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Abstract
The cross-ratio degree problem counts configurations of
𝑛 points on ℙ1 with 𝑛 − 3 prescribed cross-ratios. Cross-
ratio degrees arise inmany corners of combinatorics and
geometry, but their structure is not well-understood in
general. Interestingly, examining various special cases of
the problem can yield combinatorial structures that are
both diverse and rich. In this paper, we prove a simple
closed formula for a class of cross-ratio degrees indexed
by triangulations of an 𝑛-gon; these degrees are con-
nected to the geometry of the real locus of 𝑀0,𝑛, and to
positive geometry.
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1 INTRODUCTION

Consider a regular 𝑛-gon 𝑋 with edges labeled by [𝑛] = {1, … , 𝑛}, in order. To each diagonal 𝐷 of
𝑋 is naturally assigned a 4-element subset of [𝑛], consisting of the four edges that 𝐷 touches. A
triangulation 𝑇 of 𝑋 is a choice of 𝑛 − 3 diagonals in 𝑋 that do not cross. Thus, we may associate
to 𝑇 a collection = {𝑆1, … , 𝑆𝑛−3} of 4-element subsets of [𝑛], see Figure 1.
Let𝑀0,𝑛 = 𝑀0,[𝑛] denote themoduli space of configurations of𝑛 distinct points on theRiemann

sphere, labeled by [𝑛], up to Möbius transformation. Recall that 𝑀0,[𝑛] is a smooth (𝑛 − 3)-
dimensional affine variety, and that for 𝑆 ⊆ [𝑛] with |𝑆| ⩾ 3, there is a forgetful map 𝑀0,[𝑛] →

𝑀0,𝑆 . By the previous paragraph, a triangulation 𝑇 of a regular 𝑛-gon defines a product of forgetful
maps

𝜋𝑇 ∶ 𝑀0,[𝑛] →
∏
𝑆∈

𝑀0,𝑆. (1)
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CROSS-RATIO DEGREES AND TRIANGULATIONS 3519

F IGURE 1 The subsets 𝑆1, … , 𝑆10 ⊆ [13] associated to a triangulation of a 13-gon, and the corresponding
map of moduli spaces. For illustration, an edge and its corresponding subset/factor are colored red. The three
“internal” triangles are shaded — Theorem 1.1 implies 𝜋𝑇 has degree 𝑑𝑇 = 23 = 8.

Here𝑀0,𝑆 ≅ ℙ1 ⧵ {∞, 0, 1} by taking the cross-ratio. Note that 𝜋𝑇 is a map of (𝑛 − 3)-dimensional
varieties, hence a general fiber of 𝜋𝑇 is zero-dimensional with some constant cardinality 𝑑𝑇 —
this cardinality is an example of a cross-ratio degree in the sense of [18]. The purpose of this brief
paper is to prove:

Theorem 1.1. 𝑑𝑇 = 2𝐼(𝑇), where 𝐼(𝑇) is the number of triangles of 𝑇 with no exterior edges.

Motivation

Themore general “cross-ratio degree problem” is as follows. Let 𝑆1, … , 𝑆𝑛−3 ⊆ [𝑛]with |||𝑆𝑗||| = 4 for

1 ⩽ 𝑗 ⩽ 𝑛 − 3, and let = {𝑆1, … , 𝑆𝑛−3}. The map 𝜋 ∶ 𝑀0,[𝑛] →
∏𝑘

𝑗=1 𝑀0,𝑆𝑗
is a map of (𝑛 − 3)-

dimensional varieties, hence is generically finite. The dependence of the degree of 𝜋 on the
combinatorial data is not well-understood.
The particular type of cross-ratio degree appearing in Theorem 1.1 arises in connection with the

positive geometry of𝑀0,𝑛 [1], which has recently been applied to a range of important applications.
Brown [7] studied coordinate systems arising from cross-ratios of this form under the name dihe-
dral coordinates, and used them to give affine charts on 𝑀0,𝑛 that are particularly well-behaved
with respect to the cell decomposition of𝑀0,𝑛(ℝ), ultimately proving that all period integrals of
𝑀0,𝑛 are multiple zeta values.
More recently, dihedral coordinates have been used extensively as a computational and concep-

tual tool in string theory, particularly in the study of tree-level string scattering amplitudes. Dihedral
coordinates satisfy a remarkable collection of relations known as the 𝑢-equations that appear in
the study of scattering amplitudes, and which exhibit𝑀0,𝑛 as a binary geometry [3]. One can give
natural expressions in terms of dihedral coordinates for the two key objects in the Cachazo–He–
Yuan formalism for “gluon tree amplitudes in pure Yang-Mills theory” [4, 8, 10], the scattering
equations and the Parke–Taylor form, a canonical top-degree differential form on𝑀0,𝑛 that gives
𝑀0,𝑛 the structure of a positive geometry [1, 2, 5, 15]. Theorem 1.1 elicits a range of natural questions
related to this subject — for example, writing the scattering equations and Parke–Taylor form in
terms of dihedral coordinates relies on a choice of a triangulation of an 𝑛-gon with no internal
triangles; Lam asked whether such expressions exist for general triangulations.
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3520 SILVERSMITH

F IGURE 2 Decomposing the 13-gon as in the proof of Theorem 1.1.

