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Chapter 1

The Belle Experiment at the

KEKB collider

The term "B-factory" is used to denote a high luminosity e+e− collider

with center of mass energy
√

s ≈ 10.580 GeV/c2 and asymmetric beam

energy [1]. This type of accumulation ring was conceptually developed in

the late 1980’s in order to study the time-dependent CP violation effects

in the B meson system. So far two B−factories have collected data, KEKB

at the KEK laboratory located in Tsukuba, Japan [2], and the PEP − I I

complex at SLAC, USA [3]. In this chapter we will briefly describe the

physical motivation that lead to the construction of these complexes and

we will focus on the description of the KEKB accumulation ring, where

the Belle experiment was located 1.

1.1 The B−factories

The e+e− colliders operating with a center-of-mass (CM) energy in

the bottomonium region, ranging typically from 9.4 GeV to 11 GeV, have

played a dominant role in the study of the CP-parity violating effects in

1For a more complete historical introduction, see [1]
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CHAPTER 1. The Belle Experiment at the KEKB collider

the B meson system since the late 1980’s.

Among all the bottomonium states that, having quantum numbers 1−−,

can be directly produced in e+e− collisions, the Υ(4S) is located only 20

MeV above the threshold for the BB̄ pair production and its dominant de-

cay mechanism is the OZI-allowed process Υ(4S) → BB̄ 2. This reaction

is characterized by a very low momentum transfer Q2, thus the B mesons

are produced coherently and almost at rest in the Υ(4S) reference frame.

The advantages of the experiments at e+e− colliders with respect to the

one hadronic machines, like HERA-B [4], are evident if we consider that

there is no underlying event activity in the process e+e− → BB̄, that the

background due to the QED process e+e− → qq̄, with q = (u, d, s, c) can

be greatly reduced by reconstructing one B meson in one of its dominant

decay modes, and that the complete reconstruction of one of the B mesons

allows to study the decay modes involving ν or, more generally, weakly or

non-interacting particles like light dark matter candidates. On the other

hand it must be noticed that the B meson production in pp collisions at

high rapidity occur with large cross section, thus experiments located at

hadronic colliders, like LHCb at the LHC [5], are able to collect much

larger B meson samples.

The simultaneous violation of both the charge (C) and parity (P) sym-

metries, the CP violation (CPV), was first observed in the K0 meson sys-

tem in 1964 [6]. The theory describing these effects, developed in different

stages by N.Cabibbo, M. Kobayashi and T. Maskawa (CKM theory)[7, 8],

describes the mixing between different quark flavors in terms of an uni-

tary, 3× 3 matrix whose action is to transform the mass eigenstates |d >

2In the B meson sector the isospin violation is very small and, unlike what is observed
in the D meson systems, the B+B− and B0B̄0 threshold are almost degenerate. For the
same reason the production rate of neutral and charged B is almost equal.
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1.1. The B−factories

, |s >, |b > into the weak interaction eigenstates |d′ >, |s′ >, |b′ >:


u′

d′

s′

 = VCKM


u

d

s

 =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb




u

d

s

 .

The elements of the CKM matrix are in general complex numbers

whose squared module |Vqq′ |2 represent the probability of the transition

q→ q′. The unitarity of VCKM implies the validity of the relations:

V∗udVcd

V∗usVcs
+

V∗ubVcb

V∗usVcs
+ 1 = 0

V∗udVtd

V∗usVts
+

V∗ubVtb

V∗usVts
+ 1 = 0

V∗cdVtd

V∗csVts
+

V∗cbVtb

V∗csVts
+ 1 = 0

VudV∗us
VcdV∗cs

+
VtdV∗ts
VcdV∗cs

+ 1 = 0

VtdV∗tb
VcdV∗cb

+
VudV∗ub
VcdV∗cb

+ 1 = 0

VusV∗ub
VcsV∗cb

+
VtsV∗tb
VcsV∗cb

+ 1 = 0,

(1.1)

each one of whose can be represented on the imaginary plane as a trian-

gle, called unitary triangle. As a consequence, the nine elements Vqq′ cannot

be all independent from each other and VCKM can be re-parametrized as

function of 3 angles θ12, θ13, and θ23, and one phase δ responsible for the

CP violation. Our understanding of the CPV is thus intimately connected

with the assumption that VCKM is unitary. Experimentally, the unitarity

test can be carried measuring the sides and the angles of each unitar-

ity triangle, the latter ones being proportional to the phase of the ratios

present in the unitarity relations.

Not all the unitary triangles, however, can be easily measured. Indeed

VCKM is nearly diagonal, and a hierarchy among the elements of VCKM is
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CHAPTER 1. The Belle Experiment at the KEKB collider

observed with s13 << s23 << s12 << 1. An alternative parametrization

of the VCKM matrix, known as Wolfenstein parametrization [9], highlights

this hierarchy. Instead of θ12, θ13, and θ23, and one phase δ, it uses the four

independent parameters A, ρ, η and λ = sin θ12 = 0.22, where θ12 is the

Cabibbo angle responsible for the u− s mixing. Since θ12 << 1, a power

expansion in terms of this parameter is possible obtaining:

VCKM =


1− λ2/2 λ Aλ3(ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

+O(λ4).

Using this parametrization to re-write the unitarity constraints, it appears

clear that only two unitary triangles, the second and the fifth, have all the

sides of the same order and are not degenerate:

V∗udVcd

V∗usVcs
/

V∗ubVcb

V∗usVcs
≈ O(λ−4)

V∗udVtd

V∗usVts
/

V∗ubVtb

V∗usVts
≈ O(1)

V∗cdVtd

V∗csVts
/

V∗cbVtb

V∗csVts
≈ O(λ2)

VudV∗us
VcdV∗cs

/
VtdV∗ts
VcdV∗cs

≈ O(λ−4)

VtdV∗tb
VcdV∗cb

/
VudV∗ub
VcdV∗cb

≈ O(1)

VusV∗ub
VcsV∗cb

/
VtsV∗tb
VcsV∗cb

≈ O(λ2).

(1.2)

The validity of the fifth unitarity relation, in particular, can be tested by

measuring the Cabibbo mixing angle and the CP violation effects in the

B meson sector 3. The study of this relation become so important during

3In the early 1980’s A.I. Sanda, A.R. Carter and I.I. Bigi highlighted that a large B0 − B̄0

mixing rate could be connected with large CP- violation effects, of the order of 10%, few
orders of magnitude larger than the effects observed in the Kaon sector, leading to a non
degenerate unitarity triangle. The CP violation in B thus become one of the most important
subjects for the test of the CKM theory. Thanks to a first generation of experiments at
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1.1. The B−factories

time that it is the unitarity triangle par excellence (Figure 1.1), and the

measurement of its angles φ1 = arg(−VcdV∗cb
VtdV∗tb

), φ2 = arg(− VtdV∗tb
VudV∗ub

) and φ3 =

arg(−VudV∗ub
VcdV∗cb

) become one of the fundamental tests of the CKM model 4.

Figure 1.1: The unitary triangle.

We will now briefly review the strategy adopted for the measurement

of φ1, φ2 and φ3 [1, 10], showing how it determined all the main aspect of

the B-factories and their detectors .

To measure φ1 both the B meson resulting from Υ(4S) → B0B̄0 decays

msu be reconstructed, one in the CP violating final state, sCP, and one in a

final states that allows to determine the original flavor of the B, stag. With

both the B fully reconstructed, the decay rate for the sCP production can

be written as:

P(∆t, q;S ,A) = e−|∆t|/τB0

4τB0
(1 + q(S sin(∆md∆t) +A cos(∆md∆t))),

where ∆t is the difference between the proper time of BCP and Btag, q =

±1 is determined by the flavor of Btag, ∆md and τB0 are respectively the

mixing frequency and the lifetime of the B0, and finally A and S are the

amplitudes corresponding to direct and indirect CP- violation. Since in

e+e− colliders, first ARGUS at DORIS-II (DESY), then CLEO at CERS (Cornell), a large
mixing rate between B0 and B̄0 was observed, an a new generation of experiments become
necessary in order to measure the angles of the unitarity triangle in the B meson sector.

4We use for the angles of the CKM matrix the naming convention used by the Belle
collaboration. An alternative convention is α = φ2, β = φ1, γ = φ3.
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CHAPTER 1. The Belle Experiment at the KEKB collider

B → (cc̄)K decays S ∝ sin(2φ2) and a measurement of the transition rate

would lead to the measurement of φ1, the golden mode for this analysis

was identified in the B0 → J/ψK0 process.

The requirement of a precise measure of ∆t was one of the major

drivers for the design of the B− factories. Experimentally, this time can

be deduced by the B decay length, i.e. from the distance between the

production vertex and the decay vertex, therefore the main experimental

challenge for the measurement of the B meson proper time is the ability

to precisely identify and measure displaced vertexes in the event. In the

Υ(4S) reference frame the average B meson flight path is cτ = 1.5 · 10−12

m, well below the typical tracking precision archieved with the technology

available when the B−factories where proposed. Therefore the B vertex

were not distinguishable from the primary one if the Υ(4S) was produced

at rest in the laboratory frame. The proposed solution was to produce the

BB̄ system in a boosted frame, with the result shown in Figure 1.2: the

boost magnifies the paths in the laboratory frame, making them measur-

able with a sufficient precision. This is the reason why a typical feature

of the B-factories is large energy asymmetry between the two colliding

beams, with a consequent boost between the frame of the e+e− pair and

the laboratory frame. Both PEP-II and KEKB had Ee− ≈ 2Ee+ .

In order to measure φ2, processes involving the b → u transition are

needed. The golden mode for the measurement of φ2 was identified in

the B0 → π+π− decay which, despite the simple topology, suffers from

significant background due to the continuum e + e− → qq̄, which is likely

to produce back-to-back, high momentum tracks. Furthermore the process

B0 → K+π−, occurring with a branching ratio almost four times larger

than B0 → π+π−, can fake the signal when a K± is mis-identified as pion.

In order to mitigate the first background an hermetic detector, capable of

12



1.1. The B−factories

Figure 1.2: Topology of a B → J7ψK0 event, with two displaced vertexes sepa-
rated by a distance proportional to ∆t.

precisely reconstruct the global event shape 5, is needed, while in order to

reduce the second background an high K/π separation power is required.

Finally, the measurement of φ3 requires to study the interference be-

tween b → ūcd and b → uc̄d amplitudes. This can be archieved by study-

ing the CP asymmetries in B± → DK±, tagging the charge of the B meson

sing the information of the K± and reconstructing the D meson in the

same final state for both B− and B+. Different methods have been pro-

posed in order to perform this measurement, either by reconstructing the

D → K+K− modes or the D → K−π+. Both methods require to collect

a large data sample in order to obtain a significant measurements: in the

first case the CP asymmetry effects are expected to be rather small, while

in the second case, where large CP asymmetries are expected, Cabibbo-

suppressed transition are always involved and thus the total branching

fraction for the process is low. An high luminosity accelerator was there-

fore needed.

Even without exploring further the physics program of the B− facto-

ries, the measurements of the tree angles of the unitary triangle already

5A more extensive discussion of the even shape observables and their usage for the
rejection of the continuum events will be presented in chapter 3
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CHAPTER 1. The Belle Experiment at the KEKB collider

determined all the mandatory features for this kind of complexes:

• A high luminosity, e+e− collider with
√

s ≈ 10.6 GeV/c and asym-

metric beam energies.

• A Detector with large solid angle coverage, needed for the full re-

construction of the B0B̄0 pairs. Due to the asymmetry between the

beam energies, this requirement was satisfied introducing a For-

ward/Backward asymmetry in the detector geometry.

• High precision tracking capabilities, in order to precisely measure

the B meson decay vertex displacement with respect to the primary

vertex 6

• Precise particle identification over a broad range of transverse mo-

menta, with a specific focus on the K/π separation, in order to iden-

tify the flavor of the Btag and reduce the peaking backgrounds due

to mis-reconstructed B decay modes.

• Electromagnetic calorimetry, in order to provide supplemental in-

formation for the J/ψ → e+e− events and for the reconstruction of

photons.

• µ and KL identification system.

1.2 The KEKB accelerator complex

The KEKB complex [2, 11], sketched in Figure 1.3, was an high-luminosity

electron-positron collider located at the KEK (High Energy Accelerator Re-

search Organization) consisting in a 600 m long linear accelerator (LINAC)

connected with two storage rings. Electron and positron bunches were ac-

celerated by the LINAC and then injected into the two separated rings;

6Herein, we will call primary vertex the position of the e+e− collision.

14



1.2. The KEKB accelerator complex

Figure 1.3: The KEKB accelerator complex

since the bunches acceleration was performed only by the LINAC, the

injection could proceed continuously minimizing the detector dead time.

During the Belle data taking the two beams were kept at different ener-

gies, providing non symmetric collisions; the electrons were injected in

the High Energy Ring (HER) at the energy of EHER ≈ 8 GeV, while the

positrons were injected in the Low Energy Ring (LER) with an energy of

ELER ≈ 3.5 GeV. KEKB was able to provide collision at energies in the CM

frame ranging from 9.4 to 11 GeV, keeping a constant boost between the

CM and the laboratory frame. Table 1.1 summarizes the energies of the

HER and LER beams used during the Belle experiment to provide different
√

s. Both the HER and LER energies were changed when changing
√

s in

order to keep the center-of-mass boost at the constant value of βCM = 0.39.

After the injection three groups of radio-frequency cavities (two placed

along the HER, one along the LER) were used to sustain the energy of the

beams.

In order to avoid parasitic collisions and keep the beam background as

15



CHAPTER 1. The Belle Experiment at the KEKB collider

Table 1.1: HER and LER energies

√
s [GeV] Resonance HER energy [GeV] LER energy [GeV]
9.4603 Υ(1S) 7.1511 3.1286

10.023 Υ(2S) 7.5750 3.3141

10.355 Υ(3S) 7.8262 3.4240

10.579 Υ(4S) 7.9988 3.4995

10.860 Υ(5S) 8.2150 3.5941

low as possible the two beams had a crossing angle of 22 mrad in the

zy (horizontal) plane [12]. This choice has a problematic consequence for

a high-luminosity experiment: a non-zero crossing angle between the two

beams involves a reduction of the luminosity, which is maximum for head-

on collisions. This problem was solved with a particular technology called

crab cavities [13]. A group of special radio-frequencies cavities capable to

provide transverse fields was installed near the interaction point: its effect

was to rotate the beam bunches and provide the head-on collision despite

the finite crossing angle between the lines. Figure 1.4 illustrates how the

crab cavities work and how they effects the bunches’ orientation. With this

Figure 1.4: Crab collision scheme.

technology the total integrated luminosity delivered by the KEKB reached

in June 2010 the 1000 f b−1 (Fig. 1.5), 711 f b−1 were taken with
√

s =

16



1.3. The Belle Detector

10.579 GeV/c2, while the remaining 289 f b−1 at the energies of the other

bottomonia states, obtaining the world largest sample of Υ(1S), Υ(2S),

Υ(5S) and e+e− → qq̄ continuum.

Figure 1.5: Evolution of the integrated luminosity collected by the Belle experi-
ment.

1.3 The Belle Detector

The Belle Detector [14] was a cilindrical 4π multi-purpose spectrome-

ter. It was divided into tree sections: a main central region (Barrel), located

at mid-rapidity with respect to the interaction point, and two octagonal

endcaps that extended the particle identification (PID) and calorimetric

capabilities in the high rapidity region. The total angular coverage of the

apparatus was 4π in the azimuthal angle φ, defined as the rotation angle

along the beam axis, and between 17◦ and 150◦ in the polar angle θ.

17



CHAPTER 1. The Belle Experiment at the KEKB collider

Figure 1.6: Belle detector layout

The tracking was performed by two sub-detector systems in a magnetic

field parallel to the beam axis: a silicon vertex detector (SVD) located close

18



1.3. The Belle Detector

to the beam pipe, surrounded by a large gas-filled drift chamber (CDC)

able to provide information on both the particle’s direction and their spe-

cific ionization. Two PID-dedicated detectors were arranged around the

CDC: a time of flight counter (TOF) made with two layers of fast scintilla-

tors in the Barrel region and a Cherenkov threshold counter (ACC) which

used aerogel tiles as radiator. The latter one was installed in the Forward

and Backward end-caps as well. The photon and electron reconstruction

was performed by an electromagnetic calorimeter (ECL) made of NaI(Tl)

crystals and covering both the barrel and the two end-caps regions. A

superconducting solenoid, providing a 1.5T magnetic field was located

outside the ECL, while the µ and KL reconstruction was performed by a

system of RPC included in the iron return joke of the magnet (KLM). For a

brief time, an extreme forward calorimeter (EFC) was installed to increase

the ECL angular coverage.

1.3.1 Beam pipe and Silicon Vertex Detector

The innermost part of the Belle Detector, consisting in a low-Z beam

pipe and a silicon-based tracking system (Silicon Vertex Detector, or SVD)

underwent to major modification in the middle of the data taking period.

The two phases are commonly denoted as SVD1 and SVD2 phases. Dur-

ing the first phase, which lasted from 1999 to 2003, a 20mm radius, double

wall beryllium beam pipe was installed around the interaction point. A

10µm-thick gold coating was added to the inner wall in order to absorb the

synchrotron radiation arising from the beams and prevent it to reach the

innermost layer of the SVD. The SVD itself (shown in Figure 1.7) consisted

in 3 layers of double-sided silicon strips (DSSD) arranged in a barrel-only

geometry, with a polar angular coverage 23◦ < θ < 140◦, smaller than the

outer detector acceptance. The first layer of the detector was located at 30

mm from the interaction point, while the most external one was at 60mm

19



CHAPTER 1. The Belle Experiment at the KEKB collider

from the IP.

The resolution on the impact parameter σip reconstructed with a multi-

Figure 1.7: The Belle silicon vertex detector with the SVD1 configuration

layer detector strongly depends on the ratio or the outer to the inner layer

radii r1 and r2:

σip ∝

√
1 + r2

1
r2

2

1− r1
r2

;

these considerations, together with the need for a more radiation-hard de-

sign and a larger angular coverage, lead to a radical modification of the

SVD after four years of operation. A new beam pipe, with same geometry

but reduced radius, was installed, and the SVD1 was replaced with a new

detector (SVD2) consisting in 4 DSSD layers located at 20 mm, 44mm, 70

mm and 88mm from the interaction point, all of them covering the whole

nominal detector acceptance (Figure 1.8). Thanks to the new geometry,

a reduction of rin/rext from 0.50 to 0.23 was obtained, significantly im-

proving the impact parameter resolution. The electronics readout went as

well under radical modification. The original VA chips produced in 1.2µm

CMOS technology, capable of tolerate a 200krad dose, were replaced after

one year of operation with a version in 0.8µm CMOS in order to archieve

20



1.3. The Belle Detector

Figure 1.8: Upgraded SVD layout

stronger radiation tolerance (up to 1Mrad). In 2003 the dose accumulated

in the first layer reached 900krad, and together with the replacement of

the SVD1 with SVD2, the VA chips were replaced with the newer VA1TA,

capable of resist up to 20Mrad. The new chips granted a faster signal

shaping and a reduced dead time. Thanks to the constantly increasing

instantaneous luminosity of the KEKB accelerator, at the end of the data

taking only 15% of the data had been taken with the SVD1 configuration.

The standard Belle MC simulation accounts for this changes in the track-

ing performances and reconstruction efficiency The performance in the

impact parameter reconstruction is a function of the pseudo-momentum

of the track, for both the z direction and the xy plane, as shown in Figure

1.9.

1.3.2 Central Drift Chamber

The Central Drift Chamber (CDC) was a gas-filled wire chamber. Wire

were arranged in 50 super-layers, each one comprising from three to six ei-

ther axial or stereo layers and three cathode strip layers, for a total of 8400
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CHAPTER 1. The Belle Experiment at the KEKB collider

drift cells. In order to maximize the acceptance the CDC structure was

asymmetric (Fig. 1.10),

Figure 1.9: SVD performances in impact
parameter measure. Top: z-axis di-
rection; Bottom: xy plane. The tri-
angles (circles) represent the resolution
obtained with SVD 1.5 (2.0).

with a conical shape studied to

keep the detector as close as possi-

ble to the interaction point. Having

an inner radius of 88mm (increased

to 103.55 mm after 2003 to provide

the necessary space for the SVD2),

the CDC was the main tracking ap-

paratus in any kinematic range of

interest for the experiment, with

the SVD providing mainly addi-

tional information for the vertexing

rather complementary tracking in

the low transverse momentum re-

gion. Both the devices were oper-

ated in a 1.5T magnetic field. In

addition to providing three dimen-

sional reconstruction of the charge

particle trajectories, the CDC was

also designed to measure their spe-

cific ionization and thus contribute

to the particle identification and to

provide a fasts track reconstruction

used by the global trigger logic.

The gas mixture was chosen

in order to minimize the coulomb

scattering and the radiation ab-

sorption: the chosen 50% helium - 50% ethane mixture offered a long
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Figure 1.10: The Belle CDC

radiation length (640 m) and a velocity drift that saturates at the value of

4 cm/µm with an electric field of 1.6 kV/(cm · atm).

The momentum resolution of the CDC has been measured with cosmic

rays, obtaining the distribution shown in figure 1.11. The large ethane

component provided a good dE/dx resolution (Fig. 1.12), estimated with

beam tests to be 5.2% for 3.5 GeV/c pions. The dE/dx information con-

tributes to the likelihoods used for the particle identification.

Figure 1.11: Transverse momentum resolution of the Belle drift chamber.
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Figure 1.12: Specific ionization as function of the track momenutm in the Belle
CDC, from beam data.
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1.3.3 Aerogel counter and Time of flight detector

An Aerogel Cherenkov Counter System (ACC) and a Time Of Flight

detector (TOF) were placed between the CDC and the electromagnetic

calorimeter, as shown in Figure 1.13. The ACC system, consisting in 960

modules of hydrophobic aerogel with refraction index between 1.01 and

1.03, was optimized in order to separate kaons from pions in the range not

covered by the dE/dx information. The TOF consisted in a 4 cm thick fast

Figure 1.13: The Belle Aerogel counter.

scintillator layer, with a time resolution of 100 ps for particle with momen-

tum below 1.2 GeV/c. A layer of 0.5 cm thick scintillator (TSC) was used

as coincidence system in order to avoid noise from accidental counts (Fig.

1.14). The TOF system is used as part of the trigger system for the other

subsystems.

The inner radius of the ACC was 0.880 m, so only particles with transverse

momentum pt > 398 MeV/c could reach this section of the detector.
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Figure 1.14: The Belle Time of Flight detector.

1.3.4 The electromagnetic calorimeter

The Belle Electromagnetic Calorimeter (ECL) was divided into three

sections, the barrel and the two end-caps ("forward" and "backward" with

respect to the HER beam direction). The total coverage is 91% of the solid

angle, with a 3% of acceptance loss due to the gaps between barrel and

end-caps that provides the pathway for the cabling system of the inner

detectors. The ECL consisted in 8736 CsI(Tl) crystals with a typical di-

mension of (55x55)mm on the front face and 30 cm of depth, equivalent

to 16.2 radiation lengths, arranged to point approximately to the primary

verted region (Fig. 1.15) . The size of the crystals was arranged in such

a way that approximately 80% of the total energy of a photon injected in

its center remained contained in the crystal. The energy resolution studies

were performed with electrons and photon beams, using 3x3 (Fig. 1.17)

and 5x5 (Fig. 1.16) crystal blocks.

The energy resolution shape can be fitted with the quadratic sum of three

terms obtaining, for a 5x5 block:

σE

E
=

0.0066(%)

E
+

1.53(%)

E1/4 + 1.18(%).
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Figure 1.15: The Belle Calorimeter

For a 3x3 block the parameters are different but the functional form is the

same:
σE

E
=

0.066(%)

E
+

0.81(%)

E1/4 + 1.34(%)

The photon reconstruction algorithm uses both the 5X5 and 3X3 block

information.

In addition to photon reconstruction, the ECL was used as luminosity

monitoring detector by counting the rate of Bhabha events.

Figure 1.16: ECL energy resolution
using a 5x5 block of crystals

Figure 1.17: ECL energy resolution
using a 3x3 block of crystals
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The ECL resolution in measuring the invariant mass of photon pairs is

a crucial feature in the study of transitions involving the η reconstruction.

Figures 1.18 and 1.19 show the invariant mass distribution of reconstructed

π0’s and η’s in hadronic events, where the photon energy is required to be

greater than 30 MeV/c2.

Figure 1.18: γγ pairs invariant mass in
the η region, from hadronic events

Figure 1.19: γγ pairs invariant mass in
the π0 region, from hadronic events

1.3.5 Kaons and Muons detection system

The KLM consists in alternating layers of charged particle detectors

and 4.7 cm-thick iron plates, with a total absorption length or 3.9 interac-

tion lengths.

The detection of charged particles is provided by a glass-electrode-resistive

plate chambers, arranged in double layers called super-layers as shown in

figure 1.20.

The KLM performances in muon detection were studied with cosmic rays

with momentum greater than 500 MeV/c, since particles with lower mo-

mentum produced in the IP can not reach the KLM due to the presence

of the 1.5 T magnetic field. The pions were selected from Ks → π+π−
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1.4. Particle identification

Figure 1.20: The Belle Kaon and Muon detector

events in e+e− collisions. For muon with momentum above 1.5 GeV/c the

identification efficiency is over 90% and the fake rate is less than 5%.

1.4 Particle identification

The particle identification is performed combining the time of flight

measured by the TOF, the Cherenkov light yield measured by the ACC,

the specific ionization measured by the CDC and, eventually, the energy

deposited in the ECL and the signal left by the track in the KLM sistem.

Instead of absolute probability, the Belle PID classification for hadrons is

based on binary likelihood ratios. Likelihood functions Lα for different

mass hypotheses α are calculated from the physical quantities measured
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by the PID subsystems accounting for the direction and momentum of the

track, and then combined in the likelihood ratios

Rα:β =
LTOF

α LACC
α LCDC

α

LTOF
α LACC

α LCDC
α + LTOF

β LACC
β LCDC

β

where α and β are two mass assumpions. By construction Rα:β ≈ 1 if α

is the correct assumption and Rα:β ≈ 0 if β is the correct assumption. For

example, the tipical requirement for pion identification is Rπ:K > 0.6 and

Rπ:p > 0.6.

For electrons and muons the strategy is slightly different, since only

one binary ratio is constructed:

Rµ,e =
Lµ,e

Lµ,e + Lhad
,

where Lhad = Lπ + LK + Lp and in Lµ,e is included also the information

provided by either the KLM for muons or the ECL for electrons. The

performances of the PID logic are reported in Figure 1.21
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Figure 1.21: Summary of the PID performance of the Belle Experiment.

1.5 Data taking conditions and data samples

The Belle datasets are divided into experiments, each one lasting several

months and including data taken at different energies. Between one ex-

periment and the following, a major shutdown for either maintenance or

upgrades occurred. Each experiment is further divided into runs, each one
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lasting from few minutes to few hours and comprising events recorded at

a single beam energy. When a data acquisition (DAQ) error or a beam

dump occurred, the run was stopped and a new one was started. The

datasets devoted to physics studies can be divided into three general cat-

egories: scan, on-resonance and continuum. On-resonance data are taken on

the peak of one of the bottomonium resonances, and represent roughly

90% of the total events. In order to fine-tune the beam energy around the

resonant peak position, a short scan was performed. The beam energy

was changed by few tens of MeV around the nominal position to deter-

mine the maximum of the hadronic cross section, identified as the optimal

data taking point. Furthermore physics-dedicated scans were performed

in the region between the Υ(4S) and the Υ(6S) changing the beam en-

ergy by either 100-MeV or 10-MeV wide steps, in order to measure the

hadronic cross section in this region. Finally for each data taking period

on resonance a set of continuum data, usually consisting in ≈ 10% of the

corresponding on-resonance sample, was taken lowering the CM energy by

60 MeV in order to allow the study of the qq̄ background. During the

periods in which the beams were not available, cosmic ray events were

recorded for calibration and alignment purposes.

