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1 | INTRODUCTION

Consider a regular n-gon X with edges labeled by [n] = {1, ..., n}, in order. To each diagonal D of
X is naturally assigned a 4-element subset of [n], consisting of the four edges that D touches. A
triangulation T of X is a choice of n — 3 diagonals in X that do not cross. Thus, we may associate
to T a collection U" = {S, ..., S,,_3} of 4-element subsets of [n], see Figure 1.

Let M, ,, = M, ,,) denote the moduli space of configurations of n distinct points on the Riemann
sphere, labeled by [n], up to M&bius transformation. Recall that M, is a smooth (n — 3)-
dimensional affine variety, and that for S C [n] with |S| > 3, there is a forgetful map M, —
M, s. By the previous paragraph, a triangulation T of a regular n-gon defines a product of forgetful
maps

iy 2 Moy = H Ms. ey
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FIGURE 1 ThesubsetsS,,...,S;, C [13] associated to a triangulation of a 13-gon, and the corresponding
map of moduli spaces. For illustration, an edge and its corresponding subset/factor are colored red. The three
“internal” triangles are shaded — Theorem 1.1 implies 7z has degree d; = 2% = 8.

Here M, g = P!\ {c0,0, 1} by taking the cross-ratio. Note that 7r; is a map of (n — 3)-dimensional
varieties, hence a general fiber of 7 is zero-dimensional with some constant cardinality dr —
this cardinality is an example of a cross-ratio degree in the sense of [18]. The purpose of this brief
paper is to prove:

Theorem 1.1. d; = 2/D, where I(T) is the number of triangles of T with no exterior edges.

Motivation

The more general “cross-ratio degree problem” is as follows. Let Sy, ..., S,,_3 C [n] with |S i | = 4 for

1<j<n=3,andletV" ={Sy,...,S,_3}. The map 7y, : My, — H’;zl Mg, is a map of (n — 3)-
dimensional varieties, hence is generically finite. The dependence of the degree of ;- on the
combinatorial data U is not well-understood.

The particular type of cross-ratio degree appearing in Theorem 1.1 arises in connection with the
positive geometry of My, ,, [1], which has recently been applied to a range of important applications.
Brown [7] studied coordinate systems arising from cross-ratios of this form under the name dihe-
dral coordinates, and used them to give affine charts on Mo,n that are particularly well-behaved
with respect to the cell decomposition of A_lo’n(lR), ultimately proving that all period integrals of
J\_/Io,n are multiple zeta values.

More recently, dihedral coordinates have been used extensively as a computational and concep-
tual tool in string theory, particularly in the study of tree-level string scattering amplitudes. Dihedral
coordinates satisfy a remarkable collection of relations known as the u-equations that appear in
the study of scattering amplitudes, and which exhibit M, , as a binary geometry [3]. One can give
natural expressions in terms of dihedral coordinates for the two key objects in the Cachazo-He-
Yuan formalism for “gluon tree amplitudes in pure Yang-Mills theory” [4, 8, 10], the scattering
equations and the Parke-Taylor form, a canonical top-degree differential form on M, ,, that gives
M, , the structure of a positive geometry [1, 2, 5, 15]. Theorem 1.1 elicits a range of natural questions
related to this subject — for example, writing the scattering equations and Parke-Taylor form in
terms of dihedral coordinates relies on a choice of a triangulation of an n-gon with no internal
triangles; Lam asked whether such expressions exist for general triangulations.
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FIGURE 2 Decomposing the 13-gon as in the proof of Theorem 1.1.

The cross-ratio degree problem appears to be ubiquitous — special cases have been discov-
ered and re-discovered, repeatedly and independently, by many people across a range of areas,
including rigidity theory, polynomial root-finding algorithms, complex dynamics, combinatorics
of matchings on bipartite graphs, birational geometry of A_/Io,n, and Gromov-Witten theory [9, 11,
13, 14, 16-18].

Remark 1.2. Some of the lemmas stated in this paper apply more generally to certain natural
generalizations of the cross-ratio degree problem, for example, considering arbitrary products
of forgetful maps M, , — [[; My, with }:(S; — 3) = n — 3, see also [6]. We do not include the
generalizations here as we do not know of an application.

