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Figure 1. Leading contributions to K0 - K̄0 mixing.

1 Introduction

The Kaon bag parameter B̂K [1] is one of the key quantities in helping us understand the
neutral Kaon mixing as it enters a dominant contribution to indirect CP violation in the
Kaon system ϵK . Precise determination of B̂K allows us to constrain the CKM matrix and
probe physics beyond the Standard Model, with [2–5]

|ϵK | = κϵCϵB̂K |Vcb|2λ2η̄ ×
(
|Vcb|2(1− ρ̄)ηttStt(xt)− ηutSut(xc, xt)

)
. (1.1)

Here Stt(xt) and Sut(xc, xt), with xc,t = m2
c,t/M

2
W , are the leading-order weak-scale short

distance contributions, due to the diagrams in figure 1. mc and mt are the charm and top
quark masses and MW is the W boson mass. ηtt and ηut comprise perturbative QCD and QED
corrections to the aforementioned diagrams [6–10], including the integration out of the bottom
and charm quarks, as well as physics at intermediate scales. Together with the short distance
contributions they give a scale- and scheme-independent combination. κϵ = 0.94(2)(1 + δmc)
denote subdominant corrections [4] not included in B̂K , where δmc = 0.010(3) incorporates
an extended analysis of power corrections [11]. Vcb, λ, ρ̄ and η̄ represent the CKM inputs.
The remaining parametric input is collected in Cϵ = (G2

FF
2
KMKM

2
W )/(6

√
2π2∆MK), where

GF is the Fermi constant, FK the Kaon decay constant, MK is the Kaon mass and ∆MK

is the Kaon mass difference. Experimentally, ϵK has been precisely measured as |ϵK |exp =
(2.228± 0.011)× 10−3 [12]. As for the theory prediction, the perturbative, non-perturbative
and parametric uncertainties were found to be at around 3%, 3.5% and 7% respectively [2].

The remaining ingredient, the renormalization-scale and scheme-independent bag factor
is a non-perturbative object and can be defined as

B̂
(f=3)
K = lim

µ→∞
BA

K(µ)αs(µ)−2/9, (1.2)

where αs is the strong coupling and f is the number of flavours. A denotes an arbitrary
scheme, and µ represents an arbitrary renormalization scale. Here

BA
K(µ) = ⟨K̄0|QA(µ)|K0⟩

8
3F

2
KM

2
K

, (1.3)

where ⟨K̄0|QA(µ)|K0⟩ is the matrix element of a unique dimension-six ∆S = ∆D = 2
operator,

Q =
(
sα

Lγµd
α
L

)(
sβ

Lγ
µdβ

L

)
, (1.4)

renormalized in the scheme A and at the scale µ. To any given order in perturbation
theory, one has

B̂K = CA→RGI
BK

(µ)BA
K(µ) , (1.5)
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with a conversion coefficient CA→RGI
BK

(µ) = αs(µ)−2/9 (1 +O(αs(µ))), where RGI stands for
the renormalization-group-invariant bag parameter, which is here defined for three active
flavours. One can also write a formula for ϵK that avoids the perturbative treatment of
the charm scale, which then involves additional nonlocal non-perturbative contributions
together with a 4-flavour version of B̂K .

The current status of B̂K is summarized by the average of B̂K = 0.7533(91) [13], based
on a variety of Lattice calculations with 2+1 active flavours. These calculations use different
intermediate schemes for the evaluation of the matrix elements, which have to be transformed
to the RGI bag parameter.

The objective of the present paper is to provide a result for B̂K to next-to-next-to leading
order (NNLO) accuracy, comprising all available f = 3 and f = 4 lattice calculations of BK . To
this end, we compute the two-loop conversion factor C(S)MOM→MS

BK
between the regularization

invariant (symmetric) momentum-space subtraction (RI-(S)MOM) schemes [14, 15], which
can be implemented on the lattice, and the modified minimal subtraction (MS) scheme. These
conversion factors can then be combined with existing computations for the matching across
the charm threshold [7] and for the conversion from the MS scheme to RGI bag parameter,
to provide the desired result. We will present the average both in the form of a 3-flavour
version B̂

(f=3)
K , which can be directly used in eq. (1.1), and a 4-flavour version B̂

(f=4)
K which

may be useful for future phenomenological applications where the charm quark is treated
non-perturbatively. We stress that each result comprises all 3- and 4-flavour lattice inputs.

The remainder of this work is organized as follows. In section 2 we review the momentum-
space subtraction and MS schemes for operator renormalization. In sections 3 and 4 we
describe the calculation of the amplitude of an amputated four-point Green’s function, first
focusing on the overall set-up of the matching calculation, followed by a detailed discussion
of the loop calculation and renormalization of the amplitude. Finally, in section 5 we present
our results, including the NNLO conversion factors, their residual scale dependence, world
averages for B̂K , and an updated prediction for ϵK value. We also provide an RGI parameter
for D-meson mixing.

2 Operator renormalization and matching between schemes

In this section we review the renormalization of four-quark operators in RI-(S)MOM and
MS schemes. We also discuss the matching between the two schemes. For a comprehensive
introduction to the treatment of four-quark operators we refer to [5, 16] and references therein.

2.1 Momentum-space subtraction schemes

The regularization-invariant (RI) schemes are defined by imposing renormalization conditions
on certain Lorentz- and colour-invariant linear combinations (“projections”) of two-point and
four-point functions for certain off-shell kinematics. Several variants of the RI schemes exist
in the literature, which differ by the kinematics for the renormalization conditions and the
choice of projectons used for the two-point and four-point functions. In this work, we are
concerned with particular variants of the RI schemes known as the RI-(S)MOM schemes.

– 3 –
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Figure 2. The RI-SMOM momentum subtraction point for a four-quark operator is defined by
p2

1 = p2
2 = q2 = −µ2, while the RI-MOM momentum subtraction point fulfils p2

1 = p2
2 = −µ2 and

q2 = 0. The solid black lines with arrows indicate fermion and momentum flow, the dashed line with
arrow indicates momentum flow into the vertex.

To fix our notation, we write the connected fermion two-point function SA in the
following form

(2π)4iSA(p)αβδ
4(p− q)δij =

∫
d4xd4yei(p·x−q·y)⟨0|T{ψAi

α (x)ψ̄Aj
β (y)}|0⟩ , (2.1)

where ψ are the quark fields, i, j represent colour and α, β spinor indices. A labels the
renormalization scheme. From the two-point function we define two projected scalar two-
point amplitudes

σ(A,/q) ≡ 1
4 p2Tr

[
(SA)−1(p)/p

]
(2.2)

and
σ(A,γµ) ≡ 1

16Tr
[
γµ∂(SA)−1(p)

∂pµ

]
. (2.3)

For any choice of field and operator renormalization, we define the amputated four-point
function Λijkl

ρστν with an operator insertion Q as follows,∫
d4xd4x1,2,3,4e

−i(2q·x+p1·x1−p2·x2+p1·x3−p2·x4)⟨0|T{d̄j
β(x1)si

α(x2)d̄l
δ(x3)sk

γ(x4)Q(x)}|0⟩

= (2π)4S(p1)αρS(p2)βσS(p3)γτS(p4)δνΛijkl
ρστν(Q)δ4(2q − 2(p1 − p2)

)
, (2.4)

where we have specific quark fields s and d representing the strange and down quarks, and
have left the renormalization scheme implicit to avoid notational clutter. The corresponding
external momentum configuration is shown in figure 2.

We define projected four-point functions as

λ(A,X) ≡ ΛA,ijkl
αβγδ P

ijkl
(X),αβγδ ≡ P(X)(ΛA) , (2.5)

where X corresponds to the following two choices of projectors:

P ijkl
(γµ),αβγδ = (γν)βα(γν)δγ + (γνγ5)βα(γνγ

5)δγ

256Nc(Nc + 1) δijδkl, (2.6)

P ijkl
(/q),αβγδ =

(/q)βα(/q)δγ + (/qγ5)βα(/qγ5)δγ

64q2Nc(Nc + 1) δijδkl, (2.7)

where Nc is the number of colours, i, j, k, l are colour and α, β, γ, δ are spinor indices [17].
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The RI-MOM and RI-SMOM schemes are defined by imposing conditions on the projected
amplitudes at either of two momentum-space configurations (kinematics):

• MOM kinematics, where p2
1 = p2

2 = −µ2 and q2 ≡ (p1 − p2)2 = 0,

• SMOM kinematics, where p2
1 = p2

2 = q2 = −µ2.
The individual schemes are defined by imposing

RI-MOM: σ(RI−MOM,γµ) = 1, λ(RI−MOM,γµ) = 1 at MOM kinematics, (2.8)

RI′-MOM: σ(RI′−MOM,/q) = 1, λ(RI′−MOM,γµ) = 1 at MOM kinematics, (2.9)

RI-SMOM: σ(RI−SMOMXY,X) = 1, λ(RI−SMOMXY,Y) = 1 at SMOM kinematics, (2.10)

where X,Y = γµ, /q distinguishes four variants of the RI-SMOM scheme.

2.2 MS scheme

The MS schemes, within the context of dimensional regularisation, are constructed explicitly
out of the bare operators. In general, the renormalized operators QMS

i (ν) involve several
bare operators Qj , which would lead to a renormalization

QMS
i (ν) =

∑
j

Zij(ν)Qj , (2.11)

where Zij(ν) is a matrix of renormalization constants and ν is the MS renormalization scale.
In our case, we have only one physical bare operator Q and a single renormalization constant
ZQQ(ν). In dimensional regularization there are additional operators Ei, as a consequence of
the larger Dirac algebra in D ̸= 4 compared to D = 4. They can be chosen such that they
vanish at tree-level in D = 4 and are known as evanescent operators. For the four-quark
operator Q defined in eq. (1.4), we have

QMS(ν) = ZQQ(ν)Q+
∑

i

ZQEi(ν)Ei, (2.12)

here and in the following MS is the MS NDR scheme, where ‘NDR’ stands for naive dimensional
regularization and specifies anti-commuting γ5. ZQQ(ν) and ZQEi(ν) are renormalization
constants. The Z factors are defined such that the strong gauge coupling gs(ν) and the
matrix element ⟨QMS⟩ (for renormalized quark fields) have a finite limit ϵ → 0. The Z
factors are singular as ϵ → 0 and, for MS, are taken equal to the principal parts of their
Laurent expansions (i.e. containing only poles in ϵ). In addition, we define the quark field
renormalization Zq as

ψ = (Zq)1/2ψMS, (2.13)

where ψ denotes the bare field and ψMS is the renormalized field.
At loop level, evanescent operators Ei require renormalization just like the physical

operators
EMS

i (ν) = ZEiEj (ν)Ej + ZEiQ(ν)Q. (2.14)
While the ZEiEj (ν) can again be chosen to be the principal parts of their Laurent series, a
finite ZEiQ(ν) is generally required in order to have ⟨EMS

i ⟩ = 0 also at loop level. The EMS
i (ν)

renormalized in such a fashion give vanishing contributions to physical matrix elements.
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2.3 Scheme conversion

For any two renormalization schemes A and B, the operator Q and the quark field ψ are
related by a finite conversion factors CB→A

BK
and CB→A

q respectively, defined as

QA = CB→A
BK

QB , (2.15)
ψA = (CB→A

q )1/2ψB , (2.16)

which can be computed from the scalar two-point function σ and the scalar four-point
function λ in the two schemes.