The luminosity integrated by Belle is summarized in Table 1.2

Table 1.2: Summary of the integrated luminosity collected by the Belle experi-
ment, in units of f b−1. The data taken for brief scans or machine studies are not
reported.

Energy region on-resonance continuum Physics scan
Υ(1S) 5.7 1.2
Υ(2S) 24.9 1.7
Υ(3S) 2.9 0.2
Υ(4S) 702.6 89.4
Υ(5S) 121.1 1.7
Υ(5S)-Υ(6S) scan 27.6

32



Chapter 2

Bottomonium

In this chapter we will give an overview of the physics of the heavy

quark bound states, generally called quarkonia, with a specific focus on

the most recent developments in the bottomonium sector. We will start

with a short review of the basic properties of the theory of strong inter-

actions, the quantum chromodynamics [15], and we will show how these

properties determine the shape of the QCD non-relativistic potential used

in the description of quarkonia. In the second section we will then give

an overview of the basic bottomonium properties as they can be deduced

from a naive potential model, with a particular focus on the energy levels

and the relevance of the relativistic corrections. The final part is devoted

to the most recent developments, both theoretical and experimental, that

revived this sector of particle physics making it a new and fertile frontier

for the study of low-energy QCD [16, 17]. After discussing the discovery

of new states that do not fit either the predicted spectra and cannot even

be described as pure QQ̄ bound states, we will focus on the problems

faced by our experimental search: the puzzle of the hadronic transitions,

the role of the Heavy quark spin symmetry in bottomonium, and the in-

terpretation of the hyperfine splittings in the 1P and 1S levels.
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2.1 Basic properties of Quantum Chromodynamics

The quark model was introduced by Gell-Man [18] and Zweig [19, 20]

to describe the recurrences in the mass spectra of the hadrons known in

the middle 1960s. Hadron were supposed to be composed of fundamental

fermions with fractional charge, the quarks, each on having a new quan-

tum number, the flavor. In this scheme the hadrons obey a symmetry,

partially broken by the mass difference between the three quarks, based

on the SU(3) group.

The theory of the interaction among these new fundamental particles

is the quantum chromodynamics (QCD) , whose basic properties can be

inferred by some experimental observations.

Since the processes dominated by the strong interaction were observed

to occur on a timescale of the order of the electromagnetic ones, it is rea-

sonable to assume that the mediator for such interaction is a massless

boson. However, unlike QED, one single charge is not enough to ex-

plain the properties of hadrons. Indeed in the quark constituent model

the ∆++ baryon, whose spin is 3/2, is interpreted as a bound state of 3

quarks u with same spin alignment, therefore the total wave-function of

the three quarks is completely symmetric, which is forbidden for 3 iden-

tical fermions by the Fermi principle. In order to make the wave-function

completely anti-symmetric, an additional degree of freedom was intro-

duced, the color, an equivalent of the electric charge for strong interaction.

The minimal number of colors required to antisimmetrize the ∆++ wave-

function is three, therefore the underlying symmetry of the QCD must be

SU(3) and not simply U(1) as happens in the case of QED. This SU(3)color

symmetry is a perfect symmetry of the theory, and must not be confused

with the SU(3)flavor accidental symmetry introduced by the quark model

34



2.1. Basic properties of Quantum Chromodynamics

for the low mass hadrons. The full QCD Lagrangian can be written as

LQCD = ∑
f

q̄ f (i /D−m f )q f −
1
4

Ga
µνGaµν,

Where q f are six massive Dirac fields representing the six quarks, each

one having mass m f , /D is the covariant derivative containing the coupling

between quarks an the gauge fields and 1
4 Ga

µνGaµν controls the dynamic

of the gluonic fields only. The covariant derivative depends on the gluon

fields Aµ, which is representable as a 3x3 matrix, as

/D = γµ(∂µ − igAµ),

where g is a coupling constant. Since the underling symmetry of the QCD

is SU(3), in total 8 gluonic fields are present, each one corresponding

to one generator of the SU(3) group which can be represented by the

Gell-Mann matrices λa, so that Aµ = 1
2 ∑8

a=1 Aa
µλa. While in the QED La-

grangian the photon is neutral and interacts only with charged particles,

the gluons are colored objects that can interact with themselves, originat-

ing purely gluonic vertexes. This is perhaps the most relevant feature of

QCD, and has deep consequences. Asymptotic freedom is the name given

to the peculiar behavior of the QCD coupling constant, which is found

to be large at low momentum transfer and decrease with increasing en-

ergy. In the coordinate space, αs is small at short distances and surpris-

ingly increases with increasing distance, therefore behaving oppositely to

the QED coupling constant α. This behavior, as shown in Figure 2.1 has

been confirmed in multiple experimental conditions. The first evidence

for this behavior was found in deep-inelastic scattering reactions in 1969

[22], while the theoretical explanation came in 1973 in terms of renor-

malization and running coupling constant [23, 24]1. In the case of QED

1For an historial review, see [25]
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Figure 2.1: αs as function of the transferred momentum Q, from [21]. The mea-
surements from different experiments are superimposed to the theoretical pre-
diction

the quantum fluctuation of vacuum are reabsorbed in the coupling con-

stant, which becomes function of the transferred momentum. In the case

of QCD the same effect occurs, but the vacuum polarization is composed

by different contributions, due to either quark or gluonic loops. While

the first ones have a screening effect, decreasing the effective strength of

the interaction, the second one act in the opposite direction, increasing it.

Two typical diagrams with screening and anti-screening contribution are

shown in Figure 2.2 The net result is that the strong coupling constant

Figure 2.2: Left: 1-loop diagram with quark loop. Right: example of purely glu-
onic loop.
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decreases with increasing transferred momentum, therefore the QCD is

treatable perturbatively at high energies only:

αs(r) =
2π

9ln 1
rΛQCD

ΛQCD ≈ 250 MeV is the QCD scale parameter and r is a distance.

The second peculiar feature of QCD is the confinement [26, 27]: all the

observable hadrons are color singlets, i.e. colorless, and no free colored ob-

ject can exist at distance scales larger than 1/ΛQCD
2. This property, which

is introduced by the lack of experimental observations of free quarks, is

deeply connected with the asintotic freedom : to understand, at least quai-

tatively, this process let us assume to have two quarks in color singlet con-

figuration, and let’s try to obtain one free quark by pulling them apart,

as shown in Figure 2.3. While they separate, the QCD coupling increases

Figure 2.3: Graphuical representation of two quarks being pulled apart. As the
distance increases the color flux tube connecting them gets stretched until a new
qq̄ pair is created

and with it the energy associated to the gluonic field, which is confined to

2The assistance of free quarks and gluon at larger distances, known as deconfinment, is
possible only for extremely dense or hot systems, like heavy ions collisions.
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a tube-like configuration, the color flux tube [29, 30]. At a certain distance,

the energy associated to the field is large enough to allow the creation of

a new pair of quarks from the vacuum with consequent decreasing of the

field energy. the process can be iterated an arbitrary number of times:

every time we try to separate two quarks, a new pair appears from the

vacuum and saturate the total color, so that no colorless objects can be

create 3.

2.2 The Heavy quarkonium: foundations

The quarkonium, a bound state of two heavy quarks, is a quite unique

environment to study the structure of the quark-quark interaction. This

particular sector of particle physics was suddenly born with the discov-

ery, in 1974, of two new mesons with quantum numbers JPC = 1−− and

mass of approximatively 3.1 GeV/c2[31] and 3.7 GeV/c2[32, 33]. Shortly

after a second family of mesons, with mass greater than 9 GeV/c2 was ob-

served [34]. The new states were rather quickly identified as bound states

of a charm quark c and its anti-quark c̄ [35] (charmonium) and of a bottom

quark b and its anti-quark b̄ (bottomonium), providing for the first time a

strong confirmation of the quark model. In the years following the discov-

ery of the J/ψ and the Υ, a rich population of new states was discovered

and a peculiar pattern appeared. All the states seemed to fit a mass spec-

trum arrangement similar to the positronium, and strong selection rules

were observed in the transitions among different states, suggesting that

the orbital angular momentum is a good quantum number, as shown in

Figure 2.4 and 2.5. In this framework each state is labeled with its mo-

mentum eigenvalue J, its radial excitation number n and the number of

possible qq̄ spin configurations 2S + 1, where S = sq + sq̄. Since the quarks

3This picture is widely used in the simulation of the hadronization processes, i.e. the
process that lead from quarks to observable hadrons
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Figure 2.4: Charmonium spectrum, from [36].

have spin s = 1/2, like in the positronium case both spin singlets (S = 0)

and spin triplets (S = 1) are possible.4.

The patterns in the energy levels of these new state suggests that

the dynamic of their constituent quarks is fundamentally non-relativistic.

Indeed the average velocity of the heavy quark inside a meson can be

roughly estimated by the mass difference between the ground state and

the first radial excitation [40]; assuming that the mass of the ground state

M(1S) is proportional to 2mQ, and that in the first radial excitation a cor-

rection due to additional kinetic energy is present, such that M(2S) =

mQQ̄ = 2mQ + mQv2
Q, the mass difference between the ground state and

the first excitation ∆Mis proportional to mQv2
Q, therefore

< v2
Q >≈ ∆M

M(1S)
.

4In describing these states a notation similar to the one used for positronium is adopted:
we usually refer to the mass difference between a spin-triplet and a spin-singlet state in the
same radial excitation as hyperfine splitting, and we name fine splitting the mass difference
between the different states with same total angular momentum. In this case the naming
scheme is misleading. While in the hydrogen atom the fine splitting is much larger of the
hyperfine one, in bottomonium they are of the same size and, in some cases, the hyperfine
splitting is even larger than the fine splitting in the same radial excitation. The spin singlet
states are sometimes called paraquarkonia, and the spin triplet ones as ortoquarkonia
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Figure 2.5: Bottomonium spectrum, from [36].

In both charmonium and bottomonium ∆M ≈ 0.6 GeV/c2, therefore <

v2
c >≈ 0.2 and < v2

b >≈ 0.05. Therefore, while in the low mass meson

spectrum the quark mass is much smaller than the binding energy and

the relative quark motion is intrinsically relativistic, in the case of heavy

quark the system is non relativistic and the value of the orbital angular mo-

mentum can be assumed as a good quantum number,an a first description

of the state spectrum can be obtained in the non-relativistic limit by solv-

ing a Schrödinger equation with a suitable potential. Relativistic effects,

responsible for fine and hyperfine splittings, can be introduced afterwards

as v2 order correction.

2.2.1 The QCD static potential

Despite the similarities between bottomonium and positronium, a ma-

jor difference arises from the nature of the binding potential. While the

positronium is essentially an electromagnetic state, describable in terms

of classical potential or, looking for a more suitable framework, using the

QED perturbative approach, in this energy regime the QCD coupling con-

stant αs is much larger than the QED coupling constant α, thus the elec-
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tromagnetic interaction can be safely neglected, and the properties of the

bottomonium are completely determined by the QCD structure. At short

distances QCD is perturbative, and we can assume that the single gluon

exchange is the dominant processes. If this is true, the QCD in this regime

resembles the electromagnetic interaction, and we can model it with a

Coulombic-like potential function of the quark distance r, Vshort = γ αs
r .

The asintotic freedom and the confinement however require the potential

to keep increasing with increasing r, so an additional term in the potential

is needed. Historically the confining term is chosen to be a linear function

of r, Vlong = σr. The potential obtained with this assumption, whose shape

is shown in Figure 2.7, is known as Cornell potential[37]:

V(r) = −4αs

3r
+ σr,

Intuitively the presence of a linear-like term at long distances and of a

Coulombic-like one at short distances can be inferred by the comparison

between the quarkonium spectra, the linear oscillator one and the positro-

nium one, as shown in Figure 2.6. The quarkonium spectrum indeed ex-

hibits both the typical feature originated by a purely linear potential, like

the absence of degeneration between the D and P wave states, while the

Coulombic term prevents the S and D states with same radial excitation

number to have same mass.

Another possible choice is the logarithmic potential[38], which inter-

polates the long and short range behaviors:

V(r) = −C log r.

This latter choice was motivated by the observation of very similar energy

level spacings between charmonium and bottomonium, with
mΥ(2S)−mΥ(1S)

mψ′−mJ/ψ
=
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Figure 2.6: The charmonium energy levels compared with the predictions ob-
tained with a Coulombic-like or harmonic potential.

0.955 and
mcog

χb(1P)−mΥ(1S)

mcog
χc(1P)−mJ/ψ

= 1.010. While the Cornell potential reproduces

these similarities only for charmonium and bottomonium, the logarithmic

one predicts the same spacing for any family5.

2.2.2 Relativistic corrections: the hyperfine splitting

The non-relativistic approach clearly describes only the most general

features of the bottomonium spectrum. The presence of a finite hyperfine

splitting among the 1S states clearly shows that a spin-spin interaction,

arising from relativistic effects, must be included for a more accurate de-

scription. However, these relativistic corrections can be included as per-

turbations of the static potential and treated in the Breit-Fermi approxima-

tion. At the v2/c2 order in the relativistic expansion the potential gets the

5This difference was particularly important when the bottomonium was discovered,
since a third family of quarkonia, made of a tt̄ pair, was still expected to appear. For an
historical overview of the potential models in the early quarkonium era, see [39]
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additional terms

V1(~r) = VLS(~r)(~L ·~S)+VT(~r)(S(S+ 1)− 3(~(S) ·~r)(~(S) ·~r)
r2 )+VSS(~r)(S(S+ 1)− 3/2),

where VT is a tensor term, VLS is the spin-orbit term and VSS is the spin-

spin interaction term [40]. The former ones are responsible for the fine

splitting, while the latter one alone controls the hyperfine splitting. In or-

der to get an analytical expression for these three potentials, one can try to

model the whole QCD interaction in term of exchange of mediator parti-

cles with definite spin. The short range part, obviously, corresponds to the

exchange of a vector massless particle and the corresponded potential is

VV . The long term interaction has been modeled in many different ways,

usually as exchange of single scalar particles corresponding to the scalar

potential VS [36] 6. This approach is purely phenomenological: the scalar,

long range potential VS is a single particle exchange model that mimics

the effects introduced by the gluon-gluon interactions that originate the

confining mechanism. With this formalism, the relativistic corrections can

be written as functions of the static long-range and short-range potentials:

VLS(~r) =
1

2m2
br
(3

dVV

dr
− dVS

dr
),

VT(~r) =
1

6m2
b
(

d2VV

dr2 −
1
r

dVS

dr
),

VSS(~r) =
1

3m2
b
∇2VV .

Assuming VV = −4/3 αs
r , the spin-spin interaction term becomes

VSS(~r) =
16παs

9m2
b

δ3~r,

6Alternatives based on the exchange of vector state [41] or mixtures of vector and scalar
states [42] have also been proposed.
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and a very simple yet powerful prediction on the hyperfine splittings can

be obtained: the hyperfine splitting is therefore proportional to the value

of the bb̄ wave-function evaluated in the origin. ∆HF ∝ |ψ(0)|2 [43]. This

means that ∆HF is different from zero only for the states with even ra-

dial excitation number, and that its measurement is sensitive to both the

Lorentz structure of the QCD static potential.

2.2.3 General properties of bottomonium

Assuming that the single gluon exchange to be the dominant interac-

tion among the quark pairs, many general properties of bottomonium can

be inferred by quite simple considerations.

In the quantum mechanical treatment of hydrogenoid atom, the aver-

age distance between the proton and the electron in the fundamental state

is the Bohr radius, function of the interaction coupling and the electron

mass, RB = 1
meα . Since the short term QCD interaction is modeled after

QED, we can estimate the bottomonium radius as

Rbb̄ ≈
1

αsmb
≈ 0.1fm.

More complex calculations including also the long term interaction con-

firm this picture [44, 45]: the bottomonium is a compact state, as shown

in Figure 2.7, and therefore the dominant component of the potential in-

teraction, at least for the ground states, is the short-range one. However

with increasing mass the radius also increases and the contribution due

to the confining term becomes more and more important. This feature, as

we will show briefly, has a major limiting role in our understanding of the

hadronic transitions among quarkonia but also makes the bottomonium

a unique system for studying the transitions from the short-range to the

long-range potential or, in other words, the confinement effects.

44



2.2. The Heavy quarkonium: foundations

Figure 2.7: A Cornell-like potential tuned for bottomonium states. The potential
parameters are extracted from the Υ(1S) and Υ(2S) experimental data. The radii
of different bottomonium states are reported

Bottomonium states are usually divided in two families, according to

their mass. The states with mass lower than twice the B meson mass are

named narrow quarkonia, and are characterized by natural widths ranging

from few tens of keV to few MeV. The states with mass above the 2mB

threshold are much broader, with widths of the order of tens of MeV.

This striking difference is explained by the Okubu-Zweig-Iizuka (OZI) rule

[46, 47]: the amplitude A for a strong annihilation is proportional to the

number n of gluons emitted in the process, so that A ∝ αn
s . The more

massive is the initial state the more energetic are the gluons, and the lower

is αs. In the case of narrow bottomonia the only possible decay mode

is thorugh the annihilation of the bb̄ quark pair in either 2 or 3 gluons

according to the quantum numbers, since the single-gluon annihilation is

forbidden since the bb̄ pair is a color single state, while the gluons belong

to the color octet. The two amplitudes are, respectively, Agg ∝ α2
s and

Aggg ∝ α3
s , therefore we can immediately conclude that the vector states
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such Υ(nS) and hb(nP), which are forced to decay in three gluons, must

be significantly narrower than the pseudo-scalars, like χb0(nP) and ηb(nS),

that can decay in two gluons since Aggg
Agg
≈ αs, in an energy regime in which

αs << 1.

When we then consider states with mass larger than 2mb, the annihilation

of the bb̄ pair is not the only decay mode, since the bottomonium can

dissociate with the emission of a soft gluon that creates a pair of light

quarks that, together with the original b quarks, originates a BB̄ pair. In

this case not only on single gluon is emitted, but its energy is significantly

lower than the energy of the gluon emitted in an annihilation process. The

ratio of the annihilation amplitude to the amplitude for the decay in BB̄

pair can be written as

Aggg

ABB
≈ α3

s (O(GeV))

αs(O(MeV))
.

Since αs(O(GeV)) << 1 and αs(O(MeV)) ≈ 1, we immediately see that

the annihilation mode is suppressed, and therefore the natural width of

these states is much larger than the one of the states below the open flavor

threshold.

Besides the annihilations into gluons, the excited quarkonia can un-

dergo a decay, either electromagnetic or strong, in which a lower mass

quarkonium state is produced in association to a photon or a light me-

son system. The QCD an QED Lagrangian are completely invariant under

charge and parity transformations, therefore the corresponded quantum

numbers are strictly preserved by any strong or electromagnetic interac-

tion. This property allows to set a number of selection rules that determine

which kind of transitions, both radiative and hadronic ones, are allowed

and which are forbidden [36]:

• Radiative transitions (bb̄)′ → γ(bb̄) are possible only between states
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that differs by a unit of angular momentum (|∆l| = 1), so the possible

transitions are P ↔ S and D ↔ P and 3S ↔1 S. The same kind of

transition can obviously happen with the emission of a vector meson

like the ω [48, 49].

• Hadronic transitions with a single scalar meson (π0, η, η′) can con-

nect, if we consider only the angular momentum conservation, each

pair of states. On the other hand the conservation of C- and P-

parity forbids processes like 1−− ↔ (0, 1, 2)−+, namely Υ(nS) →

π0, ηχbJ(mP), while transitions like Υ(nS)→ (π0, η)(Υ(mS), hb(mP))

are still possible. Since all these transition are mediated by the strong

interaction, we must take into account also the (partial) conservation

of the Isospin that greatly suppress the π0 transition with respect to

the η, η′ ones.

• Hadronic transitions with two scalar mesons (π+π−, π0π0) are the

dominant transitions between Υ(nS) states below the open beauty

threshold. The conservation of the isospin requires B(Y(nS) →

π+π−Υ(mS)) ≈ 2×B(Y(nS)→ π0π0Υ(mS)).

2.3 Heavy quarkonium: recent progresses

In the last section we presented the basic properties of bottomonium,

and we showed how they can be described by a static potential with ad-

ditional relativistic corrections. However the description of the fine struc-

tures of quarkonia, and especially of their transitions, required the devel-

opment of more complex tools and theoretical models. For an exhaustive

review on this subject, see [15, 16, 17].
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2.3.1 Quarkonium as a multi-scale system

The description of quarkonium is a rather challenging task for QCD.

At high energies analytical solutions of the QCD Lagrangian can be found

with a perturbative expansion in αs, leading to quite precise results. Some

aspects of quarkonium, like formation and annihilation, can be described

with this approach as well, as they ar characterized by energies of the order

of mb ≈ 4.8 GeV, but this is note the case of the hadronic transitions, were

the involved energies are O(0.1) GeV and the expansion the Lagrangian in

powers of αs is either converging very slowly or not converging at all.

For this reason a massive theoretical effort has been devoted to create

alternative theories. One of the most fruitful idea is to replace the QCD

Lagrangian with an effective Lagrangian that is treatable with a power ex-

pansion in some observable other than αs, obtaining a faster convergence

of the perturbative series. These family of theories are collectively knows

as effective field theories (EFT) [15, 50, 51, 52]. The starting point for the

construction of the most used EFTs is the presence of a natural hierarchy

of scales in quarkonium, as a consequence of the non-relativistic nature

of this system. The quark velocity v is a sufficiently small parameter that

naturally leads to a hierarchical arrangement of different dynamical scales.

The gluons emitted in the annihilation of a bottomonium state have energy

of the order of the quark mass mb. This scale, which is treatable perturba-

tively, is the hard scale. The quark-anti-quark interaction is characterized

by the exchange of gluons at an energy scale of mv, usually called Mid

scale, while the corrections due to the gluon-gluon interaction belong to

the soft scale mv2. An example of the interplay between the different

scales is given in Figure 2.8. The QCD Lagrangian of a non-relativistic

system can be rearranged ordering the different contributions from the

different scales. Since a given physical process is usually dominated by

a certain scale, the effective field theories can be constructed integrating
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Figure 2.8: A Feynman diagram showing interaction at different energy scales

out all the contributions due to scales harder or equal to the one of inter-

est, factorizing the non-perturbative effects in a set of operators that can

be evaluated numerically. Following this approach, the first scale to be

integrated is the hard one, and the correspondent effective theory is the

Non-Relativistic QCD (NRQCD)[53, 54, 55]. This approach is suitable for

the study of all the processes that take place at this scale m, such the an-

nihilation or the production of bottomonium. The underlying idea is to

factorize all the effects at the scale m by introducing a cutoff µ, and encode

the softer scale effects in local operators On(µ, mv, mv2, ...). Therefore the

NRQCD Lagrangian basically reads as a power expansion in m:

LNRQCD = ∑
n

cn(α(m), µ)

mn ×On(µ, mv, mv2, ...),

where the contributions due to the m scale are comprised in the Wilson

coefficients cn. The local operators On model the non-relativistic, non-

perturbative effects and depends on the scale mv

A further step is to integrate the mv ≈ r−1 scale, obtaining a the-

ory suitable for the study of the fine structures of the spectra known as
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potential-NRQCD (pNRQCD) [56]. Its Lagrangian somehow recalls the

structure of the NRQCD one, since the basic approach is similar:

LpNRQCD =
∫

dr ∑
n

∑
k

cn(α(m), µ)×Vk(µ, µ′, r)
mnr−k Ok(µ

′, mv2, ...),

where µ′ is an additional cutoff, Vk(µ, µ′, r) are Wilson coefficients encod-

ing the effects at the scale mv and Ok(µ
′, mv2, ...) are the pNRQCD opera-

tors, evaluable on the lattice.

The lattice QCD is a numerical approach to the strong interaction prob-

lem based on the path integral formalism. Originally delevoped for the

study of the low mass states (glueballs in particular [57]) [58, 59, 60], it has

been re-adapted to the description of the heavy quarks too [61, 62]. The

basic assumption of this approach is that the transition amplitude between

two states can be expressed as the sum of single amplitudes calculated on

every possible path in the phase space that connects the initial and the

final states, each one weighted by the value of its classical action. This the-

ory can be used, under the additional assumption that the most probable

path is the classical one and that the whole amplitude can be expressed

as a perturbative series in the phase space around the classical path, to

perform analytical calculation, obtaining the same results that can be ob-

tained by the perturbative approach. The general aspect of a path integral

can be shown also in the simplest case: a single particle propagator in one

dimension, from the position x0 at the time t0 to the point x1 at time t1 can

be expressed by:

< x1, t1|x0, t0 >= lim
n→∞

kn/2
∫

Dx exp[
∫
LQCDdt]

Where
∫

Dx represents the sum over all the possible path joining (x0, t0)

and (x1, t1), k = m
2πih̄∆t is the normalization constant and

∫
LQCDdt is the

classical action associated to each path. Even if the integration is usu-
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ally performed by introducing a series expansion that makes possible the

factorization of the interaction terms leaving a sum of free particle prop-

agators, this is in principle an exact theory. Therefore it is possible to

perform numerical calculations and obtain matrix elements also for soft or

ultra-soft scale processes in QCD, that are inaccessible with a perturbative

approach.

From the numerical point of view, the key of this technique is the eval-

uation of the quantum operators on a discretized phase space; the tran-

sition amplitude is calculated by the path integration along concatenated

loops. The computational resource required to perform those calculations

are the major limiting factor to the use of this technique. A complete lattice

calculation of a bb̄ bound state is required to satisfy very stringent limits

imposed by the presence of many different energy scales, with non-trivial

interplay between each other: the lattice spacing must be at least of the

size of the De Broglie length of the b quark, i.e. a < m−1
b ≈ 0.04 fm, and

the overall grid of size but be larger than the bottomonium size, therefore

L ≈ 1 fm7. The calculations on such a large grid is still a challenging task

for the the available computational power, and can be considered practi-

cally still unfeasible8. However the NRQCD and pNRQCD operators do

not depend on all the energy scales, and can therefore be evaluated on

much smaller lattices, finally matching the current computational power

[63].

7In terms of energy energy scales, the problem arises from the large difference between
the mass of the b quark and the typical energy of the exchanged gluons. Similar problems
are not present in the low mass meson sector, where the mass of the state is on the same
scale of the binding energy.

8These requirements should be interpreted as minimal. In order to reduce the system-
atic uncertainty on the prediction, lattice spacing as low as 0.005 fm are actually required.
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2.3.2 A new hadron spectroscopy

Aa new rich phenomenology consisting in new exotic states, unex-

pected transitions or sizable corrections to the energy levels above the

threshold has been discovered in the last years, challenging the available

theoretical models and triggering wide discussion in both the theoretical

and experimental communities [15, 16, 17]. The common denominator of

all the new, unexpected effects is the presence of light degrees of freedom

not accounted by the simple bb̄ model. Their presence is not an abso-

lute surprise. The fact that thresholds located nearby a resonant state can

shift its mass [64, 65] or modify its decay is known since long time as

coupled channel effect. For example near the threshold for the open flavor,

the diagrams describing the quarkonium states or their transitions can get

contributions from virtual meson loops similar to the one shown in Figure

2.9. To understand the size and the relevance of these effects, it is useful to

Figure 2.9: An example of a bubble diagram with virtual B mesons, contributing
to the description of the Υ(nS) states near the threshold, from [66].

compare the spectrum of the known states with the theoretical predictions

obtained within the same potential model, turning either on and off the

couple channel effects[66] (Figure 2.10).

The presence in the quarkonium of light degrees of freedom, more

and more important approaching the open flavor threshold, is therefore
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Figure 2.10: Prediction on the bottomonium energy levels with and without ac-
counting for the coupling channel effects, from [66]. The experimental results
are superimposed to the theoretical predictions.

not a new or unexpected phenomenon in the quarkonium sector, and the

couple channel effects were already included in early descriptions of the

dipion transitions from the Υ(3S) [67, 68]. What was surprising in the last

years is the manifestation of light quark effects in a number of different

ways, perhaps the most spectacular one being the rising of large number of

unpredicted states with exotic quantum numbers in both the bottomonium

and charmonium sector.

