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Two body dynamics in a quadratic modification of general relativity
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It is shown in this study that deviations from the Einstein-Hilbert action at the quadratic
level using a proper analyses and suitable dynamical variables lead to a tiny modification
to the post Newtonian equations of motion, and non-GR like behavior at very short length
scales.
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1. Introduction

General theory of Relativity (GR) is a field theory, one of the first of its kind, that is

classified under classical physics. The validity of the theory ranges from solar system

length scales to cosmological length scales. It has passed most of its predictions with

flying colors, starting from the extra perihelion precession of Mercury in the inner

solar system,1 to gravitational lensing,2 to the generation of gravitational waves

(GW),3–8 and finally to the existence of objects called black holes (BH).9

One of the first calculations that tested the predictive power of GR was the

perihelion precession of Mercury, which is to say that GR gave predictions of all the

possible orbital dynamics that was possible to be observed in the early 20th century,

and its predictive power remains the same to this date. GR predicted that the grav-

itational force will not always be inverse squared of the distance from the source,

and that at shorter length scales, the behavior changes. To be precise, a pertur-

bative treatment of GR, also known as the post Newtonian (PN) formalism,10–16

reveals that a series of shorter (than inverse squared) ranged velocity dependent

forces can have a prominent effect on the dynamics of two objects trapped in their

mutual gravitational field (like the Sun and Mercury system). Hence, the universal-

ity of Newtonian gravity stops being universal when one goes beyond the Newtonian

bubble, broadly speaking.

However, an uncomfortable question pops up when one considers the PN forces

of GR, and keeps on continuing the PN series to shorter and shorter length scales.

Or when one considers the collapse of a self-gravitating mass of fluid at the extreme

scenario. At every point along the collapse, the gravitational force, including the

PN forces, are attractive in nature. Hence, if the fermionic pressure, or the force

that makes matter solid, is unable to balance the increasingly powerful (but shorter

ranged) forces of gravity, a singularity may occur. This is because in the tug of war

of all the forces present in one or multiple gravitating systems, gravity seems to win
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in some extreme conditions. Such conditions can occur in ultra dense self gravitating

systems like the end stages of a star collapsing under its own gravity. If there is no

other force that can stop the unyielding pull of gravity, matter eventually collapses

fully in on itself. But long before such a full collapse, or singularity, can happen,

a special surface forms around the eventual singularity. Such a surface is known

as the event horizon, or the surface the forms the termination of all events in the

Universe that lies outside of the surface. Here event refers to the special relativistic

notation of space-time events, which are, in the sense of mathematical modelling,

points in a four dimensional object known as the manifold, which in turn refers to

the complete past, present, and future of the Universe that is being modelled.

However, the universality of attraction of gravity may not be the case when

one goes beyond the Einstein-Hilbert (EH) action, referred to as GR in literature.

In order to demonstrate that, a quadratic deviation to the EH action is consid-

ered, which is a subclass of post-Einsteinian theories known as f (R) theories of

gravity.17, 18 Such theories are characterized by an extra massive scalar degree of

freedom,19–21 in addition to the two massless tensor degrees of freedom.

A PN treatment of the densitized field equations of a quadratic extension to GR

will be performed in this study that resembles the Landau-Lifshitz formulation of

GR. It will be shown that the equations of motion have a rather good limit to GR

(almost indistinguishable in fact), and only deviates from the predictions of GR at

very high energy scales (where energy scales refer to really large velocities and very

high spatial curvatures combined).

Geometrized units, c = G = 1 will be used in this study unless explicitly

mentioned otherwise. The notations of22 will be followed except a few changes in

variable and index labeling. The mostly minus sign convention will be followed for

the metric, that is (+,−,−,−).

2. Layout

2.1. The densitized formulation of GR

The gothic metric/Landau-Lifshitz/densitized formulation of GR may be motivated

from a particular observation regarding the structure of the second-most condensed

form of the Einstein field equations in its covariant form (or the canonical form),

that is

Rμν − 1

2
gμν R ∝ Tμν (1)

where the first tensor quantity on the LHS of the above is the Ricci tensor, and

the scalar multiplied to the metric tensor in the second term of the LHS is the

contraction of the Ricci tensor with the metric, known as the Ricci scalar. The

RHS is the classical matter energy-momentum-stress density tensor, which contains

certain information (although non-exhaustive) about the content that is separate

from the space-time. One notices that the net content of the RHS of (1) is essentially

a trace reversed form of the Ricci tensor. Trace reversal implies that the trace of
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the new tensor that was introduced in the beginning of the 20th century has a trace

that is negative of the trace of the Ricci tensor, and is known as the Einstein tensor,

which leads to the most condensed form of the field equations of GR, or

Gμν ∝ Tμν (2)

where all components of the tensor Gμν has a one-to-one relationship with all of the

corresponding components of the matter energy-momentum-stress density tensor.

However, the cost of condensation is the loss of information and usability. As it

is, Eq. (2) does not tell one about how planets and stars move and how GWs are

radiated. To be able to predict such phenomenon mathematically, one needs to

‘dirty their hands’.

In classical GR, Tμν can contain fluids (serving as a model for stars, dust, etc.),

or it can contain the energy-momentum-stress density equivalent of electromagnetic

fields and charges. The Ricci tensor/scalar are obtained from geometric principles

governing the nature of surfaces, volumes, and higher dimensional generalization;

which are in turn obtained by contracting the tensor quantity that serves as the

model for the space-time ‘fabric’a, or the Riemann tensor Rμσρν . The Riemann

tensor in GR is a function of the metric and its derivatives (till second). It has

certain symmetries that are given as follows

Rμσ(νρ) = R(μσ)νρ = 0 (3)

Rμ[σνρ] = 0 (4)

Rμρνσ = Rνσμρ (5)

Rμρ[νσ;α] = 0. (6)

The first, third of the identities, that is Eqs. (3) and (5), are called skew and inter-

change symmetries respectively. Whereas Eqs. (4) and (6) are known as the first and

second Bianchi identities respectively. The second Bianchi identity is particularly

useful since it leads to the following identity on the Einstein tensor Gμν

∇μGμν = 0, (7)

where ∇μ ≡ gμρ∇ρ is the index-raised covariant derivative associated with the

metric gαβ. The above, combined with the proportionality condition (2), lead to

the following

∇μ Tμν = 0 (8)

which is a covariant conservation law on the classical matter (or electromagnetic

fields) energy-momentum-stress density tensor, and using which equation of motion

of classical matter itself can be deduced. Hence the famous saying by J.A. Wheeler

aAlthough the term fabric is used, it is put under quotation to differentiate from an actual material
object, which is something that the physics community thought of as ‘Aether’ before the famous
Michelson-Morley experiment. In conventional notion, material or fabric can be torn or broken;
however, a similar ‘tearing’ of space-time is something that does not seem to happen. Hence one
must take the concept of ‘fabric’ with a pinch of salt.
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about Eq. (2): Spacetime tells matter how move; matter tells spacetime how to curve,

is incomplete without throwing in Eq. (8) into the fold.

