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Abstract

Transverse emittances, especially vertical emittance, are
strictly required in the synchrotrons with multi-loop injec-
Ztion. Transverse emittances easily grow up if transverse
= beam phase spaces are coupled. The growth of the trans-

ttribution to the author(s), title of the work

n al
<
a
=
1%
(¢]
a
=
=3
o
=3
(@]
[¢]
o
o
=
o
a
=
(9]
»
-
=t
=3
[¢]
[oN
=3
(>3
o
[¢]
(@]
Q
=1
=)
=
=
oQ
-
=
a
o
a
o
2

'S phase spaces. Based on the transfer matrix calculation, it
£ can be theoretically proved that the decoupling can be im-
g plemented for general situations. A minimum number of
2 rotated quadrupoles required for decoupling is given. Two
~ quadrupoles can decouple the beam and suppress its emit-
£ tance growth to 1% in the coupling DTL case.
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INTRODUCTION

2 Rotated quadrupoles and solenoids can lead to the cou-
2 pling of beam dynamics between two transverse phase spaces
T [1,2]. The coupling will result in transverse emittance
Z growth. The theories of describing the coupled dynamics
sowith matrix [3,4], Hamiltonian theory [5, 6], and Courant-
§ Snyder theory [7, 8] have been developed.

ribution of th

© It is important to decouple the transverse dynamics and
%:3 suppress the emittance growth, especially for the beam injec-
8 tion of the synchrotron which has a strict transverse accep-
o tance limit. It has been illustrated that the beam can be de-
; coupled by rotated quadrupoles in specific situations [9, 10].
A Normal triplet and skew triplet after the beamline are used to
O decouple the beam coupled by a solenoid [11]. Quadrupole-
2 solenoid-quadrupole system is used to cancel the coupling
3 in a solenoid [1]. The coupling in a solenoid is eliminated
éby a quadrupole corrector consisting of normal and skew
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In this paper, the implementation of decoupling for gen-
eral cases regardless of the coupling sources is verified. The
inimum number of rotated quadrupoles required for de-
oupling is discussed.

g B

BASIC DEFINITIONS

The beam can be described in a beam matrix. The trans-
"= verse matrix is symmetric with ten independent variables,
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Where Oxx, Oxy, Oyx, 0yy are 2xX2 matrices, and oy x = O'XTy.

The four-dimensional RMS emittance &4, RMS emittances
in x plane &y, and RMS emittances in y plane &, are the
square roots of the determinant of X, o, and oy, respec-
tively.

The elements in o, or oy, represent the coupling in
x and y planes. If either of them is nonzero, the beam is
coupled in x and y planes. Thus e4p < &gy, which is
illustrated in the appendix. It suggests the product of the
emittances of x and y planes increases after coupling. If
Oxy = Oyy = 0, the beam motion is decoupled in x and
y planes, and e4p = &x&y. The beam matrix at s, can be
calculated by transfer matrix R from s, to s, and the beam
matrix at sy,

(s2) = RE(s)R" . (2)
R obeys the symplecticity condition,
S =R"SR, 3)

which is a congruent transformation, with

01 0 0
10 0 0

5=1o o0 o 1| “)
0 0 -1 0

The determinant of R is 1 and the 4D phase space volume
can be conserved according to the Liouville theorem if the
beam is not accelerated nor bended, thus &4p is conserved.
¥ (sy) is symplectically congruent to X(sy).

FEASIBILITY OF DECOUPLING

To solve the problem of decoupling, the existence of de-
coupling symplectic matrix R for general cases is theoreti-
cally proved using linear algebra techniques. The beam is
decoupled by symplectically congruent transforming of the
transverse beam matrix to a diagonal matrix.
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In particular, the matrix X is symplectically congruent
to a diagonal matrix only if ¥ is symmetric and £S~!XS is
diagonalizable [13].

The beam matrix X is symmetric. Therefore we need to
prove that XS~'XS is diagonalizable.

Considering S~ = 8T = —§, we can obtain
A A
r57lEs = —zsEs = (Y Y, 5
(Ayx Ayy) ©)
where
Ay = [det(oyy) + det(oyy)| D, (6a)
Ayy = [det(O'yy) + det(O'xy)] b, (6b)
Axy = —(OxxJOxyJ + OxyJoyy J), (6¢)
Ayx = —(OyxJOxxJ + Oy Joy i ), (6d)
I, is the n-d identity matrix, and J = (_01 (1))
The eigenvalues of £S~'ZS can be solved as
1 2
A=A = 1 —tr(TSTS) — \/(tr(ZSZS)) — 16det(2) |,
(7a)
1
A3 = Ay = Z [—tr(ZSZS) + \/(U‘(ZSES))Z - 16det(2) ,
(7b)

which suggests that £S~' S is diagonalizable. There exists
a nonsingular matrix P such that

P'ES7ISSP = diag(d;, A2, A3, A4). (8)

Since X is symmetric and £S~' S is diagonalizable, X can
be congruent to a diagonal matrix by a symplectic matrix.
There exists a transfer matrix R by which the beam with the
initially coupled transverse dynamics can be decoupled. In
addition, with a similar process, it can also be proved that
6D beam matrices can be decoupled theoretically.