The quark model, already in its very first formulation, was expected

to produce states other than the ordinary mesons and baryon. Indeed

in principle other quark combination (collectively known as QCD exotics

or simply exotica) can realize color singlets such qqq̄q̄, qqqqq, qqqq̄q̄q̄ [18],

respectively known as tetra-quarks, penta-quarks and di-baryons. Also more

complex combinations of gluons and quarks (hybrids), or gluons only (glue-
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balls) are allowed by QCD and should appear in the hadronic spectrum as

states that do not fit the standard meson and baryon patterns.

The quest for these states was extensively carried on in the light hadron

sector for several decades, always resulting in non-conclusive results[69].

The main reason for this unsuccessful search is probably in the structure

itself of the low mass hadrons. In this region, as we pointed out, the mass

of the constituent quark is much smaller than the binding energy therefore

the systems are completely relativistic and the mixing among different

states is allowed. In addition to that, both the baryon an meson spectrum

are quite densely populated by numerous radial excitations of the same

ground states, whose separation is usually comparable with their natural

width. In other words, in this region the identification of the resonant

states themselves can be rather complex and not trivial, and the QCD

exotic could actually be overshadowed by either mixing effects or by the

presence of quark-model candidates nearby.

On the other hand, the quarkonium spectrum is much more simple:

the presence of unexpected states below the threshold or particularly nar-

row states above it, the observation of states with quantum numbers that

do not fit the qq̄-based predictions or, finally, the observation of charged

states with heavy flavor content are all striking evidences of some new

phenomenology or new family of states. The first manifestly exotic state

was observed by Belle in the B→ Kπ+π− J/ψ decay as a narrow resonance

in the J/ψπ+π− final state with mass of 3.872 GeV/c2 [70]. The X(3872)

was shortly after observed in be produced promptly in high energy pp̄

collisions at Tevatron [71, 72], and then confirmed in different final states

at the B-factories [73, 74, 75, 76].

After the X(3872) many other exotic states were observed, both in B

meson decays or in hadronic transitions among charmonia: the Z(4430)±

was the first charged-charmonium like state to be observed, again by Belle,
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decaying into ψ′π± [77, 78, 79]. Its strong decay into a charmonium state

requires the initial state to already contain a cc̄ pair, but on the other hand

its electric charge can be justified only by the presence of at least other two

quarks, likely to be light. The interpretation of the Z(4430)± as an exotic

state took quite long to be accepted. The BaBar collaboration [80] studied

the same decay with a data sample smaller than the Belle’s one, observing

the same deviation from the phase-space flat distribution but ascribing it

to interference effects due to excited K? resonances in the Kπ channel not

accounted by Belle.

While the debate on the existence of the Z(4430) was going on, Belle

observed an enhanced rate in the dipion transitions Υ(5S)→ Υ(1S, 2S, 3S)

and the totally unexpected transitions Υ(5S)→ π+π−hb(1P, 2P) [81]. The

latter ones especially were expected not be sizable , since they require a

spin flip of the heavy quark, but were observed to be of the same size

of the non-spin flipping processes Υ(5S) → π+π−Υ(1S, 2S, 3S). We will

come back again on the role of the heavy quark spin symmetry (HQSS)

in the description of the hadronic transition and on the anomalous dip-

ion transitions from the Υ(5S) in the section devoted to the discussion

of the phenomenology of the hadronic transitions. For the moment, we

wish simply to remark that the presence of these unexpected transitions

triggered an investigation on the possible HQSS breaking mechanism oc-

curring at the Υ(5S). The analysis of the single pion recoil spectrum

in Υ(5S) → π+π−hb(1P, 2P) and Υ(5S) → π+π−Υ(1S, 2S, 3S) events

showed the presence of two narrow peaks, the Zb(10610) and Zb(10650),

with masses of 10607.2 ± 2.0 and 10652.2 ± 1.5 GeV/c2 [82]. The mass

and the width of these states measured in processes with quite different

phase-space volume as Υ(5S) → π+π−Υ(1S) and Υ(5S) → π+π−Υ(3S),

were found to be completely in agreement, strongly suggesting that the Zb

are not artifacts due to interference effects or final state interactions. For
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the first time a plainly exotic, charged structure was observed and widely

accepted by both the theoretical and the experimental community.

Finally, also the Z(4430)± has started being considered as a true ex-

otic resonance when the LHCb collaboration applied to its data samples

both the fit proposed by Belle and the one proposed by BaBar, confirm-

ing the resonance interpretation given originally by Belle [83]. Despite its

controversial history, the Z(4430)± is now regarded as the first discovered

tetraquark candidate in the quarkonium sector.

Experimentally the study of the exotic charmonium states is much eas-

ier than the bottomonium ones. The former one can both be produced in

e+e− collisions, B meson decays or complete pp̄ annihilations9, while for

the latter one only the first option is available 10. It is therefore quite nat-

ural that the largest fraction of the exotic states have been observed in the

charmonium sector. Alongside with the Z(4430) other six exotic charged

structures have been observed by different experiments: X(4020) (BES-

III [89]), X(4050) and X(4250) (Belle [90], not confirmed by BaBar [91]),

X(4240) (LHCb [83]) Zc(4200) (Belle [92]), all with mass above the open

flavor threshold 11. The most recent, strong evidence of a tetra-quark-like

state in the charmonium family came from the observation of the Zc(3900)

by BESIII and Belle as a J/ψπ± resonance in Y(4260)→ π±π∓ J/ψ [93, 94]

and as a (DD̄?)± enhancement in Y(4260)→ π∓(DD̄?)± [95]. Figure 2.11

shows the charmonium spectrum after the addition of the newly discov-

ered states.

9The study of charmonium in complete pp̄ annihilation was carried on at the CERN
intersecting storage rings [84] and more recently at Femilab [85, 86] until 2000. The pro-
posed Panda experiment [87] at the FAIR facility [88] should resume this kind of research
in the future.

10We intentionally omit from this list the hadronic colliders. A part from the X(3872), no
other exotic state has ever been observed in prompt production from pp or pp̄ collisions,
and the studies of the charmonium-like states at the LHC or the Tevatron has been almost
entirely performed reconstructing them in B meson decays.

11In this context the open flavor threshold is not a fixed value, but is different for each
quantum number.
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Figure 2.11: Spectrum of charmonium and charmonium-like states

2.3.3 Tetraquarks, molecules, and other models

The theoretical interpretation of these states, both in charmonium and

bottomonium is still controversial [96]. Unfortunately all the exotica are

located in the region above the threshold, where even the conventional

state are broader and the theoretical prediction on their position is less

precise, due to the larger and larger effect of the light degrees of freedom.

For some state such the X(3872) and the Z(3915) interpretation as conven-

tional charmonium [97] or the result of the mixing between a conventional

state and and exotic state nearby [98] have been investigated [99, 100, 101].
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Also in the case of charged quarkonia-like, for whom the conventional

interpretation is impossible, many proposals have been made. Some au-

thors remark the fact that many of these states are located close to a thresh-

old for B or D meson pair production or that their decay mode prefers the

open rather than the hidden flavor modes, and interpret them as loosely-

bound, molecular like object, composed by two flavored mesons binded by

a residual strong interaction [102, 103]12. This could be the case of the Zbs

[105], which are both located at less than 2 MeV from the BB̄? and B?B̄?

thresholds respectively, and have as dominant decay Zb(10610) → BB̄∗

and Zb(10659) → B?B̄?. The behavior of the despite the Zb(10659), that

do not decay into BB̄∗ despite the larger phase-space, supports its inter-

pretation as a weakly bound B?B̄? molecule and suggest a similar picture

for the Zb(10610).

Other authors are more keen to interpret the charged states as tetra-

quarks, bound states of four quarks that all interact through gluon ex-

change. In the tetraquark model the for quarks constituting the exotic

state ar arranged in two SU(3)color octet states, the di-quarks, instead

that in two SU(3)color single pairs as happens in the molecular model

[106, 107, 108, 109]. The tetraquark model is certainly more appealing

for its direct connection with the fundamental QCD properties, since the

diquark-diquark is the actual QCD interaction and not a residual Van-

deer-Waals like interaction among neutral objects as the one assumed in

the molecular model. As confirmation of its validity, the tetraquark ap-

proach was recently successfully used to explain the peculiar features of

the SU(3) f lavor nonet of scalar mesons [110]. Some experimental obser-

vation strongly support the tetraquark model: the narrow width of the

X(3872) and its production rate at high transverse momentum in pp̄ and

12The original proposal of weakly bound states formed by light mesons, such as (KK),
was made by Tornquist in the early 1980s [104], and later extended to the heavy mesons
sector. For a compared review of the molecular model and the other proposals, see [96]
and the references therein.
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pp collisions in the TeV regime are hardly justified by the molecular model.

Furthermore after the discovery of the Z(4430) another tetraquark state

with mass mZ = mZ(4430) − (mψ′ − mJ/ψ) ≈ 3900 MeV/c2 was predicted

[111], easily identifiable as the newly discovered Zc(3900).

A final model we wish to report is the hadro-charmonium, which de-

scribes the exotica as conventional charmonium states surrounded by a

"cloud" of light quarks [112]. Pictorially the difference between tetraquarks

and molecule can be represented as in Figure 2.12.

Figure 2.12: Cartoon depicting three different models for the exotic heavy
hadrons. The solid circles represent the color singlets, while the dashed one
represents the color octet configurations. On the left, a heavy meson molecule:
two color singlets interact thorugh a residual color field. In the middle, a
tetraquark: the four quarks are arranged in two diquarks. In the right the
hadro-quarkonium model, in which a heavy meson is surrounded by light
quarks, constituting a light meson.

Unfortunately so far none of these group was able to identify a striking

experimental feature able to distinguish among different models, and the

debate on the nature of the exotic is still very active.

On a more general level, whatever the exact nature of these exotic

states is, it’s certainly true that they are all the result of the presence of

light degrees of freedom inside the QQ̄ states, which can definitively not

be neglected in the revetment of the states above threshold. This is per-

haps the most relevant aspect of these discoveries: while the quarkonium

below threshold is a quite straightforward system and allows to make pre-

cision test of the basic properties of QCD in the non-perturbative regime,
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the region above the threshold is showing all its potential to study the

ultra-soft dynamics of light quarks without many of the theoretical and

experimental complications present in the low mass hadrons.

2.3.4 The hadronic transitions puzzle

QCD multipole expansion

The hadronic transitions among quarkonia are very hard to describe

in the αs pertubative expansion, since they consist in the emission of low-

momentum hadrons that can be interpreted as the emission of soft gluons

(at least two, in order to have a global color singlet state), with energy

of few hundreds of MeV, that subsequently hadronize into one or few

mesons, as depicted in Figure 2.13. This situation is however very similar

Figure 2.13: Sketch of an hadronic transition among two bottomonium states φi
and φ f . The gluon emission and the subsequent hadronization take place in
two different vertexes assume dot be independent.

to the one encountered in the description of the transitions among atomic

levels in QED: in this case, a low energy photon is emitted by the de-

excitation of an electron, and a quite successful theoretical description is

given by the QED multipole expansion. The transition probability Γ between
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a state ψa an a state ψb in QED is proportional to

Γ ∝< ψb|εei~k~r|ψa >,

where ε is the polarization vector, ~k is the photon momentum and r is

the source radius. If the condition kr << 1 is met a power expansion is

possible and

Γ ∝< ψb|ε|ψa > +i < ψb|ε~k~r|ψa > +....

The terms of the expansion are traditionally named electric (E) or magnetic

(M), so that first term is the electric dipole or E1 one, the second one is

the magnetic dipole or M1, the third term is the electric quadrupole or E2

term, and so on.

When dealing with hadronic transitions among quarkonia the situa-

tion is somehow similar. Soft gluons with momentum k are emitted by a

small source of radius r, and for many transitions kr << 1. Therefore the

QCD interaction Hamiltonian can be expanded in a series of multipoles,

reminding the usual electromagnetic multipole series expansion:

HI =
∫

d3xQ(x)tn[x · Ea(x)+ σ · Ba(x)]Q(x)+ ...[checkthis...doyouneedit?]

where ta are the SU(3) generators and the E and B fields are the chromo-

electric and chromomagnetic fields.This theory is known as QCD multiple

expansion (QCDME) [113, 114, 115, 116, 117, 118, 119, 120]. The presence

of the SU(3) generators make a single HI interaction able to change the

color state of a QQ̄ state from singlet to octet: this means that every phys-

ical transition must include at least two single interactions: the first one

turns the singlet state into octet, and the second one re-turns the octet

state into an observable state. This behavior, which is not present in the

electromagnetic interaction, can be interpreted as the emission of at least
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two gluons in hadronic transition, while electromagnetic transitions can

proceed via a single photon emission. As it happens for the QED multi-

pole expansion, this approach is suitable if the size of the emitting source,

in this case the initial bottomonium state, is smaller than the De Broglie

length of the emitted gluon. In this sense the fact that the bottomonium

is, as anticipated, a very compact system is crucial for this model, but the

increasing bb̄ separation as the mass of the state increases fixes a limit to

its applicability. Figure 2.14 shows the radii at which kr = 1, for different

gluon momenta k.

Figure 2.14: Threshold of applicability of the QCDME for different gluon mo-
menta, compared to the bottomonium radii evaluated in the potential model.

QCDME models the gluon emission as a two step process: the emission

of the first gluon turns the initial color singlet bb̄ into a color octet state,

which subsequently emits the second gluon and turn back into a color sin-

glet. Finally the hadronization of the gluons into the final state hadrons

is assumed to be completely independent from the gluon emission vertex.

Clearly the description of the intermediate states plays a crucial role in

this formalism, but also makes these prediction sensitive to the presence

of exotic states nearby the transition region. In the early stages of QCDME

the energy levels intermediate states were computed using potential mod-
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els [119], while more recent works threth the intermediate state as a bb̄g

system, where the two quarks are connected by a color string, and identify

its energy levels with the vibrational level of the string [120, 121].

It can be useful here to explicit report a possible expression [120] for

the ππ transitions among S3 states, which is at the leading order a pure

E1E1 processes 13:

AE1E1 = i
g2

E
6 ∑

K,L

< ΦI |~xk|K, L >< K, L|~xl |Φ f >

EI − EKL
< ππ|EkEl |0 >,

In which the gluon emission is factorized from the ππ creation, repre-

sented by the < ππ|EkEl |0 > term. The intermediate states |K, L > are

a complete set of color octet states that represent a transitional phase of

the bottomonium state, which turns from color-singlet to color octet after

the first gluon emission and turns back into color single after the second

gluon emission. gE is the effective coupling constants of the chromoelec-

tric gluon and the quark. It must be notice that the evaluation of the bb̄

separation ~r is usually carried out with a potential model, whose choice

influences the results of QCDME.

The amplitude for the η transition among the same states gets contri-

bution both from the E1M1 and the M1M2 processes, and it’s dominated

by the first one. The amplitude reads similarly to the one for the ππ

transition, with a major difference represented by an overall multiplicative

factor ΛQCD/mb, that greatly suppresses the η transition with respect to

the ππ one. This factor is connected to the flip of the third component

of the heavy quark spin, and accounts for the violation of the heavy quark

spin symmetry (HQSS). Clearly the spin-flipping amplitude vanishes in the

limit mQ → ∞, in which the HQSS is strictly preserved.

13Here the quark confining string model is assumed for the description of the interme-
diates states, that are assumed to be bb̄g hybrids
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Experimental puzzles

This work is devoted to the study of the η transitions from the Υ(4S)

and Υ(5S) to lower bottomonium states.

We already introduce dthe idea that the study of the hadronic transi-

tion is tightly entangled with the study of the exotic states: if the latter

one are the direct manifestation of the presence of light quarks in the bot-

tomonium not only as virtual pairs emerging from the vacuum, but as

actual valence quarks, the former are sensitive to virtual quark loops, ex-

otic intermediate states or rescattering effects that can enhance them. A

paradigmatic example of this tight interaction is given by the history of the

discovery of the Zb. The first anomaly in the Υ(5S) was observed as an un-

predicted high branching ratio for the transitions Υ(5S) → π+π−Υ(1S),

which was observed by Belle during an early scan of the Υ(5S) region.

As discussed in the previous sections, naïvely the transitions from above

the threshold to narrow states were expected to be negligible. Also sur-

prisingly, the maxima of the e+e− → π+π−Υ(1S) and e+e− → hadrons

cross sections were not coinciding [122], and for some time the hypothesis

of the presence of two overlapping resonances instead of one single bot-

tomonium state was proposed [123] 14. Only as a consequence of these ob-

servations additional studies were performed on larger data samples, and

the unexpected transitions Υ(5S) → π+π−hb(1P) were discovered. Fi-

nally, from the analysis of the π+π−hb(1P, 2P) and π+π−Υ(1S, 2S) dalitz

plots, the Zbs were discovered.

Another peculiar characteristic of the hadronic transitions from above

the threshold is a large violation of the HQSS. The ratios between the η

and ππ transitions among Υ(3S), Υ(2S) and Υ(1S), R3S,2S→1S
η,ππ is of the

14A Recent, more precise and fine-grained measurement by Belle of the R ratio and
of σ[e+e− → π+π−Υ(nS)] in this region seem to suggest that the shift is due to the
interference between the continuum and the resonant cross section [124]. The problem
of the modeling of the structures in this region and their understanding is, however, still
open.
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order of Λ2
QCD/m2

b ≈ 4 × 10−3 as predicted from the QCDME model:

R2S→1S
η,ππ = (1.6± 0.2)× 10−3 [125, 126, 127] and R3S→1S

η,ππ < 2.1× 10−3 [126].

At the Υ(4S) energy the situation is completely reversed. The BaBar col-

laboration measured R4S→1S
η,ππ < 2.4± 0.5 [128], therefore the spin flipping

process is even enhanced with respect to the non spin-flipping one. Soon

after a similar behavior was also observed in the Υ(5S) decays, where the

η transitions [129] are of the same order of magnitude of the ππ ones:

R5S→1S
η,ππ = 0.13 ± 0.10 and R5S→2S

η,ππ = 0.49 ± 0.37. Despite the QCDME

model is expected to be not reliable for wide states, such a spectacular

violation of the HQSS triggered the interest of the theoretical commu-

nity. Table 2.1, 2.2 and 2.3 show a tentative summary of the most recent

predictions on the ππ and η transitions and on their ratios. The predic-

tions reported by Kuang [120] and Segovia and collaborators [121, 130]

are obtained using the QCDME with different models for the interme-

diate hybrid states. The results by Simonov and Veselov [131, 132, 133]

are obtained using the field-correlator approach [134]. The prediction by

Voloshin [40] is obtained scaling the results obtained in the charmonium

to the bottomonium, assuming the QCDME. Meng and collaborators [135]

use a rescattering model with intermediate scalar states while, finally, Guo

and collaborators [136] use the QCDME with an EFT-based treatment of

the B meson loops.

In the ππ transition sector there is always at least one theoretical model

that seems to properly describe separately each the experimental measure-

ment. However these works are focused either on the transitions below

the threshold or on the transitions above the threshold. The only attempt

made to apply a unified approach to all the ππ transitions [130] is largely

underestimating the widths of the Υ(4S) and Υ(5S) decays. The overall

impression is that either we are still lacking a unified approach to all the

hadron transitions from the different states due to theoretical incompre-
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Table 2.1: Theoretical prediction on the partial widths of the ππ transitions
among bottomonium states, from different authors.

Process [120] [131] [132] [135] [130] PDG
Υ(2S)→ Υ(1S) 13 0.46± 0.33 5.14 5.75± 0.47
Υ(3S)→ Υ(1S) 1.0 0.68± 0.48 1.10 0.89± 0.08
Υ(3S)→ Υ(2S) 0.3 1.1± 0.8 0.26 0.57± 0.06
Υ(4S)→ Υ(1S) 1.9± 1.4 1.47± 0.03 1.52 1.7± 0.2
Υ(4S)→ Υ(2S) 0.02± 0.02 1.14± 0.22 0.19 1.8± 0.3
Υ(5S)→ Υ(1S) 1400 327± 100 7.15 292± 152
Υ(5S)→ Υ(2S) 670 422± 160 10.5 429± 230
Υ(5S)→ Υ(3S) 32 319± 160 3.19 264± 167
Υ(4S)→ hb(1P) < 8
Υ(5S)→ hb(1P) 193± 115
Υ(5S)→ hb(2P) 330± 200

Table 2.2: Theoretical prediction on the partial widths of the η transitions among
bottomonium states, from different authors.

Process [40] [120] [133] [135] [121] [136] PDG
Υ(2S)→ Υ(1S) [×10−3] 14 22 60± 40 9.3± 1.5
Υ(3S)→ Υ(1S) [×10−3] 11 3600± 2200 20 < 3
Υ(4S)→ Υ(1S) 2.3± 1.4 6.05 4.0± 0.8
Υ(5S)→ Υ(1S) 8.8± 5.2 20− 150 40± 23
Υ(5S)→ Υ(2S) 10− 100 209± 111
Υ(4S)→ hb(1P) 37.9 ≈ 20
Υ(5S)→ hb(1P)
Υ(5S)→ hb(2P)

Table 2.3: Theoretical prediction on the ratios Rη,ππ for different transitions
among bottomonium states, from different authors.

Process [40] [120] [135] [121] PDG
Υ(2S)→ Υ(1S) [×10−3] 2.3 1.7 (1.6± 0.2)
Υ(3S)→ Υ(1S) [×10−3] 11 25.7 < 2.1
Υ(4S)→ Υ(1S) 1.8− 4.5 2.38 2.4± 0.5
Υ(5S)→ Υ(1S) 0.13± 0.10
Υ(5S)→ Υ(2S) 0.49± 0.37
Υ(4S)→ hb(1P)
Υ(5S)→ hb(1P)
Υ(5S)→ hb(2P)
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hensions, or the physical mechanism generating the transition is strikingly

different in the two mass regions.

While the transitions from above the threshold seems to be overall well

described by the introduction of coupled channel effects, loops or hybrid

states as HQSS breaking mechanism in the QCDME, the theoretical land-

scape is surprisingly confused in the region below the threshold, where

these effects are expected to be small and the HQSS should be dominant.

For Υ(3S) → Υ(1S) we observe an overall good description of the dipion

transition by different models, while the branching ratio of the η one is

systematically overestimated by all the authors. Also in the Υ(2S) case

the η transition seems to be generally overestimated, while for the ππ one

different predictions, quite far one from the other, are reported. From the

point of view of the test of the HQSS, the predictions onRηππ are expected

to be theoretically more precise than the estimation of the partial widths.

Indeed in the Υ(2S) case both the prediction are in good agreement with

the experimental measurement. In the Υ(3S) however we observe that the

η suppression is underestimated by the theory by at least a factor of five.

In a recent proposal E.Eichten [137] suggested that the coupled channel ef-

fects are negligible only in the Υ(2S) → Υ(1S) transitions since the Υ(2S)

is, among all the bottomonium or charmonium vector states, the only on

far enough from the open flavor threshold. Therefore the QCDME free pa-

rameters should be fixed using this transition and not, as was historically

done, using the ψ′ → J/ψ ones. Extensive theoretical predictions based on

this assumption are, unfortunately, still not available at the present time.

While the experimental and theoretical effort on the transitions among

spin triplet states produced a quite complete picture, we still have few in-

formations about the transitions among spin triplet and spin singlet states,

namely Υ → hb. The only strong evidences for transitions in this sector

are for the Υ(5S) → ππhb(1P, 2P) processes observed by Belle. The same
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analysis was performed at the Υ(4S), but no evidence for a dipion tran-

sition to the hb(1P) was found. Both the ππ and η transitions among

these states are spin-flipping processes, therefore the HQSS would predict

branching ratios of the same order of magnitude 15. The only predictions

available are about the Υ(4S) → ηhb(1P). Guo and collaborators [136]

suggest a branching ratio of the order of 10−3, and proposed to compare

the size of the η and π0 transitions to estimate the mass difference between

the u and d quark. However the π0 transition is suppressed by the isospin

conservation and is beyond the sensitivity of the current data samples. A

second calculation is provided by Segovia and collaborators [121], but this

result came after a preliminary result from Belle was released, and should

therefore be seen as a theoretical confirmation rather than a prediction.

2.3.5 Other open problems in bottomonium physics

In this last part we will collect some other aspect of the bottomonium

physics that have not been discussed so far, but that are faced by our

experimental work.

The hb(1P)→ γηb(1S) transition and the ηb(1S) hyperfine splitting puz-

zle

In the discussion of the relativistic corrections to the potential model,

we highlighted that the hyperfine splittings are extremely sensitive to the

Lorentz structure of the potential, in particular to the presence of a non-

scalar long range potential and to the value of the radial wavefunction

evaluated at r = 0. For these reasons this quantity has been object of

countless theoretical predictions from many different groups using differ-

15Actually the η transition is expected to be always suppressed with respect to the ππ
one not only by the HQSS breaking, but also by the SU(3) f lavor breaking effects.
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ent models, since the early days of quarkonium physics 16. The spin triplet

states, Υ(nS) and χb(mP) are well known and their masses have been pre-

cisely measured. Therefore the challenge of the measurement of the hy-

perfine splitting is basically a problem of identification and measurement

of the parameters of the spin singlet states, ηb(mS) and hb(mP) We saw

that the hb(1P, 2P) were only recently accessed trough dipion transitions

from the Υ(4S, 5S). The ground state ηb(1S) can be produced at e+e− col-

liders either by the transition Υ(mS)→ γηb(nS) or by hb(mP)→ γηb(nS).

In the QED multipole expansion at the leading order Υ(mS)→ γηb(nS) is

an M1 transition, whose amplitude is suppressed by a factor 1/m2
b [139]:

Γ(Υ(nS)→ γηb(mS)) =
4
3

k3α
e2

b
m2

b
(< f |j0(kr/2)|i >)2,

where k is the photon momentum, eb and mb are respectively the b quark

charge and mass, α is the fine-structure constant, and < f |j0(kr/2)|i >

accounts for the overlap of the initial and final states wave functions. De-

spite the low branching fraction, compensated by the large data samples

of Υ(2S, 3S) collected by the B-factories and by CLEO, these transitions

were first used to study the ηb(1S) and measure its mass.

Experimental measurements based on the electric-dipole transitions

hb(1P, 2P) → γηb(1S, 2S) became possible only recently, with the dis-

covery of the Υ(5S) → ππhb(1P, 2P) transitions [141]. In this case the

transition amplitude is much large than in the M1 case, with

Γ(hb(nP)→ γηb(mS)) =
4
9

k3αe2
b(< f |r)|i >)2,

corresponding to the branching ratio estimation B[hb(1P) → γηb(1S)] =

(35 ± 8)% [140]. The experimental measurement by Belle of (49 ± 8)%

16The works by Godfrey and Rosner report a nice summary of the theoretical predictions
made before the year 2000 on the hyperfine splittings in the S and P wave systems
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[142] is barely compatible with this prediction. Later studies including

hadronic loop corrections [143] seems to be able to reduce this discrepancy,

but still further experimental confirmations are required.

Concerning the measurement of the ηb(1S) mass, a 3σ-level discrep-

ancy between the result obtained in the E1 and the ones from the M1 pro-

cesses is present, and yet not completely understood. Figure 2.15 shows

the comparison between the different measurements and some of the most

recent theoretical predictions.

Figure 2.15: Summary of the experimental measurements of the 1S hyperfine
splitting in bottomonium (red dots), compared with a selection of the most re-
cent theoretical predictions (black dots). The theoretical prediction are: a) Aarts
et al. (2014) [144], b) Dowdall et al. (2012) [145], c) Meinel (2012) [146], d) Burch
et al. (2010) [147], e) Wei-Zhao et al. (2013) [148], f) Gupta et al. (1994) [149], g)
Radford and Repko (2007) [150], h) Kniehl et al. (2004) [151]. The experimen-
tal measurements are: i) CLEO collaboration (M1 transition Υ(3S)→ γηb(1S))
[152], l) BaBar Collaboration (M1 transition Υ(3S) → γηb(1S)) [153], m) BaBar
Collaboration (M1 transition Υ(2S) → γηb(1S)) [154], n) Belle Collaboration
(E1 transitions hb(1P, 2P)→ γηb(1S)) [142]. The last point, o) is the average of
the measurements obtained using the M1 transitions.

