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In the presence of spin symmetry case, we obtain bound and scattering states solutions of the Dirac equation for the equal scalar
and vector Yukawa potentials for any spin-orbit quantum number «. The approximate analytical solutions are presented for the

bound and scattering states and scattering phase shifts.

1. Introduction

For studying the quantum mechanical systems, it is necessary
to pay attention to two points. These two points are to study
bound states to take the necessary information about the
system under consideration and also solving scattering states
for a system under the effect of a potential. Solving both
of these problems gives us complete information about a
quantum mechanical system under consideration.

The solutions of scattering and/or bound state problem
have been investigated for the well-known potentials by
applying different methods [1-10]. The analytical scattering
state solution of the [-wave Schrodinger Equation for the
Eckart potential has been obtained in [11]. The solution of
the Schrodinger equation for the modified Morse potential
has been studied by Wei and Chen [12]. Rojas and Villalba
have found the solutions of the Klein-Gordon equation for
one-dimensional Wood-Saxon potential by hypergeometric
functions [13]. The exact solutions of scattering state have
been studied for the s-wave Schrodinger equation with the
Manning-Rosen potential by using standard method [14].
Low momentum scattering states of the Dirac equation have
been studied in [15]. Properties of scattering state solutions
of the Klein-Gordon equation Coulomb scalar plus vector
potential have been studied in [16].

In this work, we have studied bound state and scattering
state of the Dirac equation with the Yukawa potential.
The Dirac equation describes the particle dynamics in the
relativistic quantum mechanics [17, 18]. Thus, solving the
Dirac equation is very significant in describing the nuclear
shell structure [19, 20]. Also the Yukawa potential has many
applications in different areas of physics like high-energy
physics [21] and atomic, molecular, and plasma physics [22].

This paper is organized as follows. In Section 2, we briefly
introduce the Dirac equation with scalar and vector potential
with any spin-orbit quantum number k. The bound and
scattering states of the Yukawa potential within the Dirac
equation are presented in Section 3. Finally, our concluding
remarks are given in Section 4.

2. Dirac Equation with Scalar and
Vector Potential

The Dirac equation with scalar and vector potential (S(r) and
V(r)is[h=c=1]

[0 - p+BM+SEN]y () =E-V )y, 1)
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where E is the relativistic energy of the system and P = —iV is
the three-dimensional momentum operator. « and f3 are the
usual 4 x 4 Dirac matrices given as

a:<(1’ é) ﬁ:<(l) _OI>, i=1,23 ()

where I is the 2 X 2 unitary matrix and the three 2 x 2 Pauli
matrices o; are given as

we(to) we(G) o) o

where L is the orbital angular momentum of the spherical
nucleons and the total angular momentum operator J and
spin-orbit K = (0 - L + 1) commute with Dirac Hamiltonian.
The eigenvalues of spin-orbit coupling operator are k = (j +
(1/2)) > 0and k = —(j + (1/2)) < 0 for unaligned spin
j =1-(1/2) and the aligned spin j = I + (1/2), respectively.
Thus, in the Pauli-Dirac representation,

Ey ()
<f nk (”) kr Vi (0:9)
Yk (T') = = > (4)
G (1) iG%(r)lefm 0,9)

where f,,(r) is the upper component and g, (r) is the lower
component of the Dirac spinors. Y]l.m(e, @) and le.m(9, ®)
are spin and pseudospin spherical harmonics and m is
the projection of the angular momentum on the z-axis.
Substituting (4) into (1), one obtains two coupled differential
equations for the upper and the lower radial wave functions
as follows:

<i + E)Fnk (r)=[M+E;—A®[M)]Gy(r),

dr r
d k v
<Z B ?)Gnk(r) = [M =By + Z(0)] e (),
where
Ar)=V(r)-S(r),
(6)

2(r)=V(r)+S(r).

Solving (5) leads to a second-order Schrodinger-like differen-
tial equation for the upper and the lower components of the
Dirac wavefunctions as follows:

> k(-1

dr? r?