Idea of proof

We prove Theorem 1.1 by induction on I(T), by cutting the n-gon into smaller polygons. Given
an internal triangle A of T, we may produce three smaller polygons Ty, Ty, T, as in Figure 2,
satisfying I(T) = I(Tx) + I(Ty) + I(T;) + 1. We prove Lemma 3.1, which comprises most of the
work of the paper — this lemma applies more generally to cross-ratio degrees, and in this case
impliesdy = 2 - dr, - dy, -dy,, providing our inductive step. Our proof of Lemma 3.1 is somewhat
technical, and involves analyzing the first three iterations of a recursive algorithm for comput-
ing cross-ratio degrees first used by Goldner, using some basic lemmas on cross-ratio degrees
developed by myself and others.

Remark 1.3. A triangulation T has an [n]-marked trivalent dual tree 7, corresponding to a bound-

ary point P, of ]\_/Io,n, or alternatively a top-dimensional cone o of the tropical moduli space M, (t)rzp.
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One can easily show that the extension of 7y to M, is a local isomorphism at P, and cor-
trop trop

0 ,[n]
determinant 1) onto a cone of the codomam It would be 1nterest1ng to understand this piece of

the tropical picture better — for example, to classify combinatorially which other top-dimensional
cones map to 7(o,).

respondingly the tropicalized map 7, - [lser M, tmp maps o, isomorphically (with

An open problem

Let C(n) denote the largest cross-ratio degree on M, ,. Inscribing a |n/2]-gon inside the n-gon
yields triangulations T with I(T) = |n/2| — 2, and Theorem 1.1 then implies C(n) > 2!*/21=2, One
may also show C(n) < 2"~ for n > 5, see [18, Remark 4.3]. What are the asymptotics of C(n)?

The lower bound above is the best one I know of, but it is not sharp — here are some
experimental data:

n 3 4 5 6 7 8 9 10 1 12 13 14
C(n) 1 1 1 2 >2 >4 >6 >10 >13 >20 >28 >41

Itis likely that the bounds in the table are correct for n < 10. Iassume it is a coincidence that the
data are compatible with (a shift of) sequence A034406 from the Online Encyclopedia of Integer
Sequences.

2 | BASIC LEMMAS

We will need several standard facts about cross-ratio degrees. The first is the following vanishing
condition.

-3
Lemma 2.1 ([18], Proposition 4.1). Let U" € ([Z])n . Ifthere exists a nonempty subset U”' C U" such
that Jgeqr S < |U7| + 3, then dj,y 1, = 0.

The following recursive algorithm for cross-ratio degrees is a straightforward application of
standard facts’ about the cohomology of M, ,. The algorithm seems to have first been written
down (although somewhat implicitly) in [13, Corollary 3.2.22]. See also [11, 12].

Lemma 2.2 [13]. Let U = {S}, ..., S, 3} € ( "J) , and suppose S = {i,, i,13,i4}. Then

A = Z da vy - da,up s @)
[n]=AuA,
i1 €A,
i3, €A,
[SjnA,[#2 for 2<j<n—3

T Explicitly, if pg : MO n] — MO s is the forgetful map that remembers the marks in S, then (2) expresses the restriction of
Iogjcns ps [pt] to the sum of boundary divisors pb (D; ), where D; is a boundary point in Mo,sl = ]\_/[0,4.

iyiylizig i |i3iy
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Here U is obtained by taking all S € U" such that |S N A1| > 3, and in each such S, replacing any
element (unique ifit exists) of A, with *. Similarly U, is obtained by taking all S € U with |S N A, | >

3, and replacing elements of A, with 1. In the summand, d,) 1, is taken to be zero if |U'| # n — 3 —

|A]-2

Alj{*} ) and, correspondingly,

in other words, we only need to consider terms where |U‘1| e (

A [Az]-2
|‘1f2| = ( zz{‘r}) .
Note that U7, U, are naturally identified with disjoint subsets of V", whose union is V" \ {S;}.