The cross-ratio degree problem appears to be ubiquitous — special cases have been discov-
ered and re-discovered, repeatedly and independently, by many people across a range of areas,
including rigidity theory, polynomial root-finding algorithms, complex dynamics, combinatorics
of matchings on bipartite graphs, birational geometry of𝑀0,𝑛, and Gromov–Witten theory [9, 11,
13, 14, 16–18].

Remark 1.2. Some of the lemmas stated in this paper apply more generally to certain natural
generalizations of the cross-ratio degree problem, for example, considering arbitrary products
of forgetful maps𝑀0,𝑛 →

∏
𝑗 𝑀0,𝑆𝑗

with
∑
𝑗(𝑆𝑗 − 3) = 𝑛 − 3, see also [6]. We do not include the

generalizations here as we do not know of an application.

Idea of proof

We prove Theorem 1.1 by induction on 𝐼(𝑇), by cutting the 𝑛-gon into smaller polygons. Given
an internal triangle Δ of 𝑇, we may produce three smaller polygons 𝑇𝑋, 𝑇𝑌, 𝑇𝑍 as in Figure 2,
satisfying 𝐼(𝑇) = 𝐼(𝑇𝑋) + 𝐼(𝑇𝑌) + 𝐼(𝑇𝑍) + 1. We prove Lemma 3.1, which comprises most of the
work of the paper — this lemma applies more generally to cross-ratio degrees, and in this case
implies𝑑𝑇 = 2 ⋅ 𝑑𝑇𝑋 ⋅ 𝑑𝑇𝑌 ⋅ 𝑑𝑇𝑍 , providing our inductive step.Our proof of Lemma 3.1 is somewhat
technical, and involves analyzing the first three iterations of a recursive algorithm for comput-
ing cross-ratio degrees first used by Goldner, using some basic lemmas on cross-ratio degrees
developed by myself and others.

Remark 1.3. A triangulation 𝑇 has an [𝑛]-marked trivalent dual tree 𝜏, corresponding to a bound-
ary point 𝑃𝜏 of𝑀0,𝑛, or alternatively a top-dimensional cone 𝜎𝜏 of the tropical moduli space𝑀

trop

0,𝑛
.
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CROSS-RATIO DEGREES AND TRIANGULATIONS 3521

One can easily show that the extension of 𝜋𝑇 to 𝑀0,𝑛 is a local isomorphism at 𝑃𝜏, and cor-
respondingly the tropicalized map 𝜋trop

𝑇
∶ 𝑀

trop

0,[𝑛]
→

∏
𝑆∈ 𝑀

trop

0,𝑆
maps 𝜎𝜏 isomorphically (with

determinant 1) onto a cone of the codomain. It would be interesting to understand this piece of
the tropical picture better— for example, to classify combinatorially which other top-dimensional
cones map to 𝜋𝑇(𝜎𝜏).

An open problem

Let 𝐶(𝑛) denote the largest cross-ratio degree on 𝑀0,𝑛. Inscribing a ⌊𝑛∕2⌋-gon inside the 𝑛-gon
yields triangulations𝑇with 𝐼(𝑇) = ⌊𝑛∕2⌋ − 2, and Theorem 1.1 then implies𝐶(𝑛) ⩾ 2⌊𝑛∕2⌋−2. One
may also show 𝐶(𝑛) ⩽ 2𝑛−5 for 𝑛 ⩾ 5, see [18, Remark 4.3]. What are the asymptotics of 𝐶(𝑛)?
The lower bound above is the best one I know of, but it is not sharp — here are some

experimental data:

𝑛 3 4 5 6 7 8 9 10 11 12 13 14
𝐶(𝑛) 1 1 1 2 ≥2 ≥4 ≥6 ≥10 ≥13 ≥20 ≥28 ≥41

It is likely that the bounds in the table are correct for 𝑛 ⩽ 10. I assume it is a coincidence that the
data are compatible with (a shift of) sequence A034406 from the Online Encyclopedia of Integer
Sequences.

2 BASIC LEMMAS

We will need several standard facts about cross-ratio degrees. The first is the following vanishing
condition.

Lemma2.1 ([18], Proposition 4.1). Let ∈
([𝑛]
4

)𝑛−3
. If there exists a nonempty subset ′ ⊆  such

that
⋃
𝑆∈ ′ 𝑆 < || ′|| + 3, then 𝑑[𝑛], = 0.

The following recursive algorithm for cross-ratio degrees is a straightforward application of
standard facts† about the cohomology of 𝑀0,𝑛. The algorithm seems to have first been written
down (although somewhat implicitly) in [13, Corollary 3.2.22]. See also [11, 12].

