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Abstract: The main limitation of wireless sensor networks (WSNs) lies in their reliance on battery

power. Therefore, the primary focus of the current research is to determine how to transmit data in

a rational and efficient way while simultaneously extending the network’s lifespan. In this paper,

a hybrid of a fuzzy logic system and a quantum annealing algorithm-based clustering and routing

protocol (FQA) is proposed to improve the stability of the network and minimize energy consumption.

The protocol uses a fuzzy inference system (FIS) to select appropriate cluster heads (CHs). In the

routing phase, we used the quantum annealing algorithm to select the optimal route from the CHs

and the base station (BS). Furthermore, we defined an energy threshold to filter candidate CHs in

order to save computation time. Unlike with periodic clustering, we adopted an on-demand re-

clustering mechanism to perform global maintenance of the network, thereby effectively reducing the

computation and overhead. The FQA was compared with FRNSEER, BOA-ACO, OAFS-IMFO, and

FC-RBAT in different scenarios from the perspective of energy consumption, alive nodes, network

lifetime, and throughput. According to the simulation results, the FQA outperformed all the other

methods in all scenarios.

Keywords: wireless sensor networks (WSNs); clustering; fuzzy logic; routing; quantum annealing algorithm

1. Introduction

Data transmission, as the core element in information and communication technology,
is a crucial component of modern communication networks. Efficient methods for data
acquisition and transmission paths have theoretical and practical implications in the ap-
plication of WSNs that can effectively save energy, thus extending the network lifetime
and improving network feasibility for real-time applications [1,2]. Sensor nodes, which are
distributed across a wide area, have the capability to acquire information at any time, in any
place, and in any environment. As a result, WSNs find wide applications in industry [3],
transportation [4], medical care [5], space exploration [6], and other fields that serve as the
foundation for the development of the Internet of Things (IoT) [7,8]. Nevertheless, most
sensor nodes have limited energy, computing, storage, and communication capabilities
because the batteries they are equipped with are almost impossible to replace or continu-
ously charge at any time [9]. Moreover, the continuous and independent data transmission
between nodes and other nodes and between nodes and the base station increases the
loss of power and hastens node mortality. Therefore, scholars have focused on how to
effectively and energy-efficiently utilize sensor nodes for data acquisition and transmission,
as well as analysis and processing via upper-level applications and users [10]. In order to
realize this goal, many strategies have been proposed, with clustering and routing protocols
being identified as the most effective ways [11].

Sensors 2024, 24, 4105. https://doi.org/10.3390/s24134105 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24134105
https://doi.org/10.3390/s24134105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24134105
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24134105?type=check_update&version=2


Sensors 2024, 24, 4105 2 of 22

A clustering algorithm divides sensor nodes into several independent groups, re-
ferred to as clusters [12]. Each cluster consists of a cluster head (CH) node and several
ordinary nodes. Intra-cluster and inter-cluster communications lower the cost of the dis-
tance between the farthest nodes and the sink, and using data aggregation to transmit
information consumes significantly less energy. In general, sensor nodes are arbitrarily
distributed in the network; hence, the focus of research is on allocating nodes to the nearest
designated CH. Unreasonable allocation will result in an unequal number of sensor nodes,
resulting in uneven residual energy. Fuzzy logic performs well in optimization decision
making [13–15], which is being used to resolve uncertainties in CH selection based on
predefined fuzzy rules. Unlike the conventional technique, each variable in fuzzy logic is
assigned a value between 0 and 1, signifying its correctness or incorrectness [16]. Fuzzy
clustering algorithms typically set fuzzy rules based on input variables such as the residual
energy of nodes, the distance to nodes, or the distance to the base station (BS) as input
variables. Then, candidate nodes with the highest fuzzy outputs are selected as cluster
heads (CHs), resulting in the appropriate distribution of CHs in a network [17]. Fuzzy logic
has almost the same structure as human logic, and it can adapt to changing environments
well, according to preset rules. Most protocols modify the node energy in each round, and
CHs are adjusted based on fuzzy rules that can greatly prolong the network’s lifetime.
However, in large networks, complex fuzzy rules demand a lot of computational resources
and time.

The potential parallelism and distributed characteristics of meta-heuristic algorithms
can effectively solve complex nonlinear problems, and their global optimization capability is
ideal for solving NP-hard problems in wireless sensor networks that can achieve outcomes
with fewer parameters. A meta-heuristic algorithm converts the selection of CHs and
a routing path into an optimization problem with a specific objective function. Then, it
continuously iterates until the optimal solution of the function is found. For example, the cat
swarm algorithm [18], fish migration optimization algorithm [19], ant colony optimization
algorithm [20], and genetic algorithm [21] are used to select CHs and find routing paths in
a clustering and routing protocol. The calculation results of most meta-heuristic algorithms
are random due to the initial parameter settings, and there is a risk of falling into a local
optimum when dealing with complex problems. On this basis, the combination of various
meta-heuristic approaches is derived to solve multi-objective problems, such as butterfly
algorithm-based clustering combined with ant colony optimization-based routing [22],
improved duck and traveler optimization-based clustering combined with artificial gorilla
troop optimization-based routing [23], hybrid gray wolf optimization, and the marine
predator algorithm for clustering integrated with hybrid gray wolf optimization and the
graph model for routing [24]. However, the complexity of the protocols is largely increased
for execution. Therefore, hybrid meta-heuristic and traditional protocols are utilized to
balance the overall performance of a network. For instance, the BAT algorithm for clustering
combined with the fuzzy logic-based routing technique [14] adjusts the control parameters
of fuzzy rules with the shuffled frog-leaping algorithm [17], and fuzzy logic model-based
clustering was combined with particle swarm optimization-based routing [25].

