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Abstract. Starting from the phase representations with one subtraction of the
pion scalar-isoscalar and vector-isovector charged pion electromagnetic form
factor and exploiting the most accurate information on the S-wave isoscalar
and the P-wave isovector ππ scattering phase shifts, respectively, to be ob-
tained from the existing inaccurate experimental data by means of the Garcia-
Kamiński-Peláez-Yndurain Roy-like equations with an imposed crossing sym-
metry condition, in the framework of the so-called "fully solvable mathematical
scheme" the most reliable values of the f0(500) and ρ0(770) meson mass and
width are found.

1 Introduction

If there is a function F(t) to be analytic in the whole complex t-plane besides the cuts on
the positive real axis from the lowest square root branch point t = 4 to +∞, fulfills the
elastic unitarity condition ImF(t) = F(t)e−iδ sin δ in elastic region with δ to be some of the
ππ scattering phase shifts, the asymptotic behavior F(t)|t|→∞ ∼ 1/t, the reality condition
F∗(t) = F(t∗) and it is normalized at t = 0 to one, then one can write down using the Cauchy
formula a dispersion relation with one subtraction at the point t = 0, which together with
the unitarity condition through the Omnés-Muskelishvili integral equation leads to the phase
representation of F(t)

F(t) = Pn(t) exp
[

t
π

∫ ∞

4

δ(t′)
t′(t′ − t)

dt′
]

(1)

to be the starting point for our further investigations.
Under the "fully solvable mathematical scheme" [1] it is understood a procedure leading

to a very simple form of F(t) in the variable

q = [(t − 4)/4]1/2 (2)

by means of an explicit calculation of the integral in the phase representation (1).
The function F(t) on the positive real axis for t > 4 is complex with the phase δF to be

defined by the relation

tan δF =
ImF(t)
ReF(t)

, (3)
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which, however, due to the elastic unitarity condition, phenomenologically verified to be valid
approximately up to 1 GeV, is identical with the ππ scattering phase shift δ.

Since the transformation (2) is in fact a conformal mapping of the two-sheeted Riemann
surface in t variable into one q-plane, elastic cut, generated by the square root branch point
t = 4, disappears.

Noticing the conformal mapping (2) in more detail, the first Riemann sheet in t variable,
containing only branch points corresponding to opening various thresholds and zeros of F(t),
is mapped on the upper half q-plane, whereby position of the branch point t = 4 and the
normalization point t = 0 are mapped into q = 0 and q = +i, respectively, and the real axis
from −∞ up to t = 4, on which F(t) is a real function, is mapped on the whole positive
imaginary axis of the q-plane.

The second Riemann sheet in t variable, containing branch points, again some zeros and
also complex conjugate pairs of poles, which control the shape of F(t), is mapped on the
lower half q-plane.

If we restrict ourselves only to the elastic region and neglect contributions to F(t) of all
inelastic branch points beyond 1 GeV, then there are only zeros in the upper and lower half
q-plane to be accounted as roots of a polynomial in numerator and conjugate pairs of poles
according to the imaginary axis exclusively in the lower half q-plane to be accounted as roots
of a polynomial in denominator of F(t).

As a result one can represent F(t) in the form of the following rational function

F[t(q)] =

∑M
n=0 anqn∑N
r=0 brqr

. (4)

Multiplying the numerator and denominator by the complex conjugate denominator, Eq.
(4) is changed to the form

F[t(q)] =

∑M+N
s=0 csqs

(
∑N

r=0 brqr)(
∑N

r=0 brqr)∗
. (5)

The reality condition F∗(t) = F(t∗) results in the reality of (5) on the positive imaginary
axis of the q-plane. Then it is straightforward to see that the expression

F[t(q)] =
(c0 + c2q2 + c4q4 + ...) + i(c1q + c3q3 + c5q5 + ...)

(
∑N

r=0 brqr)(
∑N

r=0 brqr)∗
(6)

actually fulfils the latter claim and through the definition of the phase of F(t) leads to the
following parametrization of the ππ scattering phase shift δ

δ = arctan
A1q + A3q3 + A5q5 + A7q7 + ...

