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1 Einleitung 
Noch vor etwa hundert Jahren beschränkte sich die Teilchenphysik auf die über-
sichtlichen Bestandteile der Materie: den Atomen. Angetrieben durch die Arbeiten 
mit Kathodenstrahlen von Joseph John Thomson und der damit verbundenen Ent-
deckung des Elektrons 1897, die das Konzept des Atoms als unteilbare Einheit 
verwarf, begann die Suche nach weiteren Bestandteilen der Materie. Innerhalb der 
letzten hundert Jahre konnte in diesem Forschungsbereich eine rasche Entwick-
lung und damit verbundene große Fortschritte beobachtet werden, so dass es 
heutzutage zur Elementarteilchenphysik viele verschiedenste Forschungsgebiete 
gibt.  
Der Schritt von der Teilchen- zur Elementarteilchenphysik begann mit der Verwer-
fung des thomsonschen Atommodells (Plumpudding Modell), durch die Experimen-
te von Rutherford 1909. Durch die Ablenkung der auf Goldfolie geschossenen He-
liumatomkerne schloss er, dass die positive Ladung und ein Großteil der Masse im 
Atomkern in der Mitte des Atoms konzentriert sind und die Elektronen diesen, wie 
Planeten die Sonne, umkreisen. Erste Hinweise auf die Quantenmechanik inner-
halb der Teilchenphysik gab es, als 1913 Rutherfords Atommodell durch die quan-
tisierten Elektronenbahnen von Niels Bohr erweitert wurde. Dass die Quantenme-
chanik endgültig Bestandteil der Teilchenphysik sein würde, wurde mit dem Stern-
Gerlach-Versuch 1922 und der damit verbundenen Entdeckung des Spins besie-
gelt. Ab diesem Zeitpunkt teilte sich aufgrund der wachsenden Komplexität die 
Teilchenphysik grob in zwei Forschungsgebiete: die Theorie und das Experiment. 
Die Aufteilung führte keineswegs zu einer Trennung, vielmehr entwickelte sich dar-
aus ein Zusammenspiel, das der Forschung innerhalb kürzester Zeit immer neuere 
Erkenntnisse brachte. Auf der einen Seite gelang James Chadwick 1932 bei Expe-
rimenten mit den Produkten radioaktiver Zerfälle die Entdeckung des Neutrons, 
was einige Jahre später wiederum zur Entdeckung der Kernspaltung führte. Paral-
lel dazu entwickelte sich, aufbauend auf dem von Louis de Broglie 1924 postulier-
ten Welle-Teilchen-Dualismus, eine neue Sichtweise des Atommodells. Demnach 
wurden Teilchen als dreidimensionale Wellen beschrieben, so dass es unmöglich 
war, deren Ort und Impuls gleichzeitig zu bestimmen. Diese als Unschärferelation 
bekannte Aussage wurde 1926 von Werner Heisenberg im Rahmen der Quanten-
mechanik formuliert. Seit den 50er Jahren des 20. Jahrhunderts ermöglichte die 
Weiterentwicklung von Teilchenbeschleunigern und Teilchendetektoren die Erfor-
schung der Atome bei sehr hohen Energien. Durch die tiefinelastische Streuung 
gelang der Nachweis von Quarks als Konstituenten der Protonen und Neutronen 
[1]. Außerdem konnte so festgestellt werden, dass Protonen und Neutronen nur 
zwei von vielen Hadronen im „Hadronen-Zoo“ sind. Mit der gleichzeitigen Entwick-
lung der Quantenmechanik hin zu einer relativistischen Quantenfeldtheorie, wurde 
das Werkzeug gefunden, Wechselwirkungen zu beschreiben. Alle bisher gefunde-
nen Erkenntnisse über Teilchen und Wechselwirkungen sind im Standardmodell 
der Teilchenphysik zusammengefasst. Innerhalb dieser Quantenfeldtheorie können 
die schwache, elektromagnetische und starke Wechselwirkung beschrieben wer-
den. Außerdem gelang es die schwache und elektromagnetische Kraft als zwei 
Aspekte der gleichen Wechselwirkung innerhalb der GWS-Theorie zu verstehen. 
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Nur die Gravitation nimmt durch die Beschreibung der allgemeinen Relativitätstheo-
rie eine Sonderstellung ein. Die immer weiter fortschreitende Erforschung der Ele-
mentarteilchen durch immer höhere Energien wirft neben den Antworten ebenso 
viele neue Fragen auf, die im Rahmen des Standardmodell nicht, oder nur unzurei-
chend erklärt werden können. Seit einiger Zeit ist klar geworden, dass das Stan-
dardmodell erweitert werden muss. Von den vielen Theorien zur Physik jenseits 
des Standardmodells können mithilfe der Supersymmetrie, eine Symmetrie zwi-
schen Fermionen und Bosonen, Probleme des Standardmodells gelöst werden. Im 
Gegensatz zum Standardmodell sagt die Supersymmetrie neben der Existenz ei-
nes vielversprechenden Dunkle Materie Kandidaten, des Neutralinos, die korrekte 
Menge der gemessenen primordialen Dunkle Materiedichte vorher und kann die 
Gravitation innerhalb des Symmetriebrechungsmechanismus berücksichtigen. Zu-
sätzlich können durch supersymmetrische Beiträge innerhalb teilchenphysikali-
scher Prozesse auftauchende Diskrepanzen zwischen experimentellen und vom 
Standardmodell vohergesagten Werten aufgehoben werden.  
Soll das Standardmodell durch Supersymmetrie erweitert werden, so muss es nicht 
nur mit den kosmologischen, sondern auch mit elektroschwachen Beobachtungen 
in Einklang gebracht werden können. Dies im Rahmen des eingeschränkten mini-
malen supersymmetrischen Standardmodells (engl. constrained minimal super-
symmetric standard model, CMSSM) zu überprüfen, um im Anschluss eine Vorher-
sage des möglichen Parameterraums und dessen Entdeckungspotentials zu ge-
ben, ist eines der Ziele dieser Arbeit. Erreicht wird dies durch eine mehrstufige Op-
timierung der CMSSM Parameter mithilfe einer χ2-Funktion. Die mehrstufige Opti-
mierung bietet den Vorteil, dass sie den starken Korrelationen der CMSSM Para-
meter Rechnung trägt. Diese Korrelationen führen bei zufallsbasierten Markov-
Chain-Monte-Carlo Optimierungsmethoden häufig zu Problemen bei der Auffin-
dung sinnvoller Parameterkombinationen, so dass sich unterschiedliche Resultate 
des erlaubten Parameterbereichs ergeben.  
Zum Verständnis der in der Analyse verwendeten Begrifflichkeiten und Methoden 
werden zunächst in den Kapiteln 2 und 3 alle notwendigen theoretischen Grundla-
gen zum Standardmodell und zur Supersymmetrie bereit gestellt. Da der kosmolo-
gische Aspekt die primordiale Dunkle Materiedichte darstellt, werden alle nötigen 
Informationen zur Dunklen Materie in Kapitel 4 geliefert. Die Abschätzung des Ent-
deckungspotentials kann in der Kombination mit der in dieser Arbeit durchgeführten 
Wirkungsquerschnittanalyse für die Suche nach supersymmetrischen Teilchen an 
Teilchenbeschleuniger genutzt werden. Deshalb wird der LHC als bislang größter 
Teilchenbeschleuniger der Welt in Kapitel 5 näher beschrieben. Bevor in Kapitel 7 
auf die Analyse eingegangen wird, wird in Kapitel 6 auf die verwendeten Analyse-
werkzeuge eingegangen.  
In der Analyse wird gezeigt, dass mithilfe der mehrstufigen Optimierung im Ver-
gleich zu anderen zufallsbasierten Verfahren ein größerer erlaubter Bereich gefun-
den werden kann. Nachdem der erlaubte CMSSM Parameterbereich, der mit allen 
kosmologischen und elektroschwachen Einschränkungen konsistent ist, in Kapitel 7 
vorgestellt wird, werden die Auswirkungen der direkten Suche nach Dunkler Mate-
rie und nach supersymmetrischen Teilchen am LHC auf den gefundenen Bereich 
diskutiert. Durch die Optimierung der CMSSM Parameter bezüglich der primordia-
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len Dunklen Materiedichte nimmt tan(β) in einem großen Bereich des Parameter-
raums hohe Werte an. Dies führt zu hohen Wirkungsquerschnitten bei der assozi-
ierten Higgsproduktion und bietet so die Möglichkeit in Kombination mit dem CMS-
Entdeckungspotential, die Masse des Higgs-Bosons am LHC zu messen.  
 

 

 





 

5 

2 Das Standardmodell 
Das Standardmodell der Teilchenphysik (SM) ist eine Theorie, die das Wissen über 
alle bis zu diesem Zeitpunkt bekannten Elementarteilchen und deren Wechselwir-
kung untereinander mit Ausnahme der Gravitation, die durch die allgemeine Relati-
vitätstheorie beschrieben wird, zusammenfasst. Die in den achtziger Jahren des 
zwanzigsten Jahrhunderts entwickelte relativistische Quantenfeldtheorie hat bis 
heute Bestand, da sie durch viele Experimente bestätigt werden konnte.  
Die Grundzüge des Standardmodells sollen in Abschnitt 2.1 beschrieben werden, 
welche durch die theoretischen Grundlagen in Abschnitt 2.2 vertieft werden. Dabei 
wird unter anderem auf den Formalismus für das letzte, noch nicht entdeckte Teil-
chen des Standardmodells, das sogenannte Higgs-Boson, eingegangen. Der Ab-
schnitt 2.3, der neben den Erfolgen ebenfalls auf die Grenzen des Standardmo-
dells eingeht, schließt dieses Kapitel ab. 

2.1 Teilchen und Wechselwirkungen 
Das Standardmodell der Teilchenphysik beinhaltet drei Wechselwirkungen, die 
schwache, elektromagnetische und starke Wechselwirkung, sowie zwei Arten ele-
mentarer Teilchen: Fermionen und Bosonen. Die Teilchen unterscheiden sich 
durch ihren Spin. Während Bosonen einen ganzzahligen Spin tragen, ist der Spin 
von Fermionen stets halbzahlig. Da der Spin die Vertauschungsrelation der Teil-
chen bestimmt, gehorchen die Teilchen unterschiedlichen Statistiken, der Bose- 
und der Fermi-Statistik. Dies führt dazu, dass bosonische Teilchen durch kohärente 
Überlagerung Kraftfelder und fermionische Teilchen aufgrund des Pauliprinzips 
Materie bilden [2].  
Fermionen, die Bausteine der Materie, kann man in zwei Gruppen bezüglich ihrer 
Wechselwirkung aufteilen, den sechs Quarks und den sechs Leptonen, welche 
man wiederum in drei Familien aufteilen kann, wie man in Abbildung 2.1 und 
Tabelle 2.2 sieht. Während bei den Leptonen das Elektron e, Myon µ und Tau τ 
elektrisch geladen sind und sich nur durch die aufsteigende Masse unterscheiden, 
sind die dazugehörigen Mitglieder der Familie die Neutrinos νe, νµ, ντ elektrisch 
neutral, weshalb sie nur an der schwachen und nicht noch zusätzlich an der elekt-
romagnetischen Wechselwirkung teilnehmen. Teilchenprozesse laufen bei Lepto-
nen nur innerhalb einer Familie ab [3]. 
 

Wechselwirkung koppelt an Austauschteilchen 
Masse 

(GeV/c2) 

stark Farbe 8 Gluonen g 0 

elektromagnetisch elektrische Ladung Photon γ 0 

schwach schwache Ladung W±, Z0 ~ 102 

Tabelle 2.1: Wechselwirkungen und zugehörige Bosonen des SM. 
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Ebenso wie die Leptonen lassen sich die Quarks, die Bausteine der Protonen und 
Neutronen, die ihrerseits Atomkerne bilden, in drei Familien unterteilen. Man be-
zeichnet die unterschiedlichen Typen der Quarks als „Flavour“. Dabei befinden sich 
jeweils die Paare up-Quark u und down-Quark d, charm-Quark c und strange-
Quark s und top-Quark t und bottom-Quark b zusammen in einer Familie. Alle 
Quarks sind elektrisch geladen, weshalb sie schwach und elektromagnetisch 
wechselwirken. Zusätzlich können die Quarks aufgrund ihrer Farbladung an der 
starken Wechselwirkung teilnehmen. Die Farbladung wurde als zusätzlicher Frei-
heitsgrad hinzugefügt, um das Pauliprinzip innerhalb von Baryonen nicht zu verlet-
zen [4]. Jedes Quark kann daher zusätzlich die Quantenzahl rot, blau oder grün 
tragen. Eine weitere Besonderheit der Quarks ist die nicht verschwindende Wahr-
scheinlichkeit zum Übergang in eine andere Familie innerhalb von schwachen Teil-
chenprozessen. Dieses Verhalten wird durch die Cabibbo-Kobayashi-Maskawa-
Matrix (CKM-Matrix) beschrieben [5], [6]. Da die Wechselwirkungszustände der 
schwachen Wechselwirkung Überlagerungen der Massenzustände der Quarks 
sind, kommt es zu Übergängen innerhalb einer Familie. Die Übergangswahrschein-
lichkeit von einem Quark in ein anderes Quark ist dabei proportional zum Quadrat 
des Betrags des jeweiligen Matrixelements der CKM-Matrix. 
 

Fermionen 
Familie 

1      2     3 
el. 

Ladung 
Farbe 

Schwacher  
Isospin 

links-      rechtshdg.  
Spin  

νe νµ ντ 0 - 
Leptonen 

e µ τ -1 
- 1/2 

0 
1/2 

u c t +2/3 0 
Quarks 

d s b -1/3 
r,b,g 1/2 

0 
1/2 

Tabelle 2.2: Quantenzahlen der Quarks und Leptonen. 

 
Zu jedem oben beschriebenen Fermion gibt es das entsprechende Antifermion mit 
gleicher Masse aber entgegen gesetzter Ladung, Farbe und dritter Komponente 
des schwachen Isospins, der Quantenzahl der schwachen Wechselwirkung. 
Die Bosonen vermitteln die jeweilige Wechselwirkung und werden deshalb auch 
Austauschteilchen genannt. Das Photon koppelt an die elektrische Ladung der 
Teilchen und ist somit das Austauschteilchen der elektromagnetischen Wechsel-
wirkung. Da das Photon masselos ist, hat die elektromagnetische Wechselwirkung 
eine unendliche Reichweite. Es trägt jedoch selbst keine Ladung, so dass Photo-
nen im Gegensatz zu den anderen Bosonen untereinander nicht koppeln. Die Aus-
tauschteilchen der schwachen Kraft sind die W±- und Z0-Bosonen. Sie sind auf-
grund einer spontanen Symmetriebrechung, die im SM durch den Higgsmechanis-
mus (siehe dazu Abschnitt 2.2.4) beschrieben wird, massiv und haben deshalb nur 
eine sehr geringe Reichweite. Da W±- und Z0-Bosonen selbst schwach geladen 
sind, können sie untereinander koppeln. Eine Besonderheit der schwachen Wech-
selwirkung ist die Paritätsverletzung. Dies bedeutet, dass die Reaktionen der 
schwachen Wechselwirkung nicht spiegelsymmetrisch sind. Während Prozesse, 
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die durch die W±-Bosonen vermittelt werden und als geladene Ströme bezeichnet 
werden, maximal paritätsverletzend sind, sind die neutralen Ströme, welche durch 
das Z0-Boson vermittelt werden, in einem bestimmten Verhältnis paritätsverletzend. 
Der zugrunde liegende schwache Isospinformalismus der schwachen Wechselwir-
kung im Rahmen der elektroschwachen Vereinheitlichung wird in Abschnitt 2.2.3 
näher beschrieben [3]. 
Die acht Gluonen sind die Träger der starken Kraft. Sie koppeln an die Farbladung 
und tragen selbst gleichzeitig Farbe und Antifarbe. Obwohl Gluonen masselos sind, 
ist die effektive Reichweite der starken Wechselwirkung durch die Selbstkopplung 
beschränkt. Beim Trennen eines farbneutralen Objekts, wird die Energie im Farb-
feld bei Abständen ungefähr größer als 1 fm so groß, dass es energetisch günsti-
ger wird reelle Quark-Antiquark-Paare zu bilden. Dieses Phänomen, das als Confi-
nement bezeichnet wird, ist der Grund, weshalb in der Natur nur farbneutrale Ob-
jekte vorkommen [3]. Dabei unterscheidet man zwischen Mesonen, bestehend aus 
einem Quark-Antiquark-Paar, und Baryonen, bestehend aus drei Quarks, wie bei-
spielsweise dem Proton. Eine Auflistung der eben beschrieben Bosonen kann 
Tabelle 2.1 entnommen werden. 
Das Higgs-Boson ist das letzte Teilchen des SM, das noch nicht entdeckt wurde. 
Es koppelt an die Masse der Teilchen, weshalb das Higgs-Boson in Verbindung mit 
dem Higgsmechanismus für die Massengenerierung verantwortlich gemacht wird. 
Mit der Entdeckung des Higgs-Bosons wären alle vorhergesagten Teilchen des SM 
gefunden, weshalb man sich erhofft dieses am bisher größten Teilchenbeschleuni-
ger dem Large Hadron Collider (LHC) in Genf zu finden. 
 
 
 

2,49 MeV 1,27 GeV 172 GeV 0 

2/3 2/3 2/3 0 

1/2 u 1/2 c 1/2 t 1 γ 
up charm top Photon 

5,05 MeV 101 MeV 4,19 GeV 0 

-1/3 -1/3 -1/3 0 

1/2 d 1/2 s 1/2 b 1 g 
down strange bottom Gluon 

< 2 eV < 0,19 MeV < 18,2 MeV 91,2 GeV 
0 0 0 0 

1/2 νe 1/2 νµ 1/2 ντ 1 Z0 
Elektron- 
Neutrino 

Myon- 
Neutrino 

Tau- 
Neutrino 

Z0-Boson 

0,511 MeV 105,7 MeV 1777 MeV 80,4 GeV 
-1 -1 -1 ± 1 

1/2 e 1/2 µ 1/2 τ 1 W± 

Elektron Myon Tau W±-Boson 

Abbildung 2.1: Teilchenspektrum des Standardmodells. 
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2.2 Theoretische Beschreibung des Standardmodells 
Symmetrien und Invarianzen haben in der modernen Physik eine fundamentale 
Bedeutung und das nicht erst seit dem Jahr 1918, in dem Emmy Noether das 
gleichnamige Theorem formulierte. Es besagt, dass mit jeder Symmetrie eines be-
trachteten physikalischen Systems eine Erhaltungsgröße verknüpft ist [7]. Dieses 
Prinzip ist bereits aus der klassischen Physik bekannt, in der beispielsweise die 
Homogenität der Zeit die Energieerhaltung zur Folge hatte.  
Nach den Erfolgen der Quantenmechanik und deren Einzug in die Relativistik, be-
trachtet man in der modernen Teilchenphysik Symmetrietransformationen bezüg-
lich Feldern. Somit ist die Quantenfeldtheorie das geeignete Hilfsmittel zur theoreti-
schen Beschreibung des Standardmodells, welche im Folgenden in ihren Grundzü-
gen wieder gegeben werden soll. 

2.2.1 Die Eichtheorie am Beispiel der Quantenelektr odynamik 

Der aus der klassischen Mechanik bekannte Lagrangeformalismus kann direkt auf 
die Quantenfeldtheorie übertragen werden, mit dem Unterschied, dass man statt 
der Lagrangefunktion L eine Lagrangedichte L des betrachteten Feldes vorliegen 
hat [8]. Somit erhält man die kovariante Darstellung der Wirkung S 
   

 ( )∫∫ ∂== xdLdtS ii
4, φφ µL . (2.1) 

   

Mit Hilfe des Hamiltonischen Prinzips der Wirkung ergeben sich die Euler-
Lagrange-Gleichungen, aus denen die Bewegungsgleichungen für jedes betrachte-
te, in der Lagrangedichte vorkommende Feld folgen 
   

 ( ) 0=
∂
∂−















∂∂
∂∂

ii φφµ
µ

LL
. (2.2) 

   

Zunächst werden die Lagrangedichten für freie, also nicht wechselwirkende Teil-
chen des SM betrachtet [9], wobei zur Übersichtlichkeit der Darstellung natürliche 
Einheiten verwendet werden. Dabei nehmen die Naturkonstanten den Wert eins 
an: 

 1== ch . (2.3) 

Als erstes sei hier die Lagrangedichte eines fermionischen Feldes ( )xψ  dargestellt 
   

 ( )ψγψ µ
µ mi −∂=L . (2.4) 

   

Hierbei ist ( )xψ  der Dirac-Spinor mit dem dazugehörigen adjungierten Spinor 
0γψψ †= . µγ  sind die Gamma Matrizen und m die Masse des Teilchens. 

Unter Verwendung der Euler-Lagrange-Gleichung ergibt sich die wohlbekannte Di-
rac-Gleichung, die die Bewegung eines freien Spin 1/2 Teilchens beschreibt: 
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 ( ) 0=−∂ ψγ µ
µ mi , (2.5) 

   

wobei das Produkt aus Dirac Matrizen und kovarianter Ableitung der Einsteinschen 
Summenkonvention nach  

 i
i ∂+∂=∂ γγγ µ

µ
0

0  (2.6) 

gehorcht. Das Analogon der Dirac-Gleichung für ein skalares Feld ( )xφ  mit Spin 0 

ist die Klein-Gordon-Gleichung 
   

 ( ) 02 =+∂∂ φµ
µ m , (2.7) 

   

die sich ebenfalls aus der Euler-Lagrange-Gleichung mit der dazugehörigen  
Lagrangedichte 
   

 ( )( )( )22

2

1 φφφ µ
µ m−∂∂=L  (2.8) 

   

ergibt. 
Zur Vollständigkeit soll noch die Lagrangedichte für ein masseloses Vektorfeld 

( )xAµ  mit Spin 1 dargestellt werden: 
   

 µν
µν FF

4

1−=L . (2.9) 

   

Hierbei ist µννµµν AAF ∂−∂=  der elektromagnetische Feldstärketensor. Durch An-
wendung der Euler-Lagrange-Gleichung ergeben sich die wohlbekannten homoge-
nen Maxwellgleichungen: 
   

 0
~ =∂ µν

µ F . (2.10) 

   

Dabei ist µνF
~

der duale Feldstärketensor, der durch 
   

 ρσ
µνρσµν ε FF

2

1~ =  (2.11) 

   

unter Verwendung des total antisymmetrischen Epsilontensors aus dem Feldstär-
ketensor µνF hervorgeht. 
Nachdem nun die Lagrangedichten bekannt sind, kann das Verhalten bezüglich 
Eichtransformationen untersucht werden. 
 
Als Ausgangspunkt zur Diskussion von Eichinvarianzen wird hierbei das Diracfeld 

( )xψ  verwendet. Dieses bleibt invariant bezüglich einer globalen Transformation. 

Dies kann am Beispiel einer Multiplikation mit einem konstanten Faktor veran-
schaulicht werden [10], wobei α eine reelle Zahl ist:  
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 ( ) ( ) ( ) ( )xexUxx i ψψψψ α−==′→ . (2.12) 

   

Die Invarianz der Lagrangedichte L0 aus Gleichung (2.4) führt in Verbindung mit 
dem Noethertheorem zu einem erhaltenen Viererstrom, was der Kontinuitätsglei-
chung in der Elektrodynamik und somit der Ladungserhaltung entspricht.  
Die globale Phase α  ist beliebig. Daraus ergibt sich eine Menge von Invari-
anztransformationen U. Da diese Menge die algebraische Struktur einer Gruppe 
hat, kann der elektromagnetischen Wechselwirkung einer Symmetriegruppe zuge-
ordnet werden. Dabei handelt es sich um die Gruppe U(1). Fordert man zusätzlich 
auch die Invarianz unter einer lokalen Transformation, so dass die Phase α  nun 
abhängig vom jeweiligen Raum-Zeit-Punkt ist und die Transformation die Form  
   

 ( ) ( ) ( ) ( )xiqfexxx −=′→ ψψψ  (2.13) 

   

hat, ergibt sich aufgrund der Ableitung ein zusätzlicher Term in der Lagrangedichte: 
   

 ( ) ( ) ( )xfxxq µ
µψγψ ∂+=′→ 000 LLL . (2.14) 

   

Diese Veränderung kann durch das Ersetzen der kovarianten Ableitung aufgeho-
ben werden 
   

 µµµµ iqAD +∂=→∂ . (2.15) 

   

Hier tritt ein zusätzliches Feld ( )xAµ  auf, dessen Transformationsverhalten unter 

U(1)-Transformationen wie folgt aussehen muss, damit die Lagrangedichte unter 
lokaler Symmterietransformation eichinvariant bleibt: 
   

 ( ) ( ) ( ) ( )xfxAxAxA µµµµ ∂+=′→ . (2.16) 

   

Das Feld ( )xAµ  entspricht hierbei gerade dem elektromagnetischen Feld 

( ) ( ) ( )( )xAxxA
r

,φµ =  und q der Ladung des Teilchens, das durch den Dirac-Spinor  

ψ(x) beschrieben wird. Zusammenfassend kann man sagen, dass die Forderung 
nach Invarianz unter lokaler Eichtransformation des Materiefeldes zur Einführung 
eines Eichfeldes führt, das durch die Ersetzung der kovarianten Ableitung an das 
Materiefeld koppelt.  
Fügt man nun der Lagrangedichte noch einen weiteren eichinvarianten Term hinzu, 
den man als kinetischen Photonterm µν

µν FF  identifizieren kann, so ergibt sich die 

vollständige Lagrangedichte der Quantenelektrodynamik (QED):  
   

 ( ) µν
µνµ

µ ψγψ FFmDiQED 4

1−−=L . (2.17) 

   

Die Invarianz unter lokaler Eichtransformation führte also auf ein neues masselo-
ses Vektorfeld und auf Zusatzterme, die die Kopplung des Feldes ( )xψ , den Elekt-
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ronen und Positronen, und dem Eichfeld ( )xAµ , den Photonen, beschreiben. Die 

Wechselwirkung und Existenz des Photons folgen also aus der geforderten Eich-
symmetrie in der QED.  
Dies ist der Grund, weshalb die Eichtheorie ein grundlegendes Prinzip im SM ist. 
Das Eichprinzip, das hier am Beispiel der abelschen U(1) Symmetriegruppe gezeigt 
wurde, kann ebenfalls auf die nicht Abelschen SU(N) Symmetriegruppen, welche 
N²-1 Generatoren besitzen, übertragen werden, um so in analoger Weise die ande-
ren Wechselwirkungen zu beschreiben [11]. Die Wahl der Symmetriegruppe der 
Wechselwirkungen hängt mit den jeweiligen Quantenzahlen zusammen. Die Teil-
chen sind bei der starken bzw. schwachen Wechselwirkung in Tripletts bezüglich 
ihrer Farbladung bzw. in Dubletts bezüglich ihres schwachen Isospins angeordnet. 
Daher entsprechen der schwachen und starken Wechselwirkung gerade die SU(2) 
und SU(3) Gruppen aus denen sich dann 3 bzw. 8 Eichbosonen ergeben. Zusätz-
lich zur QED gibt es die Quantenchromodynamik (QCD), die die Theorie zur Be-
schreibung der starken Wechselwirkung darstellt.  

2.2.2 Quantenchromodynamik 

Zur Vollständigkeit soll im Folgenden die Lagrangedichte der QCD wiedergegeben 
werden. Da das Prinzip dasselbe wie im Falle der QED ist, werden hier nur die 
wichtigsten Aspekte zusammengefasst. 
Ausgangspunkt zur Betrachtung der Invarianz ist erneut die Lagrangedichte eines 
Diracfeldes nach Gleichung (2.4).  
Unter der Berücksichtung der drei Farbladungen rot (r), blau (b) und grün (g), ist 

( )xfψ  hier ein dreizeiliger Spinor [10], der die unterschiedlichen Flavour f = u, d, s, 

c, b, t berücksichtigt: 
   

 ( )
( )
( )
( )
















=
x

x

x

x
f

b

f
g

f
r

f

ψ
ψ
ψ

ψ ,  ( ) ( ) ( ) ( )( )xxxx
f

b

f

g

f

r

f
ψψψψ ,,= . (2.18) 

   

Analog zur U(1)-Transformation ist die Lagrangedichte invariant unter einer globa-
len SU(3)-Transformation, die zur Erhaltung der Farbladung führt. Ersetzt man die 
globale durch eine lokale Transformation des Spinors der Form 
   

 ( ) ( ) ( ) ( )xx
g

ixx f
jj

sff ψωλψψ 






=′→
2

exp , (2.19) 

   

wobei erneut sowohl die Farb- als auch Flavourzustände berücksichtigt werden, 
geht die Invarianz aufgrund eines Zusatzterms in der Lagrangedichte verloren. 
Hierbei entsprechen ( )xjω  beliebigen reellen Funktionen, sg  der Kopplungskon-

stanten der starken Wechselwirkung und jλ  den 3x3 Matrizen, die dem Anhang 

10.1.2 entnommen werden können. Um eine lokale Eichinvarianz zu gewährleisten, 
wird die Ableitung in analoger Weise zur QED durch die kovariante Form ersetzt, 
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die acht zusätzliche Eichfelder mit sich bringt, welche gerade den Gluonfeldern 
entsprechen 
   

 )(
2

xA
g

iD jj
s µµµµ λ+∂=→∂ . (2.20) 

   

Dabei müssen sich die Gluonfelder ( )xAi
µ  wie folgt transformieren, wobei ijkf  den 

Strukturkonstanten der SU(3) entsprechen 
   

 ( ) ( ) ( ) ( ) ( ) ( )xAxfgxxAxAxA kjijksiiii
µµµµµ ωω −∂−=′→ . (2.21) 

   

Die so modifizierte Lagrangedichte beschreibt die verschiedenen Quarkfelder und 
deren Wechselwirkung mit den Gluonfeldern.  
Ähnlich zur QED wird zur vollständigen physikalischen Beschreibung ein Term in 
der Lagrangedichte benötigt, der die freien Gluonfelder beschreibt ohne die Eichin-
varianz zu verletzten. Im Falle der Gluonfelder ist dieser von der Form 
   

 ( ) ( )xGxG ii
µν

µν4

1− , (2.22) 

   

wobei µν
iG  über 

   

 ( ) ( ) ( ) ( )xAxAfgxFxG kjijksii
νµµνµν +=  und ( ) ( ) ( )xAxAxF iii

νµµνµν ∂−∂=  (2.23) 

   

definiert ist, welches ein freies, masseloses Gluon beschreibt.  
Wie die entsprechende Wechselwirkung in der QED generiert sie Quark-Gluon 
Vertizes. Aufgrund der nicht diagonalen Matrizen können Quarks der gleichen Far-
be annihilieren und ein Quark einer anderen Farbe erzeugen [10]. Wegen der Farb-
ladungserhaltung müssen die Gluonen deshalb selbst Farbe tragen, was einen 
großen Unterschied zur QED darstellt.   
Durch analoge Vorgehensweise kann man ebenfalls die SU(2) Gruppe untersu-
chen, worauf an dieser Stelle verzichtet wird, da in Kapitel 2.2.3 noch näher auf die 
elektroschwache Wechselwirkung eingegangen wird. Die elektroschwache Theorie 
beinhaltet weitere, wichtige Aspekte des SM. Zum einen die Vereinheitlichung der 
Kräfte und zum anderen die spontane Symmetriebrechung, als Mechanismus zur 
Generierung der Masse. 

2.2.3 Elektroschwache Vereinheitlichung 

Während die elektromagnetische Kraft durch die relativistische Elektrodynamik auf 
großen und durch die QED auf kleinen Skalen gut beschrieben werden kann, ver-
hält es sich mit der schwachen Kraft anders. Erste Theorien basierten auf der Phä-
nomenologie des β-Zerfalls und beschrieben die schwache Wechselwirkung als 
Punktwechselwirkung. Selbst als man die schwache Wechselwirkung durch Aus-
tausch von Eichbosonen beschreiben konnte, entdeckte man immer noch experi-
mentelle Besonderheiten. Beispielsweise die Paritätsverletzung bei schwachen 
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Prozessen und die unterschiedliche Kopplungsstärke an Fermionen des Z0-Bosons 
im Vergleich zu den W±-Bosonen.  
Die Antwort auf bislang gestellte Fragen wurde im Rahmen der vereinheitlichten 
Theorie von Glashow, Salam und Weinberg (GSW-Theorie), die bereits 1967 ent-
wickelt wurde, gefunden [3]. Diese fasst die elektromagnetische und schwache 
Wechselwirkung als zwei Aspekte einer einheitlichen Wechselwirkung auf. Die ent-
sprechende Symmetriegruppe ist dabei die SU(2)L ⊗ U(1)Y, wobei U(1)Y der Gruppe 
der schwachen Hyperladung und SU(2)L der Gruppe des schwachen Isospins ent-
spricht. 

 
Generation Quantenzahl 

Helizität 
1 2 3 Q T3 YW 

0 
-1 

1/2 
-1/2 

-1 
-1 

L 
L

e

e 







ν
 

L
d

u









′
 

L









µ
ν µ  

L
s

c









′
 

L









τ
ν τ  

L
b

t









′
 

2/3 
-1/3 

1/2 
-1/2 

1/3 
1/3 

Re  Rµ  Rτ  -1 0 -2 

Ru  Rc  Rt  2/3 0 4/3 R 

Rd  Rs  Rb  -1/3 0 -2/3 

Tabelle 2.3: Anordnung der Fermionen in Dubletts und Singuletts bezüglich der 
elektroschwachen Wechselwirkung und dazugehörige Quantenzahlen. 

