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1. Einleitung

Schon immer hatte der Mensch den Drang sein Umfeld zu Erforschen und iiber den
bekannten Horizont hinauszuschauen. Der sprichwortlich elementarste Ansatz ist dabei
die Erforschung der Grundbausteine aller ihn umgebenden Materie. Bereits 400 v. Chr.
postulierte Demokrit, dass kleinste, unteilbare Teilchen existieren und bezeichnete sie
als Atome. Uber 2000 Jahre spiter gelang es J. J. Thomson mit der Entdeckung des
Elektrons, jene Sichtweise weiterzuentwickeln. Dazu fithrte er 1904 das erste Atommo-
dell, auch bekannt als Rosinenkuchenmodell, ein [1].

Dieser Ansatz, die Wirklichkeit mit einem vereinfachten physikalischen Modell darzu-
stellen, ist eines der wichtigsten Werkzeuge der Wissenschaft. Dadurch ist es moglich,
das Gesehene innerhalb gewisser Grenzen zu beschreiben. Auflerhalb dieser Randbe-
dingungen konnen diese Modelle allerdings versagen. Um neue Phénomene erkliren
zu konnen, miissen in solchen Féllen die bestehenden Modelle erweitert werden. Dazu
ist es notwendig die zugrunde liegenden Prozesse ausreichend zu verstehen. Fiir dieses
Verstindnis sind in der Teilchenphysik die Streuexperimente das wichtigste Mittel. So
entdeckte 1911 Ernest Rutherford den Atomkern durch Streuversuche mit a-Teilchen
an Goldfolie [2].

Innerhalb des letzten Jahrhunderts wurde dieses relativ einfache Experiment stark wei-
terentwickelt. Durch den rasanten technologischen Fortschritt konnten immer hohe-
re Schwerpunktsenergien in den Teilchenkollisionen erzeugt werden. Gleichzeitig er-
moglichte die Entwicklung leistungsfihigerer Detektoren eine prizise Identifikation der
Endprodukte in den Reaktionen, wodurch weitere Erkenntnisse {iber die ablaufenden
Prozesse gewonnen werden konnten. Damit wurde die Erforschung einer Vielzahl an Ele-
mentarteilchen zuginglich. Einen besonderen Meilenstein stellen die 1968 am SLAC!
in Stanford durchgefiithrten tief-inelastischen Streuversuche dar. Dabei wurden erstmals
Elektronen mit einer so hohen Energie an Atomkernen gestreut, dass deren Substruktur
erforscht werden konnte. Ahnlich zum Experiment von Rutherford stellte sich heraus,
dass die Streuzentren nicht homogen aufgebaut sind, sondern aus punktférmigen Kon-
stituenten bestehen. Als Folge entwickelten Richard Feynman und James Bjorken Ende
der 60er Jahre das Parton-Modell, in dem die Bestandteile als Partonen bezeichnet
werden [3]. Einige Jahre spéter identifizierte man sie mit geladenen Spin-1/2-Teilchen,
den Quarks bzw. Antiquarks, und neutralen Spin-1-Teilchen, den Gluonen. Alle seine
physikalischen Eigenschaften erhélt das Nukleon von diesen Konstituenten. Bis heute
ist dabei allerdings nicht vollstindig verstanden, wie sich aus ihnen der Spin 1/2 des
Nukleons zusammensetzt. Experimente in den 80er Jahren zeigten, dass die Spinbeitra-
ge der Quarks- und Antiquarks nur etwas mehr als 30% des Gesamtspins ausmachen.
Weiterhin ergaben Messungen am COMPASS?-Experiment, dass der Betrag des Spin-

!Stanford Linear Accelerator Center
2COmmon Muon and Proton Apparatus for Structure and Spectroskopy



8 1. Einleitung

beitrags durch die Gluonen im Bereich von 20 bis 30% des Gesamtspins liegt [4]. Der
restliche Beitrag wird deshalb in den zugehoérigen Bahndrehimpulsen vermutet. Diese
lassen sich indirekt iiber die entsprechenden Gesamtdrehimpulse bestimmen. Eine Mog-
lichkeit, letztere zu bestimmen, eréffnet das Konzept der sogenannten generalisierten
Partonverteilungsfunktionen (GPDs?). Sie werden zusammen mit den benétigten phy-
sikalischen Grundlagen in Kapitel 2 eingefiihrt.

Einen wertvollen Beitrag zur experimentellen Ermittlung der GPDs leistet das COM-
PASS-Experiment am CERN?. Es ist ein ,Fixed-Target“-Experiment mit einem zwei-
teiligen Spektrometer, dessen Hauptziel neben der Spektroskopie von Hadronen, die
Analyse der Nukleon-Spinstruktur ist. Der Aufbau und die Funktionsweise des Experi-
ments werden in Kapitel 3 beschrieben. Um die GPDs zu berechnen werden exklusive
Streuprozesse, wie die tief-virtuelle Compton-Streuung (DVCS?®), oder die harte exklu-
sive Mesonproduktion (HEMP®) prizise vermessen. Von diesen ist der DVCS-Prozess
theoretisch am problemlosesten beschreibbar. Bei ihm streut ein Lepton unter Aus-
tausch eines virtuellen Photons am Nukleon. Letzteres wird dadurch nicht zerstort,
sondern strahlt lediglich ein reelles Photon ab. Somit diirfen im Endzustand ausschlief3-
lich das gestreute Lepton, das reelle Photon, sowie das riickgestoflene Proton nachge-
wiesen werden. Da das Riickstoiproton unter einem Winkel von bis zu 80° aus dem
Target austreten kann, ist seine Detektierung nicht durch das Spektrometer moglich.
Deshalb kam wéhrend einer zwolftdgigen DVCS-Messung, die im Herbst 2009 durchge-
fiihrt wurde, ein sogenannter RPD7 zum Einsatz.

In Kapitel 4 erfolgt die Beschreibung der Analyse und Selektion von exklusiven DVCS-
Prozessen. Dabei werden aus den gewonnenen Daten zuerst alle Ereignisse selektiert,
die eine DVCS-Signatur aufweisen. Anschlieend werden zwei verschiedene Methoden
eingesetzt, um die exklusiven DVCS-Prozesse zu extrahieren. Bei beiden Methoden wird
die Exklusivitat der ablaufenden Prozesse mithilfe der Erhaltungsséatze tiberpriift. Dazu
erfolgt beim ersten Verfahren ein direkter Schnitt auf die Energie- und Impulsverteilun-
gen der rekonstruierten Teilchen. Diese gebriauchliche Vorgehensweise kam bereits bei
zuvor durchgefithrten DVCS-Analysen zum Einsatz. Bei der zweiten Methode wird ein
kinematischer Fit mit allen rekonstruierten Teilchen durchgefiihrt. Dabei werden auch
das reelle Photon und das riickgestoflene Proton einbezogen. Dieses Konzept ist neu-
artig bei einer DVCS-Analyse am COMPASS-Experiment. Als Folge erhilt man eine
verbesserte Rekonstruktion der nachgewiesenen, exklusiven Ereignisse.

Im letzten Abschnitt werden systematische Fehler bei der Energiemessung des Pho-
tons untersucht. Hier werden Ereignisse identifiziert, die filschlicherweise als exklusive
Prozesse selektiert wurden. Abschlieend wird eine Moglichkeit gezeigt, systematisch
unterschitzte Energiemessungen in zukiinftigen Analysen zu korrigieren.

3Generalized Parton Distributions

4Conseil Européen de la Recherche Nucleaire
5Deep Virtual Compton Scattering

SHard Exclusive Meson Production
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2. Physikalische Grundlagen

In diesem Kapitel werden die physikalischen Konzepte dargelegt, welche die experi-
mentelle Bestimmung der Eigenschaften des Nukleons erméglichen. Dabei werden die
Formfaktoren des Nukleons, sowie die Parton-Verteilungsfunktionen eingefiihrt. Mit
ihrer Hilfe kann die Nukleonstruktur parametrisiert werden. Einen experimentellen
Zugang bietet die tief-inelastische Lepton-Nukleon-Streuung, die ebenfalls beschrieben
wird. Danach wird ein Konzept erldutert, welches die Formfaktoren mit den Parton-
Verteilungsfunktionen verbindet, die sogenannten generalisierten Partonverteilungen.
Thre Vermessung ist eines der Hauptziele des COMPASS-Experiments. Sie ermogli-
chen indirekt die Bestimmung der Beitrige der Nukleon-Konstituenten zu dessen Ge-
samtspin. Fiir die experimentelle Ermittlung dieser Verteilungen ist der Prozess der
tief-virtuellen Compton-Streuung besonders wichtig. Er wird im letzten Abschnitt de-
tailliert beschrieben, da er der Kern dieser Arbeit ist.

2.1 Spin des Nukleons

Der Spin ist eine quantenmechanische, intrinsische Eigenschaft aller Elementarteilchen.
Er wird in der Einheit des Planckschen Wirkungsquantums & angegeben. Im Quark-
Parton-Modell [5] werden die Konstituenten des Nukleons als Partonen bezeichnet.
Man unterscheidet dabei die geladenen Teilchen Quarks und Antiquarks, sowie die
neutralen Gluonen. Letztere sind die Austauschteilchen der starken Wechselwirkung
und tragen den Spin A, wohingegen Quarks und Antiquarks den Spin % haben. Alle seine
physikalischen Eigenschaften erhilt das Nukleon aus dieser Substruktur. Auch sein Spin
S ldsst sich durch die Gesamtdrehimpulse J¢ und J9 seiner Konstituenten angeben.
Diese konnen wiederum als Summe aus den entsprechenden Bahndrehimpulsen und
Spins geschrieben werden [6]

§:%:Jq+J9:%AE+AG+Lq+L9. (2.1)

Dabei wird die Summe der Bahndrehimpulse der Quarks und Antiquarks als L?, und
ihr Spinbeitrag als AY zusammengefasst. Analog steht L9 fiir den Bahndrehimpuls der
Gluonen und AG fiir deren Spinbeitrag. Der Anteil von AY und AG am Gesamtspin
lésst sich experimentell bestimmen. Bei den Spins der Quarks und Antiquarks liegt er
bei ungeféhr 30 %, wihrend der Betrag der Gluonspins mit 20 bis 30 % beitragt [7].
Die Beitrige der Bahndrehimpulse L? und LY sind hingegen nicht direkt experimen-
tell zugénglich. Allerdings kénnen mithilfe des Konzepts der generalisierten Parton-
Verteilungen die entsprechenden Gesamtdrehimpulse besser abgeschétzt werden. Dazu
wird unter anderem die tief-virtuelle Compton-Streuung prézise vermessen.
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2.2 Kinematik in Streuprozessen

Die experimentelle Beobachtung der Streuung von Leptonen an Nukleonen ermdoglicht
die Erforschung der Nukleoneigenschaften. Dabei kénnen durch die Vermessung von
Wirkungsquerschnitten Informationen iiber das Wechselwirkungspotenzial gewonnen
werden. Zur Beschreibung von Streuprozessen werden mehrere kinematischen Gréfien
eingefiihrt, iiber die Tabelle 2.1 einen Uberblick verschafft.

p=(E,p) Viererimpuls des einlaufenden Leptons
p = (F.p") Viererimpuls des gestreuten Leptons
¥ = arccos (l ﬁ;‘ \I;;I’I) Streuwinkel des Leptons
M, Masse des Nukleons
P = (M,, P) '2b (M,,0,0,0) Viererimpuls des einlaufenden Nukleons
P’ = (M, P Viererimpuls des auslaufenden Nukleons
t=(P—-P)=-A2 auf das Nukleon iibertragenes Viererimpulsquadrat
g=p—7p Viererimpuls des ausgetauschten virtuellen Photons
v= P—g Ll oI o Energieverlust des gestreuten Leptons
Yy = II%) ‘ab = Relativer Energieverlust des gestreuten Leptons
Q%= —¢* L AEE - sin? ¥ | Negatives Viererimpulsquadrat des virtuellen Photons
Ty = 2?32 = 2%[21/ Bjorkensche Skalenvariable
T mittlerer Impulsbruchteil des gestreuten Quarks
¢ @0 Qf%b] »Skewness“-Variable

Tabelle 2.1: Definitionen der wichtigsten kinematischen Variablen in Streuprozessen

Bei gegebenem Viererimpuls p des einfliegenden Leptons, gibt es in der elastischen
Streuung nur einen freien Parameter. Wird z. B. der Streuwinkel ¢ bestimmt, so sind
aufgrund der Energie- und Impulserhaltung alle anderen kinematischen Variablen fest-
gelegt. Die Bjorkensche Skalenvariable, die Auskunft iiber die Inelastizitéit des Prozesses
gibt, ist in diesem Fall immer x; = 1. Bei inelastischen Stoflen kommt mit der An-
regungsenergie des Nukleons ein weiterer freier Parameter hinzu. Fiir solche Prozesse

folgt 0 < mp; < 1.
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2.3 Formfaktoren

Zur Beschreibung der elektrischen Ladungsverteilung von Kernen wird der elektroma-
gnetische Formfaktor eingefiihrt. Er beschreibt die transversale Ausdehnung der Kerne
und wird bei der Berechnung des Wirkungsquerschnitts von elastischen Stéf8en beno-
tigt. Durch Fouriertransformation ergibt sich aus ihm die Ladungsverteilungsfunktion
f(|Z]). Diese ist auf die Gesamtladung normiert und iiber die Ladungsdichte p(|Z|) de-
finiert [5]. Die Gesamtladung ergibt sich dabei aus dem Produkt der Ordnungszahl Z
und der Elementarladung e,

L p(E])
FZ) = —— (2:2)

In Streuexperimenten ist der Formfaktor vom Betrag des Viererimpulsiibertrags abhén-
gig. Dies liegt daran, dass je grofer Q? ist, desto groBer ist das Auflssungsvermogen des
ausgetauschten, virtuellen Photons.

Auch die Ladungs- und Stromverteilungen des Nukleons lassen sich durch Formfakto-
ren beschreiben. Mithilfe der elektrischen und magnetischen Formfaktoren G g(Q?) und
G1(Q?), kann der Wirkungsquerschnitt fiir die Elektron-Nukleon-Streuung iiber die
Rosenbluth-Formel beschrieben werden

do do G% + 7G5, 5 5 ¥
— ) =(=5 S| EL M g : =, 2.
(i) = (i) (557 ety e

Dabei wurde die Abkiirzung 7 := % verwendet. Der Faktor (%)Mott steht fiir

den Mott-Wirkungsquerschnitt, der die Elektronstreuung unter Beriicksichtigung des
Elektronspins beschreibt

do 47%a2, (he)*E? B 5 . 50
(8) e = (17 750°3). 24

Hierbei ist aey, die Kopplungskonstante der elektromagnetischen Wechselwirkung und
B = 2, berechnet aus der Leptongeschwindigkeit v, sowie der Lichtgeschwindigkeit c.
Im Grenzfall eines verschwindenden Viererimpulsiibertrags Q* — 0 erhilt man aus
den Formfaktoren die Ladung des Nukleons, normiert auf e, sowie sein magnetisches
Moment, normiert auf das Kernmagneton py. Beim Proton betragen sie

GE,Proton(Q2 = 0) =1 (25)
GM,Proton(Q2 - 0) = 2, 79.

Die Interpretation von G als Fouriertransformierte der Ladungsverteilung des Nukle-
ons ist nur bei kleinen Impulsiibertragen richtig.
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2.4 Tief-inelastische Streuung

Die tief-inelastischen Lepton-Nukleon-Streuung (DIS!) erméglicht die Erforschung der
Substruktur des Nukleons. Hierbei wird ein Lepton an einem Nukleon gestreut, welches
anschlieBend entweder fragmentiert, oder in einen angeregten Resonanzzustand ver-
setzt wird (siehe Abbildung 2.1). In fithrender Ordnung wird ein solcher Prozess durch

Abbildung 2.1: Schematische Darstellung der tief-inelastischen Streuung: Das Lepton [ wech-
selwirkt unter Austausch eines virtuellen Photons mit dem Nukleon N, welches in den hadro-
nischen Endzustand X fragmentiert.

den Austausch eines virtuellen Photons, oder eines Z%-Bosons beschrieben. Letzterer
wird im Folgenden nicht weiter beriicksichtigt, da er im verfiigbaren Energiebereich des
COMPASS-Experiments vernachléssigbar ist. Die entstehenden Endzustédnde solcher
Streuprozesse konnen inklusiv, semi-inklusiv oder exklusiv sein. Im ersten Fall wird
lediglich das gestreute Lepton nachgewiesen. Bei den anderen beiden werden zusétz-
lich auch Hadronen nachgewiesen, wobei man nur dann von einem exklusiven Prozess
spricht, wenn alle Teilchen des Endzustandes detektiert werden.
Analog zur elastischen Streuung kann man in der tief-inelastischen Streuung Struktur-
funktionen einfiihren. Dazu wihlt man eine Faktorisierung in einen harten leptonischen
Prozess, beschrieben durch den Tensor L,,, und einen weichen hadronischen Anteil,
der durch den Tensor W, dargestellt wird [8] [9]

d*c o, F

IR — _ 224
ap ~ oF g (2.7)

Dabei steht € fiir den Raumwinkel, in den das auslaufende Lepton gestreut wird. Der
harte leptonische Prozess ist gut verstanden, sodass L, kann mithilfe der pertubati-
ven QED? berechnet werden. Hingegen wird zur Beschreibung des hadronischen An-
teils die Theorie der QCD? benétigt. Die innere Struktur des Nukleons kann zunichst
nicht berechnet, sondern nur parametrisiert werden. Dazu wird ausgenutzt, dass der
Wirkungsquerschnitt in einen spinunabhéngigen, symmetrischen Teil (S) und einen

'Deep Inelastic Scattering
2Quanten-Elektro-Dynamik
3Quanten-Chromo-Dynamik
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spinabhéngigen, antisymmetrischen Teil (A) separiert werden kann. Letzterer ist eine
Funktion des Leptonspins §, sowie des Nukleonspins S

2 2
d“o . (07 El |:L(S)

- e

v(S A v(A q

An dieser Stelle werden die Strukturfunktionen F(zpj, Q?), Fa(zpj, Q?), g1(xp;, Q%)
und gg(acbj,Qz) eingefiihrt. Die ersten beiden Funktionen parametrisieren den sym-
metrischen Anteil, wohingegen ¢g; und ¢g» den antisymmetrischen Beitrag beschreiben.
Experimentell ergibt sich, dass diese Strukturfunktionen fiir feste Werte von xp; nur
sehr schwach von Q2 abhingen. Da mit Q2 das Auflésungsvermdogen zunimmt, miissen
somit die Streuzentren punktformig sein. Sie besitzen also im Gegensatz zu den Nukleo-
nen keine Substruktur. Weiterhin wurde durch Messungen die Callan-Gross-Beziehung
bestétigt

QxbjFl(xbj) = Fg(l'bj). (29)

Damit ist experimentell belegt, dass es sich um Spin-1/2-Teilchen handelt [10].

2.5 Wahl des Bezugssystems

Unter gewissen Bedingungen erhilt die Bjorkensche Skalenvariable x; eine anschauli-
che Bedeutung. Dazu wihlt man als Bezugssystem das sogenannte ,infinite momentum
frame®. In ihm bewegt sich das Proton so schnell, dass die transversalen Impulse seiner
Konstituenten vernachlissigt werden kénnen. Sollte dann der Impulsiibertrag des vir-
tuellen Photons ausreichend sein, um die Substruktur des Nukleons auflosen zu kénnen
(Q? >> ]\4;302)7 so spricht man von der ,,Stondherung”. Auf der Zeitskala des Streupro-
zesses kann in diesem System die Wechselwirkung der Partonen untereinander ebenfalls
vernachléssigt werden. Damit ist es moglich, die tief-inelastische Streuung des Leptons
am Nukleon als elastische Streuung an den frei beweglichen Partonen zu beschreiben.
Sie besitzen im betrachteten Bezugssystem einen bestimmten Bruchteil des Viererim-
pulses des gesamten Nukleons. In dieser Néherung gibt z;; an, wie grof§ der Bruchteil
ist.