1 + A2q2 + A4q4 + A6q6 + ...
, (7)

with all coefficients to be real. This parametrization is derived directly from the basic princi-
ples like analyticity, unitarity and reality condition.

2 Pion scalar-isoscalar form factor and f0(500) meson parameters

The pion scalar-isoscalar form factor (FF) Γπ(t) is defined by the matrix element of the scalar
quark density

〈πi(p2) | m̂(ūu + d̄d) | π j(p1)〉 = δi jΓπ(t), (8)
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with t = (p2 − p1)2 and m̂ = 1
2 (mu + md), and fulfils all properties of the function F(t) defined

in Sect. 1. Even the normalization of physically nonmeasurable pion scalar FF Γπ(t) is equal
to one as it is seen from the calculated pion sigma term value with error

Γπ(0) = (0.99 ± 0.02)m2
π (9)

in the framework of the χPT [2], if the pion mass mπ is taken to be one.
Then the phase representation of the pion scalar-isoscalar FF is

Γπ(t) = Pn(t) exp
 t
π

∫ ∞

4

δ0
0(t′)

t′(t′ − t)
dt′

 , (10)

where δ0
0(t) is now the S-wave isoscalar ππ scattering phase shift to be exactly equal to the

parametrization (7) with the parameter A1 to be identified with the S-wave isoscalar ππ scat-
tering length a0

0. The number of nonzero parameters in (7) and their numerical values are
found in a fitting procedure of the most precise data on δ0

0(t) with theoretical errors in Fig. 1
to be generated by Garcia-Kamiński-Peláez-Yndurain (GKPY) equations [3] for the S-wave
isoscalar ππ scattering amplitude.

Figure 1. The data on δ0
0(t) with theoretical errors to be generated by GKPY equations for the S-

wave isoscalar ππ scattering amplitude. Solid line represents our optimal fit of data with 5 nonzero
coefficients Ai in (7)

The data in Fig. 1 have been analyzed by the relation (7) up to the moment, when the min-
imum of χ2/ndf was achieved. The latter has been found with the first 5 nonzero coefficients
Ai of the values

A1 = 0.2219 ± 0.0029
A2 = −0.0764 ± 0.0423
A3 = 0.1390 ± 0.0251
A4 = −0.0062 ± 0.0053
A5 = −0.0135 ± 0.0020

and the final form of the S-wave isoscalar ππ scattering phase shift δ0
0(t) takes the form

δ0
0(t) = arctan

A1q + A3q3 + A5q5

1 + A2q2 + A4q4 . (11)
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Substitution of (11) into (10), however, leads to the expression which does not allow one
to calculate the corresponding integral explicitly.

Therefore we have used the equivalent form

δ0
0(t) =

1
2i

ln
[
(1 + A2q2 + A4q4) + i(A1q + A3q3 + A5q5)
(1 + A2q2 + A4q4) − i(A1q + A3q3 + A5q5)

]
(12)

to (11) to be valid in the theory of functions of complex variable.
The latter leads to

Γπ(t) = Pn(t) exp

 (q2 + 1)
2πi

∫ ∞

−∞

q′ ln (1+A2q′2+A4q′4)+i(A1q′+A3q′3+A5q′5)
(1+A2q′2+A4q′4)−i(A1q′+A3q′3+A5q′5)

(q′2 + 1)(q′2 − q2)
dq′

 , (13)

and the integral in (13)

I =

∫ ∞

−∞

q′ ln (q′−q1)(q′−q2)(q′−q3)(q′−q4)(q′−q5)
(q′−q∗1)(q′−q∗2)(q′−q∗3)(q′−q∗4)(q′−q∗5)

(q′ + i)(q′ − i)(q′ + ib)(q′ − ib)
dq′, (14)

with

q2 < 0 i.e. q = i

√
4 − t

4
≡ ib

and

q1 = 0.00 −i2.0430 ± 0.2029, q∗1 = −q1,
q2 = 1.41470 ± 0.0579 +i1.0749 ± 0.0162, q∗2 = −q3,
q3 = −1.4147 ± 0.0579 +i1.0749 ± 0.0162, q∗3 = −q2,
q4 = 3.3827 ± 0.0115 +i0.1744 ± 0.0340, q∗4 = −q5,
q5 = −3.3827 ± 0.0115 +i0.1744 ± 0.0340, q∗5 = −q4