The Υ(1D) triplet
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Montecarlo studies

The primary scope of this work is to search for the new processes

Υ(4, 5S) → ηhb(1, 2P) and, exploiting the subsequent radiative transitions

hb(1P, 2P)→ γηb(1S, 2S), to measure the mass and width of the bottomo-

nium ground state.

This chapter is devoted to the description of the analysis strategy and

the selection criteria adopted for the search of η transitions among Υ(4S, 5S)

and the lower bottomonium states, as well as the E1 radiative transition

between parabottomonia hb(1P)→ γηb(1S).

3.1 Analysis overview

The search for η transitions from Υ(4S, 5S) to spin singlet bottomonium

states is particularly challenging. No hb(1, 2P) exclusive decay modes are

known to have a large branching fraction or a clear experimental signature,

thus a full reconstruction of the final state is not possible and the analy-

sis must be performed inclusively. Since these transitions are two body

processes, their signature is the emission, in the Υ(4S, 5S) reference frame,

of a mono-energetic η meson, eventually associated to an almost mono-

energetic photon due to the hb(nP) → γηb(mS) transition. The energy
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distribution of photon is not monochromatic as the initial η transition and

will boost the hb rest frame. This doppler shift prevents to have a simple

Gaussian peak in the inclusive photon energy spectrum.

Instead of studying the η and γ energy spectrum in the Center of Mass

frame, we use the recoil mass or missing mass technique which has been

successfully exploited in previous Belle analyses [141, 142] and allows to

study both single and cascade decays. The η meson is reconstructed in

the two dominant decay modes η → γγ and η → π+π−π0, therefore

the inclusive η and ηγ recoil mass spectrum is expected to be dominated

by a large, smooth background distribution due either to random γγ and

π+π−π0 combinations or real η arising from background processes. The

description of the stategies adoped for the reduction of this combinatorial

backgroud will be the main subject of this chapter. We will first describe

how the ECL cluster associated to photons are distinguisched from spuri-

ous ECL clusters due to the soft beam activity, the hadronic interactions,

the electronic noise or the reconstruction-induced artifacts. We will show

that the π0 reconstruction plays a crucial role not only for the η → 3π

mode but also for the η → γγ reconstruction, since photons arising from

π0 decays are likely to be a major source of background in the η → γγ

reconstruction, requiring a dedicated veto algorithm. At Υ(4S) and Υ(5S)

energy the largest fraction of the hadronic evens is due to the non resonant

reaction e+e− → qq̄, therefore an event selection based on the topology of

the final state will be implemented in order to select only the event likely

to be associated to a gluon fragmentation.

The radiative corrections to the production of Υ(4S, 5S), which are known

to distort the monochromatic η recoil mass peaks, will be modeled and

included in the analysis. Finally, in order to precisely measure the ηb(nS)

mass and width, the absolute photon energy calibration must be studied

in details using control samples as π0 → γγ, D∗0 → γD0 and η → γγ
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itself.

In principle many η transitions are expected to produce peaking struc-

tures in the η recoil mass, as well as different radiative transitions could

be seen in the ηγ recoil spectrum, as shown in Figure 3.1. The transtions

Figure 3.1: Left: Radiative (dashed) and η (solid) transitions that can appear in
the recoil spectra at the Υ(4S) energy. The black lines indicate unobserved tran-
sitions, while the purple one refers to known processes. Right: The transition
pattern at the Υ(5S) energy.

to hb(1P, 2P) are the primary target of this analysis. As we reported in the

previous chapter, the Υ(5S) → ηΥ(1S, 2S) and Υ(4S) → ηΥ(1S) reactions

have been observed and may serve as validation of the analysis procedure.

The transitions to and from the Υ(1D) triplet have not been observed, but

are favored by the quantum numbers and therefore included in our anal-

ysis. Finally we also consider χb0(2P) → ηηb(1S) since it has been pro-

posed as gateway to the ηb(1S). The Υ(1D) can be produced by either

double radiative cascades through the χbJ(2P, 3P) states or via di-pion

transitions, while the χb0(2P) can result from unobserved radiative decays
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of Υ(4S, 5S). The complete list of transition assumed in this analysis is:

Υ(5S)→ ηhb(2P)[→ γηηb(1S, 2S)]

Υ(5S)→ ηhb(1P)[→ γηηb(1S)]

Υ(5S)→ ηΥ(1D)

Υ(5S)→ ηΥ(2S)

Υ(5S)→ ηΥ(1S)

Υ(4S)→ ηhb(1P)[→ γηηb(1S)]

Υ(4S)→ ηΥ(1S)

Υ(4S)→ γγΥ(1D)→ γγηΥ(1S)

Υ(4S)→ γχb0(2P)→ γηηb(1S)

In addition to the transitions reported above, the Υ(2S) → ηΥ(1S) could

appear. However, given the low branching fraction for this transition com-

bined with the low yield of Υ(2S) arising from either hadronic transitions

or initial state radiation production, we don’t expect any significant signal

and we neglect this contribution.

We will now review some theoretical aspects of the analysis, describing

in detail the kinematic calculations involved in missing mass technique

and the impact of the radiative corrections to the Υ(4S, 5S) production. A

final paragraph will be devoted to the description of the statistical methods

used for the calculation of significances and upper limits.

3.1.1 The missing mass technique

The missing mass technique is widely used in the study of hadronic

transitions among quarkonia when the full reconstruction of the final state

is not possible.

In order to describe this method, let us assume the process

e+e− → A→ hB→ X,
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where A and B are heavy mesons, h is an hadronic state constituted by

one or more light hadrons that subsequently decay1. The final state X

consists in n stable or semi-stable particles2 arising from both the decay of

h and B. Among all these tracks, we are interested only in measuring the

momenta of the nr arising from the decay of h, so that the 4-momentum

Ph = ∑i<nr
i=0 Pi is known. If also the 4-momentum Pin of the initial e+e−

pair is known the total 4-momentum of the not reconstructed part Pmiss ,

corresponding to the 4-momentum of B PB, can be written as :

Pmiss = Pin − Ph.

Therefore the invariant mass of B M2
B = (Pin − Ph)

2 can be measured ne-

glecting the B decay products and reconstructing only a small fraction of

the event, with a dramatic increase of the overall reconstruction efficiency.

For example, in the search for Υ(4S, 5S)→ η(bb̄)′ → ηX the signals appear

as Gaussian-like peaks in the Mmiss(η) distribution, over a large smooth

background resulting from both mis-reconstructed η and real η emerging

from the (bb̄)′ hadronization. While the central values of these peaks is

uniquely determined by the invariant mass of the bottomonium state B

produced in the transition, their width is the result of a non-trivial combi-

nation of different effects. Here we will assume the simple case in which B

has negligible natural width, which is the case for all the transitions con-

sidered in this analysis. In order to explicitly separate the different reso-

lution contribution, it’s first convenient to re-write M2
miss in the CM frame,

where P∗in = (
√

s,~0) and P∗h = (E∗h , ~p∗h), as function of
√

s, ~p∗h = ∑i<nr
i=0 ~p∗i

and E∗h = ∑i<nr
i=0

√
p∗2i + m2

i (from here until the end of the paragraph we

will omit the CM notation, and all the variables will be understood to be

1Typically h = η, π0, ω, (π0π0), (π+π+)
2For the kinematic condition of a B-factory, µ±, π±, K± and KL can be assumed to be

stable, since they are likely to either leave the detector or interact with it before decaying.
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expressed in the center of mass of the e+e− pair):

M2
miss = E2

h − ~p2
h +
√

s2 − 2
√

sEh.

Therefore, applying the usual rules for the propagation of Gaussian un-

certainties, we can obtain:

σ2
M2

miss
= (2EhσEh)

2 + (2phσph)
2 + (2

√
sσ√s)

2 + (2
√

sσEh)
2 + (2Ehσ√s)

2,

where σx is the error on x. In order to further separate the different contri-

butions, the expression obtained above can be further re-written as func-

tion of the momenta pi of the reconstructed particles and their variances

σ2
pi

. Since σ2
Eh

= ∑i<nr
i=0 σ2

pi

pi
2

m2
i +pi

2 and σ2
ph

= ∑i<nr
i=0 σ2

pi
, the total uncertainty

on M2
miss is:

σM2
miss

= (4(Eh
2 + s)

i<nr

∑
i=0

pi
2

m2
i + pi

2
+ ph

2)σ2
pi
+ 4(Eh

2 + s)σ2√
s,

where the contributions due to the tracking of calorimetric performances

are finally separated from the contribution due to the beam energy reso-

lution. While all the single uncertainties have a clear meaning, σ√s should

be interpreted as the uncertainty on the mass of the initial state, which is

related to both the beam energy resolution and the natural width of the

initial state. If the initial state us much broader than the beam energy

spread σbeam, like in the case of Υ(4S), this is the main contributor to the

uncertainty on the initial state kinematics and σ√s ≈ σbeam. In the case of

a narrow state such Υ(2S), on the contrary, σ√s should be replaced by the

natural with ΓΥ(2S) = 23 KeV/c2, making the correspondent contribution

in the error budget negligible. If the investigated process is a two body

decay like in our case, an additional mass constraint on Ph can be applied

with a kinematic fit, resulting in an effective reduction of the σpi and an
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improvement in the recoil mass resolution. Figure 3.2 shows the impact of

a kinematic fit which constrains the γγ pair invariant mass to the η mass

value on the η recoil mass resolution in Υ(4S) → η[→ γγ]hb(1P) simu-

lated events. Thanks to the kinematic fit the resolution on Mmiss can be

improved by a factor 3.

Figure 3.2: η recoil mass in Υ(4S) → η[→ γγ]hb(1P) MC events. The Gaussian-
like peak is due to the η emitted in the transition, while the smooth background
is due to η mesons produced in the hb(1P) annihilation. The Gaussian resolution
archived constraining the η mass is σf = 7 MeV/c2, while without the constraint
we obtain σn f = 20 MeV/c2.

Under certain approximations, the recoil mass method can be also ap-

plied to cascade processes H → xH
′ → xyH

′′
, where x and y are either

photons or hadrons emitted by two consecutive transitions and H, H
′

and

H
′′

are heavy mesons. In those cascade processes it’s possible to construct,

starting from the 4-momenta of x and y, two missing masses variables with

well determined value: Mmiss(x) = MH′ and Mmiss(yx) = MH′′ . There-

fore a signature for the full decay chain (bb̄) → X(bb̄)
′ → XY(bb̄)

′′
can

be searched study the distribution of Mmiss(x) as function of Mmiss(xy),

where the signal would appear as a 2D Gaussian-like structure.

Unfortunately the fit of Mmiss(x) in bins Mmiss(xy) is problematic since in

general these two variables are strongly correlated, as shown in Figure 3.3
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and as appears in the explicit expression of Mmiss(xy):

Mmiss(xy) =
√
(Pin − Px − Py)2 =

√
Mmiss(x)2 + m2

y − 2Pmiss(x)Py.

However, we will show that under certain approximations this depen-

dence can be largely mitigated. In particular, we will focus on the case

in which mH − mH′ ≈ mx, mH′ ≈ mH′′ and mH′ >> my. These are the

conditions met by the Υ(4S)→ ηhb(1P)→ ηγηb(1S) transitions.

First, we construct the invariant quantity ∆Mmiss = Mmiss(xy)−Mmiss(x),

and by substituting the explicit expression of Mmiss(xy) and Mmiss(x) in

the CM frame we obtain

∆Mmiss = Mmiss(x)

√
1 +

m2
y

M2
miss(x)

−
2Pmiss(x)Py

M2
miss(x)

−Mmiss(x).

Since by construction Mmiss(x) = MH′ , if the condition mH′ >> my is met

we can neglect the term
m2

y

M2
miss(x) , obtaining the simplified expression

∆Mmiss ≈ Mmiss(x)

√
1−

Pmiss(x)Py

M2
miss(x)

−Mmiss(x).

A further approximation is possible if Pmiss(x)Py

M2
miss(x) << 1. To see in which

conditions this quantity is small, we first write it explicitly:

Pmiss(x)Py

M2
miss(x)

=
Emiss(x)E(y)− ~pmiss(x) · ~p(y)

M2
miss(x)

=
Emiss(x)E(y)

M2
miss(x)

− ~pmiss(x) · ~p(y)
M2

miss(x)
.

We can now observe that if mH − mH′ ≈ mx, which implies pmiss(x) <<

Emiss(x) ≈ Mmiss(x), and mH′′ ≈ mH′ , which implies Ey << Mmiss(x),

this ratio is expected to be much smaller than 1. Indeed in the transitions

we are going to analyze in this work Pmiss(x)Py

M2
miss(x) ≈ 0.1 and a Taylor series
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expansion can be applied, obtaining the approximate expression 3.4.

∆Mmiss ≈ Mmiss(x)−
Pmiss(x)Py

Mmiss(x)
−Mmiss(x) = −

2Pmiss(x)Py

Mmiss(x)
,

or, explicitly

∆Mmiss =
Emiss(x)Ey − ~pmiss(x) · ~py

Mmiss(x)
=

E(y)(Emiss(x)− pmiss(x) cos θmiss,y)

Mmiss(x)
,

where cos θmiss,y is the angle between the x and y missing momenta. Since

our scope is to determine whatever the central value of the ∆Mmiss de-

pends on Mmiss(x) we can eliminate the dependence on cos θmiss,y per-

forming an integration over θmiss,y and obtaining the average value:

< ∆Mmiss >≈ E(y)
Emiss(x)
Mmiss(x)

.

Assuming mhb(1P) = 9.900 GeV/c2 and mηb(1S) = 9.400 GeV/c2, a variation

of 10 MeV/c2 in Mmiss,η , which is of the same order of the experimental

resolution, corresponds to a variation of the order of 0.1 MeV/c2 on the

central value of ∆Mmiss, far below the expected experimental resolution.

Figure 3.4 shows a Toy-MC simulation for the distribution of ∆Mmiss as

function of Mmiss in Υ(4S)→ ηhb(1P)→ ηγηb(1S). .

3.1.2 Initial State Radiation corrections

The production of a vector state V in e+e− collision at
√

s ≈ 10 GeV can

be completely described neglecting the small contribution due the Z boson

exchange as a pure electromagnetic process. If the radiative corrections

consisting in the emission of photons in the initial state are neglected,

this interaction can be represented by the Feynman diagram in Figure 3.5.

The corresponding cross section can be obtained using the Breit-Wigner
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Figure 3.3: Mmiss(ηγ) as function of
Mmiss(η) in simulated Υ(4S) →
ηhb(1P)→ ηγηb(1S) events.
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Figure 3.4: ∆Mmiss(ηγ) as function of
Mmiss(η) in simulated Υ(4S) →
ηhb(1P) → ηγηb(1S) events. For
convenience the ∆Mmiss(ηγ) value is
shifted by mhb(1P).

Figure 3.5: Feynman diagram for the reaction e+e− → V at the tree-level

formula

σ0(s) =
12πBee

m2
V

m2
VΓ2

V
(s−m2

V)
2 −m2

VΓ2
V

,

where
√

s is the CM energy of the e+e− pair, Bee is the branching ratio of

the decay V → e+e−, and ΓV is the total width of the vector state and mV

is its mass.

At the first order, the process is described by Feynman diagram of the

class shown in Figure 3.6, where a real photon with energy Eγ is emit-

ted by either the electron or the positron in the initial state, resulting in

a decrease of the effective energy in the e+e− center of mass to the value
√

s′ =
√

s(1− Eγ/
√

s). Therefore the direct production of vector states

80



3.1. Analysis overview

Figure 3.6: Feynman diagram of the first order radiative correction to the reaction
e+e− → V

with mass much lower than
√

s can occur at e+e− collider through the

process e+e− → γV ′. This effect, known as initial state radiation (ISR), al-

lowed to perform many studies on charmonium production at B-Factories

[155]. For such events, in which
√

s ≈ 10 GeV and
√

s′ ≈ 4 GeV, already

the first order corrections in α give a satisfactory agreement with the data.

At this order the formula for the cross section σ1(s, x) is factorized in two

parts, one accounting for the emission of a photon of energy Eγ with di-

rection cos(θ) with respect to the beam direction, usually expressed as

function of x = Eγ/
√

s, and one accounting for the production of the

resonant state at the energy
√

s(1− Eγ/
√

s):

dσ1

d cos θdx
=

2α

πx
(1− x + x2/2) sin2 θ

(sin2 θ + m2
e

E2 cos2 θ)2
· σ0(s(1− x)),

where E is the energy of the electron (or positron) in the e+e− CM frame,

s = 4E2, and me is the electron mass. If the detection of the photon inside

the detector volume is not required, we can integrate over all the possible

emission angle and introduce the radiator function W(s, x) defined as

W(s, x) =
∫ 1

−1
d cos θ

ds1

d cos θdx
=

2α

πx
(2 ln

√
s

me
− 1)(1− x + x2/2).
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The differential cross section can be thus rewritten as

dσ1

dx
= W I(s, x) · σ0(s(1− x)).

We see that the radiative correction is completely determined by the be-

havior of the radiator W I(s, x), that can be interpreted as a probability

density function for the emission of a photon with fractional energy x.

This approximation, already suitable for the description of the production

of states with mass much lower than
√

s, fails to model the emission of soft

photons, since W(s, x) is both infrared divergent and not-integrable over

the whole x domain. This effect is particularly important for the study of

Υ(5S) and Υ(4S) decays: even with
√

s = mΥ(nS), the large natural width

of these states allow the process e+e− → γso f tΥ(nS), with Eγso f t ≈ 10 MeV,

to occur, resulting in the production of an Υ(4S, 5S) states with boost dif-

ferent from the nominal value of the e+e− pair. This distortion of the ini-

tial kinematics reflects in a distorted shape of the recoil mass peaks in the

two body decays of such states, and is thus relevant to our analysis. The

soft ISR emission is better modeled by the next-to-next-to-leading-order

(NNLO) formula for the production cross section:

dσ2

dx
= W I I(s, x) · σ0(s(1− x)),

where the second order radiator W I I(s, x) can be expressed as

W I I(s, x) = (∆βxβ−1 +
β2

8
((2− x)(3 ln(1− x)− 4 ln x)− 4

ln(x− 1)
x

− 6+ x)) ·σ0(s(1− x))
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with

∆ = 1 + α
π (3L/2 + π2/3− 2) + α2

π2 δ2,

δ2 = ( 9
8 − 2ζ2)L2 − ( 45

16 −
11
2 ζ2 − 3ζ3)L− 6

5 ζ2
2 − 9

2 ζ3 − 6ζ2 ln 2 + 3
8 ζ2 +

57
12 ,

β = 2α
π (L− 1),

L = 2 ln
√

s
me

,

ζ2 = 1.64493407, ζ3 = 1.2020569.

Figure 3.9 shows the behavior of the LO and NLO radiator3
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Figure 3.7: Left: shape of the radiator functions at the LO (W I) and NLO (W I I)
ISR, as function of x = Eγ/

√
s. Right: Ratio between W I and W I I , as function

of x. The α2 corrections are particularly important in the soft emission regime,
while for x > 0.1 the LO ISR formula is already precise within 10%.

In order to study, as an example, the cross section for the Υ(4S) in e+e−

collision at its mass, we assume that σ0 can be modeled in the Breit-Wigner

approximation by the expression

σ0(x) =
12πBee

m2
Υ(4S)

m2
Υ(4S)Γ

2
Υ(4S)

(s(1− x)−m2
Υ(4S))

2 −m2
Υ(4S)Γ

2
Υ(4S)

,

3The radiator itself appears as a NLO correction to the cross section. For this reason
we will refer to expression at order α as either the NLO cross section or the LO ISR cross
section, while the α2 approximation will be called either NNLO cross section or NLO ISR.
Following this convention, we will refer to the radiator expression at the order α as LO
radiator, and to the one at the order α2 as NLO radiator.
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where s is the CM energy of the beams s = 10.5802 GeV2, Bee = 1.57× 10−5

is the branching ratio of Υ(4S) → e+e−, and ΓΥ(4S) = 20.5 MeV/c2 is the

total Υ(4S) width. The behavior of the differential cross section for Υ(4S)

production is shown in Figure 3.8. We must point out that x cannot be de-

fined at the LO since there is no photon emission by construction, therefore

the shape reported in the figure should be interpreted as the result of an

energy scan in which the beam energy is shifted from
√

s = 10.580 GeV/c2

to the new energy
√

s′, corresponding to x =
√

s−
√

s′√
s . Even at the α2 order,

x
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Figure 3.8: Differential cross section of the process e+e− → Υ(4S) at LO, NLO
and NNLO approximation in α. The variable x is should be interpreted as the
fraction energy of the ISR photon in the case of the NLO and NNLO expression,
and as the fractional shift of the incoming e+e− pair energy in the CM frame in
the case of the LO expression.

the radiator is still divergent for x → 0 but, unlike what happens at the

O(α) approximation, it remains integrable over it full domain. Therefore

it’s possible to perform numerical calculations of the total cross sections.

In order to estimate the Υ(4S) line-shape distortion, we replace σ2 with the
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modified expression

σ̃2 =


σ2, if x > ε

1−
∫ +∞

ε dxσ2
ε , if 0 < x < ε

which is used in a toy-MC generator which simulates the combined effect

of the ISR, the Υ(nS) line-shape, and the beam energy resolution. The

result of the simulation is shown in Figure ??, where we assumed a beam

energy resolution of 5 MeV and we use ε = 10−5. A detailed discussion
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Figure 3.9: Υ(4S) line-shape in e+e− collisions with energy in the CM of
√

s =
10.580± 0.005 GeV/c2, assuming either the LO or the NNLO cross section for-
mula. The Υ(4S) is modeled as a Breit-Wigner resonance with M = 10.580
GeV/c2 and Γ = 20.5 MeV/c2, where the beam energy spread is assumed to be
Gaussian. 106 events are generated for the two cases.

on the impact of the radiative corrections to our analysis is presented in

the next chapter.

3.1.3 Event shape observables

In e+e− collisions at the center of mass energy of few GeV, multi-

hadronic final states can be produced either by the non-resonant produc-

tion of quark-anti-quark pairs via the electromagnetic process e+e− →
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qq̄, where q = u, d, s, c, or by the annihilation of resonant heavy quarks

bound states QQ̄ 4. In the former case the hadrons are produced by the

hadronization of the two quarks which are emitted back-to-back in the CM

frame, while in the latter case the annihilation is more likely to produce

an intermediate gluonic final state with either two or 3 gluons, according

to the resonance’s quantum numbers. Both Υ(nS) and hb(nP) annihilates

predominantly into 3 gluons, while the ηb(nS) can annihilate only in two.

Events involving gluon or light quark hadronization can be distinguished

based on their topology: an high momentum quark pair is likely to pro-

duce two jet-like structures in the detectors, with the final state hadrons

being emitted predominantly along the original qq̄ pair momentum direc-

tion, while hadrons from gluon hadronization do not exhibit a preferred

emission direction, giving origin to a rather homogeneous angular distri-

bution of final state particles.

At the Υ(4S) and Υ(5S) energies, the cross section of the e+e− → qq̄ reac-

tion is much larger than the cross section for the resonant proceeds, thus

the rejection of the continuum based on the event topology is a fundamen-

tal part of our study.

The use of event-shape observables [156] to distinguish between quark

and gluon hadronization was introduced in the ′70, when the search for

gluon-induced jets was carried at e+e− collider with CM-energy of few

tens of GeV as proof of the existence of the gluon itself [157]. Many dif-

ferent observables have been constructed by different authors [158, 159,

160, 161]: sphericity, aplanarity, thrustness, multipole moments and Fox-

Wolfram moments [162] are among the most widely used and the ones

that will be considered for this study. We will now give a brief review of

the main properties of these variables.

The thrust is perhaps the oldest event shape observable. Given an event

4Since now we will refer to the e+e− → qq̄ reaction as continuum or non-resonant, and
to e+e− → (bb̄) as resonant process.
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with N particles (or photons) in the final state, each one with 3-momentum

~pi, and an arbitrary versor ~n we define the quantity T̃ as the normalized

sum of the projections of the particle momenta along the direction ~n

T̃(~n) = ∑i |~n · ~pi|
∑i |~pi|

.

The direction ~n = ~vT which maximizes T̃, and the correspondent value

T = T̃(~vT) are called thrust axis and thrust of the event:

T(~vT) = max
|vT |=1

∑i |~vT · ~pi|
∑i |~pi|

.

We see that the thrust axis is defined such that the projection of the final

state particle’s momenta along it is maximized, so that, in an ideal di-

jet event, it coincides with the di-jet axis. The shape of the event is then

determined by the value of T, which is by construction limited between 0

and 1. A jet-like event has T → 1, while lower values of T are connected

with spherical events. Using the plane defined by the thrust axis, it is

possible to define two additional parameters, here called MM and Mm,

respectively connected to the mayor and minor axis of the event. The

major axis ~vM is constructed with the same approach of the thrust axis,

but using the particle momenta projection over the thrust plane. The major

axis is thus, by construction, perpendicular to ~vT and can be seen as an

analogous of the thrust axis, but restricted on the transverse plane:

MM(~vM) = max
|vM |=1,vM ·vT=0

∑i |~vM · ~pi|
∑i |~pi|

.

The axis perpendicular to both vM and vT is called minor axis ~vm, and

its correspondent event-shape observable, Mm can be calculate with the

same algorithm. The three versors ~vT, ~vM and ~vm and the three scalars T,

MM and Mm define an ellipsoid in the momentum space, with an orien-
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tation with respect to the beam axis direction ~z given by cos θBA = ~vT ·~z.

A perfectly spherical event is thus characterized by T = MM = Mm and

a flat distribution of cos θBA. A di-jet like event will have T > MM and

MM = Mm, and the orientation of the thrust axis will be distributed ac-

cording to the direction of the original qq̄ pair, with cos θBA ∝ 1+ cos2 θBA.

Finally, a planar event will exhibit T > MM > Mm. However in real

conditions the quark fragmentation tends to broaden the jets, the detector

acceptance distances the distributions and, especially at low energies, the

limited number of particles per jet introduces large event-by-event fluc-

tuations. Furthermore, the algorithm for the search of the thrust axis is

both computationally demanding and does not grant the convergence to

the real maximum, thus particular care is needed when using these ob-

servables.

An alternative approach to the study of the event shape is based on the

construction of a symmetric tensor

Sαβ =
∑i

pα
i pβ

i
∑

i
pi

where α and β are indices for the spatial Cartesian coordinates (x, y, z)

and i runs over all the particles and photons in the final state. This ten-

sor can be diagonalized according to the standard rules, obtaining three

eigenvalues λ1 > λ2 < λ3, constrained by the relation λ1 + λ2 + λ3 = 1,

and three eigenvectors ~v1, ~v2 and ~v3. The direction of ~v1 corresponds to

the direction of maximum expansion of the event, and in ideal conditions

coincides with the thrust axis, while ~v2 and ~v3 are the second and third

expansion directions, and play a role similar to the major and minor axes.

It appears clear, at this point, that there is a connection between λ1, λ2, λ3

and T, MM and Mm. Indeed the same information carried by the thrust

variables is present in the eigenvalues of the sphericity tensor: in partic-
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ular the value of λ1, or equivalently the sum λ2 + λ3, is sensitive to the

sphericity of the event, while λ3 is sensitive to its planarity. Thus, the

sphericity S and the aplanarity A of the event are defined as

S =
3
2
(λ2 + λ3),

A =
3
2
(λ3).

Despite the calculation of the event sphericity is straightforward and do

not require any minimization procedure like the calculation of T, the el-

ements of the sphericity tensor are quadratic functions of the final state

particle momenta, and consequently they are, in principle, infrared diver-

gent.