] G, (1)

+

- (M+Enk_A(r)) (M_Enk+z(r))

_(dZ (r) /dr)(d/dr — k]r)
M-E,; +2(r)

Gnk (r) = 0,

(7a)
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0
+[—(M+Enk—A(r))(M—Enk+2(r))

N (dA (r) /dr) (d]dr + k/r)
M+E, —A(r)

Fnk (r) = 0,
(7b)
wherek (k—-1) =TI+ 1) and k (k+1)=1(+1).

When scalar potential S(r) is equal to the vector potential
V(r), (7b) becomes

a k(k
[ﬁ_ e —Z(Enk+M)V<r>]Fnk<r)
T T (8)
= [M* - El | F ()
and with (5), we have
1 d k
Gnk(r):M+Enk [E"—;]Fnk(”)' (9)

These are two equations with equal scalar and vector potential
that we have used in this work.

3. Dirac Equation with the Yukawa Potential

According to (8), we have

a  k(k+1)
o EEED (g mv )
(10)
+E - MZ] Fy (r) = 0.
The Yukawa potential is
V(r) = —ée_m, (11)
r

where o is the screening parameter and A is the strength of
the potential [21, 23].

Instead of the centrifugal term in (10), the following
approximation has been used in recent years:

, e—Zocr

1
—2 ~ 4 —(1 ~ e—2ar)2)

- 1)
that is, it has a good accuracy for small values of the potential
parameter [24, 25].

Substituting (11) and (12) into (10), we obtain the following
form of the wave equation:

d2 5 e—Zotr
ﬁ -4 k(k‘l’ l)m +4A(X(Enk+M)
(13)
—2ar
Xm + E,zlk - M2 Fnk (1’) =0.
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3.1. Bound State Solutions. For the bound state, by taking the
following variable (z — 1 for » — 0 and z — 0 for r — ©0)

z=e (14)
one can obtain (13) in the following form:

d? d
[z(l—z)d—zz+(1—z)5+—z(ll_z)

A 2
x{—k(k+1)z+;(Enk+M)(z—z) (15)

Eik - M 2
+T(1—Z) Fnk (Z) =0.
Taking the form of the wave function
Fy (2) = Z'u(l - Z)vfnk (2) (16)

and substituting this equation into (15), one gets a
hypergeometric-type equation as follows [26]:

2(1-2) f (@) +(Qu+1-(u+2v+1)z2) f; (2)

+ M(u-l)(I;Z)—2w
z 1-2)
+v(v—1)1_z+‘u - - 17)
1 A
—k(k+1)(1_z)+;(Enk+M)
(B ~M) (1-2)
i k4<x2 Zz S (2) =0,
where
.J(Ezk—MZ)
p=i T v(v-1)=k(k+1) (»>0).
(18)

Comparing (17) with the hypergeometric equation of the
form [26]

z(1-2) fh(2)+[c—(@a+b+1)z] f (2) —abf (z) =0
19)

we can obtain the wavefunction as the hypergeometric
function:

fnk (Z) = 2F1 (ank>bnk’cnk; Z) > (20)
where
A (Erzlk _Mz)
= — (E M) ——~,
A [’l+v+\/‘x( nk + ) 402
21)
A (Ezk _MZ) (
bnk:y+v—\j;(Enk+M)——n4a2 ,

Cu = 2u+ 1.

Then, with (14) and (16), we have the upper-spinor compo-
nent of wavefunction for the Dirac equation with the Yukawa
potential as follows:

Fnk (T) _ ane—Zot‘ur<1 _ e—2¢xr)v
(22)
-2
X 2F1 (ank’ bnk’ Cnk> € otr) ’

where C,; is the normalization constant. With (9), the lower-
spinor component can be obtained as

C d k] _ _
Gy (r)=—"% | —+ —] e (1-e 2‘”)1'
M~+E, ldr r (23)
x 2F1 (ank’bnk’cnk; e—Zm') :
Therefore,
Gnk (r)

_ an ke—leyr (1 _ e—2(xr)1’
M + Enk r

—2ar
X 2F1 (ank’ bnk’ Cnk> € )

_ 206‘146720“‘”(1 _ e—thr)V

—2ar
x ,F (ank’ B> G € )

20c((4+1)r(1 _ e—2(xr)1’_1

+ 2ave

—2ar
X 2F1 (ank’ bnk’ Cnk> € )

