.

To preserve some amount of supersymmetry, we imple-
ment a topological twist by turning an SO(2) ~ U(1) C
SOB)g C SUB3)g gauge field along 2. In addition, we
can also turn on an SO(2) C SO(3) gauge field from the
second SO (3) factor. We will choose these gauge fields to
be Az and Ag with the following ansatz

AN = g™ ryde — pA () F'0)dp, A =3,6, (33)

for F'(0) = dF (9) . The corresponding field strengths are
given by

A= dADN = gNdr Andt — pY F ©)dr Adg

+ikpPF(0)dO A dg. (34)

Throughout the paper, we will use ’ to denote a derivative
with respect to the radial coordinate » with an exception for
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F'0) = %. In this equation, we have also introduced a
parameter « via the relation F”(0) = —x F(0) with x = 1
and k = —1 for £? = §% and £2 = H?, respectively.
Imposing the Bianchi’s identity DF” = 0 implies pA/ =
0, so pA are constant and will be identified with magnetic
charges.

It is useful to recall the definition of electric and magnetic
charges given by

1

gA = ——

- FA 35
47'[ 2 ( )

A 1
Gp and p =17 |-
=

withGp = a‘;—SA To further fix the ansatz for the gauge fields,

we consider the Lagrangian for the gauge fields
1 A z, ! A by
LgaugeZ_ERAE * FoANF +§IA2F ANF (36)

in which we have rewritten the relevant terms in the
Lagrangian (7) in differential form language. We have also
used the following definition

RAE = ReaAg and IAZ = ImaAz. (37)
From the above Lagrangian, we find
Gpr=—Ras * F¥ + I\x F*¥ (38)

which, together with the above definition of (g4, p*) and
F(j}p = kp™ F(0), leads to

Fi =—e R (clzrp" +g3). (39)

We have written the inverse of Rax as RA%. For later con-
venience, we also note the Maxwell equations obtained from
the Lagrangian (7)

1
D, <RAEF2’“ + EIAEeIEWMF,i)

>
= PrALTY T fas Lt (40)

This can be rewritten in form language as
DGy = PA(LTY fasTLrt 1)

with PA = Plfidx“. It should also be emphasized that
the left-hand side is related to a radial derivative of elec-
tric charges via the definition in (35). Therefore, in general,
electric charges are not conserved if the YM currents are
non-vanishing as also pointed out in [17].

We are now in a position to perform the analysis of BPS
equations. The analysis is closely parallel to thatin N = 2
gauged supergravity given in [14,17]. We will work in Mfljo:
rana representation with all ¢ real but y5s = i yf yf yoy®

purely imaginary. In this representation, the two chiral com-
ponents €4 and €4 of the Killing spinors are related to each
other by complex conjugation. In addition, in all of the solu-
tions considered in this work, we assume that the Killing
spinors depend only on the radial coordinate r. We are only
interested in solutions with SO (2) x SO(2) and SO (2)diag
symmetries, but in this section, we will consider the general
structure of the BPS equations.

We begin with the BPS equation from the variation §vr $A
given by

1, 1 _,F B B
0= Eh Vji€a + 7€ FYpica + Q. €p + Sape

B 6 _C
—EABCGJJGAV . (42)

The matrix S4p is symmetric and can be diagonalized. The
corresponding eigenvalues will lead to the superpotential VW
in terms of which the scalar potential can be written. We then
write, without summation on A,

1
Sap = _EWASAB (43)

in which Wy denote eigenvalues of S4p. It is also useful to
define the central charge matrix as

— A —
Zap = —2eapcGly = —2eapcM P (LD (kpte™
—ighe™). (44)
We now impose the following projector

F_A :eflAaAB

y'e €g or yfeA:eiASABeB 45)

and rewrite Eq. (42) as
0= Vé I:h/eiA(SAB — Wabap — ZABV,;}@:I GB

F'@) _, B 4C
413 e raen+ 2menc®aSen | )

We have used the explicitformond;AB = gleACDSDBAgeB
which is valid for both cases we are interested in. We now
notice that only the terms in the second bracket of Eq. (46)
depend on 8. Therefore, these terms must cancel against each
other, and using the gauge field ansatz (33), we find that

vgoa = 281€ac” pCes. (47)

Since only p3 is non-vanishing, we find that the supersymme-
try corresponding to €3 must be broken. Imposing the twist
condition
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26197 =1 (48)

and writing €4p3 = €in for A, B = 1,2and €1 = 1, we
obtain the following projector

Yos€a = €4 € (49)

In this analysis, we have written et = (e4,€3). We also
remark that indices A, B, ... of € 45 and €48 are simply

raised and lowered by the Kronecker delta § ; 5 and §AB.
Using the projector (49) in the first bracket of (46) with
€3 = 0, we find the BPS condition

(/’l/eiA _WA)(SAI_@ —Zﬁéééé =0. (50)
In general, W; for a particular value of A gives the super-
potential corresponding to the eigenvalue of S5 along the
directions of the Killing spinors €4. We will simply denote
this eigenvalue by WW. Moreover, it turns out that in the cases
we will consider, only Gf’w is non-vanishing. We then find
that

Za C

Aé‘e B= Z8 (51)

AB
in which we have defined a complex number Z sometimes

called the “central charge” as

Z = oMLY N ephe —igh e ). (52)

With all these, we finally obtain the BPS equation from §vr $A

e =W+ 2 (53)
which implies

W+ Z

W =4+W+Z| and A =+ — =
| | W+ Z|

(54)

Using all of the results previously obtained, we can perform
a similar analysis for 81#@ 4 This results, as expected, in the
same BPS equations given in (54).

We now move to the variation 8y, ; of the form

1 . .
0= zf/y;)/;EA + AMBGE + GA@G?;)/&C + SAE)/;GB
(55)

with

Ara® = —gie A% (56)

@ Springer

We then impose another projector

yled = ie_iAeAéeB. (57)
It should be noted that this is not an independent projector
since it is implied by the y; and y; P projectors given in (45)

and (49) by the relation y5eA = —¢4,

We note here that the central charge matrix can also be
written as

Zpp = —2ieapc G, = 2ieapcMP(L ) GV e !
+ikpPhe ). (58)

With all the previous results, we can write equation (55) as
[f/—e—"A(W+Z)] €ip—2ig1e Al =0 (59)
which implies
f=Re [T 0w - 2)], (60)
3 1 —iA
and g4} = —5Im [ 72OV - 2)]. (61)

The second equation fixes the form of A?.
Finally, we consider the variation §v; 4 which gives

! 1—"1\)/\/ 2)e 3 : Be—0. (62
EA—EE ( — )€A+§Qr€A+QrA EB_ . ( )
In allAthe cases we will consider, it turns out that Q, = 0 and
QrAB = 0. Using §v;; = 0 equation, we can rewrite this
equation as

! .
€ =5 —2ia14)e; (63)
which gives

I 3
GA — 2 lfglAferg)) (64)

with eg)) being r-independent spinors subject to the projec-
tors

(0)B ) _

O _ o . - _B_(0)
vi€y = 3ip€ and YagEi = €A €5 - (65)
Consistency with the projector (45) leads to a flow equation
for the phase A

A +2ig1A? =0. (66)

Since all scalars depend only on the radial coordinate
r, the BPS equations obtained from 8y, §A; and Mf only
involve y;. By using the projector (45) and phase factor in
(54) in these variations, we eventually obtain flow equations
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for scalars. Before giving the solutions, we end this section
with the conditions for the near horizon geometry Ad S, x X°

_ 1
Laas,’

/

=0, (z% =0 (67)

meaning that the function £ and all scalars are constant, and
f is linear in r in this limit. We will also choose an upper
sign choice in (54) for definiteness.