For conversion between an RI-(S)MOM scheme and the MS scheme, the field conversion
factor is simply given by Cs→MS

q = σ(MS,s), where s = γµ or /q depending on the RI-(S)MOM
scheme. The operator conversion factors from RI-SMOM to MS are

C
(l,s)→MS
BK

= λ(MS,l)
(
σ(MS,s)

)2
, s, l ∈

{
/q, γµ

}
, (2.17)

where all λ and σ are evaluated for SMOM kinematics. For the RI-MOM and RI′-MOM
conversion to MS we have

C
RI(′)-MOM→MS
BK

= λ(MS,γµ)
(
σ(MS,m)

)2
, (2.18)

where m = /q or γµ for (respectively) RI′-MOM and RI-MOM, and λ and σ are evaluated
for MOM kinematics.

3 Matching calculation

In this section, we introduce a method to obtain the RI-(S)MOM projections of the four-point
amplitude. This method enables us to bypass tensor reduction at two-loop order by contracting
spinor indices in the beginning. Naively, traces over γ5 and more than three gamma matrices
lead to ambiguities, which we show how to circumvent, using appropriate projectors.

The section is organised as follows. In section 3.1 we examine the structure of Λ(tree).
In section 3.2 we investigate the Lorentz structures appearing in the two-loop calculation.
As part of our method, we also obtain additional Lorentz structures involving external
momenta. Hence, in section 3.3 we define further tree-level matrix elements corresponding
to those structures. We also express the amplitude in terms of tree-level matrix elements
with corresponding coefficients. In section 3.4 we define a set of projectors that do not
introduce epsilon tensors and hence do not lead to γ5 ambiguities. Along with those, we
present an extended basis of evanescent operators. In section 3.5, we proceed to write down
the amplitude and explain how to obtain the coefficients in front of the tree-level matrix
elements. Finally, in section 3.6 we discuss how to extract the projections P(γµ) and P(/q)
of the four-point amplitude from those coefficients.

– 6 –
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2q
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p1, l, δ

p2, k, α

Figure 3. The four configurations of the external indices, corresponding to the following structures
described in the text: (Γ⊗Γ 1⊗1), (Γ⊗̃Γ 1⊗̃1), (Γ⊗Γ 1⊗̃1), (Γ⊗̃Γ 1⊗1) (left to right, top to bottom).
Each dot corresponds to an insertion of a current Γ and arrows indicate fermion and momentum flow.

3.1 Tree-level amplitude

Let us start by considering the tree-level matrix element corresponding to the insertion of
the operator Q at (S)MOM kinematics as

⟨Q⟩ ≡ Λ(tree),ijkl
αβγδ (Q) = 2

(
(γµPL)αβ(γµPL)γδδ

ijδkl − (γµPL)αδ(γµPL)γβδ
ilδkj

)
≡ 2γµPL ⊗ γµPL 1⊗ 1 − 2 γµPL⊗̃γµPL 1⊗̃1
≡ 2Qs 1⊗ 1− 2 Q̃s 1⊗̃1,

(3.1)

where we use the superscript ‘s’ to denote the Dirac structures defined above. The factor of 2
comes from the fact that we can interchange the two currents. The pictorial representation
of the two structures is given in the top row of figure 3. A further operator Q̃, corresponding
the bottom two diagrams in figure 3 can be defined as

Q̃ = (s̄iγµPLd
l)(s̄kγµPLd

j), (3.2)

with the matrix element given by

⟨Q̃⟩ = 2Qs 1⊗̃1− 2 Q̃s 1⊗ 1. (3.3)

The Greens functions ⟨Q̃⟩ differ from those of ⟨Q⟩ only by interchange of the two colour
structures.

The expressions for the matrix elements can be split into two parts

⟨Q⟩ = ⟨Q⟩1 + ⟨Q⟩2, (3.4)

where ⟨Q⟩1 = −2(γµPL)αδ(γµPL)γβδ
ilδkj and ⟨Q⟩2 = 2(γµPL)αβ(γµPL)γδδ

ijδkl. Next, we
recall that our projectors, defined in eqs. (2.6), (2.7) are of the form

P ijkl
(X),αβγδ ∝ ΓβαΓ̃δγδijδkl, (3.5)

– 7 –
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for X = /q or γµ. Projecting the two structures in eq. (3.4) results in two types of spinor
index contractions

P(X)(⟨Q⟩1) ∝ Tr(ΓγµPLΓ̃γµPL), (3.6)
P(X)(⟨Q⟩2) ∝ Tr(ΓγµPL)Tr(Γ̃γµPL). (3.7)

The same traces can be obtained for ⟨Q̃⟩, but with different colour contractions. We will be
denoting the structures that result in double traces, like in eq. (3.7) as “crossed”, corresponding
to diagrams on the l.h.s. of figure 3. The structures that lead to single traced contractions as
in eq. (3.6) and the related diagrams on the r.h.s. of figure 3 we will call “direct”.

3.2 Bilinears and invariants

A complete set of bilinears can be chosen to be:

/pi
PL, γµPL, /p1/p2γ

µPL,

as in four dimensions any structure involving a bilinear of length three or more can be reduced
to these three structures. Consequently, in D dimensions, any Dirac structure can be written
as a linear combination of evanescent structures Es

i and the following four structures

Qs = γµPL ⊗ γµPL,

M s
11 = /p1PL ⊗ /p1PL, M s

12 = 1
2
(
/p1PL ⊗ /p2PL + /p2PL ⊗ /p1PL

)
, M s

22 = /p2PL ⊗ /p2PL.

3.3 Matrix elements entering the total amplitude

Let us define the tree-level matrix elements, corresponding to the structures above, at
generalised (S)MOM kinematics as

⟨Q1⟩ = 2Qs 1⊗ 1− 2 Q̃s 1⊗̃1, (3.8)
⟨Q2⟩ = 2M s

11 1⊗ 1− 2 M̃ s
11 1⊗̃1, (3.9)

⟨Q3⟩ = 2M s
12 1⊗ 1− 2 M̃ s

12 1⊗̃1, (3.10)
⟨Q4⟩ = 2M s

22 1⊗ 1− 2 M̃ s
22 1⊗̃1, (3.11)

We can also define the four further matrix elements ⟨Q̃i⟩, i = 1, . . . , 4, with identical Lorentz
structures but ⊗ ↔ ⊗̃ for the colour contractions.

The total amplitude up to two loops can then be written in the form

Λ =
4∑

i=1
(Ai⟨Qi⟩+ Ãi⟨Q̃i⟩)

+ linear combinations of evanescent Lorentz structures,
(3.12)

where Ai and Ãi denote the coefficients in front of the tree-level matrix elements, obtained
after reducing the structures appearing in the diagrams that make up the amplitude. The
full set of diagrams contains both direct and crossed diagrams, such that the full Λ satisfies
Λijkl

αβγδ = −Λilkj
αδγβ, as required by Fermi statistics, and accounted for by the form of ⟨Qi⟩

and ⟨Q̃i⟩.

– 8 –
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3.4 Projectors and evanescent structures

After including all counterterm diagrams the coefficients Ai and Ãi are all finite, such that
the projectors P(/q) and P(γµ) can be directly applied to ΛMS. However, we will not compute
all the counterterms (renormalization constants) required to obtain finite coefficients for all
the evanescent operators and therefore need a method of removing them in the presence
of UV poles. In addition, we would like to use trace techniques to evaluate individual
diagrams, which may be divergent. We are able to achieve both aims by choosing a set
of projectors which are unambiguous in D dimensions and a set of evanescent operators
which is projected to zero by all projectors.

We choose as projectors

Πµ(Γ1PL ⊗ Γ2PL) = tr γµΓ1γµΓ2, (3.13)
Π11(Γ1PL ⊗ Γ2PL) = tr /p1Γ1/p1Γ2, (3.14)
Π12(Γ1PL ⊗ Γ2PL) = tr /p1Γ1/p2Γ2, (3.15)
Π22(Γ1PL ⊗ Γ2PL) = tr /p2Γ1/p2Γ2, (3.16)

with no trace over colour. We have defined them only for the direct diagrams, specified earlier,
because, as we will show in the next section, this is sufficient to reconstruct the entire result.
To evaluate them, any chiral projector or γ5 in any Dirac line should first be moved to the
right end of that line. The traces are unambiguous in D dimensions because no Levi-Civita
symbols are generated by them, nor by the tensor loop integrals we encounter.

We then define evanescent structures Es
j such that Πi(Es

j ) = 0 for all projectors Πi as

Es
1 = γµγνγρPL ⊗ γµγνγρPL − ((D − 10)D + 8)Qs, (3.17)

Es
3 = γµγνγργσγτPL ⊗ γµγνγργσγτPL

− (D − 2)(D((D − 26)D + 152)− 128)Qs,
(3.18)

F s
ij = 1

2
(
/pi
γµγνPL ⊗ /pj

γµγνPL + (i↔ j)
)
+ (D − 2)(D − 4)M s

ij

− 4pi · pjQ
s,

(3.19)

Hs
ij = 1

2
(
/pi
γµγνγργσPL ⊗ γµγνγργσ/pj

PL + (i↔ j)
)

− (D(D − 14) + 32)(D − 2)(D − 4)M s
ij + 8(D − 8)(D − 2)pi · pj Q

s,
(3.20)

Gs
1 = 1

2
(
/p1/p2γ

µPL ⊗ γµPL + γµPL ⊗ /p1/p2γµPL

)
− p1 · p2Q

s, (3.21)

Gs
2 = /p1/p2γ

µγνγρPL ⊗ /p1/p2γµγνγρPL

− (D − 4)(D(D − 14) + 32)
(
p2

2M
s
11 + p2

1M
s
22 − 2p1 · p2M

s
12

)
+ (D(D − 10) + 8)p2

1p
2
2Q

s,

(3.22)

Gs
3 = 1

2
(
/p1/p2γ

µγνγρPL ⊗ γµγνγρPL + γµγνγρPL ⊗ /p1/p2γµγνγρPL

)
+ (D(D − 10) + 8)p1 · p2Q

s,
(3.23)

Gs
4 = /p1/p2γ

µPL ⊗ /p1/p2γµPL

+ (D − 4)
(
p2

2M
s
11 + p2

1M
s
22 − 2p1 · p2M

s
12

)
− p2

1p
2
2Q

s.
(3.24)
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All 12 evanescent structures (24 when including colour) are symmetric under the exchange of
both bilinears and therefore (upon adding the piece required by Fermi symmetry) are the
matrix elements of suitably chosen operators. Only the evanescent structures Es

1 and Es
3

are relevant for the renormalisation at two-loop order. The remaining evanescent structures
are needed to derive our projections in the following.