+ <aLbnk> 6—204;41'(1 _ e—Zar)”

Cnk

X 2F1 (ank + 1, bnk + 1, an + 1;6*2061‘)
(24)

Finally, the spinor wave function under the condition of equal
scalar and vector potentials with (4), (7b), (22), and (24)
becomes

0y, (0.9)

G (1) 1
20y (6.9)

¥ (r) =

Ck ! 2 2ar\”
_ —n — . “2apr(q _ pm2ar
r \a+g, @ OR0 =)

x le'm(9><P)2F1 (ank’ Buje> Gk e—Zar) ,

k —2ar —2ar\~!
R(r)==—2au+2 1-
(r) . oy + 2ave ( e )

+ (ankbnk> 2F1 (ank +1, bnk + 1,an +1; e—20¢r>
an 2F1 (a}’lk$ bnk’ an; e’z‘”) '
(25)



By considering the finiteness of the solution, the quantum
condition is given by

(Ene—M?)

o n=0,1,2,3.
04

(26)

‘u+7}_\/é(Enk+M)_
(04

= —n)

It is the energy eigenvalue equation of bound state for the
upper component of the Dirac equation with the Yukawa
potential.

3.2. Scattering State. Now, we turn to solve (10) for scattering
state. For this purpose, we use a new variable as follows:

y:l—e"z"”, y=1-z,
(27)
(r—oco0, y—1, r—0, y—0)
and obtain
a4 d 1
-2 % k1)~
y( y)dy2 Y 5
Yy

+§ (E,+ M) + ) (EL - M*) | Ex () =0.

402 (1-y o8
28

Considering the boundary condition of the scattering state,
we take the following trial wavefunction:

Fu(y) = y"(1-p) i (). (29)

And inserting this equation into (28), we obtain the following
equation:

y(1=y) fu W)+ 21— (2n+28+1) y] £ ()

N e ) B S S
n(n-1) 5 2B+ B(B 1)(1_y) n

y 1 A
-k(k+1)—+—(E M
+ﬁ y) (+)y+‘x(nk+ )

(1-

1 2y _ )
e M)

fnk ()/) =0,
(30)

where

e

I nin-1)=k(k+1)

(31)
(11 > 0) .

This equation is a hypergeometric type. Thus, (29) is as
follows: (N, is the normalization constant)

Fu(») = Nuy'(1 - )P JF, (a.b,c;y) (32)
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that is, the upper component of wavefunction. The lower
component is

G (r) =

Nnk [ d + k] e—thﬁr(l _ e—20cr)’7

M+Ey ldr r

(33)
X 2F1 (ank, b}’lk’ an; 1- e_zar) .

And therefore, total wavefunction of scattering state with (4),
(7b), (32), and (33) is

Ey (1) 1
2, (009)

v (T) = G _
G () 7
= Y, (6.9)
1
— Nnk — R (34)
r Enk+M(0~f)§R(r)
% e—Z(Xﬁr(l _ e—Zar)’/Y;m (6, QD)
x 2F1 (ank’ bnk’cnk; 1- 6*2061’) >
where
k —2ar —2ar\"! < ankbnk )
R =—-=-2 2 1- -
(r) . af3 + 2ane ( e ) + -

P (G + Lby + Lo+ 151 —e7)

2F1 (ank’ bnk’ Cnk> 1- 6_20”)

>

E} - M
402

>

ank:77+/3+\/é(Enk+M)_
04

A E - M?
by =n+p- \];(Enk"'M)_kALT’
Cuk = 271

(35)

According to (26), we obtain the following form of energy
eigenvalue equation for scattering states:

A EX - M?
7I+.3—\j; (Epic + M) - - k4(xz =n (36)

Now, by finding the asymptotic form of (32) for large r, we try
to obtain the scattering phase shifts. For this purpose, we use
the following property of the hypergeometric function:

,F) (a,b,¢;x)

_T(@©T(c-a-b)
" T(c-a)T(c-b)

x ,F(a,bja+b-c+1;1-x) (37)

)cfafb r (C) I'(a+b-c)

+(1- T'(a)T ()

x ,Fi(c-a,c-bc-a-b+11-x),

,F, (a,b,c,0) = 1. (38)
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Therefore, we obtain
,F, (a, bc;1 - e_zar)

_T(T(c-a-b)
" T(c-a)T(c-b)

X ,F, (a,b;a+b—c+ l;e_zm) (39)

—2ar\c—a-bT (c)T (a + b- 9]
+ () I (@I ()

x ,F (c—a,c—b;c—a—b+ 1;6_2‘”).