Lemma 2.2 [13]. Let = {𝑆1, … , 𝑆𝑛−3} ∈
([𝑛]
4

)𝑛−3
, and suppose 𝑆1 = {𝑖1, 𝑖2, 𝑖3, 𝑖4}. Then

𝑑[𝑛], =
∑

[𝑛]=𝐴1⊔𝐴2
𝑖1,𝑖2∈𝐴1
𝑖3,𝑖4∈𝐴2|𝑆𝑗∩𝐴1|≠2 𝑓𝑜𝑟 2⩽𝑗⩽𝑛−3

𝑑𝐴1∪{⋆},1
⋅ 𝑑𝐴2∪{†},2

. (2)

†Explicitly, if 𝜌𝑆 ∶ 𝑀0,[𝑛] → 𝑀0,𝑆 is the forgetful map that remembers the marks in 𝑆, then (2) expresses the restriction of∏
2⩽𝑗⩽𝑛−3 𝜌

∗
𝑆𝑗
[𝑝𝑡] to the sum of boundary divisors 𝜌∗

𝑆1
(𝐷𝑖1𝑖2|𝑖3𝑖4 ), where 𝐷𝑖1𝑖2|𝑖3𝑖4 is a boundary point in𝑀0,𝑆1

≅ 𝑀0,4.
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3522 SILVERSMITH

Here 1 is obtained by taking all 𝑆 ∈  such that ||𝑆 ∩ 𝐴1|| ⩾ 3, and in each such 𝑆, replacing any
element (unique if it exists) of𝐴2with⋆. Similarly2 is obtained by taking all𝑆 ∈  with ||𝑆 ∩ 𝐴2|| ⩾
3, and replacing elements of 𝐴1 with †. In the summand, 𝑑[𝑛], is taken to be zero if | | ≠ 𝑛 − 3—

in other words, we only need to consider terms where ||1
|| ∈ (𝐴1∪{⋆}

4

)|𝐴1|−2 and, correspondingly,||2
|| ∈ (𝐴2∪{†}

4

)|𝐴2|−2.
Note that1,2 are naturally identified with disjoint subsets of , whose union is ⧵ {𝑆1}.

Remark 2.3. It is helpful to keep in mind the following pictorial interpretation of Lemma 2.2. We
may interpret the index set of the sum in (2) as the set of [𝑛]-marked graphs Γ (i.e., graphs together
with additional “half-edges” labeled by [𝑛]) of the form

where we require that for each 𝑆𝑗 with 2 ⩽ 𝑗 ⩽ 𝑛, there is a unique vertex 𝑣 of Γ such that the four
paths from 𝑣 to the elements of 𝑆𝑗 start along four distinct (half-)edges incident to 𝑣. We then say
𝑆𝑗 is supported on 𝑣. Note that if 𝑆𝑗 is supported on 𝑣1 and

|||𝑆𝑗 ∩ 𝐴1||| = 3, then one of the four half-
edges in question will be⋆— this explains the “renaming” process in the lemma. This associates
to each vertex a collection of 4-element subsets of the half-edges incident to that vertex, and the
summand in (2) corresponding to Γ is the product of the two associated cross-ratio degrees. (We
have the right number of 4-element subsets by the assumption |1| = |𝐴1| − 2.) Note that these
two cross-ratio degrees are defined on underlying sets of cardinality strictly less than𝑛. The reason
for this interpretation is as follows. Suppose that for some Γ, we apply Lemma 2.2 again to expand
the factor 𝑑𝐴1∪{⋆},1

in 𝑑𝐴1∪{⋆},1
⋅ 𝑑𝐴2∪{†},2

. The answer will be a sum over graphs of the form

where again the summand is a product of cross-ratio degrees, each consisting of subsets supported
on a vertex. Iterating this process of “splitting a vertex” gives one strategy of computing cross-ratio
degrees — the eventual output will be a collection of trivalent trees with no nontrivial cross-ratio
degrees, and the number of these trees will be 𝑑[𝑛], .

Remark 2.4. The marked trees of Remark 2.3 can be thought of as tropical genus-zero curves —
this connection is given a full geometric explanation in [12].

We will also need the following multiplicativity property.

Lemma 2.5. Let  ∈
([𝑛]
4

)𝑛−3
. Suppose there exists a partition [𝑛] = {𝑖1, 𝑖2, 𝑖3} ⊔ 𝑋 ⊔ 𝑌 such that

for all 𝑆 ∈  , we have either 𝑆 ⊆ {𝑖1, 𝑖2, 𝑖3} ∪ 𝑋 or 𝑆 ⊆ {𝑖1, 𝑖2, 𝑖3} ∪ 𝑌. Define 𝑋 = {𝑆 ∈  ∶ 𝑆 ⊆
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CROSS-RATIO DEGREES AND TRIANGULATIONS 3523

F IGURE 3 Decomposing along a triangle as in the proof of Corollary 2.6.

{𝑖1, 𝑖2, 𝑖3} ∪ 𝑋}, and similarly𝑌 . Then

𝑑[𝑛], =

{
𝑑{𝑖1,𝑖2,𝑖3}∪𝑋,𝑋

⋅ 𝑑{𝑖1,𝑖2,𝑖3}∪𝑌,𝑌
||𝑋

|| = |𝑋|
0 otherwise.