2.6 Skalenbrechung der Strukturfunktion

Obwohl die Quarks und Gluonen punktférmig sind, hat sich durch Experimente heraus-
gestellt, dass die Strukturfunktion F auch leicht von Q? abhingig ist. Dieses Verhalten
bezeichnet man als Skalenbrechung und liegt darin begriindet, dass mit zunehmen-
dem Q? das Auflssungsvermogen des virtuellen Photons zunimmt. Im Nukleon findet
kontinuierlich eine Umverteilung der Impulsverteilungen statt, denn Quarks kénnen
Gluonen emittieren und absorbieren. Zusétzlich sind auch Gluonen in der Lage weitere
Gluonen zu emittieren, oder sich in Quark-Antiquark-Paare aufzuspalten. Je grofier das
Auflésungsvermogen fiir diese Prozesse ist, desto grofler ist die Anzahl der aufgelosten
Partonen. Somit sinkt, mit steigendem @2, der Beitrag eines einzelnen Partons zum
Gesamtimpuls und damit steigt die Wahrscheinlichkeit kleinere Werte fiir x;; vorzufin-
den. Entsprechend beobachtet man bei kleinen Q? weniger Partonen, die deshalb einen
grofleren Impulsbruchteil xy; tragen.
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2.7 Parton-Verteilungsfunktionen

Die Impuls- und Helizitétsverteilungen der Quarks, bzw. Antiquarks, vom Typ f* wer-
den durch die Partonverteilungsfunktionen (PDFs®) gf(zp;) und Agy(xp;) parametri-
siert. Die Wahrscheinlichkeit, dass ein entsprechendes Parton mit einem Impuls zwi-
schen xp; und (xp; + Axy;) vorliegt, ist durch die unpolarisierte PDF gy (xp;) gegeben
und betrigt f;b’? ATy, qf(zpj)dayj. Gewichtet mit den elektrischen Ladungen ef, in
Einheiten der Elementarladung e, lassen sich damit die Strukturfunktionen F; und Fj

ausdriicken,
_ 1 2
Fi(wp;) = B Efzef qr(zny) (2.10)
Fo(xpj) = ap; Ze? qf(xpj). (2.11)
f

Bei der Streuung von longitudinal polarisierten Leptonen an parallel oder antiparallel
polarisierten Nukleon beschreiben sie auflerdem die Helizitétsverteilung der Quarks

Aqr(rog) = a5~ () — a5 (y)- (2.12)
Dabei steht qu(xbj) fiir die Wahrscheinlichkeit ein Quark vom Flavour f anzutreffen,

das den Impulsbruchteil z; und die gleiche Helizitdt wie das virtuelle Photon besitzt.
Entsprechend ist die Wahrscheinlichkeit bei einer entgegengesetzten Helizitédt gleich

qf;(:pbj). Damit lassen sich die unpolarisierten PDFs wie folgt schreiben,

ar(xe;) = a5~ (we) + a5~ (w15). (2.13)
Mit ihrer Hilfe kann der Spinbeitrag 3 aller Quarks und Antiquarks in Gleichung (2.1)

berechnet werden. Dazu wird fiir jeden Flavour {iber alle xy;-Werte integriert und an-
schlieflend die Summe gebildet

1
AR =" / Aqy () dy;. (2.14)
f 0
Zusétzlich kann auch die Strukturfunktion g; wie folgt beschrieben werden,

91(wp;) = % > i Aqy (). (2.15)
f

Im Gegensatz dazu gibt es fiir die spinabhéingige Strukturfunktion go(xp;) keine Be-
schreibung durch die PDFs, da sie die Streuung an transversal polarisierten Nukleonen
charakterisiert.

4mit f =u,q,d,d,s oder 5

5Parton Density Functions
6

2. _ _ _ 1. — _
€y = 37€d = €s = —3jCuds = “€zds

=
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2.8 Generalisierte Partonverteilungen

Die zuvor eingefithrten Partonverteilungen beschreiben das Nukleonen unter Vernach-
lassigung von transversalen Impulsen. Sie enthalten also nur Informationen iiber die
Wahrscheinlichkeit, ein Parton mit einem bestimmten longitudinalen Impulsbruchteil
des Nukleons vorzufinden. Unabhéingig davon liefern die elektromagnetischen Formfak-
toren die Wahrscheinlichkeitsverteilungen der Partonpositionen in transversaler Rich-
tung. Die Theorie der generalisierten Partonverteilungen verbindet nun diese beiden
Konzepte. Sie wurde in den theoretischen Arbeiten von Miiller [11], sowie Radyushkin
[12] eingefithrt und ermoglichen unter anderem eine dreidimensionale Beschreibung des
Nukleons (“Nukleon-Tomographie”).

Analog zum Vorgehen in der inklusiven tief-inelastischen Streuung kénnen auch exklu-
sive Prozesse, wie die tief-virtuelle Compton-Streuung und die harte exklusive Meson-
Produktion in einen weichen und einen harten Anteil faktorisiert werden. Hierbei er-
moglichen die GPDs H, H, E und E eine Parametrisierung des weichen Subprozesses.
Sie sind abhéngig von den kinematischen Variablen ¢, z und £. Dabei ist ¢ das Quadrat
des auf das Nukleon iibertragenen Viererimpulses,

t=(P—P)*=—-A% (2.16)

Die Summe x + £ und die Differenz z — £ beschreiben den Anteil des Gesamtimpulses
des Nukleons, den das beteiligte Quark im Anfangs- bzw. Endzustand tréigt (sieche Ab-

bildung 2.2).
1'
/ Y
Y*

Abbildung 2.2: Handbag-Diagramm der tief-virtuellen Compton-Streuung: Die GPDs ermog-
lichen eine Beschreibung des weichen hadronischen Subprozesses.

Man beachte, dass es sich bei x nicht um das xy; = % aus der tief-inelastischen Streu-
ung handelt, sondern um den nicht messbaren Mittelwert aus den Impulsbruchteilen
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des Quarks vor und nach der Streuung. Der im Englischen als ,,skewness* bezeichnete
Parameter ¢ ist die Hélfte der Differenz dieser Impulsanteile und ist tiber die folgende
Gleichung mit xy; verkniipft [13]:

2
g w0t ) Qe (2.17)
2~z (1 - 57) 2~y .
Die vier genannten GPDs lassen sich anhand ihres Verhaltens in Bezug auf die Quark-
und Nukleon-Helizitdt charakterisieren. Ihre Eigenschaften sind in Tabelle 2.2 zusam-

mengestellt.

Nukleonhelizitat
erhalten | nicht erhalten
Quarkhelizitdtsunabhingig HT Ef
Quarkhelizitdtsabhéngig H Ef

Tabelle 2.2: Eigenschaften der GPDs H, H, Eund E

2.8.1 Interpretation der GPDs

Eine anschauliche Bedeutung erhalten die GPDs im Grenzfall £ — 0. Hier dndert das
Parton seinen longitudinalen Impulsbruchteil nicht, sodass das Nukleonen einen rein
transversalen Impulsiibertrag erfihrt,

t=—A22" A2, (2.18)

Die Fouriertransformierte von H (z,0, —A?) beziiglich A ergibt damit die rdumliche
Verteilung aller Partonen vom Typ f, die den longitudinalen Impulsbruchteil = tragen.
Um die Position innerhalb des Nukleons beschreiben zu kénnen wird an dieser Stelle
ein neuer Parameter b, eingefiihrt, der den transversalen Abstand zum Schwerpunkt
des Nukleonimpulses angibt [14]. Die Partonverteilungsfunktion

2
o (wbn) = [ b0 1 0.0, -a%) (2.19)
geht fiir x — 1 in eine §-Funktion iiber, da ein Parton, das fast den gesamten Nukleon-
impuls tragt, den Impulsschwerpunkt festlegt. Dieses Verhalten ist in Abbildung 2.3
schematisch dargestellt.

Fordert man zusétzlich zu £ = 0 auch noch ¢ = 0, so befindet man sich im sogenannten
Vorwirtslimit“. Hier sind fiir die helizititserhaltenden GPDs HY und Hf der Viererim-
puls und die Helizitét des Nukleons im Anfangs- und Endzustand identisch. Sie gehen in
diesem Grenzfall in die unpolarisierten und polarisierten Partonverteilungsfunktionen
¢/ und Ag/ iiber:

H (2,0,0) = g5 (z) (2.20)
HY(x,0,0) = Ags(x). (2.21)
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Abbildung 2.3: Dreidimensionale Darstellung des Nukleons: (a) Parton mit longitudinalem
Impulsbruchteil x des Nukleonvierervektors P und transversalem Abstand b zum Impulsschwer-
punkt; (b) Verteilungen von Partonen mit ausgewihlten x-Werten (Quelle: [15])

Bei den helizititsumkehrenden GPDs Ef und Ef gibt es keinen derartigen Zusam-
menhang. Das ist darin begriindet, dass fiir eine Anderung der Nukleonhelizitéit ein
Impulsiibertrag ¢ > 0 erforderlich ist.

Unabhéngig von der Beschreibung im Vorwiértslimit sind aulerdem die ersten Momen-
te der GPDs mit den elastischen Dirac-, Pauli-, Axial- und Pseudoskalar-Formfaktoren
des Nukleons verkniipft. Diese ergeben sich aus den Beitrégen Flf (1), FZf (1), Gf;(t) und

Gﬁ(t) der Quarks mit Flavour f [16]

+1
/ do HY (z,¢,t) = F{ (¢) (2.22)
,—1"_1
/ da EY (z,€,t) = Ff (t) (2.23)
-1
/ e B () = G0 (2.24)
-1
/ Y B (z,&,t) = GL(b). (2.25)
-1

2.9 Jis Summenregel

Von besonderem Interesse ist das zweite Moment der Summe aus den GPDs H und F.
Im Jahr 1997 zeigte Ji, dass damit Aussagen iiber die Gesamtdrehimpulse J/ und J9
in Gleichung (2.1) gemacht werden kénnen [16],

1 1
JQY) = 3lm [ doa|H (2,6,.Q) + B (2.6,4.Q%)] . (2.26)
—0J
Diese Summenregel bietet somit die Moglichkeit, die vollstdndige Zusammensetzung des
Nukleonspins zu erforschen. Dazu miissen die GPDs fiir den Grenzfall ¢ — 0 moglichst
genau gemessen werden.
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2.10 Tief-virtuelle Compton-Streuung

Bei der tief-virtuellen Compton-Streuung wechselwirkt ein Lepton mit einem Nukleon
unter Austausch eines virtuellen Photons. Dabei bleibt das Nukleon unversehrt und
strahlt anschlieend ein reelles Photon ab (siche Abbildung 2.2)

I+N U+ N ++. (2.27)

Wie bereits eingefiihrt kann der DVCS-Prozess in einen harten leptonischen Anteil und
einen weichen hadronischen Teil faktorisiert werden. Dies ist im sogenannten Bjorken-
Limit méoglich, d.h. fir Q> — oo bei festem xp; und t. Dadurch kann die Streuung
in fithrender Ordnung in einem sogenannten ,Handbag“-Diagramm schematisch dar-
gestellt werden. Hier absorbiert ein Quark des Nukleons das virtuelle Photon +* und
sendet anschliefend ein reelles Photon aus. Dabei reduziert sich sein longitudinaler Im-
pulsbruchteil von (z+¢) im Anfangszustand, auf (x—¢) im Endzustand. Die Korrelation
dieser beiden Zustinde wird in Abhiingigkeit von ¢ und Q2 durch die GPDs H, H, E
und E beschrieben. Damit dieser Ansatz gerechtfertigt ist, muss auBerdem gelten [17]:

t << Q% (2.28)

Durch die prizise Messung des DVCS-Prozesses konnen folglich Riickschliisse iiber den
Verlauf der GPDs fiir ¢ — 0 gezogen werden. Diese Moglichkeit besteht auch bei der
Vermessung von anderen Prozessen, wie der exklusiven harten Meson-Produktion. Man
bevorzugt allerdings den DVCS-Prozess, da er im Endzustand kein Meson enthélt und
theoretisch am besten verstanden ist. Ein Nachteil besteht allerdings darin, dass es noch
einen konkurrierenden Streuprozess gibt, der denselben, nicht unterscheidbaren Endzu-
stand besitzt. Dadurch interferieren die Streuamplituden beider Prozesse miteinander
und es ist nicht moglich, die DVCS-Amplitude direkt zu messen.

Bei dem zweiten Prozess handelt es sich um eine elastische Lepton-Nukleon-Streuung,
bei der ein hartes Photon vom Lepton durch Bremsstrahlung abgegeben wird, die soge-
nannte Bethe-Heitler-(BH)-Streuung (siehe Abbildung 2.4). Dieser rein elektromagneti-
sche Vorgang ist vollstandig verstanden und kann mithilfe der QED berechnet werden.
Allerdings sind somit auch keine Informationen iiber die GPDs darin enthalten.

Der Wirkungsquerschnitt der beiden Prozesse ist als Folge der Ununterscheidbarkeit
proportional zur Summe aus den einzelnen Quadraten der komplexen Streuamplituden
7 und enthélt zusétzlich einen Interferenzterm I [17]

d*oc(IN — I'N') ) )
dx dQ2 d|t| do X |7'BH|2 + |7'DV03|2 + TDVCS TBH :{: Tpves TBH - (2'29)
I

Dabei gibt ¢ gibt den Winkel an, der zwischen der Leptonebene und der Hadronebene
aufgespannt wird. Als Leptonebene bezeichnet man die Streuebene, in der das ein- und
das auslaufende Lepton liegen. Entsprechend wird die Hadronebene durch das auslau-
fende Nukleon N’ und das reelle Photon ~ aufgespannt (sieche Abbildung 2.5).

Dass der Wirkungsquerschnitt von diesem Winkel abhéingig ist, liegt in der unterschied-
lichen Entstehung des Photons begriindet. Beim DVCS-Prozess wird es vom Proton
emittiert und hat keine Vorzugsrichtung. Dadurch wird das Proton aus der Leptone-
bene abgelenkt und es ist kein spezieller ¢-Winkel ausgezeichnet. Bei der BH-Streuung
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Abbildung 2.4: Feynman-Diagramme der Bethe-Heitler-Prozesse fithrender Ordnung

Y -v-p Ebene

Abbildung 2.5: Definition des Winkels ¢ zwischen der Lepton- und der Hadronstreuebene in
der tief-virtuellen Compton-Streuung (Quelle: [17])
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hingegen, wird das Photon vom Lepton durch Bremsstrahlung bevorzugt in Flugrich-
tung des Leptons emittiert. Damit besitzt ¢ ein relativ scharfes Maximum bei 0°, denn
das Proton bleibt nach der Streuung aufgrund der Impulserhaltung in der Leptonebene.
Simulationen haben gezeigt, dass das Verhiltnis von auftretenden DVCS- zu Bethe-
Heitler-Ereignissen stark vom beobachteten kinematischen Bereich abhéngt. Erst fiir
grofie x;;-Werte dominiert der reine DVCS-Prozess und die charakteristische, breite ¢-
Verteilung wird sichtbar (siche Abbildung 2.6).

0.005 < Xg; <0.01 0.01 < Xg; < 0.03 Xg; > 0.03
2 14} 2 L
S [ — IBH+DVCS? - — pvesp? € — |BH+DVCSP — — |pvesp? € °[— |BH+DVCS? — — |Dvesp
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Abbildung 2.6: Simulierte Verhéltnisse von detektierbaren DVCS- und BH-Ereignissen am
COMPASS-Experiment. Die Verldufe sind dabei proportional zum entsprechenden Wirkungs-
querschnitt und abhéngig vom betrachteten x;;-Bereich (Quelle: [15])

Wie bereits erwéihnt, ist der BH-Prozess gut verstanden und die entsprechende Streu-
amplitude 7py kann berechnet werden. Sie ist rein reell und unabhéngig von der La-
dung des Leptons. Im Gegensatz dazu dndert die komplexe DVCS-Amplitude mpvcs
ihr Vorzeichen zusammen mit der Leptonladung. Dies ermoglicht die Extrahierung des
Realteils von mpycs, indem man die Differenz der Wirkungsquerschnitte aus Messungen
mit umgekehrter Leptonladung bildet

d*'o(I*N = I""N'y)  d'o(I"N — " N'y)
dr dQ? d|t| d¢ dx dQ? d|t| d¢

X TBH Re(TDvcs). (2.30)

Weiterhin besteht auch die Moglichkeit, den Imaginérteil zu separieren. Dazu wird
ein longitudinal polarisiertes Leptonen an einem unpolarisierten Nukleon gestreut. Die
Differenz von Messungen mit Leptonen entgegengesetzter Helizitdt ist dann

d*o(I'TN — I'"N'~) B d*o(I'N — "' N'~)
dr dQZ dJt] do dr dQZ dJt] do

o Im(mpves)- (2.31)
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Auch die GPD H kann bestimmt werden. Dies erfolgt mithilfe von Messungen mit
Leptonen, die sowohl entgegengesetzte Helizitét, als auch umgekehrte Ladung besitzen

oINS ITHIN"y)  d4e(I7TN — I"TN')
dedQ?d|t|dp  dzdQ2d|t|do

d*o(ITVN = I'TIN"y)  d*e(I"TN — I'"TN'y)
dwdQ?dide | dzdQ?d|idé

x Re(F1H) cos(¢) (2.32)

x Im(F1'H) sin(¢). (2.33)

Diese Gesetzmafigkeiten ermoglichen die Berechnung des Compton-Formfaktors H, in
Abhéngigkeit vom Winkel ¢. H ist die Faltung zweier Funktionen. Dabei handelt es
sich um die gesuchte GPD H, sowie eine Funktion, die die harte Compton-Streuung
beschreibt.
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3. Das COMPASS-Experiment

Das COMPASS-Experiment ist ein zweiteiliges Spektrometer, das seit dem Jahr 2002
in Betrieb ist. Es erhilt vom CERN SPS! Beschleunigerring wahlweise einen hochener-
getischen Myonen- oder Hadronenstrahl. Derzeit ist COMPASS das weltweit einzige
Experiment, das mit einem natiirlich polarisierten Strahl aus positiv oder negativ gela-
denen Leptonen messen kann. Im Folgenden wird nicht weiter auf den Hadronenstrahl
eingegangen, da die in dieser Arbeit durchgefiihrte Analyse ausschliefilich auf Messda-
ten mit dem Myonenstrahl basiert. Dieser wird auf ein sogenanntes Target gefeuert,
dass mit fliissigem Wasserstoff gefiillt ist?. Dabei ist eine hohe Luminositit und eine
grofe Winkel- und Impulsakzeptanz der Detektoren unabdingbar. Dies fiithrt zu ho-
hen Anforderungen an die Ausleseelektronik, die die damit verbundenen, hohen Zahl-
und Triggerraten verarbeiten muss. Um eine moglichst grofie Messauflésung zu erzie-
len, besteht das Experiment aus mehreren Komponenten, die fiir unterschiedliche ki-
nematische Bereiche ausgelegt sind. Den Anfang bildet ein Strahlspektrometer vor der
Experimenthalle, welches die Impulse der Strahlteilchen bestimmt. Es wird gefolgt vom
Targetbereich, in dessen Wasserstoffzelle die tief-inelastische Streuung stattfindet. Die
dabei riickgestoflenen Protonen kénnen von einem zylindrischen Detektor, dem soge-
nannten RPD?, analysiert werden. Das darauf folgende Spektrometer lisst sich in zwei
Bereiche aufteilen. Den ersten Teil bildet das LAS* und den zweiten das SAS®, welches
das Experiment abschliefit. Sie sind fiir unterschiedliche Winkel- und Impulsbereiche
sensitiv.