3.5 Obtaining coefficients Ai and Ãi

As before, let us split ⟨Qi⟩ = ⟨Qi⟩1 + ⟨Qi⟩2, where ⟨Qi⟩1 denotes the second term on the
r.h.s. of each of eqs. (3.8)–(3.11), which is due to the direct Feynman diagram. Moreover, we
apply the same procedure to ⟨Q̃i⟩. The entire amplitude Λ then splits in a similar manner
into a direct and a crossed contribution. The direct contribution is due to all the direct
diagrams, and has the form

Λ1 =
4∑

i=1
(Ai⟨Qi⟩1 + Ãi⟨Q̃i⟩1)

+ linear combinations of evanescent Lorentz structures.
(3.25)

Λ1 enjoys the property that our projectors Πi are defined on it, on a diagram-by-diagram
basis. We can therefore compute

Πi(Λ1) =
4∑

j=1

(
AjΠi(⟨Qj⟩1) + ÃjΠi(⟨Q̃j⟩1)

)

=
4∑

j=1
Bij

(
Aj1⊗̃1 + Ãj1⊗ 1

)

=
4∑

j=1

(
Ci1⊗̃1 + C̃i1⊗ 1

)
,

(3.26)

wherein contributions proportional to the tree-level matrix elements of the evanescent op-
erators have disappeared, and the matrix B is readily found by applying the projectors Πi

to the basis Dirac structures Qs, M s
11, M s

12 and M s
22. After summing over diagrams and

counterterm diagrams, we should find explicitly that Ci and C̃i are finite, and can compute
Ai and Ãi via the inverse of B. B is nonsingular except for q2 = 0; if we want a result
directly at q2 = 0 we need to redo the procedure with a subset of basis structures and a
2 × 2 B-matrix which then should be nonsingular.

Computation of the Bij = ΠiQ
s
j for our choice of projectors and operators is given

in table 1. One can make B dimensionless by rescaling the momentum-dependent basis
structures and projectors by some scalar product(s) of momenta.

3.6 Obtaining the (S)MOM projections

Once the Ai and Ãi are found, calculating the projections P(X)(Λ), where X = /q or γµ, (or
any other projections) amounts to simply computing

P(X)(Λ) =
4∑

i=1

(∑
AiP(X)(⟨Qi⟩) +

∑
ÃiP(X)(⟨Q̃i⟩)

)
, (3.27)
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Πµ Π11 Π12 Π22

Qs −2(D − 2)D −2(D − 2)p2
1 −2(D − 2)(p1 · p2) −2(D − 2)p2

2

M s
11 −2(D − 2)p2

1 2p4
1 2p2

1(p1 · p2) 4(p1 · p2)2 − 2p2
1p

2
2

M s
12 −2(D − 2)(p1 · p2) 2p2

1(p1 · p2) 2p2
1p

2
2 2p2

2(p1 · p2)
M s

22 −2(D − 2)p2
2 4(p1 · p2)2 − 2p2

1p
2
2 2p2

2(p1 · p2) 2p2
2

Table 1. Bij = ΠiQ
s
j for projectors, defined in eqs. (2.6)–(2.7), and the structures, given in section 3.2.

which is a D = 4 exercise. Here one needs to include both direct and crossed part and colour.
The projections of the tree-level basis structures are given by

P(γµ)(⟨Qi⟩) =
{
1
4 − 3ϵ

16 + ϵ2

32 ,−
µ2

16

(
1− ϵ

4

)
,
µ2

32(ω − 2)
(
1− ϵ

4

)
,−µ

2

16

(
1− ϵ

4

)}
, (3.28)

P(/q)(⟨Qi⟩) =
{
1
4 − ϵ

16 ,−
µ2

32(ω + 1), µ
2

64(3ω − 2),−µ
2

32(ω + 1)
}
, (3.29)

P(γµ)(⟨Q̃i⟩) =
{
1
4 − 5ϵ

16 + 3ϵ2
32 ,−

µ2

16

(
1− 3ϵ

4

)
,
µ2

32(ω − 2)
(
1− 3ϵ

4

)
,−µ

2

16

(
1− 3ϵ

4

)}
,

(3.30)

P(/q)(⟨Q̃i⟩) =
{
1
4 − 3ϵ

16 ,
µ2

32(ω − 3), µ
2

64(ω − 6), µ
2

32(ω − 3)
}
. (3.31)

where p2
1 = p2

2 = −µ2, q2 = −ωµ2. For RI-MOM ω = 0 and for RI-SMOM ω = 1. These
expressions are exact, i.e. they include all orders of ϵ.

4 Loop calculation

In this section, we present the calculation of the one- and two-loop contributions to the
scalar four-point amplitude with (S)MOM kinematics, renormalized in the MS scheme. The
general procedure for solving loop integrals involves first reducing them into a set of master
integrals, which can then be evaluated. This is achieved using the integration by parts
(IBP) method [18]. In the end, we find that all diagrams reduce to approximately 30 master
integrals. These integrals can then be evaluated using a combination of numerical and, where
available, analytical results. To obtain the highest precision, it is beneficial to minimize the
basis to a set of linearly independent integrals, as numerically computed integrals have an
inherent uncertainty. Once the bare amplitude is computed its poles have to cancel against
the counterterms. Our computation of counterterms involves one-loop calculations as well
as extractions of two-loop renormalization constants from the anomalous dimensions. The
result depends on the basis of the evanescent operators and can be converted into a different
basis, if needed. Together with the matching calculation outlined in section 3 this yields the
projected four-point amplitude, which is finite in D = 4 dimensions.

This section is organised as follows. In section 4.1 we briefly discuss the one-loop
amplitude. In section 4.2 we review the diagrams that comprise the bare two-loop amputated
Green’s functions. As the two-loop calculation is much more involved, we give further
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details on how we define the topologies in section 4.3 and evaluate the master integrals in
section 4.4. In section 4.5 we describe the change from our basis of evanescent operators
to the basis used in the literature, followed by the definition of MS renormalized four-point
amplitude in section 4.6.

4.1 Amplitude at NLO

The one-loop amplitude can be obtained from the sum of the following 6 diagrams, including
the permutations of external legs (corresponding to figure 3) and exchange of the two currents:

a1 a2 b1

b2 c1 c2

The computation of this amplitude for SMOM kinematics can be found in [17], where it
was done with open indices, by employing the Passarino-Veltman technique and performing
the projections in four dimensions. We will reproduce these and the NLO results for MOM
kinematics [19, 20] using our technique as part of the validation.

In order to obtain finite Ci and C̃i, defined in eq. (3.6), we have to renormalize the
amplitude Λ. At fixed momentum space subtraction scale, the MS renormalized amplitude
is given by

ΛMS(ν) = Z2
q (ν) (ZQQ(ν)⟨Q⟩+ ZQEn(ν)⟨En⟩) , (4.1)

where ν is the MS renormalization scale and ⟨Q⟩ and ⟨En⟩ are the bare matrix elements,
which can be expanded in αbare

s as

⟨Q⟩ = ⟨Q⟩tree + αbare
s

4π ⟨Q⟩1−loop +
(
αbare

s

4π

)2

⟨Q⟩2−loop, (4.2)

and similarly for ⟨En⟩. The one-loop renormalized amplitude is given by

ΛMS,(1) = ⟨Q⟩1−loop +
(
2Z(1)

q + Z
(1)
QQ

)
⟨Q⟩tree + Z

(1)
QEF

⟨EF ⟩tree. (4.3)

where ⟨Q⟩1−loop is the one-loop matrix element, obtained from the sum of the six diagrams.
The wave function renormalization constant Zq(ν) is given in eq. (B.3). For our choice of
evanescent operators in eqs. (3.17), (3.18), the remaining one-loop constants can be found in
appendix D. The rest of the evanescent operators do not enter this amplitude as by definition
their tree-level matrix elements project to zero.
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A1 A2 A3 A4

A5 A6 B1 B2

C1 C2 C3 C4

D1 D2 D3 D4

T1 T2 T3 T4

T5 T6 OL1 OL2

OL3 OL4 OL5 OL6

Figure 4. 28 classes of diagrams corresponding to the two-loop radiative corrections to the Λijkl
αβγδ.

The hatched blobs correspond to the sum of one-loop insertions into the propagators. Kinematics are
defined in figure 2.

4.2 Amplitude at NNLO

The direct part of the two-loop amplitude is comprised of 103 diagrams. 36 of these are
recursively one-loop, i.e. they involve insertions of self-energies into the propagators of one-
loop diagrams. The remaining 67 diagrams are the true two-loop diagrams. In figure 4 we
give the pictorial representation of the unique 28 diagrams. The rest of the diagrams can
be obtained by exchanging the external legs and the currents.

4.3 Defining two-loop topologies

As we perform projections first it is sufficient to consider scalar integrals. Thus, in this section
we focus on the scalar part of our four-point function Λijkl

αβγδ. At tree level, this amplitude can
be pictured as shown in figure 2: we have two particles with momentum p1 going into the
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p1

−(q + p1) p1

-p2

Top A

1 2

4

76

53

p1

−(q + p1) −p2

p1

Top B

1 2

4

76

53

−p2

−(q + p1) 2q

2p2

Top C2

1 2

4

76

53

−2p1

q p2

p1

Top C3

1 2

4

76

53

p1

p1

−(q + p1)

−p2

Top D

1
34

2

7
6

5

Figure 5. Topologies A, B, C2, C3 and D. All external momenta are defined as incoming. Numbers
correspond to propagator labels, as defined in section 4.3.

vertex and two particles with momentum p2, as well as q = p2 − p1, that ensures momentum
conservation in the case of p1 ̸= p2, going out of the vertex.

In order to compute the NNLO corrections for this diagram, we have to consider all of the
possible two-loop radiative corrections, given in figure 4. The diagrams can be divided into
six groups: A, B, C, D, T and OL. Diagrams A, B and D correspond to the topologies with
the same name. The diagrams C have linearly dependent propagators and can be written in
terms of topologies A, B, C2 and C3. T stands for the remaining triangle integrals and OL for
the integrals with one-loop insertions, both of which can be expressed in terms of topology A,
B, C and D integrals. All of the relevant topologies are shown in figure 5 and the propagators
are given in table 2. Further details on the mapping of the integrals onto the topologies and
the reduction of integrals with linearly dependent propagators can be found in [21].

4.4 Master integrals and evaluation

After expressing all the integrals in terms of the five topologies we can proceed to calculate
the IBP identities, using Reduze 2 [22, 23]. This allows us to express the results in terms
of a minimal set of master integrals. We find that our set contains 15 unique two-loop
diagrams, shown in figure 6.