With the above motivations one can define a new tensor given by23–25

gμν =
√−g gμν (9)

which utilizes the contravariant metric, or the ‘dual’ of the covariant metric, whose

components actually define the space-time structure. Now the point of taking the

dual is to simplify the equations that need to be solved, by replacing the problem at

hand with another problem which relates to the original problem via transformation

and/or reparametrizations. One also notices the presence of the determinant of the

metric tensor through
√−g multiplying gμν . Under the transformation (9), Eq. (1)

or (2) can be framed as a slightly less condensed (but more useful) form given as

follows
1

2 (−g)
∂αβH

μανβ − 8 π tμνLL = 8 π T μνm (10)

Hμανβ = gαβgμν − gανgβμ (11)

16 π (−g) tαβLL = ∂αg
μν∂βg

αβ − 1
4g
αβgγζgθιg

μν∂αg
γθ∂βg

ζι

+ 1
2gγζgθιg

μαgνβ∂αg
γθ∂βg

ζι + 1
8g
αβgγζgθιg

μν∂αg
γζ∂βg

θι

− 1
4gγζgθιg

μαgνβ∂αg
γζ∂βg

θι − ∂αgμα∂βgνβ + gαβgγζ∂αg
μγ∂βg

νζ

+ 1
2gαβg

μν∂γg
βζ∂ζg

αγ − gβγg
να∂αg

γζ∂ζg
μβ − gβγg

μα∂αg
γζ∂ζg

νβ .

(12)

The definition of the Landau-Lifshitz pseudo-tensor tμνLL deviates slightly from the

usual definition found in literature since all the metrics that are used to raise or

lower the indices have been transformed into the gothic metric. The covariant gothic

metric is defined as

gμν =
gμν√−g . (13)

One notices that the rank 4 tensor Hμανβ has the same symmetries as the Riemann

tensor, and is proportional to the Riemann tensor corresponding to the maximally

symmetric Riemann tensor. The maximally symmetric Riemann tensor is a solu-

tion of the field equations of GR when the space-time is homogeneous and isotropic

everywhere. Deviation from such a space-time with the maximum number of sym-

metries is marked by the appearance of a coordinate or a gauge dependent tensor (or

a pseudo-tensor) tμνLL, also known as the Landau-Lifshitz energy-momentum-stress

density pseudo-tensor. tμνLL is a quantification of the energy, momentum, and stress

that is inherent in the space-time, and leads to a solutions that are less symmetric

than the completely homogeneous and isotropic space-time one started off with.

Such solutions are perturbative in nature and formed the early basis for the Post-

Newtonian formalism in GR.10–16 The perturbation is defined about the Minkowski

space-time as

hμν = ημν − gμν . (14)
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The above tensor is projected on a Cartesian coordinate frame of a freely falling

observer by choosing the following gauge condition

∂μ h
μν = 0 (15)

which not only simplifies the field equations but also puts it in a form that offers a

more intimate insight into the nature of space-time and its relationship to classical

matter. They are given by the following

�hμν = −16 πΛμν (16)

Λμν = Θμν + ∂αβχ
μναβ (17)

Θμν = (−g) (T μν + tμνLL − tμνH ) (18)

χμναβ =
1

16 π

(
hαν hβμ − hαβ hμν

)
(19)

where a proportionality constant of 16 π has now been used, which is the case when

one uses geometrized units (G = c = 1). The rank 4 tensor χμανβ with Riemann

symmetry, being a total derivative term, can be turned into a boundary term using

Gauss’s law, and can be discarded as the source of the wave equation (16) when a

particular choice of the Green’s function is made for the flat-space Laplacian/wave

operator �. One immediately notices that the dynamical variable now follows the

well studied massless wave equation, which has standard solutions. It is also to be

noted that if one chooses the effective energy-momentum-stress density tensor to

be the sum of both the matter and the pseudo part, the dynamical variable has a

one-to-one relationship with the matter density. The Landau-Lifshitz or the gothic

metric formalism is hence often called as the densitized formalism, as it allows

the introduction of a variable that can be taken as the space-time density itself, in

contrast to the regular metric tensor which has a very complicated relationship with

the energy-momentum-stress density tensor. The covariant conservation identity in

Eq. (8) in this ‘reduced’ formalism, when added to the Landau-Lifshitz pseudo-

tensor, along with the harmonic gauge condition (15), reduces to the following

∂ν Λμν = 0. (20)

Now to come back to the motivation for mentioning trace-reversal at the begin-

ning of the section; one may choose to study perturbative GR by simply linearizing

the metric tensor about the Minkowski space-time itself, that is

gμν = ημν − hμν (21)

At the linear order the gothic metric perturbation and the metric perturbation are

related as follows (using Jacobi’s identity)

hμν = hμν − 1

2
ημν h (22)

h = −h (23)
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where h and h are the trace of the metric perturbation and the gothic metric pertur-

bation respectively. Eq. (22) is used as a standard textbook solution for modeling

the propagation of gravitational waves in empty space-times. Multiplying
√−g to

the dual of the metric tensor is also similar to the multiplication of the same factor

to the Ricci scalar (other than making the volume element covariant) to make the

Einstein-Hilbert Lagrangian density, which has the same dimensions as any other

matter Lagrangian density which may appear at the action level along with the

Einstein-Hilbert Lagrangian density, that is

S =

∫
M

√−g d4x
(

R

16 π
+ Lmatter + Lelectromagnetism + ...

)
(24)

2.2. The densitized formulation of f (R) theories of gravity

Like any other field theory, the class of theories known as f (R) theories of gravity

can be derived from the following action

S =

∫
M

√−g d4x
(
f (R)

16 π
+ Lmatter + Lelectromagnetism + ...