The search for a simple observable which has a separation power com-

parable with S and T, but whose calculation is simple and infrared safe

led to the construction of the harmonic moments Ml and the Fox-Wolfram

moments Hl . The harmonic moments are defined with respect to an arbi-

trary reference axis as:

Ml =
∑i |pi|Pl(cos θi)√

s
,

where θi is the angle between the i-th particle’s momentum and the refer-

ence axis and Pl is the Legendre polynomial of order l. These quantities

are linear function of the momenta, and thus infrared safe, and their cal-

culation do not require any minimization process. However, the presence

of a physically motivated reference axis is crucial, otherwise an arbitrary

choice can easily reduce the separation power between spherical and jet-

like events.

Together with these multiple moments Ml , Fox and Wolfram introduced

another observable, which was due to become one of the most popular
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discriminators between spherical and jet-like events: the harmonic mo-

ments Hl , now universally known as Fox-Wolfram moments. This set of

observables, unlikely all the previous one, are not based on the search

of a main symmetry axis of the event, but are based on the study of the

cross-correlations among the particles in the final state:

Hl =
∑i,j |pi||pj|Pl(cos θi,j)

E2
tot

,

where θi,j is the opening angle between the i-th and j-th particle’s mo-

mentum and Etot is the sum of the energies of all the detected particles.

Furthermore the Hl functions are infrared safe.

Usually the Hl moments are not directly used to categorize the event

shape, but the ratios

Rl =
Hl

H0

are instead used in order to reduce the dependence on the mass assump-

tion used in the calculation of the energy of the particles.

3.1.4 Statistical methods

Our study is performed according to the Belle internal prescription for

the blind analysis. The selection criteria are optimized using the Monte

Carlo (MC) simulation only, and then validated using either control sam-

ples or sidebands samples obtained from the Data. The fitting procedure,

the statistical methods for the evaluation of significances and upper limits,

and the PDFs used for modeling both the signals and the background are

also determined according to the MC simulation. After the optimization

procedure is completed and validated, it is applied to the data sample

and it is not changed anymore. The optimization of the selection crite-

ria is done maximizing the figure of merit F(c) = S(c)√
S(c)+B(c)

, where S(c)

and B(c) are, respectively, the signal and background yield as function
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of the cut value c. This figure of merit is preferred to the alternative

F′(c) = S(c)√
B(c)

since its value is less depended from the assumption on

the signal yield done in the MC simulation. We however notice that our

analysis is characterized by a large combinatorial background, thus we ex-

pected S << B and the two figures give approximatively the same result.

In order to easily include the systematic uncertainty in the estima-

tion of the upper limits, we will apply the modified frequentist approach

known as CLs method [163, 164], and more specifically its implementation

in the TLimit ROOT class [165]. The CLs ratio is defined as

CLs =
ps+b

1− pb
,

where ps+b is the p-value of the fit performed using the signal + back-

ground hypothesis and pb is the p-value of the background-only hypothesis.

The signal yields for which CLs < 0.1 can be excluded at 90% CL. System-

atic uncertainties on both the signal and background level can be taken

into account via additional Toy-MCs. For the estimation of the statistical

significances we use the profile likelihood technique, that is suitable for

high-statistic signals and computationally significantly faster than the CLs

method.

3.2 Montecarlo simulations settings

In this section we will describe the settings used for the MC simulation

of both signal and background processes, with a particular focus on the

fine-tuning the photon energy resolution.

The blind analysis approach requires large MC samples of both back-

ground and signal processes. As main background Montecarlo, we use

the official Belle simulated samples of Υ(4S) → B0B̄0 ("mixed" sample),

Υ(4S) → B+B− ("charged" sample), e+e− → uū, dd̄, ss̄ ("uds" sample),
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e+e− → cc̄ ("charm" sample), Υ(5S)→ BsB̄s ("BsBs" sample) and Υ(5S)→

BB̄ ("non-BsBs" sample). We will refer to this group of MC as the "generic

MC". In addition to these, we generate new samples that accounts for

the possible peaking backgrounds and control channels, not included in

the generic MC. The transitions Υ(4S) → ηΥ(1S), Υ(5S) → ηΥ(1S) and

Υ(5S)→ ηΥ(2S) have been already observed reconstructing the Υ(1S, 2S)→

µ+µ−, e+e− decays, measuring the branching fractions reported in Table

3.3, and will serve as control channels. The signal processes that we will

look for are Υ(5S) → ηhb(1P), Υ(5S) → ηhb(2P), Υ(5S) → ηΥ1,2(1D),

and Υ(4S) → ηhb(1P). In addition to these, the hb(1P) → γηb(1S) can be

studied too and is included among the signal samples.

Possible peaking backgrounds can arise from not yet observed η transi-

tions among narrow bottomonium states. In particular we include in our

simulation Υ(5S) → ππΥ(1D) → ππηΥ(1S) 5, Υ(4S) → γχb0(2P) →

γηηb(1S) and Υ(4S)→ γγΥ(1D)→ γγηΥ(1S)6

The physical processes are simulated using the EvtGen software [166],

in conjunction with Pythia6 [167] for the simulation of the fragmentation

processes and PHOTOS [168] for the inclusion of the radiative corrections.

The detector response is simulated using the Geant3 package [169]. In

order to account for the evolving beam and detector conditions along the

data taking, different MC sample, each one with different detector settings,

are generated for each experiment according to the luminosity recorded.

In order to account for the soft ISR effects we use the VECTORISR

model implemented in EvtGen, which allows to simulate the e+e− →

γISRY(nS) process.

5A hint of the Υ(5S) → π+π−Υ(1D) is reported by Belle [141], but the branching
fraction has not been measured. The exclusive decay chain Υ(5S) → π+π−Υ(1D) →
π+π−γγΥ(1S) is also known to occur with branching fraction

6Since no Υ(4S) → Υ(1D) transition has been observed, we assume that the Υ(1D) is
produced through the reaction Υ(4S)→ γχbJ(2P)→ γγΥ(1D), in analogy with what has
been observed in the Υ(3S) decays.
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3.2.1 Angular distributions

The angular distribution for each process is determined assuming the

dominance of the lower angular momentum. For the point of view of the

quantum numbers JPC, the process Υ(nS) → ηhb(mP) can be represented

as 1−− → 0−+1−+, thus both S−, P− and D− wave contributions are al-

lowed. However, the P-parity conservation forbids P−wave components

and we assume the transition to be completely dominated by the S−wave

term.

The process Υ(nS)→ ηΥ(mS) corresponds to a 1−− → 0−+1−− transition,

thus again S−, P− and D− wave contributions are allowed by the angular

momentum conservation. In this case the P−parity conservation requires

the transition to precess though odd wave amplitudes, and we model is as

dominated by the P−wave only. The same arguments apply to the transi-

tions Υ(5S) → ηΥ1,2(1D), while Υ(5S) → ηΥ3(1D) can proceed only via

D−wave but violating the P-parity, and is thus assumed not to be present.

hb(nP) → γηb(mS), corresponding to 1−+ → 1−−0−+ is completely de-

scribed by an electric dipole term E1, corresponding to a pure P−wave

transition. With this assumption, the radiative photon from the decay

chain Υ(nS) → ηhb(mP) → ηγηb(1S) is expected to have an angular dis-

tribution, in the CM frame, proportional to 1 + cos2(θ). Figure 3.10 shows

the angular distribution obtained from the CM truth, together with the

expected theoretical distribution.

3.2.2 Tuning of the gluon fragmentation parameters

Our current knowledge of the hadronic annihilation modes of bot-

tomonia is very limited. Few Υ(1S, 2S) 2- and 3-body modes, 100 generic

hadronic modes and 48 modes with ΛΛ̄ pairs were investigated, but the

sum of the measured branching ratios barely accounts for 2% of the total

decay width. No information is available on hb(nP), Υ(1D) and ηb(nS)
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Figure 3.10: Angular distribution of the radiative photon emitted in the decay
chain Υ(4S) → ηhb(1P) → ηγηb(1S). cos(θ) is computed with respect to
the beam axis direction in the Υ(4S) reference frame. The red line shows the
fit with the function N (1 + α cos2(θ)). We find α = 1.01± 0.02, in complete
agreement with the theoretical expectations.

annihilation. This lack of experimental information is mainly due to the

large bottomonium mass, compared to the mass of the hadrons, which

allows a large phase space for the annihilation processes. Therefore, the

annihilation is likely to produce 10-12 hadrons on average and the full

reconstruction of the events is highly insufficient: assuming an 80% geo-

metric acceptance, and 80% efficiency per particle for tracking and PID,

an overall 50% efficiency for the background reduction, and a branch-

ing ratio of the order of 10−5, on average only 1 event every 10 Millions

e+e− → Υ(1S) → hadrons events with the compete reconstruction of a

given annihilation mode is expected.

On the other hand the bottomonium annihilations are well described at

the partonic level, as bb̄ annihilate into either gluons or quarks. The ra-

tio Υ(1S)→hadrons
Υ(1S)→µ+µ− was indeed already calculated in the very early days of

NRQCD, and thanks to the recent experimental measurements the branch-

ing ratios of Υ(1S, 2S, 3S)→ ggg, Υ(1S, 2S, 3S)→ γgg and Υ(1S, 2S, 3S)→

qq̄ are well known. For the other states, we can rely on the Yang-Landau

theorem and assume that the hadronization of the spin single states pro-
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ceeds as ηb → gg and hb → ggg7. The passage from the partonic level

to the final state colorless hadron is often describe in terms of an evolv-

ing shower, divided in a partonic phase, which takes place early and in a

kinematic regime in which αs allows a perturbative treatment, and a later,

partonic phase which takes place when the scale of the system becomes

larger, the confining long-distance part of the potential becomes dominant

and the quarks are confined into colorless hadrons. So far, no descrip-

tion of this passage from partons to hadrons based rigorously on the QCD

Lagrangian is available, thus we have to rely on phenomenological mod-

els implemented in Monte Carlo simulations. One of the most popular

software packages for describing the hadronization is Pythia6, which im-

plements the so called string fragmentation model [170, 171]8.

In order to qualitatively understand this model, let assume to have a qq̄

pair emitted back-to-back, as depicted in Figure 3.11. The potential be-

Figure 3.11: Sketch of the string fragmentation picture with two quarks emitted
back to back in the CM frame. At each step, a new quark anti-quark pair with
transverse mass mT is produced.

tween the two quarks is described as usual by the sum of a Coulombian-

like term and a linear term, which grows with the increasing distance

7Here we treat the gluon as a massless particle with JPC = 1−−. If virtual gluons with
finite mass are involved in the description of the annihilation, as in the case of the χb1(nP),
the Yang-Landau theorem cannot be applied

8For an overview of the fragmentation model, see also [167] and references therein.
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between the quarks. This means that the energy stored in the color field

among the two quarks increases while the two quarks move away one from

the other, eventually to the point at which the creation of an intermediate

qq̄ pair becomes energetically favored. This situation can be described with

the presence of a one-dimensional string among the initial quarks, which

is stretched by the motion of qq̄. In this picture the creation of a new q
′
q̄
′

pair corresponds to the breaking of the original string into two, one con-

necting q with q̄
′

and one connecting q
′

with q̄. The process then continues

until each qq̄ pair as a mass lower than a hadron, at which point only

colorless particles are created. An exhaustive description of the aspect to

the string fragmentation model can be found in [172]. Without going into

details we will try here to point out which are the main parameters that

govern the fragmentation.

The probability of creating a qq̄ pair with transverse mass mT during

the string breaking is parametrized as:

P(mT, κ) ∝ e−
πm2

T
κ = e−

πp2
T

κ e−
πm2

κ ,

where pt and m are the transverse momentum and the mass of the quark-

anti-quark system and κ = 1 GeV/fm is the string tension. This formula

implies a hierarchy in the quark production according to their masses:

u : d : s : c ≈ 1 : 1 : 0.3 : 0, which is strongly dependent on the assumption

made for the quark masses. In order to take into account this effect at least

for the light quark, the relative probability of creating an ss̄ pair is left free

and can be tuned on the data.

The model as described so far is able only to produce mesons, but

the generation of baryons can implemented by replacing a quark with a

diquark system. This description requires a fundamental parameter which

governs the probability of having a (qq) ¯(qq) pair produced instead of a

simple q̄q one, and that must be tuned on the data.

96



3.2. Montecarlo simulations settings

In order to completely fragment the original string into hadrons, an

iteratively procedure is applied. The simplest is to start from one of the

two initial quarks qq̄, create an intermediate quark pair q′q̄′ and subse-

quently split the system into a qq̄′ meson on one side, and a remaining

string connecting q′ and q̄ which is fragmented again into a meson and

a string, until the mass of the residual string is low enough to produce a

final meson. In this procedure the transverse momentum of the detached

meson is chosen according to the previous formula, while the longitu-

dinal momentum must be chosen in some way though the choice of a

proper fragmentation function f (z). Since the transverse mass of the meson

is already determined and only one degree of freedom is left, the frag-

mentation functions are usually expressed as function of the adimensional

parameter z = (E+pz)had
(E+pz)string

. The choice of the fragmentation function itself is

intimately arbitrary, and many possible choices are available in literature.

The basic function used by Pythia is the Lund symmetric fragmentation

function

f (z) ∝ z−1(1− z)eαe−βm2
T/z,

where α and β are parameters to be tuned on the existing data. While β

is an universal parameter, two different values of α must be provided, one

for the quark and one for the di-quark production.

f (z) is chosen on purpose to be symmetric, so that the fragmentation can

be performed starting indifferently by either of the two initial quarks. Nev-

ertheless, if the iteration is carried starting always from one side of the

string, the kinematic of the last qq̄
′

pair is completely constrained by the

global energy-momentum conservation, and thus the last hadron cannot

be on mass-shell. In order to avoid this problem the hadrons are detached

randomly from the two sides of the string at each step, so that the frag-

mentation proceeds from both the sides towards the center of the string.

The process is stopped when the mass of the remaining string falls below a
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given value, when the remaining part is divided into two hadrons allowing

the conservation of energy and momentum using on-shell particles. The

threshold at which the hadronization stops is in principle a free parameter,

but practically cannot be chosen completely random. The fragmentation is

supposed to produce particles with uniform rapidity distribution along all

the string, thus if a too high value of the hadronization cutoff is chosen the

final two hadrons are likely to be emitted with much larger momentum

than the one produced at the early stages. On the other side low cutoff

value produce an excessive particle density at mid rapidity. As it is easily

understood, the importance of this parameter becomes higher at low en-

ergies, when the total energy of the string gets closer to the mass of the

final state hadrons. Indeed this parameter, known in Pythia6 as PARJ(33),

was found to be the must important in the tuning of the bottomonium

annihilations.

The last aspect we which to higligth, is the choice of the light mesons

to be produced. In Pythia the constituent quark model is assumed with

the standard mixing angles, so that

η = 1
2 (uū + dd̄)− 1√

2
ss̄,

η
′
= 1

2 (uū + dd̄) + 1√
2
ss̄,

ω = 1
2 (uū + dd̄),

φ = ss̄.

However, the SU(3) flavor symmetry breaking implicit in the quark con-

tent of η and η
′

is not encoded in any of the fragmentation steps, thus two

ad-hoc parameters are implemented to fine tune the production of these

two mesons.

This approach to fragmentation has been proven to give results in very

good agreement with data at high energies, where αs is in the perturba-

tive regime, while at the GeV scale a severe fine tuning is needed, and the
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agreement with the experimental data is much less striking. The default

tuning is known to be unable to properly describe the data at B-factories,

thus a set of dedicated values has been developed in order to describe the

hadron production in B meson annihilation. However, this set of values

was found not to properly describe the annihilation of the bottomonium

mesons, which takes place at a slightly higher energy scale. Therefore, a

further tuning was developed in Belle for the description of Υ(nS) anni-

hilation. This set of parameters are however far from giving a perfect de-

scription of the general structure of these processes, and large systematic

uncertainties are still present. Table 3.1 presents three different tunings of

the gluon fragmentation: the default Pythia6, the tuning adopted by Belle

as default, and the modification introduced to better describe the Υ(nS)

annihilation.

Table 3.1: Comparison between different Pythia tunings used in Belle.

Parameter Pythia6 default Belle Default Belle quarkonium
PARJ(21) 0.36 0.4 0.4
PARJ(25) 1.0 0.27 0.27

PARJ(26) 0.4 0.12 0.12

PARJ(33) 0.8 0.33 1.0
PARJ(35) 0.8 1.0 1.0
PARJ(41) 0.3 0.32 0.32

PARJ(42) 0.58 0.62 0.62

PARJ(54) -0.05 -0.05 -0.04

PARJ(55) -0.005 -0.005 -0.004

PARJ(82) 1.0 1.0 0.1

The misomdelling of the hadronization reflects in a mismodelling of

the general event characteristic, such as the charged track multiplicity, the

visible energy Evis i.e. the sum of the all the ECL energy clusters, and

the event shape observables. This mismodelling impacts the estimation

of the trigger efficiency, the hadronic even selection efficiency, and the

quality of the event shape simulation. Even with the improved tuning,
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clear discrepancies are still seen when the MC simulation is compared to

the Υ(1S) data, as shonw in Figure 3.12, introducing a few percent-level

systematic uncertainty in the measurement of the branching ratios for the

processes analyzed in this work.

Figure 3.12: Comparison between the MC simulation (dots) and the data (solid
histogram) in hadronic events at

√
s = 9.460 GeV. Left: Visible energy. Center:

Charged tracks multiplicity. Right: R2 Fox-Wolfram moment.

This uncertainty is expected to be reduced when the BelleII dataseted

will become available. The BelleII experiment will profit from a more

precise MC simulation based on Pythia8 with a dedicated set of tunings

obtained studying the Belle data. A working group for the production

this tuning set has been already set up and is currently working, and is

expected to provide its first result by the end of 2017.

3.2.3 Tuning of the photon energy scale

In order to obtain a precise measurement of the ηb(1S) mass, a pre-

cise modeling of the calorimeter response to photon is required. From

previous studies the MC simulation is known to reproduce the photon re-

construction efficiency with a ±2% and the energy resolution within few

percent. A bias in the energy reconstruction can also be present, induced

by mis-modeling in the material budget in from of the calorimeter. In or-

der to re-calibrate the simulation of the calorimeter response in the MC,

we reconstruct few decays of well known particles which involves pho-

tons, and we compare the position and the width of the corresponding
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peaks as they appear in the Data and in the MC samples. Three calibra-

tion channels are selected: π0 → γγ, η → γγ, and D0∗ → D0γ, each one

contributing to the calibration in different energy ranges

The photons are reconstructed with the same criteria applied for the data

analysis and described in the next session. The D0 meson is reconstructed

in the two body final state D0 → K+π− combining particle pairs with op-

posite charge, positively identified as pion or kaon, and coming from the

primary interaction vertex.

η and π0 are reconstructed combining photons with energy equal within

5%. In this way the relation between the photon energy bias an the mass

shift is simplified. The invariant mass of a photon pair γ1γ2, respectively

with energies Eγ1 and Eγ2 , can be written as:

M(γγ) =
√

2Eγ1 Eγ1(1− cos θγ1γ2),

where θγ1γ2 is the opening angle of the photon pair. A small δM shift in

the γγ mass can be therefore related to the photons’ energy shifts δEγ1

and δEγ2 by the relation:

δM =

√
2Eγ2(1− cos θγ1γ2)

2
√

Eγ1

δEγ1 +

√
2Eγ1(1− cos θγ1γ2)

2
√

Eγ2

δEγ2 ,

where we assumed the error on the opening angle to be negligible. With-

out further assumption, the deconvolution of the photon energy resolution

from this relation, although is possible, requires high statistic in order to

consistently populate any bin of (Eγ1 , Eγ2). In order to simplify the prob-

lem we require Eγ1 ≈ Eγ2 = Eγ, so that

δM = 2
√
(1− cos θγ1γ2)δEγ
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and consequently, defining ∆M = MMC −Mdata as the difference between

the γγ mass measured in the MC and in the Data samples,

δEγ

Eγ
=

∆M
MMC

.

For the D0∗ we apply a similar procedure. In order to neglect the con-

tribution due to the mis-modeling of the D0 peak parameters, we define

M̃(D0γ) = M(D0γ) − M(D0) + mD0 , so that the tracking-related uncer-

tainties are almost completely eliminated. The energy of the photon emit-

ted in the D0∗ decay can be expressed as

Eγ =
M̃2(D0γ)−M2(D0)

2(ED0 − pD0 cos θD0,γ)
,

therefore, following the same conventions adopted before for the defini-

tion of ∆Eγ and ∆M̃(D0γ),

∆Eγ

Eγ
= 2MMC(D0γ)

∆M̃(D0γ)

M2
MC(D0γ)−M2

MC(D0)
.

From the measurement of the widths and centroid of the calibration pro-

cesses, and using the formulas presented above, we are finally able to

measure two correction factors Fen and Fres to apply, respectively, to the

photon energy scale and the photon energy resolution. To measure the

energy shifts, we fit the control sample peaks in the MC and in the data as

function of the photon energy in the laboratory frame, in 100 MeV wide

intervals. Figure 3.13 shows the behavior of the invariant mass of the con-

trol channel as function of the photon energy, in the data sample. The

D0∗ → D0γ, π0 → γγ and η → γγ peaks are clearly visible.

The fit of the MC sample is performed, in each energy interval, with a

PDF obtained by the sum of a double sided, asymmetric Crystal Ball (CB)

function, characterized by two power-law tails merged with and asym-
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Figure 3.13: Left: M(γγ) as function of Eγ, in the data sample.
Right: M(D0γ) as function of Eγ .

metric Gaussian core with resolutions σL and σR, and polynomial PDF

that describes the background. The parametrization of the peak PDF is:

fsig(x) = N ·



B−nL
L e−

α2
L
2 if tL < −αL

e−
t2L
2 if − αL < tL < 0

e−
t2R
2 if 0 < tR < αR

B−nR
R e−

α2
R
2 if tR > αR

where tL,R = (µ−x)2

σL,R
is the usual Gaussian function exponent and the fac-

tors BL,R = 1 − tL,RαL,R−α2
L,R

nL,R
are introduced in order to assure the conti-

nuity and the smoothness of fsig in tL,R = ±αL,R. The free parameters

of the fit are the four tail-shape factors αL,R and nL,R, the width of the

core asymmetric Gaussian σL,R, the peak position µ and the normaliza-

tion N. The fit is then repeated on the data sample, convolving the signal

PDF, whose parameters are now fixed, with a Gaussian smearing function

S(M) = e−(M−∆M)2

σ2 . ∆M here represents the difference between the peak

position in the data and in the MC sample, while σ is an additional reso-
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lution term. The background PDF parameters are left floating in order to

account for the small differences in the background shapes among the two

samples. The result of the fits in each energy interval are shown in Figures

??-??. We observe that not all the sample contribute or can be used in all

the kinematic regions. The D0∗ values are used only between Eγ = 100

MeV and Eγ = 500 MeV, since in the other regions the statistical error on

width and mass are not competitive with the other channels. In the case

of π0 → γγ, the spectrum is well populated up to Eγ ≈ GeV, but above

Eγ = 0.6 GeV the possibility for the two ECL cluster originated by the two

photons to overlap becomes not-negligible. To estimate this threshold, we

first explicit the opening angle of a photon pair as function of their energy

E invariant mass M:

cos θ = 1− M2

4E2 .

Since the inner radius of the ECL is r = 1.34 m, the distance between the

two clusters if the photons are emitted at mid-rapidity is:

d ≈ rM√
2E

.

We consider the overlapping effects to be not negligible if the distance

among the cluster centers falls below dcrit = 20 cm, since for smaller dis-

tance the 3x3 clusters containing the showers start to overlap. The corre-

sponding critical energies are Eπ0

γ,crit = 0.64 GeV for π0’s and Eπ0

γ,crit = 2.6

GeV for η’s. This calculation is approximate since it considers the closest

distance between the ECL and the interaction point and do not account

for the increasing shower size with increasing photon energy, but clearly

indicate that the calibration obtained with π0 can be used between Eγ = 0

GeV and Eγ = 0.6 GeV. The η mode, finally, is used for Eγ > 0.2 GeV

since for lower energies the signal peak is statistically not enough signifi-

cant The results obtained with the different control channels are shown in
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Figure 3.14. We calculate, for each sample, the correction factors Fen and

Fres as

Fres =
σdata

σMC

and

Fen = 1 + ∆M/MMC.

In order to account for the presence of asymmetric peaks and the addi-

tional smearing term in the fit of the data sample, we define σdata and

σMC as σdata,MC =
σdata,MC

L +σdata,MC
R

2 , where σdata
L,R =

√
σMC

L,R
2
+ σ2. In order to

estimate the final energy correction, the average of the results obtained

in each bin from the different control channels is calculated. The addi-

Figure 3.14: Fudge factors Fres (left) and Fen (right) from different calibration
samples: D0∗ → D0γ (blue), η → γγ (red) and π0 → γγ (yellow). Each
band represents the ±1σ region around the central value, accounting for the
systematic uncertainty induced by the choice of the background PDF. The black
points represent the average value used for smearing the MC samples.

tional energy smearing determined by the value of Fres is thus applied

photon-by-photon on the MC sample used for the estimation of the re-

construction efficiency and the resolutions. Given an MC photon with

original 3-momentum ~E0 and reconstructed momentum components ~Er,
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we calculate the smeared reconstructed momentum as

~Es = (~E0 + (~Er − ~E0) · Fres) · Fen.

The original resolution ∆~E = ~Er − ~E0 is increased by a factor Fres, while

the global energy of the photon is scaled by a factor Fen.
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Figure 3.15: Fit of M(D0γ) in the D0∗ regions from (100 < Eγ < 200) MeV (upper
row) to (400 < Eγ < 500) MeV (bottom row). The left plot shows the MC
sample and the right plot shows the Data sample.
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Figure 3.16: Fit of M(γγ) in the π0 region from (0 < Eγ < 100) MeV (upper row)
to (300 < Eγ < 400) MeV (bottom row). The left plot shows the MC sample
and the right plot shows the Data sample.
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Figure 3.17: Fit of M(γγ) in the π0 region from (400 < Eγ < 500) MeV (upper
row) to (600 < Eγ < 700) MeV (bottom row). The left plot shows the MC
sample and the right plot shows the Data sample.
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Figure 3.18: Fit of M(γγ) in the η region from (200 < Eγ < 300) MeV (upper
row) to (500 < Eγ < 600) MeV (bottom row). The left plot shows the MC
sample and the right plot shows the Data sample.
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Figure 3.19: Fit of M(γγ) in the η region from (600 < Eγ < 700) MeV (upper
row) to (900 < Eγ < 1000) MeV (bottom row). The left plot shows the MC
sample and the right plot shows the Data sample.
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Figure 3.20: Fit of M(γγ) in the η region from (1000 < Eγ < 1100) MeV (upper
row) to (1300 < Eγ < 1400) MeV (bottom row). The left plot shows the MC
sample and the right plot shows the Data sample.
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Figure 3.21: Fit of M(γγ) in the η region from (1400 < Eγ < 1500) MeV (upper
row) to (1700 < Eγ < 1800) MeV (bottom row). The left plot shows the MC
sample and the right plot shows the Data sample.
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Figure 3.22: Fit of M(γγ) in the η region from (1800 < Eγ < 1900) MeV (upper
row) to (1900 < Eγ < 2000) MeV (bottom row). The left plot shows the MC
sample and the right plot shows the Data sample.
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3.2.4 Montecarlo samples

Table 3.2 summarizes the EvtGen decay models used for the genration

of the signal processes. PHSP describes a phase-space flat distribution.

PARTWAVE allows to include the correct angular distributions on top of

the phas-space one, and takes 6 agruments: the even ones are the relative

wight of the possible angular waves in increasing order (S,L,P,D,F...), while

the odd ones are complexes phases that allows to include CP-violation

effects. HELAMP also allows to model the angular distribution, but takes

as agrument the helicity amplitudes instead of the partial vawe ones.

Table 3.2: Size and characteristics of the signal MC samples.