In recent years, the universal applicability of quantum mechanics has been contin-
uously proved, and the integration of quantum theory into intelligent optimization has
emerged as an attractive research branch. Due to its ability to significantly enhance the
solution speed compared to classical algorithms, scholars have incorporated concepts and
mathematical mechanisms from quantum computing into existing optimization algorithms.
For instance, they have integrated the concept of quantum computing into the traditional
tunicate swarm algorithm to solve objective functions and obtained a clustering scheme
that minimizes network energy consumption [26]. Shakir Mahoomed Abas et al. combined
quantum coding with a genetic algorithm and used qubits to represent candidate routes
that explore and evaluate multiple routes simultaneously through quantum parallelism [27].
As a classical meta-heuristic algorithm, the simulated annealing (SA) algorithm is widely
used in wireless sensor routing protocols. Despite being a random-step process, the al-



Sensors 2024, 24, 4105 3 of 22

gorithm is prone to stay in a local optimum when the objective function has many high
obstacles [28]. To overcome this problem, the quantum annealing (QA) algorithm was
developed by replacing the temperature parameter of the SA algorithm with the intensity
of the tunneling field. The quantum wave motion is generated through the mechanism
of quantum tunneling, enabling the attainment of an optimal point across the potential
barrier [29]. WSNs consist of a multitude of nodes and complex network topologies, and
the network environment changes constantly over time. Consequently, it is imperative for
algorithms to possess a certain level of adaptability. The quantum annealing algorithm
demonstrates robust global search capability, effectively optimizing routing schemes. Its
inherent parallelism enables efficient handling of large-scale problems and facilitates rapid
convergence speed, thereby significantly enhancing routing efficiency and prolonging
network lifespan. We utilized the accuracy of the fuzzy logic in optimization decisions to
select CHs. Considering that Type-2 fuzzy rules require a large amount of computing time,
we adopt the quantum annealing algorithm with a fast convergence rate in the routing
stage. The proposed protocol in this paper aims to transmit data efficiently and effectively
while also conserving energy and reducing computational time.

In this paper, a hybrid of a fuzzy logic system and a quantum annealing algorithm-
based clustering and routing protocol (FQA) is proposed to improve the stability of the
network and extend the network lifetime. The protocol selected CHs from all candidate
nodes with higher residual energy rates, more neighbors, shorter distances to the BS, and
shorter average distances to the member nodes than other candidate nodes and planned the
most energy-efficient routing path from the CHs to the BS. Furthermore, the protocol adopts
an on-demand re-clustering mechanism instead of clustering periodically or round-by-
round like other protocols. The proposed protocol was compared with other latest protocols
FRNSEER, FC-RBAT, BOA-ACO, and OAFS-IMFO in four scenarios. The simulation results
showed that our protocol is significantly better than other protocols in terms of alive nodes,
network lifetime, energy consumption, and throughput. The main contributions of this
paper are summarized as follows:

• We utilized fuzzy logic-based clustering and quantum annealing algorithm-based
routing to establish an energy-efficient data transmission mode that can effectively
prolong the network lifetime;

• We adopted an energy threshold to filter candidate CHs to save computation time;
• Application-based FIS is used to select appropriate CHs from candidate CHs and

considers four parameters as fuzzy input variables: residual energy, the number of
neighboring nodes, distance to the BS, node centrality;

• A two-dimensional routing matrix and weight matrix are constructed to obtain the
objective function. Moreover, we used the quantum annealing algorithm to evaluate
the objective function and then obtain the optimal routing route from CHs to the BS;

• An on-demand re-clustering mechanism is used to maintain clusters locally and
globally for computation and message overhead reduction.

The remaining parts of the paper are organized as follows: Section 2 reviews the
related literature. Section 3 introduces the system model in detail. Section 4 describes the
proposed protocol FQA in detail. Section 5 discusses the performance of the proposed
methodology with the existing protocols. Finally, Section 6 presents the conclusion.

2. Related Works

Traditional clustering usually refers to hard clustering in which each node is classified
into a unique category, clusters are independent of each other, and nodes belong exclusively
to one cluster. Node grouping can be based on different parameters, mainly residual energy
and physical proximity [12]. For instance, K-means clustering is an iterative distance-
based clustering algorithm that updates CHs based on the distance of nodes to the cluster
center [30]. In view of the problems existing in classical clustering and routing protocols,
such as CH selection, difficulty in handling large-scale data, and incomplete parameter
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selection, scholars have been trying to improve traditional algorithms and propose new
algorithms to solve the above shortcomings and improve the performance of the protocol.

The exceptional multi-objective optimization capabilities of meta-heuristic algorithms
have enabled them to be extensively employed by scholars in WSNs. In [18], CSO is used to
optimize the selection of CHs by simulating the tracking mode of a cat. The received signal
strength, residual energy, and intra-cluster distance are considered factors in this scenario,
and only CHs are allowed to communicate with the BS. The authors completed indoor
experiments with sensor nodes, a microcontroller, and a LabVIEW interface. The results
showed that the algorithm has a significant improvement in extending the network lifetime
and reducing the computation time. However, the performance of the network is affected
when the cluster has numerous nodes. In [22], the BOA (butterfly optimization) algorithm
is proposed to optimize the selection of CHs, constructing an objective function based on
factors such as residual energy, distance to neighbors, distance to the BS, node degree, and
node centrality. Then the ACO (ant colony optimization) algorithm is adopted to plan the
optimal transmission path from the source node to the BS via CH. The distance to the BS,
residual energy, and node degree are taken into consideration. Compared with traditional
algorithms and some existing methods, the network lifetime is significantly improved.
In [24], a two-tier protocol for clustering and routing (THSI-RP) was proposed. In the
first tier, THSI-RP designed the objective function incorporating energy, the intra-cluster
distance, the distance between CH and BS, and node centrality as parameters to select the
optimal CHs. Additionally, GWO (grey wolf optimization) and MPA (marine predator
algorithm) were combined for clustering to enhance search efficiency. In the second tier,
THSI-RP established a communication routing tree between CHs and BS to achieve the
shortest data transmission path. Experimental results showed that THSI-RP can effectually
improve the network lifetime, but a two-tier protocol design results in a higher network
complexity. The two-level genetic algorithm [31] introduced a novel approach to solve
two problems simultaneously: selection of CHs and optimal multi-hop routing. In this
proposed method, the energy consumption of the multi-hop routing, designed by the
second-level algorithm, is considered as a parameter when evaluating the chromosomes
in the first-level algorithm. The experimental results showed that network lifetime has
been increased when compared to three approaches. The selection of CHs and the routing
among them are performed separately. Furthermore, the GA algorithm was substituted
with another meta-heuristic algorithm for a two-level framework, and the results of the two
methods are quite close. It can be concluded that the results obtained from the proposed
framework are not heavily influenced by the algorithms used for optimization. In [32], S.
Jagadeesh et al. proposed a novel protocol for clustering and routing. OAFS-IMFO used
the OAFS (oppositional artificial fish swarm) algorithm to optimize the selection of CHs,
which constructed an objective function based on residual energy, distance between CHs,
and distance between CHs and CMs (cluster members). Subsequently, the IMFO (improved
moth flame optimization) algorithm was adopted to plan the shortest transmission path
from CHs to the BS, including factors such as residual energy of CHs and distance among
CH, relay CH, and BS. Compared with some existing protocols, OAFS-IMFO achieves
significantly higher packet throughput while consuming more energy.

