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Abstract
Transverse emittances, especially vertical emittance, are

strictly required in the synchrotrons with multi-loop injec-
tion. Transverse emittances easily grow up if transverse
beam phase spaces are coupled. The growth of the trans-
verse emittance can be restained by decoupling the beam
phase spaces. Based on the transfer matrix calculation, it
can be theoretically proved that the decoupling can be im-
plemented for general situations. A minimum number of
rotated quadrupoles required for decoupling is given. Two
quadrupoles can decouple the beam and suppress its emit-
tance growth to 1% in the coupling DTL case.

INTRODUCTION
Rotated quadrupoles and solenoids can lead to the cou-

pling of beam dynamics between two transverse phase spaces
[1, 2]. The coupling will result in transverse emittance
growth. The theories of describing the coupled dynamics
with matrix [3, 4], Hamiltonian theory [5,6], and Courant-
Snyder theory [7, 8] have been developed.

It is important to decouple the transverse dynamics and
suppress the emittance growth, especially for the beam injec-
tion of the synchrotron which has a strict transverse accep-
tance limit. It has been illustrated that the beam can be de-
coupled by rotated quadrupoles in specific situations [9, 10].
Normal triplet and skew triplet after the beamline are used to
decouple the beam coupled by a solenoid [11]. Quadrupole-
solenoid-quadrupole system is used to cancel the coupling
in a solenoid [1]. The coupling in a solenoid is eliminated
by a quadrupole corrector consisting of normal and skew
quadrupoles [12].

In this paper, the implementation of decoupling for gen-
eral cases regardless of the coupling sources is verified. The
minimum number of rotated quadrupoles required for de-
coupling is discussed.

BASIC DEFINITIONS
The beam can be described in a beam matrix. The trans-

verse matrix is symmetric with ten independent variables,
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Σ =

©­­­«
⟨xx⟩ ⟨xx ′⟩ ⟨xy⟩ ⟨xy′⟩
⟨xx ′⟩ ⟨x ′x ′⟩ ⟨x ′y⟩ ⟨x ′y′⟩

⟨xy⟩ ⟨x ′y⟩ ⟨yy⟩ ⟨yy′⟩

⟨xy′⟩ ⟨x ′y′⟩ ⟨yy′⟩ ⟨y′y′⟩

ª®®®¬ =
(
σxx σxy
σyx σyy

)
.

(1)
where σxx , σxy , σyx , σyy are 2×2 matrices, and σyx = σTxy .
The four-dimensional RMS emittance ε4D , RMS emittances
in x plane εx , and RMS emittances in y plane εy are the
square roots of the determinant of Σ, σxx , and σyy , respec-
tively.

The elements in σxy or σyx represent the coupling in
x and y planes. If either of them is nonzero, the beam is
coupled in x and y planes. Thus ε4D < εxεy , which is
illustrated in the appendix. It suggests the product of the
emittances of x and y planes increases after coupling. If
σxy = σyx = 0, the beam motion is decoupled in x and
y planes, and ε4D = εxεy . The beam matrix at s2 can be
calculated by transfer matrix R from s1 to s2 and the beam
matrix at s1,

Σ(s2) = RΣ(s1)RT . (2)

R obeys the symplecticity condition,

S = RT SR, (3)

which is a congruent transformation, with

S =
©­­­«

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

ª®®®¬ . (4)

The determinant of R is 1 and the 4D phase space volume
can be conserved according to the Liouville theorem if the
beam is not accelerated nor bended, thus ε4D is conserved.
Σ(s2) is symplectically congruent to Σ(s1).

FEASIBILITY OF DECOUPLING
To solve the problem of decoupling, the existence of de-

coupling symplectic matrix R for general cases is theoreti-
cally proved using linear algebra techniques. The beam is
decoupled by symplectically congruent transforming of the
transverse beam matrix to a diagonal matrix.

Th
is

is
a

pr
ep

ri
nt

—
th

e
fin

al
ve

rs
io

n
is

pu
bl

ish
ed

w
ith

IO
P

10th Int. Partile Accelerator Conf. IPAC2019, Melbourne, Australia JACoW Publishing
ISBN: 978-3-95450-208-0 doi:10.18429/JACoW-IPAC2019-MOPTS112

MOPTS112
1144

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I

MC5: Beam Dynamics and EM Fields
D01 Beam Optics - Lattices, Correction Schemes, Transport



In particular, the matrix Σ is symplectically congruent
to a diagonal matrix only if Σ is symmetric and ΣS−1ΣS is
diagonalizable [13].

The beam matrix Σ is symmetric. Therefore we need to
prove that ΣS−1ΣS is diagonalizable.

Considering S−1 = ST = −S, we can obtain

ΣS−1
ΣS = −ΣSΣS =

(
Axx Axy

Ayx Ayy

)
, (5)

where

Axx =
[
det(σxx) + det(σxy)

]
I2, (6a)

Ayy =
[
det(σyy) + det(σxy)

]
I2, (6b)

Axy = −(σxx Jσxy J + σxy Jσyy J), (6c)

Ayx = −(σyx Jσxx J + σyy Jσyx J), (6d)

In is the n-d identity matrix, and J =
(

0 1
−1 0

)
.

The eigenvalues of ΣS−1ΣS can be solved as

λ1 = λ2 =
1
4

[
−tr(ΣSΣS) −

√
(tr(ΣSΣS))2 − 16det(Σ)

]
,

(7a)

λ3 = λ4 =
1
4

[
−tr(ΣSΣS) +

√
(tr(ΣSΣS))2 − 16det(Σ)

]
,

(7b)
which suggests that ΣS−1ΣS is diagonalizable. There exists
a nonsingular matrix P such that

P−1
ΣS−1

ΣSP = diag(λ1, λ2, λ3, λ4). (8)

Since Σ is symmetric and ΣS−1ΣS is diagonalizable, Σ can
be congruent to a diagonal matrix by a symplectic matrix.
There exists a transfer matrix R by which the beam with the
initially coupled transverse dynamics can be decoupled. In
addition, with a similar process, it can also be proved that
6D beam matrices can be decoupled theoretically.