Proof. The map 𝜋 ∶ 𝑀0,[𝑛] →
∏

𝑆∈ 𝑀0,𝑆 factors as:

(3)

If ||𝑋
|| ≠ |𝑋|, then either 𝜋𝑋

or 𝜋𝑌
has positive relative dimension, hence so does 𝜋 . Thus,

𝑑[𝑛], = 0.
Suppose | | = |𝑋|. Since Möbius transformations act simply 3-transitively on ℙ1, we may

uniquely choose coordinates on ℙ1 so that 𝑝𝑖1 = ∞, 𝑝𝑖2 = 0, and 𝑝𝑖3 = 1. With this choice, the
distinct complex numbers 𝑝𝑖4 , … , 𝑝𝑖𝑛 ∈ ℙ1 ⧵ {∞, 0, 1} define global coordinates on𝑀0,[𝑛]. The left-
most map in (3), in these coordinates, is simply the inclusion of the open subset where none of
the coordinates 𝑝𝑖 coincide, hence is birational. Thus, the degree of 𝜋 is equal to the degree of
𝜋𝑋

× 𝜋𝑌
, and the statement follows. □

Corollary 2.6 (Cf. [7, Corollary 2.19]). If 𝑇 has no internal triangles, then 𝑑𝑇 = 1.

Proof. Let 𝑇 be a triangulation of the 𝑛-gon with no internal triangles. We induct on 𝑛, with base
case 𝑛 = 4. Both triangulations of a square induce the identity map 𝜋𝑇 ∶ 𝑀0,[4] → 𝑀0,[4], which
has degree 1.
Suppose 𝑛 ⩾ 5. On average, a triangle of 𝑇 contains 3(𝑛−2)−𝑛

𝑛−2
> 1 diagonals. Thus, there exists

a triangle Δ containing at least two diagonals. Since 𝑇 has no internal triangles, Δ contains an
edge 𝑖1 of the 𝑛-gon. The vertex of Δ opposite 𝑖1 touches two edges 𝑖2, 𝑖3, with 𝑖1 < 𝑖2 < 𝑖3 < 𝑖1 in
clockwise cyclic order. We construct two triangulations 𝑇1, 𝑇2 of smaller polygons as in Figure 3.
Specifically, let

𝑋 = {𝑖 ∈ [𝑛] ∶ 𝑖1 < 𝑖 < 𝑖2} 𝑌 = {𝑖 ∈ [𝑛] ∶ 𝑖3 < 𝑖 < 𝑖1}

using clockwise cyclic order, and let 𝑇1 be the triangulation of a (|𝑋| + 3)-gon obtained by cut-
ting 𝑇 along the diagonal touching edges 𝑖1 − 1, 𝑖1, 𝑖2, 𝑖3, discarding the piece not containing Δ,
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3524 SILVERSMITH

and renaming the cut edge by 𝑖2. Similarly, we have a triangulation 𝑇2 of a (|𝑌| + 3)-gon by
cutting along the diagonal touching 𝑖1, 𝑖1 + 1, 𝑖2, 𝑖3. Since diagonals cannot cross, every diago-
nal of 𝑇 either touches four sides in {𝑖1, 𝑖2, 𝑖3} ∪ 𝑋 or touches four sides in {𝑖1, 𝑖2, 𝑖3} ∪ 𝑌. There
are precisely |𝑋| of the first type since they triangulate a (|𝑋| + 3)-gon. Thus, by Lemma 2.5, we
have

𝑑𝑇 = 𝑑𝑇1 ⋅ 𝑑𝑇2 .

Note 𝑇1 and 𝑇2 have fewer than 𝑛 sides and no internal triangles. Thus by induction, 𝑑𝑇 = 1. □

3 KEY LEMMAAND PROOF OF THEOREM 1.1

Our key lemma is another (double-)multiplicativity property, which may have applications to
computing other classes of cross-ratio degrees.

Lemma 3.1. Let  = {𝑆1, … , 𝑆𝑛−3} ∈
([𝑛]
4

)𝑛−3
. Suppose there are distinct elements 𝑖1, … , 𝑖6 ∈ [𝑛]

with 𝑆1 = {𝑖1, 𝑖2, 𝑖3, 𝑖4}, 𝑆2 = {𝑖3, 𝑖4, 𝑖5, 𝑖6}, and 𝑆3 = {𝑖1, 𝑖2, 𝑖5, 𝑖6}. Suppose further that there exists a
partition [𝑛] = {𝑖1, … , 𝑖6} ⊔ 𝑋 ⊔ 𝑌 ⊔ 𝑍 such that for each 𝑆 ∈  , we have either 𝑆 ⊆ 𝑋 ∪ 𝑆1, 𝑆 ⊆ 𝑌 ∪

𝑆2, or 𝑆 ⊆ 𝑍 ∪ 𝑆3. Define𝑋 = {𝑆 ∈  ∶ 𝑆 ⊆ 𝑋 ∪ 𝑆1}, and similarly𝑌,𝑍 . Then,

𝑑[𝑛], = 2 ⋅ 𝑑𝑋∪𝑆1,𝑋
⋅ 𝑑𝑌∪𝑆2,𝑌

⋅ 𝑑𝑍∪𝑆3,𝑍
. (4)

Proof. By Lemma 2.2,

𝑑[𝑛], =
∑

[𝑛]=𝐴1⊔𝐴2
𝑖1,𝑖2∈𝐴1
𝑖3,𝑖4∈𝐴2|𝑆𝑗∩𝐴1|≠2 𝑓𝑜𝑟 2⩽𝑗⩽𝑛−3

𝑑𝐴1∪{⋆};1
⋅ 𝑑𝐴2∪{†};2

. (5)