The proposed hybrid differential evolution and simulated annealing (DESA) algorithm
in [33] aims at maximizing the network lifetime of the WSN by combining the simulated
annealing (SA) approach for global optimal solution with the DE approach for local search.
The DESA algorithm takes only two factors into account, energy and distance between
nodes, in the process of selecting cluster heads, which is not comprehensive enough. As
a classic meta-heuristic algorithm, the SA algorithm has been widely applied in WSNs.
However, it still has several limitations, such as easily falling into local optima. With
the rapid development of quantum technology, scholars have integrated the concept and
mathematical mechanism of quantum computing into existing optimization algorithms to
improve their ability to search the solution space. Among these approaches, the quantum
annealing algorithm swiftly emerged as a classical discrete quantum technology in quantum
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optimization algorithms. Compared to the simulated annealing algorithm, it can solve the
NP-hard problem in WSNs more effectively. In [34], the clustering objective function was
reformulated as a quadratic unconstrained binary optimization (QUBO) problem, and the
paper proposed two encoding methods. One is the one-hot encoding, which associates each
data point with a k-bit string, but this method fails to utilize quantum bits effectively and
has inherent limitations; the other is binary encoding, which represents each data point’s
classification by a binary string and is executed hierarchically. The proposed method needs
to be implemented with the help of commercially available quantum annealing hardware
and a purely classical solver, “qbsolv” released by D-Wave. In [29], the mobile sink node
collects data from all nodes within the communication range along the planned path and
returns to the initial location after completing one round. The problem of finding the
shortest path for a mobile sink node is essentially a traveling salesman problem (TSP).
Zhijie Huang et al. employed quantum encoding techniques to represent the mobile path
and utilized the Hamiltonian of the QA algorithm to guide the operation of a quantum
revolving gate which effectively addresses the energy hole problem.

With the excellent performance of fuzzy theory in optimizing decisions and reducing
energy consumption in WSNs, fuzzy logic is widely used in selecting CHs and clustering.
Utilizing the fuzzy logic control system enables real-time adjustments based on dynamic
environmental conditions, thereby enhancing the fault tolerance and stability of the system.
Combining fuzzy logic and meta-heuristic algorithms can fully leverage their respective
strengths and enhance capabilities in addressing intricate optimization problems. The
generation of fuzzy rules in [13] involves considering energy and utility factors, and the
fuzzy inference system is employed to identify relay nodes. The minimum length route is
determined based on coverage distance, energy, utility factor, and bandwidth availability.
Amruta Lipare et al. [14] proposed load-balanced fuzzy C-means (FCM) algorithm-based
clustering integrated with BAT approach-based routing (FC-RBAT). They used FCM to
form clusters and find the centroid of the clusters. Then, they selected proper CHs among
the sensor nodes from each cluster, which constructed the objective function based on
residual energy, intra-cluster distance, distance to cluster centroid, and distance to the
BS. The routing process is conducted using a BAT-inspired approach that considers the
lifetime of CHs, the number of hops, and total transmission distance as essential parameters.
In [17], the suggested protocol used the shuffling frog-leaping algorithm (SFLA) to pick
relay nodes and CHs by optimizing two fuzzy rule tables. Firstly, FMSFLA designed
fuzzy rules based on the parameters residual energy, distance to the BS, and the number of
neighboring nodes to choose candidate CHs and ensure an appropriate distribution of CHs
by specifying the overlap threshold between CHs. In the second phase, FMSFLA selected
the relay nodes named parents from the candidate nodes based on the following parameters:
energy, distance between each node, and the mean load of the selected route between
the candidate CH node n and the BS. Simulation results demonstrated that FMSFLA can
achieve a consistent network workload, lower energy consumption, and extend the network
lifetime, but it requires off-line optimization. Yanika Kongsorot et al. [35] developed a
fuzzy-based protocol by using an updated SFLA algorithm. They designed a new encoding
scheme that utilized three fuzzy inference rules (FIS) to compute the odds of becoming
a CH, the specific CH of a non-CH, and identifying an NH (next-hop node). EFC-ISFLA
introduced the historical selection of nodes as CHs and defined an overlay boundary
that sets the minimum allowable distance between adjacent CHs. In contrast to previous
research [17], the improved SFLA (ISFLA) combined multiple OBL strategies to enhance
the synergy between search algorithm advancements and exploratory capabilities. The
comparison results showed that the protocol outperformed its competitors in terms of
network stability, network lifetime, data transmission, and the correctness of test functions.
Nevertheless, the superior performance of the protocol is accompanied by a significant
increase in computation time, a more enormous load on the base station, and an increase
in cost. In [36], the proposed designed Type-2 fuzzy logic system for CH selection was
combined with a BFO (bacterial foraging optimization) routing algorithm. The node
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degree, node centrality, and energy are utilized as three fuzzy inputs to calculate the node’s
probability of becoming CH. However, the generated 27 rules still exhibit low accuracy in
solving the objective function.

3. System Model

3.1. Network Model

Assuming that N nodes are randomly dispersed within a Z*Z two-dimensional square,
the CHs collect sensed data from all CMs (cluster members) through clusters, aggregate
them, and then transmit data to the BS. The structure of WSN is depicted in Figure 1.

Figure 1. WSN network model.

The network model is formulated based on the following considerations:

• The sensor nodes are homogeneous and static and are identified by their correspond-
ing IDs;

• The distance between nodes is estimated based on the received signal strength indica-
tor (RSSI);

• Wireless connections are bidirectional and symmetric;
• No energy constraint is attached to the BS;
• The sensor nodes communicate their information to the CHs and are in charge of

collecting, aggregating, and sending the information to the BS directly or through
other CHs.