DECOUPLING OF
TRANSVERSE-COUPLED DYNAMICS
For the general decoupling of the transverse-coupled dy-

namics of the beam, an appropriate transfer matrix is re-
quired. Usually, four skew quadrupoles are used to decouple
the beam because four independent coupling items need to
be set to zero [14]. Theoretically, two rotated quadrupoles,
which provide 4 variables, can be adopted to decouple the
beam.

The transfer matrix of a rotating thin quadrupole lens is

Rrotquad(α, f ) =
©­­­«

1 0 0 0
cos2α

f 1 − sin2α
f 0

0 0 1 0
− sin2α

f 0 − cos2α
f 1

ª®®®¬ , (9)

where α is the rotation angle of the quadrupole about +z-
axis, f = Bρ/(GLeff) is the focal length, Bρ = (m0cβγ)/q

is the magnetic rigidity of the particle; G is the quadrupole
gradient; and Leff is its effective length. The transfer matrix
with two rotated quadrupoles,

R = Rrotquad(α2, f2) · Rdrift(L) · Rrotquad(α1, f1), (10)

where Rdrift(L) is the transfer matrix of the drift with length
L. The transfer matrix with more rotated quadrupoles can
also be given. Thus the angles and focusing strengths of the
quadrupoles can be given by solving

RΣRT =

(
M 0
0 N

)
, (11)

where M and N are 2×2 symmetric matrices.
In case that the nonlinear equations have no solutions,

more variables should be added into the equations.

EXAMPLE
As is known, a triplet and a skew triplet with six variables

of quadrupole gradients can be employed to decouple the
beam. We try to find the minimum number of quadrupoles
required for decoupling. The transverse emittance growth is
adopted to characterize the decoupling capacity:

∆ε =
ε1,t − ε0,t

ε0,t
, (12)

where ε0,t and ε1,t are the emittance in the transverse plane
(x or y) before the coupling and after the decoupling, respec-
tively.

Beamline
The transverse-coupled beam is obtained by one Alvarez-

type DTL [15]. The quadrupoles in the DTL are mounted
with rotation errors. The rotation errors are uniformly ran-
dom distributed within ±5◦. In the following discussion,
a set of fixed errors is used. The beam simulation is per-
formed with TraceWin [16]. The envelope in the coupling
DTL shown in Fig. 1. The normalized RMS emittance in x
and y plane roses from 0.19π mm·mrad to 1.02π mm·mrad
after the DTL. A FODO lattice downstream the DTL is em-
ployed for decoupling. The main parameters of the FODO
lattice are given in Table 1.

Figure 1: RMS envelope in the coupling DTL.
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Table 1: Main Parameters of FODO Lattice

Parameter Value
Ion type Proton
Energy 7 MeV
Quadrupole length 0.2 m
Quadrupole gradient 5 T/m
Drift between quads 0.1 m

Two Quads Decoupling
Two rotated quadrupoles are used for decoupling. With

fixed rotation angles, the strengths of the quadrupoles are
scanned to reach the minimum emittance growth. The min-
imum emittance growth with different rotation angles is
shown in Fig. 2.

Figure 2: Minimum emittance growth with different rotation
angles of decoupling quadrupoles.

Figure 2 shows that the rotation angle of the first decou-
pling quadrupole needs to be near 15◦. And the second
should be different from 0◦ or 90◦. Minimum emittance
growth is insensitive to the rotation angle of the second if
the angle is not near zero. The minimum emittance growth
is 1% with two decoupling quadrupoles.

Three or Four Quads Decoupling
The decoupling section can be a 15◦ quadrupole with a

rotated doublet for three quadrupoles decoupling. For four
quadrupoles decoupling, the section can be a 15◦ doublet
with a rotated doublet. The emittance growths are 0.8% and
0.1%, for the two cases. The emittance in x or y planes
along the decoupling section is shown in Fig. 3.

CONCLUSION

This paper presents evidence of the transfer matrix to
decouple the coupled transverse-dynamics of the beam. A
minimum number of rotated quadrupoles for decoupling
is given. Two rotated quadrupoles can suppress emittance
growth to 1% after a coupling section, which is acceptable
in general cases.
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Figure 3: Tranverse emittance along the decoupling section.
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APPENDIX
The inequality ε4D ≤ εxεy can be derived from the vol-

ume of the 4D hyperellipsoid. πε4D, πεx ,πεy are the volume
of 4D emittance hyperellipsoid, the projected ellipse area
of the hyperellipsoid onto x and y planes, respectively. The
volume of the projected hyperellipsoid with the same princi-
pal axes of the projected ellipses on x and y plane is πεxεy.
Two hyperellipsoid are inscribed in the same hypercuboid
(Fig. 4). The volume of the projected hyperellipsoid is the
largest among the inscribed hyperellipsoids, so

ε4D ≤ εxεy . (13)

Figure 4: Sketch diagram of the 4D emittance hyperellipsoid
(red line) and projected hyperellipsoid (blue line) to illustrate
ε4D ≤ εxεy

Also, it can be proved that the beam matrix is a posi-
tive semidefinite matrix by calculating the leading principal
minors of the beam matrix.

Σ =

(
σxx σxy
σTxy σyy

)
, (14)

According to Fischer’s inequality [17], for positive
semidefinite matrix Σ,

det(Σ) ≤ det(σxx) · det(σyy), (15)

and finally ε4D ≤ εx · εy can be deduced.
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