)
(25)

However, in the current study for simplicity, we will not be including electromagnetic

fields or any other ‘exotic’ fields. The field equations can be derived by varying the

action with respect to the metric, and its higher derivatives, and by enforcing all

variations vanish at the boundaries of the integration, which is well suited to study

the classical problem at hand. The field equations so obtained are as follows21

f ′ (R) Rμν − 1

2
f (R) gμν − [∇μ∇ν − gμν �] f ′ (R) = 8 π Tμν (26)

f ′ (R) =
df (R)

dR
(27)

where ∇μ, as usual, is the covariant derivative associated with the metric gμν . The

above field equations can be written in two different forms (if one intends to use

the machinery of GR): one modifies the Newtonian constant (which has been put to

unity in the current study), and the other preserves it. The former is written as21

Gμν =
8 π

f ′
(
Tμν + T effμν

)
(28)

T effμν ≡
1

2
(f − Rf ′) gμν + (∇μ∇ν − gμν �) f ′ (29)

where � ≡ gαβ ∇α∇β . The latter version has the following form

Gμν = 8 π Tμν + T̃ effμν (30)

T̃ effμν = (1 − f ′) Rμν +
1

2
(R − f) gμν + (∇μ∇ν − gμν �) f ′. (31)
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In this study, only the former, that is Eqs. (28)-(29) will be considered because of

convenience, and the extra terms are less in number. There is also another differ-

ential equation that is satisfied by the scalar function f ′, which is independent of

whatever form is chosen for the effective energy-momentum-stress density tensor,

and is obtained by taking the trace of either Eqs. (28) or (30). It’s given by

3 gμν ∇μ∇ν f ′ + f ′R − 2 f = 8 π T (32)

and can be regarded as the dynamics of some effective scalar field. The transition

of f ′ from an ‘effective’ to an actual scalar degree of freedom will be made clear in

a few paragraphs.

Before trying to obtain an equivalent of Eq. (10) one must be made aware of a

particular conformal property of f (R) theories of gravity, that is under a general

conformal transformation of the metric tensor

g̃μν = Ω2 gμν (33)

f (R) theories can be written as an Einstein + massive scalar system. The f (R)

action without matter, for example transforms as26–30

S =

∫
M

d4x
√−g

(
R̃

16 π
+

1

2
g̃μν φ,μ φ,ν − V (φ)

)
(34)

φ ≡
√

3

16 π
ln Ω (35)

V (φ) ≡ 1

16 π

f − Rf ′

(f ′)2
(36)

Ω ≡ f ′ (37)

Where R̃ is the Ricci scalar of the conformally transformed metric g̃μν . This confirms

the presence of an extra massive scalar degree of freedom in f (R) theories of gravity.

In the literature of f (R) and scalar-tensor theories of gravity, the ‘vanilla’ metric

gμν is known as the Jordan frame, whereas the conformally transformed metric g̃μν
is called the Einstein frame. From this motivation, one can define a new gothic

metric (in the Jordan frame) g̃μν given by

g̃μν = f ′ (R)
√−g gμν (38)

which frames the field equations (28) in the following form

∂αβH̃
αμβν = −16 π (−g) f ′ (R)

(
T μν + tμνeff + t̃μνLL

)
, (39)

16 π (−g) f ′ tμνeff =
√−g (f − Rf ′) g̃μν +

3

(f ′)2

(
g̃μα g̃νβ − 1

2
g̃μν g̃αβ

)

× ∂αf
′ ∂βf ′ (40)
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where H̃αμβν and t̃μνLL has the same form as that of Hαμβν and tμνLL, respectively,

but with g replaced by g̃. The newly appeared tensor tμνeff contains products of only

quadratic forms of first derivatives of f ′, as seen in Eq. (40). Owing to the conformal

transformation, all the double derivatives of f ′ in the tensor field equations cancel

away, making tμνeff a perfectly usable source for the perturbative post Newtonian

expansion. Curiously, the definition Eq. (38) appears as an identity of Palatini

formalism of f (R) theories of gravity as well, for example in Eq. (17) of.31

Now before a post Newtonian sequence of solutions can be found, one needs to

choose a particular form of the function f (R), which consequently fixes the form

of the function f ′ (R) as well, and can be taken for simplicity as

f (R) = R +
f ′′ (0)

2
R2 (41)

f ′ (R) = 1 + f ′′ (0) R (42)

where the coefficients of expansion f ′ (0) is taken to be unity to recover GR at the

R = 0 limit, and f ′′ (0) will be taken to be negative for the course of this article,

following.32–35 One defines a tensor field h̃μν , similar to Eq. (14), that propagates

on the Minkowski background. One can define that as follows

h̃μν = ημν − g̃μν . (43)

In order to obtain wave like equations of motion where the coordinate variable

functions comprising the coordinate 4-vectors follow the conditions

� xμ = 0, (44)

one must choose the following gauge/coordinate condition similar to Eq. (15)

∂μ h̃
μν = 0 (45)

which will be called as the conformal harmonic gauge. Now similar to the confor-

mally transformed new metric density g̃μν , one must also define a scalar variable

corresponding to a scalar density, say R, that follows a massive wave equation (to

model the dynamics of the massive scalar degree of freedom), and maintains the

(−g) relationship with the trace of the net energy-momentum-stress density tensor

Λ̃μν as well, as in Eq. (16). One may define that as follows

R =
√−g R. (46)

Substituting Eq. (43), (46), and (45) in the reduced field equations (39), one obtains

the following

�h̃μν = −16 π Λ̃μν (47)

Λ̃μν = (−g)

[
T μνm

(
1 − f ′′ R√−g

)
+ tμνLL + tμνH + tμνeff

]
. (48)
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tμνeff is comprised of various products of h̃μν , R, and first derivatives of h̃μν and R;

whose truncated form till the quadratic order of f ′′ (0) is given as follows

16 π (−g) tμνeff =
f ′′ R2

√−g ημν +
3 (f ′′)2

4 (−g)

[
2
(
ημα ηνβ + ημβ ηνα

− ημν ηαβ) R ∂αR ∂β h̃ +

(
ημα ηνβ − 1

2
ημν ηαβ

) (
4 ∂αR ∂βR + R2 ∂αh̃ ∂β h̃

)]

+ O

[(
f ′′√−g

)3
]

(49)

h̃ ≡ ημν h̃
μν (50)

with the following conservation law being satisfied by Λ̃μν

∂μ Λ̃μν = 0 , (51)

whereas the new scalar dynamical variable R satisfies the following, as obtained by

substituting Eq. (43), (46), and (45) in Eq. (32)

�R +
√−g γ2 R = −8 π (−g) γ2 Λ̃ (52)

γ2 ≡ − 1

3 f ′′ (0)
(53)

Λ̃ = Tm + f ′′ (0)

{
TmR

3
√−g +

1

8 π (−g)