Note that the sum in (5) excludes partitions [𝑛] = 𝐴1 ⊔ 𝐴2where {𝑖5, 𝑖6} ⊆ 𝐴1 (sincewewould then
have |𝑆2 ∩ 𝐴1| = 2) or where {𝑖5, 𝑖6} ⊆ 𝐴2 (since we would then have |𝑆3 ∩ 𝐴2| = 2). Thus:

𝑑[𝑛], =
∑

[𝑛]=𝐴1⊔𝐴2
𝑖1,𝑖2,𝑖5∈𝐴1
𝑖3,𝑖4,𝑖6∈𝐴2|𝑆𝑗∩𝐴1|≠2 𝑓𝑜𝑟 2⩽𝑗⩽𝑛−3

𝑑𝐴1∪{⋆};1
⋅ 𝑑𝐴2∪{†};2

+
∑

[𝑛]=𝐴1⊔𝐴2
𝑖1,𝑖2,𝑖6∈𝐴1
𝑖3,𝑖4,𝑖5∈𝐴2|𝑆𝑗∩𝐴1|≠2 𝑓𝑜𝑟 2⩽𝑗⩽𝑛−3

𝑑𝐴1∪{⋆};1
⋅ 𝑑𝐴2∪{†};2

.

(6)

Using the interpretation from Remark 2.3, we have expressed 𝑑[𝑛], as a sum, over graphs of the
two types
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CROSS-RATIO DEGREES AND TRIANGULATIONS 3525

such that for each 2 ⩽ 𝑗 ⩽ 𝑛 − 3, 𝑆𝑗 is supported on 𝑣1 or 𝑣2. We now apply Lemma 2.2 to all four
of the cross-ratio degrees appearing in (6), for example,

𝑑𝐴1∪{⋆},1
=

∑
𝐴1∪{⋆}=𝐴1,1⊔(𝐴1,2∪{⋆})

𝑖1,𝑖2∈𝐴1,1
𝑖5∈𝐴1,2|𝑆𝑗∩𝐴1,1|≠2 𝑓𝑜𝑟 𝑆𝑗∈1 if 𝑗>2

𝑑𝐴1,1∪{♣};1,1
⋅ 𝑑𝐴1,2∪{♠,⋆};1,2

.

Here 1,1 is obtained by taking all 𝑆 ∈ 1 with |𝑆 ∩ 𝐴1,1| ⩾ 3, and in each such 𝑆, replacing any
element of 𝐴1,2 with ♣. Similarly 1,2 is obtained by taking all 𝑆 ∈ 1 with |𝑆 ∩ 𝐴1,2| ⩾ 3, and
replacing elements of 𝐴1,1 with ♠. Repeating this process for all cross-ratio degrees in (6), we see
(again cf. Remark 2.3) that

𝑑[𝑛], =
∑
Γ

𝑑𝐴1,1∪{♣},1,1
⋅ 𝑑𝐴1,2∪{♠,⋆},1,2

⋅ 𝑑𝐴2,1∪{†,♡},2,1
⋅ 𝑑𝐴2,2∪{♢},2,2

, (7)

where Γ ranges over marked trees of the two types (note the positions of 𝑖5 and 𝑖6)

(I)

(II)

such that for each 4 ⩽ 𝑗 ⩽ 𝑛 − 3, there is a (unique) vertex on which 𝑆𝑗 is supported. As in
Lemma 2.2, we have nonzero contributions only from graphs satisfying

||1,1
|| = ||𝐴1,1|| − 2 ||1,2

|| = ||𝐴1,2|| − 1 ||2,1
|| = ||𝐴2,1|| − 1 and ||2,2

|| = ||𝐴2,2|| − 2. (8)

We claim types (I) and (II) each contribute 𝑑𝑋∪𝑆1,𝑋
⋅ 𝑑𝑌∪𝑆2,𝑌

⋅ 𝑑𝑍∪𝑆3,𝑍
to 𝑑[𝑛]; ; this clearly

implies (4).
Fix a marked graph Γ of type (I). Recall that there is a natural injective map

1,1 ↪  , and let 1,1;𝑋 ⊆ 1,1 consist of elements mapping to elements of 𝑋 . Sim-
ilarly define 𝑈1,1;𝑌, 𝑈1,1;𝑍, 𝑈1,2;𝑋, … ,𝑈2,2;𝑍 . Let 𝐴1,1;𝑋 = 𝐴1,1 ∩ 𝑋, and similarly define
𝐴1,1;𝑌, 𝐴1,1;𝑍, 𝐴1,2;𝑋, … ,𝐴2,2;𝑍 . Note the following equalities; we have similarly statements
for1,2, 𝐴1,2,2,2, 𝐴2,2,2,1, 𝐴2,1.

