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Abstract Non-vacuum static spherically symmetric spacetimes with central point-
like repulsive gravity sources are investigated. Both the symmetries of spacetime and
the degree of irregularity of curvature invariants, are the same as for the Schwarzschild
case. The equilibrium configurations are modelled using the neutron star polytrope
equation of state.
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1 Introduction

With the Ricci curvature uniquely determined by the energy momentum tensor Ti j ,
one still has the freedom to alter Riemann tensor by adding the Weyl tensor Ci jmn

Ri klm = Ci klm − 1

2
(gkl Rim + gim Rkl − gkm Ri l − gi l Rkm). (1)
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The Weyl tensor remains unchanged under conformal transformations of space
g → Ω(x)g, and therefore, is a measure of the conformal curvature. The Weyl ten-
sor is not coupled to the matter. In principle, it can take arbitrary values, unless the
Riemann tensor index symmetries are fulfilled, and Ck

i k j = O . Gravitational waves,
which are waves of conformal curvature, in the linear regime propagate independently
of matter distribution. The space symmetries for tensor perturbations can be set arbi-
trarily, and independently of whether the waves propagate in vacuum or in a space
filled with matter.

In modelling stars, one proceeds differently. It is expected that the spacetime geom-
etry reproduces the spherical symmetry of a gaseous cloud. Accordingly, the Weyl
curvature becomes partially coupled to the matter distribution in an indirect way.
Moreover, the regularity of matter distribution is reflected in the assumption that both
the metric tensor and the Riemann curvature are regular [1]. Due to this assumption
the gaseous spherical clouds are free of singularities, unlike the vacuum spherical
solutions, black holes. The above-mentioned assumptions are not axioms within the
General Relativity, but rather supplement the theory, effectively reducing the number
of available solutions.

The aim of this paper is to relax the regularity assumptions. We investigate the spher-
ically symmetric configurations of the regularly distributed classical fluid containing
point-like repulsive gravity sources [2] in their centres. The cosmic censorship [3]
is not fulfilled here. The energy density and pressure of the fluid component are
assumed to be finite everywhere and differentiable beyond the central point. The
weak, strong and dominant energy conditions are satisfied—contrary to [4–6] the
matter is purely classical. No regularity restrictions on the metrics or curvature are
made. We use the Carminati–McLenaghan basis [7,8] of curvature invariants to define
a class of non-vacuum spherically symmetric spaces with a degree of regularity close
to that for the Schwarzschild spacetime. Finally, we adopt the neutron star polytrope
approximation [9] in order to numerically evaluate the radius–mass relation for those
singular-core equilibrium states. The study does not include the dynamic stability
analysis of the presented configurations.

The freedom to arbitrarily set the purely gravitational part of mass is originally
present in the Oppenheimer–Volkoff problem, as equivalent to the choice of an
integration constant. This arbitrariness is traditionally eliminated by heuristic argu-
ments [10,11], or an explicit demand that the metric tensor should be regular [1]. In
this manner relativistic astrophysics splits into two separate branches: the black hole
theory, which admits singularities in vacuum, and the relativistic star theory, which,
conversely, admits the material content, but excludes singularities.

On the ground of regular Oppenheimer–Volkoff solution the two important astro-
physical concepts are based: the Oppenheimer limit [10] for the object mass, and the
Bondi limit [12] for gravitational redshift. It seems important to know what happens
to these limits when the regularity conditions are relaxed.

A direct motivation for our investigations came from the discovery of col-
lapse solutions which terminate at naked singularities in cores of compact gaseous
spheres [13–21].
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2 Riemann curvature invariants: the case of spherical symmetry

For the spacetime obeying Einstein equations with hydrodynamic energy–momentum
tensor the Riemann curvature invariants decompose into Carminati–McLenaghan
invariants [7]. Carminati–McLenaghan invariants divide into three subsets: the Ricci-
based {R1,R2,R3}

R1 = 1

4
SabS

b
a, (2)

R2 = −1

8
SabS

b
cS

c
a, (3)

R3 = 1

16
SabS

b
cS

c
d S

d
a . (4)

Weyl-based ones {W1,W2}

W1 = 1

8
(Cabcd + i∗Cabcd)C

abcd , (5)