(
R2

3
− ∂μR ∂μh̃ − 1

2
R ∂μh̃

αβ ∂μh̃αβ

− 1

4
R ∂μh̃ ∂

μh̃ − 1

2
R�h̃

)}
+ O

(
[f ′′ (0)]

2
)

(54)

(55)

Tm = ημν T
μν
m . (56)

Before moving on to finding the equations of motion of compact objects, and

to conclude this section one may take the LHS of Eq. (28) to be some modified

Einstein tensor Gμν , that is

Gμν ≡ f ′ (R) Rμν − 1

2
f (R) gμν − [∇μ∇ν − gμν �] f ′ (R) , (57)

it can be shown that32 the modified tensor Gμν satisfies the same covariant conser-

vation condition as the Einstein tensor Gμν , that is

∇μ Gμν = 0 (58)

which further implies

∇μ Tμν = 0. (59)

The above leads to the conclusion that the covariant conservation law holds for f (R)

theories of gravity in general, and may help in finding a more generalized second

Bianchi identity. However, from what is known in the literature (for example in32, 36)
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about the consequence of the covariant conservation law is a peculiar identity on

the function f ′ (R), given by

(�∇ν − ∇ν �) f ′ = Rμν ∇μ f ′ (60)

which is similar to the appearance of the Riemann curvature tensor due to covariant

derivative of a vector field not commuting, implying curvature or non-flatness of the

space-time. However, the above commuting relation is on a scalar field, implying

that some unconventional geometry might be at large here.

3. Equations of motion from the covariant conservation law

References 22 and 37 showed that it is possible to obtain the post Newtonian se-

quence of solutions for beyond the weak field scenario, that is when the post New-

tonian parameter squared ε2 is proportional to the compactness (or equivalently,

the potential at the surface of an ultra-compact object like Neutron stars and small

black holes being proportional to the kinetic energy of either bodies). To be precise,

in non-geometrized units when

ε2 ∼ GM

c2 a
(61)

where M and a are the total mass and radius of the compact object. In order that

strong surface gravity (post Minkowskian) can be incorporated within the post

Newtonian (relativistic) framework, a series of coordinate transformations can be

made that requires the integration of wave equations like (16) or (47) and (52) to be

performed in the so-called body-zone coordinate system, while not worrying about

the effects of strong internal gravity.

In order to maintain the compactness of the body to unity at all times, some

temporal+spatial scalings are made, with the temporal scaling defining a proper

time s (τ in37) given by

s = ε t (62)

where t is the coordinate time of the inertial observer. Under the above transfor-

mation, the Minkowski metric and the corresponding metric determinant scale as

follows

ημν = diag
(
ε−2, −1, −1, −1

)
(63)

− det (ημν) = ε−2 (64)

which is singular for ε → 0. The spatial scalings that are going to be used for the

integration in the body zone of Eq. (47) are given by

X i
L ≡

xi − ziL (s)

ε2
. (65)
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The scalings in Eq. (62) and (65) lead to any rank two tensor, or in our case, the

energy-momentum-stress density tensor, transforming as

T s sL = ε2 T t t ∼ O
(
ε−2
)

(66)

T s i
′

L = ε−1 T t iL ∼ O
(
ε−5
)

(67)

T i
′ j′
L = ε−4 T i jL ∼ O

(
ε−8
)
, (68)

with the un-primed coordinates representing the unscaled coordinates. Now the

above scalings, i.e. Eqs. (62)-(65), are made in a coordinate system that is stationary

with respect to the origin or the center of mass of the L− th compact body, denoted

by an external observer with the position 3-vector ziL (s), and the 3-velocity viL
defined as

viL =
d ziL (s)

ds
. (69)

Hence the next (and final) transformation requires the definition of a co-moving

frame (but not co-rotating, since boost and rotation in the wrong order may lead

to unnecessary Thomas precession), moving along an ultra compact object whose

spin can be ignored. The energy-momentum-stress density tensor of just the matter

content of the compact object transforms from an inertial frame to the near-zone

or the co-moving frame as follows

T s sL = T s sL (70)

T s iL = ε2T s i
′

L + viLT
s s
L (71)

T i jL = ε4T i
′ j′
L + 2ε2v

(i
L T

j′)s
L + viL v

j
LT

s s
L . (72)

Then at the leading order the post Newtonian solutions for both GR and f (R)

theories of gravity, as seen by the inertial observer, are given by

hs sB = 4 ε4
∑
L=1, 2

(
P sL
rL

+ ε2
Dk
L r

k
L

r3L

)
+ O

(
ε8
)

(73)

hs iB = 4 ε4
∑
L=1, 2

(
P iL
rL

+ ε2
Jk iL rkL
r3L

)
+ O

(
ε8
)

(74)

hi jB = 4 ε2
∑
L=1, 2

(
Zi jL
rL

+ ε2
Zk i jL rkL
r3L

)
+ O

(
ε6
)

(75)

In the current formalism, the above components of the tensor potential are sufficient

to obtain equations of motion of the two sources till the first PN order. The monopole

and dipole moments, respectively, of various components of Λμν (or Λ̃μν) are defined
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as follows

P sL = lim
ε→ 0

∫
BL

d3XL Λs s (76)

P iL = lim
ε→ 0

∫
BL

d3XL Λs i (77)

Zi jL = lim
ε→ 0

∫
BL

d3XL Λi j (78)

Di
L = lim

ε→ 0

∫
BL

d3XL Λs sX i
L (79)

J i jL = lim
ε→ 0

∫
BL

d3XL Λs iXj
L (80)

Zi j kL = lim
ε→ 0

∫
BL

d3XL Λi j Xk
L (81)

where BL implies the body zone/co-moving+scaled coordinate system of the L− th
body zone.