(15)

now can be calculated in the framework of the theory of residue explicitly.
In order to carry out it practically, it is convenient to decompose the integral (14) into a

sum of two integrals

I = I1 + I2 =

∫ +∞

−∞

q′ ln (q′−q2)(q′−q3)(q′−q4)(q′−q5)
(q′−q∗1)

(q′ + i)(q′ − i)(q′ + ib)(q′ − ib)
dq′ + (16)−∫ −∞

+∞

q′ ln (q′−q1)
(q′−q∗2)(q′−q∗3)(q′−q∗4)(q′−q∗5)

(q′ + i)(q′ − i)(q′ + ib)(q′ − ib)
dq′


according to singularities to be placed in the upper or lower half q-plane, as it is sketched in
Fig. 2.

Then the explicit form of

I =
2πi

(q2 + 1)
ln

(
(q − q∗1)

(q − q∗2)(q − q∗3)(q − q∗4)(q − q∗5)
(i − q∗2)(i − q∗3)(i − q∗4)(i − q∗5)

(i − q∗1)

)
(17)

is obtained in the straightforward way, if in the case of the first integral∮
φ1(q′)dq′ = 2πi

2∑
n=1

Resn (18)
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Figure 2. Poles (×) and branch points (•) of the integrands φ1(q′) and φ2(q′) with contours of integra-
tions in the upper and the lower half q-planes, respectively

the contour of integration is closed in the lower half q-plane and in the second integral∮
φ2(q′)dq′ = 2πi

2∑
n=1

Resn (19)

the contour of integration is closed in the upper half q-plane (see Fig. 2).
In a such way one avoids complicated calculations of the cut-contributions to be auto-

matically generated by branch points under logarithms, if the contours are drawn as it is
demonstrated in Fig. 2.

The substitution of (17) into (13) leads to the explicit form of the pion scalar-isoscalar FF

Γπ(t) = Pn(t)
(q − q∗1)

(q − q∗2)(q − q∗3)(q − q∗4)(q − q∗5)
(i − q∗2)(i − q∗3)(i − q∗4)(i − q∗5)

(i − q∗1)
, (20)

where Pn(t) is any polynomial normalized at t = 0 to one, however, it has not violate the
asymptotic behavior of the pion scalar-isoscalar FF.

The pole q = q∗3 on the second Riemann sheet in t-variable corresponds to the f0(500)
meson resonance, now with the mass and the width, mσ = (459 ± 29) MeV and Γσ = (517 ±
77) MeV [7], respectively, which are compatible with the parameters obtained in [4, 5].

The Rev. Part. Physics (2016) [6] gives parameters of f0(500) to be mσ = (400 −
550) MeV and Γσ = (400 − 700) MeV.

A behavior of the Γπ(t) (20) at −3 GeV2 < t < 3 GeV2 is presented in Fig. 3.

3 Vector pion electromagnetic form factor and ρ0(770) meson
parameters

The vector isovector charged pion electromagnetic (EM) form factor FEM,I=1
π (t) is defined by

the matrix element of the pion EM current JEM
µ as follows

〈p2 | JEM
µ (0) | p1〉 = eFEM,I=1

π (t)(p1 + p2)µ, (21)
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Figure 3. Behavior of the pion scalar form factor (20) with one zero and four poles at −3 GeV2 < t <
3 GeV2. Results correspond to a fit to the output phase shifts from [3] by 5 free parameters. Physically
may be interpreted region only below 990 MeV (t ≈ 0.98 GeV2)

with e to be the electric charge and t = (p2 − p1)2 the momentum transfer squared. The
FEM,I=1
π (t) also fulfils all properties of the function F(t) defined in Sect. 1, including the

normalization FEM,I=1
π (0) = 1, if the electric charge is put to be one. Then FEM,I=1

π (t) can be
represented by the phase representation

FEM,I=1
π (t) = Pn(t) exp

 t
π

∫ ∞

4

δ1
1(t′)

t′(t′ − t)
dt′

 , (22)

where δ1
1(t) is now the P-wave isovector ππ scattering phase shift and Pn(t) is polynomial

normalized at t = 0 to one, however, it has not violate the asymptotic behavior of the charged
pion EM FF.