Im Folgenden werden die Bestandteile des Experiments beschrieben. Dabei werden
nur diejenigen Detektoren, die zum Verstdndnis dieser Arbeit wichtig sind, ausfiihr-
licher vorgestellt. Abbildung 3.1 zeigt eine schematische Darstellung des COMPASS-
Spektrometers. Eine detaillierte Beschreibung sémtlicher Komponenten findet sich im
COMPASS-Paper [18].

'Super Proton Synchrotron
2 Fixed-Target“-Experiment
3Recoil Proton Detector

4Large- Angle-Spectrometer
5Small- Angle-Spectrometer
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Abbildung 3.1: Schematische Anordnung des COMPASS-Spektrometers (Quelle: [18])

3.1 Der Myonstrahl und das Strahlspektrometer

Die Daten, die in dieser Arbeit analysiert werden, wurden mit einem 160 GeV/c-
Myonstrahl gemessen. Dieser wird iiber ein mehrstufiges Verfahren aus dem Proton-
strahl des SPS gewonnen. Dazu werden die Protonen im Ring auf 400 GeV /¢ beschleu-
nigt und anschlieBend auf ein 50 cm dickes Beryllium-Target (T6) geschossen. Dieser
Extraktionszyklus dauert fiir gew6hnlich 9,6 Sekunden und erfolgt alle 40 Sekunden.
Dadurch entstehen ungefihr dreimal mehr positiv als negativ geladene Pionen und zu
einem Anteil von etwas mehr als 4 Prozent Kaonen. Sie zerfallen anschliefend teilwei-
se in einem 600 Meter langen Tunnel {iber die schwache Wechselwirkung in Myonen
und Myon-Neutrinos. Beide sind aufgrund der parititsverletzenden Natur des Pionzer-
falls polarisiert. Der Grad der Polarisation hingt von den Pion- und Myonimpulsen
ab und wurde durch eine Integration iiber alle auftretenden Impulse zu einem mittle-
ren Wert von (80 &+ 4) % bestimmt (siehe Abbildung 3.2). Sémtliche Hadronen, die bis
zum Ende des Tunnels nicht zerfallen sind, werden dort in einem Beryllium-Absorber
gestoppt. Der verbleibende Myonstrahl wird dann mithilfe zahlreicher Dipol- und Qua-
drupolmagneten fokussiert, impulsselektiert und iiber einen 800 Meter langen Tunnel
zur Experimenthalle geschickt.

Um einen moglichst hohen Fluss von bis zu 2 - 108 Myonen pro Zyklus zu erreichen,
wird der Toleranzbereich in der Myonimpulsselektion relativ grofziigig gewéhlt. Das
bedeutet, dass Myonen mit einem Impuls im Bereich (160 + 8) GeV/c das Experi-
ment erreichen. Deshalb ist eine prézise Bestimmung sidmtlicher Myonimpulse durch
das Strahlspektrometer, genannt BMS®, erforderlich. Dieses beginnt ungefihr 100 Meter
vor der Experimenthalle. Es beinhaltet einen Analysemagneten (B6), sowie sechs De-

Beam-Momentum-Station
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Abbildung 3.2: Polarisationsgrad der Strahlmyonen in Abhéngigkeit des mittleren Myonim-
pulses, ausgehend von einem mittleren Hadronenimpuls von 172 GeV/c (Quelle: [18])

tektorstationen (BMO1 bis BMO06), bei denen es sich um Szintillator-Hodoskope und
SciFi’-Detektoren handelt (sieche Abbildung 3.3). Vor dem Target befinden sich aufer-
dem noch zwei weitere SciFi-Detektoren, sowie drei Silizium-Mikrostreifen-Detektoren,
die spéter eine genaue Spurrekonstruktion ermoglichen.

Ungeféhr ein Viertel aller eingehenden Myonen sind nicht im Strahlzentrum fokussiert,
sondern befinden sich im sogenannten Strahl-Halo [18]. Da sie nicht durch die Tar-
getzelle fliegen, liefern sie keine physikalisch interessanten Ereignisse und miissen vom
in Abschnitt 3.5 beschriebenen Veto-System identifiziert werden. Man unterteilt sie je
nach Abstand von der Strahlachse in zwei Kategorien. Im strahlnahen Halo, mit einem
maximalen radialen Abstand von 15 cm, befinden sich ungefiahr 16 % aller Myonen. Die
restlichen Halo-Myonen sind mehr als 15 cm entfernt und werden dem strahlfernen Halo
zugeordnet.

"Scintillating Fiber
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Abbildung 3.3: Schematische Darstellung des Strahlspektrometers; der Dipolmagnet (B6) ist
umgeben von vier Quadrupolmagneten (Q29-Q32) und sechs Detektorstationen (BM01-BMO06)
(Quelle: [18])

3.2 Das Target und der RiickstoB3proton-Detektor

Zur Untersuchung von DVCS-Prozessen wird ein moglichst reines Protonentarget, mit
ausreichend hoher Dichte benétigt. Dies wird realisiert durch eine mit unpolarisiertem,
fliissigem Wasserstoff gefiillte Targetzelle. Sie ist 40 cm lang und besitzt einen Radius
von 35mm. Um sie herum befindet sich ein Aluminium-Kryostat mit einem Durch-
messer von 185 mm. Beide sind in Abbildung 3.4 zusammen mit einigen Detektoren
dargestellt. Dazu zdhlen Siliziumstreifendetektoren, die durch ihre sehr hohe Ortsauf-
l6sung eine genaue Rekonstruktion von Teilchenspuren erméglichen. Auflerdem sind
Vetozéhler zu sehen, die sicherstellen, dass nur solche Ereignisse gespeichert werden,
bei denen das Strahlmyon durch die Targetzelle geflogen ist. Ihre Funktionsweise wird
in Abschnitt 3.5 genauer erldutert.

Um das riickgestoflene Proton detektieren zu kénnen, befinden sich um den Targetkryo-
stat herum, zwei konzentrische Zylinder aus jeweils 12, bzw. 24 Szintillationsstreifen. Sie
bilden den sogenannten RPD. In Tabelle 3.1 sind ihre Kenndaten gegeben, wobei die in-
neren Streifen als A-Ring und die &ufleren als B-Ring zusammengefasst werden. Sie sind
in Strahlrichtung asymmetrisch angebracht, um eine moglichst grofle Winkelakzeptanz
von 90° bis hin zu 55° beziiglich der Strahlachse zu erreichen (siehe Abbildung 3.5).
Dabei wird jeder Streifen an beiden Enden von Photomultipliern (PMTs®) ausgelesen.
Diese erzeugen negative Spannungspulse von bis zu —4V, iiber deren Signalhthe die
im Szintillatormaterial deponierte Energie berechnet werden kann. Auflerdem besteht
die Moglichkeit, die Trajektorien der nachgewiesenen Teilchen zu rekonstruieren. Dazu
wird zunéchst aus den Signalzeitpunkten der beiden PMTs eines durchflogenen Streifens
der Durchstofizeitpunkt tg ermittelt. Man bezeichnet den Zeitpunkt des PMTs der sich

8PhotoMultiplier Tubes
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Abbildung 3.4: Schematische Darstellung der Targetzelle, sowie des Kryostats und der umge-
benden Detektoren (Quelle: [19])

A-Ring B-Ring
Material BC404 THEP production
Léange 50 cm 108 cm
Dicke 0,5cm lcm
Abstand zur Strahlachse 12,0cm 77,5 cm
PMT EMI 9813B EMI 9813B
Absorptionsliange 0,7m 0,7m
Ortsauflosung 2,3 cm 3,8cm
Zeitauflosung 180 ps 300 ps
daB 65 cm
Atap 350 ps

Tabelle 3.1: Kenngroflen des RiickstofSproton-Detektors, dabei steht dap fiir den radialen
Abstand zwischen den beiden Ringen und Atap fiir die Auflésung der Flugzeitmessung (Quelle:

[19])
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Abbildung 3.5: Schematische Querschnitte der Szintillationsringe des RPDs (Quelle: [19])

weiter strahlaufwérts befindet mit ¢,, und entsprechend den Zeitpunkt strahlabwérts
mit tgown-

tup + tdown

te =
S 2

(3.1)
Mit den Zeitpunkten der PMTs und der Lichtgeschwindigkeit cg im Szintillationsstreifen
ist zugleich die Ortskoordinate zg des Teilchendurchgangs innerhalb des Streifens in
Strahlrichtung festgelegt:

tup - tdown ) (32)

Z8 — CSs 9

Nachdem ein Teilchen in beiden Ringen Signale ausgel6st hat, kann ihm damit eine Flug-
spur und eine Geschwindigkeit zugewiesen werden. Zusammen mit der Information der
deponierten Energie ermdoglicht dies die notwendige Unterscheidung von Pionen, Pro-
tonen und -Elektronen. Dazu macht man sich zunutze, dass Teilchen, die verschiedene
Geschwindigkeiten haben, unterschiedlich viel Energie im Szintillatormaterial durch Io-
nisation abgeben. Durch die relativistischen Geschwindigkeiten ist das Verhéltnis der
deponierten Energien im A- und B-Ring eines Teilchens von dessen Masse abhingig

(siehe Abbildung 3.6). Dieser charakteristische Zusammenhang zwischen Energieverlust
und Teilchengeschwindigkeit wird fiir Pionen und Protonen mit der Bethe-Bloch-Formel
beschrieben [20].

Das Target ist so optimiert, dass durch den RPD mdoglichst viele RiickstoBprotonen
detektiert werden. Dazu sollten die Wiande von Targetzelle und Kryostat mdoglichst
diinn konstruiert sein, sodass einerseits Protonen mit kleinen Impulsen nicht zu stark
beeinflusst werden, und zum anderen harte Photonen nicht absorbiert werden. Dem
gegeniiber steht der Vorteil, dass dickere Winde mehr d-Elektronen absorbieren und
somit ein stérender Untergrund durch diese Signale unterdriickt wird. Als beste Wahl
hat sich 125 pm dickes Mylar fiir die Targetzelle und 1, 8 mm dickes Aluminium fiir den
Kryostat herausgestellt.
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(a) Energieverlust im A-Ring in Abhiingigkeit des (b) Energieverlust im B-Ring als Funktion der
Energieverlusts im B-Ring Teilchengeschwindigkeit

Abbildung 3.6: Energieverlust von Protonen (gefiillte Kreise), Pionen (leere Kreise) und Elek-
tronen im RPD (Quelle: [21])

3.3 Das COMPASS-Spektrometer

Der schematische Aufbau des COMPASS-Spektrometers ist in Abbildung 3.7 darge-
stellt. Hinter dem Targetbereich befindet sich das LAS. Es bildet den ersten Teil des
Spektrometers und besitzt eine grole Winkelakzeptanz. Mit ihm koénnen Teilchen de-
tektiert werden, die unter grofien Streuwinkeln von bis zu £180 mrad aus dem Target
austreten. Damit ist es darauf optimiert, Teilchen mit kleinen Impulsen zu analysieren.
Zur Impulsmessung geladener Teilchen wird die Kriimmung der Flugspuren in einem
bekannten Magnetfeld bestimmt. Dieses wird vom 110 cm langen Dipolmagneten SM1
mit einem Feldintegral von 1 Tm erzeugt. Darauf folgen ein RICH-Detektor?, zwei Ka-
lorimeter ECAL1 und HCALI, sowie zuletzt ein Myonfilter.

Der RICH-Detektor dient zur Identifikation von Hadronen. Mit ihm kénnen Kaonen,
Pionen und Protonen in einem Impulsbereich von 5 GeV /¢ bis 43 GeV /c selektiert wer-
den. Dazu ist er mit dem Radiatorgas CyFy gefiillt, das einen hohen Brechungsindex
von n = 1,0015 aufweist. Alle Teilchen, deren Geschwindigkeit v die Lichtgeschwindig-
keit im Medium ¢, = ;- {ibersteigt, senden Cherenkov-Strahlung unter dem Winkel 6.
aus [20]

R (3.3)

Die so entstehenden Photonen werden iiber sphérische Spiegel in die Fokalebene abgebil-
det und mithilfe der PMTs und Proportionalkammern nachgewiesen. Mit dem dadurch

9Ring Imaging CHerenkov Detector
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Abbildung 3.7: Schematischer Aufbau des COMPASS-Spektrometers (Quelle: [15])

bestimmten Cherenkov-Winkel 6.(v) eines Teilchens lédsst sich dann bei bekanntem Im-
puls auf die Teilchenmasse schlieflen.

Die elektromagnetischen Kalorimeter ECAL1 und ECAL2, sowie die hadronischen Ka-
lorimeter HCAL1 und HCAL2 dienen zur Messung von Teilchenenergien. Dabei befin-
den sich ECAL2 und HCALZ2 im spéter beschriebenen, zweiten Teil des Spektrometers.
ECAL1 und ECAL2 sind essenziell zur Identifikation und Rekonstruktion von Photo-
nen. HCAL1 und HCAL2 sind jeweils unmittelbar hinter dem entsprechenden elektro-
magnetischen Kalorimeter positioniert und kénnen somit nicht vollstéindig absorbierte
Schauer auffangen. Da der Endzustand des DVCS-Prozesses ein reelles Photon enthélt,
werden die Kalorimeter im néchsten Abschnitt ausfiihrlich beschrieben.

Den Abschluss des LAS bildet der Myonfilter 1. Er besteht aus einem 600 mm dicken Ei-
senabsorber, sowie zwei Driftrohren-Spurdetektoren. Diese befinden sich vor und hinter
dem Absorber, sodass ausschliefilich Myonen ein Signal in beiden Detektoren ausldosen
konnen.

Einige Detektoren des LAS besitzen im Zentrum eine Aussparung. Durch diese passieren
hoherenergetische Teilchen den ersten Spektrometerteil ungehindert, sodass sie im sich
anschlieenden SAS analysiert werden kénnen. Letzteres ist speziell fiir solche Teilchen,
die einen Streuwinkel von maximal £30 mrad aufweisen, optimiert. Es enthélt den Di-
polmagneten SM2, dessen Feldintegral zu 4,4 Tm bestimmt wurde. Dahinter befinden
sich die Kalorimeter ECAL2 und HCALZ2, sowie die Myonfilter 2 und 3. Im Gegensatz
zu Myonfilter 1 und 3 ist Myonfilter 2 aus einem 2,4 m dicken Betonabsorber, sowie zwei
Driftrohren-Spurdetektoren und drei Vieldrahtproportionalititskammern aufgebaut.
Im COMPASS-Experiment befinden sich zudem viele unterschiedliche Spurdetektoren,
die in Tabelle 3.2 zusammengefasst sind.
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Detektortyp aktive Fliche / cm? | Ortsauflésung / yum | Zeitauflosung / ns
SciFit0 3,92 bis 12, 32 130 bis 210 0,4
Silizium-Streifen 5x 7 8 bis 11 2,5
GEM! 31 x 31 70 12
Pixel-GEM 10 x 10 95 9,9
Micromega'? 40 x 40 90 9
MWPC!3 178 (90 bis 120) 1600
Driftkammer 180 x 127 190 bis 500
Straw 280 x 323 190

Tabelle 3.2: Kenngrofien des RiickstofSproton-Detektors

Die verschiedenen Detektortypen erfiillen dabei unterschiedliche Anforderungen. In
Strahlnéihe ist eine hohe Ratenstabilitit erforderlich. Hier kommen SciFis, Silizium-
Streifendetektoren mit sehr hoher Ortsauflésung, Pixel-GEMs und Szintillierende-Fasern-
Detektoren zum Einsatz. Hingegen befinden sich die kostengiinstigeren, grofiflichigen
Detektoren, wie MWPCs, Driftkammern und Straw-Detektoren, mindestens 40 cm von
der Strahlachse entfernt. Aufgrund der geringeren Teilchenfliisse, stellen dort die lange-
ren Totzeiten kein Problem dar. GEMs und Micromegas sind in einer Entfernung von
2,5 bis 40 cm zum Strahlmittelpunkt positioniert.

108 cintillating Fiber

" Gas Electron Multiplier
2Micromesh gaseous structure
B3Multi Wire Proportional Chamber
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3.3.1 Elektromagnetische Kalorimeter
3.3.1.1 Funktionsweise

Im Spektrometer befanden sich in der Strahlzeit 2009 zwei elektromagnetische Kalori-
meter, ECAL1 und ECAL2. Sie dienen dazu, Teilchen die iiber die elektromagnetische
Kraft wechselwirken, zu detektieren. Aufgebaut sind sie aus homogenen Bleiglasmodu-
len, die an einem Ende jeweils von einem PMT ausgelesen werden. Die auflen liegenden
Module bestehen aus dem Bleiglastyp TF1, wahrend die Module in Strahln&dhe durch
einen Zusatz von 0,2 % Cerium strahlenhérter gemacht wurden (Typ TF101). Bei bei-
den Kalorimetern befinden sich im Zentrum, aufgrund der hohen Strahlintensitit, keine
Module. Auflerdem wurden im Jahr 2008 bei ECAL?2 die strahlnéchsten Bleiglasmodule
gegen sogenannte Schaschlikmodule ausgetauscht. Diese sind wesentlich strahlenhérter,
da sie aus sich abwechselnden Schichten von Bleiplatten und Plastikszintillatoren kon-
struiert sind. Die Kenngréfien beider Kalorimeter sind in Tabelle 3.3 aufgefiihrt. ECAL1
besteht aus 1500 und ECAL2 aus 3068 Zellen.

Kalorimeter | aktive Flache | Modulbezeichnung | Modulgréfle | Anzahl

GAMS 38 x 38 mm? 608
ECALL1 4,0%x2,9m? MAINZ 75 x 75 mm? 572
OLGA 143 x 143 mm? 320

Typ00 bis Typll | 38 x 38 mm? 1440
ECAL2 2,4x1,8m? Typl2 bis Typ23 | 38 x 38 mm? 768
Typ24 bis Typ31l | 38 x 38 mm? 860

Tabelle 3.3: Kenngrofien der elektromagnetischen Kalorimeter

Sobald ein Elektron oder Photon im Bleiglas einen elektromagnetischen Schauer kaska-
disch durch Bremsstrahlung und Paarbildung auslést, detektieren die Photomultiplier
der entsprechenden Module das entstehende Cherenkov-Licht. Die Lichtmenge ist da-
bei proportional zur Spurlinge aller geladenen Teilchen. Um zu gewéhrleisten, dass
praktisch die gesamte Schauerenergie jeweils in einem der Kalorimeter deponiert wird,
besitzen diese eine Dicke, die ungefdhr 16 bis 23 Strahlungsléngen Xy entspricht. Xg
ist materialabhéingig und gibt die Schichtdicke an, bei der mit einer Wahrscheinlich-
keit von ~ 54 % Paarbildung stattfindet [20]. Pro einem GeV deponierter Energie,
entstehen dabei ungefihr 1000 Photoelektronen. Um optimale Linearitét zu gewéhr-
leisten (mit weniger als 1% Abweichung), werden die PMTs iiber speziell entwickelte
Hochspannungsteiler mit entsprechend angepassten Spannungen versorgt. Die derart
gemessenen Amplituden werden anschlieend mit Hilfe von Sampling-Analog-Digital-
Umsetzern (SADCs') digitalisiert und gespeichert.