One defines a 4-momentum, by putting together the scalar in Eq. (76) and the

3-vector in Eq. (77), as22, 37–39

PμL (s) = ε2
∫

BL

d3XL Λsμ (82)

which along with the conservation law (20) or (51), leads to the following 4-force or

the 4-momentum evolution formula22, 37, 38

dPμL
ds

= −ε−4
∮
∂BL

dSk Λk μ + ε−4 vkL

∮
∂BL

dSk Λsμ. (83)

When one defines the bare quasi-local mass of the body zone L to be Eq. (76), the

3-momentum to 3-velocity relation is given at the leading order by

P iL = P sL v
i
L +QiL + O

(
ε2
)

(84)

QiL = ε−4
∮
∂BL

dSk
(
Λs k − vkL Λs s

)
X i
L. (85)

By choosing the origin of the coordinate system to be the center of mass of the

body zone L (which is a choice that has already been made), QiL can be shown to

vanish at the leading (Newtonian) order, that is O (1). Therefore, one obtains the

3-velocity evolution relation (or the 3-force on the body zone L) as

P sL
dviL
ds

= −ε−4
∮
∂BL

dSk Λk i + ε−4 vkL

∮
∂BL

dSk Λs i + ε−4 viL

(∮
∂BL

dSk Λk s

−vkL
∮
∂BL

dSk Λs s
)

+ O
(
ε2
)
. (86)
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All of the relations in this section (as mentioned along the way) holds both for GR

and f (R) theories of gravity, and can be utilized to obtain the 2-body equations of

motion of both theories, simply owing to the fact that the second Bianchi identity

(or its generalization) holds for both theories of gravity. In GR for example, the

equations of motion till 1 PN or O
(
ε2
)

of Eq. (86) for one of the bodies (say body

zone 1) is given by

M1
dvi1
ds

= −M1M2

r 2
1 2

ni + ε2
M1M2

r21 2

[(
−v21 − 2 v22 +

3

2
(n̂ · v2)

2
+ 4 (v1 · v2)

+
5M1

r1 2
+

4M2

r1 2

)
ni + {4 (n̂ · v1)− 3 (n̂ · v2)} (vi1 − vi2)

]
+ O

(
ε4
)
.

(87)

4. Post Newtonian sequence of solutions and equations of motion

for the quadratic deviation to the Einstein-Hilbert action

4.1. The curious case of the homogeneous solution

One may be tempted to immediately go for the particular solution of the differential

equation (52), that is by solving for the following inhomogeneous problem using the

retarded Green’s function Gγ

(
xμ, xμ

′
)

(
� +

√−g γ2) Gγ
(
xμ, xμ

′)
= δ

(
xμ − xμ

′)
. (88)

The support of the corresponding integral problem (that is the limit for xμ
′

in the

Green’s function integral) of the above lies in the past light-cone of the event xμ.

However, one must remember that the homogeneous solution of GR leads to the

BH solutions. Hence, one must also consider the homogeneous solution of the Klein-

Gordon equation, which must be solved simultaneously along with the homogeneous

solution of GR.

The homogeneous Klein-Gordon equation of the current theory under study,

under the transformation (62), has an ε dependence given as follows

�Rhom +
γ2

ε
Rhom = 0. (89)

While the radiative solutions of the above, under the choice of no-incoming scalar

radiation from past null infinity, can be put to zero, the time independent part

of the homogeneous solution cannot be ignored. The time independent differential

equation is given by

∇Rhom − γ2

ε
Rhom = 0 (90)
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where ∇ is the Laplace operator in Minkowski space-time. In spherical symmetry,

for example, the LHS of Eq. (90) is given by

1

r2

[
r2 (Rhom),r

]
,r
− γ2

ε
Rhom = 0 (91)

which has a solution which is both regular at r = 0 and r = ∞, and is given by

Rhom =
C e
−γ r√

ε

r
(92)

where C is a real constant of integration yet to be fixed. It is to be noted that the

homogeneous solution, which may be part of an extended homogeneous solution of

the combined scalar+tensor theory under study (like the Schwarzschild and Kerr

solutions of GR), for vanishing post Newtonian or post Minkowskian parameter ε,

leads to an infinite mass of the scalar field. Which also implies for low energies, the

Ricci scalar or the Ricci scalar density considered here is practically un-excitable.

However, it is interesting to look at the effect of R on the tensor wave equa-

tion (39), and how it modifies the Newtonian order solution, or more specifically,

the Newtonian potential. The time-time component of the conformally transformed

metric density deviation satisfies the flat-space wave equation with a source, follow-

ing Eq. (47)

�h̃t t = 16 π (−g) T t t (1 − ε f ′′R) (93)

where the leading order, or only the terms in Eq. (48) that are proportional to the

classical or matter energy-momentum-stress density tensor were used, along with

Eq. (64). The above can be solved by using the retarded Green’s function for the

massless wave operator, with h̃s s given by the body zone integral

h̃s s = 4 ε4
∑
L=1, 2

∫
BL

d3XL
T s s (1 − ε f ′′R)∣∣ZiL − ε2X i

L

∣∣ (94)

Eq. (64) and (66) was used to obtain the above from Eq. (93). The first integral,

and its ε expansion of the series is given in Eq. (73), and is the usual Newtonian

potential. However, a more curious thing occurs when one considers the extra term

coming due to the quadratic modification to the gravitational action

h̃s sextra = −4 ε5 f ′′
∑
L=1, 2

∫
BL

d3XL
T s sRhom∣∣ZiL − ε2X i

L

∣∣ . (95)

Considering now the particular form of the homogeneous Ricci density (92), one

obtains the following integral using the scaled coordinate (65)

h̃s sextra = −4 ε3 f ′′
∑
L=1, 2

CL

∫
BL

d3XL
T s s∣∣ZiL (s) − ε2X i

L

∣∣ ∣∣X i
L

∣∣ e−γ ε
3
2 |Xi

L| (96)
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which seems to preceed the order at which the gothic metric deviation first appears,

that is at O
(
ε3
)

compared to O
(
ε4
)
. However, expanding the extra term about

ε → 0 leads to the following

h̃s sextra = −4 ε3 f ′′
∑
L=1, 2

CL∣∣ZiL∣∣
∫

BL

d3XL
T s s∣∣X i
L

∣∣ (97)

h̃s sextra = −4 ε3 f ′′
∑
L=1, 2

CLNL∣∣X i
L

∣∣ (98)

which is a Newtonian potential like term with negative one multipole moment of

the source, denoted by NL. Therefore, the modified leading order metric deviation

h̃s s can be written in the following form

h̃s s = 4 ε4
∑
L=1, 2

[
P̃ sL∣∣ZiL∣∣ + O

(
ε2
)]

(99)

P̃ sL = P sL − lim
ε→ 0

f ′′ CL
ε

∫
BL

d3XL
T s s∣∣X i
L

∣∣ (100)

where P sL was defined in Eq. (76). It is important to note that while the integral

in the second term of the square bracket of the above has a well defined limit for

ε → 0, the coefficient multiplying it does not. In fact, due to the ε−1 nature of

the coefficient, the modified mass-energy definition blows up at the ε → 0 limit,

leading to the following conclusion

CL = 0, (101)

implying that the homogeneous Ricci scalar does not modify the tensor deviation

density at all.