In this case the model independent parametrization (7), taking into account a threshold
behavior of the δ1

1(t)|q|→0 ∼ a1
1q3, has to be adapted to the form

δ1
1(t) = arctan

A3q3 + A5q5 + A7q7 + ...

1 + A2q2 + A4q4 + A6q6 + ...
, (23)

where the parameter A3 is identified with the P-wave isovector ππ scattering length a1
1.

The number of nonzero parameters in (23) and their numerical values are again found
in a fitting procedure of the most precise data on δ1

1(t) with theoretical errors in Fig. 4 to be
generated by Garcia-Kamiński-Peláez-Yndurain equations [3] for the P-wave isovector ππ
scattering amplitude.

The minimum of χ2/ndf was achieved by the first 4 nonzero values of coefficients in (23)

A2 = 0.1070 ± 0.0329
A3 ≡ a1

1 = 0.0321 ± 0.0008
A4 = −0.03825 ± 0.0030 (24)
A5 = 0.0003 ± 0.0002
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Figure 4. Optimal description of the GKPY δ1
1(t) data. Solid line represents our optimal fit of data with

4 nonzero coefficients Ai in (23)

and the roots of the corresponding polynomials in the numerator and denominator of the
equivalent to (23) logarithmic relation

δ1
1(t) =

1
2i

ln
[
(1 + A2q2 + A4q4) + i(A3q3 + A5q5)
(1 + A2q2 + A4q4) − i(A3q3 + A5q5)

]
(25)

are

q1 = −2.5480 ± 0.0020 +i0.2752 ± 0.0016, q∗1 = −q2,
q2 = 2.5480 ± 0.0020 +i0.2752 ± 0.0016, q∗2 = −q1,
q3 = 0.0 −i1.8432 ± 0.0658, q∗3 = −q3,
q4 = 0.0 +i2.146 ± 0.1054, q∗4 = −q4,
q5 = 0.0 −i139.793 ± 0.152542, q∗5 = −q5.

(26)

A substitution of (25) with (26) into (22) leads to

FEM,I=1
π (t) = Pn(t) exp

[
(q2 + 1)

2πi

∫ ∞

−∞

(q′ − q1)(q′ − q2)(q′ − q3)(q′ − q4)(q′ − q5)
(q′ − q∗1)(q′ − q∗2)(q′ − q∗3)(q′ − q∗4)(q′ − q∗5)

dq′
]

(27)

and the integral in (27) is calculated in the same way as it was done in the case of the scalar-
isoscalar pion FF.

The pole q = q∗1 on the second Riemann sheet in t-variable corresponds to the ρ0(770)
meson resonance, with the mass and the width, mρ = (763.56±0.51) MeV and Γρ = (143.09±
0.82) MeV [7], respectively.

The Rev. Part. Physics (2016) [6] gives parameters of ρ0(770) to be mρ = (775.26 ±
0.25) MeV and Γρ = (149.1 ± 0.8) MeV.

4 Conclusions

Taking into account phase representations with one subtraction of the pion scalar-isoscalar
form factor and vector-isovector charged pion electromagnetic form factor and exploiting the
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most accurate up to now information on the S-wave isoscalar and the P-wave isovector ππ
scattering phase shifts, respectively, to be obtained from the existing inaccurate experimental
data by means of the Garcia-Kamiński-Peláez-Yndurain Roy-like equations with an imposed
crossing symmetry condition, in the framework of the so-called "fully solvable mathemati-
cal scheme" the most reliable values of the f0(500) and ρ0(770) meson mass and width are
determined.

The work was supported by VEGA grant No.2/0153/17.
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