W2 = − 1

16
(Cab

cd + i∗Ce f
ab)Ccd

e f Ce f
ab, (6)

and mixed ones {M1,M2,M3,M4,M5}

M1 = 1

8
Sad Sbc(−i∗Cabcd + Cabcd ), (7)

M2 = 1

8
i∗Cabcd S

bcSe f C
ae f d + 1

16
SbcSe f

(
CabcdC

ae f d − ∗Cabcd
∗Cae f d

)
, (8)

M3 = 1

16
SbcSe f CabcdC

ae f d + 1

16
SbcSe f

∗Cabcd
∗Cae f d , (9)

M4 = − 1

32
SagScd S

e f Cac
dbCbe f g − 1

32
SagScd S

e f ∗Cac
db∗Cbe f g, (10)

M5 = 1

32
SbcSe f (i∗Caghd + Caghd )(∗Cabcd

∗Cge f h + CabcdCge f h). (11)

The Plebanski tensor Sab is equal to the traceless Ricci tensor Sab = Rab − 1
4 Rgab.

The invariants W1 and W2 are complex numbers defined by means of contractions of
Weyl tensor C and dual Weyl tensor ∗C .

In the particular case of vacuum and spherically symmetric spacetime

ds2 = −
(

1 − 2GMg

rc2

)
c2dt2 +

(
1 − 2GMg

rc2

)−1

dr2 + dΩ2 (12)

there are only two non-vanishing Carminati–McLenaghan scalars W1 and W2, depen-
dent on each other

(W1/6)1/2 = (W2/6)1/3 = GMg

c2r3 . (13)
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For Mg = 0, the solution yields the Minkowski spacetime with all the invariants
vanishing. A positive constant Mg leads to a black hole with Mg equal to the ADM
mass of the configuration. The conformal curvature (W1, W2) is power-law divergent
at r = 0. All the Carminati–McLenaghan invariants are regular at r = 2GMg , which
reflects the regularity of the Schwarzschild horizon. For a negative Mg , one obtains a
naked singularity [2]. The equality R1 = R2 = R3 = 0 indicates that the spacetime
is empty. The source of gravity for black holes or naked singularities is their conformal
curvature.

3 Gaseous configurations

For the static spherically symmetric solution

ds2 = −A(r)c2dt2 +
(

1 − 2
G

c2

M(r) + Mg

r

)−1

dr2 + r2
(
dϑ2 + sin2 ϑdϕ2

)

(14)

the Einstein equations Gμν = κ Tμν with hydrodynamic energy–momentum tensor
reduce to

ρ(r) = 1

κc2 Gμνu
μuν = M ′(r)

4πr2 , (15)

p(r) = 1

3κ
Gμ

νh
σ

μh
ν
σ

= c2

4πG

2G(M(r) + Mg) − c2r

r2

p′(r)
c2ρ(r) + p(r)

− c2

4π

M(r) + Mg

r3 , (16)

A′(r)
2A(r)

= − p′(r)
c2ρ(r) + p(r)

, (17)

uμ (uνuν = −c2) is the four-velocity of fluid at rest, hσ
μ is the flow-orthogonal

projective tensor, and prime stands for the radial derivative. This means that density
ρ and pressure p are expressed with respect to a comoving observer.

Only two Carminati–McLenaghan invariants are independent, for instance, the
cubic invariants

R2(r) = 3

(
1

4
κ

(
c2ρ(r) + p(r)

))3

, (18)

W2(r) = −6

(
c2κ

8πr3

(
M(r) + Mg − 4

3
πr3ρ(r)

))3

. (19)

The other non-vanishing C–M-invariants are functions of R2 and W2

R1(r) = 31/3R2
2/3, (20)
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R3(r) = 7R2
4/3

4 31/3 , (21)

W1(r) = 61/3W2
2/3, (22)

M2(r) = M3(r) =
(

2

3

)1/3

R2
2/3 W2

2/3, (23)

M4(r) = −6−2/3R2 W2
2/3, (24)

M5(r) = 3−2/3R2
2/3 W2. (25)

R1, R2 and R3 are independent of constant Mg , which means that it is not affected
by distribution of matter. In particular, demanding regularity for pressure [10] does
not justify setting Mg = 0.