By using this definition

El - M’
B=ik, k= J ke (40)
the upper component of wavefunction is as follows:

Fnk (r) = Nnk(l _ e—Zocr)”e—Ziklzxr

(41)
-2
x 2F1 (ank’bnk’cnk; I-e 06?) .
Now, with (38) and (39) in the limit » — co we have
Fnk (r) — ” (1 _ e—2ar)7/e—2ik10¢r
r—00 r—00

% { r (an) r (an ~ Ok — bnk) 42
r (an - ank) r (an - bnk) ( )

T (Gue) T (@ + bt = Gotl) e4ik1ar}

r (ank) r (bnk)
Then

Fnk (T' - 00) I Nnkr (an)
% I (an — Qi — bnk)
r (an - ank) r (an - bnk)

x (e—z(Zklar—S) + ez(2klar—8)>

I (an — Ay — bnk)
r (an - ank) r (an - bnk)

= 2Nnkr (an)

x cos (2k,ar - 8)

r (an — Ay — bnk)
r (an - ank) r (an - bnk)

xsin<8—2k1(xr+ g)

= 2Nnkr (an)

(43)

The general boundary condition of the scattering state wave
function on the “(k,/27) scale” is

@ (r) = 2sin <k1r - gl + 61>. (44)

5
Therefore, we have
F (r — 00)
— 2Nnkr (an)
r (an — Ok — bnk)
X
r (an - ank) r (an - bnk) (45)
X sin (Zaklr + 2
2
( r (an — Ok — bnk) >)
+arg .
r (an - ank) r (an - bnk)
Thus, we obtain the scattering phase shifts as follows:
T
Ok = ) (I+1) +arg T (6 — @ — buc)
(46)

—arg r (an - ank) —arg r (an - bnk) .

Then we have the scattering phase shifts of the upper
component of wavefunction as

Ok = g (I+1)+arg T (2B)

—argl“(n+ﬁ—\/2;12+ﬁ2+411,8+§(Enk+M))

—arg F(r]+/3+ \/2q2+ﬂ2+4nﬁ+§(Enk+M)).
(47)

For the lower component, with (34), we have

Nnk —2ar\"
G = g 0=

% e—2iklocr { r (an) I (an ~ Gk ~ bnk)
I (an - ank) r (an - bnk)

r (an) I (ank + bnk B an)
r (ank) r (bnk)

x e4ik1ar}
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TABLE 1: Energy eigenvalues of the Yukawa potential for different values of # and k (in % = ¢ = 1 unit) for M = 0.5fm™", A = 0.1, and