2.3 Solutions with SO (2) x SO(2) symmetry

We now consider supersymmetric solutions to the BPS
equations with the general structure given in the previ-
ous section. We begin with explicit parametrization of the
SU@3,3)/SU@3) x SU(3) x U(1) coset manifold. It is con-
venient to introduce a basis for G L (6, R) matrices

(eax)nr = dandsr. (68)

With the structure constants given in (32), the SO(3)g x
SO(3) gauge generators are given by

(T = fin and 5 = s (69)

The residual SO (2) x SO (2) symmetry is generated by
T3(1) and T3(2). There are two singlet scalars corresponding to
the following SU (3, 3) non-compact generators

?] = e36 + €63 and ?2 =ieg3 — ie36. (70)
The coset representative can be written as
L=e¢1f’1€¢>2f’z. (7D

In this case, the YM currents vanish, so the electric charges
are constant. The scalar potential is given by

1
V= —Zgte [e2¢1 + cosh 2¢n (1 + *1 )] . (72)
This potential admits a unique N = 3 supersymmetric
vacuum at ¢; = ¢ = 0 with the cosmological constant
Vo = —% g%. The Ad S, radius is given by the relation

3 1
Lags, = “av, = o (73)

in which we have taken g; > 0 for convenience. We also
note that truncating all vector multiplets out gives rise to
pure N = 3 gauged supergravity with SO (3) g gauge group
and cosmological constant — % gf constructed in [29,30], see

also a more recent result [31] in which pure N = 3 gauged
supergravity is embedded in massive type IIA theory.
The matrix S4p is given by

1.
Sap = —Edlag(Wp Wi, Wh) (74)

in which W; and W, are given by

W) = g1 cosh ¢ cosh ¢,
Wh = gi(cosh ¢p1 cosh ¢y + i sinh ¢ sinh ¢,). (75)

It turns out that only WV, gives the superpotential in terms of
which the scalar potential (72) can be written as, see more
detail in [33],

1 WL \2 1 /aWa\> 3
V=— . ( 2) _-<—2> —ZW} (76)
2 cosh” 2¢, \ 991 2\ 9¢y 2

with Wy = |[Wh|. In this case, the supersymmetry associated
with €!'2, which are relevant to the present work, is broken.
For ¢ = 0, W) can give rise to the superpotential leading to
unbroken supersymmetry along €2, and in this case, YW and
W, are equal. We then set ¢» = 0 in the following analysis.
We will also write W = W, = W, and ¢ = ¢;. In addition,
it is worth noting that setting pseudo-scalars, corresponding
to imaginary parts of the complex scalars z4', to zero always
gives Ipox = 0. This implies that the components thr} are
given only in terms of electric charges and vanish for purely
magnetic solutions.

With €3 = 0, we find that § x = 0 and §A; = 0 identically.
By using the coset representative (71) with ¢ = 0, we find
a consistent BPS equation for ¢ from 8)\;“ provided that one
of these two conditions is satisfied

G3=q6=0 or p®=ge=0. (717)

The first one corresponds to a purely magnetic case while
the second one is a dyonic case with only ¢3 and p> non-
vanishing.

Setting g3 = g¢ = 0 and using the BPS equations given
in the previous section, we find the following set of BPS
equations

|
fl=ce 7 [gle”' —216*(p° — pO)k

2
+1620D —k(p 4 ), 78)
h =W+ Z]
= %e_"’_Zh [glezh +g1* (p* — pO)k
+g12 ke (p? + p6)] , (79)
]
¢
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1
L—9-2h
2

—g12@th e (pP + p(’)] ) (80)

[81€2h —516*(p* — pO)k

We note that both V) and Z are real giving rise to e’ = +1.
The existence of AdS, x X2 fixed points requires p® = 0.
In this case, we find the fixed point given by

1 kp>
¢=¢o, h=-In|——],
2 g1
1
f = = 2g1 cosh ¢y (81)
L aas,

for a constant ¢. For real # and 2g; p> = 1 > 0, we need to
take x = —1, so this is an Ad Sy X H? fixed point.
For p6 = q¢ = 0, we find

1
WHZ = EeﬂHh(l + ) g1 +kpP +igz)  (82)

leading to the BPS equations
e P21+ (e ef — a3 — (1))

= (83)
2,/ (g1 +kp3) + 6
1
W =W+ 2| = 56—45—2”(1 + ¢?%)
x(ep® + 1622 + g2, (84)
AW + Z| 14
</ ep? + g1e?)? + 2 (85)
together with
-+ (1 2¢
53 . qze (1 +e%) (86)

2,/ g1 +1p?)? + 43

which fixes the time component of the gauge field ansatz. We
also note that upon using the BPS equations for f/, A’ and
¢’, we find

q = %qw*z"’*f 1) (87)
in agreement with the gauge field ansatz given in (39).

The existence of Ad S x ©? fixed points requires g3 = 0.
This can be clearly seen from the condition 2’ = 0. With
g3 = 0, the AdS, x X? fixed point is just the AdS; x H?
vacuum given in (81). We then find that all supersymmetric
black hole solutions will be magnetically charged without
any dyonic generalization.

We now look for a solution interpolating between the
supersymmetric AdS; vacuum and this AdS, x H? criti-
cal point. To find the relevant solution, we can further set

@ Springer

p® = 0 and g3 = 0 in the two sets of the BPS equations. In
this case, the two sets lead to the same BPS equations which
we repeat here for convenience

1
= 5e‘¢—2”<1 +e*)(gr1e*" — kp?), (88)
1
W= et A+ N (e +kp?), (89)
|
¢ =—5e 97202 — 1)(g1*" + kp?). (90)

These equations are very similar to those given in N = 5
and N = 6 gauged supergravities studied in [23,24]. By a
similar analysis, we can obtain an analytic solution

h=¢—1In(l —e*), ©On
f=Inlkp*(1 +e*) + (g1 — 2cp>)e?]
—In(1 — e2¢) — ¢, (92)

2g1p = In[kp> (1 4 e*) + (g1 — 2kp*)e??] — 2In(1 — *%)
e 2epde — 1
+2 3gl tan—! | &1 +2kple ) (93)
4kp? — g1 Vei(4ep® —g1)

with the new radial coordinate p defined by Z—’j =e 9.
As ¢ ~ 0, we find that the solution becomes

f~h~gr and ¢~ e 8P ~e 8" ~¢ Taisi  (94)

which is an asymptotically locally Ad Sy preserving the full
N = 3 supersymmetry. On the other hand, for ¢ ~ ¢ with

L [2@3 — g1 +ei(g — 4/6173)}

%0 = 2 2kp3

95)

the solution approaches the AdS, x H? fixed point with

1 3 o
hNEIn[—&}, p~e Tais | fa L (96)

LAdSz
f [ 1 Kp3
r 2 81 4KP3—g1 ’

We end this section by a comment on the solution of pure
N = 3 gauged supergravity in which we set ¢ = 0 for the
entire solution. This simply gives the following solution

1 e2810=10) _ 3
h = Eln ———— | and

81
1
f=2gir — 3 In(e?810 =70 — i p3) 97)

for a constant rg. This solution can be embedded in massive
type IIA theory via S truncation given in [31]. Alternatively,
this solution can also be embedded in eleven dimensions
using a consistent truncation on a trisasakian manifold given
in [32].
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2.4 Solutions with S O (2)gjag Symmetry

We now consider solutions with § O (2)giag Ssymmetry gener-

ated by T3(1) + T3(2). There are six singlet scalars correspond-
ing to the following non-compact generators

Y| =e36 +e63, Yo = —ie3s+iee3,

Y3 = exs +esp + €14 + eur,

Yy = —iexs +iesp —iejs +iean,

Y5 = ej5 +es51 — exq — eqn,

Yo = —ieis +ies) +iexq —ieqn. (98)

The coset representative is given by

L = e ¥y 2 12} e?3 73 e¢41_’4 e ¥s %6 Ys ) (99)

In this case, the scalar potential turns out to be highly compli-
cated. We refrain from giving its explicit form here, but it is
useful to note that there are two supersymmetric Ad S4 vacua,
see more detail in [33]. The first one is the N = 3 supersym-
metric AdS4 vacuum with all scalars vanishing and the full
SO 3) x SO (3) gauge group unbroken. This is the same as
the AdS,4 critical point mentioned in the previous section.
The second one is another N = 3 Ad Sy critical point with
SO (3)diag C SO(3) x S$O(3) symmetry given by

3 gigl
Vo=-3 S22 (100)
87 — 8]

1 _
¢1 =i¢3=§1n[g2 gl]

g1+ &

with all other scalars vanishing. We now repeat the same
analysis as in the previous case with an additional condition
g2A6 = g1A3 implementing the SO (2)giag subgroup. This
condition results in the same component Q é AB as in the
SO(2) x SO(2) case, so the twist can be performed by the
same procedure. We will not repeat all the details here to
avoid repetition.

As in the previous case, it turns out that all pseudo-scalars
must be truncated out in order to preserve supersymmetry
along ¢! and €2. Therefore, we need to set ¢ = ¢4 = g =
0. Consistency for the scalar equations also requires all elec-
tric charges to vanish resulting in a real phase e/ = +1. We
will accordingly set g4 = 0 and obtain the following BPS
equations

= 9 [gze—2¢3—2¢5(1 + M1

16g>

+e' ) [(g1 + g2)e* + g1 — &2]

+4e (g1 — g2) (€M g2 + 2ucp)e!

(g1 + g2 g2 — 26p))]]. (101)
h o= e % [gze—2¢3—2¢5(1

16g>

+e* ) (1 + e*)[(g1 + g2)¢*? + g1 — &2]

+de (g1 — g2) (€M gy — 2ucp?) e

(g1 + g g2 + 26V, (102)
1
¢i - _ 16g26—¢1 [g2€—2¢3—2¢5(1
+e )1+ )81 + 82" + 82— g1
—4e™2" (g1 + 82)(e*' g2 + 24p?)
(g1 — g2)(e™g2 = 2up)e?]], (103)

1
¢§ = —Esech2¢5 sinh 2¢3(g1 cosh ¢ + g2 sinh ¢1), (104)

1
¢s = ) cosh 2¢3 sinh 2¢s (g1 cosh ¢ +g> sinh ¢1). (105)

We also note that these equations can be written more com-
pactly as

W+ Z
f=W=zl W=W+z|, ¢ =-0 2
991
| AW + Z| 1aIW + 2|
| = —=sech?2¢ps——— 1, L= "
05 = —gsecti2ps 2 L2 g T
(106)

For Ad S» x £ fixed points to exist, we immediately see from
¢4 and ¢% equations that there are two possibilities; ¢3 =

— 1 82—81 :
¢s=0o0r¢ = 5In [gz T ] However, both of these choices

do not lead to any AdS, x X? fixed point, so there are no
supersymmetric Ad S4 black holes with S O (2) giag Symmetry.