1 Sampling Amplitude to Digital Converters
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3.3.1.2 Kalibrierung

In der spéteren Analyse werden die von den Photonen deponierten Energien benotigt.
Deshalb ist zuvor eine Energiekalibrierung notwendig, die eine Umrechnung der gespei-
cherten Signalamplituden in die entsprechenden Energien erméglicht. Diese Eichung
erfolgt vor der Datennahme mittels eines monoenergetischen Elektronenstrahls. Dazu
wird ein 100 GeV /c-Strahl, bestehend aus negativ geladenen Hadronen, auf einen 5 mm
dicken Bleiklotz geschossen. Der hintere Teil der Strahlfithrung ist dabei so eingestellt,
dass nur Elektronen, die im Blei 60 GeV durch Bremsstrahlung abgegeben haben, die
Experimenthalle erreichen. Im Normalfall sind das pro Einschusszyklus nur einige 1000.
Die Kalorimeterzellen werden einzeln kalibriert, das heifit das gesamte Kalorimeter
wird vor jedem Einschusszyklus so positioniert, dass der fokussierte Elektronenstrahl
genau eine Zelle trifft. Anschlieend wird mit den so gemessenen Signalamplituden,
zusammen mit der bekannten Elektronenstrahlenergie von 40 GeV, fiir die i-te Zelle
(i: Zellenindex) ein Umrechnungsfaktor C'Ce; [%] bestimmt. Allerdings kénnen
sich spéter, wihrend der Messungen, die Leistung einzelner Module verdndern. Aus die-
sem Grund miissen die so bestimmen Kalibrationskonstanten fiir jede Messreihe indi-
viduell angepasst werden. Dazu werden sowohl bei der Elektronenkalibration, als auch
bei der Datennahme, Vergleichsamplituden mit Laserlicht aufgenommen. Mit diesen
kénnen dann Variationen wihrend einzelnen Messungen beziiglich der Elektronenkali-
bration ausgeglichen werden. Die Messreihen werden als ,,runs“ bezeichnet und bestehen
typischerweise jeweils aus 200 - 40 s Datennahme.
Fiir die i-te Zelle ergibt sich dann die finale Kalibrationskonstante wie folgt [22],

LArun,i
LAec,i .

Die Faktoren LA,y und LA..; sind dabei nicht direkt die mittleren Amplituden aus
der Lasermessung, sondern auf Referenz-Pin-Dioden (FEMs) normierte Werte

CCrun,i = CCec,i '

(3.4)

l 4 unkc )rrlglerl
[ 4 normalisiert

= 3.5
Amplitudergm (3.5)

Diese Normierung ist notig, da mithilfe der stabileren FEM-Lichtamplituden Fluktua-
tionen in den Laserblitzen von mehreren Prozenten auf 1,5 % Standardabweichung re-
duziert werden konnen.

Fiir ECAL1 und ECAL2 ergaben Messungen eine mittlere Energie- bzw. Ortsauflésung
von

E 5)
U(E): O 515| % (3.6)
[ E
GeV
0 @ 0,5 | mm. (3.7)

o(x,y) =
y \/%

Zusétzlich zur Energiekalibrierung findet auch eine Zeit-Kalibrierung statt. Dabei wer-
den zum einen Zeitunterschiede zwischen den PMT's durch unterschiedliche Koaxialkabel-
Léngen kompensiert. Zum anderen werden in den produzierten Daten fiir alle Zellen
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die Zeitverteilungen der detektierten Energien betrachtet. Damit wird dann jeweils die
Abweichung des Verteilungsschwerpunktes von der Nullzeit bestimmt. Die resultieren-
den Korrekturen werden dann in spéteren Messungen verwendet und in regelméfligen
Absténden aktualisiert. Dies ist fiir die anschliefende Analyse essenziell, da die Kalori-
metersignale auf eine zeitliche Korrelation zum Strahlmyon {iberpriift werden miissen.

3.3.2 Hadronische Kalorimeter

Die hadronische Kalorimeter HCAL1 und HCAL2 dienen sowohl zur Energiemessung
von Hadronen, als auch zum Triggern von inelastischen Myon-Streuprozessen. Zusétz-
lich fangen sie Schauer auf, die von den elektromagnetischen Kalorimetern nicht voll-
stdndig absorbiert wurden. In Tabelle 3.4 sind ihre charakteristischen Grofien aufgelis-
tet.

Kalorimeter | aktive Fliache | Modulgrole | Anzahl Module
HCALI1 4,2 x 2,8m? | 142 x 146 mm? 480
HCAL2 4,4 x 2,2m? | 200 x 200 mm? 216

Tabelle 3.4: Kenngroflen der hadronischen Kalorimeter

Es handelt sich um sogenannte Sampling-Kalorimeter, die analog zu den Schaschlikmo-
dulen in ECAL2 nicht homogen aufgebaut sind. Jedes Modul besteht aus 40 alternie-
renden Schichten von Eisen- und Szintillatorplatten, die insgesamt ungefihr 5 nukleare
Absorptionslangen A dick sind. Dabei charakterisiert A die rdumliche Entwicklung von
hadronischen Schauern iiber die Molmasse A und die Dichte p des Absorbermaterials
[20]
A
A Tinet Nop (38)
mit: Ny = Avogadro-Zahl

Oinel = inelastischer hadronischer Wirkungsquerschnitt.

Testmessungen mit HCAL1 ergaben, dass Hadronen und Elektronen mit einer Energie
von bis zu 100 GeV praktisch vollstéindig absorbiert, und mit einem relativen Fehler

U(b]f) = (5\% D7, 6) % (3.9)

detektiert werden. Fiir die hoherenergetischen Hadronen steht HCAL2 mit der folgenden
Energieauflosung zur Verfiigung:

J(;j) - (j% ® 5> %. (3.10)

Bei beiden Kalorimetern wird die Kalibration vor jeder Messperiode mithilfe von Halo-
Myonen kontrolliert. Fiir diese wurde ein wahrscheinlichster Energieverlust von (1,8 +
0,1) GeV bestimmt.
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3.4 Das Triggersystem

Das COMPASS-Experiment besitzt mehrere Trigger, die in unterschiedlichen kinema-
tischen Bereichen die Entscheidung treffen, ob ein Ereignis verworfen oder gespeichert
wird. Dies ist eine notwendige Mafinahme, da die hohe Ereignisrate und die zahlreichen
Detektorkanile eine Speicherung sdmtlicher Daten unmoglich machen. Dazu werden
zunéchst alle Detektorinformationen temporér auf der Front-End-Elektronik in Buf-
fern zwischengelagert. Die Triggerlogik entscheidet anschlieend in etwa 600 ns, ob ein
physikalisch interessantes Ereignis vorliegt. Darauthin werden die Daten auch zwischen
den Einschusszyklen an LDC!-Stationen gesendet. Auf diese konnen die sogenannten
Eventbuilder-Computer zugreifen, die dann alle Informationen eines Ereignisses zusam-
menfithren. Danach werden die Daten an einen zentralen Speicher gesendet, wo eine
langfristige Sicherung auf Magnetbédndern erfolgt.

Zur Selektion von DVCS-Ereignissen werden Myon-Trigger verwendet, die aus Szintilla-
tor-Hodoskopen mit hoher Zeitauflosung und geringer Totzeit aufgebaut sind. Zwischen
den einzelnen Hodoskopen jedes Triggers befindet sich ein Myonfilter, der verhindert,
dass andere Teilchen ein falsches Triggersignal auslosen. Abbildung 3.8 zeigt die sche-
matische Anordnung der Trigger.

HCALA1

SM2 HCAL2 - Filter

Beam

Abbildung 3.8: Schematische Anordnung der Triggerhodoskope (Quelle: [18])

Dabei werden Ereignisse mit Q% < 0,5 (GeV/c)? vom sogenannten Inner-Trigger (H4I,
H5I), dem Middle-Trigger (H4M, H5M) und dem Ladder-Trigger (H4L, H5L) detektiert.
Von diesen ist der Inner-Trigger bei kleinen Streuwinkeln und der Ladder-Trigger spezi-
ell im Bereich grofler Energieiibertréige y sensitiv. Dariiber hinaus kommt bei grofieren
Q? bis zu 10 (GeV/c)? der OUTER-Trigger (H30, H40) zum Einsatz. Der Inner-Trigger
war wihrend der DVCS-Testmessung nicht aktiv.

Zum Triggern von DVCS-Prozessen steht zusétzlich ein RPD-Trigger zur Verfiigung.

¥T0cal Data Collector
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Dieser wird ausgelost, wenn in beiden RPD-Ringen ein raumlich korreliertes Signal re-
gistriert wird. Dabei wird auflerdem die Deponierung einer Mindestenenergie gefordert,
damit Signale von -Elektronen unterdriickt werden.

3.5 Das Veto-System

Ungefihr 24 % aller eingehenden Myonen befinden sich im Strahl-Halo und kénnen
somit nicht an den Protonen innerhalb der Targetzelle streuen. Um zu verhindern, dass
diese Myonen falschlicherweise ein Triggersignal auslésen, werden drei Veto-Detektoren
eingesetzt. Zwei von ihnen befinden sich in einem 8 m langen Bereich unmittelbar vor
dem Target. Diese Szintillationszéhler decken insgesamt eine Fliche von 2,5m x 3,2m
ab und besitzen im Zentrum jeweils ein Loch mit 4 cm Durchmesser. Von ihnen werden
die Signale aller Myonen, die einen Einflugwinkel zur Strahlachse von iiber 8 mrad
besitzen, unterdriickt. Der dritte Veto-Trigger befindet sich 20m vor dem Target und
kann Halo-Myonen mit kleineren Einflugwinkeln ausschliefien [15].

3.6 Rekonstruktion der Daten

3.6.1 Erzeugung von analysierbaren Dateien

Bevor die abgespeicherten Detektorinformationen analysiert werden kénnen, muss zu-
néchst jedes Ereignis rekonstruiert werden. Das bedeutet, dass aus den einzelnen Infor-
mationen jedes Detektors die beteiligten Teilchen identifiziert und ihre im Experiment
zuriickgelegten Spuren ermittelt werden miissen. Dies iibernimmt das auf der Program-
miersprache C++ basierende Computerprogramm CORAL. Zusitzlich zu den ge-
speicherten Daten werden noch die genauen Positionen und Zusammensetzungen aller
Materialien innerhalb des Experiments, sowie die angelegten magnetischen Felder bens-
tigt. Dieses sogenannte ,,Alignment* wird nach jeder Verdnderung am Experiment neu
bestimmt. Dazu werden zunéchst alle Positionen vermessen und eine Rekonstruktion
mit Daten durchgefiihrt, die bei abgeschalteten Magnetfeldern aufgenommen wurden.
Anschliefend werden die Informationen iiber das Alignment solange variiert, bis die
Spurrekonstruktion den kleinstméglichen Fehler aufweist [18].

Sowohl die Orts- und Impulsinformationen der Teilchenspuren als auch die Vertizes wer-
den schlussendlich mithilfe eines Kalman-Fits bestimmt [23]. Dieser berechnet gleichzei-
tig auch die Fehler und Korrelationen aller Parameter. Auf die gleiche Weise werden aus
den Rohdaten des Simulationsprogramms COMGEANT!" analysierbare Monte-Carlo-
Ereignisse rekonstruiert.

Einen Wechselwirkungspunkt zweier, oder mehrerer Teilchen, bezeichnet man als Ver-
tex. Von besonderer Bedeutung sind dabei die sogenannten Primérvertizes. Bei ihnen
wechselwirkt ein Strahlteilchen, also in diesem Fall ein Myon, das zuvor an keinem an-
deren Vertex beteiligt war. Es ist nicht uniiblich, das der Rekonstruktionsalgorithmus
von CORAL zu einem Ereignis mehrere Primérvertizes bestimmt. In diesem Fall wird
im Folgenden immer der beste Primérvertex verwendet. Dieser zeichnet sich dadurch

16 COMPASS Reconstruction and AnaLysis Program
'"COmpass Monte-Carlo GEometry ANd Tracking
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aus, dass er die groffite Anzahl auslaufender Spuren aufweist. Sollten mehrere Primér-
vertizes mit dieser Eigenschaft existieren, dann wird derjenige Vertex selektiert, dessen
Kalman-Fit ein niedrigeres x? ergeben hat [24].

Fiir eine genaue Beschreibung des Rekonstruktionsverfahrens sei auf die Quellen [25]
und [26] verwiesen. Nach abgeschlossener Rekonstruktion liegen alle Ereignisse in so-
genannten mDST!8-Dateien vor. In ihnen sind alle Informationen als ROOT-Trees [27]
abgespeichert und kénnen mit dem Analyseprogramm PHAST [28] ausgewertet wer-
den.

3.6.2 Rekonstruktion der Kalorimeter-Cluster

Wéihrend des Rekonstruktionsvorgangs miissen neben den zuvor beschriebenen Prozes-
sen auch die elektromagnetischen Schauer in den Kalorimetern rekonstruiert werden.
Diese sogenannten Cluster werden aus den einzelnen Informationen der Kalorimeter-
blocke in mehreren Schritten generiert. Dies iibernimmt ein spezieller Rekonstruktions-
algorithmus von CORAL.

Um die Cluster zu separieren, werden als erstes die Clusterschwerpunkte ermittelt. Da-
zu werden zunéchst alle Zellen ausfindig gemacht, in denen die deponierte Energie einen
gewissen Schwellenwert {iberschritten hat. Zudem miissen die Zellen einen hoheren Wert
als ihre Nachbarzellen aufweisen (lokale Maxima). Dadurch wird in diesem Schritt bei
Clustern mit Schwerpunkten in benachbarten Zellen nur der energiereichste selektiert.
Da ein Cluster héufig nicht nur auf eine einzelne Zelle beschrankt ist, werden nun die
umliegenden Zellen zur Rekonstruktion hinzugezogen. Anhand der Schwerpunktsener-
gie wird die Deponierung in den umliegenden Zellen abgeschétzt: bei groflen Energien
innerhalb eines Quadrates aus 5 x 5 Zellen, ansonsten nur fiir 3 x 3 Zellen. Die Energi-
en innerhalb der benachbarten Zellen kénnen dabei auf verschiedene Cluster aufgeteilt
werden. An dieser Stelle kann es vorkommen, dass in einigen Zellen noch ein deutlicher
Energieanteil, der keinem urspriinglichen Cluster zugeordnet werden konnte, vorliegt.
In solchen Fillen werden neue, zusétzliche Clusterschwerpunkte definiert.

Die so bestimmten Clusterpositionen und -energien dienen anschlieflend als Startpa-
rameter fiir einen Fit mit einer Schauerprofil-Funktion [18]. Schlussendlich ergibt sich
die Clusterenergie aus der Summe aller beteiligten Zellen. Gegebenenfalls wird sie noch
korrigiert, um nicht detektierte Energie bei Zellen am Kalorimeterrand und um {iber-
schiissige Energie bei sich tiberlagernden Clustern zu beriicksichtigen.

¥ mini Data Summary Tape
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3. Das COMPASS-Experiment




4. Analyse

In diesem Kapitel erfolgt die Beschreibung der Analyse und Selektion von exklusiven
DVCS-Ereignissen. Die dazu verwendeten DVCS-Daten wurden im September 2009
aufgenommen. Sie lassen sich in drei verschiedene Perioden aufteilen, die mit W38,
W39 und W40 bezeichnet werden. Die Anzahl der in diesen Perioden gespeicherten
Daten variiert stark, da die Dauer der Datennahme von 2 Tagen bei W39 bis hin zu 7
Tagen bei W40 reicht. Dariiber hinaus wurde bei W38 und W40 ein Strahl aus positiv
geladenen Myonen verwendet, wohingegen in W39 mit einem negativen Myonenstrahl
geringerer Intensitét gemessen wurde.

Damit die Teilchen-Trajektorien und die Vertexpositionen dargestellt werden kdnnen,
wird an dieser Stelle ein rechtshéndiges, kartesisches Koordinatensystem eingefiihrt.
Dabei wird seine z-Achse in Strahlrichtung, und seine y-Achse vertikal von unten nach
oben definiert.

4.1 Vorauswahl zur Datenreduzierung

Als erster Schritt werden alle Ereignisse verworfen, die keine relevanten Informatio-
nen enthalten und somit nur unnétig Speicherplatz und Rechenkapazitéit verbrauchen
wiirden. Dies sind Ereignisse, die keinen Primé&rvertex besitzen. Weiterhin werden auch
solche Ereignisse entfernt, bei denen in keinem der vier Kalorimeter ein Cluster rekon-
struiert wurde. Fiir die DVCS-Analyse ist es ndmlich notwendig, elektrisch neutrale
Teilchen {iber solche Cluster zu rekonstruieren. Durch diese beiden Schnitte reduziert
sich die Datenmenge bereits um ungefdhr 55 Prozent.

4.2 Vertexselektion

In diesem Abschnitt werden alle Ereignisse extrahiert, deren bester Primérvertex der
Signatur der gesuchten exklusiven DVCS-Prozesse entspricht. Dies stellt Bedingungen
an die Groflen der kinematischen Variablen, sowie die Position des Primérvertex und
die Anzahl der beteiligten Teilchen. Die Verteilungen aller betrachteten Variablen sind
am Ende dieses Abschnitts in Histogrammen abgebildet. In ihnen wurden alle Schnitte
angewandt, auler dem Schnitt auf die jeweils dargestellte Grofle. Letzterer ist als gestri-
chelte Linien, bzw. im zweidimensionalen Fall als rote Kreise, eingezeichnet. Zusétzlich
geben Abbildung 4.1 und Tabelle 4.1 Auskunft iiber den Einfluss aller Schnitte auf die
Anzahl der verbleibenden Ereignisse. Addiert man die Zahlen aller drei Perioden, so
bleiben von den urspriinglichen 3 - 109 Ereignissen ungefiihr 5 - 10% erhalten.

Damit die kinematischen Gréflen Q? und y fiir ein Ereignis bestimmen werden kon-
nen, muss zunichst sichergestellt werden, dass das gestreute Myon p’ korrekt und als
solches identifiziert wurde. Dieser Prozess wird bereits von CORAL erledigt, sodass in
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PHAST nur noch die entsprechende Information abgerufen werden muss. Um die Ver-
wechslung mit Hadronen sicher auszuschlieSen wird nun zusétzlich iiberpriift, dass das
ausfliegende Teilchen mindestens 30 Strahlungsléngen zuriickgelegt hat. Hinzu kommt,
dass nur Ereignisse verwendet werden koénnen, bei denen das Myon nicht durch das
Joch von SM2 geflogen ist. In diesen Féllen kann nédmlich der Myonimpuls nicht kor-
rekt bestimmt werden. Auflerdem wird sichergestellt, dass die Energie des gestreuten
Myons nicht grofler als die des Strahlmyons ist. Dies ist bei einem kleinen Prozentsatz
der Daten der Fall, was auf eine fehlerhafte Spurrekonstruktion, eine falsche Zuordnung
zum Vertex, oder auf die endliche Impulsauflésung des Strahlmyons und des gestreuten
Myons zuriickzufiihren ist.

