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Abstract

We show that three crucial features that
determine the initial geometry of heavy ion
collision (HIC) experiments can be predicted
with excellent accuracy by employing super-
vised machine learning (ML) techniques. De-
spite the use of several ML techniques in the
past, the prediction accuracy is hugely central-
ity dependent. Detailed parameter scans and
ablation analyses are used to analyse the error
spectrum. We use different sampling methods
to determine an efficient algorithm that pro-
vides a multi-fold improvement in the accu-
racy of ML model prediction. We discuss how
the errors can be minimized, and the accuracy
can be improved to a great extent in all the
ranges of impact parameter and eccentricity
predictions.

Introduction

The final particle spectra are significantly
influenced by the collision centrality. It has
been observed that the impact parameter
(b), a representation of the collision central-
ity, influences the multiplicity distribution of
the several identified particles. Although the
centrality cannot be determined from experi-
ments directly, it can be computed with the
use of theoretical modeling using the Glauber
model or another similar model. Neural net-
works have also been proposed to determine
the impact parameter from the experimen-
tal data. We can automate the entire pro-
cedure and determine the impact parameter
efficiently by using ML models. Utilizing ML
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FIG. 1: Error distribution in the prediction of b
for 200 GeV Au-Au events using kNN model
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has the advantage of making the process more
agile by requiring less processing power and
time. In this article, we examine different ML
algorithms and present a thorough compari-
son of their efficiency and accuracy using well-
defined ML methodologies to highlight a sig-
nificant difference in the prediction accuracy
for central collisions.

Eccentricity (e2) is another crucial param-
eter which gives us the initial geometrical
shape of the collision region. The partici-
pant plane eccentricity is defined by, epare =

02—024402 .

s :Ui *% here o’s are the variances of the
positiyons of the particles. For the ML model
training, the transverse momentum (pr) spec-
tra are taken as input features and the impact
parameter, €, €pq,¢ are taken as the target vari-
able which the model must predict. We have
used a multiphase transport (AMPT) model
to generate the pr spectra of Au-Au collision
events at 200 GeV collision energy (y/syn)

[1].
Results and Discussions

All the standard ML models perform rea-
sonably well in case of impact parameter pre-
dictions giving more than 90% accuracy. The
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VISH2+1 prediction errors
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FIG. 2: Error distribution of b predictions of dif-
ferent centrality events of VISH2+1 model

10-fold cross-validation obtained are 97.52%
for the k-NearestNeighbors (kNN) model and
95.18% for the ExtraTreesRegressor(ETR)
model. But if we see the error distribution, we
find that the errors are higher for most central
collision (b < 2fm) events which is shown in
Fig. 1. This is because the event distribution
of pr spectra is left-skewed.

We also found that if the ML model is
trained by a particular type of HIC model,
it can make accurate predictions for the test
data of a different HIC model. In Fig.2, we
show the error plots of impact parameter pre-
dictions by the kNN model for the VISH2+1
test data [2]. Here also we find the error
rapidly increases for the lower impact param-
eter events (b < 2fm).

There are a few sampling techniques in
ML for rebalancing datasets e.g., SmoteR,
ADASYN [3]. These are python packages that
increase(over-sampling) or decrease(under-
sampling) the minority and majority data
class respectively using the neighbouring data.
The error comes down in the lower impact
parameter region by using these standard re-
balancing methods shown in Fig.3(a) Still we
get enough errors that would give a wrong es-
timate for the low impact parameter events.
We then adopt a method of rebalancing using
class weights, where different classes are the
different impact parameter regimes. The var-
ious combinations of distribution region and
weights were evaluated through an exhaustive
grid search. Based on test set minimum er-
ror, we selected events with impact parameter
< 1.0 fm to be in category 1 and the rest in
category 2. The weights assigned to the two
classes are in the ratio 4 : 1. With our custom
method, we were able to minimize the error
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FIG. 3: Error distribution of b predictions of 200
GeV Au-Au collision events after rebalanced using
(a) the SmoteR method, and (b) a custom method
of giving weights to the input
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FIG. 4: €part predictions of Au-Au collision events
at /sy = 200 GeV using unbalanced data
(left), and rebalanced data using the custom
method(right).

to less than 1 shown in Fig. 3(b). This error
is acceptable in this impact parameter range
as the prediction made in this range will al-
ways fall in the most central collision category
(0 — 5%) for the Au-Au collisions. ,

In the case of €3 and €pq¢ predictions,
only three models kNN, ETR and Random-
Forest(RF) give more than 95% prediction
accuracy. It is only true for a smaller ec-
centricity range (0.22 — 0.32). For a larger
range (0.1 — 0.5), the accuracy reduced sub-
stantially from 98% to 78%, which is shown
in Fig.4(left). This is also because of lesser
statistics in the wider range. We use a simi-
lar rebalancing technique and obtained better
accuracy, which is shown in Fig.4(right).
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