Remark 2.3. 1t is helpful to keep in mind the following pictorial interpretation of Lemma 2.2. We
may interpret the index set of the sum in (2) as the set of [n]-marked graphs T (i.e., graphs together
with additional “half-edges” labeled by [n]) of the form

i i3

A { - — } A,
i iy

where we require that for each S i with 2 < j < n, there is a unique vertex v of I" such that the four
paths from v to the elements of S; start along four distinct (half-)edges incident to v. We then say

S; is supported on v. Note thatif S; is supported on v; and |S; N A, | = 3, then one of the four half-
edges in question will be x — this explains the “renaming” process in the lemma. This associates
to each vertex a collection of 4-element subsets of the half-edges incident to that vertex, and the
summand in (2) corresponding to I is the product of the two associated cross-ratio degrees. (We
have the right number of 4-element subsets by the assumption |V} | = |A;| — 2.) Note that these
two cross-ratio degrees are defined on underlying sets of cardinality strictly less than n. The reason
for this interpretation is as follows. Suppose that for some I', we apply Lemma 2.2 again to expand
the factor d 4 a1, 10 da ups, vy * da,upir,- The answer will be a sum over graphs of the form

i3

Al,l{ —, oy : }Az,

i4

where again the summand is a product of cross-ratio degrees, each consisting of subsets supported
on a vertex. Iterating this process of “splitting a vertex” gives one strategy of computing cross-ratio
degrees — the eventual output will be a collection of trivalent trees with no nontrivial cross-ratio
degrees, and the number of these trees will be dj,;; ¢

Remark 2.4. The marked trees of Remark 2.3 can be thought of as tropical genus-zero curves —
this connection is given a full geometric explanation in [12].

We will also need the following multiplicativity property.

-3
Lemma 2.5. Let U € ([Z])n . Suppose there exists a partition [n] = {i;,i,,i3} UX UY such that
for all S € U, we have either S C {iy,i,,i3} UX or S C{i;,i,,i3}UY. Define Uy ={S€ U : SC
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FIGURE 3 Decomposing along a triangle as in the proof of Corollary 2.6.

{i1, 1y, i3} U X}, and similarly Uy. Then

d _ ) A ioxy Qi igoryy | Ux| = 1XI
[nl U — ,
0 otherwise.

Proof. The map 77, @ My, = [Iserr Mo s factors as:

Xﬂ-l/
Mo —> Moy, ipisjux X Mogi, iy ijuy —————> H M, s X H Mys = H M.

SeUy Sely =%

If |Uy| # 1X|, then either Ty, Or 7y, has positive relative dimension, hence so does 7. Thus,
dipr = 0.

Suppose |U’| = |X|. Since Mébius transformations act simply 3-transitively on P!, we may
uniquely choose coordinates on P! so that pi, =%, p;, =0, and p; = 1. With this choice, the
distinct complex numbers p; , ..., p; € P\ {oo 0,1} deflne global coordlnates on M, ,,]- The left-
most map in (3), in these coordlnates is simply the inclusion of the open subset Where none of
the coordinates p; coincide, hence is birational. Thus, the degree of ;- is equal to the degree of
Ty, X 7y, , and the statement follows. O

Corollary 2.6 (Cf. [7, Corollary 2.19]). If T has no internal triangles, then d = 1.

Proof. Let T be a triangulation of the n-gon with no internal triangles. We induct on n, with base
case n = 4. Both triangulations of a square induce the identity map 7, : M, 4] = M, [4]> Which
has degree 1.

Suppose n > 5. On average, a triangle of T contains =—=— > 1 diagonals. Thus, there exists
a triangle A containing at least two diagonals. Since T has no internal triangles, A contains an
edge i; of the n-gon. The vertex of A opposite i; touches two edges i,, i3, with i; < i, <i; <i; in
clockwise cyclic order. We construct two triangulations T, T, of smaller polygons as in Figure 3.
Specifically, let

3(h—2)—n

X={ien]:i<i<iy} Y={ie[n]:i;<i<i}

using clockwise cyclic order, and let T, be the triangulation of a (|X| + 3)-gon obtained by cut-
ting T along the diagonal touching edges i; — 1,i;, i, i3, discarding the piece not containing A,
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3524 | SILVERSMITH

and renaming the cut edge by i,. Similarly, we have a triangulation T, of a (|Y| + 3)-gon by
cutting along the diagonal touching i, i; + 1,i,,i;. Since diagonals cannot cross, every diago-
nal of T either touches four sides in {i;,i,, i3} UX or touches four sides in {i;,i,,i3} UY. There
are precisely |X| of the first type since they triangulate a (|X| + 3)-gon. Thus, by Lemma 2.5, we
have

dT = dTl . dTZ.