 
Die linkshändigen Leptonen und die gemischten, linkshändigen Quarks bilden da-
bei Dubletts gegenüber der elektroschwachen Kraft, wobei, wie man der Tabelle 
2.3 entnehmen kann, die rechtshändigen Fermionen in Singuletts angeordnet sind. 
Die schwache Hyperladung WY  definiert sich über die dritte Komponente des 

schwachen Isospins 3T  und der elektrischen Ladung Q  [11] ähnlich zur Gell-Mann-

Nishijima Beziehung in der starken Wechselwirkung, wobei die elektrische Ladung 
in Vielfachen der Elementarladung e angegeben wird  
   

 ( )32 TQYW −= . (2.24) 

   

Durch Anwendung obiger Formel können leicht die Quantenzahlen in Tabelle 2.3 
nachvollzogen werden. Innerhalb der elektroschwachen Theorie und damit des SM 
werden Neutrinos als masselos angesehen, obwohl durch Neutrinooszillationsex-
perimente bereits Nachweise auf eine nicht verschwindende Masse der Neutrinos 
bestehen. Durch diese Annahme kommen Neutrinos nur als linkshändige Fermio-
nen und rechtshändige Antifermionen vor.  
Um analog zum vorherigen Abschnitt den Einfluss lokaler Transformationen zu un-
tersuchen, definiert man mit Hilfe des Chiralitätsprojektionsoperators RLP ,  zunächst 

die rechts- und linkshändigen Komponenten eines Diracfeldes ( )xψ . In diesem Fall 

soll es sich um freie Leptonen handeln [10], die man über  
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( ) ( )
( ) ( ) ( ) ( )x

xPx

xPx

RR

LL ψγ
ψψ
ψψ

51
2

1
m=





=
=

 (2.25) 

   

erhält, da dies gerade die Eigenzustände des Chiralitätsoperator 5γ  sind:  
   

 RLRL ,,5 ψψγ m= . (2.26) 

   

Kombiniert man linkshändige Leptonfelder innerhalb eines zwei komponentigen 
Feldes  
   

 ( ) ( )
( )










=Ψ

x

x
x

L
l

L
L
l

l

ψ
ψν  (2.27) 

   

vereinfacht sich die Lagrangedichte zu 
   

 ( ) ( ) ( ) ( ) ( ) ( )[ ]xxxxxxi RRR
l

R
l

L
l

L
l ll νµ

µ
νµ

µ
µ

µ ψγψψγψγ ∂+∂+Ψ∂Ψ=L  (2.28) 

   

Wie erwartet ist die Lagrangedichte in Gleichung (2.28) invariant unter globaler 
Transformation. Nun wird die Invarianz der Lagrangedichte eines freien Leptonfel-
des unter einer lokalen SU(2)-Transformation, wie  
   

 

( ) ( ) ( ) ( )xx
g

ixx L
ljj

L
l

L
l Ψ




=Ψ′→Ψ ωτ
2

exp , 

( ) ( ) ( )xxx R
l

R
l

R
l ψψψ =′→ , 

( ) ( ) ( )xxx RRR

lll ννν ψψψ =′→  

(2.29) 

   

und gleichzeitig einer lokalen U(1)-Transformation analog zum Kapitel 2.2.1 
   

 ( ) ( ) ( ) ( )xxfY
g

ixx W ψψψ 




 ′
=′→

2
exp  (2.30) 

   

untersucht. 
Hierbei stellen ( )xf  und ( )xjω  erneut beliebige Funktionen, g  und g′  die Kopp-

lungskonstanten und WY  und kτ  die schwache Hyperladung und die Paulimatrizen 

dar. Um eine Eichinvarianz gegenüber den Transformationen in Gleichung (2.29) 
und (2.30) zu gewährleisten, muss man erneut die Ableitung ersetzen, wobei so-
wohl die SU(2)- als auch die U(1)-Transformation berücksichtigt wurde: 
   

 

( ) ( ) ( ) ( ) ( )xxW
g

ixB
g

ixDx L
ljj

L
l

L
l Ψ




 +
′

−∂=Ψ→Ψ∂ µµµµµ τ
22

 

( ) ( ) ( )[ ] ( )xxBgixDx R
l

R
l

R
l ψψψ µµµµ ′−∂=→∂  

( ) ( ) ( )xxDx RRR

lll ν
µ

ν
µ

ν
µ ψψψ ∂=→∂ . 

(2.31) 
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Die zusätzlich eingeführten Eichfelder µB  und µ
iW  sollten sich dabei wie folgt mit-

transformieren, wobei hier ( )xjω  klein ist: 
   

 
( ) ( ) ( ) ( ) ( ) ( )xWxgxxWxWxW kjijkiiii

µµµµµ ωεω −∂−=′→ , 

( ) ( ) ( ) ( )xfxBxBxB µµµµ ∂−=′→ . 
(2.32) 

   

Durch die Forderung der lokalen Eichinvarianz unter SU(2)L ⊗ U(1)Y -

Transformationen treten wie gehabt neue Eichfelder auf, das Eichfeld µB  der 
U(1)Y- und die Felder µ

iW  der SU(2)L-Gruppe und deren Wechselwirkung mit den 

freien Leptonfelder. Zur Vollständigkeit können zur bestehenden Lagrangedichte 
eichinvariante Terme hinzugefügt werden, die die freien Eichfelder beschreiben. 
Unter Berücksichtigung der SU(2)L ⊗ U(1)Y sind diese von der Form 
   

 ( ) ( ) ( ) ( )( )xGxGxBxB ii
µν

µν
µν

µν +−
4

1
, (2.33) 

   

wobei die Tensoren wie folgt definiert sind: 
   

 
( ) ( ) ( )xBxBxB νµµνµν ∂−∂= , 

( ) ( ) ( ) ( )xWxWgxWxWG kjijkiii
νµνµµνµν ε+∂−∂= , 

(2.34) 

   

mit ijkε  den Strukturkonstante der SU(2)L. 

Die lokale Eichinvarianz konnte für die bisher betrachteten, masselosen Fermion-
felder und masselosen Eichfelder erreicht werden. In der Realität trifft dies jedoch 
bis auf das Photon nicht zu, also können die Eichfelder µB  und µ

iW  der elektro-

schwachen Wechselwirkung nicht den physikalischen Feldern entsprechen, da W±- 
und Z0-Bosonen sogar sehr großen Massen haben. Ebenso sind Fermionen mas-
sebehaftet. Das explizite Einführen von Massentermen für die Fermionen der Art 

( )RLLRmm ψψψψψψ +−=−  oder analoge Massenterme für die Eichbosonen hätte 

zur Folge, dass die Eichinvarianz gebrochen ist und dass die Renormierbarkeit der 
Theorie nicht mehr gewährleistet ist (siehe Kapitel 2.2.5). 
Dieses Problem kann durch eine spontane Symmetriebrechung, ein Konzept aus 
der Physik der Phasenübergänge, in Verbindung mit einem postulierten Feld, dem 
Higgs-Feld, gelöst werden. Wie man in Kapitel 2.2.4 sehen wird, können so die 
Massen innerhalb einer renormierbaren Theorie generiert werden. 

2.2.4 Spontane Symmetriebrechung und Higgsmechanism us 

Der Mechanismus der spontanen Symmetriebrechung innerhalb der Teilchenphysik 
kann direkt aus der Festkörperphysik übertragen werden. Man kann sich vorstellen, 
dass für ausreichend hohe Temperaturen bzw. Energien die Eichbosonen der e-
lektroschwachen Kraft masselos sind. Bei der Unterschreitung einer bestimmten 
Energie werden die Massen durch Ankopplung des skalaren Higgsfeldes erzeugt. 
Der theoretische Hintergrund soll im Folgenden näher erläutert werden. 
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Das Problem der Massenerhaltung der Fermionen und Eichbosonen wird durch die 
Annahme eines skalaren Feldes gelöst, so dass die Massen dynamisch durch die 
Wechselwirkung mit dem skalaren Feld generiert werden.  
Um die vorhandene Symmetrie zu brechen, wird die einfachste Möglichkeit ge-
wählt. Dabei handelt es sich um ein elektroschwaches Isospin-Dublett, dessen 
Komponenten skalare, komplexe Felder sind [12]  
   

 ( ) ( )
( )

( ) ( )
( ) ( )











+
+

=








=Φ

+++

xix

xix

x

x
x

0
2

0
1

21
0 φφ

φφ
φ
φ

. (2.35) 

   

Dieses Feld soll unter SU(2)L ⊗ U(1)Y-Transformation invariant sein, so dass sich 
die gleichen Transformationen wie in Gleichung (2.29) und (2.31) ergeben. Die 
Lagrangedichte des Feldes, die zusätzlich zu der Lagrangedichte der Fermionen 
und Bosonen hinzugefügt wird, hat die Form 
   

 ( )[ ] ( )[ ] ( )ΦΦ−ΦΦ=Φ
††

L VxDxD µ
µ , (2.36) 

   

wobei die kovariante Ableitung der in Gleichung (2.31) entspricht, also gerade ei-
nem Feld mit schwacher Hyperladung YW = -1.   
Der Term, der die Ableitung enthält, beschreibt die Wechselwirkung mit den 
SU(2)L ⊗ U(1)Y-Eichfeldern. 

Das zusätzlich eingeführte Potential ( )ΦΦ†V  soll ebenfalls eichinvariant sein. Dies 

kann durch  
   

 ( ) ( )22 ΦΦ+ΦΦ=ΦΦ ††† λµV  (2.37) 

   

erreicht werden. λ  ist dabei ein positiver Parameter, da sonst das Potential nicht 
nach unten beschränkt wäre. 
Ist 2µ  ebenfalls positiv, so besitzt das Potential ein triviales Minimum bei 0=Φ . In 

diesem Fall sind Grundzustand und Lagrangedichte invariant. Wählt man jedoch 
negative Werte von 2µ  so ergibt sich ein anderes globales Minimum bei ( ) 0Φ=Φ x  

mit 
   

 
λ

µφφ
2

2
20

0

2

000 −=+=ΦΦ +† . (2.38) 

   

Das Vakuum, das dem Grundzustand des Potentials entspricht, liegt also bei ei-

nem Wert des skalaren Feldes von 
2

00
v=Φ=Φ , wobei v  der Erwartungs-

wert des Vakuums (engl. vacuum expectation value, vev) ist. In Abbildung 2.2 wird 
gezeigt, dass unendlich viele äquivalente Grundzustände existieren. Die Entartung 
des Grundzustandes führt zur spontanen Symmetriebrechung. Nachdem eine be-
stimmte Phase und damit ein bestimmter Punkt aus der Menge der Grundzustände 
gewählt wurde, kann sie lokal nicht mehr geändert werden. Der Grundzustand ist 
im Gegensatz zur Lagrangedichte nicht mehr invariant. Ein skalares Feld, dessen 
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Erwartungswert nicht bei Null liegt, bricht die lokale Invarianz, weshalb eine spon-
tane Symmetriebrechung vorliegt. 
Da das Vakuum neutral sein soll [12], wählt man typischerweise ohne Beschrän-
kung der Allgemeinheit folgenden Wert für den Vakuumerwartungswert  
   

 












=Φ

2

0

0
v     mit 

λ
µ 2

−=v , (2.39) 

   

da dieser Zustand bei jeder anderen Wahl des Grundzustandes stets durch eine 
globale Eichtransformation eingenommen werden kann. Um den Quantenfluktuati-
onen gerecht zu werden [13], kann man ein beliebiges Feld um den gewählten 
Grundzustand entwickeln  
   

 ( )
( ) ( )

( )( ) ( )
( )

( )







+
=















−+

+
=Φ

xHv
e

xixHv

xix
x v

x
i

a
a 0

2

1

2

1
3

12 τθ

θ

θθ
. (2.40) 

   

Es ergeben sich vier reelle Felder, wobei drei davon unphysikalische Felder sind. 
Die reellen Felder 3,2,1θ  sind Anregungen entlang des Feldes, welche auch als 

Goldstone-Moden bezeichnet werden. Das übrige Feld ist gerade das Higgsfeld 
H(x) mit Hyperladung Y = 1 und Isospinkomponte I3 = -1/2.   
Die unphysikalischen Felder können mittels folgender Eichtransformation eliminiert 
werden, so dass nur noch das Higgsfeld als physikalisch signifikantes Feld übrig 
bleibt 
   

 ( ) ( )
( )

( ) ( )







+
=Φ=Φ′→Φ

−

xHv
xexx v

x
i

a
a 0

2

1τθ

. (2.41) 

   

 

             

Abbildung 2.2: Higgspotential. 

 

 

 

                                                 Links: zweidimensionales Higgspotential. Für µ2 > 0 
ergibt sich das triviale Minimum und ein parabelförmiges Potential. Für µ2 < 0 
nimmt das Potential die charakteristische Form eines mexikanischen Huts ein. 
Rechts: dreidimensionales Higgspotential in Abhängigkeit des Real- und Imaginär-
teils des Feldes [14]. Für Φ = 0 ergibt sich hier ein lokales Maximum, was einem 
instabilen Grundzustand enspricht.  
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Der so entstandene Zustand ist nicht mehr invariant gegenüber SU(2)L ⊗ U(1)Y-
Transformationen, jedoch unter U(1)QED-Transformationen der QED. Durch Wahl 
eines bestimmten Grundzustands wurde die ursprüngliche SU(2)L ⊗ U(1)Y Symmet-
rie auf eine U(1)QED Symmetrie herunter gebrochen. Es liegt also eine spontane 
Symmetriebrechung vor. 
Die ursprünglichen vier Freiheitsgrade haben sich auf Einen reduziert. Diese drei 
Freiheitsgrade sind jedoch nicht verschwunden, sondern tauchen als longitudinale 
Polarisation der drei Eichbosonen auf, die dadurch massiv geworden sind. Die 
Massen der Eichbosonen ergeben sich durch Einsetzen des eben entwickelten 
Feldes aus Gleichung (2.41) in den Wechselwirkungsterm der Lagrangedichte des 
Feldes ( )xΦ   
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( ) ( ) ( ) 23222122

8

1

8

1

2

1
µµµµµ BggWHvWWHvgH ′−+++++∂= . 

(2.42) 

   

Wie man in Formel (2.42) sehen kann, haben 1
µW  und 2

µW  die gleichen Massen 

erhalten. Sie mischen zu den physikalischen und damit experimentell beobachtba-
ren Zuständen W±: 
   

 ( )21

2

1
µµµ iWWW ±=± . (2.43) 

   

Der Term in Gleichung (2.42) kann mit Gleichung (2.43) umgeschrieben werden zu 
   

 −+







=+ µ
µ

µµ WW
vg

WWvg
2

22122

28

1
. (2.44) 

   

Der Term vor dem Produkt der Eichbosonen kann so als deren Masse identifiziert 
werden 
   

 gvM
W 2

1=± . (2.45) 

   

Die physikalischen Felder µA  und µZ  ergeben sich indirekt aus Gleichung (2.42), 
da sie den Eigenzuständen der Matrix des letzen Terms entsprechen [12]. Um die-
se zu berechnen, diagonalisiert man die zweite Matrix durch eine unitäre Transfor-
mationsmatrix U nach  
   

 












 −−

µ
µ

µµ 3
113

W

B
UUMUUWB

††

. (2.46) 
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Dabei hat die unitäre Matrix die Form 
   

 








−
=









′−
′

+′
=

WW

WW

gg

gg

gg
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θθ
θθ

cossin

sincos1
22

, (2.47) 

   

wobei berücksichtigt wurde, dass eine solche Matrix ebenfalls als Drehung mit dem 
Drehwinkel Wθ  geschrieben werden kann. Hierbei entspricht Wθ  dem Weinberg-

winkel, den man als Drehwinkel bezüglich der µµ 3WB − -Ebene interpretiert. So 

lassen sich die physikalische Felder µA  und µZ  als Superposition der Eichfelder 
µB  und µ3W  darstellen 

   

 









=









µ

µ

µ

µ

3W

B
U

Z

A
. (2.48) 

   

Setzt man die Transformation in den Wechselwirkungsterm der Lagrangedichte 
ein, kann man die Massen der physikalischen Teilchen ablesen, da die Massen 
gerade den Diagonalelementen des Terms  UMU-1 entsprechen. Aus 
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ergeben sich folglich 
   

 
22

2

1
ggvM Z +′=  und 0=AM  mit 

g

g
W

′
=θtan . (2.50) 

   

Da die Massen und Kopplungen experimentell gemessen wurden, kann man mit 
(2.45) und (2.50) den Vakuumerwartungswert v  des Higgsfeldes zu 246 GeV 
bestimmen. Gleichermaßen kann aus den experimentellen Daten der Weinberg-
winkel Wθ  berechnet werden, wodurch man mit 
   

 00015,023122,0sin2 ±=Wθ  (2.51) 

   

etwa einen Winkel von 28,7° erhält. Mit Hilfe des H iggsmechanismus konnten also 
nicht nur die Massen der drei Eichbosonen der schwachen Wechselwirkung und 
des masseloses Photon bestimmt werden, sondern auch die Beziehung zwischen 
der elektrischen Ladung und den Kopplungskonstanten g  und g′  der SU(2)L und 

U(1)Y 
   

 WW gge θθ sincos =′= . (2.52) 

   

Durch die spontane Symmetriebrechung SU(2)L ⊗ U(1)Y → U(1)QED wurden drei der 
vier Freiheitsgrade des SU(2) Dubletts ( )xΦ  absorbiert, so dass die Eichbosonen 

W± und Z0 Masse erhielten. Der übrig gebliebene vierte Freiheitsgrad stellt das 
physikalische Higgsfeld dar. Diese Art der spontanen Symmetriebrechung ist be-
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reits aus dem Bereich der Festkörperphysik bekannt, in denen die bekanntesten 
Beispiele der Ferromagentismus und die Supraleitung sind. 
Was der Higgsmechanismus jedoch nicht automatisch liefert, ist die Generierung 
der Massen der Fermionen. Diese müssen der bestehenden Lagrangedichte ma-
nuell durch invariante Massenterme hinzugefügt werden. Die Kopplung erfolgt über 
neue Kopplungsterme samt Kopplungskonstanten, den Yukawakopplungen. Um 
eichinvariante Terme zu erhalten [8], haben die Massenterme die Form  
   

 
..cheE RLee +Φ−=∆ λL  und 

..chuQdQ RbLa
ab

uRLdq +Φ−Φ−=∆ †
L ελλ , 

(2.53) 

   

wobei die Massenterme und die Yukawakopplungskonstanten ude λλλ ,,  für die rest-

lichen Fermiongenerationen analog aufgestellt werden können. Unter Berücksichti-
gung der oben diskutierten Symmetriebrechung werden Massenterme der Form 
   

 
2

v
m ee λ= , 

2

v
m dd λ=  und 

2

v
m uu λ=    (2.54) 

   

generiert, wobei die anderen Generationen analog weitergeführt werden können. 
Es ist zu beachten, dass im Falle der Quarks die Massenmatrix nicht diagonal ist, 
so dass die Wechselwirkungszustände nicht den Massenzuständen entsprechen. 
Um diese in Diagonalform zu bringen, benutzt man die bereits in Kapitel 2.1 disku-
tierte CKM-Matrix, die so die Mischung zwischen den Zuständen angibt. Die Mat-
rixelemente können durch drei reelle Parameter und eine komplexe Phase para-
metrisiert werden. 
Aus Gleichung (2.54) geht hervor, dass die einzelnen Yukawakopplungen proporti-
onal zur betrachteten Masse sind, weshalb die Kopplung des Higgsfeldes an ein 
Fermion proportional zu dessen Masse ist. Dieser wichtige Aspekt wird bei der Su-
che nach dem Higgs-Boson genutzt, so dass gerade solche Prozesse betrachtet 
werden, in denen schwere Fermionen teilnehmen. Die Yukawakopplungen sind für 
jedes Fermion unterschiedlich und müssen über die Beziehung in Gleichung (2.54) 
experimentell gemessen werden. 
 
Zuletzt muss noch die Masse des Higgs-Bosons selbst angegeben werden. Die 
Higgsmasse und die Selbstwechselwirkung ergeben sich aus dem Higgspotential 

( )ΦΦ †V . Setzt man erneut die Entwicklung des Vakuumerwartungswertes (2.41) in 

das Higgspotential ein: 
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1
HvHvvV +++−=ΦΦ λλ†  

43224
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1
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1

2

1
HvHHvv λλλλ +++−= , 

(2.55) 

   

ergibt sich daraus die Higgsmasse zu 
   

 222 22 µλ == vM H . (2.56) 
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Da zwar der Wert des Vakuumerwartungswerts des Higgsfeldes experimentell be-
stimmt werden konnte, jedoch der Parameter λ  noch unbestimmt ist, muss die 
Higgsmasse ebenfalls experimentell gemessen werden. Bisherige Suchen nach 
dem Higgs-Boson waren allerdings erfolglos. Lediglich eine untere Schranke von 
114,4 GeV konnten aus direkten Suchen am Large-Elektron-Positron Collider 
(LEP) gemessen werden [15], weshalb nun am bisher größten Beschleuniger dem 
LHC am CERN (Conseil Européen pour la Recherche Nucléaire) danach gesucht 
wird. 

2.2.5 Laufende Kopplungskonstanten -  Renormierung 

Die auftauchenden Kopplungskonstanten in der QED und QCD sind entgegen ihrer 
Namensgebung nicht konstant, sondern lediglich effektive Konstanten abhängig 
von der betrachteten Energie. Man misst deshalb innerhalb eines Experiments nie 
die „nackte“ Ladung. Die Kopplungskonstanten sind energieabhängig, bzw. äquiva-
lent dazu, abhängig vom Abstand. Die Energieabhängigkeit hängt mit der existie-
renden Vakuumspolarisation zusammen. Diesen Effekt kann man sich am Beispiel 
einer punktförmigen elektrischen Ladung erklären. Befindet sich diese im Raum, 
können im elektrischen Feld um die punktförmige elektrische Ladung innerhalb der 
Heisenbergschen Unschärferelation 
   

 
2

h≥⋅ Et δδ  (2.57) 

   

virtuelle Elektron-Positron-Paare aus dem Vakuum erzeugt werden.  Diese virtuel-
len Elektron-Positron-Paare richten sich innerhalb des elektrischen Feldes aus, so 
dass das Vakuum polarisiert wird. Die „nackte“ Ladung wird abgeschirmt, so dass 
lediglich eine effektive Ladung vorliegt. 
 
 
 
 
 

 

Abbildung 2.3: Veranschaulichung der unterschiedlichen Potentiale in der QED und 
QCD. 

 
 
 
 

          Der dunkel gefärbte Bereich entspricht einem hohen Potential, wohingegen 
eine hellere Färbung ein geringeres Potential beschreibt. Links: Abschirmungsef-
fekt in der QED. Rechts: Durch die Selbstkopplung der Gluonen ergibt sich in der 
QCD eine „Anti-Abschirmung“. Das Potential wird in der QED/QCD mit wachsen-
dem Abstand geringer/größer. 
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Je nach Abstand zur „nackten“ Ladung hat man einen unterschiedlichen Abschir-
mungseffekt, so dass beispielsweise bei einer höheren Energie und damit einem 
kürzeren Abstand zur betrachteten Ladung ein Teil der Abschirmung durchdringt 
werden kann und somit eine höhere effektive Ladung beobachtet wird. Dieser Ef-
fekt kann auf die Kopplungskonstanten übertragen werden, da diese mit der elekt-
rischen Ladung verknüpft sind. 
Wendet man das Beispiel auf die QCD an, so ergibt sich ebenfalls die oben ange-
sprochene Vakuumpolarisation. Diesmal werden Quark-Antiquark-Paare gebildet, 
da man hier Farbladungen betrachtet. Quarks sind jedoch nicht die einzigen farb-
geladenen Teilchen, weshalb ebenfalls virtuelle Gluonen berücksichtigt werden 
müssen. Der Unterschied zur QED, die Selbstkopplung der Eichbosonen, führt zu 
einem entgegen gesetzten Effekt. Während die Quark-Antiquark-Paare die „nackte“ 
Farbladung in gleicher Weise wie die Elektron-Positron-Paare in der QED abschir-
men, verstärken die virtuelle Gluonen die Farbladung, so dass in der Summe weni-
ger abgeschirmt wird. Anstatt einer Abschirmung hat man dadurch eine Verstär-
kung der Farbladung mit wachsender Distanz, was in Abbildung 2.3 verdeutlicht ist 
[12]. Dieses umgekehrte Verhalten bringt zwei Effekte mit sich. Bei einer Verstär-
kung der Farbladung bei größeren Distanzen hat man den bereits in Abschnitt 2.1 
erläuterten Effekt des Confinements vorliegen. Umgekehrt führt die Verringerung 
der effektiven Farbladung und damit der Kopplungskonstanten bei höheren Ener-
gien dazu, dass sich farbgeladene Objekt quasi frei bewegen, was als asymptoti-
sche Freiheit bezeichnet wird [3]. 
Dieses Verhalten wird mathematisch innerhalb des Renormierungsverfahrens be-
schrieben. Es erlaubt den Umgang mit divergenten Größen, die unter Betrachtung 
störungsrechnerischer Terme höherer Ordnung auftreten können. Die Darstellung 
erfolgt über sogenannte Feynmandiagramme. Mit Hilfe der dazugehörigen Feyn-
manregeln, lassen sich alle möglichen Teilchenprozesse durch Lösen von Integra-
len berechnen [8]. 
 

Tree Level Fermion-Schleife

Eichboson-
Schleife

Higgs-Schleife

Tree Level Fermion-Schleife

Eichboson-
Schleife

Higgs-Schleife
 

Abbildung 2.4: Diagramme der Vakuumspolarisation in erster störungstheoretischer 
Ordnung. 
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Berücksichtigt man nun die oben beschriebene Vakuumpolarisation, so werden 
zum Prozess niedrigster störungstheoretischer Ordnung, dem so genannten Tree 
Level oder Born Niveau, noch weitere Schleifendiagramme hinzuaddiert. Die zu-
sätzlichen Prozesse erster Ordnung sind in Abbildung 2.4 dargestellt [12]. Da nun 
innerhalb einer Schleife über alle möglichen Impulse des virtuellen Teilchens integ-
riert werden muss, treten divergente Integrale auf. Für unendlich große Impulsüber-
träge des virtuellen Teilchens würde ebenfalls der Wirkungsquerschnitt einen un-
endlich hohen Wert annehmen. Diese so genannten Ultraviolettdivergenzen kön-
nen verhindert werden. 
Mit Hilfe der Regularisierung und Renormierung werden in der QED und QCD Di-
vergenzen innerhalb der Kopplungskonstante absorbiert. 
Dazu wird zunächst ein Abschneideparameter cutΛ  definiert. Alle Impulse im diver-

genten Schleifenintegral werden oberhalb dieses Parameters vernachlässigt, so 
dass sich ein endliches Integral ergibt. Dies führt zu einer skalenabhängigen Kopp-
lungskonstanten, die jedoch zwei unphysikalische Größen enthält. Zum einen die 
nackte Ladung und zum anderen den Abschneideparameter. Innerhalb der Renor-
mierung kann diese Größe eliminiert werden, indem man für einen beliebigen Refe-
renz-Viererimpuls µ  den Wert der Kopplungskonstanten ( )µa  durch eine Messung 

vorgibt. Löst man im Ausdruck für die Referenzkopplung nach der nackten Ladung 
auf, kann die nackte Kopplungskonstante im Ausdruck der Kopplungskonstanten 
ersetzt werden. Somit ergibt sich eine skalenabhängige renormierte Größe ohne 
unphysikalische Zusatzterme.  
Wendet man dieses Verfahren an, so ergibt sich unter Berücksichtung von Schlei-
fenkorrekturen höherer Ordnung folgender Wert für die elektromagnetische Kopp-
lungskonstante 
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Hierbei wird als Referenz der Wert der Kopplungskonstante für den Grenzfall Q  → 

0 verwendet: 
   

 ( )
137

1
0 ≈=Qα . (2.59) 

   

Wie erwartet ergibt sich aus Gleichung (2.58) das oben beschriebene Verhalten, 
nämlich ein Ansteigen der Kopplungskonstanten für wachsenden Impulsübertrag 
bzw. kleinere Abstände. 
Wendet man das gleiche Verfahren auf die starke Kopplungskonstante der QCD 
an, so ergeben sich Unterschiede im Vorfaktor des logarithmischen Terms auf-
grund der Gluonselbstkopplung 
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Hierbei entspricht fN  der Anzahl der Quarkflavour, so dass der logarithmische 

Term positiv bleibt und sich ein gegensätzliches Verhalten zur QED ergibt. 
Die starke Kopplungskonstante wird oft in der Art 
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dargestellt, wobei der Parameter QCDΛ  von der Renormierungsmethode abhängt. 

Der Parameter QCDΛ  gibt den Gültigkeitsbereich der Kopplungskonstanten wieder. 

Dies bedeutet, dass der Ausdruck für die starke Kopplungskonstante nur für Vierer-
impulsüberträge größer als QCDΛ  gültig ist. Unterhalb der Skala bricht die Störungs-

theorie zusammen, da hier die Kopplungskonstante divergiert. Dieses Verhalten 
gibt es ebenfalls bei der Kopplungskonstanten der QED, jedoch für Impulsüberträ-
ge oberhalb eines bestimmen Wertes, der als Landau-Pol bezeichnet wird. 
Das Konzept zur Darstellung der energieabhängigen, physikalischen Größen wird 
mit Hilfe der Betafunktion innerhalb der Renormierungsgruppengleichungen (engl. 
renormalization group equation, RGE) behandelt. Dabei ergeben sich oftmals Sät-
ze aus gekoppelten Differentialgleichungen, die numerisch gelöst werden können. 

2.3 Grenzen des Standardmodells 
Das SM, das durch eine SU(3)C ⊗ SU(2)L ⊗ U(1)Y  Eichgruppe beschrieben wird und 
dessen meiste Vorhersagen an Beschleunigerexperimenten mit hoher Präzision 
bestätigt wurden, hält noch einige offene Fragen bereit. Einige dieser Aspekte, die 
nicht innerhalb des SM gelöst werden können, sollen im Folgenden angesprochen 
werden. 
Das SM kann nur drei der vier fundamentalen Wechselwirkungen innerhalb einer 
Quantenfeldtheorie darstellen. Die Gravitation wird durch die Beschreibung der all-
gemeinen Relativitätstheorie gesondert behandelt. Da man teilchenphysikalische 
Prozesse innerhalb eines Energiebereichs beobachtet in dem die Gravitation um 
ein Vielfaches schwächer ist als die restlichen Wechselwirkungen, muss diese 
nicht weiter berücksichtigt werden. Für große Energien im Bereich der Planck Skala 
EPlanck ≈ 1019 GeV ändert sich dies jedoch, so dass die Gravitation nicht länger ge-
trennt behandelt werden kann.  
Die Vereinigung der elektromagnetischen und der schwachen zur elektroschwa-
chen Wechselwirkung konnte durch das SM beschrieben werden. Eine Hinzunah-
me der starken Kraft zu einer großen vereinigten Theorie (engl. grand unified theo-
ry, GUT) würde die Theorie bestärken. Nimmt man eine große vereinheitlichte 
Theorie an, so sollten sich die drei Kopplungskonstanten bei hohen Energien, übli-
cherweise bei Energien von EGUT

 > 1016 GeV,  treffen. Extrapoliert man die drei 
Kopplungskonstanten mit Hilfe der RGE und unter Berücksichtigung von Präzisi-
onsmessungen, so stellt sich heraus, dass eine exakte Vereinigung innerhalb des 
Standardmodells nicht möglich ist [12] (siehe Abbildung 2.5).   
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Selbst eine mögliche Vereinigung würde daraufhin zum Hierarchieproblem und 
zum Feinabstimmungsproblem (engl. fine tuning problem) führen. Unter dem Hie-
rarchieproblem versteht man das Problem zwischen dem großen Unterschied der 
GUT und elektroschwachen Skala. Die Brechung der elektroschwachen Kraft findet 
auf einer Skala der Größenordnung 103GeV statt. Die Frage, weshalb die Bre-
chung der vereinheitlichten Kraft erst auf einer um 13 Größenordnungen größeren 
Skala statt findet, bleibt unbeantwortet [16]. 
Das Feinabstimmungsproblem taucht innerhalb des Higgssektors im SM auf. Be-
rechnet man die Masse des Higgs-Bosons, so ergeben sich in höherer störungs-
theoretischer Ordnung Strahlungskorrekturen der Größenordnung ∆MH

2 ≈ 
O(MPlanck

2). Die Korrekturen, die um ein Vielfaches größer sind, als die Higgsmasse 
selbst, können innerhalb des Renormierungsverfahrens nur unter erheblicher Fein-
abstimmung behoben werden [17]. 
 

 

Abbildung 2.5: Laufende Kopplungskonstanten im SM.  

 
 
 
Ein weiterer wichtiger Aspekt, der ebenfalls innerhalb dieser Arbeit näher diskutiert 
wird, ist die Tatsache, dass im Teilchenspektrum des SM kein Teilchen vorhanden 
ist, das die Existenz und die Menge der Dunklen Materie erklären kann. Aus kos-
mologischen Beobachtungen geht hervor, dass unser Universum aus fast 30% Ma-
terie besteht, wobei die baryonische Materie nur etwa 4% der gesamten Energie-
dichte ausmacht. Unter der Annahme, dass Dunkle Materie Teilchencharakter hat, 
muss das Teilchen schwer, stabil und neben gravitativ nur schwach wechselwirken 
(engl. weakly interacting massive particle, WIMP). Die Neutrinos wechselwirken 
zwar schwach, sind jedoch nicht massiv genug, um vollständig die Dunkle Materie-
dichte zu erklären. Da keine anderen SM-Teilchen für WIMPs in Frage kommen, 
kann man die Menge an Dunkler Materie innerhalb des SM nicht erklären [19]. 
Aufgrund der zahlreichen Bestätigungen von Vorhersagen des SM, also der Über-
einstimmung von Theorie und Experiment, werden die Grenzen des SM als Unvoll-
ständigkeit verstanden und dazu verwendet, eine Erweiterung des Modells zu er-
reichen, statt es ganz zu verwerfen. Eine solche Erweiterung des SM ist die Super-
symmetrie, mit deren Hilfe viele Schwächen des SM behoben werden können und 
welche im Rahmen dieser Arbeit näher untersucht werden soll. 

                                                                                        Entwicklung der drei Kopp-
lungskonstanten, wobei die Dicke der Linien deren Fehler entspricht [18]. Innerhalb 
des SM ist eine Vereinigung bei hohen Energien nicht möglich. 
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3 Supersymmetrie 
Die Supersymmetrie (SUSY) bzw. das minimale supersymmetrische Standardmo-
dell (MSSM) sollen in diesem Kapitel als Erweiterung des SM vorgestellt werden. 
Zunächst werden die Grundzüge und der theoretische Hintergrund in Abschnitt 3.1 
diskutiert. In den nachfolgenden Abschnitten wird auf Aspekte wie den Higgssektor 
in Kapitel 3.2 und auf ein supersymmetrisches Modell, das CMSSM, näher einge-
gangen, da diese innerhalb der Arbeit von großer Bedeutung sind. Zum Abschluss 
dieses Kapitels wird gezeigt, welche Grenzen des SM mit Hilfe der Supersymmetrie 
behoben werden können. 
 
Die Supersymmetrie ist eine Symmetrie zwischen Fermionen und Bosonen. Diese 
Spinsymmetrie führt dazu, dass fermionische in bosonische Zustände übergeführt 
werden können und umgekehrt. In supersymmetrischen Theorien wird die SUSY-
Transformation durch einen supersymmetrischen Operator Q  vermittelt [20]: 
   

 fermionbosonQ ∝   bosonfermionQ ∝ . (3.1) 

   

Damit Q der Generator sein kann, der zu einer Symmetrie zwischen einer kommu-
tierenden und antikommutierenden Algebra führt, muss der Generator Q  selbst 

den Spin s = 1/2 tragen [16] und folgende Antikommutatorrelationen erfüllen:  
   

 
{ } { } 0,, == βαβα && QQQQ ,  { } µ

µ
ααα σ PQQ a && 2, = , 

[ ] [ ] 0,, == µ
α

µ
α PQPQ & , 

(3.2) 

   

Wobei µP  der Viererimpuls und ( )iσσ µ ,1=  über die Paulimatrizen iσ  definiert ist. 