Channel Decay model
Υ(5S)→ ηhb(1P) PARTWAVE 1. 0. 0. 0. 0. 0.
Υ(5S)→ ηhb(2P) PARTWAVE 1. 0. 0. 0. 0. 0.
Υ(5S)→ ηΥ(1S) HELAMP 1 0 0 0 0 -1
Υ(5S)→ ηΥ(2S) HELAMP 1 0 0 0 0 -1
Υ(5S)→ ηΥ(13D1,2) PARTWAVE 0. 0. 1. 0. 0. 0.
Υ(5S)→ π+π−Υ(1D)→ π+π−ηΥ(1S) PHSP
Υ(4S)→ ηhb(1P) PARTWAVE 1. 0. 0. 0. 0. 0.
Υ(4S)→ ηΥ(1S) HELAMP 1 0 0 0 0 -1
Υ(4S)→ γχb0(2P)→ γηΥ(1S) PHSP
Υ(4S)→ γγΥ(1D)→ γγηΥ(1S) PHSP
hb(nP)→ γηb(mS) HELAMP 1 0 1 0

The radiative transitions among χb0,1,2(nP) and Υ1,2,3(mD) exhibit a

complex pattern, as shown in Figure 3.23. Given the unknown propor-

tions between the different possible decay chains, and the impossibility

to distinguish the Υ(1D) fine splitting due to the insufficient detector res-

olution, we simply assume a phase-space flat distribution for all these

radiative transitions.

A complete stream of generic MC (uds, charm, BsBs, non-BsBs, mixed,

charged) is used for the background estimation and the optimization of the

selection criteria. In generating the MC samples and in the analysis of the
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Figure 3.23: Schematic view of the radiative transitions among χb0,1,2(nP) and
Υ1,2,3(1D). Transitions for which S-wave amplitude is allowed are reported in
solid black, while the dashed transitions can occur only via D−wave amplitude
and are expected to by largely suppressed.

results we assume the branching ratios reported in Table 3.3. The Υ(2S)

Table 3.3: Branching ratios for the transitions included in the MC samples. The
transitions Υ(2S) → Υ(1S) are described according to the latest PDG values and
are not reported in this table.

Channel Assumed Branching ratio BMC Decay Model

η → γγ (3.941± 0.020)× 10−1 PDG2012

η → π+π−π0 (2.292± 0.028)× 10−1 PDG2012

Υ(5S)→ ηΥ(1S) (7.3± 1.6)× 10−4 Belle preliminary [129]
Υ(5S)→ ηΥ(2S) (38.1± 4.2)× 10−4 Belle preliminary [129]
Υ(4S)→ ηΥ(1S) (1.96± 0.28)× 10−4 PDG2012

hb(1P)→ γηb(1S) 0.49+0.08
−0.07 PDG2012

hb(2P)→ γηb(1S) 0.22± 0.05 PDG2012

hb(2P)→ γηb(2S) 0.48± 0.13 PDG2012

hb(1P)→ ggg 50.8% 1−B[hb(1P)→ γηb(1S)]
hb(2P)→ ggg 30.2% 1−B[hb(2P)→ γηb(1, 2S)]
ηb(1S)→ gg 100%
ηb(2S)→ gg 100%
Υ(1S)→ ggg 81.7% PDG2012

Υ(1S)→ γgg 2.2% PDG2012

Υ(2S)→ ggg 58.8% PDG2012

Υ(2S)→ γgg 8.8% PDG2012

decays are simulated including the hadronic and radiative transitions to

lower bottomonium states. The annihilation into gluons of each state is

simulated according to their quantum numbers: Υ(nS) → ggg, hb → ggg,
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ηb → gg.

3.3 Selection criteria

3.3.1 Hadronic event skim

The Belle datas are divided in different subsamples, called skims, each

one corresponding to a set of loose selection criteria intened to discrimi-

nate between events with different nature: hadronic events, e+e− → τ+τ−,

e+e− → e+e−+ X etcetera... In this analysis we will use the hadronic skim,

called HadronBJ. To pass this selection the events are requested to have at

least three charged tracks pointing towards the primary interaction ver-

tex, a visible energy greater than 0.2
√

s, a total energy deposition in the

electromagnetic calorimeter (ECL) between 0.1
√

s and 0.8
√

s, and a total

momentum balanced along the z axis. The skim efficiency is expected to

be > 99% for events with bottomonium states annihilating into gluons or

B mason pair decays.

3.3.2 γ reconstruction

The primary goal of the selection criteria is to provide a high-purity

sample of photons to reduce the combinatorial background in the η mass

region. In order to avoid the introduction of non-smooth structures in the

η recoil spectrum, we optimize the selection criteria using all the η in the

generic MC samples rather than focusing on the signal η, which are pro-

duced in a rather narrow momentum window. Before any selection criteria

is applied, the ECL cluster energy spectra in generic Υ(4S) annihilation is

peaked at very low energies, where it’s dominated by the backgrounds

as shown in Figure 3.24. Energy released by hadrons interacting with the

ECL crystals is also a sizable source of background that must be reduced.

A set of standard, loose photon quality requirements is already pro-
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Figure 3.24: Spectrum of the ECL clusters before any selection, from a generic
Υ(4S) MC sample

vided by the ECL sub-group, and is shared by different Belle analyses.

The main purpose of this selection is to reject the clusters originated by

the interaction of hadrons in the calorimeter volume. In orders to elimi-

nate the energy deposits due to protons, pions, electrons or other charged

hadrons reconstructed by the tracking system, we require a calorimeter

cluster not to match the extrapolated trajectory of any charged track. Then

we require the shower radius to be smaller than 5.8 cm and that at least

90% of the cluster energy is released in a 3x3 crystal cluster. These require-

ments suppress the background due to anti-neutron interaction within the

calorimeter volume. Figure 3.25 show the distribution of these two observ-

ables for clusters originated by photons and cluster ascribable to hadronic

interactions.

The second source of clusters not associated to the hadronic event

is represented by the soft photons emitted by the interaction within the

beams (the beam background) and by the electronic noise. These two sources

are not distinguishable in the MC simulations, and must thus be treated
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Figure 3.25: Left: Ratio between the energy deposited in a 3x3 crystal array and
the energy deposited in a 9x9 array, for clusters originated by different sources.
Right: Shower radius for clusters originated by different sources.

simultaneously. Fake clusters ascribable to readout issues are likely to be

constituted by one single crystal, thus we require a good shower to be

reconstructed in at least 2 adjacent ECL channels. The distribution of the

number of hits associated to each cluster (Figure 3.26) is clearly domi-

nated by the beam backgrounds in the region Nhits < 5, therefore it could

be reasonable to implement a much tighter cut. However, we notice that
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Figure 3.26: Number of ECL hits associated to each cluster in the MC simulation,
for different sources.

for real photons associated to an η decay there is a proportionality be-
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tween the energy and the number of hits in the cluster, while it is absent

for the background clusters, which are all characterized by a rather low

energy regardless from the cluster size, as shown in Figure 3.27. There-

fore we prefer to reject low energy clusters rather than implement further

selection on the cluster properties. The standard Belle selection, used in
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Figure 3.27: Left: distribution of the cluster energy as function of the number of
ECL hits involved, when the cluster is originated by beam background, elec-
tronic noise or reconstruction artifacts. Right: same distribution of clusters
originated by photons resulting from an η decay.

many other analyses, requires to reject clusters with energy below 50 MeV.

However, we notice that the soft photons emitted by the beam activity are

produce an angular distribution strongly peaked in the forward and back-

ward direction as shown in Figure 3.28. As expected by the presence of
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Figure 3.28: Polar angle distribution of the ECL clusters, in the MC simulation.
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asymmetric beams, also the energy distribution of the clusters shows a de-

pendence on the polar angle, as shown in Figure 3.29. Therefore, instead
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Figure 3.29: Left: distribution of the cluster energy as function of the polar angle
in the laboratory frame, when the cluster is originated by beam background,
electronic noise or reconstruction artifacts. Right: same distribution of clusters
originated by real photons.

of using the standard Belle selection we choose different energy thresh-

olds in four different ECL section: the two end-caps, the forward half of

the barrel, and the backward half of the barrel. Figure 3.30 shows the clus-

ter energy spectra in the four different regions. The energy thresholds are

summarized in Table 3.4
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Figure 3.30: Cluster energy distribution in different regions: backward endcap
(left), backward barrel (middle, left), forward barrel (middle, right) and forward
endcap (right).
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Table 3.4: Energy threshold in the laboratory frame applied in the selection of the
photon candidates.

Angular region (Lab. frame) Energy threshold [MeV] Note
cos θlab < −0.65 75 ECL Backward Endcap
−0.65 < cos θlab < 0 50 ECL Backward Barrel
0 < cos θlab < 0.85 60 ECL Forward Barrel
cos θlab > 0.85 95 ECL Forward Endcap

The different components of the cluster energy spectrum after all the

selection criteria are applied is shown in Figure 3.31 The spectrum of the
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Figure 3.31: Components of the ECL energy spectrum after all the selection crite-
ria are applied.

γγ invariant mass results particularly depleted in the low mass region,

where the contribution due to the backgrounds is dominant (Figure 3.32).

Even if the π0 and η peaks are clearly visible, further selection criteria will

be implemented and described in the next section.
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Figure 3.32: Invariant mass distribution of the photon candidates pairs before
and after the selection criteria.

3.3.3 π0 → γγ and η → γγ selection

In order to further study the selection criteria per η and π0, we define

two signal windows: The candidates η are required to have mass within 26

MeV/c2 of the nominal η mass mη [?], while the candidates in the regions

39 MeV/c2 < |M(γγ) − mη | < 52 MeV/c2 are used as control samples.

For the π0 candidates we require a mass within 17 MeV/c2 from the nom-

inal π0 mass. In both cases the mass window correspond to a ±2σ region

around the central peak. When we will refer to η or π0 in the following,

this mass condition well be understood. The effect of the photon selection

on the spectra of reconstructed η → γγ and π0 → γγ is shown in Figure

3.33 The selection efficiency on real π0 → γγ and η → γ and on the com-

binatorial background in the same mass regions is shown in Figure 3.34.

While in the π0 case the background reduction is already at a satisfactory

level and no further requirement will be applied, the photon quality se-

lection has little impact on the background under the η peak. The main

reason for that must be searched in the kinematic of the η decay. The clus-

ters originating from η decays have larger energy than the ones from π0
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Figure 3.33: Left: Spectrum of the reconstructed η → γγ before and after the
photon selection. Right: same distributions for π0 → γγ.
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Figure 3.34: Left: Spectrum of the reconstructed η → γγ before and after the
photon selection. Right: same distributions for π0 → γγ.

decays, therefore are naturally located in an energy range where the back-

grounds due to artifacts and hadronic interactions are lower. Furthermore,

clusters with energy lower than 80 MeV do not contribute to the combi-

natorial background in the η mass region, therefore the energy threshold

cut has no impact at all. The scalar nature of the η allows, however, to

reduce the combinatorial background studying the angular distribution

of the photons from the annihilation. We define the helicity angle as the

angle between the direction along which the photons are emitted in the η

rest frame and the direction of the η momentum in the laboratory frame.

This distribution is flat for η, while it exhibits a peak at cos θhel ≈ 1 for
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the combinatorial background. The peak is an effect of the boost between

the γγ center of mass and the lab frame. While for the η case the γγ

momentum is determined before the annihilation, for the combinatorial

background the γγ momentum direction is determined by the direction

of the highest energy photon. This is clearly visible in figure 3.35, where

the helicity angle distribution for η and combinatorial photons is shown.

According to the optimization, we require cos θhel < 0.94. This criterion is

Figure 3.35: Distribution of cos θhel for real η and combinatorial γγ pairs in the η
mass window.

usually applied also to π0 → γγ. However in our case we notice that such

cut would simply mimic the effects of the photon energy threshold, since

the helicity angle and the energy of the lower energy photon, at a fixed

γγ mass and momentum, is uniquely determined as shown in figure 3.36.

Therefore, no helicity-based selection is applied to π0 → γγ. We notice

that the position of the cutoff of the helicity angle distribution depends on

the momentum of the γγ pair as shown in Figure 3.37. Therefore a mo-

mentum depended selection is expected to be more efficient rather than

the approach we follow. We test this idea optimizing the asymmetry cut

in five bins of momentum , but we immediately observe that such ap-

proach produces either discontinuities or sharp structures in the η recoil
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Figure 3.36: Energy of the less energetic photons emitted in an η or π0 decay as
function of cos θhel , for different values of the γγ pair momentum.

Figure 3.37: Left: Spectrum of the reconstructed η → γγ before and after the
photon selection. Right: same distributions for π0 → γγ.

mass distribution, making the final fit much more complex. Furthermore,

an additional systematic uncertainty is introduced by the binning used for

the optimization, and overall the increase in the signal significance is not

competitive with the instabilities introduced in the final fit. Therefore, we

chose to use a single threshold regardless for the γγ momentum.

Despite this further cut increases the signal/background ratio, its im-

pact on the background reduction is still marginal. In order to signifi-

cantly reduce the combinatorial background, we analyze the origin of the
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photons that contribute to the γγ invariant mass spectrum in the region

between 0.5 and 0.6 GeV, shown in Figure 3.38. Roughly one third of the η

Figure 3.38: Different contributions to the γγ invariant mass in the η mass region.

candidates is actually the result of the combinations of two photons com-

ing from the annihilation of two different π0’s, and overall more than one

half of the background is due the result of the combination of a photon

originated by a π0 and another cluster. A significant reduction of the back-

ground yield can be thus archived if an efficient π0 veto is implemented.

For our analysis we use a rather simple algorithm based on the completely

reconstructed π0. First we reconstruct the π0 candidates from the γγ pairs

with invariant mass within 17 MeV from the nominal π0 mass. Then we

assign to each of them a value D which is an estimator of the probability,

for that candidate, to be a real π0 rather than combinatorial background.

Finally we iteratively remove the photons associated to a π0 from the η re-

construction stream, starting from the π0 which has higher probability of

being a real π0. If, during the procedure, a π0 is found to be made with an

photon that has been already vetoed, the other photon is not vetoed. The
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core of the method is clearly the construction of the estimator D. For out

analysis we used a quite simple approach based on one single observable

which turned out to be the most powerful and widely used one: the differ-

ence between the γγ mass and the nominal π0 mass, D = |M(γγ)−mπ0 |.

Therefore we arrange the π0 candidates in increasing distance from the

nominal π0 mass and, starting from the closest one, we exclude the core-

spondent photons.

This simple approach has already a major impact on the quality of the η

reconstruction as shown in Figure 3.39 where the γγ invariant mass distri-

bution in the η mass region obtained in the Υ(5S) data sample is shown,

with and without the π0 veto. Thanks to the π0 veto the signal-over-

Figure 3.39: M(γγ) distribution in the full Υ(5S) dataset. The distribution with-
out the π0 veto is compare to the distribution obtained applying the π0 veto.

background ratio (S/B ratio) in the region within ±2σ from the η peak is

increased by a factor 2.5, as shown in Figure 3.40 We investigated
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Figure 3.40: Efficiency and purity of the η → γγ samples selected with and with-
out the π0 veto.

3.3.4 η → π+π−π0 selection

Previous experiences with the reconstruction of η → π+π−π0 already

showed that the significance of the results obtained in this channel are

causally much lower than the one obtained in the γγ mode. If, from one

side, the recoil mass resolution in the 3π mode is smaller and thus the

recoil peaks are narrower, on the other hand the reconstruction efficiency

is usually a reduced by a factor four, and the branching ratio almost by

a factor of two. Furthermore, the combinatorial background is larger by

almost a factor of two, leading to an overall reduction of a factor ten of

the significance with respect to the γγ mode. These considerations are,

obviously valid for inclusive analyses. In exclusive modes with few tracks

in the final state, as it happens when the Υ meson are reconstructed in two

lepton modes, the η → π+π−π0 can lead to a significant increase of the

trigger efficiency. Nevertheless, a tentative analysis of the η → π+π−π0

channel has been made in order to provide a cross check of the results

obtained in the γγ mode.
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The π0 candidates are reconstructed as previously described without

any further selection. For the π+π− pair we apply the standard Belle se-

lection procedure for charged tracks. First, we expect both the pion to

come from the primary interaction vertex, thus we reject all the tracks

whose helix are not pointing to it. To discriminate among thanks com-

patible from the primary vertex and other tracks, either produced by the

decay of long living particles or artifacts of the tracking algorithm, we cal-

culate the impact parameters in the transverse plane and along the beam

axis. These quantities, respectively named ∆r and ∆z, are the projections

either on the transfer plane or on the beam axis of the distance of min-

imum approach between the track helix and the interaction point. The

distribution of ∆r and ∆z for pions coming from the η decay and for all

the charged tracks in the even are shown in Figure 3.41. Following the

Figure 3.41: Left: Distribution of ∆z for pions produced in η decay (green) and for
other tracks in the event (white). Right: Distribution of ∆r for pions produced
in η decay (green) and for other tracks in the event (white).

standard Belle prescriptions, we require |∆r| < 1.5 cm and |∆r| < 0.5 cm.

In order to be selected for the η reconstruction, both the charged tracks

have to be positively identified as pions. To reject kaons and protons, the

standard Belle prescription is to require the likelihood ratios LK
Lπ

< 0.6

(Figure 3.42) and Lp
Lπ

< 0.6 (Figure 3.43). In addition to that, we found

a significant contamination due to electrons, therefore we add as require-
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ment the electron probability to be less than 0.1 (Figure 3.44) 9.

Figure 3.42: Left: LK
Lπ

as a function of the track momentum in CM frame for the

combinatorial background in the η mass window. Right: LK
Lπ

as a function of
the track momentum in CM frame for pions resulting from η decay.

Figure 3.43: Left: Lp
Lπ

as a function of the track momentum in CM frame for the

combinatorial background in the η mass window. Right: Lp
Lπ

as a function of
the track momentum in CM frame for pions resulting from η decay.

After the removal of displaced tracks and the selection of the pions, a

residual background is constituted by track pairs created by photon con-

version in the detector material, which are mis-identified as pions. As

shown in Figure 3.45 these events are characterized by two tracks with

small opening angle. Therefore we require the cosine opening angle in the

CM frame between the to tracks to be less than 0.98.

The quality of previous Belle analyses based on inclusive di-pion re-

9Please refer to Chapter 1 for the general discussion on the particle identification in
Belle and the definition of PID likelihoods and electron probability.
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Figure 3.44: Left: electron ID probability as a function of the track momentum
in CM frame for the combinatorial background in the η mass window. Right:
electron ID probability as a function of the track momentum in CM frame for
pions resulting from η decay.

Figure 3.45: Left: Opening angle between of the π+π− pair candidate for combi-
natorial background in the η mass window. Right: Opening angle between of
the π+π− pairs resulting from η decay.

construction was significantly improved by the introduction of a veto on

the Ks → π+π− events, that represent both a source of combinatorial back-

ground and are known to produce non-smooth structures in the π+π−

recoil spectrum. Another source of combinatorial background can be due

to the pions resulting from hyperon annihilations or transitions, since hy-

perons are known to be largely produced in bottomonium annihilations.

For these reasons we studied the composition of the combinatorial back-

ground in the η mass window, shown in Figure 3.46.

Contrary to what was observed in the η → γγ case, where a dominant

source of background was identified, in this case there is no such process,
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Figure 3.46: Different contributions to the π+π−π0 invariant mass in the η mass
region.

and the difference contributions are almost equally contributing. The bulk

of the combinatorial background is due to light meson decay, such as ρ→

π+π−, which are very difficult to be efficiently vetoed due to their large

natural width. Therefore, no Ks or other veto can be applied, and the

irreducible, combinatorial background level in the η region remains very

high. Indeed, S/B ratio of the η → π+π−π0 is found to be significantly

lower than in the case of the η → γγ. The expected statistical significance

of the hb(1, 2P) signals in the η → π+π−π0 mode are less than 1 σ, thus

this mode is excluded from the analysis and the η are reconstructed in the

two photons mode only.

3.3.5 Continuum suppression

Foor the B meson analysis a sophisticate and successful approach to

the continuum rejection has been developed, combining 17 event-shape

observable in one single discriminant obtained with the Fisher technique.
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This discriminant is intimately connected with the nature of an Υ(4S) →

BB̄ event which is overall spherical but can be further divided into two

spherical part, each one corresponding to the annihilation of the B mesons

(respectively signal and tag). Therefore many different fox-wolfram mo-

ments can be constructed either using all the tracks in the event, or only

the ones associated to the decay of one of the two B. The current al-

gorithm requires 16 FW-like moments, which combines charged tracks,

neutral clusters and missing momentum from both signal and tag B:

Mst,c
n , with n = 0...4 (all signal tracks + tag charged tracks)

Mst,n
n , with n = 0, 2, 4 (all signal tracks + tag neutral tracks)

Mst,m
n , with n = 0, 2, 4 (all signal tracks + tag missing momentum)

Mtt
n , with n = 0...4 (all tag tracks) ,

and the value of r the transverse missing energy ET. Further reduction is

obtained creating a likelihood ratio which takes into account the presence

of displaced vertexes, the value of the Fisher discriminant, the angular

distribution of the thrust axis and the angular distribution of the B me-

son. The angular distribution of the B meson emission direction with

respect to the beam axis, which is expected to be proportional to 1+ cos2 θ

for real B and flat for combinatorial backgrounds. The performances of

this Likelihood discriminant are shown in Figure 3.47 Despite the success

of this algorithm, it cannon be used for bottomonium analyses where a

spherical sub-event is not present. The standard procedure used by the

Belle quarkonium group for rejecting the continuum contribution is based

only on the 2nd order Fox-Wolfram moment R2. This approach has been

proved to be efficient, robust and precise, with a quite small systematic

uncertainty. We therefore reject the continuum e+e− → qq̄ background

requiring the ratio between the 2nd- and 0th- order Fox Wolfram Moment

to be less than 0.30. The optimal value has been chosen as the one that
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3.3. Selection criteria

Figure 3.47: Distribution of the event shape likelihood ratio for continuum events
and Υ(4S)→ BB̄, B→ K + π− events.

maximizes the significance of the Υ(5S)→ ηhb(nP) peaks in the MC sim-

ulation. A cross check is preformed on the data studying the significance

of the Υ(5S) → π+π−Υ(2S) peak: the optimal value of R2 < 0.30 is in

agreement with what is expected.

Nevertheless we noticed that the problem of the continuum rejeciton

in bottomonium anlyses was generaly overlooked in the past, while more

sofisticate thecnique inspired by the Belle’s one can significanlty improove

the quality of the analyses performend at the Υ(4S) and Υ(5S) energy. In

the Appendix B we present the results of some early investigations in this

direction, and the prospect for future developments.

3.3.6 Efficiency and resolution

After the selection the reconstructed η → γγ candidates in the region

of mass between 0.48 GeV and 0.62 GeV, we further reduce the window

in which the good η candidates are searched for. The signal region is

within 13 MeV from the nominal η mass (±2σ region), while a sideband
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CHAPTER 3. Montecarlo studies

sample is constructed with the candidates with invariant mass outside a

±3σ region, but within the [0.48, 0.62] GeV interval. A kinematic fit with

mass constrain is applied to all the η candidates in order to improve the

recoil mass resolution.

The reconstruction efficiency and the MC-based resolution of the recoil

mass peak are summarized in table B.1.

Table 3.5: Reconstruction efficiency and MM(η) resolution in MC. The peak po-
sition corresponds to the fitted recoil mass in MC events.

Channel Efficiency [%] Position [GeV] Resolution [MeV]
Υ(5S)→ ηhb(1P) 20.70% 9.899 10.3
Υ(5S)→ ηhb(2P) 16.34% 10.26 6.52

Υ(5S)→ ηΥ(1S) 17.63% 9.560 15.5
Υ(5S)→ ηΥ(2S) 15.74% 10.022 8.77

Υ(5S)→ ηΥ(1D) 16.74% 10.16 7.22

Υ(1D)→ ηΥ(1S) in Υ(5S) data 17.32% 10.165 13.4
Υ(4S)→ ηhb(1P) 16.96% 9.899 7.10

Υ(4S)→ ηΥ(1S) 17.20% 9.460 12.1
χb0(2P)→ ηηb(1S) in Υ(4S) data 19.35% 9.747 14.8
Υ(1D)→ ηΥ(1S) in Υ(4S) data 14.57% 9.877 10.6

The inclusive η recoil mass distribution obtained from the generic MC

sample is shown in Figure 3.48.

Figure 3.48: η recoil in MC background events, for Υ(4S) (left) and Υ(5S) generic
MC.

In the next chapter we will discuss the fitting procedure adopted for
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the signal extraction, and we will present the results of the analysis of the

data samples.
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Chapter 4

Fit of the η recoil mass on the

data samples

4.1 Fitting procedure

4.1.1 Signal PDF

When the radiative corrections are neglected, the signal peaks that ap-

pear on top of the combinatorial background are described by Gaussian

PDFs, whose width is determined by the detector resolution. The ISR

however introduces a radiative tail towards lower recoil masses, which

can be phenomenologically described by a power law. Here we describe

the method used for the determination of the tail parameters, focusing on

the case of Υ(4S) → ηhb(1P). The same argument and the same conclu-

sion can be applied to any of the signal channels, both at Υ(4S) and Υ(5S)

energy.

According to the MC simulations, the detector resolution on the η miss-

ing mass is 7.1 MeV/c2. However the Υ(4S) has a non-negligible physical

width ΓΥ(4S) = 20.5 MeV, therefore the emission of a soft ISR photon with

energy of few MeV can lower the effective CM energy of the e+e− col-
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CHAPTER 4. Fit of the η recoil mass on the data samples

lision, that however results in the production of an Υ(4S). In order to

model this effect we first convolve the detector resolution with the distri-

bution of the ISR emission probability as function of the γISR energy. The

resulting distribution is weighted with a Breit-Wigner peak that describes

the Υ(4S) line shape. The final distribution is well described by a Crystal

Ball PDF that phenomenologically describes the radiative tail. Figure 4.1

shows the evolution of the PDF under the effects of the ISR and the finite

Υ(4S) width.

Figure 4.1: Signal PDF accounting the detector resolution only (blue dots), after
the convolution of the detector resolution with the ISR PDF (black dots) and
after the inclusion of IRS and ΓΥ(4S) (red dots). The different curves show the
result of the crystal-ball fits.

4.1.2 Background PDF

While the construction of the signal PDF using the MC simulation is

rather straightforward, since it depends only on the detector resolution,

which is well known thanks to the photon energy re-calibration, and on

the ISR radiator which is also a rather well-known quantity, the descrip-

tion of the background shape is more challenging. We tested two dif-

ferent strategies for solving this problem: a completely phenomenolog-

ical approach, modeling the background as a polynomial function, and

a more physical approach. In principle the background PDF B(Mmiss)
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4.1. Fitting procedure

should be constructible from two separate functions, both with physical

meaning: ε(Mmiss) describing the reconstruction efficiency and P(Mmiss)

describing the initial η spectrum. The final PDF would be B(Mmiss) =

ε(Mmiss) · P(Mmiss). We attempted to follow this approach with different

choices of P(Mmiss), testing either a Boltzmann , a modified Tsallis or an

Argus distribution, and parameterizing ε(Mmiss) with a Chebyshev poly-

nomial. All our attempts to archieve a good description of the data by

this mean failed, either because of a wrong assumption for the emission

spectra or for an inadequate modeling of the η reconstruction efficiency.

Indeed the P(Mmiss) we tested are known to properly describe the data in

high energy collisions, where a thermodynamical description of the fire-

ball evolution is justified. In our case this assumption is questionable, both

because of the low final state multiplicity and for the presence of many dif-

ferent emission processes (a residual contribution from the continuum, the

bottomonium annihilation and the B meson decay) which are hardly de-

scribable by the very same PDF. The proper modeling of the reconstruction

efficiency is a non-trivial problem. While the angular distribution for the

signal η is known and modeled by the MC simulation, for generic η the

discrepancies between data and MC would require ε to be at least function

of the missing mass and the polar angle of the η candidate. This require-

ment introduces large systematic uncertainty in the ε parametrization and

would require a dedicated study, which is beyond the scope of this work.