Bei den verbleibenden Ereignissen kénnen nun aus den Viererimpulsvektoren p, und
p, die kinematischen Variablen Q? und y nach Tabelle 2.1 berechnet werden. Sie sind
in Abbildung 4.2 dargestellt. Da das Auflésungsvermogen des virtuellen Photons so
grof} sein muss, dass die Streuung an einem Quark moglich ist, wird ein Schnitt auf
Q? > 1(GeV/c)? durchgefiihrt. Hinzu kommt ein Schnitt auf 0,05 < y, da die Auflo-
sung des Energieverlusts v = E — FE’ fiir kleinere Werte zu schlecht wird. Auflerdem
wird y < 0,9 gefordert, da ansonsten Strahlungskorrekturen zu grof3 werden wiirden.

’ Schnitt H Faktor | Verbleibender Anteil [%] ‘
kein Schnitt 1,000 100
Primé&rvertex existiert 0,614 61,4
Cluster existiert 0,739 45,3
u existiert 0,050 2,284
nur 1 4/ 1,000 2,283
g nicht durch Joch 0,997 2,276
E(W') < E(n) 0,972 2,212
Q% > 1(GeV/c)? 0,029 6,341e-2
0,05 <y <0,9 0,748 4,744e-2
Vertex im Target 0,226 1,074e-2
1 auslaufendes Teilch. 0,152 0,163e-2

Tabelle 4.1: Uberblick aller Schnitte der Vertexselektion und deren Einfluss auf die Anzahl
der verbleibenden Ereignisse
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Abbildung 4.1: Auswirkung der einzelnen Schnitte der Vertexselektion auf die Anzahl der
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Damit ein Ereignis verwertbar ist, muss das Myon an einem Proton innerhalb der Tar-
getzelle gestreut haben. Deshalb erfolgt ein Schnitt auf die Position des besten Primér-
vertex. Alle Ereignisse, bei denen dieser Vertex auflerhalb der Targetzelle liegt, werden
verworfen. Die Bedingungen hierfiir sind —68,4cm < z < —28,4 cm bei der z-Position
und /22 +y2 = r < 1,6cm beim radialen Abstand zur Strahlachse. Die zugehori-
gen Vertex-Verteilungen sind in Abbildung 4.3 dargestellt. Dabei wurde aus Griinden
der Anschaulichkeit die z-Verteilung nur im Bereich der Targetzelle gezeigt. Betrachtet
man die vollstdndige Verteilung in Abbildung 4.4, kénnen scharfe lokale Maxima bei
bestimmten z-Werten auflerhalb des Targets ausgemacht werden. Sie lassen auf eine
erhohte Protonendichte schliefen. Die roten Linien markieren die Positionen einiger
Detektoren, die sich im Strahl befinden und zeigen eine gute Ubereinstimmung mit den
Vertexanhédufungen.

Die letzte Bedingung der Vertexselektion gilt der Anzahl der auslaufenden Teilchen.
Abgesehen vom Proton und dem gestreuten Myon diirfen keine weiteren geladenen
Teilchen vom Vertex ausgehen. Die Spuren der Protonen werden an dieser Stelle noch
nicht betrachtet, da die Informationen des RPDs nicht direkt in CORAL implementiert
sind. Deshalb erfolgt ein Schnitt auf Ereignisse, die genau eine auslaufende Spur eines
geladenen Teilchens besitzen.
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4.3 Vergleich der Daten aus unterschiedlichen Perioden

Bisher wurden die verschiedenen Perioden getrennt betrachtet. In diesem Abschnitt
wird iiberpriift, ob die Verteilungen der charakteristischen Gréflen miteinander verein-
bar sind, sodass sie vor der weiterfiihrenden Analyse zusammengefiihrt werden kénnen.
Zum besseren Vergleich zweier Perioden 4, j wird eine neue Variable An; ; eingefiihrt,
die wie folgt definiert ist:

#FEintragep, (bin) #Eintragey, (bin)

An; ;(bin) == — 4.1
i (bin) #Gesamteintragey,  #Gesamteintragen, (4.1)

#Eintragep, (bin) #Eintragey, (bin)
#Gesamteintragen,)?  (#Gesamteintragey,;)?

J(Am,j(bin)) S \/( (4.2)

Dabei bezeichnen h; und h; die zu vergleichenden Histogramme der Perioden ¢ und j.
Jeder Histogramm-Bin wird auf die Gesamtzahl aller Histogramm-Eintrége normiert
und anschlieflend wird die Differenz beider Perioden gebildet. Die zugehorigen statis-
tischen Fehler o(An; ;) berechnen sich aus dem Gaufischen Fehlerfortpflanzungsgesetz.
Hierbei sind die relativen Fehler der Gesamteintriage vernachlissigbar gegeniiber denen
der einzelnen Bins.

Fiir alle Verteilungen aus Abschnitt 4.2 sind die zugehorigen An; ; in den Abbildungen
4.5 und 4.6 dargestellt. Sie sind bei sdmtlichen Verteilungen im Schnittbereich kleiner
als 0,5 % und innerhalb der Fehlergrenzen mit 0 vertriglich. In der restlichen Analyse
werden die Daten deshalb nicht mehr getrennt betrachtet.

An dieser Stelle sei angemerkt, dass bei den ungeschnittenen Verteilungen systemati-
sche Unterschiede auftreten. Bei einer genaueren Untersuchung zeigt sich, dass diese
durch Artefakte in der Vertexrekonstruktion verursacht werden und mit dem Schnitt
auf Q2 > 1(GeV/c)? verschwinden (sieche Anhang B).
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Abbildung 4.5: Vergleich der y- und Q?-Verteilungen mit allen Schnitten der Vertexselektion;
gestrichelte Linien: Schnittbereich der jeweils dargestellten GroBe (Q% > 1(GeV/c)?, bzw.
0,05 <y <0,9)
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Abbildung 4.6: Vergleich der z-Positionen und radialen Absténde r der besten Priméarvertizes

mit allen Schnitten der Vertexselektion;

gestrichelte Linien: Position der Targetzelle (—68,4cm < z < —28,4cm; r < 1,6cm)
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4.4 Rekonstruktion des reellen Photons

Zur weiteren Selektion von DVCS-Ereignissen muss das reelle Photon rekonstruiert
werden. Im Gegensatz zu den Myonen besitzen Photonen keine elektrische Ladung,
weshalb ihr Nachweis {iber elektromagnetische Schauer in den Kalorimetern erfolgt.
Dazu werden fiir alle Ereignisse die in den elektromagnetischen Kalorimetern, ECAL1
und ECAL2, detektierten Cluster untersucht. Bei jedem Cluster wird iiberpriift, ob er
mit der Spur eines geladenen Teilchens in Verbindung gebracht werden kann. Sollte
dies nicht der Fall sein, wurde er von einem Photon erzeugt und wird als neutraler
Cluster bezeichnet. Im Folgenden werden nur noch diese Art von Clustern betrachtet
und eventuell auftretende Cluster geladener Teilchen werden ignoriert.

Damit ein Cluster dem Primérvertex eines Ereignisses zugeordnet werden kann, muss
zunéchst tiberpriift werden, ob eine zeitliche Koinzidenz vorliegt. Dazu wird die Diffe-
renz aus den Zeitinformationen des Clusters und des Strahlmyons gebildet. Die mittlere
Zeit des einfliegenden Myons wird gewéahlt, weil sie den kleinsten Fehler aufweist. In
Abbildung 4.7 sind die auftretenden Zeitdifferenzen (fciuster — tmyon) fiir beide Kalori-
meter zu sehen.
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Abbildung 4.7: Zeitdifferenzen zwischen dem Strahlmyon und den neutralen Clustern in den
elektromagnetischen Kalorimetern

Zur Bestimmung der Zeitauflosung wurde an die ECAL1-Daten eine doppelte Gauf3-
funktion und bei ECAL2 eine einfache Gaufifunktion gefittet, jeweils addiert mit einer
Konstanten c. Es wurde dabei zuvor iiberpriift, ob die unterschiedlichen Zelltypen ver-
schiedene Auflésungen besitzen. Dies hiitte die Uberlagerung durch eine zweite, breitere
GauBfunktion erkldren kénnen, was allerdings nicht der Fall war. Auch die getrennte
Betrachtung der verschiedenen Perioden ergab keinen Unterschied in den Verteilungen
(Abbildungen A.1 und A.2 im Anhang).
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Mit den Fitparametern wird die Bedingung fiir eine zeitliche Koinzidenz wie folgt fest-
gelegt:

ECALL:  tCruster — tMyon| < (0,019 + 3,5 -0,901) ns (4.3)
ECAL2:  [tCruster — thiyon| < (0,096 + 3,5 - 0, 820) ns. (4.4)

Im Folgenden werden nur noch Cluster betrachtet, die diese Bedingungen erfiillen. Als
DVCS-Ereignisse kommen nun solche in Frage, die genau einen dieser neutralen Cluster
in einem der beiden elektromagnetischen Kalorimetern aufweisen (siehe Abbildung 4.8).
Untersuchungen aller vorhandenen Cluster haben gezeigt, dass ein Untergrund von nie-
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Abbildung 4.8: Multiplizitdt aller neutralen Cluster, die eine zeitliche Koinzidenz mit dem
Strahlmyon aufweisen

derenergetischen Clustern zu allen Zeitpunkten vorliegt. Sollte man es lediglich bei der
bisherigen Bedingung belassen, wiirden somit potenziell interessante Ereignisse verlo-
ren gehen. Dies wire immer dann der Fall, wenn zusétzlich zu einem regulédren Cluster
zuféllig ein Untergrundcluster mit zeitlicher Koinzidenz auftrdte. Um zumindest die
hoherenergetischen dieser Ereignisse zu behalten, werden zwei Schwellenenergien einge-
fithrt. Diese betragen 2 GeV in ECAL1 und 4 GeV in ECAL2. In der weiteren Analyse
werden nun zusétzlich alle Ereignisse verwendet, bei denen genau ein Cluster oberhalb
der Schwellenenergie in einem der Kalorimeter vorhanden ist.

Mit dem Ortsvektor 7o des Clusterschwerpunktes und der Cluster-Energie E lisst sich
nun das reelle Photon rekonstruieren. Dazu wird angenommen, dass das Photon seine
gesamte Energie im Cluster deponiert hat und im Primérvertex entstanden ist. Dessen
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Ortskoordinaten werden mit 7y, bezeichnet. Da das Photon keine Ruhemasse besitzt,
ergibt sich somit sein Impulsvektor p., wie folgt:

4 e — TV
Y |TC _TV‘ ( )

4.5 Bedingungen an das riickgestoflene Proton

Die Detektierung und Rekonstruktion der riickgestoflenen Protonen erfolgt durch den
RPD, wie in Kapitel 3.2 beschrieben. In Abbildung 4.9 ist die Anzahl der detektier-
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Abbildung 4.9: Multiplizitit der im RPD nachgewiesenen Riicksto8protonen fiir Ereignisse,
die einen neutralen Cluster besitzen

ten Protonen pro Ereignis zu sehen. Dabei wurden alle bisherigen Schnitte angewandst,
also die Bedingungen der Vertexselektion und die Forderung, dass genau ein neutraler
Cluster in den Kalorimetern nachgewiesen wurde. Zur weiteren Selektierung der DVCS-
Signatur, werden nun alle Ereignisse verworfen, die nicht genau eines dieser Riickstof3-
protonen enthalten.

Aufgrund der Bedingung 2.28 darf der Impuls des Protons, also der Riicksto8 durch
das Myon, nicht zu grof8 sein. Deshalb ergibt sich eine weitere Schnittbedingung

Ipp| < 1GeV/c. (4.6)

Sie wird allerdings erst nach der Bestimmung der exklusiven Ereignisse angewendet,
um an dieser Stelle nicht zu viel Statistik zu verlieren.
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4.6 Bestimmung exklusiver Ereignisse

Die bisherigen Schnitte haben sicher gestellt, dass jetzt alle verbleibenden Ereignisse die
DVCS-Signatur up — upy aufweisen. Bei einer groflen Anzahl handelt es sich allerdings
noch um nicht-exklusiven Untergrund. Um solche Ereignisse weitestgehend ausschlielen
zu konnen, muss die Energie- und Impulsbilanz im Anfangs- und Endzustand vergli-
chen werden. Sollte ein exklusiver Prozess vorliegen, muss aufgrund der Energie- und
Impulserhaltung die Summe aus den Vierervektoren aller beteiligten Teilchen vor der
Streuung, gleich der Summe nach dem Streuprozess sein. Aufgrund der endlichen De-
tektorauflosung ist diese Bedingung allerdings nicht exakt, sonder nur im Rahmen der
Messgenauigkeit erfiillt. Im Folgenden werden zwei, voneinander unabhéngige Metho-
den angewandt, die auf diesem Prinzip beruhen und den nicht-exklusiven Untergrund
minimieren.

4.6.1 Methode 1: Direkter Schnitt auf Energie- und Impulserhaltung

Die bei COMPASS bisher gebrauchliche Herangehensweise besteht darin, exklusive Va-
riablen zu definieren und deren Verteilungen fiir alle Ereignisse zu betrachten. Mit
ausreichender Statistik, sind die exklusiven Prozesse dann aufgrund der Messungenau-
igkeit gaufiverteilt und weisen durch die Energie- bzw. Impulserhaltung vorgegebene
Maxima auf. Dazu werden die Impulse p; und Energien FE; aller beteiligten Teilchen
benétigt. Hierbei gibt der Index

i€ (17, p) (4.7)

an, ob sich die jeweiligen Parameter auf das Strahlmyon pu, das gestreute Myon y/, das
reelle Photon 7, oder das auslaufende Proton p beziehen. Alle Impulse und Energien
lassen sich in PHAST direkt aufrufen, bzw. werden fiir das Photon, wie in Kapitel 4.4
beschrieben, rekonstruiert. Da das ruhende Proton keinen Impuls besitzt, geht lediglich
seine Ruhemasse M), in die Energieerhaltung ein.

Zum Schnitt auf die Erhaltungssétze werden drei exklusive Variablen wie folgt definiert:

Euiss = E, +M,-* —E, — E,— E, (4.8)
Qdiff ‘= Z((ﬁt,u’ +]7t,7), ﬁtm) (4.9)
Dt,miss ‘= |ﬁt,;¢’ +ﬁt,'y’ - ’ﬁc,p’- (4'10)

Dabei ist der Transversalimpuls p ; die Projektion von p; auf eine Ebene senkrecht zum
Strahlmyon-Impuls p),.

Prg=pr— Pl (4.11)
I
Aufgrund der Energieerhaltung im Anfangs- und im Endzustand folgt
|
Emiss =0. (412)

Weiterhin bedingt die Impulserhaltung, dass die Summe der Transversalimpulse aller
Teilchen im Endzustand 0 sein muss (siche Abbildung 4.10),

! o
agig = 180 (4.13)

|
Pt miss = 0. (414)
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pt Jproton

Abbildung 4.10: Transversalimpulse in der Ebene senkrecht zum Strahlmyon

Da die Verteilungen von Episs, aqif und pg miss allerdings noch einen grofien Anteil an
nicht-exklusiven Ereignissen enthalten, sind zwei Schritte notwendig, um die Breiten der
exklusiven Verteilungen bestimmen zu kénnen. Zuerst werden fiir alle drei Variablen
Schnittgrenzen abgeschitzt, um mithilfe dieser moglichst untergrundfreie Verteilungen
zu erzeugen. Dazu wird bei agqig eine doppelte und bei pi miss eine einfache Gaufifunk-
tion gewahlt und der Schnittbereich auf die sich daraus ergebenden 1,5 o-Umgebungen
festgelegt. An dieser Stelle macht ein Fit an die Fiiss-Verteilung keinen Sinn, da es in
der Umgebung des exklusiven Maximums zu viele Untergrundereignisse gibt. Stattdes-
sen werden die Schnittgrenzen auf einen engen Bereich von | Eyiss| < 2,5 GeV festgelegt
(Abbildung 4.11). Damit ergeben sich die folgenden abgeschétzten Schnittbedingungen:

| Eniss/GeV| < 2,5 (4.15)
|oair/Grad — 179,8] < 1,5 - 5,03 (4.16)
|Pe.miss/ (GeV /c) — 0,356] < 1,5 -0, 536. (4.17)

Im zweiten Schritt werden bei allen drei Verteilungen Fits durchgefiihrt, wobei zuvor
jeweils der abgeschéitzte Schnitt auf die beiden anderen Variablen angewendet wurde.
Das Ergebnis ist in Abbildung 4.12 dargestellt.

Anhand dieser neuen GauBverteilungen werden nun folgende Bedingungen fiir einen
exklusiven Prozess festgelegt:

| Frniss/GeV — 0,939] < 4 - 2,309 (4.18)
|cair/Grad — 180,1] < 4 - 4,5 (4.19)
[Pt.miss/ (GeV/c) — 0,031] < 4-0,067. (4.20)

Sie sind zur Veranschaulichung als rote Linien in Abbildung 4.13 eingezeichnet.
Zur Selektion von DVCS-Ereignissen wird abschliefend die Schnittbedingung (4.6) fiir
den Impuls des RiickstofSprotons auf die verbleibenden Ereignisse angewendet.
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Abbildung 4.11: Ungeschnittene Verteilungen der exklusiven Variablen
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Abbildung 4.12: Verteilungen der exklusiven Variablen mit den abgeschétzten Schnitten auf
die jeweils anderen beiden Grofien
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Abbildung 4.13: Verteilungen der exklusiven Variablen mit den endgiiltigen Schnitten auf die

jeweils anderen beiden Grofien; rote Linien markieren die Schnittbedingungen
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4.6.2 Methode 2: Kinematischer Fit mit Schnitt auf x2 4

In CORAL werden die Teilchenspuren und Vertizes mithilfe von Kalman-Fits rekon-
struiert. Da CORAL nicht auf die Proton-Informationen des RPDs zugreifen kann und
zudem die Spur des reellen Photon nicht rekonstruiert, kann dabei die Energie- und
Impulserhaltung nicht verwendet werden. Deshalb wird in diesem Abschnitt ein alter-
natives Konzept entwickelt, welches die Erhaltungsséitze in die Rekonstruktion einbe-
zieht und zusétzlich eine Selektion der exklusiven Ereignisse ermdglicht. Dazu wird ein
kinematischer Fit mit allen rekonstruierten Teilchen durchgefiihrt, bei dem sdmtliche
Ereignisse, die die DVCS-Signatur aufweisen, zunéchst als exklusive Prozesse betrachtet
werden. Dann werden durch den Fit fiir alle beteiligten Teilchen verbesserte Parame-
ter berechnet, mit denen die Erhaltungssétze erfiillt sind. Bei den wahren, exklusiven
Ereignissen sollten diese neuen Werte nur innerhalb der Messfehler von den urspriing-
lichen Werten abweichen. Fiir die nicht-exklusiven Prozesse wird hingegen eine grof3
Anpassung durch den Fit erwartet. Dies fiithrt zu einer schlechten Giite des Fits, die
durch das sogenannte X2, = x?/NDF beschrieben wird (mit: NDF = Anzahl der
Freiheitsgrade).

Realisiert wird der kinematische Fit mittels der Methode der Lagrange-Multiplikatoren,
die im néchsten Abschnitt erldutert wird. Die Umsetzung des Verfahrens erfolgt mithil-
fe eines auf ROOT basierenden Pakets namens , KinFitter“. Dabei handelt es sich um
einen 6ffentlich zugénglichen Code von Jan Erik Sundermann und Thomas Gopfert, der
alle erforderlichen Matrizenmultiplikationen durchfiihrt [29].