3.2. Energy Model

The first-order radio model refers to the classic Leach protocol and the literature [16,30]
to calculate the dissipated energy in this paper. The energy consumption for transmitting
between nodes i and j with bits of data over distance d is as follows:

ETX(i,j) =

{

k ∗ Eelec + k ∗ ε f s ∗ d
2
, d < d0

k ∗ Eelec + k ∗ εmp ∗ d4, d > d0
(1)

where Eelec is the energy consumed in a transmitter or receiver circuit to send or receive
one bit of packet data, and d0 is the threshold distance of the transmission information

which is estimated by d0 =
√

ε f s/εmp. ε f s and εmp are the amplifier coefficients used for

free space and multi-path models. Similarly, the energy consumption for receiving between
nodes i and j with k bits of data can be calculated according to Equation (2):

ERX(i,j) = k ∗ Eelec (2)

Furthermore, the energy consumed for aggregating k bits of data can be estimated by

EDA = k ∗ Epdb (3)
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where Epdb is the energy consumed for fusing 1-bit data.

4. Proposed Protocol

The FQA is a centralized protocol, and all computations are executed within a proces-
sor located in the BS. The objective is to develop an energy-efficient clustering and routing
protocol that should be adjustable. We have divided the solution into four phases: CH
selection, cluster formation, multi-hop routing, and on-demand re-clustering. The details
of each phase are elaborated as follows.

4.1. CH Selection

The flexibility and fault tolerance of fuzzy logic enable simultaneous consideration
of multiple factors when selecting the appropriate CH. The applicability of CHs can be
evaluated comprehensively by defining appropriate membership functions and fuzzy rules.
In the proposed FQA, we utilized an FIS (fuzzy inference system) with the classic Mamdani
model to select the appropriate CHs based on the well-tuned fuzzy rule. In each round, the
BS collects the information of all nodes in the network to select the set of CHs.

4.1.1. Step 1: Selection of Candidate CHs

Because nodes cannot be charged and their energy is limited, nodes with sufficient
energy should be selected as CHs to improve network efficiency. The nodes with energy
levels higher than the energy threshold are considered candidate CHs. The set of candidate
CHs selected can be mathematically expressed by Equation (4):

SCH = {Ni|E(Ni) ≥ Ethreshold } (4)

where E(Ni) is the residual energy of the node i and Ethreshold represents the average energy
of the existing alive nodes:

Ethreshold =
∑

Nalive
i=1 E(Ni)

Nalive
(5)

Equation (5) is used to determine the nodes with enough energy to be selected for CHs.

4.1.2. Step 2: Selection of CHs

In this step, an FIS is adopted to compute the probabilities of becoming a CH for all
candidate CHs stored in SCH . We employed four fuzzy inputs including residual energy,
number of neighboring nodes, distance to the BS, and node centrality to maximize the
rationalization of CH selection. The parameters considered as FIS input characteristics are
detailed as follows:

• Residual energy ( fCH1
): This parameter indicates the remaining energy of node i

denoted by E(Ni) in the current round. The CH serves as a critical node for data
transmission, requiring a large amount of energy. This characteristic becomes more
critical in the later stages of operation. In contrast to existing protocols that use a
linearly declining weight constraint on this parameter, our approach determines the
energy threshold at step 4.1.1 and selects nodes with the highest residual energy as
candidate CHs.

• Number of neighboring nodes ( fCH2
): This parameter refers to the number of direct

communication connections established between each node within its communication
range and its surrounding nodes, representing each cluster’s compactness. A larger
value of this parameter is considered a more satisfactory feature because it indicates a
shorter intra-cluster distance.

• Distance to the BS ( fCH3
): This parameter concerns the Euclidean distance between the

candidate node i and the BS which is expressed by Dis(i, BS). The nodes with a closer
distance to the BS have a higher probability of being selected as CHs because they
consume less communication energy. Since the nodes are static, the BS has collected
the distance information of all nodes based on RSSI in the first iteration.



Sensors 2024, 24, 4105 8 of 22

• Node centrality ( fCH4
): Our protocol in this paper selects CHs before cluster formation,

so we use the average distance between a candidate CH and its set of neighboring
nodes (Neighbor(Ni)) [35] to represent node centrality, which can be computed by

fCH4
=

∑i∈Neighbor(Ni)
d(CH, i)

Neighbor(Ni)
(6)

where d(CH, i) is the Euclidean distance between candidate CH and one of its neighbors.
The smaller the value of fCH4

, the closer the candidate CH is to the center of the cluster.
Nodes selected as CHs that are close to the cluster centroid can minimize the energy
consumption of data transmission.

Using the above-mentioned inputs, the FLS outputs a chance to indicate the priority
of nodes becoming CHs. The whole process involves normalization, fuzzification, a fuzzy
logic system, and defuzzification, as shown in Figure 2.

Figure 2. FIS for FQA.

Where normalization aims to standardize input variables from different ranges into a
uniform range between 0 and 1, this step maps membership values to a standardized range
that allows us to make efficient comparisons and calculations. Each normalized variable is
mapped to a corresponding fuzzy linguistic variable via the membership functions.

In our proposed method, each selected input variable of each fuzzy system has dif-
ferent membership functions represented as trapezoidal, triangular–trapezoidal, and tri-
angular. The fuzzy outputs for all the FISs are derived from the set of selected features
obtained by the optimization process. We employed seven linguistic variables to express
the outputs, providing enhanced flexibility in formulating the fuzzy rules. The detailed
linguistic variables and parameters can be found in Table 1.

Table 1. Input and output parameters.

Parameters Linguistic Variables Membership Functions

fCH1

VL (very low), VH (very high) Trapezoidal
L (low), M (medium), H (high) Triangular

fCH2

F (few), N (numerous) Trapezoidal
M (medium) Triangular

fCH3

N (near), F (far) Trapezoidal
M (medium) Triangular

fCH4

L (low), H (high) Trapezoidal
M (medium) Triangular

CHprobability

VP (very poor), VS (very strong) Trapezoidal
P (poor), Bave (below average), Ave (average), Triangular

Aave (above average), S (strong) Triangular

The membership functions of the inputs and output can be formulated based on
previous works [13,17] and experimental experiences. These are illustrated in Figure 3 and
Figure 4, respectively.
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Figure 3. Membership function for the input variables: (a) residual energy; (b) number of neighboring

nodes; (c) distance to the BS; (d) node centrality.