On the other hand the parametrization of B(Mmiss) as a high order

Chebyshev polynomial was already proven to be a simple and successful

strategy by previous Belle analyses, therefore we decided to apply this

strategy. Even with this approach the complete fit of the whole spectrum

from 9.0 GeV/c2 up to the kinematic limit is hardly converging, mainly

because of the sharp kinematic cutoff at high masses. Therefore, in order

to ensure the convergence of the fit, we divide the recoil mass distribution
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CHAPTER 4. Fit of the η recoil mass on the data samples

in several regions, each one to be fitted separately.

4.1.3 Fit conditions

In the Υ(4S) sample the fit is performed in two separated regions: the

first one, which includes the Υ(1S) peak, spans from 9.3 GeV/c2 to 9.7

GeV/c2; the second one, which includes the hb(1P) region, spans from

9.7 GeV/c2 to 10 GeV/c2. The signals are modeled, as mentioned above,

with two Crystal-Ball shaped peaks, one describing the Υ(1S) and one

describing the hb(1P), whose parameters are fixed according to the MC

simulation except for the mass of the hb(1P) and the yields, NΥ(1S) and

Nhb(1P), that are left floating. The background is described in both the re-

gions with a Chebyshev Polynomial PDF. In the low Mmiss range the order

of the polynomial is 6, while the high Mmiss one requires an 11th order

PDF. In order to determine the polynomial order and the fit range for high

mass region, we explore different possibilities. We consider three different

intervals, (9.6, 10), (9.7, 10), and (9.8, 10). For each interval we test the

fit with a polynomial order ranging from 5 to 13. We observe a good fit

result using a polynomial order between 9 and 12 in the first and second

interval, and between 7 and 9 in the third one. The best fit is obtained

with a 11th order polynomial in the range (9.7, 10), which is thus chosen

as nominal one. We will use the other configurations in order to estimate

the systematic uncertainty related to the background fit.

In the low Mmiss range the fit is overall more stable, and we get a good fit

quality with a 6th order polynomial in the (9.3, 9.7) range. Other possible

combinations will be used for the estimation of the systematic uncertain-

ties.

In the Υ(5S) the fit is divided into two regions, the first one from

Mmiss = 9.30 GeV to Mmiss = 9.70 GeV and the second one from Mmiss =

9.70 GeV to Mmiss = 10.30 GeV, and we use the same PDF used for the
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4.1. Fitting procedure

Υ(4S) case.

Even if the PDF shape is determined on the MC samples, in the data

fit the background parameters must be left floating, since the MC do not

give a perfect description of its shape, as can be seen in Figure 4.2 and 4.3.
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Figure 4.2: η → γγ recoil mass spectrum in Υ(4S) data and in the generic MC.
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Figure 4.3: η → γγ recoil mass spectrum in Υ(5S) data and in the generic MC.
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The fit is performed on binned samples with a bin width 0.1 MeV/c2.

Thinner binnings are shown not to improve the results, and different bin-

ning values are used to evaluate the systematic uncertainties. The residual

distributions, used to present the results, are chosen to have a 1 MeV/c2

bin width to improve the readability.

4.2 Fit of the Υ(4S) sample

4.2.1 Fit of the η → γγ sideband and MC samples

To check the fitting procedure and exclude the presence of non-η peak-

ing contributions in the Mmiss(η) distribution we first apply the fitting

procedure to the pure background MC and to the recoil mass distribution

obtained from the η mass sidebands in the data sample. The results are

shown in Figure 4.4 and 4.5

Figure 4.4: γγ recoil mass in Υ(4S) the data sample for γγ pairs belonging to the
η mass sideband region, after the subtraction of the background component.
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4.2. Fit of the Υ(4S) sample

Figure 4.5: γγ recoil mass in background MC sample for γγ pairs belonging to
the η mass region, after the subtraction of the background component.

No peaking structure is found in either of the fits.

Before fitting the data we perform the fit on an MC sample with NMC
hb(1P) =

96150 and MMC
hb(1P) = 9899.0 MeV/c2. The result of the fit, shown in Fig-

ure 4.6 is N f it
hb(1P) = 102562 ± 4870 and M f it

hb(1P) = 9898.8 ± 0.3 MeV/c2,

in complete agreement whit the original values. For this test we infer no

significant bias is introduced by the fitting procedure.
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Figure 4.6: γγ recoil mass in the η mass region from the MC simulation, after
the subtraction of the background component. The inset shows the distribution
before the background subtraction.

4.2.2 Fit of the η → γγ signal sample

The result of the fit on the data sample is shown in figure 4.7. The con-

fidence levels of the fit are 1% in the lower region and 19% in the upper

one. We observe a peak in correspondence of the Υ(4S) → ηhb(1P) with

a statistical significance of 11 σ and we measure Nhb(1P) = 112469± 5537.

From the position of the hb(1P) peak position we determine Mhb(1P) =

9899.27± 0.40 MeV/c2, where the error is statistical. In the Υ(1S) region

we measure NΥ(1S) = 4230 with a statistical significance of 1.9σ. The cor-

respondent 90% CL upper limit on the Υ(1S) yield is NUL
Υ(1S) = 13900,

including the effect of the systematic uncertainties.

4.2.3 η → π+π−π0 fit

We study the η → π+π−π0 mode as a validation of the measurement.

The fitting procedure is identical to the one used for the η → γγ sample,

and the signal PDF parameters are set according to the MC simulation. We

measure B[Υ(4S) → ηhb(1P)]η→π+π−π0 = (2.3± 0.6(stat.))× 10−3 with a
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4.2. Fit of the Υ(4S) sample

Figure 4.7: γγ recoil mass in the η Mass region, after the subtraction of the back-
ground component. The inset shows the distribution before the background
subtraction.

reconstruction efficiency of 4.5% and a significance of 3.5σ, which is in

agreement with the γγ mode. The result of the fit is shown in Figure 4.8.
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Figure 4.8: π+π−π0 recoil mass in the η Mass region, after the subtraction of the
background component. The inset shows the distribution before the background
subtraction.
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CHAPTER 4. Fit of the η recoil mass on the data samples

4.2.4 Systematic errors

The different contributions to the systematic uncertainties are summa-

rized in table 4.1.

Table 4.1: Systematic uncertainties in the determination of the number of hb(1P)
and Υ(1S), in units of %, and on Mhb(1P) in units of MeV/c2.

Source Nhb(1P) NΥ(1S) Mhb(1P)
Background order and range ±2.4 ±7.1 ±0.1
Bin width ±2.5 ±2.4 ±0.1
ISR modeling ±2.8 ±2.6 ±0.7
γ energy calibration ±1.2 ±1.4 ±0.3
Peaking backgrounds ±0.5 - ±0.4
Reconstruction efficiency ±6.6 ±8.2 -
NΥ(4S) ±1.4 ±1.4 -
Beam energy calibration ±0.0 ±0.0 ±0.4
B[η → γγ] ±0.5 ±0.5 -
Total ±8.2 ±11.6 ±1.0

Fitting procedure The main contribution to the systematic uncertainty

comes from fit-related effects. First we study the fluctuation of signal

yield as function of the fit range and the polynomial order. For each

range-order combination we require the confidence level of the fit to be

compatible with the one obtained in with the nominal configurations. All

the measured values of NΥ(1S), Nhb(1P) and Mhb(1P) are compatible within

the statistical errors, with the average fluctuations σ(Nhb(1P)) = ±2.4%,

σ(NΥ(1S)) = ±7.1% and σ(Mhb(1P)) = 0.1 MeV.

We study the uncertainty related to the bin width repeating the fitting

procedure with bin width ranging from 0.1 MeV to 1 MeV. We observe the

fluctuations σ(Nhb(1P)) = ±2.5%, σ(NΥ(1S)) = ±2.4% and σ(Mhb(1P)) = 0.1

MeV.

ISR modeling. The uncertainty introduced by the ISR modeling is en-

tirely related to the uncertainty on the Υ(4S) width, ΓΥ(4S) = 20.5± 2.5
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4.2. Fit of the Υ(4S) sample

MeV. We re-calculate the signal CB parameters varying the Υ(4S) width

within ±1σ, obtaining a ±2.8% fluctuation in the hb(1P) yield, a ±2.6%

fluctuation in the Υ(1S) upper limit and a ±0.7 MeV fluctuation of the

Mhb(1P) value.

As cross check we tested alternative tools for the ISR modeling, using

a mixed sample of direct Υ(4S) decays and Υ(4S) ISR events generated

using the VECTORISR model provided by the EvtGen MC generator. The

VECTORISR model has been developed for the simulation of the produc-

tion of low mass states in ISR processes, therefore it’s expected to describe

the soft ISR emission only within a few percent approximation. We no-

ticed that the emission of ISR photons with energy less than 5 MeV, lower

than the intrinsic energy spread of the e− beam which is already included

in the MC simulation, does not significantly affect the Mmiss(η) resolution.

Therefore we can avoid to use VECTORISR to model very soft photons

limiting its usage to events with E(γ)ISR > 5 MeV, and obtain the final dis-

tribution by mixing two MC samples, one with ISR and one without ISR.

From the theoretical distribution we calculate the probability of emitting

a photon with energy greater than 5 MeV, P(E(γ)ISR > 5MeV) = 7.23%,

and we re-weight the samples accordingly. Fitting of the data sample with

the PDFs obtained with the two different methods we estimate a differ-

ence of only ±3.5% in the signal yield, which suggests that our analytical

approach is correctly describing the signal PDF.

γ energy calibration. We assume a ±0.2% error on the absolute pho-

ton energy scale Fen since we observe a systematic 0.2% shift between

the measurement obtained with π0 → γγ and the one obtained with the

D∗0 → D0γ. To evaluate how this uncertainty propagates to the final

results, we calculate the reconstruction efficiency and the signal fit param-

eters varying Fen by ±0.002, and we compare the results of the fit on the
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data under the different assumptions. We observe no significant fluctua-

tion at the level of 0.01 MeV on Mhb(1P). The corresponding uncertainty on

the signal yield is 0.2%.

The value of the fudge factor Fres influences both the reconstruction ef-

ficiency, because of the presence of the minimum photon energy require-

ments, the η mass window and the π0 veto, and the fitting procedure,

through the value of the signal peak resolution. In order to estimate these

effects we repeat the analysis assuming three different smearing scenarios:

the first one, using the central value of the smearing, the second one ob-

tained lowering Fres by 1σ, an the third one obtained increasing Fres by 1σ.

Comparing the branching fraction and the mass measurements obtained

in the three scenarios, we estimate the corresponding uncertainties due to

the photon energy calibration. Including the contribution due to the un-

certainty on β we obtain: σ(Nhb(1P)) = ±1.2%, σ(NΥ(1S)) = ±1.4%, and

σ(Mhb(1P)) = 0.1 MeV.

Peaking backgrounds. The Υ(4S)→ ηhb(1P) transition may suffer from

a peaking background from the transition Υ(1D) → ηΥ(1S), where the

Υ(1D) is produced via the radiative cascade Υ(4S)→ γχb0(2P)→ γγΥ(1D).

Even if the η recoil peak for this transition is Doppler-shifted, we found

that a Gaussian PDF properly describes it. Including this component into

the fit we observe no significant signal of Υ(1D) → ηΥ(1S), with a fitted

yield compatible with 0 and an upper limit NUL
Υ(1D)

= 4210, including the

systematic uncertainties. The χ2/NDF shows that no significant change in

the fit performances can be archieved including this component. The 0.5%

difference between the two fitted Υ(4S)→ ηhb(1P) yields will be included

in the systematic uncertainties.

Reconstruction efficiency. Different sources contributes to the uncertainty

on reconstruction efficiency. Using the 121.4 fb−1 collected at the Υ(5S) en-
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ergy, we reconstruct the Υ(5S)→ π+π−Υ(2S) transitions and we compare

the R2 shape obtained from the data with the simulated one, as shown in

figure 4.9, we determine a ±3% uncertainty related to the continuum re-

jection.

Figure 4.9: Comparison between the fitted yield of Υ(5S) → π+π−Υ(2S) events
in the data and in the MC simulation, as a function of the R2 requirement.

hb(1P) decays are expected to produce ggg and gg final states with

almost the same probability, while the Υ(2S) sample used for the estima-

tion of the systematic uncertainty is expected to contain 10% of gg events,

while the remaining 90% is composed predominantly of ggg ( 80%). How-

ever, we observe that the gg and ggg produce very similar R2 distributions

in the MC simulation (figure 4.10), so the usage of Υ(5S) → π+π−Υ(2S)

as control sample is not expected to introduce large errors.

The Υ(1S) decay table used for this analysis includes the leptonic

modes Υ(1S) → µ+µ−, e+e−, that account for a total 5% of the branch-

ing ratio. We expect those events not to pass the HadronBJ selection, with

a correspondent reduction of the reconstruction efficiency. We check the

HadronBJ selection efficiency and we found εHBJ = 90%, while εHBJ =

95% was expected assuming all the non-leptonic final states to pass the

hadronic selection. We ascribe this effect to the Υ(1S) decays with less

than four charged tracks in the final state. Since we have no validation
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Figure 4.10: Comparison between the R2 distribution in ggg and gg fragmenta-
tion.

available for MC simulation of the Υ(1S) → ggg fragmentation into few

hadrons, we assume the 5% difference between the expected and observed

values of εHBJ as systematic uncertainty. The same argument applies to the

hb(1P) decay: in this case a find a discrepancy of ±1%.

The π0 veto efficiency is studied in MC and Data sample comparing

the number of η → γγ candidates as function of the γγ momentum, with

and without the veto. In Figure 4.11 we present the ratio N(η)Veto
N(η)NoVeto

. No

significant discrepancy between MC and Data is found, thus we don’t add

a systematic uncertainty related to this procedure.

The uncertainty on the photon reconstruction efficiency is estimated

using the previous Belle study on D → K±π∓π0 events to be ±2.8% per

photon, corresponding to ±5.6% per η. The number of Υ(4S) events is

known with a relative uncertainty of ±1.4%. Finally, an uncertainty on

the branching fractions of the η decay modes is included according to the

PDG values.

Beam energy calibration The beam energy spread is included in the MC

simulation and is therefore already accounted for by the MC resolution.
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Figure 4.11: Ratio between the number of η → γγ fitted with and without apply-
ing the π0 veto, as a function of th momentum of the γγ pair. The distribution
observed in the data sample (black dots) is found to be in agreement with the
MC expectation (Orange, dotted distribution).

Its central value in Belle is calibrated using fully reconstructed B meson

decays. In order to do that the beam constrained mass Mbc is first calculated

as

Mbc =
√

E2
n − p2

B,

where En is the nominal beam energy in the CM frame and pB is the B

meson momentum. The corrected beam energy Ec is then calculated as

Ec = En −
mB

En
(Mbc −mB),

where mB is the nominal B meson mass. Therefore the uncertainty on the

B meson mass propagates to the corrected beam energy value, and this

effect is not included in the standard MC simulation.

To evaluate it we perform a Toy-MC simulation, measuring the recon-

structed hb(1P) mass as function of the B mass value assumed for the

calculation of Ec. The result of the simulation of 10000 values of mB, Gaus-
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sian distributed around the nominal value with a resolution equal to the

mB error reported by the PDG is shown in Figure 4.12

Figure 4.12: Fluctuation of the measured hb(1P) mass if the mass of the B meson
used for the beam energy calibration is Gaussian floated within ±0.17 MeV/c2

from the nominal value of 5.2793 MeV/c2.

The corresponding fluctuation of ±0.4 MeV/c2 on the measurement of

the hb(1P) mass is assumed as systematic uncertainty related to the beam

energy calibration.

η parameters The branching ratio B[η → γγ] is known with a ±0.5%

accuracy according to the Particle Data Group. The η mass value used

in the kinematic fit may affect the hb(1P) mass measurement. We repeat

the kinematic fit varying the η mass within ±0.02 MeV the central value

(corresponding to a ±1σ interval), without observing any significant shift

in the hb(1P) peak position.

Luminosity We assume that the number of Υ(4S) is NΥ(4S) = (771.581±

10.566)× 106 thus we assign a 1.7% of uncertainty to the branching frac-

tions measured at the Υ(4S).
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4.2.5 Results

We observe for the first time the transition Υ(4S) → ηhb(1P) with sta-

tistical significance of 11σ, and we measure a branching ratio

B[Υ(4S)→ ηhb(1P)] = (2.18± 0.11± 0.18)× 10−3.

The Υ(4S)→ γχbJ(2P)→ γγΥ(1D)→ γγηΥ(1S) process is not observed.

We estimate an upper limit for the branching ratio

B[Υ(4S)→ γχbJ(2P)→ γγΥ(1D)→ γγηΥ(1S)] < 0.8× 10−4,

We do not report any new evidence for the transition Υ(4S) → ηΥ(1S),

and we determine the 90% CL upper limit

B[Υ(4S)→ ηΥ(1S)] < 2.7× 10−4,

which is compatible with the previous observation of this transition, that

reported B[Υ(4S)→ ηΥ(1S)] = 1.96± 0.06± 0.06× 10−4.

Finally, we report a new measurement of the hb(1P) mass:

Mhb(1P) = 9899.3± 0.4± 0.9 MeV/c2.

4.3 Fit of the Υ(5S) sample

The fit of the Υ(5S) data sample is performed with the very same

strategy and conditions used for the fit of the Υ(4S) one.
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4.3.1 Fit on the Data sample

The results of the fit are shown in Figure 4.13.

Figure 4.13: Residual from the background fit in Υ(5S) Dataset.

The only signals with significance higher than 3σ are Υ(5S)→ ηΥ(1D)

and Υ(5S)→ ηΥ(2S); we cannot claim evidences of the transitions Υ(5S)→

ηhb(1, 2P) or Υ(5S) → ηΥ(1S). The fitted yields and the correspondent

upper limits are reported in Table 4.2

Table 4.2: Significances, yields and correspondent upper limits for the signal pro-
cesses in Υ(5S) decays.

Channel Significance Nmeas NUL
Υ(5S)→ ηΥ(1S) 1.8σ 2970± 1657 7459

Υ(5S)→ ηhb(1P) 2.4σ 2742± 1489 9222

Υ(5S)→ ηΥ(2S) 3.3σ 5016± 1635
Υ(5S)→ ηΥ(1D) 5.3σ 8563± 1718
Υ(5S)→ ηhb(2P) <1σ 26± 363 8017
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4.3.2 Systematic errors

We assume that the number of Υ(5S) is NΥ(5S) = (41.28± 2.15)× 106,

thus we assign a 4.9% of uncertainty to the branching fractions measured

at the Υ(5S). The number of Υ(5S) is calculated as NΥ(5S) = L · σ(e+e− →

bb̄), where L = 121.4 fb−1 is the collected luminosity and σ(e+e− → bb̄) =

0.34 nb is the cross section of the Υ(5S) production. For the uncertainty

we assume σcrosssection = 4.7% and σluminosity = 1.4%.

A peaking background from Υ(5S) → π+π−Υ(1D) → ηΥ(1S) can

affect the measurement of B[Υ(5S) → ηΥ(1D)]. Combining a recent

unpublished measurement by Belle of the branching ratio B[Υ(5S) →

π+π−Υ(1D) → γγΥ(1S)]1 and the upper limit Υ(1D)→ηΥ(1S)
Υ(1D)→γγΥ(1S) < 0.25 re-

ported by the PDG, and taking into account the reconstruction efficiency

and the η → γγ branching ratio we estimate that this contribution should

be negligible. According to the MC simulation this background can be

modeled in our data sample with a Gaussian PDF. Despite this contam-

ination is expected to be small, we repeat the fit including an additional

peak. The difference in the yield of Υ(5S) → ηΥ(1D) events in the two

conditions is 0.3%.

As we did for the Υ(4S) → ηhb(1P), we repeat the fit leaving the

widths of the signal peaks floating, observing a 6.0% discrepancy in the

fitted yields. The same procedure is applied to the peak positions by

leaving the Υ(2S) and Υ(1D) masses floating. We observe a discrepancy

of 1.7%.

The fit has been repeated using different orders of the Chebyshev

polynomial. The corresponding systematic errors are 1% for Υ(5S) →

ηΥ(1D), ηΥ(2S), while in the case of Υ(5S) → ηhb(1, 2P) and Υ(5S) →

ηΥ(1S) is of the order of 10%. In the latter case, since no significant signal

1We cannot explicitly report here the result, which has not been released yet.
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is observed, we derive the systematic uncertainty from the fluctuations of

the upper limit.

The uncertainties related to the fit procedure are estimated chang-

ing both the fit range and the bin width, with the constraint of having

a χ2/NDF comparable to the one obtained in the best conditions. The

summary of the systematic errors per each channel are reported in Table

4.3.

Table 4.3: Systematic uncertainties in the study of the Υ(5S)→ ηbb̄ transitions.

Source ηΥ(1S) ηΥ(2S) ηΥ(1D) ηhb(1P) ηhb(2P)
NΥ(5S) ±4.9% ±4.9% ±4.9% ±4.9% ±4.9%
γ reconstruction ±4.0% ±4.0% ±4.0% ±4.0% ±4.0%
Fit range ±4.0% ±6.0% ±3.5% ±9.0% ±10%
Bin width ±7.1% ±1.0% ±3.5% ±15% ±20%
Polynomial order ±9.0% ±7.3% ±1.1% ±10% ±9.0%
Signal resolution ±7.0% ±12% ±1.0%
Floating masses ±5.0% ±7.2% ±1.7%
Peaking backgrounds ±0.3%
Total ±16.2% ±18.1% ±8.3% ±21.0% ±25.0%

4.3.3 Measurement of the Υ(1D) centroid

The fine splitting in the Υ(1D) system is too small to be measured

with the recoil mass technique. We can, however, measure the average

mass of the system ("centroid" in the following). We obtain the value

of MΥ(1D) = 10161.4± 1.8± 1.0 MeV/c2, where the first error is statisti-

cal and the second one is systematic. The different sources of systematic

uncertainty are reported in Table 4.4. The η meson energy resolution is

estimated from the studies conducted on the photon energy scale.

4.3.4 Results

We report the observation of the transition Υ(5S) → ηΥ(1D) with sta-

tistical significance of 5.3σ, and an evidence of the transition Υ(5S) →
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Table 4.4: Systematic uncertainties on the measurement of the Υ(1D) centroid.

Source Error [MeV]
Fit range ±0.2
Bin width ±0.5
Polynomial order ±0.2
Signal resolution ±0.5
γ energy resolution ±0.7
Total ±1.0

ηΥ(2S) with statistical significance of 3.3σ. We measure the branching ra-

tios

B[Υ(5S)→ ηΥ(1D)] = (3.14± 0.63± 0.26)× 10−3

and

B[Υ(5S)→ ηΥ(2S)] = (1.96± 0.64± 0.35)× 10−3.

Our measurement of B[Υ(5S) → ηΥ(2S)] is about 1.8σ below the re-

sult obtained with the exclusive reconstruction of the Υ(2S), B[Υ(5S) →

ηΥ(2S)]Υ(2S)→π+π−µ+µ− = (3.8± 0.4± 0.5)× 10−3 [129].

In the search for transitions to the hb(1, 2P) no signal has been observed.

Upper limits at 90% confidence level are calculated for the branching ra-

tios:

B[Υ(5S)→ ηhb(1P)] < 3.4× 10−3,

B[Υ(5S)→ ηhb(2P)] < 4.0× 10−3,

and
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CHAPTER 4. Fit of the η recoil mass on the data samples

B[Υ(5S)→ ηΥ(1S)] < 3.1× 10−3,

where the systematic uncertainty is taken into account by lowering the

efficiency of a factor (1− σsyst).

We also report a new measurement of the average mass of the Υ(1D)

triplet,

M[Υ(1S)] = 10161.4± 1.8± 1.0 MeV/c2.
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Fit of the hb(1P)→ γηb(1S)

process

5.1 Fitting procedure

The Υ(4S) → ηhb(1P) → ηγηb(1S) process is studied using the re-

coil mass of the η candidate and the observable ∆Mmiss = Mmiss(ηγ) −

Mmiss(η), where Mmiss(ηγ) is the recoil mass of the ηγ pairs, that is ex-

pected to peak at the ηb(1S) mass value (Figure 5.1). The yield of hb(1P)

is fitted in slices of ∆Mmiss, and the obtained distribution is then fitted.

This procedure is the same used for the first measurement, at Belle, of

the ηb(1, 2S) parameters [142]. The range in which the Mmiss(η) fit is per-

formed is different from the one used in the previous section in order to

assure the proper convergence of the fit in each slice of ∆Mmiss(η). We

select the range [9.8, 9.95] GeV and a 7th order Chebyshev Polynomial

for the nominal fit, while alternative ranges and polynomial orders will be

used for the estimation of the systematic uncertainties. In order to improve

the quality of the fit, we first fit each slice in the sideband sample, where

no signal is present, and we use the resulting polynomial coefficients to

fix the initial conditions of the fit in the signal sample.
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Figure 5.1: ∆Mmiss versus Mmiss(η) in signal MC events. No MC truth is required.

The signal peak is modeled with the convolution of a resolution func-

tion and a Breit-Wigner resonance. The resolution function is modeled

as a double Crystal Ball PDF, with a core resolution of 11 MeV, shown

in Figure 5.2. The background due to the combination of accidental pho-

Figure 5.2: Resolution PDF used to model the Υ(5S) → ηhb(1P) → ηγηb(1S)
signal peak.
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tons and a signal η is modeled with an exponential PDF. In the fit of the

data sample we fix all the signal parameters except the peak position and

the Breit-Wigner width. Given the binned nature of the fit, the possible

presence of negative values and the non-poissonian errors, we perform a

minimum χ2 fit.

The fitting procedure is first tested on an MC sample with large sig-

nal statistics. The results of the fit, shown in Figure 5.3, are in complete

agreement with the MC values.

Figure 5.3: Υ(5S) → ηhb(1P) → ηγηb(1S) signal fit in the MC sample. The
background is described with an exponential function.

The branching ratio of the transition hb(1P) → γηb(1S) can be ex-

pressed as

B[hb(1P)→ γηb(1S)] =
Nηb(1S)εηhb(1P)

Nhb(1P)εηγηb(1S)
,

where
εηhb(1P)

εηγηb(1S)
= 1.887± 0.053 is the ratio of the reconstruction efficiencies
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CHAPTER 5. Fit of the hb(1P)→ γηb(1S) process

for Υ(4S)→ ηhb(1P) and Υ(4S)→ ηhb(1P)→ ηγηb(1S).

5.2 Fit of the data sample
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Figure 5.4: Υ(5S) → ηhb(1P) → ηγηb(1S) signal fit in the Data sample. The
background is described with an exponential function.

We estimate the number of signal events Nηb = 33116 ± 4741 and a

peak position of:

∆Mmiss = Mηb(1S) −Mhb(1P) = −498.64± 1.74 (stat) MeV.
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The ηb width Γ(ηb) is left floating in the fit, obtaining the value:

Γ(ηb) = 7.8+6.4
−5.3 (stat.) MeV.

. We measure

B[hb(1P)→ γηb(1S)] = (55.6± 8.0)%,

which is fully compatible with the PDG value BPDG[hb(1P)→ γηb(1S)] =

(49± 8)%

5.2.1 Systematic errors

The systematic uncertainties related to the η reconstruction and the lu-

minosity do not affect the measurement of B[hb(1P)→ γηb(1S)], since it is

obtained with a ratio of two branching fractions. The γηb yield is affected

by systematic uncertainties from both the ∆Mmiss fit and the Mmiss(η) fit,

but in the determination of the branching fraction some of them simplifies.

The contributions due to the different sources are summarized in Table 5.1.

Table 5.1: Systematic uncertainties in the determination of the ηb(1S) mass and
width, in units of MeV/c2 and on B = B[hb(1P)→ γηb(1S) , in units of %.