Allgemein sind bis zu N = 8 supersymmetrische Generatoren für Supergravitations-
theorien und bis zu N = 4 für renormierbare Theorien möglich [21]. Die minimale 
Erweiterung des SM ist die Erweiterung durch N = 1, also einem supersymmetri-
schen Generator Q . Die Berücksichtigung eines solchen Operators wird als mini-

males symmersymmetrisches Standardmodell bezeichnet.  
Betrachtet man nun das SM unter Berücksichtigung der minimalen supersymmetri-
schen Erweiterung, so müsste zu jedem Elementarteilchen ein Partner existieren, 
der sich nur in seinem Spin unterscheidet und sonst identische Quantenzahlen be-
sitzt und somit auch das gleiche Transformationsverhalten bezüglich Symmetrie-
transformationen aufweist. Diese Beschreibung trifft auf kein Teilchen im SM zu, 
weshalb eine minimale supersymmetrische Erweiterung des SM eine Verdopplung 
der Teilchenzahl mit sich bringt. Jedem Teilchen des SM wird also ein Superpart-
ner mit den oben aufgeführten Eigenschaften zugeordnet. Aus theoretischen Über-
legungen muss bei einer supersymmetrischen Erweiterung ebenfalls der Higgssek-
tor des SM verändert werden. Trianguläre Graphen würden unter Annahme des 
ursprünglichen einfachen Higgsdubletts zu Divergenzen führen, die nur renormier-
bar wären, wenn die Eichinvarianz aufgegeben wird [22]. Um dies zu vermeiden, 
muss ein weiteres Higgsdublett definiert werden.  
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Man kann die Teilchen und Superpartner bezüglich ihrer Symmetrietransformation 
in Supermultipletts anordnen. Dabei befinden sich linkshändige Fermionen und 
Eichbosonen samt Superpartner in verschiedenen Supermultipletts, wohingegen 
die rechtshändigen Fermionen mit deren Superpartnern in Dubletts angeordnet 
sind. Tabelle 3.1 gibt einen Überblick der Teilchen und deren Quantenzahlen. Bei 
der Nomenklatur wird darauf geachtet, dass es für jedes Fermion ein skalares 
Fermion gibt, das mit einem zusätzlichen s am Wortanfang gekennzeichnet wird, 
also beispielsweise Sfermionen. Die supersymmetrischen Partner der Eichbosonen 
werden mit einem zusätzlichen Präfix –ino gekennzeichnet, also z.B. Photino. 
Symbolisch unterscheiden sich die supersymmetrischen Partner durch eine Tilde. 
 

Name bosonisch (Spin 0) Fermionisch (Spin1/2) SU(3) SU(2) U(1) 

Sleptonen, 
Leptonen 

( )Lei eL ~,~~ ν=  

Rie ,
~  

( )Lei eL ,ν=  

Rie ,  
1 
1 

2 
1 

-1 
+2 

( )Liii duQ
~

,~~ =  ( )Liii duQ ,=  3 2 +1/3 

Riu ,
~  Riu ,  3 1 -4/3 

Squarks, 
Quarks 

Rid ,

~
 Rid ,  3 1 +2/3 

( )−= 1
0
11 ,HHH  ( )−= 1

0
11

~
,

~~
HHH  1 2 -1 Higgs. 

Higgsinos ( )0
222 ,HHH +=  ( )0

222

~
,

~~
HHH +=  1 2 +1 

Gluon, 
Gluino 

g  g~  8 1 0 

W i Boson, 
Wino iW  

iW
~

 1 3 0 

B Boson, 
Bino 

B  B
~

 1 1 0 

Tabelle 3.1: Teilcheninhalt im MSSM und dazugehörige Quantenzahlen. 

 
Unter Berücksichtigung der Vertauschungsrelation, sollten Teilchen des gleichen 
Supermultipletts gleiche Massen haben. Da dies jedoch nicht beobachtet werden 
konnte, da bisher keine supersymmetrischen Teilchen entdeckt wurden, müssen 
die supersymmetrischen Partner gegenüber den SM-Teilchen viel schwerer sein. 
Aufgrund dieses Massenunterschieds muss es sich bei der Supersymmetrie um 
eine gebrochene Symmetrie handeln.  
Nach dieser zunächst phänomenlogischen Diskussion der Supersymmetrie soll im 
nachfolgenden Kapitel 3.1 näher auf den Formalismus und die theoretischen 
Grundlagen eingegangen werden. 
 



3 Supersymmetrie 

 

28 

3.1 Theoretische Grundlagen der Supersymmetrie 
Ein eleganter Formalismus zur Beschreibung der Supersymmetrie ist der des Su-
perraumes. Dazu erweitert man den üblichen euklidischen Minkowskiraum durch 
zwei weitere Koordinaten. Diese Erweiterungen entsprechen den Grassman-
Variablen αα θθ &,  [21]: 
   

 
SuperraumRaum ⇒  

ααµµ θθ &,,xx ⇒ . (3.3) 

   

Die zwei zueinander konjugiert komplexen Koordinaten erfüllen dabei folgende Re-
lationen  
   

 { } { } 0,0,0,,0, 22 ==== ααβαβα θθθθθθ
&&&

 mit 2,1,,, =βαβα && . (3.4) 

   

Supersymmetrische Transformationen haben innerhalb des Superraums dann die 
Form einer Translation unter Berücksichtigung der Grassmankoordinaten 
   

 θεσεθσ µµµµ iixx −+→  , εθθ +→  und εθθ +→ , (3.5) 

   

wobei ε  und ε  Grassman Transformationsparameter sind. Die dazugehörigen 
Transformationsoperatoren, auch Superladungen genannt, leiten sich aus obigen 
Gleichungen ab, so dass sie von der Form 
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sind. Um Felder im Superraum zu definieren, ist es zweckmäßig, das einfachste, 
SUSY invariante Feld zu verwenden. Dabei handelt es sich um ein skalares Super-
feld ( )θθ ,,xF .  Berechnet man die Taylorentwicklung eines solchen Feldes, so er-

gibt sich eine endliche Anzahl von Entwicklungstermen aufgrund der verschwin-
denden Potenzen der Grassmannkoordinanten [21].  
Durch die Einführung von chiral kovarianten Ableitungen in der Symmetriegruppe, 
analog zu den Eichgruppen im SM, erhält man chirale Superfelder. Die kovariante 
Ableitung bezüglich des Superfeldes sind definiert als 
   

 0=FD  mit µ
µθσ

θ
∂−

∂
∂−= iD . (3.7) 

   

Die Taylorentwicklung des chiralen Superfeldes ist dann von der Form 
   

 

( ) ( ) ( ) ( )yFyyAy θθθψθ ++=Φ 2,  

( ) ( ) θθθθθθσ µ
µ

4

1+∂+= xAixA □ ( )xA  

( ) ( ) ( )xFx
i

x θθθσψθθθψ µ
µ +∂−+

2
2 . 

(3.8) 
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Hierbei stellen die gewöhnlichen Felder, die Funktionen der vierdimensionalen 
Raumkoordinaten x sind, Komponenten des Superfeldes dar. Das komplexe, skala-
re Feld A(x), die bosonische Komponente innerhalb des Ausdrucks (3.8), und der 
Weyl Spinor, der fermionische Anteil, sind zueinander supersymmetrische Partner. 
Des Weiteren taucht ein Hilfsfeld F(x) auf, auf das an dieser Stelle nicht weiter ein-
gegangen wird, da es in der supersymmetrischen Lagrangedichte keine Dynamik 
enthält und so eliminiert werden kann [21]. Bei einer infinitesimalen SUSY Trans-
formation ergeben sich folgende, zusätzliche Transformationsterme zum chiralen 
Superfeld 
   

 

εψδ ε 2=A  

FAi εεσψδ µ
µ

ε 22 +∂=  

ψσεδ µ
µ

ε ∂= 2iF . 

(3.9) 

   

Analoges Vorgehen gilt bei der Konstruktion eines antichiralen Superfeldes 
   

 0=Φ +D  mit µ
µθσ

θ
∂+

∂
∂= iD . (3.10) 

   

Zusätzlich zum chiralen Superfeld kann ein reelles Vektorsuperfeld mit †VV =  ein-
geführt werden, um die eichinvarianten Wechselwirkungen zu beschreiben. Die 
allgemeine Darstellung des Vektorsuperfeldes enthält jedoch viele unphysikalische 
Komponenten, die mit Hilfe der Wess-Zumino-Eichung eliminiert werden können. 
Bei der reduzierten Form nach der Wess-Zumino-Eichung des Vektorfeldes  
   

 ( ) ( ) ( ) ( )xDxixixvV θθθθθλθθλθθθθθσ µ
µ

2

1+−+−=  (3.11) 

   

bleiben so, bis auf ein weiteres Hilfsfeld ( )xD , nur noch die physikalischen Frei-

heitsgrade übrig, die den Vektoreichfeldern ( )xvµ  und dem Majorana Spinor Feld 

( )xλ  entsprechen [23]. 

Betrachtet man nun Supereichtransformationen, ergibt sich analog zur minimalen 
Kopplung im SM ein eichinvariantes Produkt, das die Wechselwirkung der Vektor-
superfelder mit den chiralen Superfeldern beschreibt. Um eine eichinvariante 
Lagrangedichte zu konstruieren, muss man zur Erstellung eines kinetischen Terms 
des Vektorsuperfeldes eine chirale bzw. antichirale Feldstärke definieren 
   

 VV eDeDW −−= αα
2

4

1
 bzw. VV eDeDW −−= αα

2

4

1
& , (3.12) 

was das Analogon zu den Feldstärketensoren aus Kapitel 2.2 darstellt. 
Dabei ist D erneut die kovariante Ableitung, diesmal jedoch bezüglich des Super-
raums. Der Feldstärketensor nimmt unter Berücksichtigung der Wess-Zumino-
Eichung die Form 
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an, wobei  
   

 cbabcaaa vvfvvF νµµννµµν +∂−∂=  und cbabcaa vfD λλλ µµ +∂=  (3.14) 

   

definiert sind. 
Nach der Einführung der unterschiedlichen Felder kann nun die Lagrangedichte 
konstruiert werden. In Analogie zur Wirkung in Kapitel 2.2, die das Integral über die 
Raum-Zeit Koordinaten der Lagrangedichte ist, definiert man im supersymmetri-
schen Fall auf gleiche Weise die Wirkung samt Lagrangedichte mit dem Unter-
schied, dass eine Integration über den Superraum vorgenommen wird. Man kann 
also die Lagrangedichte, die die oben aufgeführten Felder enthält, elegant mit Hilfe 
des Superraums darstellen 
   

 ∫∫ +




 ΦΦΦ+ΦΦ+ΦΦ= ..
3

1

2

1222 chymddd kjiijkjiijii θθθ †L . (3.15) 

   

Das erste Integral stellt den kinetischen Term eines chiralen Superfeldes dar. Das 
zweite Integral enthält das Superpotential, das die Yukawa- und Massenterme be-
inhaltet. In ähnlicher Weise kann die Lagrangedichte für das Vektorsuperfeld auf-
gestellt werden. Im Anschluss kann die Integration über den Superraum ausgeführt 
werden. Da im Folgenden nur auf die wesentlichen Aspekte der Lagrangedichte 
eingegangen wird, kann eine komplette Aufstellung der Komponenten der Lagran-
gedichte des MSSM [24] entnommen werden. Für weitere Informationen der theo-
retischen Grundlagen empfiehlt sich ebenfalls [25] und [23].   
 
Die Lagrangedichte des MSSM besteht vereinfacht dargestellt aus zwei Teilen. Der 
erste Teil ist die supersymmetrische Erweiterung des SM und der zweite Teil rep-
räsentiert die Brechung, die den Massenunterschied zwischen den Superpartnern 
erklärt: 
   

 BrechungSUSYLLL = . (3.16) 

   

Des Weiteren ist die SUSY Lagrangedichte erneut aus zwei Teilen zusammenge-
setzt. Der erste Term enthält die kinetischen Terme der Eichfelder und deren 
Wechselwirkungen, der zweite beschreibt die Wechselwirkungen untereinander. 
Dabei tritt ein Superpotential auf, dessen Form bei der Ersetzung der Felder durch 
Superfelder an die des SM erinnert: 
   

 ( )jiic
b

j
a

L
ab

ic
b

j
a

D
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U
abijR HHHELyHDQyHUQyW 21112 µε +++= , (3.17) 

   

wobei 3,2,1, =ji  die SU(2) und 3,2,1, =ba  die Generationsindizes darstellen. 

Die Yukawakopplungen werden in diesem Kapitel mit y  bezeichnet und ijε   ent-

spricht dem total antisymmetrischen Tensor. Da es im MSSM zwei Higgsfelder gibt, 
unterscheidet sich das Potential im letzten Term im Vergleich zu dem des SM. Die-
ser Term repräsentiert die Higgs-Mischung, die im SM aufgrund eines einzigen 
Higgsfeldes nicht auftaucht. Berücksichtigt man bei der Aufstellung der Lagrange-
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dichte die Invarianz unter supersymmetrischen Transformationen, ist zusätzlich zu 
WR ebenfalls ein weiterer Term der Form 
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erlaubt. Diese Terme beschreiben allerdings Baryon- oder Leptonzahl verletzende 
Prozesse. Da solche Prozesse jedoch in der Natur nicht beobachtet werden, müs-
sen solche Terme stark unterdrückt sein oder gar nicht erst auftauchen. Eine Mög-
lichkeit diese Terme zu eliminieren, ist die Einführung einer weiteren Quantenzahl, 
der sogenannten R-Parität. Die Erhaltung der R-Parität wird in vielen supersymmet-
rischen Modellen, sowie innerhalb dieser Diplomarbeit, vorausgesetzt. Die dazuge-
hörige Quantenzahl ist dabei wie folgt definiert [26]: 
   

 ( ) ( ) SLBR 231 +−−= , (3.19) 

   

wobei B  der Baryonzahl, L  der Leptonzahl und S  dem Spin des betrachteten Teil-
chens entspricht. Gewöhnliche Teilchen haben dann eine R-Parität von +1 und ihre 
supersymmetrischen Partner eine R-Parität von -1. Diese multiplikative Quanten-
zahl hat zur Folge, dass Terme wie in Gleichung (3.18) nicht mehr innerhalb der 
Lagrangedichte auftauchen und dass supersymmetrische Teilchen nur in Paaren 
erzeugt werden können. Somit muss das leichteste supersymmetrische Teilchen 
(engl. lightest supersymmetric particle, LSP) stabil sein, was es zu einen vielver-
sprechenden Dunkle Materie Kandidaten macht. 
Der zweite Ausdruck in der Lagrangedichte in Gleichung (3.16) beinhaltet die Ter-
me, die aufgrund der Symmetriebrechung entstehen. Die Brechung selbst kann 
dabei durch viele verschiedene Brechungsmechanismen beschrieben werden. Da 
jedoch keines der Felder des MSSM einen nicht verschwindenden Vakuumerwar-
tungswert verursachen kann, ohne dabei die Eichinvarianz zu verletzten, muss die 
spontane Symmetriebrechung mittels anderer Felder hervorgerufen werden. Das 
übliche Szenario, um eine Brechung der Supersymmetrie zu erreichen, ist das so-
genannte Versteckte Szenario (engl. hidden scenario). Dabei nimmt man an, dass 
es zwei Sektoren gibt. Zum einen den sichtbaren Sektor (engl. visible sector), in 
dem sich die bekannten Materieteilchen befinden und zum anderen den versteck-
ten Sektor (engl. hidden sector), das die Felder enthält, die die Brechung hervorru-
fen. Damit es zu einer Brechung kommen kann, benötigt man ein Boten-Teilchen 
(engl. messenger), der diese Wechselwirkung zwischen dem hidden und visible 
Sektor möglich macht [25].  
An dieser Stelle gibt es viele Möglichkeiten für die Wahl des Boten, wobei in vielen 
Modellen die Brechung der Supersymmetrie mittels der Gravitation erklärt wird, was 
als Supergravitation (SUGRA) bezeichnet wird. Durch die Berücksichtigung der 
Gravitation wird ein weiteres Teilchen in das Teilchenspektrum aufgenommen, das 
Gravitino, der Superpartner des Gravitons, das den Spin 3/2 trägt [16]. Durch den 
Brechungsmechanismus ergibt sich eine Brechungsskala in der Größenordnung 
der Masse des Gravitinos. Dieser und auch andere Brechungsmechanismen füh-
ren zu der Einführung expliziter, sogenannter sanfter Brechungsterme (engl. soft-
breaking terms):    
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Diese Terme sind so geartet, dass keine quadratischen Divergenzen in den Strah-
lungskorrekturen der Superpartnermassen auftauchen, weshalb man von einer 
„sanften Brechung“ spricht. Unter Berücksichtigung der Felder im MSSM und der 
R-Paritätserhaltung ergibt sich folgende Form des Brechungsterms, mit dem das 
Massenspektrum berechnet werden kann 
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wobei B  und A  die bi- bzw. trilinearen Kopplungen darstellen und iϕ  allen skala-

ren Feldern und λ  den supersymmetrischen Eichfelder, den Gaugino Feldern, ent-

sprechen.  DUQ
~

,
~

,
~

und EL
~

,
~

 sind die Squark- und Sleptonfelder und 1H  und 2H  die 

beiden SU(2)-Higgsdubletts [27].  
Wie man an Gleichung (3.21) sieht, beinhaltet der Brechungsterm sehr viele freie 
Parameter, welche Vorhersagen für das Modell erschwert. Eine drastische Reduk-
tion der Zahl der freien Parameter erreicht man durch die Annahme, dass sich für 
hohe Energie, üblicherweise an der GUT Skala, universelle Parameter der sanften 
Brechung ergeben.  
Die Massen für die Spin 0 Teilchen nehmen dort einen gemeinsamen Wert m0 und 
die Spin 1/2 Teilchen den Wert m1/2 an. Zusätzlich gibt es eine universelle trilineare 
Kopplung A0. Oft wird statt der einheitlichen bilinearen Kopplung B der dazu äqui-
valente Parameter tan(β) benutzt.  
Durch die oben beschriebenen Einschränkungen wird dieses supersymmetrische 
Modell als CMSSM (engl. constrained MSSM) bezeichnet, welches das grundle-
gende Modell dieser Diplomarbeit darstellt. Dieses Modell ist u.a. auch unter dem 
Namen mSUGRA (engl. minimal supergravity) bekannt, was jedoch als äquivalen-
tes Modell anzusehen ist. 
Die ursprünglichen 105 freien Parameter können so auf folgende fünf freie Para-
meter reduziert werden 
 

• m0: Einheitliche Masse für Spin 0 Teilchen (Gauginos) 
( ) ( ) ( ) 0321 mMMMMMM GUTGUTGUT === . 

• m1/2: Einheitliche Masse für Spin 1/2 Teilchen 
( ) ( ) 2/1,,,, 2,1

~ mMmMm GUTHGUTQDULE iii == . 

• A0: einheitliche trilineare Kopplung 
( ) ( ) ( ) 0AMAMAMA GUTGUTbGUTt === τ . 

Dabei werden nur die Kopplungen der dritten Generation der Fermionen be-
rücksichtigt, da diese stets als Produkt mit den dazugehörigen Yukawa-
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kopplungen auftreten. Aufgrund der großen Massenunterschiede, können so 
die restlichen trilinearen Kopplungen vernachlässigt werden. 

• sign(µ): Vorzeichen des Mischungsparameters der Higgsfelder µ. Durch die 
Forderung der elektroschwachen Symmetriebrechung ist der Wert von µ 
festgelegt, so dass nur das Vorzeichen ein freier Parameter ist. 

• tan(β): das Verhältnis der Vakuumerwartungswerte v1 und v2 der beiden 
Higgsfelder. 

Durch die Reduktion der freien Parameter ergibt sich eine einfachere Vorhersage 
des Massenspektrums. Nimmt man eine Kombination der hier beschriebenen fünf 
CMSSM Parameter auf der GUT Skala an, so kann man mit Hilfe der RGE die 
Werte aller Massen und Kopplungen im Niederenergiebereich bestimmen. Eine 
Ausstellung der dazugehörigen RGE, die sich aus der Lagrangedichte ergeben, ist 
in [21] angegeben.  
Kennt man das Teilchenspektrum bei niedrigen Energien, kann dieses mit den ex-
perimentellen Daten verglichen werden und so eine Abschätzung des verwendeten 
Parametersatzes gemacht werden. Die Untersuchung der Kombinationsmöglichkei-
ten der CMSSM Parameter und deren Übereinstimmung mit den aktuellen kosmo-
logischen und elektroschwachen Präzisionsdaten, um so eine Vorhersage des er-
laubten Parameterbereichs zu machen, ist eines der Ziele dieser Diplomarbeit.   

3.2 Higgsektor im MSSM 
Wie bereits erwähnt werden im MSSM zwei komplexe Dubletts skalarer Felder mit 
der schwachen Hyperladung YW=-1 und YW=+1 benötigt: 
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Die Brechung von SUSY führt zu sanften Brechungstermen in der Lagrangedichte. 
Der Mechanismus der elektroschwachen Symmetriebrechung muss jedoch in glei-
cher Weise statt finden, wie im SM in Kapitel 2.2.4 gezeigt wurde. Die Form des 
dazugehörigen Higgspotentials muss nicht konstruiert werden, sondern ergibt sich 
direkt aus dem Superpotential [28] und den dazugehörigen Wechselwirkungster-
men zu  
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wobei 222
1 1

µ+= Hmm , 222
2 2

µ+= Hmm  und 0
2
3 µBm −=  ist bzw. an der GUT-Skala  

( ) ( ) 2
0

2
0

2
2

2
1 µ+== mMmMm GUTGUT . Der Vakuumerwartungswert, also das Minimum 

des obigen Potentials, sollte wie im SM einen von Null verschieden Wert für eine 
spontane Symmetriebrechung annehmen. Die Suche eines nicht trivialen Mini-
mums des obigen Potentials führt auf folgende Bedingungen: 
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Um einen einfacheren Umgang mit den Gleichungen (3.24) zu ermöglichen, wird 
mit Hilfe der von Null verschiedenen Vakuumerwartungswerte der einzelnen Higgs-
Dubletts 
   

 11 vH =  und 22 vH =  (3.25) 

   

und der daraus folgenden Definition des CMSSM Parameter 
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Gleichung (3.24) umgeschrieben zu 
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Mit den so umgeschriebenen Gleichungen in (3.27) ist ersichtlich, dass sich für die 
GUT Skala keine Symmetriebrechung ergeben kann, da hier v2 stets negativ ist 
und somit kein Minimum existiert. Eine positive Lösung ergibt sich nur, wenn die 
Bedingungen 
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gleichzeitig erfüllt sind. 
Diese können nur unterhalb der GUT Skala simultan erfüllt werden, indem man die 
zur betrachteten Energie jeweilige renormierte Größe verwendet. Die Energieab-
hängigkeit der Parameter führt zu laufenden Parametern, die an einer bestimmten 
Skala die Forderungen in Gleichung (3.28) erfüllen und so zu einer spontanen 
Symmetriebrechung führen. Dieses Phänomen wird als spontane Symmetriebre-
chung aufgrund von Strahlungskorrekturen (engl. radiative spontaneous symmetry 
breaking) bezeichnet.  
Um mit den experimentellen Beobachtungen des Vakuumerwartungswertes des  
SM überein zustimmen, muss   
   

 GeVvvv 24622
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gelten. Die Massen der W±- und Z0-Bosonen in Gleichung (2.45) und (2.50) müs-
sen entsprechend Gleichung (3.29) ersetzt werden. 
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Zur Bestimmung der Massen der auftretenden Higgs-Bosonen kann analog zu Ka-
pitel 2.2.4 eine Entwicklung um die Vakuumerwartungswerte vorgenommen wer-
den, was zu  
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führt. Dies führt erneut auf drei Goldstonebosonen G0 und G±, die im Austausch für 
die longitudinale Polarisation der Eichbosonen Z0 und W± verschwinden werden. 
Des Weiteren ergeben sich fünf physikalische Higgsfelder h, H, A und H±. Während 
die Higgsfelder H± geladen sind, sind die restlichen Higgsfelder neutral. Der Unter-
schied zwischen dem leichtesten skalaren Higgs h und dem schwereren Higgs H 
gegenüber dem pseudoskaleren Higgs A ist das Verhalten unter CP- Transformati-
onen, was einer Kombination aus einer Ladungskonjugation und Paritätstransfor-
mation entspricht. Während die Higgs-Bosonen h und H CP-gerade sind, ist das 
pseudoskalare Higgs A CP-ungerade. 
Die Massen der Felder ergeben sich aus der Diagonalisierung der Massenmatrix, 
wobei man einen unterschiedlichen Mischungswinkel für die jeweiligen Matrizen 
verwendet. Die Higgs-Bosonen A und H± lassen sich mit Hilfe des Mischungswin-
kels β aus Gleichung (3.26) darstellen [21]: 
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Für die neutralen CP-geraden Higgs-Bosonen h und H wird ein Mischungswinkel α 
definiert: 
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Dadurch kann die Massenmatrix wie folgt dargestellt werden: 
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Für die physikalischen Massen der Higgs-Bosonen in der führenden störungstheo-
retischen Ordnung erhält man daraus folgende Darstellung 
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Die bisherigen Angaben der Massen wurden in der niedrigsten störungstheoreti-
schen Ordnung gemacht, da ebenfalls der Ausgangspunkt das Higgspotential in 
Gleichung (3.23) das Tree Level-Potential darstellt. Berücksichtigt man Schleifen-
korrekturen höherer Ordnung, so modifizieren sich obige Gleichungen. Der größte 
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Unterschied ergibt sich hierbei für das leichteste Higgs h. Unter Berücksichtigung 
der Schleifendiagramme ergibt sich eine Erhöhung der oberen Schranke der Mas-
se des Higgs h von GeVM Z 91≈ auf GeVmh 130≤  [29]. 

Die Massen der fünf Higgs-Bosonen und die dazugehörigen Mischungswinkel α 
und β sind, wie in Gleichung (3.32) und (3.34) gezeigt wird, nicht unabhängig von-
einander. Innerhalb dieses Satzes von Parametern sind nur zwei unabhängig, 
weshalb man oft die Masse des pseudoskalaren Higgs mA und tan(β) wählt, um 
den Higgs Sektor im MSSM zu beschreiben.  
Zur Untersuchung der Wechselwirkung zwischen den Higgs-Bosonen und Fermio-
nen werden erneut die Yukawakopplungen verwendet. Dabei sind die Felder H1 
und H2 jeweils für die Generierung der Massen der Fermionen mit unterschiedlicher 
dritter Komponente des schwachen Isospins zuständig. H1 gibt den Fermionen mit 
Isospin -1/2 Masse, wohingegen H2 an Fermionen mit Isospin +1/2 koppelt. Aus 
diesem Grund ergeben sich unterschiedliche Kopplungen der Higgs-Bosonen an 
Fermionen. Man unterscheidet hierbei zwischen up- (u,c,t) und downartigen 
(d,s,b,e,µ,τ) Fermionen [30]: 
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3.2.1 Elektroschwache Symmetriebrechung aufgrund vo n Strah-
lungskorrekturen 

Der Begriff der elektroschwachen Symmetriebrechung aufgrund von Strahlungskor-
rekturen [21], der bereits im vorangegangen Kapitel 3.2 auftauchte, wird im Fol-
genden näher diskutiert. 
An der GUT Skala nehmen die Higgsparameter m1

2 und m2
2 positive Werte an, 

weshalb das Higgspotential kein nicht triviales Minimum besitzt. Berechnet man mit 
Hilfe der RGE die Energieabhängigkeit der Größen, so ändern die Higgsparameter 
an einer bestimmten Skala ihr Vorzeichen. Dies hat ein nicht triviales Minimum des 
Potentials zur Folge, so dass die elektroschwache Symmetrie spontan gebrochen 
ist. Im Gegensatz zum SM, in dem die spontane Symmetriebrechung ad hoc einge-
führt wurde, ergibt sich diese im MSSM aufgrund der Strahlungskorrekturen, die 
durch die laufenden Parameter berücksichtigt werden. Der Beitrag zu den Strah-
lungskorrekturen ist hauptsächlich auf die Yukawakopplungen von t- und b-Quark 
zurückzuführen.  
Durch den Mechanismus der laufenden Kopplungskonstanten können ebenso die 
unterschiedlichen Skalen der spontanen Symmetriebrechungen erklärt werden. Da 
die Energieabhängigkeit der Higgsparameter einen logarithmischen Verlauf [21] 
aufweist, dauert es sehr lange, bis die Parameter, die eine Größenordnung von 102 
-103 GeV auf der GUT Skala annehmen, negative Werte erreichen. 
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3.3 Teilchenspektrum des MSSM 
Mit Hilfe der Massenterme in der Lagrangedichte des MSSM können die Massen-
matrizen für alle Teilchen aufgestellt werden. Durch Berechnung der Masseneigen-
zustände sind die Massen an der GUT Skala bekannt. Zur Bestimmung der dazu-
gehörigen Massen bei niedrigen Energien müssen die RGE gelöst werden. Durch 
Ersetzen der renormierten Größen in den Massenmatrizen kann das Massenspekt-
rum der Superpartner vorhergesagt werden. In diesem Kapitel soll ein Überblick 
über die  Massen der Superpartner gegeben werden. 

3.3.1 Gaugino und Higgsino Massenterme 

Die Massenmatrix der Gauginos, der Superpartner der Eichbosonen der SU(2) und 
U(1), und der Higgsinos, der Superpartner der Higgs-Bosonen, ist nicht diagonal. 
Dies führt zu einer Mischung der Zustände. Innerhalb der Lagrangedichte sind die 
Massenterme von der Form  
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wobei λ den Majorana Gluino Feldern entspricht, welche schon physikalische Ei-
genzustände darstellen und deshalb nicht mischen [21]. Des Weiteren treten die 
Majorana-Neutralino- und die Dirac-Chargino-Felder auf: 
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Die Neutralinos bzw. Charginos entsprechen den neutralen bzw. geladenen Gaugi-
nos und Higgsinos. Um die Massen der Neutralinos zu erhalten, muss die dazuge-
hörige Massenmatrix der Form  
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durch eine unitäre Transformation diagonalisiert werden [31]. Die Elemente der 
Massenmatrix beinhalten dabei die Masse des Z-Bosons ZM  und cos- und sin-

Terme mit dem Weinbergwinkel Wθ  und β  als Argument. Nach der Transformation 

können die Eigenzustände der Massenmatrix berechnet werden. 
Die geladenen Gauginos, darunter die geladenen Winos und Higgsinos, mischen 
zu den Charginos. Die dazugehörige Massenmatrix 
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kann ebenfalls diagonalisiert werden, so dass sich die zwei Chargino-
Eigenzustände ergeben 
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3.3.2 Squark- und Sleptonmassen 

Die Squarks und Sleptonen sind die Superpartner der Quarks und Leptonen. Da 
man zwischen rechts- und linkshändigen Fermionen unterscheidet, gibt es hierzu 
auch jeweils einen Superpartner. Zur Berechnung der Massen der unterschiedli-
chen links- bzw. rechtshändigen Superpartner müssen wie bei den Neutralinos und 
Charginos, die Masseneigenzustände der zugehörigen Massenmatrizen berechnet 
werden. Dabei ergeben sich Mischungen zwischen den links- und rechtshändigen 
Anteilen die proportional zur Masse der SM-Teilchen sind, weswegen die Mischun-
gen der ersten beiden Generationen vernachlässigt werden können. Die Mischung 
für Stau, Stop und Sbottom können jedoch nicht vernachlässigt werden [21], wes-
halb die Mischungsmatrizen  
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mit 
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untersucht werden können. Die ersten Terme in Gleichung (3.42) entsprechen den 
Massen aus der sanften Brechung, die mit Hilfe der RGE berechnet wurden. Der 
zweite Term entspricht den Massen der Quarks und Leptonen und der letzte Term 
resultiert aus dem dazugehörigen Potential. 
Die resultierenden Mischungen der Massen für die schweren Squarks und Slepto-
nen lauten dann 
   

 

( ) ( ) ( )22222222
~ cot~~

4

1~~
2

1~
2,1

βµ−+−±+= tttRtLtRtLt Ammmmmm , 

( ) ( ) ( )22222222
~ tan~~

4

1~~
2

1~
2,1

βµ−+−±+= bbbRbLbRbLb
Ammmmmm , 

( ) ( ) ( )22222222
~ tan~~

4

1~~
2

1~
2,1

βµτττττττ −+−±+= Ammmmmm RLRL . 

(3.43) 

   

3.4 Motivation von SUSY 
Die Grenzen des SM wurde bereits in Kapitel 2.3 aufgezählt. In diesem Kapitel soll 
dargestellt werden, welche Grenzen und wie diese aufgehoben werden, um damit 
die Motivation für Supersymmetrie und im Besonderen für das CMSSM aufzuzei-
gen [12]. 

• GUT 
Mit Hilfe der Supersymmetrie gelingt eine Vereinheitlichung der Kopplungs-
konstanten der elektroschwachen und der starken Wechselwirkung. 

• Gravitation  
Innerhalb des Brechungsmechanismus des hidden Sektors ist eine Berück-
sichtigung der Gravitation möglich 

• Hierarchieproblem 
Die spontane Symmetriebrechung aufgrund von Strahlungskorrekturen 
kann den Unterschied der Größenordnungen der GUT und elektroschwa-
chen Skala aufzeigen. 

• Spontane Symmetriebrechung  
Der Mechanismus der spontanen Symmetriebrechung muss nicht ad hoc 
eingeführt werden, sondern ergibt sich direkt aus den Strahlungskorrektu-
ren. 

• Dunkle Materie 
Im Teilchenspektrum des MSSM gibt es einen vielversprechenden Dunkle 
Materie Kandidaten, das leichteste supersymmetrische Teilchen, das als 
Neutralino identifiziert werden sollte. Es erfüllt dabei alle notwendigen Krite-
rien, denn es ist elektrisch neutral, weshalb es nur schwach und gravitativ 
wechselwirkt. Zudem ist das LSP aufgrund der R-Paritätserhaltung und der 
gebrochenen Symmetrie stabil und massiv.  

• Korrekturen zur Higgsmasse 
Quadratische Massenterme innerhalb der Strahlungskorrekturen zur 
Higgsmasse, die um ein vielfaches größer sind als die Higgsmasse selbst, 



3 Supersymmetrie 

 

40 

verschwinden innerhalb der SUSY ohne ein im SM benötigtes Feintuning. 
Wäre SUSY nicht gebrochen, wären die zusätzlichen Massenterme der Su-
perpartner, die innerhalb der Strahlungskorrekturen auftauchen würden, 
vom Betrag her gleich und hätten nur ein unterschiedliches Vorzeichen auf-
grund der unterschiedlichen Statistik. Dadurch würden sich die Divergenzen 
exakt auslöschen. Selbst in einer gebrochenen Supersymmetrie, in denen 
die Massen der Superpartner nicht wesentlich größer sind, erhält man einen 
ähnlichen Effekt. 