At this point, it should be noted that similar BPS equations
have been considered in [21] with more vector multiplets
(n = 8), and a number of AdS, x > 2 fixed points have been
given. A truncation of that results to three vector multiplets
can be performed resulting in the BPS equations given above.
Itis worth pointing out here that there is a sign error in the BPS
equations considered in [21] regarding to the contribution
of the gauge fields to the supersymmetry transformations.
The corresponding equations from the present analysis are
correct and compatible with the second-order field equations.
Therefore, the AdSy x 2?2 fixed points with SO (2)diag X
SO (2) symmetry found in [21] do not exist.

3 AdS4 black holes from N = 4 gauged supergravity

In this section, we repeat the same analysis as in the previ-
ous section for matter-coupled N = 4 gauged supergravity.
Unlike the N = 3 gauged supergravity considered in the
previous section, gaugings of N = 4 supergravity that can
give rise to supersymmetric AdS4 vacua need to be dyonic,
involving both electric and magnetic vector fields. However,
there always exists a symplectic frame in which the result-
ing gaugings are purely electric. As in the previous section,
we will begin with a review of N = 4 gauged supergravity
coupled to n vector multiplets.
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3.1 Matter-coupled N = 4 gauged supergravity

Unlike the N = 3 gauged supergravity, N = 4 gauged super-
gravity has completely been constructed in the embedding
tensor formalism in [34]. We will mainly follow the con-
struction and notation used in [34].

Similar to the N = 3 theory, N = 4 supersymmetry in
four dimensions only allows for the graviton and vector mul-
tiplets. Unlike N = 3 supersymmetry, the graviton multiplet
in N = 4 supersymmetry does contain scalars with the full
field content given by

eyl AT X' D). (107)

The component fields are given by the graviton e,’f , four
gravitini I/fl"t, six vectors A}, four spin-% fields x' and one
complex scalar T parametrizing the SL(2, R)/SO(2) coset.
In this case, indices m,n = 1,...,6 and i, j = 1,2,3,4
respectively describe the vector and chiral spinor represen-
tations of the SO (6)g ~ SU (4)g R-symmetry. The former
is equivalent to a second-rank anti-symmetric tensor repre-
sentation of SU (4) g. Furthermore, in this section, we denote
flat space-time indices by i, D, ... to avoid confusion with
indices labeling the vector multiplets to be introduced later.

As in the N = 3 theory, the supergravity multiplet can
couple to an arbitrary number n of vector multiplets. Each
vector multiplet will be labeled by indices a,b = 1,...,n
and contain the following field content
(Aa , )Lia7 ¢ma) (108)
corresponding to vector fields Aj, gaugini A% and scalars
@™“¢. The 6n scalar fields can be described by SO(6, n)/
SO(6) x SO(n) coset. We also note the well-known fact
that the field contents of the vector multiplet in N = 3 and
N = 4 supersymmetries are the same.

All fermionic fields and supersymmetry parameters that
transform in the fundamental representation of SU (4)g R-
symmetry are subject to the chirality projections
s =¥, vsx'=—x', A=Al (109)
Similarly, the conjugate fields transforming in the anti-
fundamental representation of SU (4) g satisfy

(110)

VsWui = —Vui, Vshi = —Ai.

VsXi = Xi»

The most general gaugings of the matter-coupled N = 4
supergravity can be efficiently described by the embedding
tensor ®. There are two components of the embedding tensor
M and fymnp Witha = (+,—) and M, N = (m,a) =
1,...,n + 6 denoting respectively fundamental representa-
tions of SL(2, R) x SO(6, n) global symmetry. The electric
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vector fields AM+ = (A", Af)) together with their magnetic
dual AM—, collectively denoted by AMe form a doublet of
SL(2,R). The existence of AdSy vacua requires £*M = 0
[25], so we will consider gaugings with only fynp non-
vanishing and set €M to zero from now on.

The embedding tensor implements the minimal coupling
to various fields via the covariant derivative
Dy =V, —gAM [N tnp (111)
where V,, is the space-time covariant derivative including
(possibly) the spin connections. 77y denote SO (6, n) gen-
erators which can be chosen as
(tmn)8 =268, mwp. (112)
with nyny = diag(—1,—-1,—-1,—-1,— 1—,1,1,1,...,1)
being the S O (6, n) invariant tensor. The gauge coupling con-
stant g can also be absorbed in the definition of the embedding
tensor fumnp-

In addition to S“M = 0, the existence of AdS4 vacua
requires the gaugings to be dyonic involving both electric
and magnetic vector fields. In this case, both AM+ and AM—
enter the Lagrangian, and fyynp with o = &£ are non-
vanishing. Consistency requires the presence of two-form
fields when magnetic vector fields are included. In the case of
é"‘M = 0, the two-forms transform as an anti-symmetric ten-
sor under SO (6, n) and will be denoted by B%N = B,[%N].
The two-forms are also needed to define covariant gauge field
strengths given by

1
HM:E — dAM:E _ EUMQfaQNPANa A AP:l:

1
iEnMqu:QNPBNP~

In particular, for non-vanishing f_j/nyp the electric field
strengths HM* acquire a contribution from the two-form
fields.

The scalar coset manifold SL(2, R)/SO(2) in the gravi-
ton multiplet can be described by a coset representative

(113)

Vo = (’) (114)
“7 VImr \ 1

or equivalently by a symmetric matrix

My = Re(Vy V%) = —— [71* Rer (115)
oF T ERTE T Imr \Rer 1)

We also note the relation Im()/, VE) = €gp. The complex
scalar T can in turn be written in terms of the dilaton ¢ and
the axion x as

T=yx+ie. (116)
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For the SO (6, n)/S0O(6) x SO (n) coset from vector mul-
tiplets, we introduce the coset representative V{CI transform-
ing by left and right multiplications under SO (6, n) and
SO (6) x SO(n), respectively. The SO(6) x SO(n) index
will be split as A = (m, a) according to which the coset
representative can be written as
Vip = Vi Vi (117)
Being an element of SO (6, n), the matrix V;a[ satisfies the
relation
nun = —VyVy + Vi V- (118)
The SO (6,n)/S O (6) xS O (n) cosetcan also be parametrized
in terms of a symmetric matrix defined by
Myn =VyVy + Vi Vi (119)
with a manifest SO (6) x SO (n) invariance.

The bosonic Lagrangian of the N = 4 gauged supergrav-
ity for €™ = 0 is given by

1 1
6_1£ =—-R+ —'DMMMNDMMMN

2 16
1
———— 0ttt =V
4(Imt)2
1
_Zlm IMMNH%)+HN+MU

1
—1_pvpo M+q/N+
—gRere € nunH " Hp,

1
) [f—MNPAZI_AerapAf_

1 _
+ZfaMNRfﬂPQSURSA,ﬁMA{)HAgﬁAg

1 ~
— funr B, (2apAg4

1

277
1 _
_Ef-i-MNRf—PQS’?RSB%NB;;Q} e letre

(120)

MSfaSQRAgaA§>

where e is the vielbein determinant.
The scalar potential is given by

2
v=2

16
2

+ <§nMQ _ MMQ) nNRnPS:|

4

_§faMNPfﬁQRSE

1
[faMNPfﬁQRsM“ﬁ [gMMQMNRMPS

OlﬁMMNPQRS] (121)

where MMN is the inverse of My y, and MMNPORS g
defined by
MuNPORS = €mnpqrs Vig Vi Ve VH VR VS (122)
with indices raised by ™V . The covariant derivative of My
is defined by
DMy = dMyy + 24709 £, 0p s My r. (123)
The magnetic vectors and two-form fields do not have
kinetic terms. They are auxiliary fields and enter the
Lagrangian through topological terms. The corresponding
field equations give rise to the duality relation between two-
forms and scalars and the electric-magnetic duality between
AM+ and AM— | respectively. The field equations resulting

from varying the Lagrangian with respect to Aﬁ” +and B %N
are given by

1
nun + DHY™ = =2 frup" My DM, (124)
1
nun = DI = 2 fup" My oDMOT, (125)
HM= = ImtMMNyyp « HPT — Re tHMT (126)

written in differential form language for computational con-
venience. By substituting HY~ from (126) in (124), we
obtain the usual Yang—Mills equations for H¥+ while equa-
tion (125) simply gives the relation between the Hodge dual
of the three-form field strengths and the scalars due to the
usual Bianchi identity of the gauge field strengths defined by