« =0.01.
n Lk>0 Lj=1-1/2 Y Eio Lk<0 Lj=1+1/2 Y Ei oo
0 1,1 Opl/2 2 —0.4996006388 0,-1 0s,/, 1 —0.4999001896
0 2,2 0d3/2 3 —0.4991009891 1, -2 0‘()3/2 2 —-0.4996006388
0 3,3 0f5/2 4 —-0.4984006400 2,-3 0ds/, 3 —0.4991009891
0 4,4 09, 5 —-0.4974987420 3, -4 0]‘-7/2 4 —0.4984006400
1 1,1 lpl/2 2 —0.4991009891 0,-1 Lsy, 1 —-0.4996006388
1 2,2 1d3/2 3 —0.4984006400 1, -2 1p3/2 2 —0.4991009891
1 3,3 1f5/2 4 —0.4974987420 2,-3 1d5/2 3 —0.4984006400
1 4,4 19,, 5 -0.4963942080 3,-4 1f, 4 -0.4974987420
1 1,1 2py) 2 —-0.4984006400 0,-1 281, 1 —0.4991009891
2 2,2 2d3/2 3 —-0.4974987420 1,-2 2113/2 2 —0.4984006400
2 3,3 2_)(5/2 4 —0.4963942080 2,-3 2d5/2 3 —0.4974987420
2 4,4 2g7/2 5 —-0.4950856720 3,-4 2_](7/2 4 —-0.4963942080
lim R (r) . T
r—00 x sin | 2ak,r + 5
T k —2ar
= lim | — - 2af + 2ane T (G — @ — But)
r—oo\ +arg .
r (an - ank) r (an - bnk)
x(1-e) " 4 (“k_”k> (51)
Cnk
. JE (ank FLby Lot 1- e—thr) And finally we have
2F1 (ank’ bnk’ Cnk> 1- eizm) -
b Ok = ) (I +1) +arg T (G = duc — b
= 20 + Znk7nk (52)
Cuk —arg T (e — ay) —arg T (e — by -
(48)
Therefore, the scattering phase shifts of two components are
Then we have . :
equal but in a constant coefficient.
Gnk (T' - 00) - anr (an)
4. Conclusions
x I (an ~ Ok — bnk) (49)
T (6 — Ae) T (6o — b)) We have studied the Dirac equation with the Yukawa poten-
o) iCkard) tial and have obtained bound and scattering states of this
—i oar— i oar— . B .
X (e ! +e ! ) > problem. The energy eigenvalues, eigenstates, and scattering
phase shifts have been presented. The numerical results of the
where energy eigenvalues of this work have been compared with the
ones obtained in the literature in Table 1.
N, a,b
Hyo= —2%— <—2(xﬂ + hk ) (50)
Enk + M Cak

Thus with (43), (44), (45), and (49), we have the following:
G, (r — 00)
- 2anr (an)

r (an — Ay — bnk)
r (an - ank) r (an - bnk)

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The authors thank the anonymous referees for the valuable
comments and suggestions.



Advances in High Energy Physics

References

(1]

(2]

(8]

(12]

(13]

(17]

J. Y. Guo and X. Z. Fang, “Scattering of a Klein-Gordon particle
by a Hulthén potential,” Canadian Journal of Physics, vol. 87, no.
9, pp. 1021-1024, 2009.

W. C. Qiang and S. H. Dong, “Analytical approximations to
the solutions of the Manning-Rosen potential with centrifugal
term,” Physics Letters A, vol. 368, no. 1-2, pp. 13-17, 2007.

G. E Wei and S. H. Dong, “Spin symmetry in the relativistic
symmetrical well potential including a proper approximation
to the spin-orbit coupling term,” Physica Scripta, vol. 81, no. 3,
Article ID 035009, 2010.

G. E Wei and S. H. Dong, “Algebraic approach to pseudospin
symmetry for the Dirac equation with scalar and vector modi-
fied Poschl-Teller potentials,” Europhysics Letters, vol. 87, no. 4,
Article ID 40004, 2009.

G. E Wei and S. H. Dong, “The spin symmetry for deformed
generalized Poschl-Teller potential,” Physics Letters A, vol. 373,
no. 29, pp. 2428-2431, 2009.

G. F. Weiand S. H. Dong, “Approximately analytical solutions of
the Manning-Rosen potential with the spin-orbit coupling term
and spin symmetry;” Physics Letters A, vol. 373, no. 1, pp. 49-53,
2008.

G. F. Wei and S. H. Dong, “A novel algebraic approach to spin
symmetry for Dirac equation with scalar and vector second
Poschl-Teller potentials,” The European Physical Journal A, vol.
43, no. 2, pp. 185-190, 2010.

G. E Wei and S. H. Dong, “Pseudospin symmetry in the
relativistic Manning-Rosen potential including a Pekeris-type
approximation to the pseudo-centrifugal term;” Physics Letters
B, vol. 686, no. 4-5, pp- 288-292, 2010.

G. F Wei and S. H. Dong, “Pseudospin symmetry for modified
Rosen-Morse potential including a Pekeris-type approximation
to the pseudo-centrifugal term,” The European Physical Journal
A, vol. 46, no. 2, pp. 207-212, 2010.

V. M. Villalba and L. A. Gonzalez-Arraga, “Tunneling and
transmission resonances of a Dirac particle by a double barrier,”
Physica Scripta, vol. 81, no. 2, Article ID 025010, 2010.