Figure 4. Membership function for the output variable.

In the proposed FQA, we used the fuzzy logic model to select CHs based on probability
values. The node with the highest probability values emerges as the winner and takes the
CH position. Every node sends messages containing the node ID and probability value
to all other nodes in the range after the fuzzy system generates the probability values.
They receive a message with the node ID and probability from other nodes and use this
information to select a CH. The function mapping between input and output variables is
constructed based on the knowledge base consisting of if–then rules, and the final fuzzy
rules are shown in Table 2.
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Table 2. Optimized fuzzy rule table for CH selection.

No. fCH1
fCH2

fCH3
fCH4

CHprobability

1 VL F N L Bave

2 VL F M L Bave

3 VL F F L P
4 VL F N M P
5 VL F M M P
6 VL F F M VP
...

...
...

...
...

...
73 M N N L S
74 M N M L Aave

75 M N F L A
76 M N N M Aave

77 M N M M A
78 M N F M Bave

...
...

...
...

...
...

130 VH N N M VS
131 VH N M M VS
132 VH N F M Aave

133 VH N N H S
134 VH N M H Aave

135 VH N F H Aave

4.2. Cluster Formation

After the selection of the CHs, each final selected CH broadcasts the message that it
becomes a CH within its communication range. The nodes that are not selected are treated
as CMs (cluster members) and assigned to a particular CH with higher potential according
to Equation (7):

Np =
αEch(i)

Dis
(

Sj, CHi

) (7)

where Np is the node potential, Ech(i) denotes the residual energy of the respective CH,
and Dis

(

SJ , CHi

)

represents the Euclidean distance between the CHi and Sj. α is the
proportionality constant. Since the node with higher residual energy has been selected as
the CH in step 4.1.1, Dis

(

SJ , CHi

)

is regarded as a more important factor in this section.
After a simulation comparison, we set α to 0.3.

4.3. Multi-Hop Routing Approaches

4.3.1. Simulated Annealing

Inspired by the physical annealing process, Metropolis et al. simulated the annealing
process in metal smelting and proposed the simulated annealing algorithm, which is a
Markov chain Monte Carlo method based on statistical mechanics, to find the optimal
solution that minimizes the objective function among a set of candidate solutions. At
the beginning of the annealing process, the SA algorithm avoids becoming stuck in local
optima by occasionally moving uphill, which iteratively compares the value of the objective
function corresponding to the current point and the adjacent points. In a later stage, it
incorporates the Metropolis criterion to find the minimum value of the objective function.
Although the SA algorithm is widely used in path planning, it still has many shortcomings.
Parameters such as initial temperature and iteration times of the inner loop have a great
influence on the results, and at the beginning of annealing, the probability of accepting the
better solution and the worse solution is almost the same.

4.3.2. Quantum Annealing

Different from the simulated annealing algorithm which jumps over the barrier to
eliminate the local optimum, the quantum annealing algorithm introduces a penetration
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field into the quantum system and generates quantum wave motion to penetrate the
potential barrier itself, then reaches the lowest energy state [29]. In the early stage of
annealing, the kinetic energy term is relatively large, providing a large disturbance that
can fully traverse the entire solution space. The kinetic energy term is gradually reduced,
and in the later stage of annealing, the kinetic energy term is gradually reduced to 0. The
comparison of the ways of crossing the barrier is shown in Figure 5.

Figure 5. Difference between SA and QA.

In other words, the state of the minimum potential energy of the system is reached.
The evolution of the quantum system under the action of potential and kinetic energy can
be described by the following Schrödinger Equation (8):

iℏ
∂

∂r
Ψ(r, t) = ĤΨ(r, t) (8)

where ℏ is Planck’s constant and Ĥ is the Hamiltonian operator.

Ĥ = −
ℏ2

2m
∇2 + V(r) (9)

where m is the particle mass, ∇ is the gradient operator, V(r) is the potential field of
the particle. In practice, the complexity of Equation (9) increases exponentially with the
increase in problem complexity, so we adopt the PIMC (path-integral Monte Carlo) method
to simulate the quantum annealing process. The two-dimensional stochastic Ising model is
employed to elucidate the PIMC process [37]:

As shown in Figure 6, each arrow ai ∈ {+1,−1} represents a distinct magnetic needle
with varying spin magnetism. The collective spin orientation of all these magnetic needles
determines the overall magnetization. The interaction between adjacent magnetic needles
and environmental thermal noise influences the behavior of each needle. Thermal noise
interference intensifies as temperature increases, leading to random magnetism in the
magnetic needles. However, during the annealing process characterized by a gradual
decrease in temperature, neighbor interactions become more prominent. Eventually, when
the temperature reaches a sufficiently low level, many tiny magnetic needles in a uniform
direction exhibit magnetism. At this time, the system energy is minimal. The Hamiltonian
function of the transverse field Ising model is formulated as

Hp(t) =
N

∑
i=1

hiσi
Z +

N

∑
i,j=1

Ji,jσi
Z

σj
Z (10)

where hi represents the external local field, which is not considered in this paper for the sake
of simplicity and is assumed to be 0. Ji,j denotes the coupling strength between quantum bit

i, j; σi
Z and σj

Z denote the Pauli operator Z spin matrices at point i, j. The concept of spin
can be interpreted as a minute magnetic needle positioned in a specific state, oscillating
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between the states of 1 and 0 due to the influence of the transverse field’s kinetic energy.
This transformation effectively shifts the model from classical to quantum. According to the
Hamiltonian function of the Ising model, the Hamiltonian function of quantum annealing
can be obtained:

H(t) = Hp(t) + Γ(t)∑
N

i,j=1
∆iσi

x (11)

where Γ stands for field strength, and it induces the up-and-down transition of the spin
state of a single quantum bit, similar to the temperature T in the simulated annealing
algorithm. According to the Trotter theorem, we decompose the Hamiltonian into multiple
smaller Hamiltonians to efficiently compute the evolutionary outcomes.