1
FME — gaM* _ EUMQfaQNpAN“/\APi. (127)

The supersymmetry transformations of fermionic fields
are given by

. S T
8¢, =2Dye' — ggAll‘/yMej

i .
7 V) VT P vee (128)
. .4 .
Sx' = —€PVyD, Vgyle — §igA’zfe,»
1 ija/Mo ., v
+§VOJVM Hﬂv Vo€, (129)
(SAZ = ZiVZIWDMVZy“ej — 2igA§ajej
1 .
= Ve Vua My e (130)

with the fermion shift matrices defined by
AD = B VYVIEVE £

AY = Py VVEVL Y.
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Ay = €PVIVMVNVE iy (131)

where V}; is defined in terms of the ‘t Hooft matrices G,
and Vj; as

. 1 .
V= EVX,’,G% (132)
and similarly for its inverse

1 iy
Vit = =3V (G, (133)
We note that G% satisfy the relations

ijoe 1 Kl
Gnij = (Gp)* = EéijleW (134)

We will choose the explicit form of these matrices as follows

010 07 0010
ij —-10 00 ij 000-1
ij o
Gi = OOOI’GZ_ —-100 0 |’
| 0 0-10 | | 0100
0 0 017 0 i00
ij 0 010 ij —i00 0
ij o
G5 = 0 —-100}" Gy = 000—i |’
| —1 0 00 | | 00i O
0 00 000
ij 0 001 ij 00-i0
ij _ ij _
s = —i 000 |’ G = 0i 00 (135)
| 0 =i 00 —i000
The covariant derivative of €’ is given by
. . 1 A . .
D€' =0,€' + Za)u“"yme’ + 0,'€’. (136)

Finally, it should be noted that the scalar potential can be
written in terms of A; and A, tensors as

1 . 1 . 1 .
V= =2 AV Avij + G AT Asij + 5 Aj A

3 9 2 2aj (137

which is usually referred to as supersymmetric Ward’s iden-
tity. We also recall that upper and lower i, j, ... indices are
related by complex conjugation.

We end this section by giving some relations which are
very useful in deriving the BPS equations in subsequent anal-
ysis. With the explicit form of V, given in (114) and equation
(126), it is straightforward to derive the following identities

VeV HIE " = — (V) T VM HI Y (L= ys), (138)
VoV H ™ = — V) TV H " A+ ys), (139)

iV Vi T H Y v = VO T VT H vy (1 = ys)
(140)
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in which we have used the following relations for the
SO (6, n) coset representative [35]

1 .
MMN = *Eéijk[VMleNkl + VW, Vvt =0,

g 1 . o
V'V = —5(5,15{ —881), Vu WM =i (141)
It should be noted that these relations are slightly different
from those given in [34] due to a different convention on V),

in terms of the scalar T namely V, used in this paper satisfies
V. /V_ = t while that used in [34] gives V. /V_ = 7%,

3.2 Solutions with SO(2) x SO2) x SO2) x SOQ2)
symmetry

In this paper, we are interested in N = 4 gauged supergravity
withn = 6 vector multipletsand SO (4) x SO (4) ~ SO(3) x
SO@3) x SO3) x SO(3) gauge group. The corresponding
embedding tensor takes the following form [36]

Frabe = 81€45
f_abe = 82655+

Fomip = 81€hmips
fomip = 8&2€mip (142)
We have used the convention on the SO (6, 6) index M =
(m,a) = (m,m,a,a) withm = 1,2,3, m = 4,5,6,
a = 17,89 and a = 10,11, 12. The two SO(4) factors
are electrically and magnetically embedded in SO (6, 6) and
will be denoted by SO(4)+ x SO(4)_. In terms of the
SO(3) factors corresponding to the embedding tensor in
(142), we will write the gauge group as SO(3)4+ x SO(3)_ x
SO3)+ x SO(3)_ with the first two factors embedded in
the SU4)gr ~ SO (6)r.

We now consider solutions preserving SO (2) x SO (2) x
SO ((2) x SO(2) symmetry. To proceed further, we first give
an explicit parametrization of the SO (6, 6)/S0 (6) x SO(6)
coset. The scalar sectorof SO(2) x SO2) x SO (2) x SO (2)
singlets have already been studied recently in [37]. We will
mostly take various results from [37] in which more details
can be found. By using SO (6, 6) generators in the fundamen-
tal representation of the form given in (112), we can identify
the SO (6, 6) non-compact generators as
Yma - tm,a+6- (143)
There are four SO(2) x SO(2) x SO(2) x SO(2) singlet
scalars from the SO (6, 6)/S0O(6) x SO(6) coset. With the
SO2) x SO2) x SO(2) x SO(2) generators chosen to
be X3, X_¢, X49 and X_12, the non-compact generators
corresponding to these singlets are given by Y33, Y36, Y3 and
Yee in terms of which the coset representative can be written
as

VY = 133002136 ,63Y63 ,h4Yo6 (144)
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Together with the dilaton and axion, there are six scalars in
the SO2) x SO2) x SO2) x SO(2) sector. The scalar
potential for these singlet scalars is given by

I _
Vi=—3e (el + e+ g3x)

—2g182 cosh ¢ cosh ¢, cosh ¢3 cosh ¢pa (145)

which admits a unique Ad Sy critical point at

¢=ln[§] and ¢ =¢r=¢3s=s=x=0 (146

with the cosmological constant and Ad Sy radius given by

3 1
Vo=—-3g1g2 and L= _|—— = .
Vo o J/81&2

This AdS4 vacuum preserves N = 4 supersymmetry and the
full SO(4) x SO(4) symmetry. We can also choose g» =
g1 = g, by shifting the dilaton, to make the dilaton vanish at
this critical point. Holographic RG flows and Janus solutions
in this sector have been extensively studied in [37]. In the
present work, we look for supersymmetric Ad S4 black holes
with the horizons of AdS, x X2 geometry. The analysis is
parallel to the N = 3 case considered in the previous section
with some modifications to incorporate the magnetic gauge
fields. Similar analyses can be found in [18,19,22,38] in
the contexts of N = 2 and N = 4 gauged supergravities,
respectively. We will closely follow the procedure in [22].

We first consider the ansatz for SO (2) x SO (2) x SO (2) x
SO(2) gauge fields of the form

(147)

AMT = AMgr — pMF'0)dp, M =3,6,9,12
AM= = AMdt — ey F'(0)dop.

(148)
(149)
We also note that the gauge fields participating in the SO (4) x
SO (4) gauging are given by A3T, A°~, A%F and A'?>~ while
the above ansatz includes all of their electric-magnetic duals.
The ansatz for relevant two-form fields is given by

B2 = b3(r)F(0)dO Ad¢, B® =bs(r)F(0)dO Adg,

B" = bo(r)F(0)do Ad¢, B0V =b(r)F(0)do Adg.

(150)

The metric ansatz is still given by (28). In addition, to avoid
some confusion and make various expressions less cumber-
some, we will denote the magnetic charges with a subscript,
" = (p3, p6, po, P12).

With the embedding tensor (142), it is straightforward to
compute the covariant gauge field strengths

H* = AVdr Adt 4 kp3F(0)dO A dg,
H~ = AVdr Adt + (ce3 — g1b3)F(0)dO A dg,

HO = A%dr A dt + (cps + 31bs) F(0)d6 A dop,

HO~ = A%dr A dt + kes F(0)d6 A dg,

HO* = A% dr Adt + kpoF(0)dO A dg,

HO™ = A)dr Adt + (ceg — gabo) F(0)dO A d¢,
H'ZF = Al dr Adt + (kpi2 + §2012) F(0)dO A dg,

H'>~ = A dr Adt + ke F(0)d6 A dg. (151)

Inthis SO(2) x SO(2) x SO(2) x SO (2) sector, it turns out
that all components of YM current are zero

femp¥MyoDMOP =0, (152)
Equations (124) and (125) then imply that DHM* = 0.
Therefore, we find that all the fields b; () and electric charges
e; are constant.

As pointed out in [37], supersymmetric solutions with
SOR2)xS0O(2) xSO(2) x SO(2) symmetry can arise from
two possibilities, x = ¢ = @3 =0or x = ¢1 = ¢4 = 0.
For definiteness, we will choose the first possibility. Choos-

ing the second one results in relabeling the scalars. With
Ret = x =0, Eq. (126) gives

AY = e/ =972 [(key — g1b3) cosh 26
+(keg — gabg) sinh 2¢1] ,

AY = kel =97 (g6 cosh 2¢4 + €17 sinh 2¢y),

A = —e/ 797 [(keg — gabo) cosh 29y
+(ke3 — g1b3) sinh 2¢1],

A2 = e/ 7?72 (15 cosh 24 + eg sinh 2¢,),
AV = —ke/ T2 (py cosh 2¢h; + po sinh2¢)),
AY = =97 [(kpe + Z1b6) cosh 264

+(kp12 + &2b12) sinh 2¢4] ,
AY = ke 972 (pg cosh 2 + ps sinh 2¢),

Al = /972 [(kp1y + §ab12) cosh 24

+(kps + §1b6) sinh 2¢4] . (153)

All these relations fix the ansatz for the Hé‘;’ ¢ components of
the field strengths in terms of scalars and various charges.
We now consider topological twists along 2. The scalar

coset representative (144) gives the composite connection of
the form

1

T .
Qui’ = *81A2+(i02 ® o’ + 5

: (154)

82A% (01 ®ion)i/

with 0,, a = 1, 2, 3, are usual Pauli matrices. To perform a
twist, we consider relevant terms in the variation 51//(;3 of the

form
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1, F'®) : , . o
et ——= [J’d;étslj —gip3ion ®o01);' — gres(oy ®lf72)jl]€" =0.