Note T; and T, have fewer than n sides and no internal triangles. Thus by induction, d; = 1. [

3 | KEY LEMMA AND PROOF OF THEOREM 1.1

Our key lemma is another (double-)multiplicativity property, which may have applications to
computing other classes of cross-ratio degrees.

Lemma 3.1. Let U ={S,,...,S, 3} € ([Z])n_3. Suppose there are distinct elements iy, ..., i € [n]
with Sy = {i}, i5,13,i4}, Sy = {i3, 14, is, 16}, and Ss = {iy, iy, 15, ig}. Suppose further that there exists a
partition [n] = {i, ...,ig} UX UY U Z such that foreach S € U", we have either S CX U S;,SCY U
S,, 0rS C ZUS;. Define Uy ={S € U : S C X US,}, and similarly Uy, U,. Then,

d[n],l/‘ =2 d}(us1 Ux ' dYUSZ,Uy : dZusg,le- 4
Proof. By Lemma 2.2,
digu = Z da, vy da,uin,- 6)
[n]=A LA,
i1,i,€A;
i,is €A,

|SjnA1|;E2for2<j<n—3

Note that the sum in (5) excludes partitions [n] = A; U A, where {is, i} C A, (since we would then
have |S, N A;| = 2) or where {is, i} C A, (since we would then have |S; N A,| = 2). Thus:

A = > da vy dayupig, + > da,upxry - Qa,upsyy
[n]=A;UA, [n]=A;UA,
i1,i,is€A; i1,i0,igEA;
i3,ig.ig €A, i3,ig,is €A,
|S;nA, [#2 for 2<j<n—3 |S;nA, [#2 for 2<j<n—3
(6)

Using the interpretation from Remark 2.3, we have expressed d,, - as a sum, over graphs of the
two types
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such that for each 2 < j < n -3, S; is supported on v, or v,. We now apply Lemma 2.2 to all four
of the cross-ratio degrees appearing in (6), for example,

dAlU{*}lﬁ = 2 dAl,lU{i'};Ul,l ’ dAl,zU{Qy*}QVLz’
A Ulx}=A7 LA U{xD)
i1,1€A
iSEA;
ISjNAy 1 1#2 for S;€U if j>2

Here U7 ; is obtained by taking all S € U} with [SN A, ;| > 3, and in each such S, replacing any
element of A, , with &. Similarly U , is obtained by taking all S € U with [SN A, ,| > 3, and
replacing elements of A; ; with #. Repeating this process for all cross-ratio degrees in (6), we see
(again cf. Remark 2.3) that

d[n],U' = Z dAl,lU{O}an,l ’ dAl,zu{Q-*},Ui,z ’ dA2,1U{'I"Q?}aU'2,1 ’ dAz,ZU{O}’Uz,z’ ™
T

where I ranges over marked trees of the two types (note the positions of is and i4)

i i3

Al’l[ : » - 1 * B Y v o ’ }Az’l’
i ‘ . iy (I)

} A2,1 ’
(ID

such that for each 4 < j < n —3, there is a (unique) vertex on which S; is supported. As in
Lemma 2.2, we have nonzero contributions only from graphs satisfying

V11| = |Aa]| =2 |Via]| =|A1a] =1 |Vsi| =421 -1 and |Uh,| =45, -2 8)

We claim types (1) and (II) each contribute dxyg, 11, * dyus,vs * dzus,,v, tO djuer; this clearly
implies (4).