The computation on the Lattice is done at a fixed renormalization scale, hence it is
sufficient to obtain the matching coefficient numerically at the corresponding scale. All of the
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Top A Top B Top C2 Top C3 Top D
1. k1 k1 k1 k1 k1
2. k2 k2 k2 k2 k2
3. k1 − k2 k1 − k2 k1 − k2 k1 − k2 k1 − k2
4. k1 + p1 k1 − p1 k1 + p2 k1 + 2p1 k1 − p1
5. k2 + p2 k2 + p1 k2 + 2p2 k2 + p1 k1 − k2 − p2
6. k1 − q k1 + q k1 + 2p1 k1 + p1 + p2 k1 + q

7. k2 − q k2 + q k2 + 2p1 k2 + p1 + p2 k2 + p1

Table 2. List of propagators for topologies in figure 5. The numbers correspond to the numbering of
propagators in the corresponding topology.

1

Figure 6. Two-loop master integrals. Black dots represent squared propagators.

necessary bubble diagrams are available up to any order in ϵ. The two-loop triangle diagrams
have been calculated analytically up to finite order in the literature, whereas the results
for the one-loop triangle are available to O(ϵ) [24, 25]. In addition to these we also need
the one-loop triangle up to O(ϵ2) for the one-loop matrix elements. There are no analytic
results for the box diagrams with four off-shell legs available. We calculate the missing
pieces and the box diagrams using sector decomposition method. We use PySecDec [26]
to facilitate the evaluation of two-loop off-shell box diagrams as well as obtain the missing
O(ϵ) and O(ϵ2) of triangle diagrams. A more detailed discussion of the master integrals
for the SMOM case can be found in [21].

4.5 Operators in Brod-Gorbahn basis

Our choice of evanescent operators differs from the ones used by J. Brod and M. Gorbahn
(BG) [7] for the Wilson coefficients. Here and in the next section we will briefly refer to our
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scheme as GJK. The relevant operators are given by

E
(2),BG
1 = (s̄iγµ1µ2µ3µ4µ5PLd

j)(s̄kγµ1µ2µ3µ4µ5PLd
l)−

(
256− 224ϵ− 108 816

325 ϵ2
)
Q,

E
(2),BG
2 = (s̄iγµ1µ2µ3µ4µ5PLd

l)(s̄kγµ1µ2µ3µ4µ5PLd
j)−

(
256− 224ϵ− 108 816

325 ϵ2
)
(Q+ EF ),

where γµ1µ2... = γµ1γµ2 . . . . Comparing with eq. (3.18), we can see that the difference is in the
ϵ2 parts of E3. Our choice of evanescent operators can be translated to the ones in which BG
have obtained the NNLO Wilson coefficients and anomalous dimension matrices as follows:

E3 = E
(2),BG
1 + κ ϵ2Q, (4.4)

E4 = E
(2),BG
2 + κ ϵ2(Q+ EF ), (4.5)

where κ = −62 016/325. As a result, the renormalized Green’s functions of Q to NNLO
differs between the two schemes as

⟨QMS,GJK⟩ = ⟨QMS,BG⟩+ κZ
(2,2)
QE3

⟨Q⟩tree + κZ
(2,2)
QE4

(⟨Q⟩tree + ⟨EF ⟩tree), (4.6)

with the Z factors given in appendix E.

4.6 Renormalized amplitude

The renormalized two-loop amplitude can be written as

ΛMS,(2) = ⟨Q⟩2−loop + 2Z(1)
q ΛMS,(1) +

(
Z(1)

g + Z
(1)
ξ ξ

∂

∂ξ
+ Z

(1)
QQ

)
⟨Q⟩1−loop

+ Z
(1)
QEn

⟨En⟩1−loop +
(
−3(Z(1)

q )2 + 2Z(2)
q + Z

(2)
QQ

)
⟨Q⟩tree + Z

(2)
QEn

⟨En⟩tree.

(4.7)

where n = {F, 1, 2}. ⟨Q⟩2−loop is the two-loop matrix element, obtained from the sum of all
diagrams, discussed in section 4.2. ΛMS,(1) is the renormalized one-loop amplitude, defined in
eq. (4.3). Z(1)

QQ and Z(1)
QEn

are the one-loop and Z(2)
QQ and Z(2)

QEn
are the two-loop counterterms,

given in appendices D and E respectively, for our scheme. The one- and two-loop wave
function renormalization constants Z(1)

q and Z(2)
q are listed in eq. (B.3). The gauge and gauge

parameter Z-factors Z(1)
g and Z

(1)
ξ are provided in eqs. (B.4), (B.5) respectively. Including

the scheme change outlined in the previous section along with Z factors in eqs. (E.8), (E.9),
the amplitude in the BG scheme is given by

ΛMS,BG,(2) = ΛMS,GJK,(2) −
((
κZ

(2,2)
QE3

+ κZ
(2,2)
QE4

)
⟨Q⟩tree + κZ

(2,2)
QE4

⟨EF ⟩tree
)
. (4.8)

All of our RI-(S)MOM to MS conversion results in the following sections are presented for
the BG MS scheme, to which we simply refer to as MS scheme.

5 Results

We present our results for the two-loop conversion factors from RI-(S)MOM to the MS scheme
in section 5.1 along with an analytic expression for the coefficients at general MOM and MS
renormalization scales. In section 5.2 we present the formulas for obtaining CS→RGI

BK
and
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study its residual scale dependence in the 3 and 4 flavour theories. In section 5.3 we use
our results for the conversion factors to obtain BMS

K and B̂K and investigate the uncertainty
due to unknown N3LO corrections. In section 5.4 we discuss conversion between numbers of
flavours for B̂K . In section 5.5 we proceed to obtain our main result for B̂K by updating
the current FLAG average. Finally, we update the value of ϵK in section 5.6 and the bag
coefficient for D mixing in section 5.7.

5.1 C
(S)MOM→MS
BK

up to NNLO

We present the conversion factors C(S)MOM→MS
BK

for matching between RI-(S)MOM schemes
to MS scheme up to two-loop order computed at Landau gauge and Nc = 3. The MS scheme
is defined with anti-communting γ5 and evanescent operators in line with [7]. In deriving the
conversion factors via eqs. (2.17), (2.18), we take NLO coefficients of C/q→MS

q and C
γµ→MS
q

from [17] and the NNLO coefficients from [27] (setting CA = Nc, TF = 1/2), [28] (setting
w = 1, r = 1) and [29]. We compute the projected amplitudes P(/q)(Λ) and P(γµ)(Λ), as
outlined in section 3, using the renormalized amplitudes defined in section 4 together with
the countertems, given in appendices D and E. Expanding the conversion factors in αs while
keeping the RI-(S)MOM and MS renormalization scales general gives

CS→MS
BK

(µ,ν) = 1+ αs(ν)
4π

[
CS

BK ,NLO−4L(µ,ν)
]
+ α2

s(ν)
16π2

[
CS

BK ,NNLO

+CS
BK ,NLOL(µ,ν)

(
18− 3

9f
)
+L(µ,ν)

{(
7− 4

9f
)
−L(µ,ν)

(
72− 12

9 f
)}]

,

(5.1)

where S is the momentum subtraction scheme, L(µ, ν) = log(ν/µ), µ =
√
−p2 is the

momentum subtraction scale, ν is the MS scale, f is the number of flavours, and CS
BK ,NLO

and CS
BK ,NNLO are the NLO and NNLO coefficients of CS→MS

BK
, values of which are presented

in table 3. The coefficients of the αs expansion are independent of the momentum subtraction
scale as is the fully analytic NLO result. However, we evaluate the NNLO coefficient in part
numerically, and this depends on the ratio µ/ν (but not on the scales individually). In table 3
we present numerical results for µ = ν, keeping the number of flavours f general, assuming
all quarks are massless. In deriving the NLO results we have also checked that our method
correctly reproduces the corresponding values in [17]. The main uncertainties in these results
arise from the numerical evaluation of the integrals. We have checked that the coefficients of
all of the poles in the NNLO calculation are consistent with zero within the uncertainties as
well as with analytic expressions in [6], hence they have been dropped.

In table 4 we present values for the LO+NLO and LO+NLO+NNLO conversion factors
(LO=1), as well as the difference between the NNLO and NLO corrections at ν = µ, for
f = 3. We use the world average of αs(MZ) = 0.1180± 0.0009 [30], which we evolve down to
the scale ν = µ = 3GeV using the 4-loop QCD β function and threshold corrections available
in RunDec [31]. We find that the perturbative series exhibits excellent convergence as the
NNLO corrections give relative contributions below 4% for all schemes. For the (γµ, γµ), (/q, /q)
and RI-MOM schemes, the NNLO contributions are larger than the NLO ones. However, the
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S CS
BK ,NLO CS

BK ,NNLO

SMOM(γµ, /q) 8 log 2− 8 = −2.45482 . . . 3.88f + 21.05± 0.08

SMOM(γµ, γµ) 8 log 2− 16/3 = 0.211844 . . . −0.42f + 86.41± 0.08

SMOM(/q, /q) 8 log 2− 6 = −0.454823 . . . 0.90f + 52.78± 0.09

SMOM(/q, γµ) 8 log 2− 10/3 = 2.21184 . . . −3.39f + 123.47± 0.09

RI′-MOM 8 log 2− 14/3 = 0.878511 . . . 0.17f + 61.71± 0.07

RI-MOM 8 log 2− 14/3 = 0.878511 . . . −4.49f + 94.04± 0.07

Table 3. CS
BK ,NLO and CS

BK ,NNLO as defined in eq. (5.1). The values presented are in Landau
gauge with Nc = 3 and the NNLO result computed at ν = µ =

√
−p2 for two RI-MOM schemes

(S = {RI-MOM,RI′-MOM}) and four RI-SMOM schemes (S = SMOM(X,Y ) with X = γµ, /q and
Y = γµ, /q). The uncertainty in these results arises due to partly numerical evaluation of the two-loop
integrals.

S NLO NNLO |diff.|

SMOM(γµ, /q) 0.9523(8) 0.9646(4) 0.0124(9)

SMOM(γµ, γµ) 1.00412(7) 1.036(1) 0.032(1)

SMOM(/q, /q) 0.9912(1) 1.0121(6) 0.0210(6)

SMOM(/q, γµ) 1.0430(7) 1.086(2) 0.043(2)

RI′-MOM 1.0171(3) 1.041(1) 0.024(1)

RI-MOM 1.0171(3) 1.048(1) 0.030(1)

Table 4. Conversion factors CS
BK

evaluated with αs(µ) including NLO (i.e. 1+NLO) and NNLO
(i.e. 1+NLO+NNLO) corrections, as well as the difference |diff.| between the two (i.e. NNLO) in
Landau gauge for RI-MOM schemes (S = {RI-MOM,RI′-MOM}) and four RI-SMOM schemes (S =
SMOM(X,Y ) with X = γµ, /q and Y = γµ, /q). The results are computed at ν = µ =

√
−p2 = 3GeV

with Nc = 3 and f = 3. The dominant uncertainty in these results is due to the error on αs(3 GeV).

relative NLO corrections to the series are smaller compared to the other two schemes, while
the NNLO contributions are of comparable size. Hence, we do not consider the perturbative
behaviour in these cases to be abnormal. The dominant uncertainties here come from the
error on αs(µ) at both NLO and NNLO.