1,1 = 1,1;𝑋 ⊔1,1;𝑌 ⊔1,1;𝑍 𝐴1,1 = 𝐴1,1;𝑋 ⊔ 𝐴1,1;𝑌 ⊔ 𝐴1,1;𝑍 ⊔ {𝑖1, 𝑖2}. (9)

In order for Γ to contribute to 𝑑[𝑛], , the four cross-ratio degrees supported at the vertices
𝑣1,1, 𝑣1,2, 𝑣2,1, 𝑣2,2 must all be nonzero. Lemma 2.1 implies the following list of bounds:

(i) 1,1;𝑋 = ∅ or |||⋃𝑆∈1,1;𝑋
𝑆
||| ⩾ ||1,1;𝑋

|| + 3,
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3526 SILVERSMITH

(ii) 1,1;𝑌 = ∅ or |||⋃𝑆∈1,1;𝑌
𝑆
||| ⩾ ||1,1;𝑌

|| + 3,
(iii) 1,1;𝑍 = ∅ or |||⋃𝑆∈1,1;𝑍

𝑆
||| ⩾ ||1,1;𝑍

|| + 3,
(iv) 1,2;𝑋 ∪1,2;𝑌 = ∅ or |||⋃𝑆∈1,2;𝑋∪1,2;𝑌

𝑆
||| ⩾ ||1,2;𝑋 ∪1,2;𝑌

|| + 3,
(v) 1,2;𝑍 = ∅ or |||⋃𝑆∈1,2;𝑍

𝑆
||| ⩾ ||1,2;𝑍

|| + 3,
(vi) 2,2;𝑋 ∪2,2;𝑍 = ∅ or |||⋃𝑆∈2,2;𝑋∪2,2;𝑍

𝑆
||| ⩾ ||2,2;𝑋 ∪2,2;𝑍

|| + 3,
(vii) 2,2;𝑌 = ∅ or |||⋃𝑆∈2,2;𝑌

𝑆
||| ⩾ ||2,2;𝑌

|| + 3,
(viii) 2,1;𝑋 = ∅ or |||⋃𝑆∈2,1;𝑋

𝑆
||| ⩾ ||2,1;𝑋

|| + 3,
(ix) 2,1;𝑌 = ∅ or |||⋃𝑆∈2,1;𝑌

𝑆
||| ⩾ ||2,1;𝑌

|| + 3,
(x) 2,1;𝑍 = ∅ or |||⋃𝑆∈2,1;𝑍

𝑆
||| ⩾ ||2,1;𝑍

|| + 3.
By definition,

⋃
𝑆∈1,1;𝑋

𝑆 ⊆ 𝐴1,1;𝑋 ∪ {𝑖1, 𝑖2, ♣}, and
⋃
𝑆∈1,2;𝑋∪1,2;𝑌

𝑆 ⊆ (𝐴1,2;𝑋 ∪ 𝐴1,2;𝑌) ∪ {♠,⋆},
and so on, so the conditions above imply:

(i) ||𝐴1,1;𝑋|| ⩾ ||1,1;𝑋
|| (also holds if1,1;𝑋 = ∅),

(ii) ||𝐴1,1;𝑌|| ⩾ ||1,1;𝑌
|| + 2 or 1,1;𝑌 = ∅,

(iii) ||𝐴1,1;𝑍|| ⩾ ||1,1;𝑍
|| (also holds if1,1;𝑋 = ∅),

(iv) ||𝐴1,2;𝑋|| + ||𝐴1,2;𝑌|| ⩾ ||1,2;𝑋
|| + ||1,2;𝑌

|| + 1 or 1,2;𝑋 ∪1,2;𝑌 = ∅,
(v) ||𝐴1,2;𝑍|| ⩾ ||𝑈1,2;𝑍

|| (also holds if1,2;𝑍 = ∅),
(vi) ||𝐴2,2;𝑋|| + ||𝐴2,2;𝑍|| ⩾ ||2,2;𝑋

|| + ||2,2;𝑍
|| + 1 or 2,2;𝑋 ∪2,2;𝑍 = ∅,

(vii) ||𝐴2,2;𝑌|| ⩾ ||𝑈2,2;𝑌
|| (also holds if2,2;𝑌 = ∅),

(viii) ||𝐴2,1;𝑋|| ⩾ ||𝑈2,1;𝑋
|| (also holds if2,1;𝑋 = ∅),

(ix) ||𝐴2,1;𝑌|| ⩾ ||𝑈2,1;𝑌
|| (also holds if2,1;𝑌 = ∅),

(x) ||𝐴2,1;𝑍|| ⩾ ||𝑈2,1;𝑍
|| + 2 or 2,1;𝑍 = ∅.

Using (8) and (9), we have

||1,1;𝑋
|| + ||1,1;𝑌

|| + ||1,1;𝑍
|| = ||1,1

|| = ||𝐴1,1|| − 2 = ||𝐴1,1 ∩ 𝑋|| + ||𝐴1,1 ∩ 𝑌|| + ||𝐴1,1 ∩ 𝑍||, (10)

and similarly

||1,2;𝑋
|| + ||1,2;𝑌

|| + ||1,2;𝑍
|| = ||1,2

|| = ||𝐴1,2|| − 1 = ||𝐴1,2 ∩ 𝑋|| + ||𝐴1,2 ∩ 𝑌|| + ||𝐴1,2 ∩ 𝑍||. (11)

||2,2;𝑋
|| + ||2,2;𝑌

|| + ||2,2;𝑍
|| = ||2,2

|| = ||𝐴2,2|| − 1 = ||𝐴2,2 ∩ 𝑋|| + ||𝐴2,2 ∩ 𝑌|| + ||𝐴2,2 ∩ 𝑍||. (12)

||2,1;𝑋
|| + ||2,1;𝑌

|| + ||2,1;𝑍
|| = ||2,1

|| = ||𝐴2,1|| − 2 = ||𝐴2,1 ∩ 𝑋|| + ||𝐴2,1 ∩ 𝑌|| + ||𝐴2,1 ∩ 𝑍||. (13)