4.2. Deviation from the general relativistic equations of motion

The leading order Ricci scalar density deviation occurs at O
(
ε4
)
, and is given by

the following

(4)Rpart ≡ (4)R = −8 π γ2 ε4
ML e

− γ |Zi
L|√
ε∣∣ZiL∣∣ (102)

whose form is the same as the now extinct homogeneous solution, but instead of the

unknown constant, there is just the mass coming as a parameter, as in the definition

of Eq. (76). The only unknown in the above equation is the inverse length scale γ,

which was related to the coefficient of the quadratic deviation of the GR action in

Eq. (53). Derivation of the above has been given in Appendix A.

In GR, the non-vanishing and body zone independent terms in the surface in-

tegrals of Eq. (86) lead to the 3-force at different PN orders, and has been well
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documented in PN literature, for example.40, 41 However, in this study only the

leading order modification to the general relativistic equations of motion due to

the quadratic deviation to the GR action will be quoted. Such a modification can

be found by using the modified conservation law (51) along with the definitions of

(83) and (86) with Λμν replaced by Λ̃μν . In Eq. (86), various components of the

modified net energy-momentum-stress density tensor Λ̃μν will appear as integrand

of the surface integrals. However, the components that have a non-vanishing and

body zone boundary radius independent contribution to the surface integrals of Eq.

(86), was found to be coming from the space-space component of tμνeff , or

ti jeff =
ε4

192 π γ4

[
2
(
ηi k ηj l + ηi l ηj k − ηi j ηk l

)
R ∂kR ∂lh̃

+

(
ηi k ηj l − 1

2
ηi j ηk l

) (
4 ∂kR ∂lR + R2 ∂kh̃ ∂lh̃

)]
(103)

where Eq. (64) was used to replace the metric determinant, or 1
(−g)2 multiplying

the quadratic f ′′ part of tμνeff in Eq. (49), which appear as ε4 above.

Eq. (103) has three different ε orders worth of terms inside the square bracket.

When one utilizes the scalings of the leading order deviation of either h̃ or R, one

notices that h̃ ∼ ε2 and R ∼ ε4, following Eqs. (63), (73)-(75), and (102). From the

number of times either h̃ and R appear inside the square bracket in each product of

fields, the first term scale as ε10, the second as ε8, and the last one as ε12. Since the

overall factor of ε4 cancels away due to ε−4 multiplying each surface integral of Eq.

(86), the three terms inside the square brackets of Eq. (103) are 5th, 4th, and 6th

PN effects on the two body equations of motion. However, not all of them survive

the surface integral. Only the last term in the square bracket survives and is a 6th

PN effect with the modification to the 3-force on the Lth body given as follows

ML
dviL
ds

= F iN+PN,GR − ε12
32 πMLM

3
L′

9 r41 2

e
− 2 γ r1 2√

ε ni (104)

where ML is the quasi-local mass enclosed by the Lth body zone boundary, and

ML′ is the quasi-local mass enclosed by the partner object’s body zone boundary

in the two-body system. r1 2 is the distance between the origin of the two body

zones, whereas ni is a unit vector pointing from the origin of body zone L to the

origin of body zone L′. The negative sign on the modified/extra force imply that the

direction of the force is antiparallel to ni, which is then a repulsive modification to

the usual attractive Newtonian and PN forces indicated by the first term in the RHS

of the above, that is F iN+PN,GR. Compared to other works in literature on f (R)

theories that calculate the conserved potential (or the force) from modifications to

the time-time component of the metric tensor, the above has an inverse quartic

distance falloff (along with the Yukawa exponential falloff) at 6 PN order, which is
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an extremely tiny modification to the general relativistic PN equations of motion

at the very high energy scales of ultra-compact two-body interactions.

5. Discussions and conclusion

In the current study a particular redefinition of the standard gothic metric was

utilized to drastically simplify the field equations of general f (R) theories of gravity.

Once the identification was made that f ′ (R) acts like a massive scalar field, a fourth

order system was reduced to two second order system of differential equations. The

field equations were framed in the densitized approach following the methods of

Landau and Lifshitz, and their redefinition of the field equations of GR. The use of

conformal densities to define Landau-Lifshitz like field equations were used in scalar-

tensor theories, for example in.42, 43 In this study, it is shown that the redefinition

to a conformal density greatly suppresses the actual effect of an extra massive scalar

degree of freedom on orbital dynamics.

Following the definition of a tensor density, a scalar density R, corresponding to

the massive scalar degree of freedom was defined, which relates to the trace of the

energy-momentum-stress density tensor in the same manner as the conformal metric

tensor density relates to the energy-momentum-stress density tensor in the Landau-

Lifshitz like tensor field equations of f (R) theories. The differential equation that

is satisfied by R throws up a static solution that makes the mass-energy definition

at the Newtonian/leading order diverge, leading to its removal from further usage.

At the leading order, the particular/inhomogeneous R is seen to be static as well,

and has the Yukawa potential form with a cutoff/inverse length scale that is related

to the coefficient of the quadratic modification (with (length)
2

dimensions) to the

Einstein-Hilbert action.

However, just finding out the particular form of the leading order deviation

of R is quite useless, unless one finds its corresponding effect on the conformal

tensor density field equations, and then, on the PN equations of motion. The lead-

ing order R appears as an effective source tensor that drives the behavior of h̃μν ,

as well as the evolutionary dynamics of the quasi-local four-momentum (83), and

correspondingly, the velocity evolution equations (86) through surface integrals of

various components of the energy-momentum-stress density tensor. It was found in

Eq. (104) that the modification to the GR PN equations of motion, due to quadratic

modification at the action level, appear at the sixth PN order. On top of that, the

force has an inverse fourth powered dependence on the distance along with a Yukawa

falloff, which is a very tiny modification to GR equations of motion. The modified

force is dependent on the masses enclosed by the body zone boundaries, and the

modification to the equations of motion of one of the objects is independent of the

mass enclosed in that object’s body zone boundary - implying that the equivalence

principle (as far as it holds in the GR PN scheme) is not affected by the quadratic
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modification to GR. The modified force is also conservative, and hence will not be

adding to any extra dissipation (other than GR) of the orbital energy of the binary

system, although it might lead to very tiny modifications to the phase evolution of

the binary, as encoded in the gravitational waves. More importantly, the force is re-

pulsive, compared to the PN forces that appear on perturbing GR about Minkowski

space-times. So in the course of the binary evolution, at length scales comparable

to γ−1, if the two objects have not merged into a single object already, they will feel

a repulsive force that will compete with the attractive GR PN forces coming out

of the superpotentials of the PN expansion of GR, which are themselves progres-

sively short ranged. Putting a constraint on the new length scale γ−1 is beyond the

scope of this study, mostly because the author is not aware of sixth PN equations

of motion appearing in the literature.