3.5 Einschränkungen von SUSY 
Nach der Motivation von SUSY in Kapitel 3.4 stellt sich die Frage, wie gut die Vor-
hersagen der Supersymmetrie mit den experimentellen Ergebnissen übereinstim-
men und welche Wahl der fünf CMSSM Parameter die Daten am besten be-
schreibt. Die bereits gut übereinstimmenden Ergebnisse des SM sollten unter Be-
rücksichtigung von SUSY entweder den experimentellen Präzisionsdaten entspre-
chen oder innerhalb der Fehlertoleranz liegen. Gerade bei experimentellen Daten, 
die von den Vorhersagen des SM abweichen, ist Raum für zusätzliche supersym-
metrische Beiträge, durch die eine Übereinstimmung zwischen Theorie und Expe-
riment gefunden werden könnte. In diesem Kapitel werden alle Einschränkungen 
aufgezählt, die ausgewählt wurden um SUSY auf die Übereinstimmung mit kosmo-
logischen und elektroschwachen Präzisionsdaten zu testen. Dies kann im An-
schluss genutzt werden, um den erlaubten CMSSM Parameterbereich einzu-
schränken. Die hier aufgezählten Einschränkungen werden im Kapitel 7.2 vertieft.  
 
Dunkle Materie 
Aus kosmologischen Messungen ergibt sich ein Wert für die primordiale Energie-
dichte der Dunklen Materie 1131,02 =Ωh . Diese ist umgekehrt proportional zum 

Annihilationswirkungsquerschnitt der WIMPs. Innerhalb des MSSM werden diese 
durch das LSP bzw. Neutralino repräsentiert, so dass die primordiale Dunklen Ma-
teriedichte berechnet werden kann [32]. Das für bestimmte CMSSM Parameter 
gewählte Modell sollte hierbei nicht nur mit dem Messwert übereinstimmen, son-
dern auch das Neutralino als leichtestes supersymmetrisches Teilchen beinhalten. 
 
Anomales magnetisches Moment des Myons 
Der gyromagnetische Faktor (g-Faktor) oder auch Landé-Faktor des Myons be-
schreibt den Zusammenhang zwischen seinem Spin s

r
 und dem magnetischen Di-

polmoment µr . Unter der Annahme, dass Myonen Dirac-Fermion sind, müsste die-

ser Proportionalitätsfaktor g exakt zwei entsprechen. Aufgrund von Quantenfluktua-
tionen ergibt sich eine Abweichung von dem Wert 2, wobei die Korrekturen inner-
halb des SM am Photon-Myon-Myon-Vertex durch Schleifendiagramme berechnet 
werden können [33]. Zur Übersichtlichkeit dieser Anomalie wird die dimensionslose 
Größe a definiert  
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2

2−= g
a , (3.44) 

   

Eine Präzisionsmessung des anomalen magnetischen Moments des Myons wurde 
am Brookhaven National Laboratory durchgeführt. Die mit Hilfe des Brookhaven 
Experiments E821 gefundene Abweichung vom Wert 2, wies ebenfalls eine Abwei-
chung vom vorhergesagten SM-Wert auf. Die Berücksichtigung von zusätzlichen 
supersymmetrischen Beiträgen sollte zu einer Übereinstimmung mit dem experi-
mentellen Wert führen. 
 
Verzweigungsverhältnis b → s γ 
Flavourändernde neutrale Ströme wie der Prozess b → s γ sind im SM auf Tree 
Level Niveau nicht erlaubt. Innerhalb von Schleifendiagrammen, die man als Pingu-
in Diagramme bezeichnet, ist dies jedoch möglich. Dabei zerfällt das b-Quark über 
eine W±-t-Schleife in ein s-Quark und ein Photon. Die Vorhersage des SM stimmt 
innerhalb der Fehlertoleranz nicht  mit dem experimentell gemessenen Wert über-
ein [34], so dass zusätzliche supersymmetrische Beiträge eine Übereinstimmung 
mit dem Experiment liefern könnten.    
 
Verzweigungsverhältnis Bs → µ+ µ- 
Wie bei dem vorherigen Verzweigungsverhältnis ist dies ebenfalls ein flavourän-
dernder neutraler Strom, der nur innerhalb von Schleifendiagrammen möglich ist. 
Der vom SM vorhergesagte Wert liegt eine Größenordnung unterhalb der bisheri-
gen experimentellen Grenze. Der theoretische Wert, der ebenfalls die supersym-
metrischen Beiträge enthält, muss unterhalb des gefunden oberen Limits liegen 
[35]. 
 
Verzweigungsverhältnis B → τ ν 
Der leptonische Zerfall eines B-Mesons erfolgt auf Tree Level-Niveau über ein W±-
Boson. Bei der Berücksichtigung von SUSY ergibt sich noch ein zusätzlicher Bei-
trag durch ein geladenes Higgs H±. Die Diskrepanz zwischen der SM-Vorhersage 
und dem experimentellen Wert liegt nicht im Bereich der Fehlertoleranz, so dass 
bei der Hinzunahme von supersymmetrischen Beiträgen darauf geachtet werden 
muss, dass der so vorhergesagte theoretische Wert noch innerhalb der Fehlertole-
ranz liegt [36]. 
 
Higgsmasse mh 
In Kapitel 2.1 wurde bereits erwähnt, dass das Higgs-Boson als einziges Teilchen 
des SM noch nicht nachgewiesen wurde. Innerhalb des MSSM würde das leichtes-
te neutrale Higgs-Boson h dem SM-Higgs entsprechen, so dass die Masse dieses 
leichtesten der fünf Higgs-Bosonen im MSSM oberhalb der derzeitigen unteren, 
vom LEP gemessenen Grenze von 114,4 GeV liegen sollte [15]. 
 
Direkte Suche nach Dunkler Materie 
Zahlreiche verschiedene Experimente sind auf der Suche nach Dunkler Materie. 
Bei der direkten Suche hofft man die Streuung eines WIMPs an einem Kern nach-
weisen zu können. Bisherigen Messungen gelang kein Nachweis der WIMP-
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Nukleon-Streuung, so dass sich eine Ausschlusskurve ergab [37]. Die sich aus 
dem Modell ergebende Neutralinomasse in Verbindung mit dessen Streuwirkungs-
querschnitt sollte unterhalb der gefunden Ausschlusskurve liegen.  
 
LHC – CMS-Limit für die direkte Suche nach supersymmetrischen Teilchen   
Seit Beginn der Datennahme am LHC werden die erhaltenen Daten nach super-
symmetrischen Teilchen analysiert. Bei der Suche nach SUSY wird dabei stets 
nach Ereignissen mit Jets und signifikanter fehlender transversaler Energie Aus-
schau gehalten, da dies bei Proton-Proton-Kollisionen charakteristisch für Zerfälle 
von schweren, Paar-produzierten Squarks und Gluinos ist.  
Bis zu diesem Zeitpunkt konnten jedoch keine supersymmetrischen Prozesse ge-
funden werden, so dass sich aus dieser Analyse ebenfalls eine Ausschlussgrenze 
ergibt. Bestimmte Kombinationen der CMSSM Parameter sind innerhalb dieses 
Bereichs bereits ausgeschlossen, und können so als weitere Einschränkung des 
erlaubten CMSSM Bereichs genutzt werden [38], [39]. 
 
Kapitel 7 enthält als Schwerpunkt die Untersuchung des Einflusses der oben ge-
machten Einschränkungen auf den CMSSM Parameterraum. Dabei wird analysiert, 
ob innerhalb des Parameterraums Kombinationsmöglichkeiten existieren, die zu 
Ergebnissen führen, die simultan mit den Einschränkungen konsistent sind, so 
dass eine Abschätzung des Entdeckungspotentials im CMSSM Parameterraum 
gegeben werden kann. 
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4 Dunkle Materie 
Eine der erstaunlichsten Entdeckung des 20. Jahrhunderts in Bezug auf das Ver-
ständnis des heutigen Universums ist die Tatsache, dass die baryonische Materie, 
bestehend aus Protonen und Neutronen, nur einen kleinen Bruchteil der gesamten 
Materie im Universum ausmacht. Das Universum besteht dabei aus ca. 30% Mate-
rie und ca. 70% Dunkler Energie, deren Herkunft bis heute unbekannt ist. Dabei ist 
jedoch nur ca. 4% baryonische Materie vorhanden, wovon wiederum nur ein Bruch-
teil davon tatsächlich leuchtende Materie ausmacht. Die Aufteilung der Energie-
dichte des Universums wird in Abbildung 4.1 gezeigt. Der Großteil der Materiedich-
te macht also die nicht sichtbare, Dunkle Materie aus, deren Natur ebenso unge-
klärt wie die der Dunklen Energie ist. Es wird angenommen, dass es sich bei der 
Dunklen Materie um Teilchen handelt, die im frühen Universum erzeugt wurden, 
weshalb zunächst kurz auf das Standardmodell der Kosmologie und andere not-
wendige Begrifflichkeiten in Kapitell 4.1 eingegangen wird. Im Anschluss werden 
ausgewählte Beispiele für Evidenzen und Kandidaten der Dunklen Materie in Kapi-
tel 4.2 und 4.3 geschildert, wobei zur weiteren Vertiefung [19], [40] und [41] emp-
fohlen werden. Die Diskussion der Thermodynamik im frühen Universum in Ab-
schnitt 4.4 und die Annihilationsprozesse der Dunklen Materie in 4.5 schließen die-
ses Kapitel ab. 
 

4.1 Ausgewählte kosmologische Begriffe 
Das Standardmodell der Kosmologie, besser bekannt unter dem Namen Urknall- 
oder auch „Big Bang“-Theorie, kann mit einer Aussage beschrieben werden: Das 
Universum expandiert adiabatisch von einem ursprünglich unendlich heißen und 
dichten Frühzustand, der als Urknall bezeichnet wird, und ist auf großen Skalen 
homogen und isotrop. Isotrop bedeutet dabei, dass das Universum in jeder Rich-
tung gleich aussieht und homogen, dass das Universum sich unabhängig vom ge-
wählten Punkt im Raum gleich darstellt [19]. Diese beiden Grundannahmen werden 
als das kosmologische Prinzip bezeichnet. Das Standardmodell der Kosmologie 
beschreibt also die zeitliche Entwicklung des heutigen Universums. Die mathemati-
sche Beschreibung erfolgt dabei durch die allgemeine Relativitätstheorie. Unter 
Berücksichtigung des kosmologischen Prinzips in einem vierdimensionalen expan-
dierenden Universum wird die zeitliche Entwicklung durch die Friedmann-
Gleichungen beschrieben. Das Standardmodell der Kosmologie wird durch drei 
experimentelle Beobachtungen gestützt, welche deshalb auch als „drei Säulen des 
Urknall-Modells“ gelten [40]: 
 

• die Expansion des Universums, 
• die kosmische Hintergrundstrahlung und 
• die primordiale Nukleosynthese. 

 
Expansion des Universums 
Im Jahre 1920 stellte Edwin Hubble fest, dass die Rotverschiebung von beobach-
tenden Spektren von Galaxien umso größer ist, je weiter diese entfernt waren. Die 
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Proportionalitätskonstante wurde nach seinem Entdecker als Hubblekonstante H0 
bezeichnet. Die Folgerung, dass sich die Rotverschiebung aufgrund der klassi-
schen Dopplerverschiebung ergibt, war dabei jedoch nicht richtig. Die Rotverschie-
bung ist auf die Expansion der Raumzeit selbst zurückzuführen. Da dieser Effekt 
erheblich die kosmologischen Berechnungen erschwert, führt man mitbewegte Ko-
ordinaten ein, so dass sich zeitunabhängige Größen ergeben. Die Zeitabhängigkeit 
wird durch den Skalenparameter kompensiert. Da der Skalenparameter direkt mit 
der Hubblekonstante in Verbindung steht, stellte sich heraus, dass die von Edwin 
Hubble gefundene Konstante ein zeitabhängiger Parameter ist, der daraufhin als 
Hubble Parameter H=H(t) bezeichnet wird. Er beschreibt dabei das Verhältnis der 
Änderung des Skalenparameters zu seiner Größe, und liegt für das heutige Univer-
sum bei t = t0 bei 
   

 ( )
Mpcs

km
hHtH 10000 ==   mit 03,072,0 ±=h  (4.1) 

   

wobei die Ungenauigkeit, mit der H0 bekannt ist, durch h parametrisiert wird [41], 
[42]. 
 
Kosmische Hintergrundstrahlung 
Die kosmische Hintergrundstrahlung ist elektromagnetische Strahlung, die aus der 
Zeit ca. 380 000 Jahre nach dem Urknall stammt. Bis zu diesem Zeitpunk waren 
Strahlung und Materie im thermischen Gleichgewicht. Durch die Expansion des 
Universums nach dem Urknall, die ein schnelles Sinken der Temperatur mit sich 
brachte, kam es bei ca. 3000 Kelvin zur Bildung von elektrisch neutralem Wasser-
stoff. Dadurch konnte die Strahlung nicht mehr mit der Materie wechselwirken. Dies 
ist der Zeitpunkt der Entkopplung von Materie und Strahlung. Dabei handelt es sich 
bei dieser 3000 Kelvin Strahlung um die kosmische Hintergrundstrahlung. Die wei-
tere Expansion des Universums führte zu einer Rotverschiebung der Strahlung, 
was einer Dehnung der Wellenlänge der entkoppelten Photonen entspricht. Da-
durch kann heutzutage die kosmische Hintergrundstrahlung im Mikrowellenbereich 
beobachten werden. Die Strahlung hat ein fast perfektes Schwarzkörperspektrum 
mit einer Temperatur von ca. 2,7 Kelvin.  
Die Temperatur der Hintergrundstrahlung ist zwar isotrop, jedoch konnte man klei-
ne Temperaturschwankungen auf kleinen Skalen feststellen. Diese Temperatur-
schwankungen sind auf Dichtefluktuationen im frühen Universum zurückzuführen. 
Befand sich beispielsweise Strahlung in einem überdichten Bereich, kommt es zu 
einer gravitativen Rotverschiebung, so dass die Hintergrundstrahlung in dieser 
Richtung eine etwas geringere Temperatur aufweist. Die Stärke der Temperatur-
schwankungen in Abhängigkeit der Winkelausdehnung wurde von der Raumsonde 
WMAP (‚Wilkinson Microwave Anisotropy Probe’)  gemessen. Aus dem so gemes-
sen Leistungsspektrum war es möglich, nicht nur die gesamte Energiedichte zu 
bestimmen, um so festzustellen, dass es sich um ein flaches Universum handelt, 
sondern es konnten noch zusätzlich die Materie- und Baryonendichte bestimmt 
werden [12]. 
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Primordiale Nukleosynthese 
Unter der primordialen Nukleosynthese versteht man die Theorie über den Ablauf 
der ersten drei Minuten nach dem Urknall, in denen die Bildung der leichten Ele-
mente stattfand. Die Theorie sagt ein Massenverhältnis von ca. 25% Helium zu 
75% Wasserstoff vorher, was durch Messungen über zehn Größenordnungen bes-
tätigt werden konnte. Während der primordialen Nukleosynthese konnten nur die 
leichten Elemente gebildet werden, während die schweren Elemente aus Fusions-
reaktionen in Sternen stammen. Aus dem sich ergebenden Photon-zu-Baryon-
Verhältnis ist es möglich den Anteil der baryonischen Dichte zur gesamten Ener-
giedichte zu berechnen. Die daraus resultierende Materiedichte kann als Vergleich 
bzw. Bestätigung der WMAP Daten benutzt werden [6]. 
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Abbildung 4.1: Aufteilung des Energieinhalts des heutigen Universums.  

 

4.2 Erste Beobachtungen und Evidenzen der Dunklen 
Materie 

Die sichtbare Materie im Universum formt Galaxien, wobei diese Galaxien selbst in 
Haufen (Cluster) und diese in Superhaufen (Supercluster) angeordnet sind. Dazwi-
schen befinden sich riesige Leerräume sogenannte Voids. Erste Beobachtungen 
der Bewegung der Galaxien in den Clustern unter der Berücksichtigung der New-
tonschen Bewegungsgesetze ergaben, dass die sichtbare Materie nicht ausreicht, 
um die beobachtete Bewegung der Galaxien zu beschreiben. Neben der sichtbaren 
musste es also auch unsichtbare, Dunkle Materie geben. Einer der ersten Beo-
bachtungen dieser Art wurde 1933 von Fritz Zwicky mit Hilfe des COMA Galaxien 
Clusters gemacht. Verdeutlicht wird dies mithilfe der Rotationskurven. Dabei wird 
die gemessene Geschwindigkeit einer Galaxie oder auch eines Sterns in Abhän-
gigkeit des Abstandes zum Zentrum des Gravitationspotentials aufgetragen [12]. 
Eine solche Rotationskurve wird in Abbildung 4.2 am Beispiel unserer Milchstraße, 
einer Spiralgalaxie, gezeigt. 
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Abbildung 4.2: Schematische Darstellung der Rotationskurve der Milchstraße.  

 
 
 
 
 
 
Dabei ergibt sich unter Berücksichtigung der Newtonschen Bewegungsgleichungen 
der Sonne ein Verlauf der Rotationsgeschwindigkeit in Abhängigkeit vom Abstand, 
der nicht mit den beobachteten, flachen Messungen übereinstimmt. Ausgehend 
vom dritten Kepplerschen Gesetz ergibt sich die Relation 
   

 ( ) ( )
r

rGM
rv =  (4.2) 

   

wobei r  der radiale Abstand zum Zentrum der Galaxie ist, ( )rM  die Masse der 

Galaxie innerhalb der Scheibe mit dem Radius r  und G  die Gravitationskonstante. 
Die Geschwindigkeit nimmt also nach Gleichung (4.2) mit wachsendem Abstand 
ab, wenn sich die Masse im Zentrum der Galaxie konzentriert. Die beobachtete 
Geschwindigkeit nimmt dagegen nicht ab, sondern scheint unabhängig vom Ab-
stand konstant zu bleiben. Um eine abstandsunabhängige Geschwindigkeit zu er-
halten, muss der Term ( ) rrM  konstant sein. Dies kann nur erfüllt werden, wenn 

die Masse proportional zum Abstand ist, also M(r) ~ r. Da dieses Dichteprofil nicht 
durch die sichtbare Materie allein erfüllen werden kann, muss es eine zusätzliche, 
Dunkle Materie geben [19]. 
Ein weiterer Effekt, der auf das Vorkommen großer nicht sichtbarer Materievertei-
lungen basiert, ist der sogenannte Gravitationslinseneffekt. Darunter versteht man 
die Ablenkung von Licht durch schwere Massen. Da dieses Verhalten analog zu 
einer Linse in der Optik durch ein Gravitationspotential entsteht, nennt man es 
Gravitationslinseneffekt. Dabei gibt es zum einen den Mikrolinseneffekt, der sich 
durch das kurzzeitige Aufleuchten von Sternen aufgrund von vorbeiziehenden Ma-
terieansammlungen, die den Strahlgang des beobachteten Sterns durchqueren, 
bemerkbar macht. Zum anderen gibt es den starken Gravitationslinseneffekt, für 
den man astronomische Objekte verantwortlich macht, die ein sehr starkes Gravita-

                                                                                                                             
Gezeigt wird der Unterschied zwischen dem beobachteten Verlauf der Rotations-
geschwindigkeit in Abhängigkeit vom Abstand zum Zentrum und dem erwarteten 
Verlauf im Bezug auf die sichtbare Materieverteilung. Nach den Newtonschen Be-
wegungsgesetzen wird eine kleinere Geschwindigkeit der Sonne erwartet, als tat-
sächlich gemessen wird. Dies weist auf einen zusätzlichen Dunkle Materie Halo hin 
[41]. 
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tionsfeld haben, wie beispielsweise Galaxien, Galaxienhaufen und schwarze Lö-
cher. Bei der beobachteten Lichtquelle hinter der Gravitationslinse kommt es dann 
zu Verzerrungen oder auch Mehrfachbildern. 
Eine wichtige Evidenz für Dunkle Materie ist der Bullet Cluster. Dabei handelt es 
sich um Reste einer Kollision von zwei Galaxienhaufen. Durch Beobachtungen im 
Röntgenlicht konnte nachgewiesen werden, dass der Galaxienhaufen vor ca. 100 
Mio. Jahren von einem zweiten, kleineren Galaxienhaufen durchquert wurde. Un-
tersuchungen der Verteilung der Galaxien und des Gravitationspotentials nach der 
Kollision konnten mit Hilfe des Plasmas im Röntgenbereich und durch den schwa-
chen Mikrolinseneffekt beobachtet werden. Dies hatte zur Folge, dass festgestellt 
wurde, dass es zu einer Trennung der baryonischen und Dunklen Materie gekom-
men war. Während die baryonische Materie am Kollisionspunkt wechselwirkt und 
damit bei der Kollision der Galaxien abgebremst wird, durchdringt sich der Dunkle 
Materie Anteil der Galaxien wechselwirkungsfrei.  
Als letzte Evidenz soll hier das Ergebnis der indirekten Suche nach Dunkler Materie 
genannt werden. Die indirekte Suche erfolgt über den Nachweis der Sekundärteil-
chen aus WIMP-Annihilationsprozessen, darunter Elektronen, Protonen, deren An-
titeilchen, Neutrinos und Photonen. Mit Hilfe des EGRET Experiments konnte ein 
Überschuss im GeV Bereich des Gammaspektrums gefunden werden. Um dieses 
Ergebnis zu reproduzieren nahm das Nachfolgeexperiment Fermi ebenfalls die E-
nergiespektren der Gammastrahlung auf, diesmal jedoch mit höherer Genauigkeit. 
Fermi konnte zwar den Überschuss nicht bestätigen, dennoch war eine konsisten-
tere Beschreibung der gemessenen Energiespektren mit Hilfe der Hinzunahme ei-
nes Annihilationssignals von Dunkler Materie möglich [43], [44].  

4.3 Dunkle Materie Kandidaten 
Obwohl es für die Existenz der Dunklen Materie durch zahlreiche Beobachtungen 
und Messungen Hinweise gibt, ist die Natur der Dunklen Materie noch unbekannt. 
Neben den WIMPs gibt es jedoch ebenfalls Dunkle Materie Kandidaten, die keinen 
Teilchencharakter besitzen, weshalb an dieser Stelle ausgewählte Beispiele der 
zahlreichen Kandidaten vorgestellt werden [19].  
 
Baryonische Dunkle Materie 
Aus dem Leistungsspektrum der kosmischen Hintergrundstrahlung und der primor-
dialen Nukleosynthese ist bekannt, dass die baryonische Materiedichte nicht aus-
reicht, um die gesamte Materiedichte zu beschreiben. Somit ist ausgeschlossen, 
dass kalte Dunkle Materie nur aus baryionischer Dunklen Materie besteht. Den-
noch gibt es innerhalb der baryonischen Materie Objekte, die als Teil der Dunklen 
Materie betrachtet werden können. Dabei handelt sich meist um interstellares Gas 
oder massive Halo Objekte, die als MACHOs (engl. massive compact halo objects) 
bezeichnet werden. Bei diesen nicht leuchtenden MACHOs kann es sich unter an-
derem um einen abgekühlten Stern oder einen braunen Zwerg handeln, ein Stern, 
dessen Masse unterhalb der Schwelle für Wasserstofffusion liegt. MACHOs könn-
ten durch den Mikrolinseneffekt nachgewiesen werden. 
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MOND 
Eine Möglichkeit die flache Form der Rotationskurven der Galaxien zu erklären, 
ohne dabei Dunkle Materie einzuführen, ist die Annahme, dass die Newtonschen 
Bewegungsgleichungen auf großen Skalen nicht erhalten bleiben. Die Theorie zur 
Modifikationen der Newtonschen Bewegungsgleichungen im Gravitationsfeld wird 
als MOND (modifizierte newtonsche Dynamik) bezeichnet. Innerhalb dieser Theorie 
werden im Wesentlichen Graviationspotentiale optimiert. Weshalb jedoch bei un-
terschiedlichen Rotationskurven von Galaxien die Modifikation der Newtonschen 
Bewegungsgleichungen verändert werden muss, bleibt ungeklärt. Des Weiteren 
kann der Effekt der Trennung der Materiekomponenten beim Bullet Cluster nicht 
erklärt werden. 
 
Neutrinos 
Das SM liefert als WIMP Kandidaten die Neutrinos, da diese nur schwach wech-
selwirken. Abgesehen von der Tatsache, dass ein masseloses Neutrino bereits 
aufgrund der Ergebnisse aus Neutrinooszillationsexperimenten widerlegt wurde, 
reicht die sich so ergebende, nicht verschwindende Masse der Neutrinos nicht für 
die nötige Dunkle Materiedichte aus.  
Aus der kosmischen Hintergrundstrahlung ist eine obere Grenze der Summe der 
Neutrinomassen bestimmt worden. Wie alle anderen Teilchen befanden sich die 
Neutrinos nach dem Urknall im thermischen Gleichgewicht bis es bei einer Energie 
von ca. 1 MeV zur Entkopplung der Neutrinos kam. Die Menge der primordialen 
Neutrinos hängt dabei von der Summe der verschiedenen Neutrinoflavour ab. 
Doch selbst bei der Verwendung der gemessenen oberen Massengrenze, reicht 
die Energiedichte nicht aus, um die Materiedichte zu beschreiben. Zudem waren 
die Neutrinos aufgrund ihrer geringen Masse zum Zeitpunkt der Strukturbildung 
relativistisch, weshalb man sie auch als heiße Dunkle Materie bezeichnet. Ohne 
das Vorhandensein einer großen Menge kalter Dunkler Materie können jedoch die 
heutigen Strukturen im Universum nicht erklärt werden, weshalb die Dunkle Materie 
nicht vollständig aus heißer Dunkler Materie bestehen kann. 
 
Neutralino 
In supersymmetrischen Modellen, in denen das leichteste supersymmetrische Teil-
chen das Neutralino ist, wird ein geeigneter Dunkle Materie Kandidat geliefert. Das 
Neutralino ist eine Mischung der Superpartner der neutralen Bosonen, also Photon, 
Z-Boson und Higgs-Bosonen. Es ist elektrisch neutral und wechselwirkt nur 
schwach und gravitativ. Aufgrund der R-Paritätserhaltung ist das Neutralino als 
LSP stabil.  
Im Folgenden wird stets angenommen, dass sich bei Dunkler Materie um WIMPs 
handelt, die ihrerseits vom Neutralino repräsentiert werden.  
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4.4 Thermodynamische Beschreibung der primordialen 
Dunklen Materiedichte 

Im frühen Universum können Teilchenreaktionen und die Produktion von Teilchen 
mit Hilfe der Thermodynamik und der statistischen Mechanik beschrieben werden. 
Eine wichtige Größe, die dabei berechnet werden kann, ist die Annihilationsrate 
[45]. Die Annihilationsrate für eine gegebene WIMP-Teilchendichte χn  ist dabei 

über 
   

 vn σχ=Γ  (4.3) 

   

definiert, wobei vσ  der thermisch gemittelte Annihilationswirkungsquerschnitt mul-

tipliziert mit der relativen Geschwindigkeit der WIMPs ist.  
Solange die Annihilationsrate größer als die Expansionsrate ist, liegt ein thermody-
namisches Gleichgewicht vor.  
Wie alle Teilchen befand sich das Neutralino als ausgewählter WIMP Kandidat im 
frühen Universum ebenfalls im thermischen Gleichgewicht. Die zeitliche Entwick-
lung der Teilchendichte im expandierenden Universum wird durch die Boltz-
manngleichung beschrieben 
   

 ( )223 eqnnvHn
dt

dn −−−= σ . (4.4) 

   

Dabei ist n  die Teilchendichte der Neutralinos, H  der Hubbleparameter und eqn  ist 

die Neutralino-Teilchendichte des thermischen Gleichgewichts. 
Im thermischen Gleichgewicht des frühen Universums war es möglich energierei-
che und damit massive Teilchen zu erzeugen, beispielsweise durch Paarproduktion 
oder durch Wechselwirkungen von anderen Teilchen. Aufgrund des thermodyna-
mischen Gleichgewichts wurden gleich viele Teilchen vernichtet und erzeugt, die 
Produktions- und Annihilationsraten waren also gleich. Die Expansion des Univer-
sums brachte ein Sinken der Temperatur mit sich, was sich auf die Produktionsme-
chanismen auswirkte. Wenn die kinetische Energie nicht mehr ausreicht, um 
schwere Teilchen zu erzeugen, kommt es zu einem exponentiellen Abfall der Teil-
chendichte. Im thermischen Gleichgewicht würde dies dazu führen, dass die Teil-
chendichte gegen Null geht. Tritt jedoch der Fall ein, dass durch die Expansion des 
Universums die Annihilationsrate geringer als die Expansionsrate wird, ist das 
thermische Gleichgewicht verletzt und es kommt zum Ausfrieren der Teilchen 
(engl. freeze out). Die mitbewegte Teilchendichte der Neutralinos zum Zeitpunkt 
des Ausfrierens, welche als primordiale Dunkle Materiedichte oder auch Relic Den-
sity bezeichnet wird, bleibt dann konstant. Der Zeitpunkt des Ausfrierens in Abhän-
gigkeit der WIMP Masse und des Annihilationswirkungsquerschnitts ist in 
Abbildung 4.3 dargestellt.  
Für die beobachtbare primordiale Dunkle Materiedichte ergibt sich 
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wobei χm  die WIMP Masse und critρ  die kritische Dichte, die Energiedichte des 

heutigen Universums, sind. 
Aus Messungen von WMAP [32] und anderen kosmologischen Experimenten er-
gibt sich eine primordiale Energiedichte von 
   

 0034,01131,02 ±=Ω hχ , (4.6) 

   

welche als Einschränkung für supersymmetrische Modelle benutzt werden kann. 
Aus Gleichung (4.5) und (4.6) ergibt sich so ein erwarteter Wirkungsquerschnitt von 
   

 1326102 −−⋅≈ scmvσ , (4.7) 

   

was gerade einem Wirkungsquerschnitt im Bereich der schwachen Wechselwir-
kung entspricht. 
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Abbildung 4.3: Zeitliche Entwicklung der mitbewegten WIMP-Teilchendichte im frü-
hen Universum. 

 
 
 
 

4.5 Annihilationsprozesse 
In Gleichung (4.5) wurde gezeigt, dass die Relic Density umgekehrt proportional 
zum WIMP-Annihilationswirkungsquerschnitt ist, weshalb nun ein Überblick über 
die verschiedenen Annihilationsprozesse gegeben wird. 

          
                          Die dargestellte Kurve entspricht dem exponentiellen Abfall der 
Teilchendichte im thermodynamischen Gleichgewicht. Die gestrichelte Linie gibt 
das Ausfrieren der Teilchen an. Mit wachsendem Annihilationswirkungsquerschnitt 
frieren die Teilchen später aus [46]. 
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Abbildung 4.4: Hauptbeiträge zur Annihilation der Neutralinos in Abhängigkeit der 
supersymmetrischen Parameter und Massen. 

 
Ein Neutralino-Paar kann über verschiedene Annihilationsprozesse in zwei SM 
Teilchen annihilieren. In Abbildung 4.4 sind die Feynmandigramme zu den wich-
tigsten Annihiliationskanälen in Abhängigkeit der Modellparameter abgebildet [46]. 
Als Annihilationsprodukte treten neben einem Fermion-Antifermion-Paar auch die 
Eichbosonen der schwachen Wechselwirkung W± bzw. Z0 auf. Diese sind gegen-
über den anderen Diagrammen weniger relevant, da sie durch die schwache Kopp-
lungskonstante unterdrückt sind. Je nachdem welches CMSSM Szenario durch die 
Wahl der Parameter betrachtet wird, können die ersten drei Annihilationsprozesse 
in Abbildung 4.4 dominant sein. Diese Modifikationen hängen u.a. mit den unter-
schiedlichen Massenspektren der supersymmetrischen Teilchen zusammen. Die 
Änderung der dominierenden Prozesse lassen sich somit auf verschiedene Kombi-
nationen der Massenparameter m0 und m1/2 zurückführen. Die nachfolgende Dar-
stellung der verschiedenen Bereiche soll dabei nur qualitative Aussagen geben, da 
die Abhängigkeit des Teilchenspektrums ebenfalls stark von den anderen drei Pa-
rametern abhängt. Man unterscheidet folgende Gebiete [47]: 

• Bulk Region 
In diesem Bereich dominiert das erste Diagramm in Abbildung 4.4. Da dies 
jedoch nur für kleine Sfermionenmassen der Fall ist, müssen m0 und m1/2 
klein sein. Befindet man sich innerhalb dieses Bereichs im CMSSM Parame-
terbereich, dominiert also die Annihilation von Neutralinos über ein Sfermion. 
Die Bulk Region war einst favorisiert, da hier das Neutralino fast ein reines 
Bino ist. Da dieser Bereich jedoch schon größtenteils durch Einschränkun-
gen wie der Higgsmasse mh und der LHC Grenze ausgeschlossen ist, wird 
er nicht weiter beachtet. 

• Focus Point Region 
In diesem Gebiet ändert sich das Mischungsverhältnis des Neutralinos. Dies 
trifft meist für große m0 und kleine Higgsparameter µ zu. Während das 
Neutralino oft eine Mischung mit einem großen Bino-Anteil darstellt, ist in der 
Focus Point Region der Higgsino-Anteil dominant, was zusätzlich Kopplun-
gen an SM-Eichbosonen zur Folge hat. Dies führt dazu, dass das dritte Dia-
gramm in Abbildung 4.4, also die Annihilation über ein Z0-Boson ebenfalls 
stark zum Annihilationswirkungsquerschnitt der Dunklen Materie beiträgt. 
Der beschriebene Bereich, der kleine Werte für µ annimmt, liegt im CMSSM 
Parameterraum nahe dem Gebiet, in dem die elektroschwache Symmetrie-
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brechung nicht möglich ist. Dieser Bereich ist sehr sensitiv auf die t-Quark 
Masse, so dass es hier oftmals zu Feinabstimmungsproblemen kommt.  

• Higgs-Annihilation Region 
In diesem Bereich ist das Neutralino das LSP und das zweite Diagramm in 
Abbildung 4.4, also die Annihilation über ein pseudoskalares Higgs A, stellt 
den führenden Annihilationsprozess dar. Da in diesem Bereich die Masse 
des Higgs-Bosons etwa doppelt so groß wie die des Neutralinos ist, liegt 
dies nahe an der Resonanz für diesen Prozess. Durch Variation der weiteren 
CMSSM Parameter muss darauf geachtet werden, dass die Masse des 
Higgs-Bosons nicht exakt doppelt so groß ist wie die des Neutralinos, da 
sonst der WQ weit über den benötigten liegt und so die Dunkle Materiedich-
te zu gering wird. Für feste Werte der restlichen Parameter ist dies im 
CMSSM Parameterraum für einen schmalen Streifen erfüllt. Wie im Analy-
sekapitel 7 gezeigt wird, kann der erlaubte Bereich durch Variation von 
tan(β) stark vergrößert werden, so dass fast der gesamte CMSSM Parame-
terbereich von diesem Annihilationsprozess dominiert wird. 

• Koannihilationsregion 
Die Koannihilationsregion befindet sich in einem Gebiet, das nahe an der 
Grenze liegt an der das LSP nicht mehr das Neutralino, sondern das Stau ist 
(NLSP). Das NLSP-Gebiet ist für die Analysen innerhalb dieser Diplomarbeit 
nicht relevant, da das Stau geladen ist und somit als WIMP Kandidat nicht 
geeignet ist. Innerhalb des Grenzgebiets, also der Koannihilationsregion, ist 
das Neutralino gegenüber dem Stau nur unwesentlich schwerer, so dass es 
zusätzlich zur Annihilation von Neutralinos zu einer Koannihilation eines 
Neutralinos und Staus kommen kann. Dies trägt zusätzlich zur Dunklen Ma-
teriedichte bei.  