2 F(©)
(155)

There are a few possibilities to satisfy this condition. These
are given by the following two main categories:

e N = 4 twists: By setting either p3 = 0 or ¢¢ = 0, all
four €' can be non-vanishing. These two choices lead to
the following twist conditions and projectors

e6=0; gipy=1, ype' = ®@o1) e/, (156)

p3=0; ges=1, yye =01 @) /. (157)
We will refer to these two cases as N = 4 twists which
have a similar structure to the N = 3 theory.

e N = 2 twists: By using the relation

(03 ®03)(01 ®ion) = (01 ®ioz)(03®03) =0y RO,
(158)

we can rewrite the condition (155) as

V¢”é€i = [81P3(U3 ® U3)jk + gze68];] (01 ® iaz)kiej.
(159)

This can be solved by imposing the following conditions

g1p3 + gree =1, )/éqgéi =01 ® iaz)ijej,

(03®03) je! = €. (160)
The last projector simply sets €2 = € = 0 reducing half
of the original supersymmetry. Accordingly, we will call
this case N = 2 twists.

We also note that the situation is very similar to Ad S5 black
strings in five-dimensional N = 4 gauged supergravity con-
sidered in [39]. In addition, the two possibilities of N = 4
twists correspond to the H-twist and C-twist of the dual
N = 4 SCFT in three dimensions considered in [40].

By a similar analysis performed in the N = 3 theory, we
find a general structure of the BPS equations given by

W =W+ 2Z| and f' =Rele"2W — 2)] (161)
together with an algebraic constraint
QA+ A =/ Im[e7 AW — 2)]. (162)

In these equations, WV is the superpotential obtained from the
eigenvalue of the A tensor along the Killing spinors, and Z

@ Springer

is the central charge as in the previous section. We have also
imposed the following projector

; P ; W+ 2
Vi€ = e’AS,-jef with ¢ =

=~ 163
W+ Z| (169

Using this projector in the supersymmetry transformations
dx' and 81!, leads to the BPS equations for scalars in the
gravity and vector multiplets, respectively.

3.2.1 Solutions with N = 4 twists

We begin with the case of N = 4 twist by A>*. In addition
to setting e = 0, unbroken N = 4 supersymmetry also
requires

bg = b1y =e1n = ps = p1n=0. (164)

Moreover, consistency of the scalar equations imposes fur-
ther conditions of the form

e3 =e9 = b3 =bg =0. (165)

All these lead to the following set of consistent BPS equations
ff=mw-2

1 ¢ "
=5 [g2 cosh ¢y + e g2 cosh ¢4

ke (pycosh ey + posinh )], (166)
W= W+ Z|
1 _¢ P
= Ee 2 [gz cosh ¢ + ¥ g> cosh ¢y
+re? 2N (p3 cosh ¢; + pg sinh ¢1)] , (167)
oW+ 2
¢ = _QL
91
— % [¢?k (p3 sinh¢1 + po cosh ;)
+e¥gy sinh g |, (168)
oW+ zZ
by = Yl —gre% sinh ¢y, (169)
04
oW+ 2
¢ = _4L
a¢
= e_% [gl cosh ¢ — e?2h (g2e2h cosh ¢4
icp3 cosh ¢ + kpo sinh ¢1)] . (170)

However, there do not exist any AdS, x 2 fixed points in
these equations.

We then look at the case of N = 4 twist by A%~ in which
consistency similarly requires the following conditions
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b3 = by = e3 = e9 = pg = bg = b1z = ps = p12 = 0.

(171)
The BPS equations are given by
1
f = Ee_% [g1 cosh ¢y + ¢? g> cosh ¢4
—e~2 (eg cosh ¢y + €1 sinh ¢4)] , (172)
1 _¢ P
h = 3¢ 2 [g1 coshpy + € g2 cosh ¢y
trce~ (eg cosh ¢y + €12 sinh ¢4)] : (173)
¢ = —gie™ 7 sinh ¢y, (174)
¢4 = —e [ 4 keg) sinh gy + xerz cosh g,
(175)
¢ = e_Zh_g [eZhgl cosh ¢y + (keg — g2@2h+¢) cosh ¢4
+xeqp sinh ¢4] (176)

which do not admit any AdS; x >2 fixed points as in the
case of A3 twist.

3.2.2 Solutions with N = 2 twists

We now move to a more interesting and more complicated
case of N = 2 twists by both A3+ and A°~. The resulting
BPS conditions are much more involved than those in the
previous case. However, we are able to find a number of
solutions for special values of electric and magnetic charges.

e Solutions from pure N = 4 gauged supergravity

We will begin with a simple case of pure N = 4 gauged
supergravity with ¢ = ¢4 = 0 and A% = A2~ = 0.

In this case, the constraint (162) requires e3 = pg = 0,
and we find

I _¢ .
W= e lg1+ g’ +igaxl, (177)
1 _¢
Z = Ee—f—z’"’x[eé + p3e? +ip3xl. (178)
We then find the following BPS equations
IW+Z| e egre® + p3)’x
"= —4e% = 17
X ¢ ax W+ Z| - A7)
g g+ 2]
¢
e ¢ 2012 2h 2, 24 2
= m [(€6+Kgl€ )" — (kgae™ + p3)(e”? — x ):I,
(180)
=W+ 2|, (181)
/ e~ =9 4h 2 o\2
= m[e (g1 + g2¢%)" — (eg + p3e®)

+(e' gt = D)’ (182)
with

1
W+ 2| = Ee*Zh*%

><\/[e2’1 (81 +e?g2) + keg +kp3e? 1 + (¥ ga + kp3)? 2.
(183)

From these equations, we find an AdS, x H? fixed point
given by

— (184)

_% ¢
gie 2 + ge?

for constants ¢ = ¢pand x = xo provided that gres = g1 p3.
We note that for x = 0, the above BPS equations and the
AdS, x H? fixed point are the same as those considered in
[41] with an appropriate change of symplectic frame to purely
electric S O (4) gauge group. We have slightly generalized the
equations in [41] by including a non-vanishing axion. We
now give the flow solutions interpolating between the Ad Sy
vacuum and the Ad S, x H> geometry. Before giving explicit
solutions, we first simplify the expressions by setting g0 = g1
according to which the twist condition gives p3 = eg = 2o

For x = 0 and « = —1, we find a much simpler set of
BPS equations

DY)

¢ = —e "2 — 1) g1 — pa), (185)
1 ¢

h = Ee—%—m +e?) (g1 — p3), (186)
1 5 0

fl=se =21+ e?) (e g1 + p3). (187)

These equations take a very similar form to those of N = 5, 6
gauged supergravities and N = 3 gauged supergravity given
in the previous section. We then expect that the resulting
solutions are related to each other by truncations of N =
6 gauged supergravity to gauged supergravities with lower
amounts of supersymmetry. The solution is given by

1 h
g1(r —rg) = tanh™! +eoshe

2
2p3(1 h
o [P ann! w, (188)
g1 +4p3 g1 +4p3

¢

h=3—In(l - e?), (189)
f=n[ps(i +6) ~ (g1 +2p)e¢ ] ~ (1 — )~ 2.
(190)
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This solution flows to the AdS> x H? fixed point (184) for
¢o given by

4
¢o =In M-I-&-l-l . (191)
4]?3 2p3
For x # 0, we have the BPS equations
1 ¢
= se g A2 (92)
1
W= s g e b2 a9
—2h—% 2h, | — o2 2
¢,:e (e"g1 —p3)(1 —e +X)’ (194)
VI +e?)? + x2
opa 30
A = _2e 27 (g — p3)x (195)
V(I +e?)? + 52
with the solution given by
1
¢ =5 - x2+ Cox), (196)
f =g - p3) —h, (197)
1 1+ Cox — x2
h = g ln |:—X4
1
+Zln [Z—i—CoX +2,/1+C0X—X2] (198)

for a constant C. However, we are not able to find an analytic
solution for x (r). The solution flows to the Ad S» x H? fixed
point if

_ g1CIC? —2p% + g1CoC]

- (199)
2g7C? + p3)

X0

with € = /g1 (4 + C3) +4p3.