Fix a marked graph T of type (I). Recall that there is a natural injective map
Vi, 9 U, and let Vj,.x C Uy, consist of elements mapping to elements of UY. Sim-
ilarly define U, j.y,U;y1.2,Uq0x5 5 Upnze Let Ajjx =A;;NX, and similarly define
Ay 1.y, A1 1.2, A1 2:x5 5 A p.z- Note the following equalities; we have similarly statements
for U35, A1 2, V32, Ao 2 U 15 Ay

Vg =Vx Ul y Ul Ajn = A UA 1y WA, 1 UL, D ©)

In order for T to contribute to dj,),, the four cross-ratio degrees supported at the vertices
Uy 1, V125 Uz 1, Uy, Must all be nonzero. Lemma 2.1 implies the following list of bounds:

@ Vix =9 or 'USEUM;X S) > Vx| +3,
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3526 | SILVERSMITH

(i) Vigy =0 or |Userr,, S| > Vi +3
(iil) Vi, =90 or |U5e1/1,1;2 S| > V1| +3,
(IV) UI,Z;X U UI,Z;Y = ﬂ or

Usevyuutiay S| 2 [V12x U Vx| +3,
V) Vipz =9 or ‘Usafmz S‘ > [Viz] +3,
(Vi) Vspx U,z =9 or |U56U2,2;Xu1/2,2;z S | > [Usx U ooz +3,
(vii) Vypy =9 or |US€1/’2YZ;Y S | > [Vaoy| +3
Vi) Uy =0 or |Users,y S| > [Vanix| +3,
() Vspy =9 or |U5e1/2,w S| [Vaniv| +3,
) V317 =0 or |U5e1f2,1;z S| V22| + 3.

By definition, USEUI,I;X S C Aj1x Uliy, i), &}, and USeUl,z;XUsz;y SC(Aox UALy)Uie, X},
and so on, so the conditions above imply:

VoWV

0 |ALx| > [V1ax] (also holds if Uy ;.5 = @),
(i) |Ay| > [Vigy| +2 or Vypy =0,
(i) [Ay12] = V1| (also holds if U ;.5 = ),
M) A1z > |Uraz| (also holds if U} ,., = ),
Vi) |Aysx| +|Asaz| 2 [Vanx| + [Vanz| +1 o Vsox UV, =6,
Vi) |Azsy| = |Usy| (also holds if U 5.y = @),
(viii) |Ay1.x| = |Usix| (also holds if U, ;. = #),
(x) |Az1y| > |Uzyy] (also holds if U, 1.y = #),
() [Ag1z] 2 Uz +2 or Uy, =0

Using (8) and (9), we have
and similarly
|U.1,21X| + |U1,2;Y| + |U.1,2;Z| = |U1,2| = |A1,2| —-1= |A1,2 ﬂX| + |AL2 N Yl + |A1,2 ﬂZl (11)
|U’2’1;)(| + |U2,1;Y| + |U.2,1;Z| = |U’2’1| = |A2,1| —-2= |A2’1 ﬁX| + |A2,1 N Yl + |A2’1 ﬂZl (13)
Comparing (10) with (i)-(iii) above, we see that we must have
V1] = A1 1x|s Vigy =9, and [V112] = A1z
Similarly comparing (11) with (iv)—(v), (12) with (vi)—(vii), and (13) with (viii)—(x), we find:

Vipx = g, Vigy = @, and |7f1,2gz| = |A1,2;Z|’

Voox =0, |U2,2;Y| = |A2,2;Y|’ and Vo7 =0,
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|U2,1;X| = |A2,1;X|’ |U2,1;Y| = |A2,1;Y|’ and Vyyz = 0.

s L

The contribution to (7) from T is therefore

dAl,lU{'l},ULl;XUUl,l;Z ’ dAl,ZU{Q,*}’Vl,z;Z ’ dAz,zU{TK?},Vz,z;Y ’ dAz,lU{Q},Uz,l;XUvz,l;Y'
We may break this up further. Note that (8) and (9) also imply
A1,1;Y = A1,2;X = A1,2;Y = A2,2;X = A2,2;Z = A2,1;Z = 0.