The contribution of Mg to W1 and W2 relates Mg to the conformal curvature.
For a non-vanishing Mg , all the Weyl-based and the mixed invariants are power-law
divergent at r = 0, which indicates the presence of central singularity. The situation
is analogous to that for black holes, with a single exception—for the non-vacuum
solutions, Mg cannot be positive if one expects the configuration to be in equilibrium,
but it still can be negative [2,19]. As opposite to Mg , pressure does not contribute to
the Weyl tensor, while affecting the Ricci curvature; compare (18)–(19). This means
that the stars with Mg = 0 and the regular energy density but singular pressure [6]
are Ricci-singular and Weyl-regular ones. In this paper, however, we limit ourselves
to the case where both energy density and pressure are regular. The objects of singular
pressure [6] are a separate issue of interest.

The acceleration due to gravity is

a(r) = −G
M(r) + Mg + 4πr3 p(r)c−2

r(r − 2G(M(r) + Mg)c−2)
. (26)

The limit behaviour of a(r) at infinity

a(r) → −G
M(r) + Mg

r2 (27)

gives the ADM mass: MADM = M(rs) + Mg . The mass of configuration as observed
from infinity consists of the Misner–Sharp mass M(rs), representing the amount of
matter enclosed within the object’s radius rs , and the purely geometrical contribution
Mg—the weight of singular component. In order to reconstruct an Oppenheimer–
Volkoff star, one has to eliminate the singular solutions by an additional requirement
that the conformal curvature should be finite everywhere (cf. the metric regularity
assumption in [1]) which effectively means Mg = 0. We go here beyond this limit.

4 Configuration properties

For a positive Mg , a horizon arises inside the object. Gravitational attraction in the
absence of pressure gradient from beneath will eventually result in a collapse to a black
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hole. On the other hand, an object of negative total ADM mass (M(Rs) + Mg < 0)
will reject its outer layers due to the repulsive gravity below its surface and this process
will continue until the gaseous component completely evaporates. Searching for stable
configurations, we also exclude the case of M(Rs) + Mg = 0, as any incidental loss
of matter will convert it into the previously discussed unstable state. Finally, we set

Mg < 0 < M(Rs) + Mg. (28)

Thus the candidates for stable nakedly singular compact objects have the following
properties:

(1) They are solutions to Einstein equations with the same regularity constraints as
for the black holes: R1(r),R2(r),R3(r) are regular, while the Weyl curvature is
power-law divergent.

(2) The continuous component is a classical fluid with a finite energy density and
pressure, and with the energy conditions fulfilled.

(3) An isolated point-like repulsive-gravity source (Mg < 0) is located in the centre.
(4) The repulsive character of the singularity is balanced by gravitational attraction of

the continuous component. The ADM mass of the whole configuration is positive.

These conditions are necessary ones. Determining the satisfactory conditions is a
separate issue.

On the strength of (15)–(16), the structure of spherical configuration in equilibrium
with the barotropic equation of state ρ = ρ(p) is described by a non-autonomous
dynamical system

M ′(r) = 4πr2ρ(r), (29)

p′(r) = −G(c2ρ(r) + p(r))
M(r) + Mg + 4πr3 p(r)c−2

r(r − 2G(M(r) + Mg)c−2)
, (30)

or equivalently, by a second-order nonlinear equation with r -dependent coefficients

2
(
κr2 p(r) + 1

)
p′′(r)

− 2

(
κr2

(
p(r)

(
c2 ∂ρ

∂p
+2

)
− c2ρ(p(r))

)
+ c2 ∂ρ

∂p
+ 3

)
p′(r)2

c2ρ(p(r)) + p(r)

− 1

r

(
3κr2(c2ρ(p(r)) + p(r)) − 4

)
p′(r)

+ κ(c2ρ(p(r)) + p(r))(c2ρ(p(r)) + 3p(r)) = 0. (31)

In the second-order Eq. (31), the parameter Mg does not appear explicitly. The Eq. (31)
is the same as for the regular Oppenheimer–Volkoff star. Here the freedom to arbitrarily
choose Mg is implicit in the boundary conditions.
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5 Neutron polytrope