 
Da das Diagramm der Higgs-Annihilation Region den Hauptbeitrag zum Annihilati-
onswirkungsquerschnitt liefert, beschränkt sich die Wirkungsquerschnittsanalyse im 
Kapitel 7.4 auf diesen Prozess. Dabei annihilieren die Neutralinos über das pseu-
doskalare Higgs A zu etwa 70% in ein bb  Paar und knapp zu 30% in ein −+ττ  

Paar. Aus dem dazugehörigen Matrixelement für die Annihilation in ein bb  Paar 
ergibt sich folgende Abhängigkeit des Wirkungsquerschnitts [48] 
   

 
( ) ( )

( ) 22222

1121
2

4131
24

224

4

sincoscossin

2sin

tan

AAA

WW

ZW

b

MMM

NNNN

M

mM
v

Γ+−

−−
∝

χ

χ θθββ
θ

β
σ , (4.8) 

   

wobei die Elemente der Neutralino-Mischungsmatrix die Bestandteile des leichtes-
ten Neutralinos bestimmen 
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5 Large Hadron Collider 
Seit Beginn der Suche nach den fundamentalen Bausteinen der Materie, die durch 
die Entdeckung der Atome eingeläutet wurde, konnten die Physiker nur mit Hilfe 
von Beschleunigerexperimenten zu immer kleineren Konstituenten vordringen. Da-
bei revolutionierte zu Beginn des 20. Jahrhunderts das Experiment von Rutherford 
die Vorstellung des Atoms. Der Start zur Suche nach weiteren Bausteinen wurde 
gegeben, so dass man bis Mitte der 30er Jahre mit den vier Teilchen, darunter E-
lektron, Proton, Neutron und Neutrino, scheinbar alle Teilchen gefunden hatte, um 
die Phänomene der Atom- und Kernphysik zu erklären. Mit den Experimenten an 
Teilchenbeschleunigern in den 50er und 60er Jahren des 20. Jahrhunderts fand 
man jedoch mit der Entdeckung des Hadronenzoos, dass Protonen und Neutronen 
nicht elementar sind, sondern zusammengesetzte Objekte aus Quarks darstellen. 
Die Experimente in der Kern- und Teilchenphysik und das damit verbundene Vor-
dringen zu den Elementarteilchen ist ausschließlich durch die Entwicklung und den 
Bau von Beschleunigern mit immer höheren Energien und Strahlintensitäten er-
möglicht worden [3].  
Der aktuell größte Teilchenbeschleuniger ist der Large Hadron Collider (LHC) am 
europäischen Kernforschungszentrum CERN bei Genf in der Schweiz. Der LHC 
Speicherring wurde dabei in einem ca. 27 km langen Tunnel in einer Tiefe von 50 – 
175 m errichtet, in welchem sich der LEP Beschleuniger bis zum Jahr 2000 befand.    
In diesem ringförmigen Teilchenbeschleuniger werden Hadronen, Protonen und 
Blei-Ionen, gegenläufig bis nahe Lichtgeschwindigkeit beschleunigt und zur Kollisi-
on gebracht. Die dabei auftretenden Protonen- und Bleiionenkollisionen werden an 
vier Wechselwirkungspunkten untersucht, an welchen sich die Detektoren CMS, 
ATLAS, ALICE, LHCb, LHCf und TOTEM befinden, um die Wechselwirkungen der 
entstandenen Teilchenschauer zu untersuchen [49]. Die Protonenstrahlen können 
bis auf eine geplante Energie von jeweils 7 TeV beschleunigt werden, was einer 
Schwerpunktsenergie von 14 TeV entspricht. Die geplante Luminosität liegt bei 
1034cm-2s-1. Der Vorteil des Betriebs von Hadronen bei Teilchenbeschleunigern ist 
die geringe Synchrotronstrahlung, die zu keinen nennenswerten Energieverlusten 
führt. Hohe Anforderungen werden dagegen an die Konstruktion der Magnete ge-
stellt, die den Hadronenstrahl auf der Kreisbahn halten müssen. Die Hauptziele des 
LHC sind die Entdeckung des Higgs-Bosons, die Suche nach Hinweisen auf Su-
persymmetrie und die Untersuchung von Kollisionen schwerer Ionen. Diese Aufga-
ben übernehmen dabei die beiden unterschiedlich gebauten Experimente CMS und 
ATLAS. LHCb ist dagegen auf die CP-Verletzung in B-Hadronen spezialisiert. 
ALICE zielt auf die Erzeugung und Vermessung eines Quark-Gluon-Plasmas ab, 
um den Zustand des Universums unmittelbar nach dem Urknall zu untersuchen. 
TOTEM und LHCf sind vergleichsweise kleine Experimente und befinden sich in 
den Kammern des CMS bzw. ATLAS Detektors. Mit TOTEM soll die Größe des 
Protons mit bisher nie dagewesener Genauigkeit gemessen werden, wohingegen 
mit Hilfe von LHCb Erfahrungen zur Kalibrierung von Teilchendetektoren gesam-
melt werden sollen. 
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Am Beispiel des CMS-Detektors sollen die Hauptkomponenten eines Teilchende-
tektors kurz geschildert werden. Für tiefer gehende technische Details empfiehlt 
sich [50]. 

5.1 CMS-Detektor 
Das Compact Muon Solenoid Experiment (CMS) befindet sich etwa 100 m unter 
der Erde und hat dabei eine Länge von 21,6 m, ein Durchmesser von 14,6 m und 
ein Gewicht von 12 500 t [52]. Der CMS-Detektor ist der zweitgrößte Teilchende-
tektor der Welt. Durch die Kollision der vom LHC beschleunigten Protonen entste-
hen in der Mitte des Detektors sehr viele streuende Teilchen als Produkt der 
Wechselwirkung der Konstituenten der Protonen. Dabei handelt sich um die Parto-
nen des Protons, also den Gluonen und Quarks. Deren Wechselwirkung ist unter 
anderem aufgrund der Effekte der starken Wechselwirkung sehr komplex. Nicht nur 
aufgrund der komplexen Wechselwirkungen, die mit immer höheren Teilchenener-
gien und -flüssen einhergehen, sondern auch wegen der hohen Anforderung an die 
Qualität der Messungen, ergab sich eine Spezialisierung auf dem Gebiet der De-
tektoren [3]. 
So gibt es heute Detektoren zur Orts- und Impulsmessung, zur Energie- und Zeit-
messung sowie zur Teilchenidentifikation. Um all diese Informationen zu erlangen 
und die entstehenden Teilchen zu rekonstruieren, ist ein Teilchendetektor, so auch 
der CMS Detektor, aus mehreren schalenförmig angeordneten Teildetektoren auf-
gebaut. 
Die unterschiedlichen Teilchen können durch ihre charakteristischen Signaturen in 
den Detektorlagen identifiziert werden. Eine schematische Darstellung der ver-
schiedenen Detektorbestandteile befindet sich in Abbildung 5.1 [51].  
 

 

Abbildung 5.1: Ausschnitt des CMS-Detektors [51]. 

 
Die innerste Komponente ist dabei der um die Strahlachse konzentrisch angeord-
nete Siliziumspurdetektor, der eine genaue Spurrekonstruktion der geladenen Teil-
chen ermöglicht. In Kombination mit den supraleitenden Magnetspulen in den äu-
ßeren Schichten des CMS Detektors lassen sich die Teilchen räumlich trennen. 
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Anhand der Krümmung der Spur lässt sich der Transversalimpuls eines Teilchens 
berechnen. Elektrisch neutrale Teilchen, wie das Photon oder neutrale Hadronen, 
machen sich erst in den nächsten Schichten, dem elektromagnetischen und hadro-
nischen Kalorimeter, bemerkbar. Beide Kalorimeter messen dabei die Energie der 
zugehörigen Teilchen. Die wechselwirkenden Teilchen lösen in dem jeweiligen De-
tektormaterial Teilchenschauer aus, wobei die Intensität der Schauer ein Indikator 
für die Energie der Teilchen ist. Da die Energiedeposition bei Hadronen größten-
teils durch Prozesse der starken Wechselwirkung erfolgt, ist die Schauerlänge viel 
größer als die von Elektronen und Photonen. Zusätzlich zum elektromagnetischen 
wird deshalb ein hadronisches Kalorimeter benötigt, um die Energie der Hadronen 
mittels Szintillation zu bestimmen. Nach dem hadronischen Kalorimeter folgt die 
Solenoid Spule, eine supraleitende Magnetspule, die ein etwa 4 T starkes Magnet-
feld erzeugt. Um die Magnetspule herum befindet sich das Eisenjoch, das mit den 
Myonkammern in den äußersten Schichten verwoben ist. Die Aufgabe des Jochs 
ist es, sowohl die Magnetfeldlinien zu schließen, als auch die Myonen auf ihrem 
Weg durch die Myonkammern abzulenken. Da Myonen den bisherigen Aufbau oh-
ne merkliche Wechselwirkung durchdringen können, werden sie erst in den Myon-
kammern nachgewiesen [52]. 
 

5.2 Physikalische Größen in der Beschleunigerphysik  
Da in dieser Arbeit u.a. auf die Untersuchung der Wirkungsquerschnitte des Annihi-
lationsprozesses von Neutralinos eingegangen wird, werden an dieser Stelle einige 
Begrifflichkeiten aus der Beschleunigerphysik näher erläutert. 
 
Wirkungsquerschnitt 
Bei Streuexperimenten werden Reaktionsraten sowie Energie- und Winkelvertei-
lungen der Reaktionsprodukte gemessen, um Informationen über die Dynamik der 
Wechselwirkung zwischen streuenden Teilchen zu erhalten. Dabei erhält man die 
Information über die Form des Wechselwirkungspotentials und die Kopplungsstär-
ke. Eine der wichtigsten Größen zur Beschreibung und Interpretation einer Reakti-
on ist der sogenannte Wirkungsquerschnitt (WQ) σ [3]. Dieser ist ein Maß für die 
Wahrscheinlichkeit einer Reaktion bei Streu- oder Kollisionsexperimenten zwischen 
den Stoßpartnern. Der Wirkungsquerschnitt hat dabei die Dimension einer Fläche. 
Typischerweise ist die dazugehörige Einheit das Barn b, wobei 1 b = 10-28 m2 ist. 
Eine gute Näherung und eine anschauliche Beschreibung des WQ ist der geomet-
rische WQ als effektive Querschnittsfläche der wechselwirkenden Teilchen. Dieser 
ist jedoch in den meisten Fällen nicht ausreichend, da die maßgebende Wirkung 
auf die Form, Reichweite und Stärke des Wechselwirkungspotentials zurückzufüh-
ren ist. 
Bei Wirkungsquerschnitten unterscheidet man zwischen dem totalen und differen-
tiellen Wirkungsquerschnitt. 
Ausgehend von der Definition des Flusses φ  für eine einfallende Teilchendichte [6] 

der Strahlteilchen an  mit der relativen Geschwindigkeit iv  
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 iavn=φ  (5.1) 

   

ergibt sich der WQ σ  über die Beziehung zwischen Fluss φ  und Reaktionsrate W  

pro Streuzentren zu 
   

 σφ=W . (5.2) 

   

Da in einem Experiment aufgrund des Detektoraufbaus jedoch nicht alle Strahlteil-
chen einer Reaktion registriert werden können, sondern nur ein Teil innerhalb eines 
Winkels dΩ zur Strahlrichtung, ergibt sich der differentielle Wirkungsquerschnitt 
aus der Beziehung  
   

 Ω
Ω

= d
d

d
LN

σ& , (5.3) 

   

wobei N&  der Ereignisrate und L  der Luminosität entspricht. 
Der totale WQ ergibt sich aus dem differentiellen WQ durch die Integration über 
den gesamten Raumwinkel.  
Eine weitere Möglichkeit der Berechnung der Reaktionsrate W und damit des Wir-
kungsquerschnitts bietet Fermis Goldene Regel. Hierbei ist die Reaktionsrate mit 
dem Übergangsmatrixelement ifM  verknüpft. ifM  entspricht der Wahrscheinlich-

keitsamplitude für eine Reaktion, die den Anfangszustands Ψi  in den Endzustands 
Ψf überführt. 
Für die Reaktionsrate W gilt dann die Beziehung [8] 
   

 fifMW ρπ 22

h
= , (5.4) 

   

wobei fρ  der Phasenraumdichte, also der Dichte der möglichen Endzustände in 

einem bestimmten Energieintervall, entspricht. 
Eine weitere wichtige Größe, die mit dem WQ verknüpft ist, ist die Luminosität L . 
Sie ist der Proportionalitätsfaktor zwischen dem WQ und der Ereignisrate N& , also 
die Anzahl der zu erwarteten Ereignisse pro Zeiteinheit im Detektor,  
   

 σLN =& . (5.5) 

   

Die Luminosität L  hat die Dimension eines Flusses 
ZeitFläche⋅

1
.  

Eine hohe Luminosität ist notwendig, wenn man Prozesse möglichst exakt, d.h. mit 
einer hohen statistischen Signifikanz untersuchen möchte. 

Aus der in einem gewissen Zeitraum integrierten Luminosität ∫= dtLLint  erhält 

man direkt die Zahl der Reaktionen, die man innerhalb des Messzeitraums beo-
bachten kann. 
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Pseudorapidität 
In der experimentellen Teilchenphysik wird oft die lorentzinvariante Pseudorapidität 
η  statt des Polarwinkels θ , der Winkel eines Vektors relativ zur Strahlachse, an-

geben. Sie ist definiert als [53] 
   

 














−=
2

tanln
θη . (5.6) 

   

 
Verzweigungsverhältnis 
Die Zerfallsbreite Γ  ist mit der Lebensdauer τ  eines Teilchens über die Energie-
Zeit-Unschärfe verbunden [6]: 
    

 
τ
h

h ==Γ W . (5.7) 

   

Die Zerfallsbreite Γ  hat dabei die Dimension einer Energie. Da instabile Teilchen in 
verschiedene Endzustände zerfallen können, gibt es zu jedem Zerfallskanal i eine 
Partialbreite iΓ . 

Die Summe aller Partialbreiten ergibt die totale Zerfallsbreite totΓ . Das Verzwei-

gungsverhältnis (engl. Branching Fraction oder Branching Ratio, BF oder BR) gibt 
dabei an, mit welcher Wahrscheinlichkeit ein Teilchenzustand in einen bestimmten 
Endzustand zerfällt. 
   

 
tot

iBR
Γ
Γ

= . (5.8) 

   

 
Formfaktoren und Partonverteilungsfunktionen 
Bei elastischen Streuexperimenten an Kernen und Nukleonen stellt man fest, dass 
der WQ vom Impulsübertrag Q abhängt, was auf die räumliche Ausdehnung der 
Kerne und Nukleonen zurückzuführen ist. Bei einem größeren Impulsübertrag ist 
die reduzierte Wellenlänge des virtuellen Photons kleiner, weshalb die Auflösung 
zunimmt. Die räumliche Ausdehnung kann durch die Formfaktoren berücksichtigt 
werden. Da der Formfaktor die Fouriertransformierte der Gesamtladung ist, enthält 
er alle Informationen über die räumliche Verteilung der Ladung des untersuchten 
Objekts [3]. 
Die Abhängigkeit des WQ vom Impulsübertrag tritt ebenfalls bei inelastischen Stö-
ßen auf. In Analogie zu den Formfaktoren, ergeben sich hier Strukturfunktionen, 
die die innere Zusammensetzung des Nukleons beschreiben.  
Diese können innerhalb des Partonmodells als die Summe der mit der Bjor-
ken’schen Skalenvariablen x und der quadratischen Ladung zf

2, in Einheiten der 
Elementarladung für jeden Flavour f, gewichteten Impulsverteilungen der Partonen 
des Nukleons verstanden werden. Unter Berücksichtigung aller Partonen ergeben 
sich nicht nur die Verteilungen der Valenzquarks, also den Quarks, die für die 
Quantenzahlen des Nukleons verantwortlich sind, sondern auch die Verteilung der 
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virtuellen Quark-Antiquark-Paare, die Seequarks, die im Feld der starken Wech-
selwirkung erzeugt werden, und den Gluonen.  
Die Partonverteilungsfunktion (engl. parton distribution function, PDF) gibt somit die 
Wahrscheinlichkeit an, ein Teilchen mit einem bestimmten Impulsanteil in einem 
Hadron zu finden. Die Partonverteilungsfunktion muss aus experimentellen Daten 
bestimmt werden. 
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6 Analysewerkzeuge 
Zur Bestimmung des CMSSM Parameterraums durch die Optimierung mit den ge-
wählten Einschränkungen wird die χ2-Methode verwendet. Des Weiteren wurden 
eine Reihe von Programmen zur Simulation der Daten verwendet, die im Folgen-
den kurz erläutert werden sollen. 

6.1 χ2-Methode 
Um den erlaubten CMSSM Parameterbereich unter Berücksichtigung der Überein-
stimmung mit kosmologischen und elektroschwachen Präzisionsdaten zu bestim-
men, muss das gewählte Modell mit den dazugehörigen Messungen übereinstim-
men. Der Vergleich des Modells mit den jeweiligen Messungen wird mit Hilfe der 
χ

2-Methode durchgeführt.  
Um Funktionen an Messdaten anzupassen, müssen Parameter bestimmt werden, 
indem die Messdaten mit theoretischen Modellen verglichen werden. Man benötigt 
zum Auffinden der besten Werte der Parameter ein geeignetes Abstandsmaß, wel-
ches im Anschluss minimiert wird. In diesem Fall wird zur Funktionsanpassung an 
die fehlerbehafteten Datenpunkte die Methode der kleinsten Quadrate verwendet. 
Die Summe der quadratischen Abweichungen der Datenpunkte von der zu anpas-
senden Funktion wird auf den jeweiligen Messfehler normiert, indem das Ab-
standsmaß mit dem quadrierten Inversen des Messfehlers σi gewichtet wird. Durch 
Umformung ergibt sich folgende Form der χ2-Funktion [54]: 
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Hierbei entsprechen ii yx ,  den Messdaten. ( )pxf i ,  ist die anzupassenden Funkti-

on mit entsprechendem Parametervektor p. 
Die Minimierung der χ2-Funktion erfolgt oft durch numerische Optimierungsmetho-
den. 
Um im Anschluss an die Minimierung eine Aussage über das gefunden Minimum 
zu erhalten, wird das dazugehörige Konfidenzintervall (engl. confidence level, CL) 
betrachtet. Dabei handelt es sich um ein Intervall, welches den wahren Messwert 
mit einer bestimmten Wahrscheinlichkeit enthält, wobei man von einer Gaußvertei-
lung ausgeht. Liegt eine eindimensionale Gaußverteilung vor, ergibt sich die Wahr-
scheinlichkeit, dass der gemessene Wert x innerhalb ±δ des wahren Werts µ liegt 
zu [55]: 
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Einige Werte der Fehlerfunktion ( )xerf  können Anhang 10.2 entnommen werden. 

Durch Abbildung 6.1 wird die Definition des Konfidenzintervalls aus Gleichung (6.2) 
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verdeutlicht, wobei sich hierbei der gemessene Wert innerhalb eines 1,64σ großen 
Intervalls um den wahren Wert befindet. 

 

Abbildung 6.1: Illustration des symmetrischen 90% CL an einer Gaußfunktion 
f(x,µ,σ). 

 
Der CL Wert ist abhängig von der Anzahl der Freiheitsgrade der betrachteten Op-
timierung. In Tabelle 6.1 sind für verschiedene Freiheitsgrade und Vertrauensinter-
valle die dazugehörigen ∆χ2-Werte, die Differenz zwischen dem geringsten χ2 und 
dem betrachteten Wert, aufgetragen. 
 

(1-α)% m=1 m=2 
68,27 1 2,30 

90 2,71 4,61 
95 3,84 5,99 

95,45 4 6,18 
99 6,63 9,21 

99,73 9 11,83 

Tabelle 6.1: ∆χ2 in Abhängigkeit des CL=(1-α)% und m Parameter. 

 
In dieser Diplomarbeit wird versucht eine Aussage über die Übereinstimmung des 
CMSSM Modells mit den in Kapitel 3.5 aufgezählten Einschränkungen zu geben. 
Die dazugehörige χ2-Funktion hat folgende Form: 
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Auf die einzelnen Summanden wird in Kapitel 7.2 näher eingegangen. Da die Dar-
stellung der χ2-Funktion innerhalb der m0-m1/2-Ebene erfolgt, handelt es sich um 
zwei Freiheitsgrade, weshalb sich die Darstellung der CL im Analysekapitel auf die 
zweite Spalte der Tabelle 6.1 bezieht. 

6.2 Software 
Da dieser Diplomarbeit Simulationen der zu untersuchenden Größen zu Grunde 
liegen, soll im Folgenden grob auf die Struktur und die Funktionen der benutzten 
Software näher eingegangen werden, um die Reproduzierbarkeit und Vertrauens-
würdigkeit der erhaltenen Ergebnisse zu gewährleisten. Zur Visualisierung der Er-
gebnisse wurde das Programm Gnuplot verwendet, ein kommandozeilenorientier-
tes Grafikprogramm. 

6.2.1 CalcHEP – Calculator for High Energy Physics 
CalcHEP ist ein Programmpaket, das es erlaubt, automatische Berechnungen von 
Kollisionen und Zerfällen von Elementarteilchen in der niedrigsten störungstheore-
tischen Ordnung durchzuführen [56]. Dabei zeichnet sich CalcHEP durch die hohe 
Automatisierung und die interaktive Menüführung aus. Es bietet neben der interak-
tiven auch eine Skript basierende Bedienung. 
Zu Beginn steht die Wahl des physikalischen Modells, wobei in der aktuellen Versi-
on folgende drei Modelle zur Verfügung stehen: das SM, mSUGRA und mSUGRA 
mit Inputvariablen bei niedrigen Energien. Weitere Modelle können separat auf der 
CalcHEP Homepage heruntergeladen und implementiert werden. Um die damit 
verbundenen RGE zu lösen, wird innerhalb von CalcHEP das Programm SuSpect 
benutzt.   
Die Analyse dieser Arbeit beschränkt sich auf das mSUGRA Model. Das CalcHEP 
Paket besteht im Wesentlichen aus zwei Teilen, einem symbolischen und einem 
numerischen Teil. Beide Teile sind in der Programmiersprache C geschrieben. Der 
symbolische Teil produziert einen C Code für ein quadratisches Matrixelement, das 
im numerischen Teil weiter benutzt wird. Der symbolische und der numerische Teil 
haben viele verschiedene Funktionen. Im Rahmen dieser Diplomarbeit wurden fol-
gende Funktionen verwendet 

• die Auswahl eines physikalischen Modells, 
• die Auswahl des betrachteten Prozesses, 
• das Anzeigen und Ausschließen bestimmter Feynmandiagramme, 
• die Generierung eines optimierten C Codes für das quadratische Matrixele-

ment, um weitere numerische Berechnungen durchzuführen, 
• die Wahl der PDF für den betrachteten Prozess, 
• die Modifikation der physikalischen Parameter, so wie Energie, Massen und 

mSUGRA/CMSSM Parameter und 
• die Berechnung des WQ mit Vegas, einem Monte Carlo Generator zur Integ-

ration des Phasenraums. 
Im Wesentlichen wurde CalcHEP Version 2.5.6. zur Berechnung und Untersu-
chung des WQ und des Massenspektrums bei der assoziierten Higgsproduktion 
benutzt. 
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6.2.2 MINUIT 
MINUIT ist ein physikalisches Analysewerkzeug zur Minimierung von Funktionen. 
Die dabei zu minimierende Funktion wird vom Benutzer festgelegt [57]. Für die fol-
genden Analysen wurde eine χ2-Funktion minimiert. Ursprünglich wurde MINUIT in 
der Programmiersprache Fortran vor über 25 Jahren am CERN geschrieben. Um 
MINUIT innerhalb von MOPS zu implementieren, wurde jedoch die C++ Version 
verwendet. Dabei musste die zu minimierende Funktion, die FCN-Funktion, inner-
halb der FCNBase Klasse definiert werden. Die genaue Implementierung innerhalb 
von MOPS kann in [58] nachgelesen werden. Die zu minimierende Funktion kann 
in Abhängigkeit mehrerer Variablen festgelegt und durch den Benutzter definiert 
werden. Um die Minimierung vorzunehmen, durchläuft MINUIT eine Reihe festge-
legter Kommandos in einem separaten Hauptprogramm. Zur Minimierung stehen 
im Wesentlichen zwei Funktionen zur Verfügung: SIMPLEX und MIGRAD. Wäh-
rend SIMPLEX wesentlich robuster ist und nicht immer zum korrekten Minimum der 
Funktion konvergiert, ist MIGRAD zwar genauer jedoch durch eine andere Minimie-
rungsmethode sehr von der ersten Ableitung der Funktion abhängig. Je nach Kom-
plexität der Funktion kann sich MIGRAD in einem Bereich festsetzten, ohne das 
korrekte Minimum zu finden. Um beide Methoden möglichst effektiv zu nutzen, wird 
bei der Verwendung von MINUIT im ersten Schritt der Minimierung zunächst 
SIMPLEX aufgerufen. Wenn kein zufrieden stellendes Minimum gefunden wurde, 
wird mit den gefundenen Werten erneut MIGRAD aufgerufen, um ein genaueres 
Minimum zu finden. 
Da MINUIT sehr sensitiv auf die Wahl des Startpunkts der Minimierung ist, kann 
nach mehrmaligen ergebnislosen Aufrufen von MIGRAD und SIMPLEX bei einem 
beliebigen Startpunkt die SCAN Funktion verwendet werden. Da diese Funktion zu 
einer bestimmten Anzahl an Punkten den Wert der FCN-Funktion berechnet und 
so innerhalb des angegebenen Intervalls den Punkt für den minimalen Funktions-
wert angibt, kann diese Funktion als primitives Minimierungsverfahren oder als Mit-
tel zum Auffinden eines sinnvollen Startpunktes benutzt werden.   

6.2.3 micrOMEGAs 
Das Programm micrOMEGAs ist ein Code zur Berechnung von Prozessen inner-
halb des SM, die in Verbindung mit kalter Dunkler Materie stehen [59]. Neben der 
Relic Density kann man ebenfalls die Dunkle Materie-Raten der direkten und indi-
rekten Suche und die Werte der Einschränkungen aus Kapitel 7.2 berechnen. Da-
bei wird stets angenommen, dass aufgrund der R-Paritätserhaltung das LSP stabil 
ist. Zur Berechnung des Massenspektrums stehen mehrere physikalische Modelle 
zur Verfügung, wobei für die Analyse in Kapitel 7 erneut das CMSSM und SuSpect 
verwendet wurden. Der Code enthält sowohl C als auch Fortran Routinen. Nach-
dem neben den CMSSM Parametern auch die t- und b-Quark Massen und die 
starke Kopplungskonstante αs eingeben wurden, erhält man alle nötigen Größen 
als Output innerhalb des Kommandozeilenbildschirms. Für die Analyse wurde so-
wohl die micrOMEGAs Version 2.4.Q als auch die Version 2.4.O verwendet [60]. 
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6.2.4 SuSpect 
SuSpect ist ein Fortran-Code, der das supersymmetrische und Higgs-
Massenspektrum des MSSM berechnet [61]. Zur Berechnung stehen verschiedene 
Modelle zur Verfügung. Die Massenspektren ergeben sich durch Berechnung der 
RGE, wobei bei den Higgsmassen die großen, störungstheoretischen Korrekturen 
berücksichtigt werden. Neben dem Massenspektrum werden ebenfalls alle Kopp-
lungen und Mischungsmatrizen berechnet. Ebenso wird die elektroschwache 
Symmetriebrechung überprüft und gegebenenfalls eine Fehlermeldung angegeben.    

6.2.5 MOPS 
MOPS führt die Optimierung der CMSSM Parameter durch. Dabei sind alle oben 
aufgeführten Programme innerhalb einer objektorientierten Programmierung imp-
lementiert. Neben der Minimierung durch MINUIT enthält sie ein weiteres Minimie-
rungsverfahren, die sogenannte Markov-Chain-Monte-Carlo Methode (MCMC).  
Nähere Informationen zur Implementierung und der Markov-Ketten-Methode ent-
hält [58]. 
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7 Analyse 
Wie bereits in Abschnitt 3.2 beschrieben wurde, wird für die Analyse das CMSSM 
Modell verwendet. Es bietet eine Reduktion der freien Parameter durch die An-
nahme der Vereinigung aller supersymmetrischen Massen und Kopplungen an der 
GUT Skala. Ausgehend von der der GUT Skala kann das gesamte Teilchen-
Massen-Spektrum bei niedrigen Energien unter Annahme der fünf CMSSM Para-
metern mit den RGE berechnet werden. Mögliche Vorhersagen bezüglich des Ent-
deckungspotentials neuer Teilchen sind dadurch deutlich einfacher als unter der 
Annahme von 105 freien Parametern aus der sanften Brechung. Geht man nun 
davon aus, dass SUSY existiert und dabei alle nötigen Eigenschaften im CMSSM 
erfüllt, so stellt sich als nächstes die Frage, welche Kombinationen der fünf Para-
meter erlaubt sind, um mit den heutigen beobachtbaren Teilchen und Prozessen 
übereinzustimmen. In diesem Kapitel werden Methoden gezeigt, die sich der Lö-
sung dieser Problemstellung nähern.  
Alle erlaubten Punkte im CMSSM Parameterraum sollten mit den in Abschnitt 3.5 
dargestellten experimentellen Messwerten aus der Kosmologie und B-Physik über-
einstimmen. Die supersymmetrischen Teilchen sind aufgrund der gebrochenen 
Symmetrie schwerer als die SM-Teilchen, so dass sie bisher nicht beobachtet wer-
den konnten. Hinweise auf diese Teilchen machen sich bei bereits gemessenen 
Prozessen durch Schleifenkorrekturen bemerkbar und beeinflussen so, die nieder-
energetischen physikalischen Prozesse. Außerdem sollte das Teilchenspektrum 
mit den direkten Suchen nach dem Higgs-Boson und dem WIMP übereinstimmen. 
Um die Punkte zu finden, die möglichst gut diesen Einschränkungen entsprechen, 
wird eine χ2-Funktion erstellt, wie sie in Abschnitt  6.1 in Gleichung (6.3) gezeigt 
wurde. Wird diese χ2-Funktion minimiert, so ergeben sich durch Angabe der Wahr-
scheinlichkeiten alle erlaubten CMSSM Parameterkombinationen innerhalb des 
betrachteten Konfidenzintervalls. Die Minimierung wird stets mit dem in Kapitel 
6.2.2 vorgestellten Softwaretool MINUIT durchgeführt.  
Bei der Minimierung der oben genannten χ2-Funktion treten jedoch Probleme auf. 
Aufgrund der starken Korrelationen zwischen den Parametern tan(β) und A0, be-
wirkt eine geringe Modifikation einer dieser Parameter eine starke Änderung der χ2-
Funktion, was die Suche nach einem Minimum stark beeinträchtigt.  
Im Folgenden soll zunächst auf die Probleme der Analyse eingegangen werden, 
darunter die starke Korrelation der Parameter und die dazugehörige Lösung. An-
schließend wird jede Einschränkung (engl. Constraint) intensiv diskutiert und deren 
Auswirkungen auf die χ2-Funktion geprüft. Sind die Effekte der einzelnen Ein-
schränkungen geklärt, können sie für die gesamte χ2-Funktion kombiniert werden, 
um den daraus resultierenden, erlaubten CMSSM Parameterbereich zu bestim-
men. Im Anschluss wird das Ergebnis noch unter weiteren Aspekten diskutiert. 
Zum einen wird in Kapitel 7.3.1 auf die gewählte Fehlerbehandlung der Einschrän-
kungen eingegangen. Zum anderen wird das Resultat mit anderen Gruppen in Ka-
pitel 7.3.2verglichen. Der Einfluss der Ausschlussgrenze durch die direkte Suche 
nach Dunkler Materie und nach supersymmetrischen Teilchen am LHC wird in Ka-
pitel 7.3.3 und in Abschnitt 7.3.4 geschildert. 
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7.1 Problem der Minimierung 
Eine bereits durchgeführt Analyse [62] zeigte, dass der theoretische Wert der Relic 
Density sehr sensitiv auf tan(β) ist und eine starke Korrelation mit den SUSY Mas-
senparametern m0 und m1/2 vorliegt. Begründet ist dies durch das führende Feyn-
man-Diagramm für die Neutralino-Annihilation über ein pseudoskalares Higgs A. 
Wie bereits in Kapitel 4.5 gezeigt wurde, ist dies vor allem für hohe Werte für tan(β) 
der dominante Prozess. Da die Masse des pseudoskalaren Higgs A direkt in den 
Wirkungsquerschnitt eingeht, muss die Masse optimiert werden, um den korrekten 
Wert der Relic Density zu erhalten. Um einen zu hohen WQ zu vermeiden, wird bei 
hohen tan(β) ein leichtes pseudoskalares Higgs benötigt. Dies ist nur dann mög-
lich, wenn die Massenparameter des Higgspotentials m1 und m2 im Bereich der 
elektroschwachen Skala selbst klein sind. Dies ist auf den Zusammenhang [62] 
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2
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zurückzuführen, der sich ohne weitere Schleifenkorrekturen ergibt. 
Der Startpunkt von m1 und m2 auf der Gutskala ist durch die vereinheitlichte Gau-
ginomasse m0 und den Higgsmischungsparameter µ über 
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definiert. Der Verlauf von m1 und m2 hin zu kleineren Energien wird dabei haupt-
sächlich durch die Yukawakopplungen von b- und t-Quark beeinflusst. Da die 
Kopplung proportional zur Masse der Teilchen ist, werden nur die hohen Massen 
der dritten Quarkgeneration berücksichtigt.  Die Yukawakopplungen ht und hb sind 
ihrerseits mit den Massen von t- und b-Quark und tan(β) über das Verhältnis [62] 
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verknüpft. 
 

 

Abbildung 7.1: Konsistente Punkte der Relic Density für feste und variable CMSSM 
Parameter. 

 
 

 
                    Links: Erlaubte Bänder innerhalb der m0-m1/2 Ebene  für feste Werte 
von tan(β). Zusätzlich sind die ausgeschlossenen Bereich farblich unterlegt [62]. 
Rechts: Optimierte Werte der Relic Density in der m0-m1/2 Ebene und variierten 
tan(β) Werte.   
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Der Verlauf von m1
2 und m2

2 kann also mit Hilfe von tan(β) so verändert werden, 
dass die Massen auf der elektroschwachen Skala klein werden und man somit eine 
kleine Masse für das pseudoskalare Higgs A erhält. Für einen festen Wert für 
tan(β) in Kombination mit einem festen Wert für A0 kommt es also innerhalb der 
m0-m1/2- Ebene zu verschiedenen Bereichen, die in Abbildung 7.1 dargestellt wer-
den. 
Es tauchen stets zwei ausgeschlossene Bereiche auf, darunter ein Bereich, in dem 
es zu keiner elektroschwachen Symmetriebrechung kommt und ein anderer Be-
reich, in dem das Stau das LSP ist. Beide sind für die durchgeführte Analyse un-
brauchbar und somit ausgeschlossen. Für feste Werte für tan(β) gibt es einen 
schmalen Bereich, der mit der Relic Density konsistent ist, weshalb bei Variation 
von tan(β) fast die gesamte m0-m1/2-Ebene erlaubt ist. 
 