We thus have the decomposition A;; U {#} = {i;,i,,#}LUA;.x UA; .7, and any element of
Uy, =Vjx UV, is contained by either {i},i,,#}UA; .y or {ij,i),#}UA; ;.. Thus, by
Lemma 2.5, we have

dAl,lU{Q},Ul,l;XUULnZ = dAl,l-,XU{il’iz’Q}svl,l;X ) dAl,l;zU{il-isz},Ul,l;Z’
and similarly

dAZ,IU{O}’UZ,l;XUUZ,l;Y = dAz,le{ibisz},Uz,l;X ’ dAZ,l;YU{il’iZ’O}sUZ,l;Y'

Now, consider the contribution to (7) from all graphs of type (I):

Z dAl,le{il’iz»Q}squ ) dAl,l;ZU{il»iz’*}!Ul,l;Z ) dAl,Z;ZU{iS’Q’*}’Ul,Z;Z
T type (I)

) dAz,z;YU{isﬁ,@}’Uz,z;y ) dAZ,l;XU{i3!i4’<>}’U2,1;X ) dAz,l;YU{is’imO},Uz,l;y

- Z dAl,l;XU{ilsiz,‘l},ULl;X ’ dA1,1;zU{i1’i2,4},U1,1;Z ' dAl,z;zU{is,Q’*LUl,z;Z
X=A1,1.’XI_IA2’1;X
Y=A,,yUA) 1y
Z=A11,7UA1 5.7

’ dAz,z;YU{is-T,V}’Uz,z;Y ’ dAZ,l;XU{i3’i41°}sU2,1;X ) dAZ,l;YU{iS’i41O}sU2,1;Y

- 2 dAl,l;XU{ilsiZ"}’Ul,l;X ’ dAz,l-,XU{i3’i4’0}s7f2,1;X
X:AI,I;XI—'AZ,I;X

dAZ,Z;Y Ulie, T.0L Vs 0y dAz,l;yU{is’i4s<>},Uz,1;y ’
Y=A,,yUAs 1y

dAl,l;ZU{ibiZ"}’Ul,l;Z ’ dAl,Z;ZU{iS"?*}’Ul,Z;Z ’
Z=Aq1.7UA 2.7

where the sums are, as usual, over partitions X = A; ;.x U A, .x such that SN A, ;.x # 2 for all
S € Uy, and so forth. By Lemma 2.2, the last expression is equal to

dxus, vy * yus, vy * dzus, v,
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as desired. By symmetry, the contribution from graphs of type (II) is the same, completing the
proof of the lemma. Ol

Proof of Theorem 1.1. We induct on the number I(T) of internal triangles in T, with base case
I(T) = 0 given by Corollary 2.6.

Fix a triangulation T with I(T) > 0. Let A be an internal triangle of T. Then A touches six sides
of the n-gon, and these six sides are naturally split up into three pairs — each pair consists of
the two sides adjacent to one of the vertices of A. Denote these pairs by {i;, i5}, {i3, i4}, and {is, i¢},
where i; < i, < i3 < iy <is5 < iy < i; in clockwise cyclic order. Let

X={ien]:i,<i<is} Y={ien]:i<i<is} Z={ien]:ig<i<i}

using the clockwise cyclicorder 1 £ 2 < --- < n < 1. By construction, the hypotheses of Lemma 3.1
are satisfied, and so

dr =2-dxus, vy~ dyus,ivy - dzus,vy,-
In other words,
dT = 2 . dTX . dTY . dTZ’ (14)

where Ty (resp. Ty, T) is the triangulation of an (| X| + 4)-gon (resp. (|Y| + 4)-gon, (|Z]| + 4)-
gon) formed by cutting T along the edges of A other than S, (resp. S,, S;) discarding the part not
containing A, and renaming the cut edges with {i;, iy} (resp. {is, is}, {is, i,}), as in Figure 2. Note that
|X| + 4 < n,since [n] = {i, ..., i} UX UY U Z,and similar |Y| + 4 < nand |Z| + 4 < n. Thus, we
have dy = 2'"x) by the inductive hypothesis, and similarly dr, = 2/7v) and d, = 2'"2). Thus,
(14) implies

dT — ZI(TX)+I(TY)+I(TZ)+1'

On the other hand, every internal triangle of T except A appears as an internal triangle in exactly
one of Ty, Ty, or T, and all internal triangles of Ty, Ty, and T, arise this way. That is, I(T) =
I(Ty) + I(Ty) + I(T;) + 1, s0 dy = 2D, O
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