Figure 6. Two-dimensional stochastic Ising model.

4.3.3. Route Generation

A. The basic process of the QA algorithm

The limitation of the uncertain convergence time is overcome by optimizing the QA
algorithm. The route generation process using the QA algorithm is described clearly in
this section.

1. The BS collects the location information and the residual energy information of
each CH.

2. We constructed a two-dimensional routing matrix L and a two-dimensional weight
matrix ω according to the number of CHs and energy consumption model.

3. In order to minimize the energy consumption in the communication process, the
objective function is constructed by using two matrices.

4. We constructed constraint terms and combined them with the objective function to
obtain the potential energy.

5. The kinetic energy of the construction is combined with the potential energy to obtain
the Hamiltonian.

6. The routing planning scheme is obtained by solving the resulting Hamiltonian with
the QA algorithm and repeating N times. Then, the scheme with the minimum energy
consumption is taken as the current round scheme.

7. The energy consumption difference between the current and last rounds was com-
pared. If the relative difference was within 5%, the scheme with more minor energy
consumption was selected as the optimal scheme; otherwise, the next round of com-
parison was performed.

B. Construction of objective function and potential energy term

The matrix L which represents the routing connection relationships of all CHs in the
network is expressed in Equation (12):
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L =





















L1,1 L1,2 · · · L1,b · · · L1,C L1,BS

L2,1 L2,2 · · · L2,b · · · L2,C L2,BS
...

...
. . .

...
. . .

...
...

La,1 La,2 · · · La,b · · · La,C La,BS
...

...
. . .

...
. . .

...
...

LC,1 LC,2 · · · LC,b · · · LC,C LC,BS





















(12)

where C is the number of CHs. The CHs collect data and transmit them to the BS through
multi-hop or single-hop routing, and the BS is the end of the data transmission. La,b = 0
means that there is no routing connection between nodes a and b; La,b = 1 means that
there is a routing connection between nodes a and b. At the same time, we use the
energy consumption of single-bit data transmission as the connection weight and only
consider the energy consumption of sending data from CHs to the BS when constructing
the energy consumption weight matrix in this paper. The two-dimensional weight matrix
ω representing the routing energy consumption is as follows:

ω =





















ω1,1 ω1,2 · · · ω1,b · · · ω1,C ω1,BS

ω2,1 ω2,2 · · · ω2,b · · · ω2,C ω2,BS
...

...
. . .

...
. . .

...
...

ωa,1 ωa,2 · · · ωa,b · · · ωa,C ωa,BS
...

...
. . .

...
. . .

...
...

ωC,1 ωC,2 · · · ωC,b · · · ωC,C ωC,BS





















(13)

So we obtain the objective function froute in Equation (14), and our optimization
objective is to obtain the minimum value of froute,

froute = ∑
(a,b)

La,b ∗ωa,b (14)

La,b represents the routing connection state, corresponding to ai ∈ {+1,−1} in the
Ising model. In order to prevent the possible matrix L from being in an arrangement that is
not in line with the actual situation, we set the constraint term P. Since the communication
between nodes is bidirectional, it is an equal-probability event that node a transmits data
to node b and node b transmits data to the node a, and the randomly generated routing
connection easily causes loop breakage. Therefore, the concept of parent node and child
node is used to eliminate the error situation. La,b = 1 and Lb,a = 1 represent two different
connection relationships which cannot both be 1. La,b = 1 means that node a is the parent
node of node b, and data are transmitted from a to b. We set the first constraint P1 that each
node can have only one child node, that is, every column has only one element of 1, in
which case P1 = 0:

P1 =
C

∑
b=1

(

C

∑
a=1

La,b = 1

)

(15)

The second constraint term ensures that CHs are connected to a path:

P2 = (Num − 1)2 (16)

We used an array Num to denote the total count of CHs in the matrix L which satisfies
the condition of the number of child nodes being zero. If Num = 1, that is, only the BS has
no child nodes, P2 = 0. Otherwise, P2 > 0, which is an unreasonable routing scheme. The
potential energy is calculated from the above objective function and two constraint terms:

Hp(t) = froute +ωmax(P1 + P2) (17)
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The weight of constraint terms is increased to eliminate incorrect routing schemes.
ωmax is the largest element value in ω; if the routing scheme satisfies the actual situation,
P1 = 0 and P2 = 0, that is, the corresponding Hp(t) is smaller.

C. Construction of classical Hamiltonian

The random construction generates n different connection replicas to form the set

M =
{

L1, L2, · · · , Lk, · · · Ln
}

. The greater the number of copies, the higher the accuracy

of the solution; however, this will also lead to an increase in calculation time and cost.
After careful consideration, we refer to the parameter value, n = 40, with the best effect
after comparative experiments in the literature [38]. Kinetic energy Hk(t) is generated by
quantum fluctuations which refer to the interaction between n sets; that is, the values at the
same position between adjacent copies are multiplied and summed. We used the scheme
in [37] for the calculation:

Hk(t) = JΓ

(

n

∑
k=1

∑
a,b

Lk
a,bLk+1

a,b

)

(18)

where Lk+1
a,b = L1

a,b, and JΓ is introduced as a coupling term to adjust the magnetic field
strength [39], which is calculated by Equation (19):

JΓ = −
T

2
ln tanh

(

Γ

Tq

)

> 0 (19)

where Tq = nT is the effective QA temperature. As the Monte Carlo step progresses, the
tunneling field intensity Γ0 slowly decreases from a relatively high value. After manual
parameter adjustment for testing, the optimal values of Tq and Γ0 were found within the
ranges of Tq ∈ (0, 1] and Γ0 ∈

(

0, 3Tq

)

[40]. According to the Monte Carlo method, the
classical Hamiltonian can be expressed as

H(t) =
1

n

n

∑
k=1

Hp

(

Lk
)

− JΓ Hk(t) (20)

If the number of the same positions with a value of 1 in n sets is higher, there tends
to be greater consistency among adjacent copies, and then the value of Hk(t) is higher
and the value of H(t) is lower. The operator set introduced in the subsequent section is
utilized for updates, enabling kinetic energy to reach lower values when potential energy
cannot be further reduced, thereby escaping local optima. JΓ determines the relative
importance between the kinetic energy term and the potential energy term. With the
annealing process, the sets gradually become similar, ∆Hk(t) (the difference value between
the candidate kinetic energy term and the current kinetic energy term) gradually decreases,
and JΓ, which is inversely proportional to T, gradually increases, ensuring that the kinetic
energy term continues to play a role. From the current Hamiltonian, we obtain the optimal
two-dimensional routing connection matrix Lbest using the PIMC-QA algorithm in Matlab.