Neglecting the strong nucleon-nucleon interactions, we consider the Fermi gas in
nonrelativistic regime. The equation of state can be approximated by a polytrope [9,11]

ρ(p) = 1

c2

( p

k

)1
Γ

, Γ = 5/3, k = h̄2

15π2mN

(
3π2

c2mN

)Γ

. (32)

The repulsive singularity sweeps out the gas from the central point. As a consequence,
the region of maximal density does not form in the centre, but only at some distance (see
Fig. 1). The radius rmax of the sphere of maximal density is a growing function of Mg .
The freedom to arbitrarily set rmax in the boundary conditions for the equation (31) is
equivalent to the freedom of setting Mg in the system (29)–(30). We assume that max-
imal pressure pmax = p(rmax) does not exceed 1034 Pa, like for a regular neutron star.

With the equation of state (32), the system (29)–(30) and the Eq. (31) bifurcate at
Mg = 0. For Mg → 0, the radius of gaseous shell decreases to zero (rmax → 0),
while the central pressure pc identically vanishes (pc = 0, for all Mg < 0). The case
Mg = 0 brings about a discontinuity, where pc jumps from zero to pmax. None of the
Eqs. (29)–(30) and (31) can be integrated analytically.

Fig. 1 The pressure profile in 2 + 1 dimensional visualization p(x, y). The configuration parameters are:
the mass MADM = 2.6 M�, the radius rs = 16.28 km, the repulsive gravity counterpart Mg = −1.83 M�,
the maximal pressure pmax = 5.38 × 1034 dyn/cm2
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6 Integration methods

In order eliminate any numerical artefacts, we integrate both the system (29)–(30)
and the Eq. (31) independently, using two different integration techniques, and obtain
consistent results.

6.1 Dynamical system integration

The Python language library scipy is used with the vode integrator. The backward
differentiation formulas BDF-method (for the stiff problems) is adopted. The method
is provided by the Real-valued Variable-coefficient Ordinary Differential Equation
solver (http://www.netlib.org/ode/vode).

In this method, Mg and ρmax are set explicitly, while the corresponding rmax is
obtained by computing. Our algorithm for finding the maximal density/pressure radius
rmax consists in two steps: (1) for the assumed values of ρmax and Mg , we integrate the
Eqs. (29)–(30) outwards, starting from r0 = 10−10 cm, and continue the integration
up to some r1 where the pressure begins to decrease. (2) keeping the same values for
ρmax and Mg , we set r1 as a new starting point and integrate equations outward to find
the next approximation of rmax. We do this recursively until the difference in p(r1)

in two subsequent steps is <1024 Pa. Eventually, starting from rmax, we integrate the
system (29)–(30) in both directions in order to obtain the pressure profile.

6.2 Second-order equation integration

Numerical integration of the Eq. (31) is performed by usingNDSolve (Wolfram Math-
ematica) with the option Method->”BDF”, InterpolationOrder -> 3. For
each profile, the integration starts from rmax, the sphere of maximal density and max-
imal pressure, and with the boundary conditions p(rmax) = pmax and p′(rmax) = 0.
The integration goes in both directions and terminates when the pressure falls below
1019 Pa (WhenEvent). The values of radius ris (for the inner surface) and rs (for the
outer surface) give the thickness of the matter shell. The mass outside rs and inside ris
is neglected. The radius of the outer surface rs is considered as a radius of the entire
configuration.

In order to restore Mg-parameter, the solution p(r) is substituted into the Eq. (30) at
r = rmax, while M(rmax) is obtained by standard numerical integration of the Eq. (29)
with the equation of state (32). The sum M(rs) + Mg gives the ADM mass of the
configuration.

6.3 Integration scheme

The integration was repeated for 59 different values of rmax from the range rmax ∈
(1, 102.5 km) and for ten different pmax ∈ (5.3 × 1033, 4.6 × 1034 Pa), which gives
in total a matrix of 590 profiles. For each profile, the ADM mass (MADM), the config-
uration radius rs , the repulsive gravity counterpart Mg , and the gravitational surface
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redshift z were found. Then the integration was repeated twice to compare the results
from both the methods (6.1)–(6.2). The drawn profiles overlap in pairs within “visual
accuracy”. (The curves are visually indistinguishable. No formal fit measure was per-
formed.)