Appendix A

The net solution to the Klein-Gordon problem (52) with the boundary condition

choice of no incoming scalar radiation from past null Minkowskian infinity is given

as follows

R (xμ) = −8 π γ2 ε−2
∫

d4y Gγ̃ (xμ, yμ) Tm (yμ) (A.1)

γ̃2 ≡ γ2

ε
(A.2)

where the factor of ε−2 arises because the metric determinant (−g) multiplying the

RHS of Eq. (52), under the transformation (62), scale as ε−2, as seen after Eq. (63).

Gγ̃ (xμ, yμ) is the retarded Green’s function of the Klein-Gordon equation, as was

given in32 with the (+ , − , − , −) metric signature as

Gγ̃
(
t, q; xi, yi

)
=

∫ −γ̃,∞
−∞, γ̃

dω

2 π
e−i ω(t−q)

ei
√
ω2−γ̃2 |xi−yi|

4 π |xi − yi|

+

∫ γ̃

−γ̃

dω

2 π
e−i ω (t−q) e

−
√
γ̃2−ω2 |xi−yi|

4 π |xi − yi| . (A.3)

The notation
∫ −γ̃,∞
−∞, γ̃ involve two integrals, one from −∞ to −γ̃, and the other from

γ̃ to ∞. It is to be noted that the three integrals whose domains encompass all

of ω space must be evaluated simultaneously in order for the solution to converge.

Tm
(
q, yi

)
, the trace of the classical matter energy-momentum tensor, which being

a scalar, does not transform under any of the coordinate scalings.

Due to the the coordinate scalings in Eq. (65), the infinitesimal 4-volume element

d4y transform from the asymptotic observer’s frame to either of the body zones BL

in the following manner

d4y ≡ dt ∧ d3y (A.4)

→ ε−1 ds ∧ ε6 d3XL (A.5)
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where ∧ denotes the wedge product between 1-form dt and 3-form d3y. In the

current operational context ∧ is effectively scalar multiplication.

Substituting Eq. (A.3) in Eq. (A.1), and transforming into the body zone coor-

dinates by substituting Eq. (A.5) as the infinitesimal covariant volume element in

Eq. (A.1), one obtains the following integral for the particular solution Rpart for

the inhomogeneous Klein-Gordon equation

Rpart

(
t, xi

)
= −ε3 8 π γ2

∫ ∞
−∞

ds′
∫

BL

d3XL

∫ −γ̃,∞
−∞, γ̃

dω

2 π
e−i ω (t−s′/ε)

× ei
√
ω2−γ̃2 |Zi

L−ε2Xi
L|

4 π
∣∣ZiL − ε2X i

L

∣∣
[
ε4 Tm

(
s′/ε, X i

L

)]

− ε3 8 π γ2
∫ ∞
−∞

ds′
∫

BL

d3XL

∫ γ̃

−γ̃

dω

2 π
e−i ω (t−s′/ε)

× e−
√
γ̃2−ω2 |Zi

L−ε2Xi
L|

4 π
∣∣ZiL − ε2X i

L

∣∣
[
ε4 Tm

(
s′/ε, X i

L

)]
. (A.6)

In the body zones that surround each of the objects, the energy-momentum

tensor of classical matter
(
TBL = lim

ε→ 0
ε4 Tm

)
will be assumed to have a quasi-

stationary/adiabatic initial condition for solving the relaxed system of equations,

in the absence of any other time dependent driving force inside the compact object,

and is given by

TBL

(
X i
)

=

∞∑
n=−∞

Tn
(∣∣X i

L

∣∣ , Xθ
L

)
ei nX (A.7)

X
(
s/ε, Xφ

L

)
≡ X = Xφ

L − Ω s/ε + φ0 (A.8)

where an axial+time symmetry was assumed for the initial condition, such that the

time dependence of the source body in the body zone coordinate system repeats

after every T = 2π
Ω , with a constant phase parameter φ0. The weighing factors Tn

are coefficients in the series expansion of the trace Tm (or TBL ) using stationary

functions ei nX , and are functions of the radial and azimuthal coordinates. Eq. (A.7)

physically implies that the variations in the energy-momentum tensor sourcing R

in the body zone of the first object is purely generated by the effect of the motion of

the second object around it. The body zone coordinates
(
X i
L

)
were defined in Eq.

(65), in which
∣∣X i

L

∣∣ is the distance from the center of mass of the body L to any

point in the body zone coordinates, as viewed in the respective body zones. The

choice in Eq. (A.7) has a simplifying effect on the subsequent calculations and is

justified by the adiabatic and stationarity in the co-moving frame approximations,

as found in the literature on PN expansions.
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Assuming quasi-periodicity for the source tensor, as in Eq. (A.7), one can sub-

stitute it into Eq. (A.6), to obtain

Rpart

(
t, xi

)
= −ε3 8 π γ2

2 π

∞∑
n=−∞

∫
BL

d3XL

(∫ −γ̃,∞
−∞, γ̃

dω e−i ω t
)
ei n (Xφ

L+φ0)

× ei
√
ω2−γ̃2 |Zi

L−ε2Xi
L|

4 π
∣∣ZiL − ε2X i

L

∣∣ Tn
(∣∣X i

L

∣∣ , Xθ
L

) ∫ ∞
−∞

ds′ ei (ω−nΩ) s′/ε

− ε3 8 π γ2

2 π

∞∑
n=−∞

∫
BL

d3XL

(∫ γ̃

−γ̃
dω e−i ω t

)
ei n (Xφ

L+φ0)

× e−
√
γ̃2−ω2 |Zi

L−ε2Xi
L|

4 π
∣∣ZiL − ε2X i

L

∣∣ Tn
(∣∣X i

L

∣∣ , Xθ
L

) ∫ ∞
−∞

ds′ ei (ω−nΩ) s′/ε.