D. Construction of operator

Given that the constraint term has already been constructed in Section B, we exclusively
construct one operation O for updating the replica set. We find a random position in the
matrix L with the value of 1, disconnect it from its child node, and then choose a new child
node within the same column. Figure 7 shows an example of the operator with arrows
indicating the direction of data transmission.
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Figure 7. An example of the operator O: (a) L matrix before using O; (b) L matrix after using O;

(c) route before using O; (d) route after using O.

E. The Pseudo-Code of the QA algorithm

Algorithm 1 is the QA algorithm pseudo-code.

Algorithm 1: The implementation of route planning

Initialize : replica set M, Lbest = L0, Γ = Γ0, Mc = Maxsteps, k = 0

1. While (Γ > 0)
2. JΓ = −T/2 ln tan

(

Γ/Tq
)

3. While (k < n)

4. Lk = O
{

Lk
}

5. ∆Hp = Hp(L′)− Hp
(

LK
)

6. ∆Hk = Hk(L′)− Hk

(

Lk
)

7. ∆HC = ∆Hp/n − JΓ∆Hk

8. if
(

∆Hp
)

<= 0

9. Lk = L′

10. if
(

Hp

(

Lk
))

<= Hp((Lbest))

11. Lbest = L′

12. else if (∆Hk) <= 0

13. Lk = L′

14. else if (exp(−∆HC/T)) > random(0, 1)
15. Lk = L′

16. k = k + 1

17. end while

18. T = T − (T0/Maxsteps), Γ = Γ−(Γ0/Maxsteps)
19. Mc = Mc − 1

20. end while

21. return Lbest

22. end



Sensors 2024, 24, 4105 16 of 22

Here, Maxsteps is the maximum number of steps for Monte Carlo steps. L′ is the
candidate solution, which is obtained by updating the current solution with the operator
O, and the Monte Carlo criterion [38] of the simulated annealing algorithm is adopted in
line 18.

4.4. Cluster Maintenance

To reduce energy consumption and balance the load, this paper adopts the on-demand
maintenance mechanism. The CHs consume too much energy to collect and transmit
data to the BS, and the clusters nearer to the BS consume energy too quickly, so the cluster
maintenance phase is considered as one of the important phases for prolonging the network
lifetime. Each selected CH remains in its position for a certain number of rounds. Once
its remaining energy is below the threshold (E(Ni) < Ethreshold), the CH announces the
node with the second-largest probability of becoming a new CH. Based on the saved
chance values, the CH shift can be performed every time with only a small control packet.
Moreover, when a node only functions as a CH in a round, it transmits a small control
packet to its neighboring CHs instead of its CMs. Additionally, the data packet will be
forwarded by the neighbor CHs until all CHs receive it. The BS will re-initialize the FIS
and reselect the CHs on demand when all CHs perform a shift operation or if a CH has
exhausted its energy. Then, the quantum annealing algorithm is used to obtain the optimal
routing path from CHs to the BS.

5. Simulation Results and Discussion

The proposed FQA is simulated using MATLAB 2022a software because its Fuzzy
Toolbox examines all fuzzy membership functions, hence making it suitable for use. The per-
formance is compared with the existing protocols, including FRNSEER [13], FC-RBAT [14],
BOA-ACO [22], and OAFS-IMFO [32]. The simulation parameters are presented in Table 3.

Table 3. Simulation parameters.

Parameters Value

Initial energy 1 J
Eelec 50 (nJ/bit)
Epdb 5 (nJ/bit)

ε f s 10 (pJ/bit/m2)

εmp 0.0013 (pJ/bit/m4)
d0 87.7 m

Data packet size 4000 bits
Control packet size 200 bits

Mc 102∼106

Maxsteps 106

T 0.04
Γ0 1.6

The positioning of the BS and the number of nodes can influence the experimental
outcomes. Thus, we established four different scenarios to evaluate the proposed ap-
proach. In scenario 1, we randomly deployed 70 nodes within a network area measuring
100 m × 100 m, and the BS was positioned at the center of the network. In the second
scenario, the BS is switched to the edge of the network. Then, we expanded the network
to 200 m × 200 m and increased the number of nodes to 150, which can further verify the
stability of the proposed algorithm. Finally, we placed the BS at the corner of the network.
The scenario parameters are shown in Table 4.



Sensors 2024, 24, 4105 17 of 22

Table 4. Descriptions of scenarios.

Parameters Scenario 1 Scenario 2 Scenario 3 Scenario 4

Area 100 m × 100 m 100 m × 100 m 200 m × 200 m 200 m × 200 m
Number of nodes 70 70 100 100

BS Location x = 50, y = 50 x = 50, y = 100 x = 100, y = 100 x = 0, y = 0
Proportions of CHs 15% 15% 10% 10%

The proposed protocol was compared with the FRNSEER, BOA-ACO, OAFS-IMFO,
and FC-RBAT in different scenarios from the perspective of alive nodes, network lifetime,
energy consumption, and throughput. The detailed test results are shown and discussed
as follows.

5.1. Network Lifetime

This section compares the network lifetime between the proposed methodology and
existing protocols. The lifetime of a network is defined as the number of rounds when
the total number of nodes completely exhausts their energy, and it is the most important
metric for measuring the protocol. Table 5 shows the simulation results of the first node
death round (FND), half node death round (HND), and all node death round (LND) for
different protocols. In addition, the simulation results of the number of surviving nodes in
the network are shown in Figure 8.

Table 5. FND, HND, LND in different scenarios.