5.2 Conversion to the RGI bag factor

Next, from the conversion factors to the MS scheme we construct the conversion factors
CS→RGI

BK
to the scale- and scheme-independent bag factor B̂K , for any number of flavours f as

CS→RGI
BK

(µ) = U
(0)
(f)(ν)

1 + α
(f)
s (ν)
4π J

(1)
(f) +

(
α

(f)
s (ν)
4π

)2

J
(2)
(f)

CS→MS
BK

(µ, ν), (5.2)
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S NLO (δαs/δν) NNLO (δαs/δν)

SMOM(γµ, /q) 1.3528(341) 0.15 1.36061(945) 0.62

SMOM(γµ, γµ) 1.4237(157) 0.28 1.4613(146) 0.22

SMOM(/q, /q) 1.4060(203) 0.23 1.42757(886) 0.49

SMOM(/q, γµ) 1.4769(120) 0.31 1.5310(275) 0.09

RI′-MOM 1.4414(112) 0.39 1.4678(106) 0.33

RI-MOM 1.4414(112) 0.39 1.4773(151) 0.22

Table 5. The NLO and NNLO conversion factors CS→RGI
BK

in Landau gauge for RI-MOM schemes
(S = {RI-MOM,RI′-MOM}) and four RI-SMOM schemes (S = SMOM(X,Y ) with X = γµ, /q and
Y = γµ, /q) computed at µ =

√
−p2 = 3GeV with Nc = 3 and f = 3, with ν varied from 2 to 6 GeV

(central value of 3 GeV). The uncertainties include the error on αs, and residual ν-depndence, where
(δαs

/δν) indicates the ratio of the aforementioned uncertainties at NLO and NNLO for each scheme
choice. The dominant errors in these results arise from the variation of the renormalization scale.

where the relevant parts of the RG evolution operator [7] are given by

U
(0)
(f)(ν) = (α(f)

s (ν))−
6

33−2f , (5.3)

J
(1)
(f) =

2f(4f − 813) + 13 095
6(33− 2f)2 , (5.4)

J
(2)
(f) =

1
2700(33− 2f)4 (−52 000f5 + 1755 216f4 + 33 796 944f3

− 1 897 533 864f2 + 25 597 290 654f − 119 065 711 779
− 21 600(2f − 33)2(5f + 63)ζ(3)).

(5.5)

The CS→RGI
BK

are formally independent of the MS scale ν. Their residual scale dependence
for the 3 and 4 flavour scenarios for the most commonly used MOM schemes is presented
in figures 7 and 8 for momentum subtraction scales µ = 3GeV (f = 3) and µ = 5GeV
(f = 4) respectively. We can see that the (/q, /q) scheme exhibits the best behaviour in terms of
perturbative convergence as well as the size of the residual scale dependence. While RI-MOM
schemes are the same at NLO, RI’-MOM scheme converges better at NNLO. Comparing
figures 7 and 8 we can see a further improvement in the convergence of the perturbative
series as well as further reduction in the scale dependence for the 4 flavour µ = 5GeV case.
In addition, in table 5 we present numerical values for CS→RGI

BK
for µ = 3GeV, including the

ratios of the uncertainties coming from αs versus residual scale variation. It is clear that
in each case the uncertainty due to scale variation dominates.

5.3 BMS
K , B̂K and their residual scale dependence

Taking our results for the conversion factors we can perform a matching calculation at 3
and 4 flavours as well as fixed momentum subtraction scale µ from the currently available
lattice estimates of BK [32–35]. We quote the lattice inputs and present our computed values
of BMS

K (ν) using one-loop and two-loop matching in table 6, for ν = µ. We can see that

– 19 –



J
H
E
P
0
9
(
2
0
2
5
)
0
1
1

2 3 4 5 6
1.30

1.35

1.40

1.45

1.50

1.55

2 3 4 5 6
1.30

1.35

1.40

1.45

1.50

1.55

2 3 4 5 6
1.30

1.35

1.40

1.45

1.50

1.55

2 3 4 5 6
1.30

1.35

1.40

1.45

1.50

1.55

2 3 4 5 6
1.30

1.35

1.40

1.45

1.50

1.55

2 3 4 5 6
1.30

1.35

1.40

1.45

1.50

1.55

Figure 7. Conversion factors CS→RGI
BK

from RI-MOM schemes (S = {RI-MOM,RI′-MOM}) and
from RI-SMOM schemes (S = XY with X = γµ, /q and Y = γµ, /q ) schemes to RGI for µ = 3GeV
and f = 3. Here γµ ≡ γ.

Scheme Lattice NLO NNLO µ = ν f

SMOM(/q, /q) 0.5342(21) 0.5295(21) 0.5407(21) 3 GeV 3

SMOM(γµ, γµ) 0.5164(18) 0.5185(18) 0.5352(20) 3 GeV 3

RI-MOM16 0.517(13) 0.526(13) 0.542(14) 3 GeV 3

RI-MOM11 0.5308(61) 0.5393(62) 0.5536(64) 3.5 GeV 3

RI′-MOM 0.498(16) 0.507(16) 0.519(17) 3 GeV 4

Table 6. Bag parameter BMS
K for the available f = 3 and f = 4 lattice inputs. Lattice results are

taken from [32–35], where RI-MOM16 corresponds to RBC/UKQCD 16 and RI-MOM11 to BMW 11
results. The dominant uncertainties here are due to errors on the lattice results. Uncertainties due to
higher-order perturbative corrections are not included in this table.
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Figure 8. Conversion factors CS→RGI
BK

from RI-MOM schemes (S = {RI-MOM,RI′-MOM}) and
from RI-SMOM schemes (S = XY with X = γµ, /q and Y = γµ, /q) to RGI for µ = 5GeV and f = 4.
Here γµ ≡ γ.

inclusion of perturbative corrections leave the uncertainties comparable to the initial errors
obtained on the lattice, meaning that the results so far are dominated by the lattice errors.

As BMS
K (ν) is not formally scale-invariant, we estimate the error due to uncomputed

higher orders as follows: we use our fixed-order conversion for a range ν ∈ [2, 6]GeV and
MS-evolve it back to the scale ν = µ. The resulting variation gives us an estimate of the
uncomputed higher orders. The results are given in figure 9. As we can see the uncertainties
associated with the RI-SMOM schemes are significantly lower compared to RI-MOM results,
for which the residual scale dependence is fairly negligible compared to lattice errors. For
RI-SMOM schemes, on the other hand, the residual scale dependence is significant. One can
also observe a nice overlap of the RBC/UKQCD results as opposed to the BMW 11 result,
which gives a larger prediction for BK albeit at a slightly higher scale µ.

We compute the RG-invariant value of the kaon bag parameter B̂K using the conver-
sion factors in eq. (5.2) along with the aforementioned Lattice results. The residual scale
dependence of B̂K for the five lattice results is given in figure 10. Again we see that the

– 21 –



J
H
E
P
0
9
(
2
0
2
5
)
0
1
1

2 3 4 5 6
0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

2 3 4 5 6
0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

2 3 4 5 6
0.49

0.50

0.51

0.52

0.53

0.54

0.55

0.56

0.57

Figure 9. BMS
K evaluated at 3 GeV (f = 3, left), 3.5 GeV (f = 3, middle) and at 3 GeV (f = 4, right)

as a function of the MS renormalization scale ν in Landau gauge for the two RI-SMOM schemes
(γµ, γµ) ≡ γγ and (/q, /q) ≡ /q/q, RI-MOM and RI′-MOM. (For explanation, see text). The bands indicate
the corresponding maximum and minimum values of BK given the uncertainties on αs, CBK ,NNLO

and BRI-(S)MOM
K = Blat

K . Here γγ and /q/q corresponds to Blat
K from RBC/UKQCD 24 [32], RI-MOM16

- Blat
K from RBC/UKQCD 16 [33], RI-MOM11 - Blat

K from BMW 11 [34], RI′-MOM - Blat
K from ETM

15 [35].

RBC/UKQCD results overlap nicely and the BMW 11 result lies above. Taking into ac-
count the scale variation, the two RI-SMOM schemes agree with each other as well. As
the ETM result is at 4 flavours it still can’t be directly compared to the 3-flavour results,
however as for the RI-MOM schemes we observe that residual scale variation introduces
only a sub-dominant uncertainty.

5.4 Matching between number of flavours

In this section, we define a matching coefficient M̂ (f→f−1) for obtaining the B̂
(f)
K from

B̂
(f−1)
K , i.e.

B̂
(f)
K = M̂ (f→f−1)B̂

(f−1)
K , (5.6)

where f is the number of active flavours.
We extract M̂ (f→f−1) from the results in [7] and obtain

M̂ (f→f−1) =
U

(0)
(f)(ν)

U
(0)
(f−1)(ν)

(
1 + α

(f−1)
s (ν)
4π (J (1)

(f) − J
(1)
(f−1))

+
(
α

(f−1)
s (ν)
4π

)2(
J

(2)
(f) − J

(2)
(f−1) − J

(1)
(f−1)(J

(1)
(f) − J

(1)
(f−1))

+ 2
3J

(1)
(f) log

ν2

m2
f (ν)

− 2
3 log2 ν2

m2
f (ν)

− 2
9 log ν2

m2
f (ν)

− 59
54

))
,

(5.7)
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Figure 10. Residual dependence of B̂K on MS renormalization scale in Landau gauge for the two
RI/SMOM schemes (γµ, γµ) ≡ γγ and (/q, /q) ≡ /q/q and RI-MOM at 3 flavours (left) and 4 flavours
(right). The bands indicate the corresponding maximum and minimum values of B̂K given the
uncertainties on αs, CBK ,NNLO and BRI-(S)MOM

K = Blat
K . The error bars for γγ and /q/q also include the

uncertainty due to the scale variation. Here γγ and /q/q corresponds to Blat
K from RBC/UKQCD 24 [32],

RI-MOM16 - Blat
K from RBC/UKQCD 16 [33], RI-MOM11 - Blat

K from BMW 11 [34], RI′-MOM - Blat
K

from ETM 15 [35].
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Figure 11. Dependence of M̂ (4→3) on the MS renormalization scale. The bands indicate the
corresponding maximum and minimum values of M̂ given the uncertainties on αs(νf ) at 3 and 4
flavour.

where the relevant parts of the evolution kernel are defined in eqs. (5.3), (5.4 and 5.5).
In addition to the running of the matrix element, this expression also takes into account
threshold corrections associated with the change in flavours. One can see that M̂ (f→f−1)

is independent of the renormalization scale up to 2-loop order by taking a derivative with
respect to ν. Using eq. (5.7) along with 3-loop αs(ν) and mc(ν) running we can plot the
residual scale dependence of M̂ (4→3), as shown in figure 11. We observe excellent behaviour
as the residual scale dependence is significantly smaller than the error from αs(ν).
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f Ref. Scheme µ (GeV) B
(Scheme)
K (µ) B̂