(A.9)

Transforming

s′ → ε s (A.10)

and using the integral representation of the delta function,∫ ∞
−∞

ei k (x−x′) dk = 2 π δ (x− x′) , (A.11)

one obtains

Rpart

(
t, xi

)
= −ε4 8 π γ2

∞∑
n=−∞

∫
BL

d3XL
ei
√
n2 Ω2−γ̃2 |Zi

L−ε2Xi
L|

4 π
∣∣ZiL − ε2X i

L

∣∣
× Tn

(∣∣X i
L

∣∣ , Xθ
L

) × e−i n (Ω t−Xφ
L−φ0) (A.12)

−ε4 8 π γ2
∞∑

n=−∞

∫
BL

d3XL
e−
√
γ̃2−n2 Ω2 |Zi

L−ε2Xi
L|

4 π
∣∣ZiL − ε2X i

L

∣∣
× Tn

(∣∣X i
L

∣∣ , Xθ
L

)
e−i n (Ω t−Xφ

L −φ0). (A.13)

The Green’s function (A.3) can be written as an infinite sum of spherical har-

monic functions, that are weighed by functions of the radial coordinates
∣∣ZiL∣∣ and∣∣X i

L

∣∣, in the following way for
∣∣ZiL∣∣ > ∣∣X i

L

∣∣
ei k |Xi −Zi|

4 π |X i − Zi| = i k
∑
�,m

j�
(
k
∣∣X i
∣∣) h(1)� (

k
∣∣Zi∣∣) Y ∗�m (Xθ, Xφ

)
Y�m

(
Zθ, Zφ

)

(A.14)

e− k |Xi−Zi|
4 π |X i − Zi| =

∑
�,m

I�+ 1
2

(
k
∣∣X i
∣∣) K�+ 1

2

(
k
∣∣Zi∣∣)√|X i| |Zi| Y ∗�m

(
Xθ, Xφ

)
Y�m

(
Zθ, Zφ

)

ZiL ≡
xi − ziL (s)

ε2
; L = 1, 2. (A.15)
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The various functions appearing above are as follows

• j�: Spherical Bessel function of first kind.

• h(1)� : Spherical Bessel function of third kind.

• I�+ 1
2
: Modified Bessel function of the first kind.

• K�+ 1
2
: Modified Bessel function of the second kind.

• Y�m, Y ∗�m: Spherical harmonic functions and their complex conjugates.

After using Eqs. (A.14) and (A.15) in the above, one obtains for
∣∣ZiL∣∣ > ∣∣X i

L

∣∣

Rpart

(
t, xi

)
= −ε4 8 π i γ2

|n|> 
 γ̃
Ω�∑

n, �,m

√
n2 Ω2 − γ̃2

∫
BL

d3XL e
i n (Xφ

L+φ0−Ω t)

× j�

(
ε2
√
n2 Ω2 − γ̃2 ∣∣X i

L

∣∣) h(1)�
(√

n2 Ω2 − γ̃2 ∣∣Zi∣∣)

× Y ∗�m
(
Xθ
L, X

φ
L

)
Y�m

(
Zθ, Zφ

)
Tn
(∣∣X i

L

∣∣ , Xθ
L

)

− ε3 8 π γ2
|n|< 
 γ̃

Ω�∑
n, �,m

∫
BL

d3XL e
i n (Xφ

L+φ0−Ω t)

×
I�+ 1

2

(
ε2
√
γ̃2 − n2 Ω2

∣∣X i
L

∣∣)
√∣∣X i

L

∣∣
K�+ 1

2

(√
γ̃2 − n2 Ω2

∣∣Zi∣∣)√|Zi|
× Y ∗�m

(
Xθ
L, X

φ
L

)
Y�m

(
Zθ, Zφ

)
Tn
(∣∣X i

L

∣∣ , Xθ
L

)
(A.16)

one can substitute the following properties of spherical harmonic functions in Eq.

(A.16)

Y ∗�m = (−1)
m
Y�−m (A.17)

Y�−m = N�−m P�−m
(
cos Xθ

L

)
e−imXφ

(A.18)∫ 2π

0

dXφ
L Y
∗
�m e

i nXφ

= 2 π (−1)
m
N�−m P�−m

(
Xθ
L

)
δmn

(A.19)

N�m = (−1)
m

√
(2 � + 1)

4 π

(� − m)!

(� + m)!
(A.20)

where P�m
(
Xθ
L

)
are the associated Legendre polynomials and δmn is the Kronecker

delta distribution. Since m takes values between −� to �, application of the Kro-

necker delta leads to the summation on � in the first term of Eq. (A.16) going from

the lower integral part of γ̃
Ω or

⌊
γ̃
Ω

⌋
to ∞, whereas the second terms’ summation

range takes � from zero to
⌊
γ̃
Ω

⌋
. The contributions to the particular solution from

above the cutoff energy scale γ̃ is highly suppressed (especially at lower PN orders)

because of the properties of j� and h
(1)
� for asymptotically large values of �, and
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terms in R series containing the same can be approximated to zero at the current

orders of calculation. Hence one can safely set the first summation in RHS of Eq.

(A.16) to zero and consider only the second summation. Hence it is to be noted that

the factors that depend on ε in the above are only in the arguments of the Bessel

function I�+ 1
2
.

Hence the only relevant factors that explicitly contain ε in both the sums in Eq.

(A.16), can be expanded about ε → 0 as follows

I�+ 1
2

(
ε2 Λ |XL|

) ≈ ε2 �+1 Λ
2 �+1

2

2�+
1
2 Γ
(
� + 3

2

) |XL|�+
1
2 . (A.21)

The approximation of (A.21), when substituted in for the relevant factors of the

RHS of Eq. (A.16), leads to the following polynomial series of ε about ε → 0

Rpart

(
t, xi

) ≈ −8 π γ2
�=∞∑
L, �,m

ε2 �+4

(
γ̃2 − m2 Ω2

) 2 �+1
4

2�+
1
2 γ̃
(
� + 3

2

)

× eim (φ0 −Ω t)
K�+ 1

2

(√
γ̃2 − m2 Ω2

∣∣ZiL∣∣
)

√∣∣ZiL∣∣
Y�m

(
ZθL, Z

φ
L

)

×ML �m (A.22)

ML �m = 2 π (−1)
m
N�−m

∫
BL

∣∣X i
L

∣∣2+� sin
(
Xθ
L

)

×P�−m
(
cosXθ

L

)
Tm

(∣∣X i
L

∣∣ , Xθ
L

)
d
∣∣X i

L

∣∣ dXθ
L. (A.23)

From Eq. (A.22), one can immediately notice that the leading order deviation for

the particular solution of the Ricci scalar for the Lth body zone comes at O
(
ε4
)

for

� = 0 with ML 0 0 ≡ ML being the mass monopole, and was found to be

(4)Rpart ≡ (4)R = −8 π γ2 ε4
ML e

−γ |Zi
L|√
ε∣∣ZiL∣∣ . (A.24)
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