Items

Protocol
OAFS-IMFO FC-RBAT FRNSEER BOA-ACO FQA

FND 539 785 739 803 997

Scenario 1 HND 1033 1244 1766 1288 1724

LND 1566 1939 2186 2469 2838

FND 340 807 876 760 324

Scenario 2 HND 1034 1209 1734 1294 1003

LND 1343 1673 2145 2174 2489

FND 280 629 518 104 362

Scenario 3 HND 551 941 854 1028 1418

LND 1658 1775 2357 2635 3040

FND 176 157 610 588 446

Scenario 4 HND 524 893 987 950 1030

LND 1143 1249 1271 1307 1482

As shown in Table 5, our proposed protocol overcomes the shortcomings of other
protocols while extending the network lifetime; it also performs well in HND and LND.
The BOA-ACO protocol utilizes the ACO algorithm to determine the optimal path from
CHs to the BS, which has the risk of falling into local optima. OAFS-IMFO introduced
two different meta-heuristic algorithms in the CH selection and routing path planning,
which increases the risk of falling into the local optimal solution. The two sets of fuzzy
rules of FC-RBAT significantly prolong system computation time, leading to higher energy
consumption and reduced network lifetime. Our protocol uses the fuzzy system in CHs
selection to plan cluster distribution accurately and choose a quantum annealing algorithm
in the routing stage. Compared with the FRNSEER protocol, it can quickly obtain the
optimal solution in all the transmission paths from CHs to the BS. As shown in Figure 8, our
protocol provides better performance in terms of network lifetime. The alive nodes of the
proposed protocol are sustained until 2838, 2489, 3040, and 1482 rounds in four scenarios.
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The performance of the proposed protocol is 81.23%, 85.33%, 83.35%, and 29.66% higher
than OAFS-IMFO; 46.36%, 48.77%, 71.27%, and 18.65% higher than FC-RBAT, 29.83%;
16.04%, 28.98%, and 16.60% higher than FRNSEER; and 14.95%, 14.49%, 15.37%, and 13.39%
higher than BOA-ACO, respectively, in the different scenarios.

Figure 8. Network lifetime comparison in different scenarios: (a) scenario 1; (b) scenario 2; (c) scenario

3; (d) scenario 4.

5.2. Energy Consumption

The wireless sensor nodes are usually powered by batteries with limited capacity
that cannot be easily replaced or recharged promptly. Therefore, effectively reducing
energy consumption is crucial for ensuring efficient resource utilization and achieving
a sustainable network. Enhancing the system’s sustainability can effectively reduce the
frequency and cost of maintenance for networks requiring long-term detection [41]. Figure 9
compares our proposed protocol’s energy consumption with four other latest protocols
across four scenarios.

Frequent updates of CHs will increase network energy consumption. Our protocol
adds the process of candidate CHs to ensure that the selected CHs are higher than the
average remaining energy of existing nodes, prolonging the survival time of CHs and
minimizing energy consumption. The FRNSEER and OAFS-IMFO protocols do not consider
the degree of cluster compactness, which may cause an uneven distribution of clusters.
FC-RBAT used fuzzy C-means for clustering, and its accuracy in selecting reasonable CHs is
significantly lower than that of FQA. The parameters considered by the BOA-ACO protocol
are more comprehensive, thereby increasing the complexity of calculations. Under identical
conditions, our protocol can achieve superior results in terms of clustering and routing.
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Figure 9. Network energy consumption comparison in different scenarios: (a) scenario 1; (b) scenario

2; (c) scenario 3; (d) scenario 4.

In the experiment, FQA consumes half of the energy in 880, 752, 518, 503 rounds,
which is 43.79%, 96.86%, 58.41%, 93.46% lower than OAFS-IMFO; 37.72%, 49.80%, 49.28%,
40.50% lower than FC-RBAT; 31.54%, 47.75%, 7.25%, 22.68% lower than FRNSEER; and
1.49%, 20.51%, 5.715, 10.55% lower than the BOA-ACO protocol in the four scenarios. FQA
has more evident advantages in saving energy.

5.3. Throughput

Throughput is a crucial metric for evaluating network performance, as it measures the
amount of data that can be successfully transmitted within a given time frame. The results
of the simulation comparison demonstrate that our protocol exhibits superior network data
transmission efficiency and reliability.

Figure 10 shows the throughput comparison. At the scale of a 100 m × 100 m network,
in terms of throughput, compared with OAFS-IMFO, FC-RBAT, FRNSEER, and BOA-ACO,
FQA has increased by 38.89%, 32.765%, 26.165%, and 8.72% on average, respectively. These
data show that our protocol maintains the effectiveness of data transmission rates as the
network expands. FQA has increased by 22.01%, 22,79%, 3.58%, and 2.04% on average at
200 m × 200 m, respectively.



Sensors 2024, 24, 4105 20 of 22

Figure 10. Network throughput comparison in different scenarios: (a) area 100 m × 100 m, 15%CH;

(b) area 200 m × 200 m, 10%CH.

6. Conclusions

The combination of FCM and QA is employed in this paper to optimize a network’s
energy consumption and prolong the network’s lifetime. Initially, candidate CHs are
selected based on a predefined energy threshold, prioritizing nodes with higher residual
energy. Then, the proposed FQA considers effective parameters, including residual energy,
the number of neighboring nodes, distance to the BS, and node centrality as descriptors
of FIS to achieve the best decision, and the remaining nodes are assigned to particular
CHs with higher potential according to energy and distance. Subsequently, an objective
function is formulated based on potential energy derived from the energy matrix, distance
matrix, and constraint terms. Then, we combine it with the kinetic energy generated by
the interaction between n sets to obtain the Hamiltonian. The QA algorithm calculates the
Hamiltonian to obtain the routing scheme from CHs to the BS with the minimum energy
consumption. Finally, we utilized an on-demand re-clustering mechanism to decrease
energy consumption further. Simulation results showed that FQA performs better than
the existing protocols OAFS-IMFO, FC-RBAT, FRNSEER, and BOA-ACO in all scenarios
regarding energy consumption, network lifetime, the number of surviving nodes, and
throughput. Significantly, the network lifetime of FQA in scenario 1 has increased by
81.23%, 46.36%, 29.83%, and 14.95%, compared to OAFS-IMFO, FC-RBAT, FRNSEER, and
BOA-ACO, respectively.
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However, the proposed FQA is implemented only for a homogeneous and stationary
network. In our future work, we will consider the incorporation of heterogeneous networks
and mobile sinks into our research.
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