(f)
K,NLO

4 ETM 15 RI′-MOM 3 0.498(16) 0.717(24)

3 RBC/ SMOM(/q, /q) 3 0.5342(21) 0.7436(82)

UKQCD 24 SMOM(γµ, γµ) 3 0.5164(18) -

3 SWME 15A MS 3 0.519(26) 0.735(36)

3 RBC/ SMOM(/q, /q) 3 0.5341(18) 0.7499(152)

UKQCD 14B SMOM(γµ, γµ) 3 0.5166(18) -

3 Laiho 11 MS 2 0.5572(152) 0.7628(208)

3 BMW 11 RI-MOM 3.5 0.5308(61) 0.7727(117)

Table 7. Summary of lattice results entering the current FLAG average [32, 34–38]. The B(Scheme)
K (µ)

is taken from the corresponding literature and B̂
(f)
K,NLO from FLAG review [13].

f Ref. Scheme B̂
(f=3)
K B̂

(f=4)
K

4 ETM 15 RI′-MOM 0.733(26) 0.745(25)

3 RBC/ SMOM(/q, /q) 0.7626(56) 0.7749(93)

UKQCD 24 SMOM(γµ, γµ) 0.7546(80) 0.767(11)

3 SWME 15A MS 0.735(36)∗ 0.747(37)

3 Laiho 11 MS 0.7628(208)∗ 0.7751(224)

3 BMW 11 RI-MOM 0.790(13) 0.804(15)

Table 8. Summary of our updated results for B̂K . For B(Scheme)
K (µ) values given in MOM schemes

(see table 7) we obtain B̂K via two-loop matching to MS at ν = µ and conversion to RGI value.
The RGI errors take into account uncertainties in the lattice value, αs, CS

BK
and MS residual scale

variation. The asterisk (∗) indicates that B̂(f=3)
K is obtained from MS value using the conversion factor

1.369 as in [13], since no intermediate lattice scheme results were provided. The 3 flavour B̂K results
are converted to 4 flavours and vice versa via eq. (5.7).

5.5 B̂K global average

We proceed to compute the global averages of B̂K using our two-loop conversion. In table 7
we review the existing results entering into the current 3 and 4 flavour FLAG averages. In
table 8 we present our updated values for the corresponding B̂K values in table 7. Here
we have also converted the 3 flavour results to 4 flavours and 4 flavour ETM 15 result to
3 flavours using eq. (5.7).

To obtain the averages, we follow the procedure for averaging correlated data outlined
by Schmelling [39]. As we expect the two results of RBC/UKQCD 24 [32] to be correlated
we compute the full covariance matrix giving

f = 2 + 1 : B̂K = 0.7600(53), (RBC/UKQCD 24 updated) (5.8)
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where we use χ2 = 0.671 to estimate the size of the correlation to be 33.9%. The error is
then simply taken to be the square root of the variance. Unlike FLAG review [13] we do not
include the RBC/UKQCD 14B [37] result in the average as the newer result is a reanalysis of
the same lattice measurement as the older one with an improved renormalization.

Next, we combine the results from SWME 15A [36], RBC/UKQCD 24 [32] eq. (5.8),
Laiho 11 [38] and BMW 11 [34]. Here and in the following we neglect correlations between
different Lattice results, and get

f = 2 + 1 : B̂K = 0.7637(62), (5.9)

with χ2/dof = 1.739. According to our procedure, we rescale the error by the square root of
χ2/dof. This result can be compared to the FLAG average of B̂K = 0.7533(91) [13], which
includes specific correlations between Lattice results. The f = 2 + 1 + 1 average is simply
given by the 4 flavour ETM 15 [35] result, i.e.

f = 2 + 1 + 1 : B̂K = 0.745(25), (5.10)

which can again be compared to the FLAG average of B̂K = 0.717(24) [13].
Furthermore, we use our results in table 8 to obtain the full 3 and 4 flavour averages

for B̂K using combined 3 and 4 flavour results. For 3 flavours we get

B̂
(f=3)
K = 0.7627(60), (5.11)

with χ2/dof = 1.641. Here, we also rescale the error by square root of χ2/dof. For 4 flavours we
once more compute the average of RBC/UKQCD 24 values (B̂(f=4)

K )RBC/UKQCD = 0.7715(92)
with correlation of 68.2%, followed by our full 4 flavour result

B̂
(f=4)
K = 0.7759(84), (5.12)

with χ2/dof = 1.470. Here, the error is also rescaled by square root of χ2/dof.

5.6 ϵK updated value

Using our updated results for B̂K in eq. (5.11) we can obtain an updated value for ϵK . As
we observe a small shift in central value and reduction in error, we update the result of [10]
by recomputing the non-perturbative contribution and get

|ϵK | = 2.171(65)pert.(71)non-pert.(153)param. × 10−3, (5.13)

where the errors refer to perturbative, non-perturbative and parametric. As we can see our
result leads to reduction of non-perturbative uncertainty from 3.5% to roughly 3.28%. Here
we note that the long-distance contributions to ϵK , that now dominate the non-perturbative
uncertainties, can be drastically improved using future lattice calculations [40, 41].

5.7 D meson mixing

One can also use our results for conversion factors to obtain the MS and RGI values of the D
meson bag parameter computed by ETM 15 [35]. The results are summarized in table 9.
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Scheme Lattice NLO NNLO B̂
(f=3)
D B̂

(f=4)
D

B
(f=4)
D (RI′-MOM) 0.744(27) 0.757(27) 0.776(28) 1.095(41) 1.113(41)

Table 9. Bag parameter for D meson mixing. The Lattice value taken from ETM 15 [35]. The
MS and RGI values computed analogously to BK . The errors take into account uncertainties in the
Lattice value, αs and CS

BD
= CS

BK
. The RGI value errors also include MS residual scale variation.

6 Conclusions

Meson–antimeson mixing plays a central role in current particle physics phenomenology, with
the CP-violating parameter ϵK imposing very tight constraints on physics beyond the Standard
Model. The theoretical predictions for these observables rely heavily on non-perturbative
bag parameters, which must be converted from lattice renormalization schemes to the MS
scheme to ensure compatibility with perturbatively computed short-distance contributions
and allow for phenomenological analyses.

In this work, we derived the scheme conversion factors for several MOM and SMOM
renormalization schemes at NNLO in QCD, verifying and extending the previously established
NLO results. These NNLO conversion factors are essential for achieving precision in the
determination of the bag parameter B̂K , a critical component of the ϵK calculation. We
confirmed the numerical stability of our results, with residual scale dependence providing
an estimate of potential higher-order corrections.

We use our results to compute world averages of B̂K at NNLO incorporating diverse
lattice inputs obtained in different renormalization schemes and with either 3 or 4 dynamical
quarks. Notably, unlike previous analyses, by matching as needed at the charm threshold
at O(α2

s), we are able to combine the available 3- and 4-flavour lattice results into a single
average. We present this average for both 3 and 4 active quark flavours, i.e. as B̂(f=3)

K and
B̂

(f=4)
K . These averages can be directly used in the phenomenology of ϵK . Our 3-flavour

result can be compared to previous averages involving only 3-flavour lattice inputs and
improves both precision and consistency.

The updated central value of B̂K , with a 1% shift and a reduced uncertainty of under
0.8%, represents a significant improvement. It translates to an updated prediction for indirect
CP violation in the Kaon system, |ϵK | = 2.171(65)pert.(71)non-pert.(153)param. × 10−3.

Going forward, the enhanced precision on B̂K will play a pivotal role in future phe-
nomenological applications, further constraining the Standard Model and probing new physics
scenarios.
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A Fierz-evanescent operators

One can present the results in a slightly different manner, by trading the Q̃i for Fierz-evanescent
operators such that only a minimal number of operators contribute to the renormalized
Green’s function at D → 4 (and hence to the SMOM projections). We find that the following
operators are evanescent, including the first one which we already had:

E1F = Q̃1 −Q1, (A.1)

E2F = Q2 + Q̃2 −
p2

1
2 (Q1 + E1F ), (A.2)

E3F = Q3 + Q̃3 −
p1 · p2

2 (Q1 + E1F ), (A.3)

E4F = Q4 + Q̃4 −
p2

2
2 (Q1 + E1F ). (A.4)

One can then rearrange e.g. eq. (3.12) in terms of the (direct parts of the) matrix elements
of Qi and EiF , which gives the new coefficients

A′
1 = A1 + Ã1 +

p2
1
2 Ã2 +

p1 · p2
2 Ã3 +

p2
2
2 Ã4, (A.5)

A′
2 = A2 − Ã2, (A.6)

A′
3 = A3 − Ã3, (A.7)

A′
4 = A4 − Ã4. (A.8)

The second sum in eq. (3.27) then disappears without replacement, as the evanescent operators
have zero tree-level matrix elements. Both methods give the same result.

B MS renormalization constants

MS renormalization constants Z(ν) can written as

Z(ν) = 1 + Z(1)α(ν)
4π + Z(2)

(
α(ν)
4π

)2
+O

(
α(ν)
4π

)3
, (B.1)

where each perturbative order Z(n) is expanded in powers of ϵ

Z(n) =
n∑

m=0
Z(n,m) 1

ϵm
. (B.2)

The m = 0 term is non-vanishing only for ZEiQ(ν). The wavefunction renormalization
constants, given by

Z(1,1)
q = −CF ξ,

Z(2,2)
q = CF

4Nc
ξ(−ξ + 3N2

c + 2ξN2
c ),

Z(2,1)
q = CF

8Nc
(−3− 2ξ2 − 22N2

c − 8ξN2
c + ξ2N2

c + 4Ncf)−
C2

F

2 ξ2,

(B.3)
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where CF = (N2
c − 1)/(2Nc) is the quadratic Casimir invariant for the defining representation

of SU(Nc) [42]. The gauge renormalization constant is defined as

Z(1,1)
g = −β0, (B.4)

where β0 = 11
3 Nc − 2

3f [43], and the gauge parameter Z-factor is given by

Z
(1,1)
ξ = Nc

(5
3 + 1

2(1− ξ)
)
− 2

3f. (B.5)

C Operator anomalous dimensions

In order to perform the conversion between the two schemes at two-loop order, we will need
two-loop MS renormalization constants. These can usually be extracted from the computation
of the amplitude (or at least its poles). Alternatively, they enter the computation of the
two-loop anomalous dimensions. Several such computations have been performed specifically
for operator Q and can be found in [6, 7]. In this section we provide the derivation of the
anomalous dimensions in our conventions.