e Solutions from matter-coupled N = 4 gauged supergrav-
ity

We now consider solutions from matter-coupled N = 4
gauged supergravity with ¢1, ¢4 # 0. Consistency for set-
ting ¢ = ¢3 = O in 8)»2 conditions also requires setting
A%t = 0. The residual symmetry of the solutions in this
case is then enhanced to SO (2) x SO(2) x SO(3) x SO(2).
With all these, we find two sets of BPS equations consistent
with the constraint (162). These are given by

it x=¢=0, e3=pe=p12=0, (200)
ii: x=¢s4=0, e3=pg=-e2=0. (201)
[ Case i:

In this case, we find the following BPS equations

1
f = Ze—2h—%—¢4 |:e¢[ezhg2(1 + e2¢4) — 2Kp3e¢4]

@ Springer

42812 4 ke (1 — €2%*) — kes(1 + e2¢4)] , (202)
1
h o= Ze_Zh_%_@‘ |:e¢[e2hg2(l + 2y + 2k p3e]
428162 _ke1n(1 — 2P*) + kces(1 + ez¢4)] , (203)
1
¢ = _Zefzhfgfm [ezh+¢g2 —2giedton | 2htot26n g,
+r(err — eg) — K(ern + e6)e®® + 2p3e? 4], (204)
1
By = —5e T [P gy — 1)
+x(e12 — eg) + k(er2 + eg)e?®] . (205)

There is a family of AdS, x 2 fixed points given by
_ o [A4EMlend + ) +eo@®™ — DI
o= 203 — 1) o

Y| g (1 + e2%4)
h=2""—_-In|-2——~
2 2 2k p3

1 2g1p3 — ecg2 + \/‘3%28% +4g1p3(g1p3 — g206)
¢4 = —1In .
g2(e12 + e¢)

(206)

It can be verified that for appropriate values of the parameters,
this critical point is valid forbothk = 1 andx = —1 resulting
in a class of AdS, x S and AdS, x H? geometries. Since
p12 = O in this case, the solutions carry only electric charges
of A2~

Examples of solutions interpolating between AdSs and
AdS, x H? vacua with

3

pP3 =z,

7 (207)

g=g=1, K =—1
and e = 1, 2, 3 are shown in Fig. 1. We also note that the
value of ¢ is fixed by the twist condition g1 (p3 + e¢) = 1.

A number of interpolating solutions between AdS; and
AdS, x S§? critical points are shown in Fig. 2 with the fol-

lowing numerical values

=ga=1 p3=-2, k=1 (208)
and e = 4, 6, 8.
O Case ii:

In this case, the solutions carry magnetic charges of A2~
and the resulting BPS equations are given by

1 ¢
f = e =3 [ezh (g1 + g1e2¢2 + 2gze¢+¢2) — 2kcege™

4
+xe? (p12 — p3) — k(pi2 + p3)e (209)

1 ¢
W = —e 2% [ezh(gl + g162¢2 +2g2e?T92) 4 2icege??

4
—ke?(p1o — p3) +k(p12 + p3)e (210)

¢ = %e*”‘*%*m [eZhgl (14 €%P2) — 2™ 9592 4 Dyceqef?

¢+¢2] ,

¢+¢2] ,

@211)

+x(p12 — p3)e? —k(pio + P3)€2¢4+¢] ,
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(@) ¢4(r) solution (b) ¢(r) solution
h(r) f(r)
35
f 5
30
25; 4
3
=
2
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(¢ h(r) solution

(@ f’(r) solution

Fig. 1 Supersymmetric AdS4 black holes with AdS, x H 2 horizon for g» = g1 = 1, p3 = %, k = —1landejp =1 (red), 2 (green), 3 (blue)

I _o_
¢h = =3¢ % [q@” = 1)

+1ce " pry — p3+ (P12 + P3)€2¢2]] . (212)

From these equations, we find a family of AdS, x £ fixed
points given by

6= 1n|: 2ege?2(e22 — 1) :|
(1 +e*)[pi2 — p3 + (p12 + p3)e2®2] ]’

¢ 1 g1(1 4 €%%2)
h=——=-In|->———"1,
2 2 2K eq

1 [2e682 — 13 + 46283 + 8307, — desmzin
g1(p12 + p3) '

213)

Similar to the previous case, both Ad S> x S 2and Ad S, x H?
geometries are possible depending on the values of various
parameters. Examples of flow solutions from the Ad S4 vac-
uum to AdS; x H? fixed points with

g=g1=1 p3= k=—1 (214)

1
41

and p1p» = 1,2, 3 are given in Fig. 3. For flow solutions to
Ad S x §? fixed points, we give some representative solutions
for p1p = 3,6,9 and

k=1 (215)

=ga=1 p3=2,

in Fig. 4.
3.3 Solutions with SO (2)diag X SO (2)diag Symmetry

In this section, we repeat the same analysis for a smaller
residual symmetry SO (2)diag X SO (2)diag- As we will see,
a new feature is the appearance of a number of non-trivial
supersymmetric Ad S4 vacua. All of these vacua are not new
but have recently been found in [42] to which we refer for
more details. Since the analysis of SO (2)diag X SO (2)diag
singlet scalars has not previously appeared, we will give more
detail than the SO(2) x SO(2) x SO(2) x SO(2) sector
considered in the previous section.

We begin with the scalars from SO (6, 6) /SO (6) x SO (6)
coset which contains six singlets corresponding to the follow-
ing non-compact generators

Yii, Yii+Yan, Yi2—Y2a, Yes,

@ Springer



1010 Page 18 of 27

Eur. Phys. J. C (2021) 81:1010

a(r)

#(r)
2.0

(@) ¢4(r) solution
G

1.5

1.0

K 05
: : : r
-20 -10

10 20

(b) ¢(r) solution
()
5

-20 -10 10

(¢) h(r) solution

-10 10 20

(@) f'(r) solution

Fig. 2 Supersymmetric AdS4 black holes with AdS> x $2 horizon for g =g1=1,p3=—-2,k=1and e =4 (red), 6 (green), 8 (blue)

Yaq + Y55, Ya5 — Ys4. (216)
The coset representative can be then written as
V= e¢1Y11e¢2(Y11+Y22)e¢3(Y12—Y21)e¢4Y66
eP5(Yaa+Ys55) 6 (Yas—Y54) (217)

With this coset representative, scalar kinetic terms are given
by

_ 1 2  _ 2 L,
e ‘ckin=—1<¢/ —e 2y )= 519
(1 + cosh4¢3)ph” + 2657

1
—E[qﬁf =+ (1 + cosh 4¢6)¢g2 + 2¢g2]. (218)

The tensor Aaj is proportional to the identity matrix of which
the four-fold degenerate eigenvalue gives the superpotential
only for y = 0. Since the complete expressions are much
more complicated and will not play any important role in sub-
sequent analysis, we will only give the potential and super-
potential for the case of x = 0. These are given respectively
by

V= [gf cosh? ¢o[cosh 2(¢p; — ¢p2) + cosh 2(¢

0| =

@ Springer

+¢2) —2cosh2¢; — 4]

x cosh? ¢ (cosh ¢ — sin )

+g% cosh? ¢s(cosh ¢ + sinh ¢)

X [cosh 2(¢ps — ¢5) + cosh 2(¢p4

+¢5) — 2 cosh 2¢4 — 4]

+&{lcosh 2(g1 — ) + cosh 2(¢y

+¢2) + 2cosh2¢; — 4]

x (cosh ¢ — sinh ¢) sinh? ¢,

+16g21 cosh ¢4 cosh? s sinh ¢,

x sinh? ¢r —2g181(cosh ¢

— sinh ¢) sinh 2¢; sinh? ¢

+23[cosh 2(¢4 — ¢s) + cosh 2(¢s

+¢5) + 2 cosh 2¢p4 — 4] sinh? ¢5

x (cosh ¢ + sinh ¢)

+16g1 8> cosh ¢1 cosh? ¢ sinh ¢4 sinh? s
—16g1 g2 cosh ¢ cosh? ¢, cosh ¢4 cosh? s
41631 2> sinh ¢ sinh? ¢ sinh ¢4 sinh? s
—2g>82¢? sinh 2¢ sinh? 2¢5]

(219)
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(a) ¢2(r) solution
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f'(r)
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(¢) h(r) solution
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Fig. 3 Supersymmetric AdS4 black holes with AdS, x H 2 horizon for n=g=1p3= %, k = —1land pjp =1 (red), 2 (green), 3 (blue)

and

IS

1
W= Ze_ [g1 cosh ¢ (1 + cosh 2¢, cosh 2¢3)

+g1 sinh ¢1 (1 — cosh 2¢, cosh 2¢3)

X g2e¢ cosh ¢4 (1 4 cosh 2¢5 cosh 2¢y)

+g2¢? sinh ¢4 (1 — cosh 2¢s cosh 2¢) | . (220)

Itis straightforward to verify that the superpotential admits
the following four supersymmetric Ad S vacua

I ¢ =0, a=1,2,...,6, ¢:]n|:&:|’

82
Vo = —3g142, (221)
I ¢y =0, a=1,2,36,
| ~
b1 = o5 = —ln[*i’”““],
2 &2
o Li| 8@ 8D
S 2 8383 '
28>
3 -
Vo = — 818282 (222)