G. E Wei, W. C. Qiang, and W. L. Chen, “Approximate ana-
lytical solution of continuous states for the I-wave Schrodinger
equation with a diatomic molecule potential,” Central European
Journal of Physics, vol. 8, no. 4, pp. 574-579, 2010.

G. FE. Weiand W. L. Chen, “Continuum states of modified Morse
potential,” Chinese Physics B, vol. 19, no. 9, Article ID 090308,
2010.

C. Rojas and V. M. Villalba, “Scattering of a Klein-Gordon
particle by a Woods-Saxon potential,” Physical Review A, vol.
71, no. 5, Article ID 052101, p. 4, 2005.

C.Y. Chen, E L. Lu, and D. S. Sun, “Exact solutions of scattering
states for the s-wave Schrodinger equation with the Manning-
Rosen potential,” Physica Scripta, vol. 76, no. 5, pp. 428-430,
2007.

N. Dombey and P. Kennedy, “Low momentum scattering in the
Dirac equation,” Journal of Physics A, vol. 35, no. 31, pp. 6645-
6657, 2002.

C. Y. Chen, D. S. Sun, and E L. Lu, “Scattering states of the
Klein-Gordon equation with Coulomb-like scalar plus vector
potentials in arbitrary dimension,” Physics Letters A, vol. 330,
no. 6, pp. 424-428, 2004.

W. Greiner, Relativistic Quantum Mechanics, Wave Equations,
Springer, Berlin, Germany, 3rd edition, 2000.

(18]

[20]

(21]

[22]

[26]

L. H. Zhang, X. P. Li, and C. S. Jia, “Analytical approximation
to the solution of the Dirac equation with the Eckart potential
including the spin-orbit coupling term,” Physics Letters A, vol.
372, no. 13, pp. 2201-2207, 2008.

C.S. Jia, P. Guo, and X. L. Peng, “Exact solution of the Dirac-
Eckart problem with spin and pseudospin symmetry,” Journal
of Physics A, vol. 39, no. 24, pp. 7737-7744, 2006.

S. M. Ikhdair and R. Sever, “Exact solution of the Klein-
Gordon equation for the PT-symmetric generalized Woods-
Saxon potential by the Nikiforov-Uvarov method,” Annalen der
Physik, vol. 16, no. 3, pp. 218-232, 2007.

H. Yukawa, “The prediction and discovery of pions and muons,”
Proceedings of the Physico-Mathematical Society of Japan, vol. 17,
no. 3, p. 48,1935.

A. D. Alhaidari, H. Bahlouli, and M. S. Abdelmonem, “Taming
the Yukawa potential singularity: improved evaluation of bound
states and resonance energies,” Journal of Physics A, vol. 41, no.
3, Article ID 032001, p. 9, 2008.

R. Sever and C. Tezcan, “Hypervirial solution for the general-
ized exponential cosine-screened Coulomb potential,” Physical
Review A, vol. 41, no. 9, pp. 5250-5208, 1990.

R. L. Green and C. Aldrich, “Variational wave functions for a
screened Coulomb potential,” Physical Review A, vol. 14, no. 6,
pp. 2363-2366, 1976.

M. Hamzavi, M. Movahedi, K. E. Thylwe, and A. A. Rajabi,
“Approximate analytical solution of the Yukawa potential with
arbitrary angular momenta,” Chinese Physics Letters, vol. 29, no.
8, Article ID 080302, 2012.

M. Abramowitz and I. A. Stegun, Eds., Handbook of Mathemat-
ical Functions with Formulas, Graphs, and Mathematical Tables,

U.S. Department of Commerce, National Bureau of Standards,
New York, NY, USA, 1965.



Journal of Journal of The SCientiﬁC Journal of

Advances in

Gravity e Photonics World Journal SOft Matter sed Matter Physics

Journal of

Aerodynamics

Journal of

Fluids

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Optics

International Journal of

Statistical Mechanics

Journal
=

W Thermodyna

Journal of ‘
Computational
Methods in Physics

W Journal of
International Journal of Journal of Atomic and
Biophysics Molecular Physics

Journal of Journal of

Solid State Physics Astrophysics