 

Abbildung 7.2: Korrelation zwischen den CMSSM Parameter tan(β) und m0. 

 
 
 
 
Die Werte von tan(β), die die korrekte Relic Density ergeben, sind in Abbildung 7.2 
zu sehen. Die Korrelation zwischen tan(β) und m0 für einen festen m1/2-Wert wird in 
Abbildung 7.2 dargestellt. Anhand der Abbildungen lässt sich erkennen, dass für 
einen großen Bereich in der m0-m1/2 Ebene bis auf den schmalen Bereich in der 
Koannihilationsregion große Werte für tan(β) bevorzugt werden.  
Da für die korrekte Relic Density ein hoher Wert für tan(β) benötigt wird, beeinflusst 
dies vor allem die Einschränkungen, die eine starke Abhängigkeit von tan(β) auf-
weisen, wie beispielsweise der Prozess Bs → µ+ µ-. 

7.1.1 Korrelation zwischen tan( β) und A 0 
Im vorangegangenen Abschnitt wurde die starke Abhängigkeit der Relic Density 
von tan(β) gezeigt. Da dieser Parameter ebenfalls andere Einschränkungen wie 
das Verzweigungsverhältnis des Prozesses Bs → µ+ µ- beeinflusst, müssen diese 
untersucht werden. Des Weiteren wurde dargestellt, dass durch Variation von 
tan(β) der korrekte Wert der Relic Density erhalten werden konnte. Die Frage liegt 
nahe, ob simultan die anderen Einschränkungen ebenfalls erfüllt sind und in wel-
chen CMSSM Parameterbereich diese simultan optimiert werden können. Um die-
sen Sachverhalt einzuschätzen ist in Abbildung 7.3 die starke Abhängigkeit zweier 

                                                                                                                          
Links: Verlauf des CMSSM Parameter tanβ in Abhängigkeit von m0 für festes m1/2 = 
500 bzw m1/2 = 200. Rechts: Optimierte Werte von tanβ für konsistente Werte der 
Relic Density. 
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Einschränkungen als Funktion von tan(β) dargestellt. Dabei sind die restlichen 
CMSSM Parameter fest und nehmen die Werte A0=0, m0=500, m1/2=400 und 
sign(µ)=+1 ein. Die rote Kurve repräsentiert den Verlauf der Relic Density, deren 
Werte an der rechten Skala abgelesen werden können. Auf der linken Skala kann 
dagegen die blaue Kurve abgelesen werden, die den Verlauf des Verzweigungs-
verhältnisses des Prozesses Bs → µ+ µ- darstellt. Die horizontale Linie entspricht 
gleichzeitig dem oberen Limit des Verzweigungsverhältnisses und dem experimen-
tell gemessenen Wert für die Relic Density. Das Band um die vertikale Linie ent-
spricht dem experimentellen Fehler des Wertes. Aus Abbildung 7.3 geht hervor, 
dass die Relic Density einen Wert für tan(β) im Bereich von 48 bevorzugt. Dies 
würde zu einem viel zu hohen Wert von BR(Bs → µ+ µ-) führen, da der höchste 
Wert für tan(β), der mit dem oberen Limit von BR(Bs → µ+ µ-) verträglich ist, im Be-
reich von 45 liegt. Dieses Beispiel zeigt, dass beide Einschränkungen nicht prob-
lemlos simultan optimiert werden können. In der Analyse würde das zu einem sehr 
hohen χ2-Wert führen. Variiert man nun simultan zu tan(β) ebenfalls A0, so kann 
ein gemeinsames tan(β) für beide Einschränkungen gefunden werden, so dass der 
betrachtete Punkt im CMSSM Parameterraum konsistent zu BR(Bs → µ+ µ-) und 
Ωh2 ist. Dieses Verhalten ist in Abbildung 7.3 dargestellt, indem der χ2-Wert für die 
beide Einschränkungen über tan(β) und A0 aufgetragen ist. Zur Übersichtlichkeit 
sind die χ2-Werte größer 10 weggeschnitten. Zu sehen ist die starke Korrelation 
zwischen tan(β) und A0. Nimmt A0 den Wert Null an, so sieht man, dass das χ2 
sehr hoch ist, wohingegen für große Werte von A0 viele gemeinsame tan(β)-Werte 
gefunden werden können, die auf ein kleines χ2 führen. Es lässt sich zusammen-
fassend sagen, dass sich aufgrund der Relic Density eine Korrelation zwischen 
tan(β) und m0 ergibt. Das Hinzufügen weiterer Einschränkungen führt dann zusätz-
lich zu einer starken Korrelation zwischen tan(β) und A0.  
 

 

Abbildung 7.3: Korrelation zwischen den CMSSM Parameter tan(β) und A0. 

 
 
 
 
 
 

 
Links: BR(Bs → µ+ µ-) in blau und Ωh2 in rot über tan(β) aufgetragen. Die Ein-
schränkungen bevorzugen unterschiedliche Werte für tan(β).  Rechts: χ2-Funktion 
für den links dargestellten Punkt in der tanβ-A0-Ebene. Bei der simultanen Variation 
von A0 ergeben sich viele gemeinsame Werte für tan(β). 



7.1 Problem der Minimierung 

 

69 

Ein weiteres Beispiel für die Korrelation ist das anomale magnetische Moment des 
Myons (g-2)µ und das Verzweigungsverhältnis des Prozesses b → s γ. 
Die Abhängigkeit von (g-2)µ ist in Abbildung 7.4 für unterschiedliche m0-m1/2 Paare 
dargestellt, wobei erneut zunächst A0=0 gewählt wurde. Die roten Kurven entspre-
chen dem Verlauf für (g-2)µ für ein positives Vorzeichen für den Higgsmi-
schungsparameter µ, wohingegen für die blauen Kurven sign(µ)=-1 gewählt wurde. 
Die horizontale Linie mit dem dazugehörigen Band entspricht dem fehlerbehafteten 
experimentellen Wert. Die andere horizontale Linie repräsentiert die Vorhersage 
des SM. Der Abbildung ist das Vorzeichen von µ zu entnehmen. Aufgrund des a-
nomalen magnetischen Moments des Myons wird das Vorzeichen von µ stets posi-
tiv gewählt, da nur so der experimentelle Wert erreicht werden kann. Diese Vorzei-
chenkonvention gilt für die gesamte Analyse. Für ein negatives Vorzeichen von µ 
entwickelt sich der Wert von (g-2)µ in die entgegen gesetzte Richtung. Nachdem 
das Vorzeichen von µ festgelegt wurde, ist auffällig, dass diese Einschränkung, 
ähnlich wie die Relic Density, hohe Werte für tan(β) bevorzugt, um mit dem expe-
rimentellen Wert übereinzustimmen. Versucht man nun (g-2)µ mit BR(b → s γ) zu 
kombinieren, so ergibt sich aus Abbildung 7.4 für A0=0 erneut das Problem, dass 
unterschiedliche tan(β) bevorzugt werden. Abbildung 7.4 zeigt den Verlauf von 
BR(b → s γ) in Abhängigkeit von tan(β) für unterschiedliche Werte für A0, wobei die 
vertikalen Linien analog zu denen von (g-2)µ verstanden werden. Im Gegensatz zu 
(g-2)µ favorisiert BR(b → s γ) kleine Werte für tan(β), um den experimentellen Wert 
anzunehmen. Variiert man erneut simultan zu tan(β) ebenfalls A0, so kann eine 
deutliche Verbesserung erreicht werden. Es ergibt sich innerhalb des experimentel-
len Fehlers eine gute Übereinstimmung mit dem experimentellen Wert für den ge-
samten Bereich von tan(β). 
 

 
 

Abbildung 7.4: Abhängigkeit von den CMSSM Parameter für andere Einschränkun-
gen. 

 
 
 
 
 

 
        Links: (g-2)µ über tan(β) für unterschiedliche Werte von m0-m1/2, die durch die 
dargestellten Wertepaare repräsentiert werden. Den blauen/roten Kurven ent-
spricht ein positives/negatives Vorzeichen von µ. Diese Einschränkung legt das 
Vorzeichen von µ fest. Rechts: BR(b → s γ) über tanβ für festes m0-m1/2 und unter-
schiedlichen Werten von A0 aufgetragen. Für hohe Werte von A0 kann im gesam-
ten Bereich von tan(β) eine Übereinstimmung mit dem experimentellen Wert ge-
funden werden. 
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An den hier gezeigten Beispielen wurde die Schwierigkeit gezeigt, jeweils zwei Ein-
schränkungen gemeinsam zu optimieren. Werden weitere Einschränkungen, wie 
sie in Kapitel 3.5 vorgestellt wurden, hinzugenommen, tritt dort ebenfalls das Prob-
lem der simultanen Optimierung ein. Da in dieser Analyse alle Einschränkungen 
kombiniert werden, wird versucht den Parameterbereich zu finden, in welchem alle 
Einschränkungen simultan erfüllt werden können.    

7.1.2 Mehrstufige Optimierung 
Aufgrund der starken Korrelationen, die im vorangegangen Anschnitt 7.1.1 erläutert 
wurden, muss ein Optimierungsverfahren entwickelt werden, das den Korrelationen 
gerecht wird. Wenn man annimmt, dass das Vorzeichen von µ aufgrund des ano-
malen magnetischen Moments positiv ist, ergibt sich ein vierdimensionaler Parame-
terraum. Die korrekte Kombination der Parameter, die mit allen Einschränkungen 
übereinstimmen, kann auf zwei Arten gefunden werden. Zum einen über zufallsba-
sierten Markov-Chain-Monte-Carlo Optimierungsmethoden und zum anderen über 
die Minimierung einer χ2-Funktion.  
In diesem vierdimensionalen Parameterraum, in dem die Parameter stark korreliert 
sind, ist es bei einer Zufallssuche, wie bei der Markov-Chain-Monte-Carlo Methode, 
schwierig alle erlaubten Kombinationen zu finden. Die Monte-Carlo Methode ist ein 
Verfahren aus der Stochastik, bei dem auf Basis häufig durchgeführter Zufallsexpe-
rimente Vorhersagen getroffen werden können. Die Zufallsexperimente können 
durch die Erzeugung geeigneter Zufallszahlen durchgeführt werden. Eine Markov 
Kette ist ein spezieller stochastischer Prozess, mit dem man Wahrscheinlichkeiten 
für das Eintreten zukünftiger Ereignisse angeben kann, indem der gegenwärtige 
Zustand des Systems analysiert wird.  
Bei der Zufallssuche kann die korrekte Kombination der Parameter in Bereichen, in 
denen diese fein abgestimmt werden müssen, zunächst als weniger wahrscheinlich 
abgeschätzt werden, was durch eine ausreichend lange Suchdauer kompensiert 
werden kann. Neben der Schwierigkeit der Konvergenz, ist diese Optimierungsme-
thode ebenfalls von den angenommenen Schrittlängen abhängig. Neben einheitli-
chen Schrittweiten können ebenfalls logarithmische verwendet werden, so dass 
hohe Parameter gegenüber kleinen Werten häufiger ausgewählt werden.  
Die Probleme aufgrund der starken Korrelationen können bei dieser Optimie-
rungsmethode mithilfe einer Korrelationsmatrix behoben werden, indem die ange-
passte Schrittlänge aus der Korrelationsmatrix bestimmt wird [63]. 
Bei der Bestimmung der Parameterkombination innerhalb der χ2-Minimierung tre-
ten aufgrund der starken Korrelationen ebenfalls Probleme auf, wenn alle Parame-
ter gleichzeitig variiert werden. Zwar konvergiert diese Methode gegenüber der zu-
fallsbasierten Suche schneller, jedoch findet es meist nur ein lokales Minimum. Das 
gefundene Minimum wird dann fälschlicherweise als globales Minimum interpre-
tiert. Gerade bei stark korrelierten Anteilen innerhalb der χ2-Funktion, können viele 
lokale Minima existieren, so dass das globale Minimum des betrachteten Parame-
terraums übersehen wird.   
Um den starken Korrelationen in dieser χ2-Analyse Rechnung zu tragen und um so 
keine erlaubten Kombinationen zu übersehen, wird als Lösung ein mehrstufiges 
Optimierungsverfahren verwendet. Dies bedeutet, dass zunächst die stark korre-
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lierten Parameter tan(β) und A0 für feste restliche Parameter optimiert werden. Man 
geht so Schritt für Schritt durch die m0-m1/2 Ebene und berechnet für jedes m0-m1/2 
Paar das dazugehörige tan(β) und A0. Die Berechnung der Wahrscheinlichkeit je-
des Punktes und damit der Bestimmung des erlaubten Parameterbereichs ergibt 
sich dabei aus der Optimierung bzw. Minimierung der χ2-Funktion. Da man so für 
jeden Optimierungsschritt nur wenige Parameter variieren muss, konvergiert diese 
Art der Minimierung schnell, trotz der starken Korrelation zwischen den Parame-
tern. Ebenfalls kann durch Benutzung eines Gitters innerhalb der m0-m1/2 Ebene 
eine Parallelisierung der Optimierungsschritte erreicht werden. Jeder Gitterpunkt 
kann dann unabhängig von den anderen berechnet werden. Der Vergleich dieser 
Optimierung mit anderen gängigen Zufallssuchen wird zeigen, dass auf diese Wei-
se ein größerer erlaubter Bereich gefunden werden kann.  

7.2 Einschränkungen 
Um den erlaubten Parameterbereich mit Hilfe des mehrstufigen Optimierungsver-
fahrens zu finden, werden zunächst alle Einschränkungen einzeln mit der Relic 
Density kombiniert, um den Einfluss jeder Einschränkung besser zu verstehen. An-
schließend werden alle Einschränkungen kombiniert und gemeinsam optimiert, um 
alle konsistenten Punkte innerhalb der m0-m1/2 Ebene zu finden. Die verwendete 
m0-m1/2 Ebene erstreckt sich dabei immer bis m0=2000 und m1/2=1000.  
Mit Hilfe des mehrstufigen Optimierungsverfahrens gelingt es gute Ergebnisse, 
trotz starker Korrelationen, nicht zu übersehen. Es sei angemerkt, dass die Variati-
on von A0 im Vergleich zum festen A0 selbst schon eine Verbesserung darstellt. 
Um dies gegenüberstellen zu können, sind zu jeder Darstellung der χ2-Funktion der 
einzelnen Einschränkungen und deren Kombination ebenfalls Abbildungen für fes-
tes A0 in Anhang 10.3 aufgeführt. Diese dienen einerseits zum Vergleich der ver-
besserten Methode, andererseits zur Vollständigkeit, da oft Analysen unter Ver-
wendung des CMSSM Modells auftauchen, bei denen von einem festen A0 ausge-
gangen wird. 

7.2.1 Relic Density Ωh2 
Aus Kapitel 4 ist bekannt, dass ein Großteil der Neutralinos als thermische Relikte 
des frühen Universums zum Zeitpunkt des Ausfrierens annihiliert ist. Die primordia-
le Dunkle Materiedichte ergibt sich dabei aus dem Annihilationswirkungs-
querschnitt, da Dichte und Wirkungsquerschnitt umgekehrt proportional zueinander 
sind [45]. Um mit Hilfe des dominanten Annihilationsprozesses aus Kapitel 4.5 eine 
Übereinstimmung mit dem experimentellen Wert zu erreichen, wird tan(β) variiert. 
Wie bereits in Abschnitt 7.1 erläutert wurde, ergibt sich die Sensitivität bezüglich 
tan(β) direkt aus der Masse des pseudoskalaren Higgs mA. Dabei sollte die Masse 
des pseudoskalaren Higgs nahe der Masse des Neutralinos liegen, um eine gute 
Übereinstimmung mit dem gemessen Wert zu erreichen. Eine exakte Überein-
stimmung der Massen würde jedoch zu einer Resonanz führen, was zu einem viel 
zu hohen WQ und damit einer viel zu geringen Dunklen Materiedichte führen wür-
de.  
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Die Abhängigkeit der Relic Density von tan(β) für unterschiedliche m0-m1/2 ist in 
Abbildung 7.5 dargestellt, wobei daneben der vergrößerte Bereich nahe dem expe-
rimentellen Wert zu sehen ist. 
 

 

Abbildung 7.5: Verlauf von Ωh2 in Abhängigkeit von tan(β) für unterschiedliche 
Werte von m0-m1/2, die durch die dargestellten Wertepaare repräsentiert werden. 

 
 
 
 
 
Daraus ergibt sich, dass eine kleine Variation von tan(β), gerade im Bereich des 
bevorzugten Werts, zu einer großen Änderung der Relic Density führt. Des Weite-
ren erkennt man, dass sich in der Nähe des Minimums der Relic Density zwei mög-
liche Übereinstimmungen mit dem experimentellen Wert ergeben. Nahe dem Mini-
mum, was gerade der Resonanz der Annihilation entspricht, befinden sich also 
zwei mögliche Minima der χ2-Funkion, die jeweils einen anderen tan(β)-Wert auf-
weisen. Diese Tatsache führt dazu, dass man je nach Startwert und Schrittweite 
bei der Minimierung in eines der beiden Minima fällt. Da beide Minima zulässig 
sind, kann es vorfallen, dass es innerhalb der Gitterpunkte in der m0-m1/2 Ebene zu 
Sprüngen der tan(β) Werte kommt, was jedoch keinen Auswirkungen auf die Kor-
rektheit des Minimums hat. 

 

Abbildung 7.6: Optimierte Werte von tan(β) (links) und A0 (rechts) für Ωh2. 

 
                                 
Links: Der Verlauf für Werte von tan(β) bis 55. Den blauen/roten Kurven entspricht 
ein positives/negatives Vorzeichen von µ.  Rechts: Gleicher Verlauf für einen ver-
größerten Bereich um das Minimum der Relic Density. Gerade im Bereich hoher m0 
-m1/2 führt eine minimale Änderung von tan(β) zu starken Variationen von Ωh2.  
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Im rechten Teil der Abbildung 7.1 wird ersichtlich, dass im gesamten dargestellten 
m0-m1/2 Bereich eine gute Übereinstimmung mit dem experimentell gemessenen 
Wert erreicht werden kann, so dass die zugehörigen χ2-Werte nahe Null sind. Die 
Werte für tan(β) und A0, die sich aus der Optimierung ergeben, sind in Abbildung 
7.6 zu sehen. Die Relic Density bevorzugt offensichtlich fast im gesamten Bereich 
hohe Werte von tan(β), außer innerhalb der Koannihilationsregion, da sonst der 
Annihilationswirkungsquerschnitt zu hoch wäre. Die Relic Density ist auf das dazu-
gehörige A0 nicht sehr sensitiv. Anhang 10.3.1 ist zu entnehmen, dass bereits für 
festes A0=0 eine gute Übereinstimmung gefunden werden kann. Die Variationen 
vom Wert von A0 innerhalb des Intervalls [-1000,1000] führt somit zu einer unwe-
sentlichen Verbesserung des χ2-Werts. Für die Analyse der kombinierten Ein-
schränkungen wurde der Messwert der Fünf-Jahres-Daten der WMAP Sonde aus 
[32] verwendet. 
   

 0034,01131,02 ±=Ω hχ . (7.4) 

   

Die Werte der Relic Density wurden mit dem Softwarepaket micrOMEGAs berech-
net. Da aus [64] hervorgeht, dass bei der Berechnung von Ωh2 Unsicherheiten aus 
SUSY-QCD Korrekturen auftreten, wird eine zusätzliche Unsicherheit von 12%, 
also σ=0,014, abgeschätzt, den man als theoretischen Fehler des Wertes in Glei-
chung (7.4) betrachtet. Für die Analysen, in denen die Relic Density mit einzelnen 
Einschränkungen kombiniert wird, wird lediglich der experimentelle Fehler verwen-
det, da in den Einzelanalysen nur qualitative Aussagen getroffen werden. Der Feh-
ler, der in die χ2-Funktion eingeht, die alle Einschränkungen simultan beinhaltet, ist 
die Summe aus experimentellem und theoretischem Fehler. Diese Fehlerbetrach-
tung wird in Kapitel 7.3.1 begründet. So ergibt sich der χ2-Anteil zur gesamten χ2-
Funktion zu 
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Zu beliebigen CMSSM Parametersätzen, die als Input verwendet werden, kann so 
der entsprechende χ2-Wert berechnet werden.  

7.2.2 BR(b → s γ) 
Bei dem Prozess b → s γ handelt es sich um einen flavourändernden neutralen 
Strom. Dieser ist im SM auf Born Niveau nicht erlaubt, so dass er nur innerhalb von 
Schleifendiagrammen möglich ist. Dabei zerfällt das b-Quark, wie in Abbildung 7.7 
zu sehen, über eine W±-t-Schleife in ein s-Quark und ein Photon [65]. 
Für den Prozess b → s γ kommt es zu einer Diskrepanz zwischen dem vom SM 
vorhergesagten und dem experimentell gemessenen Wert des Verzweigungsver-
hältnisses. Während vom SM der Wert 
   

 ( ) ( ) 41023,015,3 −⋅±=→ γsbBRSM , (7.6) 

   

vorhergesagt wird [34], ergibt sich für den experimentellen Wert  
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 ( ) ( ) 41009,024,055,3 −⋅±±=→ γsbBREX . (7.7) 

   

Wegen dem Unterschied der Vorhersage des SM und des experimentell gemesse-
nen Werts, könnten hier zusätzliche supersymmetrische Beiträge eine bessere Ü-
bereinstimmung mit dem Experiment liefern oder sogar den Unterschied aufheben. 
Bei den supersymmetrischen Beiträgen bleiben die Schleifendiagramme gleich, mit 
dem Unterschied, dass statt der W±-Bosonen Charginos bzw. geladene Higgs-
Bosonen H± auftreten können [48], [66]. Zum anderen können alle SM-Teilchen 
durch deren supersymmetrische Partner ersetzt werden, was in Abbildung 7.7 dar-
gestellt ist.  
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Abbildung 7.7: Feynman-Diagramme für den Prozess b → s γ. 

 
 
 
Geht man davon aus, dass supersymmetrische Prozesse im Vergleich zu denen 
des SM in den Loop Diagrammen in gleicher Weise beitragen, wie in Abbildung 7.7 
zu sehen ist, dann ergeben sich folgende vereinfachte Proportionalitäten der zu-
sätzlichen SUSY Beiträgen zum Verzweigungsverhältnis von b → s γ [67]: 
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Neben den bekannten Parametern tauchen zusätzlich das Schleifenintegral f und 
der Term ∆mb auf, welcher alle dominanten Beiträge höherer Ordnung enthält. Der 
dominierende Anteil zum BR des geladenen Higgs-Bosons kann [67] entnommen 
werden. Für die mehrstufigen Optimierung wird der fehlerbehaftete experimentelle 
Wert für die Relic Density aus Gleichung (7.4) und für das BR(b → s γ) aus Glei-
chung (7.7) verwendet. Mithilfe der Optimierung wird der CMSSM Parameterbe-
reich gefunden, in dem beide Einschränkungen simultan erfüllt sind. In Abbildung 
7.8 sind die so gefundenen χ2-Werte auf die m0-m1/2 Ebene projiziert. Es wird ge-
zeigt, dass gerade im Bereich kleiner Massenparameter m0 und m1/2 keine gute 
Übereinstimmung gefunden werden kann. 
 

                                                                                                      
Oben: Dominierende Prozesse im SM. Unten: Dazugehörige supersymmetrische 
Beiträge zu BR(b → s γ).  
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Abbildung 7.8: χ2-Werte für die Kombination aus BR(b → s γ) und Ωh2. 

 
 
 
Dies kann durch die Abhängigkeit der beiden Einschränkungen von den CMSSM 
Parametern begründet werden. Die Abhängigkeit der Relic Density und deren be-
vorzugtes tan(β) wurden bereits in Abschnitt 7.2.1 diskutiert. In analoger Weise 
kann nun für unterschiedliche Paare von m0 und m1/2 das Verzweigungsverhältnis 
aufgetragen werden. 
Abbildung 7.9 zeigt, dass der Wert des BR für steigende Werte von tan(β) abfällt, 
wobei hier stets A0=0 fest gewählt wurde. Dieses abfallende Verhalten ergibt sich 
aus der in Gleichung (7.8) angegebenen Proportionalität vom Faktor µAttan(β). Aus 
Abschnitt 7.1.1 ist bekannt, dass aufgrund des anomalen magnetischen Moments 
des Myons das Vorzeichen von µ positiv ist, wobei sich der Wert von µ aus der e-
lektroschwachen Symmetriebrechung ergibt. An der elektroschwachen Skala 
nimmt At unabhängig vom Startwert an der GUT Skala einen negativen Wert an 
[48]. In Kombination mit den positiven und vorwiegend hohen Werten von tan(β) ist 
der Beitrag, der sich aus der Supersymmetrie ergibt, stark negativ, so dass der 
vorhergesagte SM Wert sogar noch verringert wird. Dies führt dazu, dass sich der 
so ergebende Wert noch weiter vom experimentellen entfernt, was genau dem 
Verhalten bei sign(µ)=+1 in Abbildung 7.9 entspricht. Wird bei der Einschränkung 
BR(b → s γ) ein negatives Vorzeichen für µ gewählt, so wird der supersymmetri-
sche Beitrag für steigendes tan(β) immer größer, so dass sich der theoretische 
Wert für das BR ebenfalls vom Experimentellen entfernt.  Dies ist der Grund, wes-
halb der Prozess b → s γ kleine Werte von tan(β) bevorzugt, da so der supersym-
metrische Beitrag klein gehalten werden kann. Dies führt zu einer großen Span-
nung zwischen BR(b → s γ)  und der Relic Density, die große Werte von tan(β) be-
vorzugt, was sich auf ein schlechtes χ2 auswirkt. Dieses Problem kann zum Teil 
durch die Variation von A0 gelöst werden. Während zwar At auf der elektroschwa-
chen Skala negativ wird, kann durch sehr große Werte von A0 der Betrag klein 
gehalten werden, was in Abbildung 7.4 gezeigt wird. Hier ist das Verzweigungsver-
hältnis für feste, unterschiedliche Werte von A0 über tan(β) aufgetragen. 

                                                                                                      
Bei der Optimierung wurden jeweils nur die experimentellen Fehler der beiden Ein-
schränkungen verwendet, also 0174,02 =

Ωh
σ  und ( )

41056,0 −
→ ⋅=γσ sbBR . 
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Abbildung 7.9: Verlauf des BR(b → s γ) in Abhängigkeit von tan(β) für unterschied-
liche Werte von m0-m1/2, die durch die dargestellten Wertepaare repräsentiert wer-
den.  

 
 
 

Es ist zu sehen, dass der Verlauf für stark negative Werte von A0 nur im Bereich 
kleiner Werte von tan(β) mit dem Messwert übereinstimmt. Wohingegen sich für 
hohe Werte von A0 gute Übereinstimmungen im gesamten Bereich von tan(β) er-
geben. Gerade im Bereich großer Werte von tan(β) führt dies zu einer simultanen 
Übereinstimmung mit der Relic Density. Dass die Optimierung durch die simultane 
Veränderung der trilinearen Kopplung nicht im gesamten m0-m1/2 Bereich möglich 
ist, ist Abbildung 7.8 zu entnehmen. Die dazugehörigen Werte für tan(β) und A0 
sind in Abbildung 7.10 dargestellt. Es ergeben sich jedoch immer noch Bereiche, in 
denen für beide Einschränkungen kein gemeinsamer Wert für tan(β) gefunden 
werden kann, vor allem im Bereich kleiner Werte von m0 und m1/2. Jedoch stellt die 
Variation von dem A0 Wert eine deutliche Verbesserung zum festen A0 dar, siehe 
dazu Anhang 10.3.2. 
 

 

Abbildung 7.10: Kombination von BR(b → s γ) und Ωh2. 

 
 
 

 
                                         
        Den blauen/roten Kurven entspricht ein positives/negatives Vorzeichen von µ. 
Nur für positive Werte von µ erreicht das BR für hohe tan(β) den experimentellen 
Wert.  

              Links: Optimierte Werte 
für tan(β). Hohe Werte von tan(β) werden aufgrund von Ωh2 favorisiert. Rechts: 
Optimierte Werte für A0. Im Bereich kleiner m0-m1/2, in dem die Einschränkungen 
unterschiedliche Werte von tan(β) bevorzugen, steigt A0 um eine bessere Überein-
stimmung herbeizuführen. 
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Innerhalb von micrOMEGAs wird der supersymmetrische Beitrag des BR ausge-
hend vom SM-Wert, der ebenfalls einen Fehler aufweist, berechnet. Infolgedessen  
wird in der Analyse der kombinierten Einschränkungen dieser theoretische Fehler 
ebenfalls berücksichtigt. Folgender Anteil geht somit in die χ2-Funktion ein: 
   

 ( )
( ) 2

4

4
2

1056,0

1055,3

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Hierbei wurden der experimentelle und die theoretischen Fehler aus [34] linear ad-
diert, wobei der Grund für diese Fehlerbehandlung in Abschnitt 7.3.1 näher disku-
tiert wird. 

7.2.3 BR(B s → µ+ µ-) 

Bei diesem Verzweigungsverhältnis handelt es sich ebenfalls um einen flavourän-
dernden neutralen Strom, der nur innerhalb von Schleifendiagrammen möglich ist, 
wie sie in Abbildung 7.11 zu sehen sind. Während vom SM ein experimenteller 
Wert von  
   

 ( ) ( ) 91032.035,3 −−+ ⋅±=→ µµs
SM BBR  (7.10) 

   

vorhergesagt wird [68], gibt das Experiment nur eine obere Schranke an [35] 
   

 ( ) 8107,4 −−+ ⋅<→ µµs
EX BBR . (7.11) 

   

Der vom SM vorhergesagte Wert liegt eine Größenordnung unterhalb der bisheri-
gen experimentellen Grenze.  
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Abbildung 7.11: Feynman-Diagramme für den Prozess Bs → µ+ µ-. 

 
 

             Oben sind die 
Prozesse im SM gezeigt, während ein zugehöriger supersymmetrische Beitrag zu 
BR(Bs → µ+ µ-) unten abgebildet ist.  
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Unter Annahme der Existenz von Supersymmetrie ergeben sich hier zusätzlich Bei-
träge der Art, wie sie in Abbildung 7.11 gezeigt sind [48]. 
Der Hauptbeitrag zum BR [69] besteht aus u.a. quadratischen Termen der super-
symmetrischen Beiträge CS

2, die Schleifenbeiträge von beispielsweise Stops und 
Charginos enthalten. Der dominante Beitrag zum BR lässt sich auf folgende Pro-
portionalität reduzieren: 
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Die restlichen Proportionalitäten können [69] entnommen werden.  
Aus Gleichung (7.12) ergibt sich eine resultierende tan6(β) Abhängigkeit des BR, 
was sich deutlich in dessen Verlauf in Abbildung 7.12 widerspiegelt. Hier wurde 
erneut für unterschiedliche m0-m1/2 Paare das Verzweigungsverhältnis über tan(β) 
für A0=0 aufgetragen. Da der Wert inklusive supersymmetrischer Beiträge unter-
halb der experimentellen Grenze liegen soll, ergibt sich aus Abbildung 7.12, dass 
diese Einschränkung nur bis zu einem bestimmten Wert von tan(β) erfüllt ist. Durch 
die starke Abhängigkeit von tan(β) ist BR(Bs → µ+ µ-) sehr empfindlich auf Variatio-
nen dieses CMSSM Parameters. Dies führt bei der Kombination dieser Einschrän-
kung mit der Relic Density zu großen Spannungen. 
 

 

Abbildung 7.12: BR(Bs → µ+ µ-) in Abhängigkeit von tan(β) für unterschiedliche 
Werte von m0-m1/2, die durch die dargestellten Wertepaare repräsentiert werden. 

 
 
 
Im linken Teil der Abbildung 7.3 wurde diese Spannung verdeutlicht. Die Relic 
Density, auf der rechten Seite aufgetragen, bevorzugt für den Fall von festem A0=0 
einen Wert für tan(β), der, aufgrund der Proportionalität tan6(β), einen viel zu hohen 
Wert für BR(Bs → µ+ µ-) ergeben würde. Der Unterschied der bevorzugten Werte 
für tan(β) würde sich in einem schlechten χ2-Wert widerspiegeln, da kein gemein-

A         
 
Den blauen/roten Kurven entspricht ein positives/negatives Vorzeichen von µ. Der 
abgebildete experimentelle Wert entspricht der oberen Grenze des BR. 
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samer Wert von tan(β) zur Übereinstimmung mit den experimentellen Werten für 
beide Einschränkungen gefunden werden kann. Diese Problematik ist in Anhang 
10.3.3 gezeigt. Hierbei ist das χ2 für den gesamten m0-m1/2 Bereich aufgetragen.  
Dieses Problem kann durch Variation von A0 gelöst werden, wie man im rechten 
Teil der Abbildung 7.3 erkennen kann. Hier sind die χ2-Werte über tan(β) und A0 
dargestellt, wobei ersichtlich ist, dass sich für hohe Werte von A0 ein gemeinsamer 
Wert von tan(β) und damit ein kleiner χ2-Wert ergeben. Der Grund für das Auffin-
den eines gemeinsamen tan(β)-Werts bei Variation von A0 ist auf Gleichung (7.12) 
zurückzuführen. Damit ein gemeinsamer Wert von tan(β) gerade für hohe Werte 
von tan(β) existiert, muss das BR herabgesetzt werden. Da an der Proportionalität 
von tan6(β) nichts geändert werden kann, muss für ein geringeres Verzweigungs-
verhältnis der zweite Term in Gleichung (7.12) erniedrigt werden. Dies kann durch 
eine kleine Stop-Mischung erreicht werden. Je ähnlicher sich die Massen der bei-
den Stops sind, desto kleiner wird die Differenz innerhalb der Klammer in Glei-
chung (7.12). Die Mischung der Stop-Massen ergibt sich aus den Neben-
Diagonalelementen in der Massenmatrix. Aus Kapitel 3.3.2 ist bekannt, dass diese 
proportional zu At-µ/tan(β) sind. Für große Werte von tan(β) kann also die Mi-
schung durch Variation der trilinearen Kopplung bestimmt werden.   
Um unter Berücksichtigung der Proportionalität At-µ/tan(β) die Mischung klein zu 
halten, muss die trilineare Kopplung A0 an der GUT Skala hoch gesetzt werden, da 
sich so ein geringerer negativer Wert an der elektroschwachen Skala für At ergibt. 

 

Abbildung 7.13: Kombination von BR(Bs → µ+ µ-) und Ωh2. 

 
 
 
 
Nachdem eine mehrstufige Optimierung durchgeführt wird, wobei erneut tan(β) und 
A0 variiert werden, ergeben sich für den gewählten m0-m1/2 Bereich gute χ2-Werte. 
Die zugehörigen Werte von χ2 sind in Abbildung 7.13 gezeigt. Im Vergleich zum 
Fall mit festem Wert von A0 kann die Spannung aufgrund unterschiedlich favorisier-
ter Werte von tan(β) zwischen diesen beiden Einschränkungen komplett aufgeho-
ben werden. Die dazugehörigen Werte der beiden variierten CMSSM Parameter 
sind in Abbildung 7.14 zu sehen.  