4.6.2.1 Theorie

Auch bei dieser Methode werden die Impulse p; aller beteiligten Teilchen benétigt. Wie
zuvor gibt dabei der Index ¢ an, auf welches Teilchen sich bezogen wird (4.7). Fiir jedes
der vier Teilchen liegen also drei Messgrofien vor,

Dx.is Py,is Pzi- (4.21)

Die zwolf Messgrofien werden zur besseren Ubersicht in einem Vektor zusammengefasst:

ﬁu kO

P k1 -

Pl=1 .=k (4.22)
Dy :

Dp k12

Aufgrund der endlichen Messauflésung der Detektoren erfiillen diese Parameter die
Energie- und Impulserhaltung nicht exakt. Das heifit sie unterscheiden sich von den
realen Parametern &’ um den Vektor Ak:

K =k+ Ak (4.23)



56 4. Analyse

Das Ziel des kinematischen Fits ist es nun, aus den gemessenen Parametern die Ak zu
bestimmen, und damit die Parameter %', die die vier Erhaltungssitze erfiillen

filk) = (pgw _pzw’ - pim - p;e,p) e=0 4.24
fa (k) = (9 — p;/,u’ — Pyy —Pyp) =0 4.25
VA

4.26

(
(
(
(4.27

)
)
)
)

Dabei sind

B =R+ M
M, = M, = 105,66 MeV/c?
M, =0MeV/c?
M, = 938,27 MeV /%
Aus der Impulserhaltung folgen f1, fo und f3, wihrend f4 durch die Energieerhaltung

bedingt wird. Auch die Erhaltungssétze, die die Zwangsbedingungen des Fits darstellen,
werden zwecks Ubersichtlichkeit in einem Vektor zusammengefasst.

f1
=7 (4.28)
fa
Nun gilt es die Summe, der mit den Fehlern gewichteten AE, zu minimieren.
Y2(k) = (AR)T -1 Ak (4.29)

Hierbei steht C fiir die Kovarianzmatrix von k. Zur Minimierung bietet sich die Methode
der Lagrange-Multiplikatoren an, bei der eine neu definierte Funktion L minimiert
werden muss.

4
Lk, X) = X2(k) + 2> Amfm (k). (4.30)
m=1

Da nicht alle Zwangsbedingungen linear sind, wird ein Iterationsverfahren zur Linea-
risierung verwendet. Die weitere Vorgehensweise wird aus Griinden der Ubersicht im
Anhang C weiter ausgefiihrt. Sie ist auBdem in der Quelle [30] ausfiihrlich beschrie-
ben. Mit dem Ergebnis werden im (n + 1)-ten Iterationsschritt die neuen Parameter
kit = n 4 A" sowie die neuen Jacobimatrizen

% - g
o e 1 12
Ok \op .. on

Ok1 k1o

und die Zwangsbedingungen f (E"“) berechnet. Dabei dienen die 12 gemessenen Para-
meter k, sowie deren Kovarianzmatrix C' als Startwerte des Fits. Dies geschieht solange,
bis die folgenden Konvergenzkriterien erfiillt sind:
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1. Die gewichtete Summe x? #ndert sich nur noch geringfiigig zwischen zwei aufein-
anderfolgenden Iterationen,

2 2
‘X”X”“ <1-1074, (4.32)

ndf

2. Die Zwangsbedingungen sind ausreichend erfiillt,

4
> | fm (k™| < 0,01 MeV. (4.33)

m=1

4.6.2.2 Bestimmung der Kovarianzmatrix

Die Startwerte der Kovarianzmatrix C, also die Varianzen und Kovarianzen der gemes-
senen Parameter, werden aus der Giite der Spurrekonstruktionen, sowie im Falle des
Protons mithilfe von simulierten Daten bestimmt. Die vier 3 x 3-Kovarianzmatrizen
(Cy, Cy, Cy, Cp) der Fit-Teilchen werden als unkorreliert angenommen, das heifit die
fiir den Fit verwendete Matrix hat folgende Form:

C, 0 0 0
(o ¢, 0 o

c=lo ¢ ¢ o (4.34)
0 0 0 G

Da die einzelnen Matrizen allerdings nicht beziiglich p,, p, und p, bestimmt werden, ist
eine Basistransformation erforderlich. Wenn Cp; die Kovarianzmatrix beziiglich einer
Basis B1 ist, dann ergibt sich die Matrix Cps beziiglich der Basis B2 mithilfe der
Jacobimatrix Jp1 e der Transformation wie folgt [30]:

Cpy = JBLBQ -Cpy - ng,BQ' (4.35)

Strahlmyon und gestreutes Myon

Fiir das einlaufende und das auslaufende Myon liegen die Kovarianzmatrizen Cx, v, p,
und C' XY, bereits auf CORAL-Ebene vor, sodass sie direkt mit PHAST abgerufen
werden koénnen. Die so erhaltenen Werte beziehen sich allerdings auf die Parameter X :=
%, Y = % und |p]~!, weshalb eine Transformation nach Gleichung (4.35) erforderlich
ist. Da sich pj, wie folgend berechnen lésst,

X

ﬁ _ z/—hx — ’ﬁll’ Y —. ’_’M‘u—}» (4 36)
C\y) VEExERYELL ) el
lautet die zugehorige Jacobimatrix:
|2 — X2 YX
[ _2|u7|32 Pu,x
_ |7 72—y
J/J« - ’pﬂ‘ % |U)|‘U7‘3 _pu,y . (437)

S pu;z S puﬂ,y —p
[Py |1 [W]2 ]~ ez
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Die Jacobimatrix .J,, wird analog mit den Parametern des gestreuten Myons berechnet.
Die gesuchten Kovarianzmatrizen beziiglich p,, p, und p. sind damit

Cu=1Ju-Cxyp, Jp (4.38)
Crr = Jp - Cx v - I (4.39)

Reelles Photon

Das Photon wurde aus der Vertexposition 7y, der Position des Schwerpunktes des neu-
tralen Clusters 7¢, sowie der Clusterenergie F rekonstruiert. Die Transformationsvor-
schrift (E, A7) — (E,p) lautet in diesem Fall

S S Ax
., GLA5) _ To— Ty AT FE
Py = B = Ero = - - ARV (4.40)
"e — v ATl /A2 + Ay? + Az Az
mit folgender Jacobimatrix:
1 0 0 0
Dy, E'(|AF]2—3AIQ) 7A|:p%§;E —A\x%gZE
E [AF A A
Jy=1 prw —Ay~TA:z:~E E(\AF]QT—AyQ) _Ay.TAZ.E . (4.41)
E |A3 |A73 |AT3
Py,z —Az-Az-E —AzAy-E E(|A72—Az?)
E |A73 G | A3

Um nun die Kovarianzmatrix beziiglich p,, p, und p. zu erhalten, wird zuerst Cg ar
gebildet. Dazu lésst sich in PHAST direkt auf die Varianz von F, sowie die Kovarianz-
matrizen von 7y und 7¢ zugreifen. Da diese Grofien unkorreliert sind und die Kovarianz
linear ist, erhélt man die Kovarianzmatrix beziiglich £ und A# durch einfache Summa-
tion

00 0 O 00 0 O Var(E) 0 0 0
0 0 0 0 00
Cpar=1 Cr,. o o + 0 000 (442)
0 0 0 0 00
Zusammen mit J, kann damit die Matrix C'g 5 bestimmt werden
Cep=Jy Cgar- Jgﬂ. (4.43)

In ihr kann die gesuchte Kovarianzmatrix C', abgelesen werden.

Proton

Die Kovarianzmatrix des riickgestoffenen Protons wird zunéchst in Kugelkoordinaten,
also beziiglich |p,|, 6, und ¢,, abgeschétzt. Dabei wird angenommen, dass die Korre-
lationen zwischen diesen Parametern vernachléssigbar sind. Aus den Varianzen dieser
Grofen ergibt sich dann die zu transformierende Kovarianzmatrix

Var(lpp)) 0 0
Clip | 0pp = 8 Vm;)(@p) y 0@) : (4.44)
ar{@p
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Die Varianzen der Winkel werden jeweils durch einen Gauffit in simulierten Daten
bestimmt. Dazu werden die Differenzen aus den simulierten Messwerten und den zuge-
horigen realen Werten aufgetragen. Das Ergebnis ist in Abbildung 4.14 dargestellt und
ergibt:

\/Var(8,) = (2,56 £ 0, 02)° (4.45)
Var(¢p) = (3,29 £0,02)°. (4.46)
¥ ndf 67.14/19 X2 I ndf 511.7/22
A 2538+ 31.2 A 1854+ 20.7
b i X0 -0.2684+0.0246 & r X0 0110200322
@ r 2 1800~
£ 2500~ s 2.565 £ 0.020 z B s 3.288+0.017
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Abbildung 4.14: Differenzen aus simulierten Messwerten und zugehorigen realen Werten zur
Abschétzung der Varianzen des Protonimpulses

Die ¢-Verteilung weicht dabei leicht von einer Gauflverteilung ab, was sich in einem
schlechteren Xfed—Wert widerspiegelt. Die zugehorige Varianz lasst sich aber zusétzlich
iiber einen anderen Weg bestimmten. Da der duflere RPD-Ring aus 24 Szintillations-
streifen aufgebaut ist, deckt jeder von ihnen einen ¢-Bereich von 360°/24 = 15° ab. Unter
der Annahme, dass dort jeweils eine Gleichverteilung vorlége, wiirde sich eine Varianz
von

15° .
\/VGT(¢p)Gleichverteilung — ﬁ = 4, 33 (4.47)

ergeben. Diese liegt in der selben Groflenordnung wie die mit der Gaufifunktion be-
stimmten Varianz. Deshalb wird im weiteren Verlauf der Wert aus (4.46) verwendet.

Fiir die Varianz des Impulsbetrages wird hingegen eine Abschitzungsformel aus dem
COMPASS-II-Proposal[15] benutzt

N .92 9
\/Var(|pp|) = . |pp’ﬁQ SICI;Aip\/COS2 Op(A2% + Az3) + (22 At (4.48)
- B
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1

2.2
Mpc

mit: fr=1-

Dabei ist dap der Abstand zwischen A- und B-Ring, Atap die Auflésung der Flugzeit-
messung und Az die Auflésung der Ortsmessung in z-Richtung in den entsprechenden
Szintillationsstreifen (siehe Tabelle 3.1).

Die Transformation von Kugelkoordinaten in kartesische Koordinaten lautet

Dp,x sin ), cos ¢,
Pp= | Ppy | = IPp| | sinb,sing, (4.49)
Dp,2 cos 0,

und zugehorige Jacobimatrix ist

sin @), cos ¢, |pp|cosb,cosd, —|pPp|sinb,sin ¢,
Jp = | sinfpsing, |pp|cosbysing, —|pp|sin,cosep, | . (4.50)
cos b, —|pp|sin b, 0

Damit berechnet sich die gesuchte Kovarianzmatrix zu

Co =y Cly, 1060 * I - (4.51)

4.6.2.3 Durchfiihrung mit simulierten Daten

Um die Funktionalitéit des Fits fiir DVCS-Ereignisse zu tiberpriifen, wird er zunéchst auf
einen simulierten Datensatz angewandt. Dieser wurde mit dem Monte-Carlo-Generator
HEPGen! erstellt und enthilt ausschlieBlich exklusive DVCS- und BH-Prozesse. Die
Selektion der zu fittenden Ereignisse erfolgt dabei durch die gleichen Schnitte wie bei
den realen Messdaten. Die Anzahl der benétigten Iterationen bis zur Erfiilllung der
Konvergenzkriterien (4.32) und (4.33), ist in Abbildung 4.15(a) dargestellt. Alle Fits
konvergieren und die resultierenden X%ed sind in Abbildung 4.15(b) zu sehen. Eine X?ed_
Verteilung sollte ihr Maximum bei 1 besitzen und fiir grofe Xfed—Werte gegen 0 kon-
vergieren. Der erhaltene Verlauf entspricht den Erwartungen, weist allerdings ein leicht
verschobenes Maximum auf. Das liegt daran, dass der Fehler durch die Energiekor-
rektur bei der Rekonstruktion des Riickstof3protons unterschétzt wird. Um den nicht-
exklusiven Untergrund in den realen Daten zu minimieren, muss auf moglichst kleine
Xfed—Werte geschnitten werden, ohne dass dabei zu viele exklusive Ereignisse verloren
gehen. Da ein sehr grofier Anteil der simulierten Ereignisse im Bereich X?ed < 10 liegt,
wird dies im Folgenden als Schnitt-Bedingung verwendet. In den simulierten Daten l4sst
sich auflerdem die Auswirkung auf die Variablen x}; (siehe Tabelle 2.1) und ¢ (siehe
Abbildung 2.5) studieren. Dazu kénnen neben den rekonstruierten Parametern, auch
die entsprechenden simulierten Teilchenspuren abgerufen werden. Die Differenz dieser
Groflen ist aufgrund der Messfehler ungleich Null. Fiir den Winkel ¢ ist sie in Abbil-
dung 4.16 gegen die fehlerfreien ¢p;c aufgetragen. Das linke dieser Histogramme wurde
direkt mit den rekonstruierten Werten berechnet, wohingegen im rechten die durch den
Fit angepassten Parameter verwendet wurden.

'Hard Exclusive Production Generator
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Abbildung 4.16: Vergleich von simulierten Winkeln ¢_MC und den zugehérigen rekonstruier-
ten Winkeln ¢; aufgetragen ist die Differenz (¢ — ¢_MC) gegen ¢_MC
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4. Analyse

Wie erwartet hat der kinematische Fit eine Verbesserung bewirkt, die sich in der Ver-
minderung des Mittelwertes von 0, 216° auf 0,036° widerspiegelt. Auch der Einfluss auf
xp; ldsst sich veranschaulichen. Die geringere Streuung um die erste Winkelhalbierende
in Abbildung 4.17 und die schmalere Verteilung in Abbildung 4.18 zeigen, dass auch
hier eine Optimierung durch den Fit erzielt wurde.
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4.6.2.4 Durchfithrung mit Messdaten

An dieser Stelle wird der kinematische Fit auf alle Ereignisse angewandt, die die Ver-
texselektion (siehe Tabelle 4.1) {iberstanden haben und einen neutralen Cluster, sowie
ein Riickstofiproton aufweisen. Im Anhang sind in den Abbildungen A.3, A.4, A.5 und
A.6 die relativen Fehler o,.; und Korrelationskoeffizienten p aller in den Fit eingehen-
den Parameter dargestellt. Sie wurden fiir jedes Ereignis mithilfe der zuvor bestimmen
Kovarianzmatrizen wie folgt berechnet:

_ 0(‘])”‘) _ COV(pn,pn)
Oret(pn) = ol o] (4.52)
P(Pms Pn) = Cov(pn, Pr) (4.53)

B \/COV(pm,Pm)COV(Pmpn) .

Dabei sind m,n € (z,y, z). Der Korrelationskoeffizient kann Werte von —1 bis 1 an-
nehmen und gibt an, wie stark der lineare Zusammenhang zwischen zwei Grofien ist.
Nur fiir p = 0 besteht keine lineare Abh#ngigkeit. Die Fit-Charakteristiken sind in Ab-
bildung 4.19 dargestellt. Die x2 ;-Verteilung besitzt das bei 1 erwartete Maximum und
enthélt wesentlich mehr Ereignisse mit grolen Werten, als die entsprechende Verteilung
der simulierten, exklusiven Prozesse (Abbildung 4.15). Dies ist ein Indiz dafiir, dass es
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Abbildung 4.19: Fit-Charakteristiken fiir die Messdaten

sich dabei um nicht-exklusive Prozesse handelt. Sie werden durch die zuvor begriinde-
te Bedingung Xfed < 10 entfernt. Nur fiir einen geringen Prozentsatz konvergiert das
Verfahren nicht. Diese Ereignisse werden allerdings ausnahmslos durch den X?ed-Schnitt
verworfen. Der fiir die Selektion von DVCS-Ereignissen erforderliche Schnitt (4.6) auf
den Impuls des Protons wird an dieser Stelle fiir die durch den Fit angepassten Pro-
tonimpulse angewendet.

Zur Uberpriifung, ob eine unerwiinschte Korrelation zwischen den x?ed-Werten und den
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resultierenden x; besteht, sind beide in den Abbildungen 4.20 und 4.21 gegeneinander
aufgetragen. Sollten durch den Xfed—Schnitt bevorzugt bestimmte x;;-Werte entfernt
werden, wire das Verfahren nicht zur Selektion exklusiver Ereignisse geeignet. Aller-
dings zeigt sich sowohl in den simulierten als auch in den gemessenen Daten wie erwartet
keine auffillige Korrelation.
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Abbildung 4.20: Aus dem kin. Fit resultierendes zy; vs. x2,,4, ohne den Schnitt [p,| < 1 GeV/c
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Abbildung 4.21: Aus dem kinematischen Fit resultierendes xp; vs. x% 4, mit allen Schuitten

Die Lorentzvektoren aller vier Teilchen (p, 11, , p) sind in Abbildungen im Anhang dar-
gestellt. Sie sind dabei sowohl vor, als auch nach der Anpassung durch den Fit zu sehen.
Um die Auswirkungen des Xfed—Schnitts zu veranschaulichen wurden in den Abbildun-
gen A7, A8, A.9 und A.10 alle Parameter vor dem Schnitt, und in den Abbildungen
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A.11, A.12, A.13 und A.14 nur noch jene, die danach verbleiben, aufgetragen.

Es ist hervorzuheben, dass besonders viele Ereignisse durch den Xfed—SChnitt entfernt
wurden, bei denen der Fit ein bestimmtes Verhalten zeigte. Entweder wurde der Im-
puls des Strahlmyons um mehr als 3 GeV/c nach unten korrigiert, oder der Impuls
des gestreuten Myons wurde um mindestens 0,3 GeV/c erhoht. Beide Félle unterstiit-
zen zusétzlich die These, dass es sich bei den Prozessen mit hohen Xfed—Werten um
nicht-exklusive Ereignisse handelt. Bei diesen fehlte die Energie der nicht-detektierten
Teilchen im Endzustand, sodass die Energiebilanz durch die beiden genannten, auffillig
grofien Anderungen ausgeglichen werden miissten.

Der scharfe Peak bei genau 160 GeV/c in der z-Impulsverteilung der Strahlmyonen ist
im Verfahren des Rekonstruktionsprogrammes begriindet. Sollte es nicht mdglich gewe-
sen sein, den Impuls des einlaufenden Myons zu bestimmen, so wird sein Impulsvektor
exakt in z-Richtung mit einem Betrag von 160 GeV /¢ definiert. Allerdings wird zusétz-
lich der Fehler auf |o(p),)| = 4,3 GeV/c festgelegt (sieche Abbildung 4.22).
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Abbildung 4.22: Fehler auf den Impulsbetrag des Strahlmyons

Durch einen Schnitt auf diesen Fehler kénnten solche Ereignisse eindeutig entfernt wer-
den. Dadurch wiirden jedoch ungefihr weitere neun Prozent der ohnehin schon geringen
Statistik verloren gehen.
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Hier zeigt sich ein weiterer Vorteil dieser zweiten Methode: Durch den grofien, festge-
legten Fehler jener Myonimpulse erhélt der kinematische Fit geniigend Spielraum, um
passende Werte ermitteln zu kénnen.