V& — &

I: ¢y =0, o=3,4,5,6,

1Vv:

1 [81+g
¢1=i¢2=—ln[g g ]

2 Lar—e
Lo 8@ e
=3 =" |
8181
erend
Vo = — 818281 (223)

V& — &

1
@3 = ¢ =0, ¢>1=:l:¢2=§1n|:

§1+81:|
Gi—g]’

| s
¢4=i¢5=§1n|:82+82]’

22— &
| &8 3-8
¢=In| 55|
g2g2 gl _gl
381828182

VO = — .
J@B @)

(224)

All of these vacua have already been found in [42], but we
repeat them here for later convenience. We also note the
unbroken gauge symmetries for these solutions which are
given respectively by SO(4) x SO4), SO4) x SO(3),
SO@3) x SO4) and SO(3) x SO(3).
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Fig. 4 Supersymmetric Ad Sy black holes with AdS; x S? horizon for g» = g1 = 1, p3 = 2,k = 1 and p;» = 3 (red), 6 (green), 9 (blue)

To find supersymmetric AdSs black hole solutions, we
now turn to the analysis of Yang—Mills equations. To imple-
ment the SO (2)diag X SO (2)diag Symmetry, we impose the
following conditions on the gauge fields
gAY = A and A% = —pA"?" (225)
which lead to the same composite connection given in (154).
Therefore, the twist conditions and relevant projectors are
the same.

Unlike the SO(2) x SO(2) x SO(2) x SO(2) case, the
YM currents are non-vanishing in this case. From equation
(124), we find

1
DH?™ = 581 (cosh 2¢ sinh 4¢3y — 2 sinh 2¢n ) * dr,
(226)

1
DH’™ = Eg‘ (cosh 2¢ sinh 4¢3y — 2 sinh 2¢0p}) * dr
(227)

which, from the ansatz of the gauge fields, imply that b3 and
bg are constant and

¢ =0 or ¢3=0. (228)
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Similarly, Eq. (125) gives

1
DHOt = — 5 §2(cosh 2¢s sinh Al — 2sinh 2¢s5¢pf) * dr,

(229)
DHZF = — L3 (cosh 25 sinh 4!, — 2 sinh 2656,
= 2gz(COS ¢s5 sinh 4¢eps sinh 2¢5¢¢) * dr
(230)
which lead to constant bg and b1, together with
¢s =0 or ¢g=0. (231)

We also note that the radial component of the composite
connection is given by

0,/ = — cosh ¢3 sinh ¢3¢} (i0r ® 01);’

— cosh ¢g sinh gt (01 ® i),/ (232)

which identically vanishes whenever ¢ = 0 or ¢3 = 0 and
¢5 = 0 or ¢ = 0. In order to find solutions interpolating
between supersymmetric AdSs vacua identified above, we
will choose a definite choice

¢3 = ¢p6 = 0. (233)
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We then consider Eq. (126). Equations for H>~ and H°~
give

AY = Bt (g sinh 2g) — g1 cosh21),  (234)
81

19 _ KP3 o+ f-2h5 _

Al = —e (g1 sinh 2¢p; — g1 cosh2¢1) (235)
81

together with

A = 810 gre/ 77 (ke3 — g1b3)

! g1 ! g1 cosh2¢| — g1 sinh 2¢

g1e/ 7072 (keg — gabo) (236)

- g1 cosh2¢; — g1 sinh 2¢;

For g1 # g1 which is needed for the existence of non-trivial
Ad S4 vacua, the last equation implies

e3=¢e9=by=bg=0 (237)
which in turn gives

AV =AY =o. (238)
Similarly, equations for %~ and H !>~ give
pn=ps=bs=bp=0 and A =Al” =0  (239)
together with

AY = T, 1=20=0(3) cosh 2¢ — go sinh 2¢4),  (240)

&
Al = %ef ~2h=%(gy cosh2¢4 — Zrsinh2¢4).  (241)

With x = ¢3 = ¢p¢ = 0, we find that both VW and Z are
real and given by

1
W = Ee_%(gl cosh ¢ cosh? ¢o — g1 sinh ¢ sinh? b2)

1 ¢ - . .
+§e7 (g2 cosh ¢4 cosh? ¢5 — g2 sinh ¢4 sinh? bs),

(242)
K oyt o :
————e "7 [¢? p3§2(§) cosh ¢y — gy sinh ;)
22182
+e681(g2 sinh ¢4 — g2 cosh y)] .

Z =

(243)

It can be readily verified that critical points I, II, III, and
IV are critical points of W as expected for supersymmetric
vacua.

As in the previous case, there are two possible topological
twists, N = 4 and N = 2 twists. The N = 4 twists do not
give rise to any AdS» x X2 fixed points, so we will only give
the results on N = 2 twists. Since both V) and Z are real, we
find the phase ¢/ = 41, and the BPS equations are given by

ff=w-2z

1
= ze*% [gl cosh ¢ cosh? ¢r — g1 sinh ¢ sinh? 10y

+gze¢’ cosh ¢y cosh? ¢s — §2e¢ sinh ¢4 sinh? ¢>5]

e 5-2h
—i———— [€681(82 cosh ¢4 — g sinh ¢4)
8182

— ¢?g2p3(g1 cosh ¢y — g1 sinh )], (244)

B =W+ Z|

1 _¢ .. .
= Ee_f [gl cosh ¢ cosh? ¢o — g1 sinh ¢ sinh? o)

+g2e? cosh ¢y cosh® ¢s — gr¢? sinh ¢y sinh? ¢5]

o= 5-2h
4k ———— [€681(Z2 cosh ¢4 — g3 sinh ¢g)
8182
—e®§p3(g1 cosh g — g1 sinh )], (245)
d Z
o g2V E 2]
o9
= e*% [gl cosh ¢ cosh? ¢o — g1 sinh ¢ sinh? 10y
+¢? (%, sinh ¢y sinh? ¢5 — go cosh ¢4 cosh? ¢5)]
K _op_? ~ ~ .
+——e 2 [¢?22p3(Z1 cosh ¢y — gy sinh ¢py)
8182
+e681(82 cosh g — gasinh )], (246)
d Z
s V2]
991
= e_% (g1 cosh ¢ sinh? b2 — g1 cosh? ¢7 sinh ¢1)
+5232+% (g sinh ¢y — g1 cosh ). (247)
81
, W + Z|
9= -
92
= 67% cosh ¢ sinh ¢ (g1 sinh ¢; — g1 cosh ¢y), (248)
d Z
sie V2]
Zon
= e% (g2 cosh ¢4 sinh? b5 — g2 cosh? ¢s5 sinh ¢4)
Ke6 _op_¢ . .
——e 2 (g2 sinh ¢4 — go cosh ¢), (249)
82
, W + Z|
o= ———"—
95
= e% cosh ¢5 sinh ¢s (g2 sinh ¢4 — g cosh ¢y). (250)

From ¢ and ¢5 equations, we immediately see that there are
four possibilities for AdS, x 2 fixed points to exist:

i: ¢p=¢5=0,
ii: ¢op=0 and ¢4 =

| [§2 +82:|
n ~ b
82 — 82

iii: ¢s=0 and ¢ = ln|:é:1+g1:|
81 — &1

N = ] =
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v : ¢1 — lln I:mil and ¢4 = lln [M}
' 2 lai—-a 2 -l Y = g1p3(g} + g7) cosh4¢; — 4g1 1 sinh 2¢;
251 (e6g2 + g1 p3 cosh 2¢1)

These coincide with the values of scalars at supersymmetric +81p3 — & (4e6g2 + 8113) + 4eagad] cosh 2.
Ad Sy vacual, I1, IIl and I'V. However, the last possibility does (255)
not lead to any AdS, x 2 fixed points. We then consider

only the remaining three cases: e iii: For this final possibility, we have ¢5 = 0 and

e i:In this case, we set ¢» = ¢ps = 0 and find an Ad S, x X2
fixed point given by

¢—11
¢=5In

kp3(81 — &1 COth¢1)]

[esglg’l (g2 coth ¢y — g2) ]
8181 ’

1 1
h=—-¢+ — ln|: —
2¢ 2 P38282(g1 — g1 coth ¢y)

o=t [ 81(82 cosh 294 — g sinh 2¢y) \/ 83(8} — g}) + g3 (g2 cosh 24 — &> sinh 2¢4)2i|

&2(81 — g1) &2(g1 —g1)
2,42~ 2 32> 4~3 2 X
gy Lin| 828182+ 6818181823 + 818303 +gvX (252)
2 (82 — 82)(8183P3 — €58,87)
pr=¢r=oIn [gl “ﬂ pelim [Ke6€_¢[g2(1 + e + o (1 — e2¢4)1]
2 lai—&1l’ 2 g282(e294 — 1) ’

3 ~2 ~2 ~ . 2 g19¢4(00th ¢4 -1
¢ =1In| /esg2(e6gs +28185p3 — 28185 p3 cosh2¢4 + 2818282 p3 sinh 2¢4) + €685 | +In — |
28282p3+/ 81 — &1