          Links: Werte der χ2-
Funktion. Fast im gesamten Bereich ergibt sich ein χ2-Wert nahe Null. Rechts: Dif-
ferenz zwischen den beiden Stopmassen. Gerade im Bereich großer A0 wird die 
Differenz zwischen den beiden Stopmassen klein. 
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Abbildung 7.14: Optimierte Werte von tan(β) (links) und A0 (rechts) für die Kombi-
nation aus BR(Bs → µ+ µ-) und Ωh2. 

 
Gerade im Bereich kleiner m0 und m1/2 kann im Gegensatz zu festen Werten von 
A0 durch hohe Werte von A0 ein gemeinsames tan(β) gefunden werden. Für den 
restlichen Bereich gibt es bereits für A0=0 kleine Werte für χ2, weshalb beim Start-
wert von A0=0 ein gutes Minimum gefunden wird. Dies ist der Grund, weshalb im 
übrigen Bereich in Abbildung 7.14 A0 den Wert Null annimmt.  
Die Differenz der Stops ist in Abbildung 7.13 dargestellt, so dass nochmals ver-
deutlicht wird, dass im Bereich großer A0 eine kleine Mischung vorliegt. 
Da es sich bei der Einschränkung BR(Bs → µ+ µ-) um eine obere Grenze handelt, 
geht es nur oberhalb dieser Grenze als χ2-Beitrag in die χ2-Funktion ein. Werte un-
terhalb dieser Grenze sind erlaubt und tragen nicht zur χ2-Funktion bei. Oberhalb 
dieser Grenze geht der experimentelle Wert aus Gleichung (7.11) ein. Der einseiti-
ge χ2-Beitrag zur χ2-Funktion ist von der Form 
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Der aufgeführte Fehler wurde dabei [70] entnommen. 
 

7.2.4 Anomales magnetisches Moment des Myons – (g-2 )µ 
Der Zusammenhang zwischen dem Spin s

r
 und dem magnetischen Dipolmoment 

µr  des Myons wird durch den g-Faktor bestimmt. Wäre das Myon ein Dirac-

Fermion, müsste der Proportionalitätsfaktor g exakt zwei sein. Dieser weicht jedoch 
aufgrund von Quantenfluktuationen von diesem Wert ab. Die Korrekturen ergeben 
sich innerhalb des SM am Photon-Myon-Myon-Vertex durch Berechnung der 
Schleifendiagramme wie sie in Abbildung 7.15 zu sehen sind [71]. Durch die Präzi-
sionsmessung des anomalen magnetischen Moments des Myons mit dem Brook-
haven Experiment E821 am Brookhaven National Laboratory wurde die Abwei-
chung vom Wert 2 gefunden [33]. Zusätzlich ergab sich jedoch auch eine Abwei-
chung zu dem vom SM vorhergesagten Wert.  
 



7.2 Einschränkungen 

 

81 

γ

µ µ

µµ

Z

γ

µ µ

µµ

Z

γ

µ µ

µµ

H

γ

µ µ

µµ

H

γ

µ µ

WW

ν

γ

µ µ

WW

ν

 

γ

µ µ

χ

ν

χ~~

~

γ

µ µ

χ

ν

χ~~

~

γ

µ µ

µ

χ0

µ~ ~

~

γ

µ µ

µ

χ0

µ~ ~

~

 
 

Abbildung 7.15: Feynman-Diagramme zum anomalen magnetischen Moment des 
Myons. 

 
 
 
Der vom SM vorhergesagt Wert beinhaltet verschiedene Beiträge zu den Schlei-
fenkorrekturen. Neben Vorhersagen aus elektroschwachen Prozessen und Prozes-
sen der QED, die den Hauptbeitrag liefern, ergeben sich die größten Unsicherhei-
ten aus den hadronischen Beiträgen. Diese sind ihrerseits aufgrund ihrer Komplexi-
tät in verschiedene Beiträge aufgeteilt, darunter beispielsweise Prozesse der füh-
renden störungstheoretischen Ordnung (engl. leading order, LO), oder auch höhe-
rer Ordnung der Vakuumpolarisation (VP). Somit ergibt sich der vom SM vorherge-
sagte Wert zu [72] 
   

 ( ) 10

).().().(

101,68,17765911 −⋅±=

++++= LBLHadVPHadLOHadEWQEDSM aaaaaa µµµµµµ . (7.14) 

   

Da der experimentell gefundene Wert bei 
   

 ( ) 10103,620865911 −⋅±=EXaµ  (7.15) 

   

liegt, ergibt sich folgende Differenz zwischen Experiment und Vorhersage 
    

 ( ) 10104,122,30 −⋅±=−=∆ SMEX aaa µµµ , (7.16) 

   

wobei der Fehler aus der linearen Fehleraddition resultiert. 
Die Summe der vorhergesagten Beiträge reicht also nicht aus, um den experimen-
tellen Wert zu erreichen.  Die Prozesse, die durch supersymmetrische Beiträge, 
wie sie in Abbildung 7.15 zu sehen sind, hinzukommen, ähneln denen aus der 
schwachen Wechselwirkung. Der Unterschied ist, dass W±- und Z0-Bosonen durch 
Charginos und Neutralinos ersetzt sind. Der vollständig dargestellte supersymmet-
rische Beitrag ist [73] zu entnehmen. 
 

 
  Oben: Einige Korrekturen erster Ordnung am am Photon-Myon-Myon-

Vertex zu (g-2)µ aus dem SM. Unten: Supersymmetrische Beiträge zu den Korrek-
turen.       
 



7 Analyse 

 

82 

 

Abbildung 7.16: χ2-Werte für die Kombination aus (g-2)µ und Ωh2. 

 
Für große Werte von tan(β) kann der Beitrag zu folgendem Term genähert werden  
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wobei mSUSY die durchschnittliche Masse eines supersymmetrischen Teilchens in-
nerhalb der Schleife darstellt [74].  
Aufgrund der Proportionalität zwischen ∆aµ und tan(β) konnte gezeigt werden, dass 
zur Übereinstimmung mit dem experimentellen Wert das Vorzeichen von µ positiv 
gewählt werden muss, da sonst negativen SUSY Beiträge den SM-Wert weiter ver-
ringern. Dies führt zur Halbierung des Parameterraums des CMSSM.  
Aus Abbildung 7.4 lässt sich ebenfalls ableiten, dass (g-2) µ große Werte von tan(β) 
bevorzugt, um den Unterschied zum Experiment durch den supersymmetrischen 
Beitrag auszufüllen. Dies lässt zunächst darauf schließen, dass das Auffinden ei-
nes gemeinsamen Wertes von tan(β) mit der Relic Density problemlos ist. Die Er-
gebnisse der simultanen Optimierung können Abbildung 7.16 entnommen werden. 
Bei dieser Analyse wurde der theoretische und experimentelle Fehler von (g-2)µ 
linear addiert. 
Beginnend bei kleinen bis hin zu großen Werten von m0-m1/2 ergeben sich im We-
sentlichen drei Bereiche, die in Abbildung 7.16 gezeigt sind. Im Bereich kleiner m0-
m1/2, in denen die supersymmetrischen Massen klein sind, ergibt sich keine gute 
Übereinstimmung mit der Relic Density. In diesem Bereich sind die Massen so 
klein, dass für den von der Relic Density bevorzugten Wert von tan(β), der super-
symmetrische Beitrag derart hoch ist, das der experimentelle Wert überstiegen 
wird. Dies spiegelt sich in einem schlechten χ2-Wert wider. Geht man in der m0-m1/2 
Ebene zu größeren m0-m1/2 Werten, findet man eine gute Übereinstimmung, da die 
größeren SUSY Massen den Beitrag, für den von der Relic Density bevorzugten 
Wert von tan(β), gerade soweit herabsetzten, dass es den Unterschied zum expe-
rimentellen Wert auffüllt. Wenn man nun jedoch weiter zu größeren Werten von 
m0-m1/2 geht, ergibt sich ein schlechtes χ2, da der supersymmetrische Beitrag durch 
die großen SUSY Massen zu stark herabgesetzt wird. Der sich so ergebende Bei-
trag ist nicht ausreichend hoch, um den experimentellen Wert zu erklären. Da hier 
die trilineare Kopplung keinen Einfluss auf den Beitrag hat, kann so durch gleich-
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zeitige Variation keine wesentliche Verbesserung erreicht werden. Der sich so er-
gebenden Wert von A0 in Kombination mit tan(β) ist somit zufällig verteilt, wie man 
in Abbildung 7.17 sehen kann. 

 

Abbildung 7.17: Optimierte Wert von tan(β) (links) und A0 (rechts) für die Kombina-
tion aus (g-2)µ und Ωh2. 

 
Für die Analyse aller Einschränkungen werden ebenfalls der theoretische und der 
experimentelle Fehler von (g-2) µ linear addiert, so dass der Beitrag zur χ2-Funktion 
die Form 
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hat. 

7.2.5 BREXP(B → τ ν)/ BRSM(B → τ ν) 
Zerfällt ein B-Meson leptonisch, erfolgt dies auf Born Niveau über ein W±-Boson, 
was Abbildung 7.18 entnommen werden kann [75]. Beim Verzweigungsverhältnis 
des Prozesses B → τ ν kommt es ebenfalls zu einer Diskrepanz zwischen SM und 
Experiment. Wobei sowohl bei den experimentellen Werten, als auch bei der Be-
stimmung des SM Werts große Schwankungen in den letzten Jahren festzustellen 
waren. Weshalb es zu solch großen Schwankungen kommt, soll zunächst näher 
erläutert werden. 
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Abbildung 7.18: Leptonischer Zerfall eines B-Mesons im SM (links) und im MSSM 
(rechts). 

Der SM Wert des BR für den Zerfall B → τ ν hat folgende Form 
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wobei FG  die Fermikonstante, τm  und Bm  die Massen des geladenen Leptons und 

B-Mesons und Bτ  die Lebensdauer von B- darstellen. 

Während die Massen, die Lebensdauer und die Fermikonstante wohlbekannt sind, 
führen die Unsicherheiten in dem Matrixelement ubV  und dem Formfaktor des B- 

Mesons Bf  zu starken Variationen in der Angabe des SM Werts.  

Berücksichtigt man die Supersymmetrie ergibt sich noch ein zusätzlicher Beitrag 
zum BR durch ein geladenes Higgs, wie in Abbildung 7.18 zu sehen ist.  
Das BR ändert sich dann zu 
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mit den CMSSM Parameter tan(β) und der Masse des geladenen Higgs mH. Der 
zusätzliche Parameter 0

~ε  resultiert aus Ein-Schleifenkorrekturen innerhalb des 

CMSSM. Der Hauptbeitrag wird dabei von Gluino-Diagrammen geliefert, so dass 
der Parameter in der Größenordnung von 0,01 liegt. 
Um die Änderung des BR aufgrund supersymmetrischer Beiträge unabhängig von 
den Unsicherheiten des Formfaktors und des Matrixelements zu diskutieren, kann 
das Verhältnis aus BRSUSY/BRSM  betrachtet werden. 
Dividiert man Gleichung (7.20) durch Gleichung (7.19), erhält man  
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Dieser Wert kann mit dem micrOMEGAs Code berechnet werden, so dass für die-
se Einschränkung das Verhältnis in der χ2-Funktion auftaucht.  
Für die Berechnung des SM-Werts wurden der Formfaktor des B-Mesons [36] ent-
nommen, welcher sich dabei aus dem Quotienten aus 

sBf  und 
ds BB ff  aus Tabelle 

7 in Referenz [36] ergibt. Der Formfaktor weist einen theoretischen als auch expe-
rimentellen Fehler auf. Diese können linear oder quadratisch addiert werden.  
Zusammen mit dem Matrixelement ubV  aus [76] und den aktuellen Werten der 

Massen aus [77] ergibt sich der SM-Wert bei einer linearen Fehleraddition zu 
   

 ( ) ( ) 41028,017,1 −− ⋅±=→ τντBBRSM . (7.22) 

   

Bei einer quadratischen Fehleraddition der Fehler des Formfaktors ergibt sich für 
den Fehler des SM ein Wert von σquad = 0,26·10-4.   
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Abbildung 7.19: Verhältnis von BRSUSY/BRSM für den Prozess B → τ ν in Abhängig-
keit von tan(β) für unterschiedliche m0-m1/2 Werte, die durch die dargestellten Wer-
tepaare repräsentiert werden. 

 
 
Der experimentelle Wert wurde ebenfalls [36] entnommen 
   

 ( ) ( ) 41031,068,1 −− ⋅±=→ τντBBREXP . (7.23) 

   

Das Verhältnis aus Gleichung (7.23) und (7.22) ergibt dann 
   

 ( ) ( ) 6,043,1 ±=→→ −−
ττ ντντ BBRBBR SMEXP  (7.24) 

   

Für die Berechnung der Fehler wurde die lineare Fehleraddition verwendet. Bei der 
Verwendung der quadratisch addierten Fehler des Formfaktors ergibt sich für das 
Verhältnis ein Fehler von σquad = 0,42, welcher in der Analyse nicht weiter verwen-
det wird, siehe dazu Kapitel 7.3.1. Zurzeit ist der experimentelle Wert höher als der 
SM-Wert, was aufgrund der starken Schwankungen nicht immer so war [78]. 
Der Term in Gleichung (7.21) führt dazu, dass sich durch Berücksichtigung der Su-
persymmetrie der vorhergesagte Wert gegenüber dem SM verringert, was in 
Abbildung 7.19 deutlich wird. Beim Hinzufügen supersymmetrischer Beiträge muss 
darauf geachtet werden, dass der so vorhergesagte theoretische Wert noch inner-
halb der Fehlertoleranz liegt. Dies trifft für kleine Werte von tan(β) zu. Je größer 
jedoch tan(β) wird, desto geringer wird der vorhergesagt Wert. Bis vor kurzem, als 
das Verhältnis aus experimentellen und SM-Wert kleiner als eins war, konnte durch 
die Addition von supersymmetrischen Prozessen eine bessere Übereinstimmung 
gegenüber dem SM erreicht werden. Durch die Änderungen des experimentellen 
Mittelwerts von BR(B → τ ν) [79], hat sich das Verhältnis gerade umgekehrt. Es ist 
also eine Erhöhung des SM Wertes nötig, um eine Übereinstimmung mit dem Ex-
periment zu finden. Weshalb diese Einschränkungen mittlerweile kleine statt großer 
Werte von tan(β) bevorzugt, um sich nicht noch weiter vom Experiment zu entfer-
nen.  

 
                                         
                                                 Den blauen/roten Kurven entspricht ein positi-
ves/negatives Vorzeichen von µ.  



7 Analyse 

 

86 

 

 

Abbildung 7.20: χ2-Funktion und dazugehörige optimierte Werte von tan(β) und A0 
für die Kombination aus BRSUSY(B → τ ν)/ BRSM(B → τ ν) und Ωh2. 

 
Dieser Sachverhalt führt zu großen Spannungen bei der Kombination mit der Relic 
Density, die wie aus Abschnitt 7.2.1 bekannt ist, große Werte von tan(β) bevorzugt.   
Versucht man beide Einschränkungen zu optimieren, ergibt sich die in Abbildung 
7.20 zu sehende χ2-Verteilung samt Werte für die CMSSM Parameter A0 und 
tan(β). Es kommt hauptsächlich im Bereich großer Werte von tan(β) in Kombination 
mit kleinen Massen des geladenen Higgs H± zu keiner guten Übereinstimmung, da 
so der zweite Term in Gleichung (7.21) groß wird. Der SM-Wert wird dadurch stark 
herabgesetzt. 
Für den Wert des Verhältnisses aus experimentellem Wert und SM-Wert wurde 
Gleichung (7.24) verwendet. Somit ergibt sich folgender Anteil zur gesamten χ2-
Funktion: 
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7.2.6 Higgsmasse m h 
Die Masse des Higgs-Bosons ist eine der letzten Unbekannten des SM. Direkte 
Suchen am LEP konnten bisher nur eine untere Grenze der Masse ausmachen 
[15]. Wie man in Abbildung 7.21 sehen kann, liegt die Grenze bei mh>114,4 GeV. 
Zudem fällt auf, dass das vom SM vorhergesagte Minimum der χ2-Funktion bereits 
im ausgeschlossenen Bereich liegt, was bereits ein Hinweis auf Physik jenseits des 
SM sein könnte.  



7.2 Einschränkungen 

 

87 

 

Abbildung 7.21: Gemessene Grenze der Masse des Higgs-Bosons. 

 
 
 
 
 
 
 
Erweitert man das SM, so ist das leichteste Higgs-Boson h des erweiterten Modells 
dem SM-Higgs ähnlich, weshalb die LEP Grenze direkt auf das leichteste Higgs 
übertragen werden kann. Die Abhängigkeit der Masse des leichtesten Higgs mh 
von tan(β) ist in Abbildung 7.22 zu sehen. Daraus folgt, dass diese Einschränkun-
gen für große Werte von m0 und m1/2 einen hohen Wert für tan(β) benötigt, um o-
berhalb des LEP-Limits zu liegen. Für einige Punkte, gerade im Bereich kleiner m0-
m1/2, in dem das Massenspektrum leichte Teilchen enthält, kann für den gesamten 
tan(β)-Bereich keine Übereinstimmung mit der experimentellen Grenze gefunden 
werden.   

 

Abbildung 7.22: Higgsmasse mh in Abhängigkeit von tan(β) für unterschiedliche 
Werte von m0-m1/2, die durch die dargestellten Wertepaare repräsentiert werden.  

 

              
Links: χ2-Fit der Higgs-Masse unter Berücksichtung der elektroschwachen Daten 
von LEP (CERN), SLD (Stanford) und dem Tevatron (Fermilab). Das Minimum bei 
etwa 90 GeV ist bereits ausgeschlossen [80]. Rechts: Aufgetragen ist das Verhält-
nis der CL für das Signal und der Background Hypothese. Die Linie enspricht der 
Beobachtung und die gestrichelte Linie dem erwarteten Background. Der Schnitt-
punkt der beobachtenden Linie mit CLS = 0,05 entspricht einem unteren 95% CL 
Limit der Higgs-Boson Masse [15].  
 

 
       
Den blauen/roten Kurven entspricht ein positives/negatives Vorzeichen von µ. 
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In diesen Punkten ergeben sich aufgrund der Startwerte der Massen an der GUT 
Skala zu geringe Massen für die elektroschwache Skala, weshalb diese Punkte 
ausgeschlossen werden. Kombiniert man das Higgs-Limit mit der Relic Density, 
können beide Einschränkungen in einem großen Bereich simultan optimiert wer-
den, da beide große Werte von tan(β) bevorzugen. Lediglich im Bereich kleiner 
Werte von m0-m1/2 in denen die Grenze der Higgs-Masse unterschritten wird 
kommt es zu Spannungen, die zu einem schlechten χ2-Wert führen. Die Werte der 
χ

2-Funktion, die sich aus der mehrstufigen Optimierung ergeben und die dazugehö-
rigen Werte von tan(β) und A0 sind in Abbildung 7.23 zu sehen. A0 hat hier keinen 
großen Einfluss auf eine Verbesserung der Übereinstimmung im Bereich großer 
Werte für χ2, was anhand des Vergleichs mit den Abbildung in Anhang 10.3.6 deut-
lich wird. Diese Einschränkung geht analog zur oberen Grenze von Bs → µ+ µ- in 
die χ2-Funktion als einseitige χ2-Funktion ein, nur dass statt einer oberen Grenze 
eine Untere verwendet wird. Da es sich bei der Angabe der Grenze um ein 95% 
Konfidenzintervall handelt, wurde der dazugehörige Fehler aus Abbildung 7.21 zu 
0,9 GeV abgelesen, indem der Schnittpunkt zwischen der experimentellen und der 
aus dem SM erwarteten Kurve bestimmt wurde. Dieser wurde mit dem theoreti-
schen Fehler aus [70] zu einem Gesamtfehler addiert, so dass sich folgender Anteil 
zur χ2-Funktion ergibt: 
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Abbildung 7.23: χ2-Funktion und dazugehörige optimierte Werte von tan(β) und A0 
für die Higgs-Massengrenze und Ωh2. 



7.3 Resultate 

 

89 

7.3 Resultate 
In den Abschnitten 7.2.1 bis 7.2.6 wurde gezeigt, welche Werte die einzelnen Ein-
schränkungen bevorzugen und welche Probleme bei der Optimierung auftreten. 
Nun werden alle Einschränkungen simultan kombiniert, wobei dadurch weitere 
Kombinationsprobleme auftreten. Die simultane Optimierung aller Einschränkun-
gen schließt damit ein größeres Gebiet aus, als die Summe der einzelnen Ein-
schränkungen kombiniert mit der Relic Density. Die einzelnen Einschränkungen 
gehen gemäß ihrer in Kapitel 7.2 erläuterten χ2-Beiträge in die Gesamt-χ2-Funktion 
ein. Die χ2-Werte, die sich aus der mehrstufigen Optimierung ergeben, sowie die 
dazugehörigen Werte für tan(β) und A0 sind in Abbildung 7.24 gezeigt. Zur Über-
sichtlichkeit wurden sowohl die Werte von χ2 als auch die von ∆χ2 dargestellt, wo-
bei 51,22

min =χ  ist. Im Falle von zwei Freiheitsgraden entspricht einem Konfidenzin-

tervall von 95% gerade 99,52 ≤∆χ , siehe dazu Abschnitt 6.1. Zur Verdeutlichung 

der einzelnen CL, sind diese in Abbildung 7.25 farblich markiert, wobei die größe-
ren CL stets die kleineren Bereiche beinhalten. Aus Abbildung 7.25 geht hervor, 
dass sich der 95% CL erlaubte Bereich von kleinen Werten von m0 und m1/2 bis hin 
zu großen Werten der Massenparameter erstreckt. Zusätzlich taucht in der Nähe 
der Focus Point Region ein kleiner erlaubter Bereich auf. Hier sind für die Relic 
Density ebenfalls kleine Werte von tan(β) möglich, was eine bessere Übereinstim-
mung mit BR(B → τ ν) ergibt.   
Dieser Zusammenhang kann durch die einzelnen χ2-Beiträge veranschaulicht wer-
den. Zudem kann so gezeigt werden, welche Einschränkung in welchem Ausmaß 
zur gesamten χ2-Funktion beiträgt. Die Beiträge befinden sich in Kapitel 8 in 
Abbildung 8.1. 

 

 

Abbildung 7.24: χ2- und ∆χ2-Funktion (oben) und dazugehörige optimierte Werte 
von tan(β) und A0 (unten) für die Kombination aller Einschränkungen. 
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Zur Übersichtlichkeit werden im Folgenden einige Punkte aus dem gesamten opti-
mierten CMSSM Parameterraum herangezogen. Diese repräsentieren verschiede-
ne Bereiche, so dass gezielt ein Vergleich gezogen werden kann. 
Die ausgewählten Punkte sind in Tabelle 7.1 und die dazugehörigen χ2-Anteile in  
Tabelle 7.2 aufgelistet. Die zu den Punkten gehörenden Massenspektren der su-
persymmetrischen Teilchen sind im Anhang 10.5 tabelliert. Zur Veranschaulichung 
wurden die  Massenspektren in Abbildung 7.26 dargestellt.  

 

Abbildung 7.25: Darstellung der unterschiedlichen CL.  

Wie erwartet ist das Neutralino das leichteste supersymmetrische Teilchen. Unter 
den ausgewählten Punkten befindet sich zum einen Punkt 1 mit dem minimalen 
χ

2
min, der sich im Bereich kleiner m0-m1/2 befindet. Dieser Punkt bevorzugt einen 

kleinen Wert für tan(β), so dass ein Großteil der Einschränkungen simultan erfüllt 
wird. Der Hauptbeitrag zum χ2 liefern hierbei BR(B → τ ν) , (g-2)µ und BR(b → s γ). 
Da sich dieser Punkt im Bereich kleiner m0-m1/2 befindet, haben die Teilchen im 
Vergleich zu den anderen Punkten geringe Massen. 
 

Punkt m0 m1/2 tan(β) A0 χ
2 

1 100 400 14,39 95,60 2,51 
2 400 900 41,75 440,46 4,63 
3 1900 900 50,70 588,31 6,31 
4 1550 200 49,18 298,31 8,63 

Tabelle 7.1: Ausgewählte Punkte in der m0-m1/2 Ebene mit zugehörigen Werten 
von tan(β) und A0. 

 
Der χ2-Anteil von Punkt 2 wird von (g-2)µ dominiert. Die nächst höheren Beiträge 
liefern BR(b → s γ) und BR(B → τ ν). Da dieser jedoch nur unwesentlich höher ist, 
als in Punkt 1, spiegelt sich hier die Spannung zur Relic Density wider. Wie 
Abbildung 8.1 zu entnehmen ist, liegt der Beitrag bei der Kombination von BR(b → 
s γ) und BR(B → τ ν ) mit Ωh2 gerade in diesem Bereich, so dass keine bessere 
Übereinstimmung gefunden werden kann. Alle anderen Einschränkungen sind da-
gegen erfüllt. Da der Punkt im Bereich der Koannihilation liegt, sind die Massen 
des Staus und des Neutralinos ähnlich.  
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 Punkt 1 Punkt 2 Punkt 3 Punkt 4 
2

2hΩχ  0,002 0,000 0,002 0,056 
2

hmχ  0,234 0 0 0 

( )
2

γχ sbBR →  1,030 1,100 0,830 3,405 

( )
2

−+→ µµχ
sBBR

 0 0 0 0 
2

µ
χ a∆  0,642 2,726 4,470 2,775 

( ) ( )
2

τντνχ →→ BBRBBR SMSUSY  0,599 0,800 1,006 2,396 
2
totalχ  2,507 4,627 6,308 8,631 

2χ∆  0 2,120 3,801 6,124 

 
Tabelle 7.2: χ2-Anteile zum gesamten Wert von χ2 für ausgewählte Punkte. 
 
 

 
 
 

 

Abbildung 7.26: Massenspektren für die ausgewählten Punkte. 

 

               Von links oben 
nach rechts unten: Punkt 1, Punkt 2, Punkt 3 und Punkt 4. 
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Punkt 3 liegt ebenfalls mit einem ∆χ2 kleiner als 5.99 innerhalb des 95% CL. Wie 
man sieht, überwiegt (g-2)µ wieder das gesamte χ2. Der Beitrag von BR(B → τ ν) 
liegt hier etwas über dem minimal erreichbaren Wert. Der Punkt 4 ist dagegen in-
nerhalb des 95% CL aufgrund der Kombination von BR(b → s γ), (g-2)µ und BR(B 
→ τ ν) ausgeschlossen. BR(b → s γ) überwiegt zwar, jedoch ist der Beitrag von 
BR(B → τ ν) und (g-2)µ derart hoch, dass es zum Ausschluss dieses Punktes 
kommt. Da Punkt 3 und Punkt 4 im Bereich großer Werte von m0 liegen, fällt das 
Massenspektrum dementsprechend schwer aus. Bis auf Punkt 1 bevorzugen alle 
anderen Punkte hohe Werte von tan(β) und A0.   
Für den optimierten Parameterraum sind in Abbildung 7.27 ebenfalls die Higg-
Massen und der dazugehörigen Mischungsparameter µ dargestellt.Das leichteste 
Higgs weist wie erwartet im Bereich kleiner Werte von m0-m1/2 eine Masse unter-
halb der LEP Grenze auf, was zu einem hohen χ2-Anteil führt. Im betrachteten Pa-
rameterraum erreicht das leichteste Higgs h eine maximale Masse von 120 GeV. 
Die Massen der Higgs-Boson A und H unterscheiden sich nur minimal und variie-
ren mit wachsenden m0 und m1/2 zwischen 200 und 1000 GeV mit maximalen Wer-
ten von 1400 GeV in der Koannihilationsregion und der Focus Point Region. Die 
geladenen Higgs-Bosonen sind mit einer maximalen Masse von 1600 GeV nur un-
wesentlich schwerer als die neutralen Higgs-Bosonen. Der Mischungsparameters µ 
nimmt für steigende m0 und m1/2 Werten bis zu einem Wert von 1200 an. Wie er-
wartete nimmt µ dagegen im Bereich der Focus Point Region kleine Werte an, da 
dieses nahe dem Gebiet liegt, in dem keine elektroschwache Symmetriebrechung 
möglich ist.  

 

Abbildung 7.27: Higgs-Massen und Higgsmischungsparameter µ.  
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7.3.1 Einfluss der Fehler 
In den Abschnitten 7.2.1 bis 7.2.6 wurden die χ2-Beiträge der einzelnen Einschrän-
kungen zur Gesamt-χ2 Funktion dargestellt. Die auftretenden experimentellen und 
theoretischen Fehler wurden dabei stets linear addiert. Da dieses Vorgehen im Ge-
gensatz zur quadratischen Addition eher unüblich ist, wird es im Folgenden disku-
tiert. Liegen mehrere Fehler innerhalb einer Analyse vor, so sind diese meist gauß-
verteilt. Zur Bestimmung eines gesamten Fehlers addiert man diese Fehler dann 
quadratisch. Während die Eigenschaft der gaußverteilten Fehler auf die verwende-
ten experimentellen Fehler zutrifft, kann bei den theoretischen Fehler, die innerhalb 
dieser Analyse verwendet wurden, nicht von eine Gaußverteilung ausgegangen 
werden, weshalb statt einer quadratischen eine lineare Addition der Fehler durch-
geführt wird, was ebenfalls die konservativere Fehleraddition ist. Der 95% CL für 
die quadratische und lineare Addition ist in Abbildung 7.28 dargestellt. Dieser große 
Unterschied ist hauptsächlich auf das anomale magnetische Moment des Myons 
zurückzuführen: Der theoretische Fehler von (g-2)µ σtheo=6,1·10-10 ist im Vergleich 
zum experimentellen Fehler σexp=6,3·10-10 gleich groß. Bei einer quadratischen 
Addition ergibt sich ein Fehler von 8,8·10-10, so dass sich der linear addierte Fehler 
um ca. 30% verringert. Um den Einfluss der Fehler von (g-2)µ und die damit ver-
bundene drastische Änderung darzustellen, wird Punkt 3 aus Tabelle 7.1 ausge-
sucht. Aus  
Tabelle 7.2 geht hervor, dass der Hauptbeitrag zum χ2 von (g-2)µ kommt. Aus  
Tabelle 7.2 geht hervor, dass der Hauptbeitrag zum χ2 für große m0 und m1/2 von 
(g-2)µ kommt. Da bei einem χ2

min von 2,51 das ∆χ2 für diese Punkte kleiner als 5,99 
ist, ist der Punkt 3 in 95% CL erlaubt. Das ∆χ2 ist jedoch in diesem Bereich sehr 
sensitiv auf Änderungen des Anteils (g-2)µ. Es stellt sich heraus, das bei der quad-
ratischen Addition der χ2-Anteil von (g-2)µ derartig erhöht wird, dass die Bedingung 
für das 95% CL nicht mehr erfüllt ist und somit der bisher erlaubte Punkt ausge-
schlossen ist. In Abbildung 7.28 wird deutlich, dass durch eine unterschiedliche 
Fehlerbehandlung der erlaubte 95% CL Bereich halbiert werden kann. Um eine 
möglichst konservative Betrachtung der Einschränkungen zu gewähren, d.h. der 
ausgeschlossene Bereich sollte mit größtmöglicher Sicherheit ausgeschlossen 
werden, wurden für die gesamte Analyse die Fehler linear addiert. 

 

Abbildung 7.28: Vergleich der erlaubten 95% CL Bereich für die lineare (blau) und 
quadratische (dunkelblau) Fehleraddition. 
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7.3.2 Vergleich 
Die Suche nach konsistenten Punkten im CMSSM Parameterbereich ist bereits seit 
einigen Jahren ein interessanter Forschungsbereich. Da stets ähnliche experimen-
telle Daten als Input verwendet werden, sollten die Ergebnisse der Referenzen 
[70], [81] und [82] vergleichbar sein. Die Ergebnisse aus vergleichbaren Analysen 
nutzen jedoch eine andere statistische Behandlung mit Hilfe von Markov-Chain-
Monte-Carlo Optimierungsmethoden. Dieser Unterschied wirkt sich stark auf den 
erlaubten Bereich aus, denn aufgrund der stark korrelierten Parameter können bei 
einer zufallsbasierten Suche Bereiche vorschnell ausgeschlossen werden. Bei der 
Einschränkung wie der Relic Density konnte in Abschnitt 7.1 gezeigt werden, wie 
sensitiv diese auf minimale Veränderung von tan(β) ist. Bei der Berücksichtigung 
weiterer Einschränkungen wurde in Abschnitt 7.1.1 die starke Korrelation der restli-
chen CMSSM Parameter gezeigt.  
In Abbildung 7.29 sind die erlaubten 95% CL aus Referenz [70] und [81] mit dieser 
Analyse zum Vergleich zusammengefasst. 

 

Abbildung 7.29: Vergleich der erlaubten 95% CL Bereiche. 

 
 
 
 
 
 

 
Die anderen Ergebnisse sind gerade im Bereich großer m0 und m1/2 sehr unter-
schiedlich. Während in Referenz [70] der Bereich großer m0-m1/2 ausgeschlossen 
wird, ergeben sich in Referenz [81] dort gute Lösungen. Der in dieser Analyse ge-
fundene optimierte Bereich kann den Bereich in Referenz [70] bestätigen, wenn 
statt der linearen Fehleraddition die Fehler quadratisch addiert werden. 
In Referenz [81] werden Bereiche ausgeschlossen, die in dieser Analyse und in 
Referenz [70] gute Übereinstimmungen mit den kosmologischen und elektro-
schwachen Präzisionsdaten liefern. Die Ursache liegt vermutlich in der Schwierig-

                  Der 95% CL Bereich 
aus dieser Analyse (grün) kann den Bereich aus Referenz [70] (dunkelblau, gestri-
chelte Linie) bestätigen. Der Unterschied zu dem Ergebnis aus Referenz [70] ergibt 
sich hauptsächlich aufgrund der linearen Addition der nicht-gaußverteilten Fehler. 
Die Lösungen in Referenz [81] lassen sich auf die zufallsbasierende Optimie-
rungsmethode zurückführen, die vermutlich aufgrund der starken Korrelationen in-
nerhalb der CMSSM Parameter Bereiche ausschließt, die im Vergleich zu dieser 
und der Analyse in Referenz [70] erlaubt sind.     
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keit der Konvergenz der MCMC-Methode aufgrund der starken Korrelationen der 
Parameter.  
Der erlaubte Bereich der optimierten CMSSM Parameter, der in dieser Analyse 
gefunden wurde, ist in Abbildung 7.30 zusammen mit den ausgeschlossenen Be-
reichen der Beschleunigersuchen zusammengefasst. Dabei ist der optimierte er-
laubte Bereich hier schematisch in hellgrün dargestellt. Es ist zu sehen, dass die 
direkte Suche der aufgezählten Experimente Bereiche des CMSSM Parameterbe-
reichs ausschließen, die bereits durch andere Einschränkungen ausgeschlossen 
werden. Der rosa eingefärbte Bereich wird aufgrund einer Kombination aller Ein-
schränkungen ausgeschlossen. Da dieser Bereich bei 95% CL ausgeschlossen 
wird, gilt für diese Punkte die Bedingung ∆χ2 > 5,99. Innerhalb der rosafarbenen 
Fläche sind die Bereiche farblich hervorgehoben, in denen einzelne Einschränkun-
gen die Bedingung ∆χ2 > 5,99 erfüllen. Diese Hauptanteile zur χ2-Funktion sind für 
kleine Werte von m0 und m1/2 hauptsächlich auf BR(b → s γ), (g-2)µ, auf die Higgs-
masse und BR(B → τ ν) zurückzuführen. 