Comparing (10) with (i)–(iii) above, we see that we must have

||1,1;𝑋
|| = ||𝐴1,1;𝑋||, 1,1;𝑌 = ∅, and ||1,1;𝑍

|| = ||𝐴1,1;𝑍||.
Similarly comparing (11) with (iv)–(v), (12) with (vi)–(vii), and (13) with (viii)–(x), we find:

1,2;𝑋 = ∅, 1,2;𝑌 = ∅, and ||1,2;𝑍
|| = ||𝐴1,2;𝑍||,

2,2;𝑋 = ∅, ||2,2;𝑌
|| = ||𝐴2,2;𝑌||, and 2,2;𝑍 = ∅,
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CROSS-RATIO DEGREES AND TRIANGULATIONS 3527

||2,1;𝑋
|| = ||𝐴2,1;𝑋||, ||2,1;𝑌

|| = ||𝐴2,1;𝑌||, and 2,1;𝑍 = ∅.

The contribution to (7) from Γ is therefore

𝑑𝐴1,1∪{♣},1,1;𝑋∪1,1;𝑍
⋅ 𝑑𝐴1,2∪{♠,⋆},1,2;𝑍

⋅ 𝑑𝐴2,2∪{†,♡},2,2;𝑌
⋅ 𝑑𝐴2,1∪{♢},2,1;𝑋∪2,1;𝑌

.

We may break this up further. Note that (8) and (9) also imply

𝐴1,1;𝑌 = 𝐴1,2;𝑋 = 𝐴1,2;𝑌 = 𝐴2,2;𝑋 = 𝐴2,2;𝑍 = 𝐴2,1;𝑍 = ∅.

We thus have the decomposition 𝐴1,1 ∪ {♣} = {𝑖1, 𝑖2, ♣} ⊔ 𝐴1,1;𝑋 ⊔ 𝐴1,1;𝑍 , and any element of
1,1 = 1,1;𝑋 ⊔1,1;𝑍 is contained by either {𝑖1, 𝑖2, ♣} ∪ 𝐴1,1;𝑋 or {𝑖1, 𝑖2, ♣} ∪ 𝐴1,1;𝑍 . Thus, by
Lemma 2.5, we have

𝑑𝐴1,1∪{♣},1,1;𝑋∪1,1;𝑍
= 𝑑𝐴1,1;𝑋∪{𝑖1,𝑖2,♣},1,1;𝑋

⋅ 𝑑𝐴1,1;𝑍∪{𝑖1,𝑖2,♣},1,1;𝑍
,

and similarly

𝑑𝐴2,1∪{♢},2,1;𝑋∪2,1;𝑌
= 𝑑𝐴2,1;𝑋∪{𝑖1,𝑖2,♢},2,1;𝑋

⋅ 𝑑𝐴2,1;𝑌∪{𝑖1,𝑖2,♢},2,1;𝑌
.

Now, consider the contribution to (7) from all graphs of type (I):∑
Γ type (I)