Source ∆Mmiss Γηb(1S) B
Mmiss(η) fit range ±0.8 ±3.0 ±2.8
Mmiss(η) bin width ±0.0 ±0.1 ±0.0
Mmiss(η) polynomial order ±0.1 ±1.9 ±1.6
Mhb(1P) ±0.0 ±0.8 ±1.1
∆Mmiss fit range ±0.0 ±0.7 ±2.2
∆Mmiss bin width ±0.8 ±2.8 ±5.2
γ energy calibration ±0.5 ±0.3 ±1.2
Reconstruction efficiency ratio - - ±2.8
Total ±1.2 ±4.7 ±7.2
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Reconstruction efficiency. The uncertainty on the reconstruction effi-

ciency is entirely due to the single photon reconstruction uncertainty, since

all the other sources, like the HadronBJ-related one discussed in the pre-

vious section, simplify.

γ energy calibration. We estimate the impact on the photon calibration

uncertainty as we did for the measurements related to the hb(1P), com-

paring the results of the analysis obtained under tree different smearing

scenarios. For the estimation of the ∆Mmiss, we include also the contri-

bution due to the uncertainty on β, which is found to be dominant over

the uncertainty related to F . For the other measurements, we found no

significant effect correlated to the value of β.

Mmiss(η) fit. Four uncertainties are related to the Mmiss(η) fit: the choice

of the bin width, the bin Range, the background PDF order and the value

of Mhb(1P), which is fixed during the fit to the value obtained by the fit

of the full Mmiss(η) distribution presented in the previous section. In or-

der to assure the uniform quality of the fit, we require the p-value of the

∆Mmiss fit to be greater than 20%, otherwise the fit configuration will not

be included in the estimation of the uncertainties.

The Mmiss bin width is varied within 0.1 and 0.5 MeV. For each value

we repeat the fit procedure, and we report as systematic uncertainty the

average fluctuation of the measured quantities. We find that the uncer-

tainties related to the Mmiss(η) binning are almost negligible: we observe

σ(∆Mmiss) = 0.02 MeV, which can be considered as negligible, σ(B) =

0.3% and σ(Γηb(1S)) = 0.1 MeV.

In order to study the effect of the Mmiss(η) range, the lower edge of the

fit range is varied from 9.7 to 9.85 GeV in 0.05 GeV steps, while the upper

edge is fixed. Extending the upper edge to 10 GeV requires a dramatic

change on the background PDF, which is required to have order grater
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than 11, thus we do not consider this option. We observe the fluctuations

σ(∆Mmiss) = 0.8 MeV, σ(Γηb(1S)) = 3.0 MeV and σ(B) = 2.8%.

We test different options for the description of the background, chang-

ing the order of the Chebyshev PDF from 5 to 9. We observe the fluctuation

on the measured quantities σ(∆Mmiss) = 0.1 MeV, σ(Γηb(1S)) = 1.9 MeV

and σ(B) = 1.6%.

The fit of the Mmiss(η) distributions is performed fixing the position of

the hb(1P) peak to the best fit value of 9899.3 MeV. In the following , we

will refer to this parameter as Mfit
hb(1P). We repeat the fit with different as-

sumptions for Mfit
hb(1P), changing its values within a ±2σ window around

the nominal value with 0.2 MeV steps. We observe a negligible fluctuation

of the ∆Mmiss value of 0.03 MeV, while for the other measured quantities

we report σ(Γηb(1S)) = 0.8 MeV and σ(B) = 1.1%.

∆Mmiss fit. We estimate the impact of different ranges in the ∆Mmiss fit

changing the interval lower edge from −0.9 to −0.7 GeV and the upper

one within −0.3 GeV and −0.2 GeV. We observe the fluctuations in the

measured quantities σ(∆Mmiss) = 0.1 MeV, σ(Γηb(1S)) = 1.9 MeV and

σ(B) = 1.6%.

Similarly, we repeat the with with a different bin width: 2, 5, 10 (nom-

inal) and 12 MeV. We observe the fluctuations in the measure quantities

σ(∆Mmiss) = 0.8 MeV, σ(Γηb(1S)) = 2.8 MeV and σ(B) = 5.2%.

5.2.2 Results

We observe the transition Υ(4S) → ηhb(1P) → ηγηb(1S) with statisti-

cal significance of 13σ. We measure the branching fraction
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B[hb(1P)γηb(1S)] = (55.6± 8.0± 4.0)%,

The mass of the ηb(1S) can be calculated by measuring the mass difference

Mηb(1S) −Mhb(1P) = (−498.6± 1.7± 1.2) MeV.

We calculate the ηb(1S) mass as Mηb(1S) = ∆Mmiss + Mhb(1P), where Mhb(1P)

is the value obtained from the fit of the inclusive hb(1P) peak:

Mηb(1S) = (9400.7± 1.7± 1.6) MeV

Finally we estimate the width of the ηb(1S) resonance

Γηb(1S) = (8+6
−5 ± 5) MeV.

168



Chapter 6

Conclusions

This final chapter is devoted to the summary of the results presented

in this work and the discussion of their consequences. The most important

results are connected with the first observation of the hadronic transition

Υ(4S) → ηhb(1P). This process is found to be the strongest known tran-

sition from the Υ(4S) meson to lower bottomonium states and offers a

completely new pathway to the ηb(1S), allowing for the first time to con-

firm the measurements of the ηb(1S) properties previously done by the

Belle collaboration exploiting the ππ transitions from the Υ(5S).

At the Υ(5S) energy, we observe for the first time the transition to the

Υ(1D) through the emission of an η meson, and we complete the pattern

of the searches for η transition. With the available data sample we do not

observe transitions to the spin singlet states, but at least we are able to put

upper limits that can be compared with the measurements done in the ππ

channels.

6.1 Hadronic transitions

A summary of the results of the measurement of hadronic and radia-

tive transitions presented in this work is shown in Table 6.1. We report
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the first observation of a single meson transition from spin-triplet to spin-

singlet bottomonium states, Υ(4S)→ ηhb(1P). The search for similar pro-

cesses resulted in the 90% C.L. upper limits B[Υ(4S) → ηΥ(1S)] < 2.7×

10−4, in agreement with the measurement by BaBar[128], and B[Υ(4S) →

γγΥ(13D1,2)]×B[Υ(13D1,2)→ ηΥ(1S)] < 0.8× 10−4.

Table 6.1: Summary of the results of the searches for η transitions from Υ(4S)
and Υ(5S).

Observable Value Previous measurement
B[Υ(4S)→ ηhb(1P)] (2.18± 0.11± 0.18)× 10−3

B[Υ(4S)→ ηΥ(1S)] 2.7× 10−4 (1.96± 0.28)× 10−4

B[Υ(5S)→ ηhb(2P)] < 4.0× 10−3

B[Υ(5S)→ ηhb(1P)] < 3.4× 10−3

B[Υ(5S)→ ηΥ(2S)] (1.96± 0.64± 0.35)× 10−3 (3.8± 0.4± 0.5)× 10−3

B[Υ(5S)→ ηΥ(1S)] < 3.1× 10−3 (0.73± 0.16± 0.08)× 10−3

B[Υ(5S)→ ηΥ(1D)] (3.14± 0.63± 0.26)× 10−3

B[hb(1P)→ γηb(1S)] (56± 8± 4)% 49+8
−7%

Table 6.2 reports the updated comparison between the theory and the

experimental measurement of the η transitions in the bottomonium sector.

Our result on Υ(4S) → ηhb(1P) is in remarkable agreement with the the-

Table 6.2: Theoretical prediction on the partial widths of the η transitions among
bottomonium states, from different authors. For the Υ(5S) → Υ(2S) transition
we report both the two the experimental results available. We report here only
the theoretical prediction by the authors who considered also the transitions from
Υ(4S) and Υ(5S). All the values are in units of keV/c2

Process [133] [135] [121] [136] Exp
Υ(2S)→ Υ(1S) [×10−3] 60± 40 9.3± 1.5
Υ(3S)→ Υ(1S) [×10−3] 3600± 2200 20 < 3
Υ(4S)→ Υ(1S) 2.3± 1.4 6.05 4.0± 0.8
Υ(5S)→ Υ(1S) 8.8± 5.2 20− 150 40± 23
Υ(5S)→ Υ(2S) 10− 100 209± 111, 108± 78
Υ(4S)→ hb(1P) 37.9 ≈ 20 44.7± 7
Υ(5S)→ hb(1P) < 187
Υ(5S)→ hb(2P) < 220
Υ(5S)→ Υ(1D) 172± 96

oretical expectation, confirming the validity of the most recent models of
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the light degrees of freedom contributions to these processes. However we

must also remark that no author has foreseen the Υ(5S) → ηΥ(1D) tran-

sition. In this case, the comparison with the ππ transitions is surprising.

In the latter, the transition to the Υ(1D) is much weaker than the ones to

the hb(1P, 2P). The measurement of Υ(5S) → π+π−Υ(1D) has not been

explicitly quoted by the previous Belle studies, that only reported the pres-

ence of a peak with a yield of 22000± 7800 events and 2.4σ of statistical

significance. Assuming that the reconstruction efficiency for the ππΥ(1D)

final state is the same as for the nearby transitions, we can approximatively

calculate the ratios 1

Υ(5S)→ π+π−Υ(1D)

Υ(5S)→ π−π+hb(1P)
≈ 0.5

Υ(5S)→ π+π−Υ(1D)

Υ(5S)→ π−π+hb(2P)
≈ 0.3

Υ(5S)→ π+π−Υ(1D)

Υ(5S)→ π−π+Υ(2S)
≈ 0.2

In the η transitions sector the situation seems to be opposite. The η transi-

tion to the Υ(1D) is larger than or at least of the same order of any other

η transition we searched for:

Υ(5S)→ ηΥ(1D)

Υ(5S)→ ηhb(1P)
> 0.92,

Υ(5S)→ ηΥ(1D)

Υ(5S)→ ηhb(2P)
> 0.78,

Υ(5S)→ ηΥ(1D)

Υ(5S)→ ηΥ(2S)
= 1.6± 0.7,

This result is even more surprising if we consider that the η transition is

selecting only two out of three states of the Υ(1D) spin triplet.

1These ratios must be taken very carefully. A reasonable assumption for the uncertainty
on each is probably ±50%.
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None of our results is directly sensitive to the HQSS violation effects,

since all the transitions from Υ to hb are spin-flipping. Furthermore also

the calculation of ratios is not possible and only upper or lower limits on

RnS→mP
η,ππ can be reported, since we are not able to measure the η transi-

tions from the Υ(5S) to the hb(1P, 2P), for which the ππ counterparts are

known, while we measure the transition from the Υ(4S), for which the

ππ process has not been studied in details. Belle reported only the upper

limit on the ratio of cross sections
σ[e+e−→ππhb(1P)]Υ(4S)
σ[e+e−→ππhb(1P)]Υ(5S)

< 0.27. from the

computation of the number of BB̄ pairs collected by Belle we can calculate

σ[e+e− → Υ(4S)] = 1.097 nb, while the cross section of the Υ(5S) pro-

duction is σ[e+e− → Υ(5S)] = 0.34 nb. With these assumption we can

evaluate a rough upper limit B[Υ(4S) → π+π−hb(1S)] < 0.4× 10−3 and

us this estimation to calculate the ratio:

R4S→1P
η,ππ > 5.4.

For the Υ(5S) we are able to calculate the upper limits

R5S→1P
η,ππ < 0.94

and

R5S→2P
η,ππ < 0.62.

Unfortunately no theoretical predictions on these ratios are currently avail-

able for comparison. The general picture however already shows that the

Υ(4S) has a quite unique behavior: it’s the only state for which R4S→x
η,ππ > 1

in every process studied so far. In the Υ(5S) the data suggest, as general

behavior, R5S→x
η,ππ ≈ 1, while in the narrow bottomonia the HQSS is still a

good symmetry with R2S,3S→1S
η,ππ << 1.
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6.2 Hyperfine splittings

Table 6.3 summarizes the masses, total widths and hyperfine splittings

measured in this work or calculated upon our results.

Table 6.3: Summary of the measurements of different resonance parameters,
compared with the values available before our analysis. For the ηb mass and
the corresponding hyperfine splitting, we compare our result with the previous
one obtained using the E1 transition from hb(1P)

Observable Value Previous measurement
MΥ(1D) (10161± 1.8± 1.0) MeV/c2 10163.7± 1.4 MeV/c2

Mhb(1P) (9899.3± 0.4± 1.0) MeV/c2 (9899.3± 1.0) MeV/c2

Mηb(1S) −Mhb(1P) (−498.6± 1.7± 1.2) MeV/c2

Mηb(1S) (9400.7± 1.7± 1.6) MeV/c2 (9402.4± 1.5± 1.8) MeV/c2

Γηb(1S) (8+6
−5 ± 5) MeV/c2 (11+6

−4 MeV/c2

∆MHF(1S) (+59.6± 1.7± 1.6) MeV/c2 57.9± 1.5± 1.8
∆MHF(1P) (+0.6± 0.4± 1.0) MeV/c2 (+0.8± 1.1) MeV/c2

In order to calculate ∆MHF(1S) we subtract our measurement of Mηb(1S)

from the world average Υ(1S) mass value mΥ(1S) = (9460.30± 0.26) MeV/c2.

Similarly we calculate ∆MHF(1P) subtracting our measurement of the

hb(1P) mass from the world average value of the χbJ(1P) centroid, mcog
χbJ(1P) =

9899.87± 0.42. We find ∆MHF(1P) = (+0.6± 0.4± 1.0) MeV/c2, compat-

ible with zero, indicating the absence of significant long-range spin-spin

interactions in the QCD potential.

In order to improve our result, we can calculate the average ηb(1S)

mass accounting for the correlations among our measurement and the

previous one obtained by Belle We calculate Mavg
hb(1P) as the weighted aver-

age of all the available results, including BaBar’s one. We assume that no

correlation is present among the different measurements, since they are

performed at different energies and with different modes: two photons in

our case, two charged tracks in the case of the Υ(5S) analysis. The possible

sources of correlated uncertainties, like the R2 selection or the luminosity

estimation, do not affect the measurement of Mhb(1P). Table 6.4 shows the

measurements and the weights used for this calculation. We observe that
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the BaBar results has very small impact on the Mavg
hb(1P) value, since its error

is much larger than the Belle’s ones.

Table 6.4: Summary of the measurements contributing to Mavg
hb(1P). The weights

used in the calculation of the averages are calculated as w = σtot(Mhb(1P))
−2.

Source Mhb(1P) [MeV] σtot(Mhb(1P)) [MeV] weight [MeV−2]
BaBar 9902 4.47 0.05

Belle 5S 9899.1 1.08 0.86

Belle 4S 9899.27 0.98 1.03

Average (including BaBar) 9899.3 0.7
Average (excluding BaBar) 9899.2 0.7

We obtain the average value Mavg
hb(1P) = 9899.3± 0.7 MeV/c2. In order

to estimate the average mass of the ηb(1S) state we exclude all the mea-

surement obtained using the M1 radiative transitions from Υ(nS) states.

These measurements show a systematic disagreement with the one ob-

tained using the E1 transition from the hb(1P), still subject of theoretical

debate. The only measurement that remains is the one obtained by Belle

using the transitions Υ(5S) → π+π−hb(1P, 2P) → γπ+π−ηb(1S). This

measurement was obtained using the Mhb(1P) = (9899.1± 1.08) MeV, thus

a fist step towards the Belle’s average, we re-evaluate M5S
ηb(1S) assuming the

new world average value obtaining:

M5S,avg
ηb(1S) = (9402.6± 1.5± 1.7)MeV/c2

Similarly we recalculate the ηb(1S) mass obtained in our analysis, obtain-

ing

M4S,avg
ηb(1S) = (9400.6± 1.7± 1.4)MeV/c2

By this means, we have two estimation of Mηb(1S), both obtained under

the same assumptions for the hb(1P) mass. However, since M5S,avg
ηb(1S) relies

also on the measurement of the hb(2P) mass, the correlation coefficient
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6.2. Hyperfine splittings

among M5S,avg
ηb(1S) and Mavg

hb(1P) is 0.805, while it is 1 in the case of M4S,avg
ηb(1S). We

thus take into account this correlation in the averaging procedure and we

obtain the Belle average

MBelleavg
ηb(1S) = (9401.6± 1.1± 1.2)MeV/c2,

which is the most precise measurement of the bottomonium ground state

mass available.

Our measurement of ∆MHF(1S) is in agreement with the value ob-

tained with the Υ(5S) → π+π−hb(1P) → π+π−γηb(1S) process [142],

while a discrepancy with the M1-based measurements [153, 154, 152] is

present. From the theoretical point of view our result is in agreement

with the predictions of many potential models and lattice calculations [?],

including the most recent ones [?], as summarized in Figure 6.1. Our mea-

surement confirms a pattern similar to the one observed in charmonium,

suggesting that also in bottomonium the line-shape of the ηb(1S) in M1

transition is distorted by a form factor not accounted by the experimental

analyses.

Finally, our measurement of B[hb(1P)→ γηb(1S)] agrees with the the-

oretical predictions [?, 143].

175



CHAPTER 6. Conclusions

2
(1

S
) 

  M
eV

/c
H

F
 M∆

0

10

20

30

40

50

60

70

80

a)

b)

c)

d)

e)
f)

g)

h)

i) l)

m)

n) o)
E1

avg

M1
avg

Figure 6.1: Summary of the experimental measurements of the 1S hyperfine split-
ting in bottomonium (red dots), compared with a selection of the most recent
theoretical predictions (black dots).
The theoretical prediction are: a) Aarts et al. (2014) [144], b) Dowdall et al.
(2012) [145], c) Meinel (2012) [146], d) Burch et al. (2010) [147], e) Wei-Zhao et
al. (2013) [148], f) Gupta et al. (1994) [149], g) Radford and Repko (2007) [150],
h) Kniehl et al. (2004) [151].
The experimental measurements are: i) CLEO collaboration (M1 transition
Υ(3S) → γηb(1S)) [152], l) BaBar Collaboration (M1 transition Υ(3S) →
γηb(1S)) [153], m) BaBar Collaboration (M1 transition Υ(2S) → γηb(1S)) [154],
n) Belle Collaboration (E1 transitions hb(1P, 2P)→ γηb(1S)) [142].
The last point are the average of the M1 and E1 measurements. For the E1 value
we use the Belle internal average.
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Appendix A

Improved π0 and η selection

Despite the success of this very simple vetoing algorithm we wish to

highlight that other possible definition of D were tested and, despite they

turn out not to improve significantly the quality of the veto, can still be

used for future analysis which require an high purity π0 samples or for the

implementation of more complex veto algorithms. In particular we focus

your attention on the angular distribution and the momentum spectrum

of real an fake π0 candidates. First, we notice that the real π0 and the

combinatorial background have a quite different momentum spectrum,

and significant differences are observed also in the angular distribution at

cos θγγ ≈ 1 (Figure A.1).

Based on this considerations, we tested an alternative definition of D

as

D = Pπ0(p, M),

where P is the probability, evaluated thanks to the montecarlo simulation,

for a γγ pair of momentum p and mass m to be a real π0 rather than a

combinatorial pair. We do not include the angular distribution information

in the construction of the D function since its discriminating power is

found to be too low. To estimate the probability distribution Pπ0(p, M), we
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Figure A.1: Left: Momentum spectrum of real and fake π0 in the π0 mass win-
dow. Right: Angular distribution of real and fake π0 in the π0 mass window.

take the ratio between the real π0 and the total number of γγ candidates

in 140 mass bins between 0.10 and 0.17 Gev/c2 and 300 momentum bins

between 0 and 3 GeV/c. We find that the maximum signal/background

ratio is obtained requiring Pπ0 > 0.27, as shown in Figure A.2. Therefore,
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Figure A.2: Left: Distribution of Pπ0 for real π0 and combinatorial background.
Right: Figure of merit of the optimization of the Pπ0 cut.

we tried to implement a π0 veto based on Pπ0 selecting as π0 candidates

the γγ pair with Pπ0 > 0.27 and subsequently ordering them according

to the decreasing values of Pπ0 . The comparison among between the two
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different definitions of D are shown in Figure A.3
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Figure A.3: Comparison between the η reconstruction efficiency and the η purity
obtained using different definitions of the π0 veto function D.

Even if D = Pπ0 allows a slightly higher reconstruction efficiency in

the low momentum region, the signal purity is slightly decreased. Fur-

thermore, we notice that the choice of D = Pπ0 is likely to introduce

much larger systematic uncertainties. Large fluctuations of the veto per-

formances are observed if the binning used for the construction of P is

changed. Furthermore the value of the probability strongly depends on

the MC simulation of the π0 spectrum and yield, which is controlled at

few % level, while in the case of D = ∆M the only systematic uncertainty

is introduced by the modeling of the π0 mass peak, which has been cor-

rected by the photon energy calibration and whose effect on the veto effi-

ciency is controlled at the 0.1% level. Therefore, we decided to avoid using

the improved definition of P , even if we suggest further investigation of

this variable for future analysis.

Similarly, P could be used instead of the mass window to define good

π0 and good η to be used in the analysis. Also in this case, the same con-

siderations made on the large systematic uncertainty made us decide not

to use it an to opt for a much simpler definition. However, we report here
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the performances we obtained, and again we suggest that this method

could be used in analysis that require the selection of high momentum π0

or η, or that are not based on the analysis of the recoil mass spectrum. In

both the π0 (Figure A.4) and the η case (Figure A.5), we observe that the

selection based on P increases the sample purity in the low momentum re-

gion, but decreasing by a significant amount the reconstruction efficiency.

This effect is primary due to the strong correlation among P and the γγ

momentum.
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Figure A.4: Comparison between the π0 reconstruction efficiency and the π0 pu-
rity obtained using different signal selection criteria
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Figure A.5: Comparison between the η reconstruction efficiency and the η purity
obtained using different signal selection criteria
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Appendix B

Prospects for an improved

continuum rejection

The rejection of the continuum has been never deeply studied for bot-

tomonium physics inside the Belle Collaboration. This issue is indeed a

central problem only for the Υ(4S) and Υ(5S) samples, which showed

their rich potential for bottomonium physics only very recently with large

di-pion transition that did appeared prominently even with a simple R2-

based selection. The bulk of the samples collected for bottomonium stud-

ies by Belle are at Υ(1S) and Υ(2S) energies, where the continuum contri-

bution is much smaller than the resonant one. Therefore few studies have

been done on this problem, which revived little attention in the past years

inside the collaboration.

To try to fill this gap we made a first pilot study following the same

approach used for the B-meson analyses, combining different event-shape

observable in one single Fisher discriminant to improve the continuum

rejection. We compared the separation power archived with different ob-

servables and different combinations, using both single observables and

Fisher discriminants obtained by different combinations. The study is

performed using an MC sample of continuum events and one of Υ(1S)
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annihilation, both at the same energy in the CM frame. We will consider

14 observables: the sphericity S and the thrustness T (Figure B.1), the fox-

wolfram ratios Rnof oder from 1 to 4 (Figure B.2 and B.3), the multipole

moments Mz
l of order 1 to 4 calculated with respect to the beam axis (Fig-

ure B.4 and B.5, and the multipole moments Mt
l of order 1 to 4 calculated

with respect to the thrust axis (Figure B.6 and B.7. In order to discriminate

Figure B.1: Left: Sphericity S for jet-like and spherical events Right: Thrust T for
jet-like and spherical events.

Figure B.2: Left: R1 Fox-Wolfram momentum for jet-like and spherical events
Right: R2 Fox-Wolfram momentum for jet-like and spherical events.
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Figure B.3: Left: R3 Fox-Wolfram momentum for jet-like and spherical events
Right: R4 Fox-Wolfram momentum for jet-like and spherical events.

Figure B.4: Left: Mz
1 multipole moment for jet-like and spherical events Right: Mz

2
multipole moment for jet-like and spherical events.

between different combinations an determine what is the best strategy for

the continuum rejection we define the discriminating power p of an event

shape variable (or their combination) x as

p(x) =
| < xΥ > − < xqq̄ > |√

σ2
xΥ

+ σ2
xqq̄

,
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Figure B.5: Left: Mz
3 multipole moment for jet-like and spherical events Right: Mz

3
multipole moment for jet-like and spherical events.

Figure B.6: Left: Mt
1 multipole moment for jet-like and spherical events Right: Mt

2
multipole moment for jet-like and spherical events.

where < x > is the average value of x in each sample and σ2 is its variance
1.

As it appears immediately from the distributions, not all the variables

we use have the same discriminating power, as reporter in Figure B.8. The

1In general these observables are not Gaussian, therefore σ2 should not be interpreted
as the width of a peak and, in general, < x > do not correspond to the maximum of the
probability distribution.
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Figure B.7: Left: Mt
3 multipole moment for jet-like and spherical events Right: Mt

4
multipole moment for jet-like and spherical events.

Figure B.8: Separation power of different event-shape observable.

R2 moment, the sphericity S and the thrustness T grants the hist separa-

tion power, but are also strongly correlated one with the other as shown in

Figure B.9. Indeed, they all carry the same underlying information and it

is even possible to obtain analytically one from the other. The separation

power is useful to understand which variables can be useful and which

are not, but nevertheless it is not directly connected with the improvement

of the signal significances. Since the distributions are neither Gaussian
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Figure B.9: Left: Correlation between S and R2 in spherical events Right: Correla-
tion between T and R2 in spherical events.

nor even symmetric, variables with lower discriminating power can allow

a larger increase o the signal over background ratio after the optimization

procedure. Therefore, in order to test the fisher discriminants we will con-

struct, we will use the signal over background ration rather than the sepa-

ration power as defined above. For this analysis, we consider as signal the

spherical events and as background the jet-like ones, therefore the signifi-

cance should not be interpreted directly as significance of the η recoil mass

peaks. In the light of the results of the analysis of the separating power,

we decided not to use for the calculation of the Fisher discriminant the

multipole moments Mz
i . Among the remaining combinations, we tested

the most promising ones: (R1...R4), (Mt
1...Mt

4) and (R1...R4, Mt
2,4), where

Mt
1,3 are excluded since they are carrying a very low separation power.

In order to test the construction of the discriminant against over-training

and to proof its capability to handle the correlations among observables

we also tested the combinations (R2, S) and (R2, T), which are expected

to give results comparable to the one obtained with the most powerful

observable in the pair, i.e. R2. Finally, as reference, we study the result of

the optimization made using R2, S and T separately. Figure ?? presents

the signal over background ratio obtained optimizing the continuum re-

jection cut on different observables, normalized to the value obtained if no
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selection is applied.

From the analysis of the signal significance increase, we can deduce

many characteristics of the event shape observables we used. Clearly the

sphericity is the less powerful among the single observables, while R2

and T are behaving similarly. The Fisher discriminant is able to correctly

handle the correlations, since the results obtained with (R2, S) and (R2, T)

are identical to the result obtained with R2 only. Despite non of the Mz
i

variable has separating power comparable to R2, their combination allows

to reach a similar level of significance. Finally a good improvement is

archived if the four Fox-Wolfram moments are combined together, while

the further addition of Mt
2,4 is not increasing the significance, indicating

that these two observables are strongly correlated with Ri.

From this analysis we would conclude that the best strategy is to use

the Fisher discriminant obtained by the combination (R1...R4, shown in

Figure ?? instead of the traditional R2 only. However, the increased sig-

nal significance is obtained with a significant reduction of the selection

efficiency, as reported in Table ??. Since one our main goal is to mea-

Table B.1: Reconstruction efficiency and MM(η) resolution in MC. The peak po-
sition corresponds to the fitted recoil mass in MC events.

Method Signal efficiency [%] Background efficiency [%]
R2 66.4 21.7
R1...R4 39.5 8.7

sure with high statistics the hb(1P) and the ηb(1S) masses, a high selection

efficiency is required, while background levels even rather high are not

limiting the precision of the measurements, assuming that the recoil peaks

are observed with reasonable significance. Furthermore a major limiting

factor to the application of the Fisher discriminant technique is again rep-

resented by the mis-modeling in the MC simulation. The combination of

more FW moments increases significantly the impact of the MC simula-

189



CHAPTER B. Prospects for an improved continuum rejection

tion quality on the matching with the data. After consultations withing the

Υ(5S) working group and in the light of these reasons, we finally opted

for a more conservative approach, basing our continuum rejection on R2

only. However we wish here to point out that the combination of differ-

ent events shape observables, combined with a better tuning of the MC

simulation, is definitively more promising than the selection based on R2

only.
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