In general, renormalized operators QMS
i can be expressed in terms of bare operators

Qi, which have a well-defined meaning during the calculation, as defined in eq. (2.11). The
renormalization group equations of the operators

ν
d

dν
QMS

i (ν) = γijQ
MS
j (ν), (C.1)

are determined by the anomalous dimension matrix (ADM) γij , defined via

γij = ν
dZik(ν)
dν

Z−1
kj (ν). (C.2)

Hence, the one-loop ADM is given by

γ(0) = −2Z(1,1). (C.3)

The coefficient in front of the 1/ϵ pole has to vanish as the ADM has to be finite since it
encodes the change of operators with the renormalization scale. Hence, one can obtain an
ADM finiteness (or renormalisability) condition as

−2β0Z
(1,1) − 4Z(2,2) + 2Z(1,1)Z(1,1) = 0. (C.4)

Finally, the two-loop ADM is given by

γ(1) = (−2β0Z
(1,0) − 4Z(2,1) + 2Z(1,0)Z(1,1) + 2Z(1,1)Z(1,0)). (C.5)

As long as γ(0) arises at one-loop, as is the case in our investigation, it is scheme-independent.
The γ(1) generally depend on the renormalization scheme as Z(1,0) and Z(2,1) usually depend
on the choice of the evanescent operators, conventionally chosen such that their Green’s
functions vanish in four dimensions. In the following two sections we derive the operator
renormalization constants for our choice of scheme, corresponding to the evanescent operators
defined in eqs. (3.17), (3.18).
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D One-loop counterterms

Adding all 6 diagrams, for the one-loop amplitude we obtain

⟨Q⟩1−loop = αs

4π
1
ϵ

{(
2CF ξ − 3

(
1− 1

Nc

))
⟨Q⟩ − 3⟨EF ⟩+

1
2Nc

⟨E1⟩ −
1
2⟨E2⟩

}
+O(ϵ0).

(D.1)

From the requirement Z2
q (ν)⟨QMS⟩ = finite, where Zq(ν) = 1−CF ξαs(ν)/(4πϵ) is the 1-loop

MS field renormalization constant in a general covariant gauge [17], the αs/(4π) coefficients
in the Z-factors can then be read-off as

Z
(1,1)
QQ = 3

(
1− 1

Nc

)
, Z

(1,1)
QE2

= 1
2 , (D.2)

Z
(1,1)
QEF

= 3, Z
(1,1)
QE3

= 0, (D.3)

Z
(1,1)
QE1

= − 1
2Nc

, Z
(1,1)
QE4

= 0. (D.4)

In addition, for the two-loop renormalization we also require additional one-loop Z

factors corresponding to the evanescent operators EF , E1 and E2. We obtain them via
insertions of the evanescent operators into the vertices of the one-loop diagrams. Inserting
EF into the vertex yields

⟨EF ⟩1−loop = αs

4π
1
ϵ

{(
2CF ξ + 3

(
1 + 1

Nc

))
⟨EF ⟩

−
(1
4 + 1

2Nc

)
⟨E1⟩+

(1− CF

2 + 1
4Nc

)
⟨E2⟩

}
+O(ϵ0),

(D.5)

giving the constants

Z
(1,1)
EF Q = 0, Z

(1,1)
EF E2

= CF − 1
2 − 1

4Nc
, (D.6)

Z
(1,1)
EF EF

= −3
(
1 + 1

Nc

)
, Z

(1,1)
EF E3

= 0, (D.7)

Z
(1,1)
EF E1

= 1
4 + 1

2Nc
, Z

(1,1)
EF E4

= 0. (D.8)

Similarly, the remaining Z factors have been obtained from the corresponding insertions
into the one-loop amplitudes

⟨E1⟩1−loop = αs

4π
1
ϵ

{(
2CF ξ −

13
Nc

)
⟨E1⟩+ 13⟨E2⟩+

1
2Nc

⟨E3⟩ −
1
2⟨E4⟩

}
+ 24

(
2CF + 1− 1

Nc

)
⟨Q⟩+ evanescent,

(D.9)

⟨E2⟩1−loop = αs

4π
1
ϵ

{
5⟨E1⟩+

(
2CF ξ + 16CF − 5

Nc

)
⟨E2⟩ −

1
4⟨E3⟩

+ 1
4

( 1
Nc

− 2CF

)
⟨E4⟩

}
+ 48

(
1− 1

Nc

)
⟨Q⟩+ evanescent,

(D.10)
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where “evanescent” denotes terms that vanish as D → 4. The renormalization constants
can then be read-off as

Z
(1,1)
E1EF

= 0, Z
(1,1)
E2EF

= 0, (D.11)

Z
(1,1)
E1E1

= 13
Nc
, Z

(1,1)
E2E1

= −5, (D.12)

Z
(1,1)
E1E2

= −13, Z
(1,1)
E2E2

= 5
Nc

− 16CF , (D.13)

Z
(1,1)
E1E3

= − 1
2Nc

, Z
(1,1)
E2E3

= 1
4 , (D.14)

Z
(1,1)
E1E4

= 1
2 , Z

(1,1)
E2E4

= 1
4

(
2CF − 1

Nc

)
. (D.15)

The properly renormalized evanescent operators also require a subtraction of the finite
constants multiplying ⟨Q⟩, giving

Z
(1,0)
E1Q = 24

(
2CF + 1− 1

Nc

)
, Z

(1,0)
E2Q = 48

(
1− 1

Nc

)
. (D.16)

E Two-loop counterterms

Two-loop Z factors can be extracted from the 2-loop ADM. The Z factor can be expanded as

Z(2) =
(1
ϵ
Z(2,1) + 1

ϵ2
Z(2,2)

)
, (E.1)

Recalling the ADM finiteness limit in eq. (C.4), given by

4Z(2,2) + 2β0Z
(1,1) − 2Z(1,1)Z(1,1) = 0, (E.2)

where β0 = (11Nc − 2f)/3, we get

Z
(2,2)
QQ = 1

2(Z
(1,1)
QQ )2 − 1

2Z
(1,1)
QQ β0 = −(Nc − 1)(Nc(−2f + 11Nc − 9) + 9)

2N2
c

, (E.3)

Z
(2,2)
QEF

= 1
2(Z

(1,1)
QQ Z

(1,1)
QEF

+ Z
(1,1)
EF EF

Z
(1,1)
QEF

)− 1
2Z

(1,1)
QEF

β0 = f − 11Nc

2 − 9
Nc
. (E.4)

Using eq. (5.2) of [6], which translated to our conventions is written as

γ
(1)
QQ = (Nc − 1)

2Nc

(
21− 57

Nc
+ 19

3 Nc −
4
3f
)
, (E.5)

and eq. (C.5), given by

γ
(1)
QQ = −4Z(2,1)

QQ + 2Z(1,1)
QE1

Z
(1,0)
E1Q , (E.6)

we get

Z
(2,1)
QQ = Nc(−288CF +Nc(19Nc − 4f + 44) + 4f − 378) + 315

24N2
c

. (E.7)
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Technically, Z(2,1)
QEF

also enters the two-loop amplitude, however, we find that it drops out
of the computation of A′, hence it is not essential.

Finally, the change of basis between our and BG evanescent operator basis can be
obtained in terms of 1/ϵ2 parts of renormalization constants. To convert to the BG scheme,
we require two two-loop 1/ϵ2 pole coefficients in the evanescent sector. They can be inferred
from the eq. (C.4) as

Z
(2,2)
QE3

= Z
(1,1)
QE1

Z
(1,1)
E1E3

+ Z
(1,1)
QE2

Z
(1,1)
E2E3

= 1
4N2

c

+ 1
8 , (E.8)

Z
(2,2)
QE4

= Z
(1,1)
QE1

Z
(1,1)
E1E4

+ Z
(1,1)
QE2

Z
(1,1)
E2E4

= CF

4 − 3
8Nc

. (E.9)
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[9] J. Brod, S. Kvedaraitė and Z. Polonsky, Two-loop electroweak corrections to the Top-Quark
Contribution to ϵK , JHEP 12 (2021) 198 [arXiv:2108.00017] [INSPIRE].

– 31 –

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0550-3213(90)90373-L
https://doi.org/10.1016/0550-3213(90)90373-L
https://inspirehep.net/literature/296242
https://doi.org/10.1103/PhysRevLett.125.171803
https://doi.org/10.48550/arXiv.1911.06822
https://inspirehep.net/literature/1765727
https://doi.org/10.1103/PhysRevD.78.033005
https://doi.org/10.48550/arXiv.0805.3887
https://inspirehep.net/literature/786595
https://doi.org/10.1016/j.physletb.2010.04.017
https://doi.org/10.48550/arXiv.1002.3612
https://inspirehep.net/literature/846220
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.1103/RevModPhys.68.1125
https://doi.org/10.48550/arXiv.hep-ph/9512380
https://inspirehep.net/literature/403867
https://doi.org/10.1016/0550-3213(90)90223-Z
https://inspirehep.net/literature/279445
https://doi.org/10.1103/PhysRevD.82.094026
https://doi.org/10.48550/arXiv.1007.0684
https://inspirehep.net/literature/860429
https://doi.org/10.1103/PhysRevLett.108.121801
https://doi.org/10.48550/arXiv.1108.2036
https://inspirehep.net/literature/922836
https://doi.org/10.1007/JHEP12(2021)198
https://doi.org/10.48550/arXiv.2108.00017
https://inspirehep.net/literature/1897390


J
H
E
P
0
9
(
2
0
2
5
)
0
1
1

[10] J. Brod, S. Kvedaraite, Z. Polonsky and A. Youssef, Electroweak corrections to the
Charm-Top-Quark Contribution to ϵK , JHEP 12 (2022) 014 [arXiv:2207.07669] [INSPIRE].

[11] M. Ciuchini et al., Power corrections to the CP-violation parameter εK , JHEP 02 (2022) 181
[arXiv:2111.05153] [INSPIRE].

[12] Particle Data Group collaboration, Review of Particle Physics, PTEP 2022 (2022) 083C01
[INSPIRE].

[13] Flavour Lattice Averaging Group (FLAG) collaboration, FLAG Review 2024,
arXiv:2411.04268 [INSPIRE].

[14] C. Sturm et al., Renormalization of quark bilinear operators in a momentum-subtraction scheme
with a nonexceptional subtraction point, Phys. Rev. D 80 (2009) 014501 [arXiv:0901.2599]
[INSPIRE].

[15] G. Martinelli et al., A general method for non-perturbative renormalization of lattice operators,
Nucl. Phys. B 445 (1995) 81 [hep-lat/9411010] [INSPIRE].

[16] A.J. Buras, Weak Hamiltonian, CP violation and rare decays, in the proceedings of the Les
Houches Summer School in Theoretical Physics, Session 68: Probing the Standard Model of
Particle Interactions, Les Houches, France, July 28 – September 05 (1997) [hep-ph/9806471]
[INSPIRE].

[17] Y. Aoki et al., Continuum Limit of BK from 2+1 Flavor Domain Wall QCD, Phys. Rev. D 84
(2011) 014503 [arXiv:1012.4178] [INSPIRE].

[18] K.G. Chetyrkin and F.V. Tkachov, Integration by parts: the algorithm to calculate β-functions in
4 loops, Nucl. Phys. B 192 (1981) 159 [INSPIRE].

[19] M. Ciuchini et al., Next-to-leading order QCD corrections to ∆F = 2 effective Hamiltonians,
Nucl. Phys. B 523 (1998) 501 [hep-ph/9711402] [INSPIRE].

[20] A.J. Buras, M. Misiak and J. Urban, Two loop QCD anomalous dimensions of flavor changing
four quark operators within and beyond the standard model, Nucl. Phys. B 586 (2000) 397
[Erratum ibid. 1002 (2024) 116529] [hep-ph/0005183] [INSPIRE].