1 82(e6g2 +2g1p3) + \/eégg‘ +de6g18283 3 + 4837833
¢4 = — ln = . (256)
2 e6g2(82 — &2)

for
In each case, we have not explicitly given the expressions for

X =etgSat +4elq19381 83 s L ag4s, due to their complexity. These can be obtained from

2.2 2:2:200 252 2.0 o520 2 f equation by using the values of the other fields at the fixed
+2e58 é 82 %’ é igi [23828 1 . ~4g 14(82 287)1p3 points. We have verified that all the above three cases indeed
+4e681828182P3 + 818213 (253)  lead to valid AdS; x X2 fixed points in each case. This will

also be clearly seen later in numerical analyses.
e ii: In this case, we have ¢» = 0 and

1 g 1 ¢(g — th
¢4 =¢5=-1In [%2 +g2:| ,h=-In [Kp3e (81 ~g1 0 ¢]):| ,
2 (- 2 8181
o1 V&3 — 83 [281p3(g1 cosh 2y — g1 sinh 2¢1) + /281 p3Y |
= n ~ ~ . 9
4¢>22p3(g1 cosh ¢y — g sinh ¢1)
1 [ 2068281 + 12103 + 4238} + decs1 02803 + 813
¢1 = =—1In —~ (254)
2 g1p3(g1 — &1)
with
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Fig. 5 Supersymmetric AdSs black holes with AdS> x H? horizon (i) for g

—3 (red), —3.00000025 (blue), —3.005 (green)

For critical point i, we obtain only AdS, x H? solutions
with k = —1. Examples of solutions interpolating between
the supersymmetric Ad Sy critical point I and these Ad Sy x
H? geometries are shown in Fig. 5for g = g1 = 1, g =
2g1, &2 = 3g2 and p3 = —3, —3.00000025, —3.005. The
reason for choosing values of p3 very close to each other is
for the convenience in the presentation. The numerical plots
for solutions in which the values of p3 are widely separated
are very far from each other.

2g1, &2 3g> and p3

For critical point ii, we have found only Ad S, x H? solu-
tions as in critical point i. An example of the solutions inter-
polating between supersymmetric Ad Sy critical points I and
Il and an AdS> x H? geometry with g» = g1 = 1, §1 = 2g1,
g» = 3g2 and p3 —3 is shown in Fig. 6. We have set
¢> = 0 along the entire solution. We also note that the solu-
tion indeed exhibits an intermediate AdSs critical point II
with the value ¢ = —0.05889 given by the chosen values of
various parameters in this solution.
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Fig. 6 A supersymmetric AdS4 black hole with AdS, x H 2 horizon (i) forgo = g1 = 1,81 = 2g1, 8 = 3gr and p3 = -3

Unlike the previous two cases, in critical point iii, we
only find AdS, x §? solutions. An example of flow solu-
tions is shown in Fig. 7 with g = g1 = 1, g1 = 2g1,
g2» = 3g> and p3 = 3. Along the entire flow, we have set
¢5 = 0. As in the flow solution to AdS, x H 2 critical point
ii, the solution exhibits an intermediate Ad Sy critical point
IIT with ¢ = 0.143841, so the solution interpolates between
AdS, critical points I and II and AdS, x S geometry in
the IR. The solutions in this case and the flow to critical
point ii are similar to solutions describing RG flows across
dimensions in half-maximal gauged supergravities in five,

@ Springer

six and seven dimensions [39,43-45]. Moreover, there also
exist solutions that flow directly from AdS4 critical point I
to these AdSy x S% and AdS, x H? fixed points. We will
not give these solutions here since they are similar to the
solutions in SO (2) x SO(2) x SO (2) x SO(2) case without
non-trivial AdS4 vacua.

We end this section by noting that there do not exist any
AdS> x X2 fixed points for case iv discussed above. There-
fore, there are no flow solutions from the supersymmetric
AdS4 vacuum IV to Ad S, x ©2 geometries in the IR. This
is in line with the N = 3 gauged supergravity studied in the
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Fig. 7 A supersymmetric AdS4 black hole with Ad S, x $2 horizon (iii) for gp = g1 =1, g1 = 2g1, 82 = 3gr and p3 =3

previous section in which no AdS> x >2 fixed points exist
for RG flows involving the non-trivial N = 3 Ad Sy critical
point with SO (3) symmetry. On the other hand, as we have
seen above, AdS; x 2 critical points ii and iii do exist and
are connected to non-trivial Ad Sy critical points II and III.
However, the latter do not have an analogue in the case of
N = 3 gauged supergravity.

4 Conclusions and discussions

We have studied a number of supersymmetric black hole
solutions in asymptotically Ad S4 space from matter-coupled
N =3 and N = 4 gauged supergravities. In N = 3 theory,
we have found an Ad S, x H? solution with SO (2) x SO (2)
symmetry. We have also given a complete solution interpolat-
ing between SO (3) x SO(3) symmetric AdS4 vacuum and
this AdS, x H? geometry with a non-vanishing scalar. The
resulting solution has a very similar structure to those given
in N = 5, 6 gauged supergravities. The solution with vanish-
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ing scalars is a solution of pure N = 3 gauged supergravity
and can be embedded in massive type IIA theory using the
result of [31]. We have also shown that there are no AdSs
black hole solutions with S O (2)djag Symmetry. Therefore, in
N = 3 gauged supergravity under consideration here, it is
clear that there are no other solutions.

Although we have considered only a particular case of
three vector multiplets, it has been shown in [46] that the
SOB)g C SU@B)r symmetry must be gauged in order
for the gaugings to admit a supersymmetric AdS4 vacuum.
This is also an essential part in performing topological twists
since the gravitini and Killing spinors are charged exclu-
sively under this symmetry or a diagonal subgroup with parts
of the symmetry of vector multiplets. Therefore, even with
extra vector multiplets and possibly larger gauge groups, the
structure of the topological twists should be the same and
eventually leads to a similar conclusion.

In pure N = 4 gauged supergravity, we have recovered
an AdS, x H? solution studied in [41]. However, we have
included a non-vanishing axion and given the interpolat-
ing solutions between this geometry and the supersymmetric
Ad S4 vacuum. For matter-coupled N = 4 gauged supergrav-
ity, we have found a number of Ad Sy x S2 and Ad S, x H>
solutions with SO (2) x SO (2) x SO(3) x SO(2) symmetry.
We have also given various examples of numerical solutions
interpolating between these geometries and the AdS4 vac-
uum with SO(4) x SO (4) symmetry. The BPS equations
are very complicated, and we are not able to completely
carry out the analysis. However, we have given a number of
possible Ad Sy black hole solutions with both spherical and
hyperbolic horizons. We note that unlike N =5and N = 6
gauged supergravities, there exist matter multipletsin N = 4
theory, and the two S O (2) factors involving in the twists are
not necessarily equal though related, see the twist condition
in (160). This gives a weaker constraint on the charges and
leaves more freedom to find Ad Sy x £2 solutions. This is also
supported by the fact that, when restricted to the case of pure
N = 4 gauged supergravity, the charges of A3t and A%~
must be equal, and only one AdS, x H? solution which is
an analogue of similar solutions in N = 5, 6 theories exists.

We have also found AdS, x $? and AdS, x H? solu-
tions with SO (2)diag X SO(2)diag Symmetry. Similar to
the N = 3 theory, in this case, we have performed a
complete analysis and classified all possible supersymmet-
ric AdS, x X2 solutions with the aforementioned residual
symmetry at least for the case of six vector multiplets. In
this case, apart from the trivial AdSs critical point with
the full SO(4) x SO(4) symmetry, there exist additional
three supersymmetric AdSs vacua with SO4) x SO(3),
SO@B3) x SO@4) and SO(3) x SO(3) symmetries. Except
for the last critical point, we have found black hole solu-
tions interpolating between these vacua and AdS; x S? and
AdS, x H? geometries. We hope all these solutions could
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be useful in black hole physics and holographic studies of
twisted compactifications of N = 3 and N = 4 SCFTs in
three dimensions on a Riemann surface.

It is interesting to look for more general solutions in the
SO2) x SO(2) x SO(2) x SO(2) case in particular solu-
tions carrying both electric and magnetic charges of the same
gauge fields. In this paper, we have given only some represen-
tative examples of the possible solutions which carry either
electric or magnetic charges of a given gauge field. Another
direction is to find an embedding of the solutions given here
in string/M-theory. Solutions in pure N = 3 and N = 4
gauged supergravities can be embedded in ten and eleven
dimensions using consistent truncations given respectively
in [31,32,47]. It would be useful to find similar embedding
for the solutions in matter-coupled gauged supergravities. It
could also be of particular interest to study the dual three-
dimensional N = 3,4 SCFTs with topological twists and
compute microscopic entropy of the black holes. Finally,
it would be interesting to study similar solutions in other
gauged supergravities such as w-deformed N = 8 gauged
supergravity and N = 4 truncation of massive type IIA on
s6 given in [48,49], respectively.
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