7 Equilibrium states

The pair (rs, MADM) forms a single point on the radius-mass equilibrium chart Fig. 2.
The equilibrium states of regular neutron stars (Mg = 0) constitute the curve [9]. For a
negative parameter Mg the equilibrium states fill the subset MADM(0) < MADM(Mg)

in the first quadrant of the radius-mass plane. Figure 2 covers the region of masses<8
solar mass and of diameters <25 km. The equilibrium points align into curves of the
same maximal pressure (alternatively one can draw the equiradial lines). A thick line
at the bottom end marks the equilibrium curve for the regular neutron stars (Mg = 0).
A diagonal line R = 2GMc−2 is the Schwarzschild horizon. The curves of constant
maximal pressure approach the horizon with increasing pmax or increasing MADM.
Effectively, this means that the gravitational redshift of the light emitted from the
surface is greater than that predicted by Bondi [12]. For an arbitrary value of MADM,
one can fit Mg and rs to obtain an equilibrium state. The configurations which admit

Fig. 2 The equilibrium states as curves of fixed maximal pressure. The pressure values in dyn/cm2,
from left to right {4.87 × 1035, 4.09 × 1035, 3.36 × 1035, 2.69 × 1035, 2.08 × 1035, 1.53 × 1035, 1.06 ×
1035, 6.55 × 1034, 3.33 × 1034, 1.05 × 1034}
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Fig. 3 Gravitational redshift as a function of ADM mass and radius for the fixed maximal pressure. The
pressure values, in dyn/cm2, change from top to bottom {4.87 × 1035, 4.09 × 1035, 3.36 × 1035, 2.69 ×
1035, 2.08 × 1035, 1.53 × 1035, 1.06 × 1035, 6.55 × 1034, 3.33 × 1034, 1.05 × 1034}

a repulsive point-like gravity source (a naked singularity) are not restrained by the
Oppenheimer limit [10].

8 Redshift

In the range rs ∈ {25 km, 300 km}, the radius-mass relation for configurations speci-
fied in Sect. (6.3) can be approximated by a straight line MADM = 0.33 rsM�/ km.
The mass-redshift relation is shown in Fig. 3, where the curves connect equilibrium
states of the same maximal pressure. The pressure decreases from 4.87×1035 dyn/cm2

for the top curve to 1034 dyn/cm2 for the bottom one. The configuration of maximal
redshift has parameters:

MADM = 31 M�, rs = 92 km, z = 11 (33)

The maximal value for z of about eleven comes from the limits for polytrope approxi-
mating a Fermi gas of neutrons. The maximal redshift strongly increases with pressure.
One can expect different redshift limits for different equations of state.

9 Conclusions

The presented construct falls entirely within Einstein’s theory of gravity without any
modifications or generalizations, while introducing no hypothetical forms of matter.
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It employs an equation of state well-known in nuclear physics. When the regularity
conditions for the metrics and the cosmic censorship are relaxed, both the Oppenheimer
limit and the Bondi limit are exceeded. In particular, breaking the Bondi limit is
important as it may affect the redshift classification. There is no technique available
to split redshift into gravitational and kinetic parts. We classify redshifts according to
their values, assigning a cosmological meaning to those which exceed zBondi = 0.6.

The concept of spherical gas cloud with a naked singularity within may help us
understand the black hole alternatives. However, one should refrain from identifying
these solutions with any real astronomical objects. We have shown that the set of
static solutions to the problem of spherical symmetry with singular conformal curva-
ture is non-empty, but the dynamic stability of such configurations remains an open
question. At this stage, the solutions are mostly a counterexample for the criteria of
the maximal mass and maximal redshift. More generally, they draw attention to the
conformal curvature, which, as it does not enter the Einstein equations, is subject
to ad hoc assumptions—different ones in different branches of astrophysics. These
assumptions may bias the interpretation of observables. The problem of conformal
curvature is worth attention, particularly so in the context of the observed dynamical
inconsistencies (missing mass and dark energy).
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