[21] S. Kvedaraité, From Flavour and Higgs Precision Physics to LHC Discoveries, Ph.D. thesis,
University of Sussex, U.K. (2021) [INSPIRE].

[22] A. von Manteuffel and C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction,
arXiv:1201.4330 [INSPIRE].

[23] S. Laporta, High-precision calculation of multiloop Feynman integrals by difference equations, Int.
J. Mod. Phys. A 15 (2000) 5087 [hep-ph/0102033] [INSPIRE].

[24] N.I. Usyukina and A.I. Davydychev, New results for two loop off-shell three point diagrams,
Phys. Lett. B 332 (1994) 159 [hep-ph/9402223] [INSPIRE].

[25] T. Gehrmann and E. Remiddi, Differential equations for two-loop four-point functions, Nucl.
Phys. B 580 (2000) 485 [hep-ph/9912329] [INSPIRE].

[26] S. Borowka et al., pySecDec: a toolbox for the numerical evaluation of multi-scale integrals,
Comput. Phys. Commun. 222 (2018) 313 [arXiv:1703.09692] [INSPIRE].

[27] J.A. Gracey, Three loop anomalous dimension of nonsinglet quark currents in the RI-prime
scheme, Nucl. Phys. B 662 (2003) 247 [hep-ph/0304113] [INSPIRE].

[28] M. Gorbahn and S. Jager, Precise MS-bar light-quark masses from lattice QCD in the RI/SMOM
scheme, Phys. Rev. D 82 (2010) 114001 [arXiv:1004.3997] [INSPIRE].

– 32 –

https://doi.org/10.1007/JHEP12(2022)014
https://doi.org/10.48550/arXiv.2207.07669
https://inspirehep.net/literature/2116080
https://doi.org/10.1007/JHEP02(2022)181
https://doi.org/10.48550/arXiv.2111.05153
https://inspirehep.net/literature/1964735
https://doi.org/10.1093/ptep/ptac097
https://inspirehep.net/literature/2106994
https://doi.org/10.48550/arXiv.2411.04268
https://inspirehep.net/literature/2846474
https://doi.org/10.1103/PhysRevD.80.014501
https://doi.org/10.48550/arXiv.0901.2599
https://inspirehep.net/literature/811234
https://doi.org/10.1016/0550-3213(95)00126-D
https://doi.org/10.48550/arXiv.hep-lat/9411010
https://inspirehep.net/literature/379648
https://doi.org/10.48550/arXiv.hep-ph/9806471
https://inspirehep.net/literature/472266
https://doi.org/10.1103/PhysRevD.84.014503
https://doi.org/10.1103/PhysRevD.84.014503
https://doi.org/10.48550/arXiv.1012.4178
https://inspirehep.net/literature/881847
https://doi.org/10.1016/0550-3213(81)90199-1
https://inspirehep.net/literature/171845
https://doi.org/10.1016/S0550-3213(98)00161-8
https://doi.org/10.48550/arXiv.hep-ph/9711402
https://inspirehep.net/literature/451338
https://doi.org/10.1016/S0550-3213(00)00437-5
https://doi.org/10.48550/arXiv.hep-ph/0005183
https://inspirehep.net/literature/527535
https://inspirehep.net/literature/1849936
https://doi.org/10.48550/arXiv.1201.4330
https://inspirehep.net/literature/1085338
https://doi.org/10.1142/S0217751X00002159
https://doi.org/10.1142/S0217751X00002159
https://doi.org/10.48550/arXiv.hep-ph/0102033
https://inspirehep.net/literature/552763
https://doi.org/10.1016/0370-2693(94)90874-5
https://doi.org/10.48550/arXiv.hep-ph/9402223
https://inspirehep.net/literature/371504
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.1016/S0550-3213(00)00223-6
https://doi.org/10.48550/arXiv.hep-ph/9912329
https://inspirehep.net/literature/511533
https://doi.org/10.1016/j.cpc.2017.09.015
https://doi.org/10.48550/arXiv.1703.09692
https://inspirehep.net/literature/1519856
https://doi.org/10.1016/S0550-3213(03)00335-3
https://doi.org/10.48550/arXiv.hep-ph/0304113
https://inspirehep.net/literature/616836
https://doi.org/10.1103/PhysRevD.82.114001
https://doi.org/10.48550/arXiv.1004.3997
https://inspirehep.net/literature/852667


J
H
E
P
0
9
(
2
0
2
5
)
0
1
1

[29] K.G. Chetyrkin and A. Retey, Renormalization and running of quark mass and field in the
regularization invariant and MS-bar schemes at three loops and four loops, Nucl. Phys. B 583
(2000) 3 [hep-ph/9910332] [INSPIRE].

[30] Particle Data Group collaboration, Review of particle physics, Phys. Rev. D 110 (2024)
030001 [INSPIRE].

[31] K.G. Chetyrkin, J.H. Kuhn and M. Steinhauser, RunDec: a Mathematica package for running
and decoupling of the strong coupling and quark masses, Comput. Phys. Commun. 133 (2000) 43
[hep-ph/0004189] [INSPIRE].

[32] RBC and UKQCD collaborations, Kaon mixing beyond the standard model with physical masses,
Phys. Rev. D 110 (2024) 034501 [arXiv:2404.02297] [INSPIRE].

[33] RBC/UKQCD collaboration, Neutral Kaon Mixing Beyond the Standard Model with nf = 2 + 1
Chiral Fermions Part 1: Bare Matrix Elements and Physical Results, JHEP 11 (2016) 001
[arXiv:1609.03334] [INSPIRE].

[34] BMW collaboration, Precision computation of the kaon bag parameter, Phys. Lett. B 705 (2011)
477 [arXiv:1106.3230] [INSPIRE].

[35] ETM collaboration, ∆S = 2 and ∆C = 2 bag parameters in the standard model and beyond from
Nf = 2 + 1 + 1 twisted-mass lattice QCD, Phys. Rev. D 92 (2015) 034516 [arXiv:1505.06639]
[INSPIRE].

[36] SWME collaboration, Kaon BSM B-parameters using improved staggered fermions from
Nf = 2 + 1 unquenched QCD, Phys. Rev. D 93 (2016) 014511 [arXiv:1509.00592] [INSPIRE].

[37] RBC and UKQCD collaborations, Domain wall QCD with physical quark masses, Phys. Rev. D
93 (2016) 074505 [arXiv:1411.7017] [INSPIRE].

[38] J. Laiho and R.S. Van de Water, Pseudoscalar decay constants, light-quark masses, and BK from
mixed-action lattice QCD, PoS LATTICE2011 (2011) 293 [arXiv:1112.4861] [INSPIRE].

[39] M. Schmelling, Averaging correlated data, Phys. Scripta 51 (1995) 676 [INSPIRE].

[40] Z. Bai et al., Long-distance contribution to εK from lattice QCD, Phys. Rev. D 109 (2024)
054501 [arXiv:2309.01193] [INSPIRE].

[41] Y. Huo, N.H. Christ and B. Wang, Enhanced Lattice QCD Studies on εK and ∆MK , PoS
LATTICE2024 (2025) 239 [INSPIRE].

[42] E. Franco and V. Lubicz, Quark mass renormalization in the MS-bar and RI schemes up to the
NNLO order, Nucl. Phys. B 531 (1998) 641 [hep-ph/9803491] [INSPIRE].

[43] L.N. Mihaila, J. Salomon and M. Steinhauser, Renormalization constants and beta functions for
the gauge couplings of the Standard Model to three-loop order, Phys. Rev. D 86 (2012) 096008
[arXiv:1208.3357] [INSPIRE].

– 33 –

https://doi.org/10.1016/S0550-3213(00)00331-X
https://doi.org/10.1016/S0550-3213(00)00331-X
https://doi.org/10.48550/arXiv.hep-ph/9910332
https://inspirehep.net/literature/508549
https://doi.org/10.1103/PhysRevD.110.030001
https://doi.org/10.1103/PhysRevD.110.030001
https://inspirehep.net/literature/2817040
https://doi.org/10.1016/S0010-4655(00)00155-7
https://doi.org/10.48550/arXiv.hep-ph/0004189
https://inspirehep.net/literature/526362
https://doi.org/10.1103/PhysRevD.110.034501
https://doi.org/10.48550/arXiv.2404.02297
https://inspirehep.net/literature/2773765
https://doi.org/10.1007/JHEP11(2016)001
https://doi.org/10.48550/arXiv.1609.03334
https://inspirehep.net/literature/1486242
https://doi.org/10.1016/j.physletb.2011.10.043
https://doi.org/10.1016/j.physletb.2011.10.043
https://doi.org/10.48550/arXiv.1106.3230
https://inspirehep.net/literature/913851
https://doi.org/10.1103/PhysRevD.92.034516
https://doi.org/10.48550/arXiv.1505.06639
https://inspirehep.net/literature/1372737
https://doi.org/10.1103/PhysRevD.93.014511
https://doi.org/10.48550/arXiv.1509.00592
https://inspirehep.net/literature/1391512
https://doi.org/10.1103/PhysRevD.93.074505
https://doi.org/10.1103/PhysRevD.93.074505
https://doi.org/10.48550/arXiv.1411.7017
https://inspirehep.net/literature/1329971
https://doi.org/10.22323/1.139.0293
https://doi.org/10.48550/arXiv.1112.4861
https://inspirehep.net/literature/1082463
https://doi.org/10.1088/0031-8949/51/6/002
https://inspirehep.net/literature/382295
https://doi.org/10.1103/PhysRevD.109.054501
https://doi.org/10.1103/PhysRevD.109.054501
https://doi.org/10.48550/arXiv.2309.01193
https://inspirehep.net/literature/2693461
https://doi.org/10.22323/1.466.0239
https://doi.org/10.22323/1.466.0239
https://inspirehep.net/literature/2893615
https://doi.org/10.1016/S0550-3213(98)00438-6
https://doi.org/10.48550/arXiv.hep-ph/9803491
https://inspirehep.net/literature/468700
https://doi.org/10.1103/PhysRevD.86.096008
https://doi.org/10.48550/arXiv.1208.3357
https://inspirehep.net/literature/1127729

	Introduction
	Operator renormalization and matching between schemes
	Momentum-space subtraction schemes
	MS scheme
	Scheme conversion

	Matching calculation
	Tree-level amplitude
	Bilinears and invariants
	Matrix elements entering the total amplitude
	Projectors and evanescent structures
	Obtaining coefficients Ai and Ai
	Obtaining the (S)MOM projections

	Loop calculation
	Amplitude at NLO
	Amplitude at NNLO
	Defining two-loop topologies
	Master integrals and evaluation
	Operators in Brod-Gorbahn basis
	Renormalized amplitude

	Results
	C(bK) up to NNLO
	Conversion to the RGI bag factor
	B(K) and their residual scale dependence
	Matching between number of flavours
	B(K) global average 
	epsilon(K) updated value
	D meson mixing

	Conclusions
	Fierz-evanescent operators
	MS renormalization constants
	Operator anomalous dimensions
	One-loop counterterms
	Two-loop counterterms