DECOUPLING OF
TRANSVERSE-COUPLED DYNAMICS

For the general decoupling of the transverse-coupled dy-
namics of the beam, an appropriate transfer matrix is re-
quired. Usually, four skew quadrupoles are used to decouple
the beam because four independent coupling items need to
be set to zero [14]. Theoretically, two rotated quadrupoles,
which provide 4 variables, can be adopted to decouple the
beam.

The transfer matrix of a rotating thin quadrupole lens is

1 0 0 0
cos2a 1 - sin2a 0
Rrotquad(a'7 f) = (f) 0 lf ol (9)
_ sin2a 0 - cos2a 1
f

where « is the rotation angle of the quadrupole about +z-
axis, f = Bp/(GLer) is the focal length, Bp = (mocfBy)/q
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is the magnetic rigidity of the particle; G is the quadrupole
gradient; and Lcg is its effective length. The transfer matrix
with two rotated quadrupoles,

R = Rrotquad(a2» f2) : Rdrift(L) . Rrotquad(ala fl )’ (10)
where Ry;i(L) is the transfer matrix of the drift with length
L. The transfer matrix with more rotated quadrupoles can
also be given. Thus the angles and focusing strengths of the
quadrupoles can be given by solving

(1)

RERT = (M 0)

0 N
where M and N are 2X2 symmetric matrices.

In case that the nonlinear equations have no solutions,
more variables should be added into the equations.

EXAMPLE

As is known, a triplet and a skew triplet with six variables
of quadrupole gradients can be employed to decouple the
beam. We try to find the minimum number of quadrupoles
required for decoupling. The transverse emittance growth is
adopted to characterize the decoupling capacity:

€1t — €0t
Ae = ——,

€0,t

12)

where g9 ; and &1, are the emittance in the transverse plane
(x or y) before the coupling and after the decoupling, respec-
tively.

Beamline

The transverse-coupled beam is obtained by one Alvarez-
type DTL [15]. The quadrupoles in the DTL are mounted
with rotation errors. The rotation errors are uniformly ran-
dom distributed within +5°. In the following discussion,
a set of fixed errors is used. The beam simulation is per-
formed with TraceWin [16]. The envelope in the coupling
DTL shown in Fig. 1. The normalized RMS emittance in x
and y plane roses from 0.197r mm-mrad to 1.027 mm-mrad
after the DTL. A FODO lattice downstream the DTL is em-
ployed for decoupling. The main parameters of the FODO
lattice are given in Table 1.
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Figure 1: RMS envelope in the coupling DTL.
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Table 1: Main Parameters of FODO Lattice

Parameter Value
Ion type Proton
Energy 7 MeV
Quadrupole length 0.2m
Quadrupole gradient 5 T/m
Drift between quads 0.1 m

Two Quads Decoupling

he author(s), title of the work, publisher, and D

Two rotated quadrupoles are used for decoupling. With
o fixed rotation angles, the strengths of the quadrupoles are
% scanned to reach the minimum emittance growth. The min-
5 imum emittance growth with different rotation angles is

tr
w
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Minimum emittance growth (%)
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Rotation angle of 1% quad (deg)

Figure 2: Minimum emittance growth with different rotation
angles of decoupling quadrupoles.
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Figure 2 shows that the rotation angle of the first decou-
;/pling quadrupole needs to be near 15°. And the second
2 should be different from 0° or 90°. Minimum emittance
§ growth is insensitive to the rotation angle of the second if
< the angle is not near zero. The minimum emittance growth
> is 1% with two decoupling quadrupoles.

©2019)

CCB

2 Three or Four Quads Decoupling

The decoupling section can be a 15° quadrupole with a
otated doublet for three quadrupoles decoupling. For four
uadrupoles decoupling, the section can be a 15° doublet
ith a rotated doublet. The emittance growths are 0.8% and
.1%, for the two cases. The emittance in x or y planes
long the decoupling section is shown in Fig. 3.
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CONCLUSION

work may be used under the terms of th

This paper presents evidence of the transfer matrix to
.« decouple the coupled transverse-dynamics of the beam. A
= minimum number of rotated quadrupoles for decoupling
£ is given. Two rotated quadrupoles can suppress emittance
= growth to 1% after a coupling section, which is acceptable
%‘) in general cases.
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Figure 3: Tranverse emittance along the decoupling section.
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APPENDIX

The inequality £4p < ex&y can be derived from the vol-
ume of the 4D hyperellipsoid. 7e4p, ey, ey are the volume
of 4D emittance hyperellipsoid, the projected ellipse area
of the hyperellipsoid onto x and y planes, respectively. The
volume of the projected hyperellipsoid with the same princi-
pal axes of the projected ellipses on x and y plane is m&yé&y.
Two hyperellipsoid are inscribed in the same hypercuboid
(Fig. 4). The volume of the projected hyperellipsoid is the
largest among the inscribed hyperellipsoids, so

13)

E4p < ExEy.

()
9%

Figure 4: Sketch diagram of the 4D emittance hyperellipsoid
(red line) and projected hyperellipsoid (blue line) to illustrate
E4p < ExEy

Also, it can be proved that the beam matrix is a posi-
tive semidefinite matrix by calculating the leading principal
minors of the beam matrix.

_ [Oxx Oxy
=\ 7 R
O-xy O-Y y

According to Fischer’s inequality [17], for positive
semidefinite matrix X,

(14)

det(X) < det(oyy) - det(oyy), (15)
and finally e4p < &y - &, can be deduced.
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