𝑑𝐴1,1;𝑋∪{𝑖1,𝑖2,♣},1,1;𝑋
⋅ 𝑑𝐴1,1;𝑍∪{𝑖1,𝑖2,♣},1,1;𝑍

⋅ 𝑑𝐴1,2;𝑍∪{𝑖5,♠,⋆},1,2;𝑍

⋅ 𝑑𝐴2,2;𝑌∪{𝑖6,†,♡},2,2;𝑌
⋅ 𝑑𝐴2,1;𝑋∪{𝑖3,𝑖4,♢},2,1;𝑋

⋅ 𝑑𝐴2,1;𝑌∪{𝑖3,𝑖4,♢},2,1;𝑌

=
∑

𝑋=𝐴1,1;𝑋⊔𝐴2,1;𝑋
𝑌=𝐴2,2;𝑌⊔𝐴2,1;𝑌
𝑍=𝐴1,1;𝑍⊔𝐴1,2;𝑍

𝑑𝐴1,1;𝑋∪{𝑖1,𝑖2,♣},1,1;𝑋
⋅ 𝑑𝐴1,1;𝑍∪{𝑖1,𝑖2,♣},1,1;𝑍

⋅ 𝑑𝐴1,2;𝑍∪{𝑖5,♠,⋆},1,2;𝑍

⋅ 𝑑𝐴2,2;𝑌∪{𝑖6,†,♡},2,2;𝑌
⋅ 𝑑𝐴2,1;𝑋∪{𝑖3,𝑖4,♢},2,1;𝑋

⋅ 𝑑𝐴2,1;𝑌∪{𝑖3,𝑖4,♢},2,1;𝑌

=
⎛⎜⎜⎝

∑
𝑋=𝐴1,1;𝑋⊔𝐴2,1;𝑋

𝑑𝐴1,1;𝑋∪{𝑖1,𝑖2,♣},1,1;𝑋
⋅ 𝑑𝐴2,1;𝑋∪{𝑖3,𝑖4,♢},2,1;𝑋

⎞⎟⎟⎠
⋅
⎛⎜⎜⎝

∑
𝑌=𝐴2,2;𝑌⊔𝐴2,1;𝑌

𝑑𝐴2,2;𝑌∪{𝑖6,†,♡},2,2;𝑌
𝑑𝐴2,1;𝑌∪{𝑖3,𝑖4,♢},2,1;𝑌

⋅
⎞⎟⎟⎠

⋅
⎛⎜⎜⎝

∑
𝑍=𝐴1,1;𝑍⊔𝐴1,2;𝑍

𝑑𝐴1,1;𝑍∪{𝑖1,𝑖2,♣},1,1;𝑍
⋅ 𝑑𝐴1,2;𝑍∪{𝑖5,♠,⋆},1,2;𝑍

⎞⎟⎟⎠,
where the sums are, as usual, over partitions 𝑋 = 𝐴1,1;𝑋 ⊔ 𝐴2,1;𝑋 such that 𝑆 ∩ 𝐴1,1;𝑋 ≠ 2 for all
𝑆 ∈ 𝑋 , and so forth. By Lemma 2.2, the last expression is equal to

𝑑𝑋∪𝑆1,𝑋
⋅ 𝑑𝑌∪𝑆2,𝑌

⋅ 𝑑𝑍∪𝑆3,𝑍
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3528 SILVERSMITH

as desired. By symmetry, the contribution from graphs of type (II) is the same, completing the
proof of the lemma. □

Proof of Theorem 1.1. We induct on the number 𝐼(𝑇) of internal triangles in 𝑇, with base case
𝐼(𝑇) = 0 given by Corollary 2.6.
Fix a triangulation 𝑇 with 𝐼(𝑇) > 0. Let Δ be an internal triangle of 𝑇. Then Δ touches six sides

of the 𝑛-gon, and these six sides are naturally split up into three pairs — each pair consists of
the two sides adjacent to one of the vertices of Δ. Denote these pairs by {𝑖1, 𝑖2}, {𝑖3, 𝑖4}, and {𝑖5, 𝑖6},
where 𝑖1 < 𝑖2 < 𝑖3 < 𝑖4 < 𝑖5 < 𝑖6 < 𝑖1 in clockwise cyclic order. Let

𝑋 = {𝑖 ∈ [𝑛] ∶ 𝑖2 < 𝑖 < 𝑖3} 𝑌 = {𝑖 ∈ [𝑛] ∶ 𝑖4 < 𝑖 < 𝑖5} 𝑍 = {𝑖 ∈ [𝑛] ∶ 𝑖6 < 𝑖 < 𝑖1},

using the clockwise cyclic order 1 ⩽ 2 ⩽ ⋯ ⩽ 𝑛 ⩽ 1. By construction, the hypotheses of Lemma 3.1
are satisfied, and so

𝑑𝑇 = 2 ⋅ 𝑑𝑋∪𝑆1;𝑋
⋅ 𝑑𝑌∪𝑆2;𝑌

⋅ 𝑑𝑍∪𝑆3;𝑍
.

In other words,

𝑑𝑇 = 2 ⋅ 𝑑𝑇𝑋 ⋅ 𝑑𝑇𝑌 ⋅ 𝑑𝑇𝑍 , (14)

where 𝑇𝑋 (resp. 𝑇𝑌 , 𝑇𝑍) is the triangulation of an (|𝑋| + 4)-gon (resp. (|𝑌| + 4)-gon, (|𝑍| + 4)-
gon) formed by cutting 𝑇 along the edges of Δ other than 𝑆1 (resp. 𝑆2, 𝑆3) discarding the part not
containingΔ, and renaming the cut edgeswith {𝑖1, 𝑖4} (resp. {𝑖3, 𝑖6}, {𝑖5, 𝑖2}), as in Figure 2. Note that|𝑋| + 4 < 𝑛, since [𝑛] = {𝑖1, … , 𝑖6} ⊔ 𝑋 ⊔ 𝑌 ⊔ 𝑍, and similar |𝑌| + 4 < 𝑛 and |𝑍| + 4 < 𝑛. Thus, we
have 𝑑𝑇𝑋 = 2𝐼(𝑇𝑋) by the inductive hypothesis, and similarly 𝑑𝑇𝑌 = 2𝐼(𝑇𝑌) and 𝑑𝑇𝑍 = 2𝐼(𝑇𝑍). Thus,
(14) implies

𝑑𝑇 = 2𝐼(𝑇𝑋)+𝐼(𝑇𝑌)+𝐼(𝑇𝑍)+1.

On the other hand, every internal triangle of 𝑇 except Δ appears as an internal triangle in exactly
one of 𝑇𝑋 , 𝑇𝑌 , or 𝑇𝑍 , and all internal triangles of 𝑇𝑋 , 𝑇𝑌 , and 𝑇𝑍 arise this way. That is, 𝐼(𝑇) =
𝐼(𝑇𝑋) + 𝐼(𝑇𝑌) + 𝐼(𝑇𝑍) + 1, so 𝑑𝑇 = 2𝐼(𝑇). □
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