Fiir alle Ereignisse mit gemessenen Strahlmyon-Impulsen sind aus Griinden der Voll-
standigkeit die Verteilungen der Lorentzvektoren, sowohl vor der Anpassung durch den
Fit als auch danach, in den Abbildungen A.15, A.16, A.17, A.18, A.19, A.20, A.21 und
A.22 im Anhang zu sehen.
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4.6.3 Vergleich der Resultate

An dieser Stelle werden die Ergebnisse der beiden Selektionsmethoden miteinander ver-
glichen, um zu iiberpriifen ob systematische Unterschiede auftreten. Die ¢-Verteilungen
der extrahierten DVCS- und BH-Ereignisse sind sowohl fiir den direkten Schnitt auf die
exklusiven Variablen (Methode 1), als auch fiir den kinematischen Fit (Methode 2) in
den Abbildungen 4.23 und 4.24 dargestellt. Dabei wurde dieselbe Aufteilung in unter-
schiedliche x;-Bereiche gewéhlt, wie in den Vorhersagen durch die zuvor durchgefiihr-
ten Monte-Carlo-Simulationen. Abbildung 4.23 zeigt die Verteilungen vor dem Schnitt
(4.6) auf den Protonimpuls. Vergleicht man sie mit den Verteilungen nach dem Schnitt
(Abbildung 4.24) wird ersichtlich, dass dieser hauptséchlich Ereignisse mit kleinen ¢-
Winkeln entfernt.

Die resultierenden Verteilungen besitzen, in Ubereinstimmung mit der Theorie, im Be-
reich kleiner und mittlerer x;;-Werte ein schmales Maximum bei 180°. Fiir x3; > 0,03
nimmt die Breite erwartungsgeméf zu. Es zeigt sich jedoch, dass im Bereich x;; > 0,03,
in dem der reine DVCS-Prozess dominiert, die ¢-Verteilung aus dem kinematischen Fit
deutlich besser mit der Vorhersage iibereinstimmt (siehe Abbildung 2.6). Hierbei ist
lediglich auf den Verlauf der Verteilungen zu achten, da den absoluten Zahlen aufgrund
der fehlenden Normierung keine Bedeutung zukommt.

Zur besseren Ubersicht sind in Tabelle 4.2 die entsprechenden Anzahlen zusammenge-
fasst. Durch die Selektion mithilfe des kinematischen Fits bleiben schliefflich insgesamt
428 Ereignisse erhalten. Dabei betriigt der statistische Fehler 1/428 ~ 21. Analog er-
gibt sich die durch Methode 1 selektierte Anzahl zu 404 +20. Beide Methoden sind also
innerhalb einer Standardabweichung miteinander vereinbar. Auch im kinematischen Be-
reich, in dem der reine DVCS- iiber den BH-Prozess dominiert, zeigen beide Methoden
mit Ereigniszahlen von 54 + 7 und 57 4+ 8 keine systematische Abweichung. Dabei sei
angemerkt, dass von den durch Methode 1 selektierten Ereignissen 325 in denen von
Methode 2 enthalten sind.

Anzahl Ereignisse pro x;;-Bereich

Methode || zp; < 0,005 | 0,005 < xp; < 0,01 | 0,01 < 2p; < 0,03 | 0,03 < xp;
1 25 200 125 o4
2 24 219 128 57

Tabelle 4.2: Anzahl an DVCS- und BH-Ereignissen nach allen Schnitten



68 4. Analyse

(] . . [ E . .
2 e0F- J— 206 Ereignisse 2 - [ 231 Ereignisse
> | > 60F
e r o T
1T} 50— w L
H* E H* 50j
40— g
r 40~
30 F
[ 30
20 20F
101 10—
07 L1l \\\‘\\\\‘\\\\‘\\\ S I 0: \\\‘\\\\‘\\\\‘\\\\\\ 11
-150 -100 -50 0 50 100 150 -150 -100 -50 O 50 100 150
@/ Grad @/ Grad
(a) 0,005 < xp; < 0,01 (b) 0,005 < xp; < 0,01
2 183 Ereignisse a [ 233 Ereignisse
r igni F igni
2 80 L_ 2 soF L
= =
e o _F
W 50— w 70~
+* C H* C
C 601
40? n
c 50
30 401~
200 3ot
F 20~
10— F
: lo;ﬂ—uﬂj I\ﬁ_‘—%w
P I N L S === QeI [ T B ‘
-150 -100 -50 0 50 100 150 -150 -100 -50 O 50 100 150
@/ Grad ¢/ Grad
(c) 0,01 < zp; < 0,03 (d) 0,01 < zp; < 0,03
[ C N N [ F . .
3 0= 115 Ereignisse & 8o 194 Ereignisse
5 5
[} C [ -
& 35 a OF
$* E #* r
30 60—
25? 501~
20? a0
15 30
10~ 201
5 LT 10
-150 -100 -50 0 50 100 150 -150 -100 -50 O 50 100 150
@/ Grad @/ Grad
(e) 0,03 < xp; (f) 0,03 <
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Fit (Methode 2)
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Abbildung 4.25 und Tabelle 4.3 veranschaulichen die Auswirkung sdmtlicher Schnitte,
die zu den exklusiven 428 Ereignissen fiihren.
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Abbildung 4.25: Auswirkung der einzelnen Schnitte auf die Anzahl der verbleibenden Ereig-
nisse

Schnitt H Faktor | Verbleibender Anteil [%)] ‘
kein Schnitt 1,000 100
Vertexselektion 1,63e-5 1,63e-3
1 neutr. Cluster 0,407 6,64e-4
1 Proton 0,214 1,42e-4
Xied kinFit < 10 0,148 2,10e-5
|DProton| < 1 GeV/c || 0,627 1,31e-5

Tabelle 4.3: Einfluss der Schnitte zur Selektion exklusiver DVCS-Ereignisse auf deren Anzahl

Aus Griinden der Vollstandigkeit finden sich die Verteilungen der kinematischen Varia-
blen Q?, y und zy; fiir beide Methoden im Anhang in Abbildung A.23. Sie weisen keine
systematischen Unterschiede zueinander auf.
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4.7 Analyse der elektromagnetischen Kalorimeter

Der korrekte Nachweis des reellen Photons iiber die elektromagnetischen Kalorimeter
ist zur Identifikation und Rekonstruktion der DVCS-Ereignisse duflerst wichtig. Des-
halb werden in diesem Kapitel die Effizienzen der elektromagnetischen Kalorimeter
genauer untersucht. Dazu werden Informationen aus der Elektronen-, sowie der Laser-
Kalibration verwendet. Mit ihnen lassen sich aufféllige Kalorimeterzellen identifizieren,
die wahrend der Messung nicht korrekt funktioniert haben. Sie messen entweder nur
ein konstantes Rauschen, konnen niedrige Energien (Gréflenordnung bis 2 GeV) nicht
detektieren, oder sind vorzeitig in der Séttigung.

Dabei wird der Einfluss auf alle Ereignisse, die in den kinematischen Fit eingehen, unter-
sucht. Anschlielend werden speziell diejenigen Kalorimeterzellen betrachtet, in denen
die Photonen der finalen, exklusiven 428 DVCS-Ereignisse nachgewiesen wurden (vgl.
Abschnitt 4.6.3). Dadurch kénnen alle Cluster identifiziert werden, bei denen die gemes-
sene Energie systematisch unterschéitzt wurde. Die entsprechenden FEreignisse werden
dann aus der finalen Statistik entfernt.

4.7.1 Kalibrationskonstanten

Wie in Kapitel 3.3.1.2 beschrieben, wird durch die Kalibration mit einem Elektro-
nenstrahl fiir jede Zelle von ECAL1 und ECAL2 eine Kalibrationskonstante CCec;
bestimmt. Diese Konstanten ermdéglichen die Umrechnung der gemessenen Spannungs-
amplituden in die Teilchenenergien. Alle Zellen besitzen einen Schwellenwert unterhalb
dessen die Signalamplitude nicht registriert werden kann. Je grofler die Umrechnungs-
konstante ist, desto grofler fillt somit die detektierbare Minimalenergie aus.

Um die Zellen mit auffillig grolen Konstanten zu bestimmen, werden die verschie-
denen Zelltypen (siehe Tabelle 3.3) getrennt betrachtet. Dies ist notwendig, da sie mit
unterschiedlichen Spannungen versorgt werden und somit abweichende Verteilungen der
Kalibrationskonstanten erwartet werden. Abbildung 4.26 zeigt die geometrische Anord-
nung der 1500 ECAL1-Zellen. Die Positionen der 3068 ECAL2-Zellen sind in Abbildung
4.27 dargestellt. Dabei ist in ECAL2 zusétzlich eine Unterteilung in Module im zen-
tralen Bereich und dem Randbereich erforderlich. Das liegt daran, dass in der dufleren
Region allgemein héhere Spannungen anliegen. Der Grund ist, dass dort Schauer mit
geringerer Energie detektiert werden und somit eine optimale Ausnutzung der PMT-
Akzeptanz gewahrleistet wird.

Zusétzlich zur Information iiber die Kalibrationskonstanten werden auch die Ampli-
tuden LA, ; der Laserkalibrationen benétigt. Eine Zelle, die bei der Elektronenkali-
bration normal funktioniert hat, konnte wihrend der reguldren Datennahme ausfallen.
Daraus wiirde ein grofies LA,y ; resultieren. Im Folgenden werden auch die Verteilun-
gen dieser Werte betrachtet, um Zellen mit erhohten Laseramplituden zu identifizieren.
Fiir smtlich verwendete Messperioden sind die Kalibrationskonstanten C'Ce.; und die
Amplituden LA, ; aller Zelltypen in den Abbildungen 4.28 und 4.29 zu sehen. Die
gestrichelten Linien markieren dabei den Schwellenwert, ab dem eine Zelle als Ausrei-
Ber betrachtet wird. Sie wurden mithilfe der Halbwertsbreiten der Verteilungen abge-
schéitzt. Sollte bei einer Zelle die zugehorige Laseramplitude wahrend einer beliebigen
Messung den Schwellenwert iiberschreiten, so wird sie fiir alle analysierten Messperi-
oden als schlecht angesehen. Ungefiihr 2% aller ECAL-Zellen sind derart auffillig. Thr
Positionen sind den Abbildungen 4.30 und 4.31 veranschaulicht.
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Abbildung 4.28: Kalibrationskonstanten und Amplituden aus der Laserkalibration der
ECAL1-Zellen fiir alle Messperioden; Werte oberhalb der gestrichelten Linien werden als Aus-
reifler angesehen
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Abbildung 4.30: Positionen von ECAL1-Zellen mit hoher Kalibrationskonstante (rot) oder auffélliger Laseramplitude (blau)
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4.7.2 Analyse auffilliger Zellen

Um das Verhalten einer einzelnen Zelle zu studieren, werden alle Cluster betrachtet, de-
ren Schwerpunkt innerhalb dieser Zelle liegt. Anschliefend werden die Clusterenergien
gegen die Zeitdifferenz zwischen der Clusterzeit und der Zeit des Strahlmyons aufgetra-
gen. Damit geniigend Statistik vorliegt, werden an dieser Stelle weniger Anforderungen
an die selektierten Ereignisse gestellt. Es wird lediglich sichergestellt, dass der Primér-
vertex innerhalb der Targetzelle liegt und dass Q% > 0,1 (GeV/c)? ist. Abbildung 4.32
zeigt eine Auswahl zweier auffalliger Zellen.

Zellindex: 100 (GAMS)
Eintraege: 697
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Abbildung 4.32: Energie vs. Zeitdifferenz zum Strahlmyon fiir alle Cluster, deren Schwerpunkt
in der betrachteten Zelle liegt; Bei den verwendeten Ereignissen befindet sich der Primérvertex
im Target mit beliebig vielen auslaufenden Teilchen und einem Q% > 0,1 (GeV /c)?.

Physikalisch relevante Cluster weisen eine zeitliche Koinzidenz mit dem Strahlmyon
auf und besitzen beliebige Energien. Zusétzlich ist ein zeitlich nicht-korrelierter, niede-
renergetischer Untergrund zu sehen. Die abgebildete ECAL1-Zelle hat eine iiberdurch-
schnittlich hohe Kalibrationskonstante, sodass die zuvor beschriebene, detektierbare
Minimalenergie bei ungefihr 2 GeV liegt. Der ungewdthnliche, gaufiférmige Untergrund
in der ECAL2-Zelle ist ein Artefakt des Rekonstruktionsalgorithmus. Er tritt immer
dann auf, wenn die zentrale Zelle defekt ist und lediglich ein nicht-korreliertes Rau-
schen detektiert. Zum besseren Versténdnis sind im Anhang in den Abbildungen A.24
und A.25 alle Teilenergien aufgetragen, aus denen sich die Cluster der zentralen Zel-
le zusammensetzen. Dort wird auflerdem ersichtlich, dass der tote Bereich bei kleinen
Energien in der ECAL1-Zelle lediglich durch die zentrale, auffillige Zelle entsteht. Die
Nachbarzellen haben durchschnittliche Kalibrationskonstanten und zeigen ein normales
Verhalten.

Fiir alle in den kinematischen Fit eingehenden Ereignisse wird an dieser Stelle die
Position des neutralen Clusters im Energie-Zeit-Histogramm iiberpriift. Sollte er zum
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Beispiel die gleiche Energie besitzen, wie der gauBférmige Untergrund in der abgebil-
deten ECAL2-Zelle, kénnte es sich um ein nicht-physikalisches Ereignis handeln. Dies
ist allerdings bei keinem der finalen 428 selektierten Ereignissen der Fall.

4.7.2.1 Einfluss auf Cluster in benachbarten Zellen

Es stellt sich nun die Frage, wie grof3 der Einfluss einer Zelle mit hoher Kalibrationskon-
stante auf einen Cluster mit Schwerpunkt in einer benachbarten Zellen ist. Ein grofler
toter Bereich kénnte dazu fiihren, dass ein Teil der Energie nicht detektiert wird. Damit
hétte der rekonstruierte Cluster eine zu geringe Gesamtenergie. Dabei werden jeweils
die acht Zellen als benachbart bezeichnet, die sich im umgebenden 3 x 3-Zellenbereich
einer auffilligen Zelle befinden, da auf sie der Einfluss am stérksten ist.

Im Folgenden werden Cluster mit einer Gesamtenergie Fciyster > 10 GeV getrennt von
denen mit niedrigerer Energie betrachtet, da letztere wesentlich stérker beeintréichtigt
werden und die selektierten, exklusiven Ereignisse fast alle im Bereich Ecjyster > 10 GeV
liegen. Um den Einfluss einer Zelle mit einem toten Bereich von 2 GeV zu untersuchen,
werden alle Cluster verwendet, die aus mindestens zwei Teilenergien rekonstruiert wur-
den. Von diesen werden alle Teilenergien e < 2 GeV analysiert, da sie theoretisch im
toten Bereich der schlechten Zelle liegen kéonnten. Dies wiirde dazu fiithren, dass sie nicht
detektiert werden.

Die Abbildungen 4.33 und 4.34 zeigen fiir jede Teilenergie den Anteil an der Gesamtener-
gie, sowie das Groflenverhiltnis zum Gesamtfehler. Auf Cluster mit Fcjyster > 10 GeV
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Abbildung 4.33: Groflenordnungen der Teilenergien e < 2 GeV von Clustern mit £ > 10 GeV

ist der Einfluss vernachlissigbar. Es wiirden in den meisten Féllen weniger als 5% der
Gesamtenergie nicht detektiert werden. Bei solchen Clustern ist dies in der Gréfienord-
nung des Fehlers aus der Rekonstruktion. Anders sieht es hingegen bei den niederener-
getischen Clustern aus. Hier ist es nicht unwahrscheinlich, dass der Anteil der nicht
detektierten Energie bis zu 50 % der Gesamtenergie ausmacht. Auflerdem iibersteigen
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Abbildung 4.34: GroBenordnungen der Teilenergien e < 2 GeV von Clustern mit E < 10 GeV

die Teilenergien den Fehler der Clusternergie um ein Vielfaches. Da letzterer in den
kinematischen Fit eingeht, ist in diesem Fall die nicht-detektierte Energie nicht mehr
vernachléssigbar.

Es konnen nur diejenigen Cluster beeintriachtigt werden, die ihre Energie in mehr als
einer Zelle deponieren. Da die Anzahl der beteiligten Zellen bei benachbarten Clustern
zu gering ausfallen konnte, ist eine Abschétzung der Clusterzusammensetzung nétig.
Dazu werden alle niederenergetischen (Ecyster < 10 GeV), neutralen Cluster betrach-
tet, die sich nicht in der 3 x 3 Umgebung einer auffilligen Zelle befinden. Fiir sie ist die
Anzahl der beteiligten Zellen in Abbildung 4.35 dargestellt.

Ungefihr 34 % aller Cluster setzen sich aus mehreren Teilenergien zusammen und kon-
nen somit beeinflusst werden.
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Abbildung 4.35: Anzahl der beteiligten Zellen pro niederenergetischem, neutralem Cluster,
der sich nicht benachbart zu einer auffilligen Zelle befindet

Ereignisse mit DVCS-Signatur

Nun wird iiberpriift, wieviele der Ereignisse, die in den kinematischen Fit eingegangen
sind, beeinflusst werden. Die Selektion erfolgt dabei iiber zwei Schnitte, die in Tabelle
4.4 zusammengefasst sind. Der Clusterschwerpunkt muss benachbart zu einer auffalli-
gen Zelle liegen und eine Energie Ecpuster < 10 GeV besitzen.

Anzahl Ereignisse
Schnittbedingung in ECAL1 | in ECAL2 | Gesamt
Ereignis geht in den kinem. Fit ein 2317 2306 4623
+ Nachbar von auffilliger Zelle 454 395 849
+ Eciuster < 10GeV 415 100 515

Tabelle 4.4: Schnitte zur Selektion von Ereignissen, die durch benachbarte, auffiillige Zellen
beeinflusst werden

Von den 4623 Ereignissen bleiben 515 erhalten. Mit der zuvor gezeigten Verteilung aller
ungefihrdeten, niederenergetischen Cluster (Abbildung 4.35). Ergibt sich, dass bei etwa
515/4623 - 34% der in den Fit eingehenden Ereignisse die Energie des Photons systema-
tisch unterschétzt wird. Unter Beriicksichtigung der statistischen Fehler folgt daraus,
dass (3,8 £ 0,1) % der Ereignisse betroffen sind. Wie grof§ der systematische Fehler
der Energiemessung im einzelnen ist, miisste durch die Bestimmung der detektierbaren
Mindestenergien in allen Zellen ermittelt werden. Wie bereits erwéhnt ist er bei einer
Schwellenenergie von 2 GeV nicht vernachlissigbar. Mit den dadurch ermittelten Ener-
gien, konnten anschliefend die betroffenen Cluster korrigiert werden.
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Exklusive DVCS-Ereignisse

Zur Betrachtung der exklusiven 428 DVCS-Ereignisse sind in Abbildung 4.36 die gemes-
senen Clusterenergien aufgetragen. Samtliche in ECAL2 detektierten Cluster besitzen
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Abbildung 4.36: Clusterenergien der selektierten DVCS-Ereignisse

eine Energie von mehr als 10 GeV, sodass der Einfluss von benachbarten, schlechten Zel-
len vernachléssigt werden kann. In ECALL gibt es neun Cluster mit geringerer Energie.
Thre z-y-Positionen sind in Abbildung 4.37 zusammen mit den Positionen der schlech-
ten Zellen dargestellt. Keiner liegt benachbart zu solch einer Zelle, sodass bei allen
durch den kinematischen Fit selektierten Prozessen keine systematischen Fehler in der
Photon-Rekonstruktion auftreten.
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4.7.3 n°-Rekonstruktion

An dieser Stelle soll kurz gezeigt werden, dass der Grofiteil aller Zellen richtig ka-
libriert ist. Dazu werden 7°-Mesonen rekonstruiert und ihre Ruhemassen berechnet.
In der resultierenden Massenverteilung sollte dann ein Maximum bei der Pionmasse
Mo = 135GeV/c? auftreten.

Die 7%-Mesonen kénnen bei der inelastischen Streuung des Myons am Proton entste-
hen. Dabei wird das Proton in einen angeregten Zustand versetzt, der anschlieend in
ein Proton und ein 7%-Meson zerfillt. Letztere zerfallen wiederum zu 98,8 % in zwei
Photonen.

Zur Analyse werden Ereignisse betrachtet, die beliebig viele auslaufende Teilchen am
Primérvertex aufweisen. Sie miissen allerdings genau zwei neutrale Cluster besitzen, die
eine zeitliche Koinzidenz zum Strahlmyon, sowie eine bestimmte Mindestenergie haben.
Diese betriagt 1GeV fiir einen Cluster in ECAL1 und 2 GeV in ECAL2, da man mit
diesen Schwellen das beste Signal erhihlt. Wie in Kapitel 4.4 wird angenommen, dass
die Cluster von Photonen aus dem Primérvertex stammen. Damit kénnen die zugeho-
rigen Lorentzvektoren mithilfe von Gleichung 4.5 berechnet werden. Addiert man die
beiden Vierervektoren, so ergibt das Quadrat des resultierenden Vektors die Masse des
urspriinglichen Teilchens.

Abbildung 4.38 zeigt die resultierenden Massen. Es wird unterschieden, ob beide Pho-
tonen in unterschiedlichen ECALs detektiert wurden, oder ob beide in ECAL1 bzw.
ECAL2 nachgewiesen wurden. Dabei wurden Gaufifunktionen an das Maximum bei
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Abbildung 4.38: Rekonstruierte Massen aus y-Zerfillen; die roten Linien markieren die 7°-
Masse (135 GeV/c?), sowie die n-Masse (548 GeV/c?)

der m°-Masse gefittet. Auerdem markieren die roten Geraden die Massen des pseudo-
skalaren n-Mesons, das zu etwa 39 % ebenfalls in zwei Photonen zerfillt.

Da die Schwerpunkte z0 der Gaufifunktionen innerhalb einer Standardabweichung s
mit der Pionmasse iibereinstimmen, kann von einer befriedigenden Kalibration der
ECAL-Zellen ausgegangen werden. Die Ereignisse, die keinem der beschriebenen Maxi-
ma zugeordnet werden kénnen, stammen wahrscheinlich von 7°-Mesonen, die nicht im
Primérvertex entstanden sind. Auch die falschliche Zuordnung zweier nicht-korrelierter
Photonen zu einem Teilchen wére denkbar.
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4.7.4 Potenzielle Leckcluster

Zum Abschluss wird iiberpriift, ob bei einigen Clustern ein Teil des Schauers aus den
elektromagnetischen Kalorimetern hinten austritt, bevor die gesamte Energie deponiert
werden konnte. Dazu wird der Vektor zwischen dem Primérvertex und dem Cluster so-
weit verlangert, bis seine Spitze im jeweils direkt hinter dem ECAL befindlichen hadro-
nischen Kalorimeter landet. Sollte dort ein neutraler Cluster mit zeitlicher Koinzidenz
vorliegen konnte somit ein Teil der Clusterenergie nicht detektiert werden. Solch ein
zeitlich korrelierter Cluster wird dabei genau dann einem ECAL-Cluster zugeordnet,
wenn seine Position innerhalb eines definierten Kreises in der x-y-Ebene liegt. Das Zen-
trum dieses Kreises bildet die Spitze des verlingerten Vektors. Der Radius wird dann
anhand der Zellengréfien des jeweiligen Kalorimeters abgeschéitzt. Er betrigt 5cm in
HCAL1 und 10 cm in HCAL2. Zur Veranschaulichung sind in Abbildung 4.39 sdmtliche
auftretenden HCAL-Cluster aufgetragen und Kreise mit den entsprechenden Radien im
oberen Bereich eingezeichnet.
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Abbildung 4.39: Positionen aller Cluster in den hadronischen Kalorimetern

Dieses Verfahren wird bei allen Ereignissen angewandt, die in den kinematischen Fit
eingehen. Wenn ein HCAL-Cluster dem ECAL-Cluster eines solchen Ereignisses zu-
geordnet werden kann, werden beide Clusterenergien gegeneinander aufgetragen. Auf
diese Weise wird ersichtlich, welcher Energiebruchteil des ECAL-Clusters im hadroni-
schen Kalorimeter deponiert wird. Das Ergebnis ist in Abbildung 4.40 zu sehen. Dabei
sind die Ereignisse, die den Xfed—Schnitt nach dem kinematischen Fit iiberstehen, griin
hervorgehoben. Aufierdem ist der wahrscheinlichste Energieverlust (= 1,8 GeV) eines
Halo-Myons als gestrichelte Linie eingezeichnet (vgl. Kapitel 3.3.2).

Von den 428 selektierten, exklusiven DVCS-Ereignissen kann bei neun ein entsprechen-
der HCAL-Cluster zugeordnet werden. Sechs dieser Cluster besitzen eine Energie von
ungefihr 1,8 GeV. Es ist also wahrscheinlich, dass sie von einem Halo-Myon erzeugt
wurden, dem keine geladene Spur zugeordnet werden konnte. Sie sind folglich unabhén-
gig von den Clustern in den elektromagnetischen Kalorimetern. Deshalb wird angenom-
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Abbildung 4.40: Energie von HCAL-Clustern aufgetragen gegen die zugehorige ECAL-
Clusterenergie; griin: finale DVCS-Cluster

rot: Ereignisse, die den Schnitt auf x2_; < 10 nicht iiberstehen

gestrichelte Linie: wahrscheinlichster Energieverlust eines Halo-Myons

men, dass in diesen Féllen die gesamte Energie des reellen Photons in einem der ECALSs
deponiert wurde. Bei den restlichen drei Ereignissen ist hingegen anzunehmen, dass die
Energie des reellen Photons zu klein bestimmt wurde. Der Anteil der im jeweiligen
HCAL gemessenen Energie betrigt dabei ungefihr 10 %. Da diese Ereignisse trotz der
unterschitzten Energie die Erhaltungsséitze erfiillen, handelt es sich um nicht-exklusive
Ereignisse. Sie werden deshalb aus der finalen Statistik entfernt, die sich nun wie in
Tabelle 4.5 zusammengefasst ergibt.

Anzahl an exklusiven Ereignissen pro xy;-Bereich
xp; < 0,005 | 0,005 < xp; < 0,01 | 0,01 < ;5 < 0,03 | 0,03 < a5
23 219 127 56

Tabelle 4.5: Finale Anzahlen der selektierten, exklusiven DVCS- und BH-Ereignisse

4.7.5 Systematischer Fehler durch exklusiven 7°-Untergrund

Die erhaltenen DVCS-Verteilungen sind neben den Rekonstruktionfehlern mit einem un-
vermeidbaren, systematischen Fehler behaftet. Durch die in dieser Arbeit angewendeten
Methoden konnte der nicht-exklusiven Untergrund weitestgehend unterdriickt werden.
Allerdings verursacht der Zerfall exklusiv erzeugter 7°-Mesonen einen exklusiven Un-
tergrund in den selektierten Prozessen. Der Grund dafiir ist, dass wie in Abschnitt 4.7.3
beschrieben, die 7°-Meson gréfitenteils in zwei Photonen zerfallen. Sollte davon nur ei-
nes detektiert werden, ist der beobachtete Endzustand ununterscheidbar von dem der
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DVCS-Prozesse. Weiterhin werden auch Ereignisse, bei denen beide Photonen im Ka-
lorimeter als nur ein Cluster rekonstruiert werden, félschlicherweise als DVCS-FEreignis
nachgewiesen.

Eine Untersuchung des 7%-Untergrundes wird in dieser Arbeit nicht durchgefiihrt. Eine
ausfiihrliche Analyse mithilfe von Monte-Carlo-Simulationen findet sich in der Diplom-
arbeit von Johannes ter Wolbeek [31].
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5. Zusammenfassung

Die Zusammensetzung der Nukleon-Spinstruktur ist auch heutzutage noch nicht voll-
stindig verstanden. Uber das Konzept der generalisierten Partonverteilungen bietet sich
jedoch die Moglichkeit, den unbekannten Bahndrehimpuls durch die Gesamtdrehimpul-
se der Quarks zu bestimmen. Ein vielversprechender Zugang ertffnet sich dabei durch
die prézise Vermessung der exklusiven tief-virtuellen Compton-Streuung.

In dieser Arbeit wurden die Daten der 2009 am COMPASS-Experiment durchgefiithrten
DVCS-Messung analysiert. Dabei wurden zwei unterschiedliche Methoden zur Selektion
von exklusiven Ereignissen angewandt und miteinander verglichen. Zum einen wurde
der bisher gebrauchliche, direkte Schnitt auf die Energie- und Impulsbilanz durchge-
fithrt. Dem gegeniiber stand die Entwicklung und Anwendung eines Konzepts, welches
fiir die DVCS-Analyse bei COMPASS neu ist. Dazu wurde ein kinematischer Fit unter
Einbezichung aller an der Streuung beteiligten, rekonstruierten Teilchen durchgefiihrt.
Zuerst wurde das Verhalten des kinematischen Fits mithilfe eines simulierten Daten-
satzes studiert. Dabei zeigte sich, dass exklusive Ereignisse iiber die Giite ihres Fits
selektiert werden konnten und zusétzlich eine Verbesserung der rekonstruierten Pa-
rameter erfolgte. In den gemessenen Daten waren die erhaltenen Ereigniszahlen der
beiden Methoden innerhalb einer Standardabweichung miteinander vereinbar. Wie er-
wartet, zeigten allerdings die durch den kinematischen Fit resultierenden Verteilungen
eine bessere, qualitative Ubereinstimmung mit den theoretischen Vorhersagen.
Auflerdem wurden alle Prozesse mit DVCS-Signatur, die in den kinematischen Fit ein-
gingen, auf systematische Fehler in der Energiemessung des Photons untersucht. Dabei
zeigte sich, dass ungefihr 2% der Module in den elektromagnetischen Kalorimetern
fehlerhaft waren. Als Folge wurde bei etwa 4% der Ereignisse die Photonenergie zu
gering gemessen. Der Grund dafiir war, dass bei den niederenergetischen Clustern ein
betriachtlicher Energieanteil in den beschédigten Zellen verloren ging. Erfreulicherweise
wurde davon keines der selektierten, exklusiven Ereignisse betroffen.

Abschlielend wurde untersucht, ob Teile der Schauer aus den elektromagnetischen Ka-
lorimetern ausgetreten waren, bevor sie dort vollsténdig absorbiert wurden. Hier konnte
bei drei Ereignissen ein zugehoriger Cluster in den hadronischen Kalorimetern nachge-
wiesen werden. Der Energieanteil betrug ungefihr 10 % der urspriinglich gemessenen
Energie und konnte somit nicht vernachléssigt werden. Diese nicht-exklusiven Ereig-
nisse wurden deshalb aus der finalen Statistik entfernt, sodass schliellich (425 + 21)
exklusive Ereignisse selektiert wurden. Von diesen befinden sich (57 £ 7) im kinemati-
schen Bereich, in dem der reine DVCS-Prozess iiber die konkurrierende BH-Streuung,
die den gleichen Endzustand besitzt, dominiert.

Zusammenfassend kann also im Hinblick auf zukiinftige DVCS-Analysen eine Verbesse-
rung beim Nachweis der exklusiven Prozesse erzielt werden. Zum einen ermoglicht das
Konzept des kinematischen Fits, so wie es in dieser Arbeit umgesetzt wurde, eine Op-
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timierung in der Rekonstruktion und Selektion der exklusiven Ereignisse. Zum anderen
kann durch eine detaillierte Analyse der Schwellenenergien aller Kalorimeterzellen eine
Korrektur der systematisch unterschétzten Photonenergien erfolgen.
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nach der Anpassung durch den Fit und die dritte Spalte veranschaulicht die Differenz
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nach der Anpassung durch den Fit und die dritte Spalte veranschaulicht die Differenz
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nach der Anpassung durch den Fit und die dritte Spalte veranschaulicht die Differenz
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Abbildung A.16: Gestreutes Myon: Impulse p,, p,, p. und Myonenergie F; die erste Spalte
zeigt die Werte vor dem kinematischen Fit, die zweite Spalte nach der Anpassung durch den
Fit und die dritte Spalte veranschaulicht die Differenz; es sind nur Ereignisse abgebildet, bei
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Abbildung A.17: Reelles Photon: Impulse p;, py, p. und Photonenergie E; die erste Spalte
zeigt die Werte vor dem kinematischen Fit, die zweite Spalte nach der Anpassung durch den
Fit und die dritte Spalte veranschaulicht die Differenz; es sind nur Ereignisse abgebildet, bei
denen der Strahlmyon-Impuls gemessen wurde
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Abbildung A.18: Riickstofiproton: Impulse p;, py, p. und Protonenergie F; die erste Spalte
zeigt die Werte vor dem kinematischen Fit, die zweite Spalte nach der Anpassung durch den
Fit und die dritte Spalte veranschaulicht die Differenz; es sind nur Ereignisse abgebildet, bei
denen der Strahlmyon-Impuls gemessen wurde
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Abbildung A.19: Strahlmyon: Impulse p,, p,, p. und Myonenergie E aller Ereignisse mit
Xfed < 10; die erste Spalte zeigt die Werte vor dem kinematischen Fit, die zweite Spalte nach
der Anpassung durch den Fit und die dritte Spalte veranschaulicht die Differenz; es sind nur
Ereignisse abgebildet, bei denen der Strahlmyon-Impuls gemessen wurde
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Abbildung A.21: Reelles Photon: Impulse p;, py, p. und Photonenergie E aller Ereignisse
mit XEed < 105 die erste Spalte zeigt die Werte vor dem kinematischen Fit, die zweite Spalte
nach der Anpassung durch den Fit und die dritte Spalte veranschaulicht die Differenz; es sind
nur Ereignisse abgebildet, bei denen der Strahlmyon-Impuls gemessen wurde
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Abbildung A.22:

Riickstofiproton: Impulse p,, py, p. und Protonenergie F aller Ereignisse
mit X%ed < 10; die erste Spalte zeigt die Werte vor dem kinematischen Fit, die zweite Spalte
nach der Anpassung durch den Fit und die dritte Spalte veranschaulicht die Differenz; es sind
nur Ereignisse abgebildet, bei denen der Strahlmyon-Impuls gemessen wurde
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Abbildung A.25: Energie vs. Zeit der Teilenergien, die zu Clustern in ECAL2-Zelle Nr. 1996
beitragen; die Histogramme sind entsprechend den Zellenpositionen im Kalorimeter angeordnet



B. Abweichung in den ungeschnittenen
Verteilungen

Beim Vergleich der ungeschnittenen Verteilungen aller Primérvertex-Positionen in Ab-
bildung B.1 zeigt sich, dass die Verteilung von Periode W38 innerhalb eines Bereiches
von 4m vor dem Target deutlich von den anderen beiden abweicht. W39 und W40 zei-
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Abbildung B.1: Vergleich der z-Positionen der besten Primérvertizes ohne Schnitte;
gestrichelte Linien: Position der Targetzelle

gen jedoch eine gute Ubereinstimmung, obwohl es sich dabei um Messungen mit einem
Myonstrahl mit umgekehrter Ladung handelt. Weiterhin befindet sich eine grofie An-
zahl an Vertizes auflerhalb des Targets, obwohl die Protonendichte dort in Strahlnéhe
viel geringer ist.

Dies ldasst darauf schlieflen, dass es sich bei einem Grofiteil dieser Vertizes nicht um
wirkliche Wechselwirkungspunkte handelt, sondern dass sie ein Artefakt des Konstruk-
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tionsalgorithmus sind. Eine mogliche Erklirung wire, dass kleine Anderungen in den
rekonstruierten Strahlspuren in diesem Bereich als Vertizes fehlinterpretiert werden. Die
verdnderte Verteilung nach Periode W38 konnte somit aus einer minimalen Umstellung
im Alignment oder der Strahlfithrung resultieren.

In Abbildung B.2 sind gemeinsam fiir alle Perioden die spiter bestimmten Q2-Werte
der Primérvertizes gegen ihre z-Positionen aufgetragen. Es zeigt sich, dass die beschrie-
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Abbildung B.2: Q2 vs Vertexposition ohne Schnitte; gestrichelte Linien markieren die spéteren
Schnittgrenzen, —68,4cm < z < —28,4cm und Q2 > 1(GeV/c)?

benen Vertizes iiberwiegend im Bereich Q? < 0,1(GeV/c)? liegen, was die vorherige
These unterstiitzt. Die horizontale, gestrichelte Linie veranschaulicht den unvermeit-
lichen Schnitt auf Q% > 1(GeV/c)?. Somit werden durch den Q?-Schnitt die nicht-
physikalischen Ereignisse entfernt.



C. Minimierung der Lagrange-Funktion

In diesem Kapitel wird beschrieben, wie sich durch die Minimierung der Lagrange-
Funktion 4.30 die gesuchten Fitparameter AF berechnen lassen. Dabei realisieren die
Ableitungen beziiglich der Lagrange-Multiplikatoren \; die Einhaltung der Zwangsbe-
dingungen des kinematischen Fits, denn im Extremum muss gelten:

—.\

- o0 =
Vi sL(k,X) =0 (C.1)
OL(k, X) OL(k,X) OL(k,X) EAY) o~
( ok 0 Oke 0 on 8A4 =0 (C.2)
kX
8A =0 (C.3)
= fn(F) = 0. (C.4)

Da nicht alle Zwangsbedingungen linear sind, wird ein Iterationsverfahren zur Linea-
risierung verwendet, um die Gleichungen analytisch 16sen zu kénnen. Dazu werden die
Bedingungsgleichungen in erster Ordnung taylorentwickelt

AK") =0 (C.5)

-

f(E )4 J(Ak; — AKP) = 0. (C.6)
Dabei sind

k = Startwerte der gemessenen Parameter

k™ = Werte nach Iterationschritt n

9 e 1 12
Ok \op . on
Ok k1o

Durch die Einfiihrung eines Vektors ¢
gi= JAK" — f(k"+Y), (C.7)

lésst sich die Bedingung C.6 vereinfacht schreiben als

—

J-Ak—&=0. (C.8)



118 C. Minimierung der Lagrange-Funktion

Einsetzen in die Lagrange-Gleichung (4.30) ergibt
L=AE"CIAk +2XT (JAK — &). (C.9)

Aus den Bedingungen C.3 an die Ableitungen nach k und X folgt damit ein Gleichungs-
system aus den 12 Gleichungen

C Ak +JTX =0, (C.10)
sowie den 4 Gleichungen
JAk—Z=0. (C.11)

Zusammengefasst gilt es also folgende Gleichungen mit 16 Unbekannten, zu 16sen:

<CJ_1 ‘]OT> <AXE> - (g) (C.12)

Zum Auflésen nach den Unbekannten Ak, X wird Gleichung (C.8) in (C.10) eingesetzt
und umgeformt, sodass schliellich folgt:

Ak =-cJTC,e (C.13)
X=—CZ (C.14)
wobei:  Cjy:= (JCJT)™L. (C.15)

Mit dem Gauflschen Fehlerfortpflanzungsgesetz ergeben sich damit auch die neuen Ko-
varianzmatrizen

o o¢
/:7 = ]_ T —_— .].
C' =570 =@+ CITCs 52)C (C.16)
—J

Ch =Cy. (C.17)
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