 

Abbildung 7.30: Vergleich des erlaubten 95% CL Bereichs mit Ausschlussgebieten 
aus der Suche nach supersymmetrischen Teilchen. 

 

 

 

 

 

7.3.3 Direkte Suche nach Dunkler Materie 
Neben den bisher angesprochen Einschränkungen, also den Messwerten aus der 
Kosmologie und B-Physik, soll in diesem Abschnitt auf die direkte Suche nach 
Dunkler Materie eingegangen werden. 
Neben der indirekten Suche, in der Dunkle Materie über den Nachweis der Sekun-
därteilchen aus WIMP-Annihilationsprozessen gesucht wird, kann ebenfalls direkt 
nach Dunkler Materie gesucht werden. Dabei versucht man die elastische Streuung 
von WIMP-Teilchen an schweren Kernen im Detektor auf der Erde nachzuweisen. 

 
                                                                                   Die farblich unterlegten Berei-
che werden von den jeweiligen rechts aufgetragenen Experimenten ausgeschlos-
sen. Die restlichen farbigen Flächen, werden aufgrund der Einschränkungen inner-
halb dieser Anlayse ausgeschlossen. In der rosafarbenen Fläche werden die Punk-
te aufgrund einer Kombination aller Einschränkungen ausgeschlossen, während im 
roten und organgenen Bereich die dargestellten Einschränkungen bereits einen 
∆χ

2-Anteil größer als 5,99 annehmen. 
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Dabei geht man davon aus, dass die Dichte der WIMP-Teilchen innerhalb unserer 
Galaxie aufgrund der gravitativen Anbindung erhöht ist. Die galaktische Scheibe 
wird dann von einem sogenannten Halo aus Dunkler Materie umgeben. Aus der 
Bewegung unseres Sonnensystems innerhalb der Milchstraße durch den Halo, der 
eine gewisse WIMP-Dichte aufweist, kann der dazugehörige WIMP-Fluss berech-
net werden. Unter der Annahme das WIMPs vorwiegend elastisch an Kernen 
streuen und dabei spin-unabhängig wechselwirken, führt dies zu einer kohärenten 
Streuung, also 2N∝σ , wobei N die Anzahl der Nukleonen im Kern des Detektor-
materials darstellt [19]. Diese elastische Streuung erfolgt innerhalb des CMSSM 
hauptsächlich über den Austausch eines schweren oder leichten Higgs-Bosons H, 
h und eines Squarks. Zur Vollständigkeit sei angemerkt, dass neben den hier dar-
gestellten spinunabhängigen Streuungen ebenfalls spinabhängige Modelle zur 
Streuung existieren. Geht man von einer elastischen Streuung an einem Kern aus, 
so ist der sich ergebende WQ proportional zur Nukleondichte und zu den verwen-
deten Formfaktoren npf /  [83] 
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Dabei entspricht Tm  der Masse des streuenden Kerns und np nn /  der Anzahl der 

Protonen/Neutronen. Wie man an Gleichung (7.27) sieht, enthält der Wirkungs-
querschnitt mit den Formfaktoren pn ff /  eine modellabhängige und damit stark 

schwankende Größe. Der Nachweis der Streuung erfolgt bei der elastischen Streu-
ung über die Messung der Rückstoßenergie des Kerns. Die Rückstoßenergie wird 
dabei je nach Detektormaterial umgewandelt, so dass sich daraus unterschiedliche 
Nachweismethoden entwickelt haben. Man unterscheidet dabei die Messung der 
Rückstoßenergie in Form von Wärme (Phononen), Ionisation oder Szintillation, 
wobei ebenfalls Kombinationen möglich sind [19]. 

 

Abbildung 7.31: Ausschlussgrenze für die WIMP-Kern-Streuung von CDMS II.  
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Bisherigen Experimenten ist es nicht gelungen, eine WIMP-Kern-Streuung nach-
zuweisen, so dass aus der direkten Suche Ausschlusskurven resultieren, die als 
weitere Einschränkung des CMSSM Parameterbereichs genutzt werden können. 
Die Ausschlusskurven werden stets in Abhängigkeit des Streuwirkungsquerschnitts 
und der dazugehöriger WIMP-Masse dargestellt. Das sich aus dem CMSSM Mas-
senspektrum ergebende Neutralino, der bevorzugte WIMP Kandidat, sollte unter-
halb des gefundenen Limits liegen.  
Im Folgenden wird untersucht, welchen Einfluss die Ausschlussgrenze der direkten 
Suchen nach Dunkler Materie auf den erlaubten Parameterbereich aus der mehr-
stufigen Optimierung hat. Als Ausschlusskurve wird die in Abbildung 7.31 darge-
stellte Kurve des CDMS II (Cryogenic Dark Matter Search) Experiments verwendet 
[15] und parametrisiert wurden. Um den Einfluss der Ausschlussgrenzen der direk-
ten Suche zu berücksichtigen, wird der oben gefundene optimierte Parameterbe-
reich verwendet. Mit den gefunden optimierten Punkten, wird in jedem Punkt der 
zugehörige WIMP-Nukleon Streuwirkungsquerschnitt berechnet. Da sich der WQ 
aufgrund von unterschiedlichen Formfaktoren zwischen Proton und Neutron unter-
scheidet, wird das arithmetische Mittel gebildet.  
 

 Proton Neutron 
 fd fu fs fd fu fs 

min. Werte 0,026 0,020 0,02 0,036 0,014 0,02 
max. Werte 0,033 0,023 0,26 0,042 0,018 0,26 

Tabelle 7.3: Verwendete Formfaktoren für die WIMP-Nukleon-Streuung. 
 

Da der Wirkungsquerschnitt abhängig von der Wahl der Formfaktoren ist, werden 
bei der Untersuchung unterschiedlichste Formfaktoren berücksichtigt. Um die auf-
tretenden Extrema abzudecken, werden zwei Sätze der Formfaktoren verwendet, 
die die größtmöglichen und kleinsten Formfaktoren darstellen.  
 

 

Abbildung 7.32: Wirkungsquerschnitt der optimierten Punkte als Funktion der 
WIMP-Masse für beide Sätze der verwendeten Formfaktoren.   

 



7 Analyse 

 

98 

Die verwendeten Formfaktoren in Tabelle 7.3 stellen die beiden Extrema dar. Die 
hohen Formfaktoren entsprechen den voreingestellten Werte in micrOMEGAs [84]. 
Die minimalen Formfaktoren wurden [85] bis [87] entnommen. 
Nach der Berechnung des Streuwirkungsquerschnitts und Bildung des Mittelwertes, 
wird geprüft ob die Punkte oberhalb der parametrisierten CDMS-Ausschlusskurve 
liegen, wie in Abbildung 7.32 zu sehen. Die Punkte oberhalb der Kurve werden 
somit von der direkten Suche nach dunkler Materie ausgeschlossen. 
Es wird deutlich, dass sich der Unterschied in den Formfaktoren hauptsächlich auf 
eine vertikale Verschiebung des Spektrums in Abbildung 7.32 auswirkt. Bei einer 
Kombination der Formfaktoren dieser beiden Sätze, entspricht die Ausschlusskurve 
einer Kurve innerhalb dieser beiden Schranken. 
Aus Abbildung 7.32 geht außerdem hervor, dass hauptsächlich WIMPs mit kleinen 
Massen ausgeschlossen werden. Um den Ausschluss innerhalb der m0-m1/2 Ebene 
darzustellen, werden die ausgeschlossenen Punkte in Abbildung 7.32 mit dem zu-
gehörigen m0-m1/2 Paar identifiziert. Der ausgeschlossene Bereich innerhalb der 
m0-m1/2 Ebene ist in Abbildung 7.33 durch zwei vertikale Linien innerhalb des ∆χ2 
dargestellt. Der zugehörige CMSSM Parameterbereich unterhalb der Kurven ist 
dabei ausgeschlossen. Die vertikale Verschiebung des ausgeschlossenen Spekt-
rums für die unterschiedlichen Formfaktoren in Abbildung 7.32, wird ebenfalls an-
hand der unteren Ausschlussgrenze in Abbildung 7.33 gezeigt.   

 

Abbildung 7.33: Ausgeschlossener Bereich in der m0-m1/2 Ebene projiziert auf die 
∆χ

2-Funktion und die Neutralinomasse.   

 
Anhand Abbildung 7.33 wird gezeigt, dass die Masse der Neutralinos eine horizon-
tale Proportionalität aufweist, so dass mχ proportional zu m1/2 ist. Da in Abbildung 
7.32 zu erkennen ist, dass die direkte Suche den Bereich von WIMP-Massen um 
100 GeV abdeckt, wird stets der Bereich für kleine m1/2 ausgeschlossen. Um den 
Einfluss dieser Einschränkung auf den erlaubten Bereich möglichst konservativ zu 
betrachten, ist lediglich der Bereich unterhalb der durchgezogenen schwarzen Linie 
in Abbildung 7.33 ausgeschlossen. Übertragen auf ∆χ2 ist ersichtlich, dass die di-
rekte Suche den Bereich ausschließt, der bereits durch andere Einschränkungen 
ausgeschlossen ist. Die Berücksichtigung der direkten Suche zum jetzigen Stand-
punkt, trägt somit keine neuen Erkenntnisse zum Ausschlussbereich bei.  



7.3 Resultate 

 

99 

7.3.4 Bisherige LHC Ergebnisse 
Einer der Hauptaufgaben des LHC ist die Suche nach Supersymmetrie. Daher 
wurden seit Beginn der Datennahme dahingehend Analysen durchgeführt. Dabei 
werden Ereignisse mit Jets und signifikant fehlender transversaler Energie gesucht, 
da diese bei Proton-Proton-Kollisionen Hinweise auf Zerfälle von schweren, Paar-
produzierten Squarks und Gluinos geben. 
Bisher wurden keine supersymmetrischen Teilchen gefunden, weshalb sich erneut 
eine Ausschlusskurve ergibt, die als weitere Einschränkung benutzt werden kann. 
Die in Abbildung 7.34 [38] dargestellte Kurve, ist auf die beobachtbare Teilchenzahl 
von N = 13,4 und den damit verbundenen Produktionswirkungsquerschnitt von 
Quarks und Gluinos zurückzuführen. 
 

 

Abbildung 7.34: LHC Ausschlussgrenze für supersymmetrische Teilchen. 

 
Aufgrund der oben gezeigten Ausschlusskurve, sind bestimmte Kombinationen der 
CMSSM Parameter bereits ausgeschlossen, so dass aus der Angabe der Teil-
chenzahl ein weiterer χ2-Anteil modelliert werden kann. Da es sich hierbei um ein 
95% Konfidenzintervall handelt, muss der zugehörige Fehler so berechnet werden, 
dass sich bei N = 13,4 gerade ∆χ2 = 5,99 ergibt. Die sich so ergebende zweidimen-
sionale Gaußkurve führt zu σLHC = 5,48, wobei die erwartete Teilchenzahl hier mit 
Null angenommen wurde. Die Teilchenzahl ergibt sich über die integrierte Lumino-
sität Lint, den WQ σ und der Effizienz ε zu 
   

 εσintLN = . (7.28) 

   

Zur Berechnung der Teilchenzahl N wird für jede gewählte CMSSM Kombination 
der Wirkungsquerschnitt in CalcHEP von zwei Gluonen in jeweils zwei Gluinos und 
zwei Squarks, sowie ein Quark und Gluon in ein Squark und Gluino berechnet. Bei 
den Squarks werden aufgrund der Partonverteilungsfunktionen nur die leichtesten 
beiden Quarks, u- und d-Quark, und damit deren supersymmetrische Partner LRu ,

~  

und LRd ,

~
 berücksichtigt. Es sei hier angemerkt, dass sich die Ausschlussgrenzen 
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und Effizienzen nur auf feste Werte von tan(β) und A0 beziehen. Dabei wird A0=0 
gesetzt und tan(β) variiert lediglich zwischen drei Werten, darunter 3, 10 und 50. 
Die Ergebnisse des mehrstufigen Optimierungsverfahrens enthalten im Gegensatz 
zu den Angaben der Ausschlusskurve unterschiedliche Werte von tan(β) und A0. 
Daher muss angenommen werden, dass der berechnete WQ für diese Einschrän-
kung unabhängig von A0 ist. Für tan(β) kann für abweichende Werte zwischen den 
oben genannten Werten interpoliert werden. Da die Ausschlusskurve nicht genauer 
beschrieben werden kann, wird der resultierende χ2-Anteil erst nach der Berech-
nung dem gesamten χ2 hinzugefügt. Aufgrund der begrenzten Angaben zur LHC 
Ausschlussgrenze wurde statt des oben berechneten Fehlers, der Fehler so ange-
passt, dass die angegeben Grenzen mit den Berechnungen übereinstimmen, was 
in Abbildung 7.35 gezeigt ist. Damit ergibt sich ein optimierter Fehler von σLHC = 
4,5. Zum Vergleich befinden sich in Anhang 10.4 die Abbildungen mit dem berech-
neten und einem kleineren Fehler. Darin ist gezeigt, dass der ausgeschlossene 
Bereich für den berechneten Fehler nicht ausreichend groß ist, um mit den ange-
geben Ausschlusskurven übereinzustimmen. Der χ2-Anteil nimmt dann folgende 
Form an 
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Abbildung 7.35: LHC-Ausschlussgrenze für unterschiedliche tan(β) und A0 für 
σLHC=4,5. 

 
Mit dem angegebenen χ2-Anteil kann der Einfluss der LHC-Ausschlussgrenze auf 
den bereits gefundenen 95%CL Bereich aus der mehrstufigen Optimierung über-
prüft werden. Zur Verdeutlichung der Ausschlussgrenze ist die Kurve und der er-
laubte 95% CL Bereich in Abbildung 7.36 dargestellt. Hier ist gezeigt, dass der 
Ausschluss in einem Bereich der m0-m1/2 Ebene liegt, der bereits durch die Higgs-
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masse und BR(b → s γ) ausgeschlossen ist. Durch die Berücksichtigung dieser 
Einschränkung, erhält der bisher betrachtete χ2-Wert den oben beschriebenen χ2-
Beitrag, der unterhalb der LHC Ausschluss-Kurve, also für kleine m0-m1/2, sehr 
groß ist, da dieser Bereich ausgeschlossen ist. Der Beitrag wird umso kleiner, je 
weiter man sich von der Kurve, also zu großen m0-m1/2, weg bewegt, so dass der 
Beitrag für sehr große m0-m1/2 vernachlässigbar klein wird.  

 

Abbildung 7.36: Zusammenhang zwischen erlaubten 95% CL Bereich und der 
LHC-Ausschlussgrenze. 

 
 
 
 
 
Da sich der Punkt mit minimalem χ2

min in der Nähe des 95% CL LHC-Limits befin-
det, erhält das minimale χ2

min einen zusätzlichen LHC Beitrag, der den Betrag um 
10% erhöht. Das minimale χ2

min verschiebt sich damit zum Punkt m0 = 150 m1/2 = 
475 und nimmt den Wert χ2

min = 2,54 an. Durch die Verschiebung des minimalen χ2 
und der damit verbundenen Erhöhung des Wertes gelingt es mehr Punkten die 
Bedingung ∆χ2 < 5,99 zu erfüllen. Der sich so ergebende neue erlaubte 95% CL 
Bereich wird also minimal größer. Die Vergrößerung bzw. Verringerung des ur-
sprünglichen erlaubten 95% CL Bereichs ist durch die hellgrünen bzw. hellblauen 
Punkte in Abbildung 7.36 dargestellt. Der Ausschluss des optimierten Parameter-
bereichs der sich durch die Hinzunahme der bisherigen LHC Ergebnisse ergibt, ist 
gleichzeitig mit einer geringen Vergrößerung des erlaubten 95% CL Bereichs ver-
bunden, da das LHC-Limit in der Nähe vom minimalen χ2

min-Wert liegt. Aufgrund 
dieses Zusammenhangs trägt die Berücksichtigung der LHC-Ergebnisse, ähnlich 
wie die Ergebnisse der direkten Suche, zum jetzigen Standpunkt keine neuen Er-
kenntnisse zum Ausschluss des CMSSM Parameterbereichs bei.  

7.4 Einfluss auf zukünftige Higgssuchen am LHC  
Die Suche nach dem Higgs-Boson ist einer der Hauptaufgabe des LHC. Bei Pro-
ton-Proton-Kollisionen entsteht das Higgs-Boson hauptsächlich durch die Gluonfu-
sion über eine t- oder b-Quark-Schleife. Andere Quarkflavour koppeln aufgrund 
ihrer Masse weniger stark an das Higgs-Boson, so dass diese vernachlässigt wer-
den können. In Abbildung 7.37 ist der dominante Prozess zur Higgs-Produktion im 

 
                                        Links: CMS-Limit (dargestellte Linie) innerhalb der m0-m1/2 
Ebene und der erlaubter 95% CL Bereich (blau). Rechts: Erlaubter 95% CL Bereich 
mit zusätzlichen Punkten aus der Berücksichtigung der LHC-Ausschlussgrenze. 
Durch die Hinzunahme der LHC Einschränkung ergeben sich zusätzliche Punkte 
(hellgrün). Die Punkte nahe der Grenze werden dadurch jedoch ausgeschlossen 
(hellblau). 
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SM gezeigt. Der erwartete WQ in Abhängigkeit der Masse des Higgs-Bosons ist in 
Abbildung 7.38 [88] dargestellt. Die Frage liegt nahe, inwieweit sich der Wirkungs-
querschnitt und damit das Entdeckungspotential des Higgs-Bosons ändern, wenn 
zusätzlich Supersymmetrie berücksichtigt wird. 
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Abbildung 7.37: Feynman-Diagramm für die Gluonfusion über eine b-/t-Schleife 
(links) und die assoziierte Higgsproduktion (rechts). 

 
Beim Übergang vom SM zum CMSSM ergeben sich durch die Verdopplung im 
Higgssektor fünf Higgs-Bosonen. Davon können für die Gluonfusion nur die neutra-
len Higgs-Bosonen h, H und A betrachtet werden. Im MSSM ändert sich nicht nur 
die Anzahl der Higgs-Bosonen, sondern auch deren Kopplungen an die jeweiligen 
Fermionen, wie sie in Kapitel 3.2 gezeigt wurden.  
 
 

 

Abbildung 7.38: Wirkungsquerschnitte im SM und MSSM. 

 
 
 

                Oben: Produktionswir-
kungsquerschnitt für das SM-Higgs [88]. Unten: Produktionswirkungsquerschnitt für 
die Higgs-Bosonen des MSSM [89]. 
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Das leichteste Higgs des MSSM ist dem SM-Higgs am ähnlichsten. Aufgrund der 
Massenobergrenze von 130 GeV, ist es jedoch stark innerhalb des Massenspekt-
rums eingeschränkt. Für Massen oberhalb von 130 GeV werden die schwereren 
Higgs-Bosonen berücksichtigt, wie in Abbildung 7.38 [89] zu sehen ist. 
Es stellt sich heraus, dass zum einen das Massenspektrum im Vergleich zum 
Higgs h nicht begrenzt ist. Zum anderen sind die Massen der Higgs-Bosonen H 
und A fast identisch und die Interferenz zwischen beiden Higgs-Bosonen vernach-
lässigbar klein, so dass sich ein doppelt so hoher Wirkungsquerschnitt ergibt [62]. 
Aufgrund des unbegrenzten Massenspektrums der schweren Higgs-Bosonen ge-
genüber dem Higgs-Boson h wird für die weitere Analyse auf das leichte Higgs h 
verzichtet. Ein Vergleich zwischen den Diagrammen in Abbildung 7.38 zeigt, dass 
der Wirkungsquerschnitt der MSSM Higgs-Bosonen gegenüber den SM-Higgs-
Boson groß ist. Variationen im WQ der MSSM Higgs-Bosonen ergeben sich durch 
die zusätzliche Abhängigkeit von tan(β). 
Da die Kopplungen der Higgs-Bosonen nach Gleichung (3.35) an das t-Quark pro-
portional zu cot(β) und an das b-Quark proportional zu tan(β) ist, wird der Prozess 
für kleine Werte von tan(β) von einer t-Schleife dominiert, während der Beitrag des 
t-Quarks für große tan(β) vernachlässigbar klein wird und lediglich Schleifen von b-
Quarks zum WQ beitragen. Eine weitere Charakteristik dieses Prozesses ist die 
auftretende Resonanz, wenn die Schwelle zur Produktion eines reellen t-Quark 
überschritten wird. Nach der obigen Diskussion der Gluonfusion über eine b-/t-
Schleife stellt sich heraus, dass die Supersymmetrie bei bestimmten Werten von 
tan(β) keine messbare Veränderung des WQ bewirkt und dadurch nicht eindeutig 
vom SM unterschieden werden kann. Wie sich herausstellt, ist dies jedoch anhand 
eines anderen Prozess möglich, was im Folgenden demonstriert wird.  
Der im rechten Teil der Abbildung 7.37 gezeigte Prozess ist ähnlich zu dem Dia-
gramm mit der b-/t-Schleife. Es handelt sich hierbei um die assoziierte Higgspro-
duktion, eine Gluonfusion in ein Higgs mit der gleichzeitigen Produktion von b-
Quarks. Wie man sieht, enthält dieser Prozess keine Schleifen, so dass der zuge-
hörige WQ mit Hilfe von CalcHEP berechnet werden kann.  
 
 

 

Abbildung 7.39: Wirkungsquerschnitt in Abhängigkeit von mA (links) und tan(β) 
(rechts). 
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Um die Wirkungsquerschnitte am LHC zu simulieren, wurde eine Schwerpunkts-
energie von 14 TeV gewählt. Zur Wahl stehen ebenfalls mehrere PDF. Verwendet 
man die unterschiedlichen PDF in den WQ-Analysen, so ergeben sich vernachläs-
sigbare Unterschiede im WQ. In Anhang 10.6 sind die Auswirkungen der unter-
schiedlichen PDF für ein gewähltes Beispiel gezeigt. Als PDF für die Analyse der 
WQ wird cteq6m verwendet. Mit diesem Input, wird der WQ über die Masse des 
Higgs-Bosons aufgetragen. Wie erwartete ergibt sich in Abbildung 7.39 der charak-
teristische Verlauf proportional zu tan2(β) /mA

4. 
Da die Massen der beiden Higgs-Bosonen A und H annähernd gleich sind, gibt es 
ebenfalls keinen großen Unterschied im Verlauf des Wirkungsquerschnittes, so 
dass stets nur ein Higgs-Boson betrachtet wird, siehe dazu Anhang 10.6. In Cal-
cHEP ist es möglich, die CMSSM Parameter als Input zu variieren. Die Masse des 
Higgs-Bosons ergibt sich aus dem berechneten Massenspektrum.  
Die assoziierte Higgsproduktion kann nun mit der Gluonfusion über eine t-/b-
Schleife [90] verglichen werden. Das Resultat für ausgewählte Massen ist in 
Abbildung 7.40 zu sehen. Da die b-Quarks meist in Vorwärtsrichtung produziert 
werden, werden für Teilchenbeschleuniger typische Schnitte gemacht. In Abbildung 
7.40 kann so an der rechten Skala der WQ unter Berücksichtigung von einem 
Transversalimpuls pT > 20 GeV auf das b-Quark und von einer Pseudorapidität η < 
2,5 abgelesen werden. Die Masse des t-Quarks wurde hierbei zu mt = 171,3 GeV 
und des b-Quarks zu mb = 2,5 GeV gewählt, um der Energieabhängigkeit der Mas-
sen bei hohen Energien Rechnung zu tragen. 
Es wird deutlich, dass der Wirkungsquerschnitt der Gluonfusion für kleine Werte 
von tan(β) größer ist, als der für die assoziierte Higgsproduktion. In Bereich kleiner 
tan(β) wird der WQ für die Gluonfusion durch die t-Schleife gegenüber Prozessen, 
an denen nur b-Quarks teilnehmen, gesteigert. Dieses Verhalten war jedoch zu 
erwarten, da die Effekte aus der Supersymmetrie für kleine Werte für tan(β) gering 
sind. 

 

Abbildung 7.40: Vergleich zwischen der assoziierten Higgsproduktion und der Glu-
onfusion über eine b-/t-Schleife. 
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Für den Bereich großer Werte von tan(β) ist der Verlauf jedoch genau entgegenge-
setzt. Da hier der Beitrag der t-Quark-Schleife für die Gluonfusion vernachlässigbar 
klein wird, können die verschiedenen Produktionsprozesse verglichen werden. Aus 
Abbildung 7.40 ergibt sich, dass der WQ für die assoziierte Higgsproduktion um 
einen Faktor 2500 größer ist als die Gluonfusion. Der größere WQ ergibt sich für 
einen Großteil des erlaubten CMSSM Parameterraums, da dieser gerade hohe 
Werte von tan(β) bevorzugt. Der deutliche Unterschied in den Wirkungsquerschnit-
ten bietet die Möglichkeit entweder Supersymmetrie am LHC zu finden oder auszu-
schließen. Dies ist auf die Einschränkung der Relic Density und deren spezifisches 
Massenspektrum der Higgsbosonen zurückzuführen. In den Abschnitten 7.1 und 
7.2.1 wurde gezeigt, dass für die korrekte Menge der Relic Density der Annihilati-
onsprozess der Neutralinos über ein pseudoskalares Higgs A den Großteil des 
CMSSM Parameterraums dominiert. Dies ist auf die Variation von tan(β) zurückzu-
führen, da sich so der erlaubte schmale Streifen für feste Werte von tan(β) über 
den gesamten CMSSM Parameterbereich erstreckt mit Ausnahmen der Bereiche, 
die bereits durch die elektroschwache Symmetriebrechung und dem Stau als LSP 
ausgeschlossen sind. Um die korrekte Menge der Relic Density zu erhalten, ergibt 
sich in Kombination mit großen Werten von tan(β) eine kleine Masse des pseu-
doskaleren Higgs Bosons mA. Die Masse des Higgs-Bosons sollte dabei knapp ne-
ben der Resonanz der Neutralinoannihilation liegen. Dies führt auf das Verhältnis 
mA ≈ 2,2 mχ. Im rechten Teil von Abbildung 7.33 wurde gezeigt, dass die Masse 
der Neutralinos mχ proportional zu m1/2 ist, so dass die Masse des pseudoskalaren 
Higgs ebenfalls in der Higgs-Annihilationsregion aufgrund der Bedingung mA ≈ 2,2 
mχ die gleiche Proportionalität aufweist.  
 

 

Abbildung 7.41: Entdeckungspotential des CMS Detektors für 7 TeV. 

 
 
 
 
 
 

                
Neben den ausgeschlossenen Bereichen bei einem 95% CL von Tevatron und LEP 
ist ebenfalls der vorhergesagte ausgeschlossene Bereich bei 95% CL von CMS 
innerhalb der tan(β)-mA Ebene dargestellt. Bei 7 TeV und 1 fb-1 ist es im Bereich 
großer Werte für tan(β) möglich das Higgs-Bosons A bis zu einer Masse von ca. 
400 GeV nachzuweisen bzw. auszuschließen [91].  
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Unter Berücksichtigung des Entdeckungspotentials am CMS-Detektor des LHC 
[91], das in Abbildung 7.41 dargestellt ist, wäre es zukünftig möglich, das pseu-
doskalare Higgs bis zu einer Masse von etwa 400 GeV bei hohen Werten von  
tan(β) bei einer integrierten Luminosität von 1 fb-1, die man in weniger als einem 
Jahr erwartet, nachzuweisen bzw. auszuschließen,. Da die optimierten Werte von 
tan(β) in dieser Analyse fast im gesamten CMSSM Parameterraum hohe Werte im 
Bereich von 50 annehmen, ist der WQ für die assoziierte Higgsproduktion groß und 
die Massengrenze des Entdeckungspotentials kann auf das Higgs-
Massenspektrum übertragen werden. Bis zum Ende der Laufzeit des LHCs wird 
eine Steigerung der Luminosität erwartet, so dass sich die Massengrenze aus 
Abbildung 7.41 verdoppeln wird. Aus Abbildung 7.27 geht hervor, dass unter der 
Annahme dieses zukünftigen Entdeckungspotentials fast im gesamten dargestell-
ten CMSSM Parameterraums die Möglichkeit besteht, die Masse des pseudoskala-
ren Higgs A am LHC zu entdecken. Selbst wenn das Higgs-Boson am LHC nicht 
nachgewiesen werden kann, so liefert dies eine drastische Reduktion des CMSSM 
Parameterraums.        
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8 Zusammenfassung 
Die Supersymmetrie bietet als Erweiterung des SM u.a. neben einem Dunkle Mate-
rie Kandidaten, die Möglichkeit der Berücksichtigung der Gravitation und Vereini-
gung der drei Kopplungskonstanten. Die Vorteile von SUSY sind mit einer Ver-
dopplung des Teilchenspektrums verbunden. Da bisher keine supersymmetrischen 
Teilchen an Teilchenbeschleunigern gefunden wurden, geht man davon aus, dass 
es sich bei der Supersymmetrie um eine gebrochene Symmetrie handelt. Die 105 
freien Parameter der sanften Brechung können unter der Annahme, dass sich die 
SUSY-Massen und -Kopplungen an der GUT Skala vereinigen, auf fünf freie Pa-
rameter reduziert werden. Ausgehend von den fünf Parametern des CMSSM an 
der GUT Skala kann mithilfe der RGE das gesamte Teilchenmassenspektrum bei 
niedrigen Energien berechnet werden. Die sich ergebenden Massen und Prozesse 
können mit aktuellen Messwerten aus der Kosmologie und elektroschwachen Prä-
zisionsdaten verglichen werden. Damit SUSY eine überzeugende Erweiterung des 
SM darstellen kann, muss eine konsistente Beschreibung mit den aktuellen Daten 
gewährleistet sein. 
In dieser Arbeit wurde ein mehrstufiges Optimierungsverfahren vorgestellt, das es 
im Rahmen des CMSSM Modells ermöglicht, einen großen Bereich im Parameter-
raum zu finden, der mit elektroschwachen und kosmologischen Präzisionsdaten 
übereinstimmt. Innerhalb dieser χ2-Analyse konnte den starken Korrelationen (sie-
he Abbildung 7.3) mithilfe einer mehrstufigen Optimierungsmethode Rechnung ge-
tragen werden. Dazu werden zunächst die stark korrelierten Parameter tan(β) und 
A0 für feste restliche Werte bestimmt. Neben der Art der Optimierungsmethode 
spielt die Fehlerbehandlung für den erlaubten CMSSM Parameterbereich eine gro-
ße Rolle. Für mehrere gaußverteilte Fehler ergibt sich der Gesamtfehler aus einer 
quadratischen Fehleraddition. Da es sich bei den in dieser Analyse angegebenen 
theoretischen Fehlern um nicht-gaußverteilte Fehler handelt, werden die experi-
mentellen und theoretischen Fehler linear addiert, was die konservativere Variante 
der Fehleraddition darstellt. Diese Optimierungsmethode ist in der Lage unter der 
Annahme der gleichen experimentellen Werte und der quadratischen Fehleradditi-
on die Ergebnisse in Referenz [70] zu bestätigen. Der Vergleich mit Referenz [81] 
und [82] zeigt ein gegensätzliches Resultat. Eine mögliche Ursache für den Aus-
schluss von erlaubten Bereichen dieser Analysen ist auf die Schwierigkeit der Kon-
vergenz aufgrund der starken Korrelationen bei den Monte-Carlo basierten Metho-
den zurückzuführen. 
In Abbildung 8.1 sind alle χ2-Anteile zur gesamten χ2-Funktion unter Berücksichti-
gung der linearen Fehleraddition zusammengefasst. Zum Vergleich sind in 
Abbildung 8.2 die Anteile bei quadratischer Addition dargestellt. Aus den Darstel-
lungen der einzelnen Beiträge der Einschränkungen geht hervor, dass (g-2)µ, BR(b 
→ s γ) und BR(B → τ ν) den Hauptbeitrag zum gesamten χ2 liefern. Beim Vergleich 
von Abbildung 8.1 und Abbildung 8.2 wird gezeigt, dass bei einer quadratischen 
Addition der erlaubte 95% CL Bereich aufgrund des Beitrags von (g-2)µ fast halbiert 
wird und somit nicht konservativ ist. Bei dem optimierten Bereich ergibt sich kein 
Widerspruch zu den bisher durchgeführten Suchen nach supersymmetrischen Teil-
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chen. Die Suche am LHC schließt bisher den Teilbereich im CMSSM Parameter-
raum aus, der durch die Higgsmasse und BR(b → s γ) bereits ausgeschlossen ist.  
Da die Relic Density große Werte von tan(β) fast im gesamten betrachteten 
CMSSM Parameterbereich bevorzugt (siehe Abbildung 7.2) außer im Bereich der 
Koannihilation und der Focus Point Region, konnte gezeigt werden, dass der Wir-
kungsquerschnitt der assoziierten Higgsproduktion ca. 2500 mal größer ist als der 
vom SM vorhergesagte Wirkungsquerschnitt der Gluonfusion über eine b-/t-
Schleife. Große Werte von tan(β) haben ebenso zur Folge, dass die Masse des 
pseudoskalaren Higgs klein ist, um die korrekte Menge der Relic Density vorherzu-
sagen. Für Gluino-Massen bis 2 TeV ist die Vorhersage dieser Analyse, dass die 
schweren Higgsmassen kleiner als ca. 700 GeV sind. Bei den erwarteten großen 
WQ bei großen tan(β) sollten diese am LHC zugänglich sein.  
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BR(b → s γ)     BR(B s → µ+ µ-) 

 
BR(B → τ ν)      ∆aµ 

 
mh       Ωh2 

 
alle Einschränkungen 

 

Abbildung 8.1: Zusammenfassung der einzelnen χ2-Beiträge für die lineare Fehler-
addition. 
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BR(b → s γ)     BR(B s → µ+ µ-) 

 
BR(B → τ ν)      ∆aµ 

 
mh       Ωh2 

 
alle Einschränkungen  

 

Abbildung 8.2: Zusammenfassung der einzelnen χ2-Beiträge für die quadratische 
Fehleraddition. 
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10 Anhang 

10.1 Mathematischer Rahmen 

10.1.1 Pauli-Matrizen 
Die Pauli-Matrizen σ1, σ2 und σ3 bilden eine Basis der hermiteschen, spurfreien 2x2 

Matrizen. Dabei stellen sie die Wirkung der Drehimpulsoperatoren auf Spin 1/2 Zu-

stände dar [10]: 
   

 iiS σ
2

h=  mit { }3,2,1∈i . (10.1) 

   

Die Pauli-Matrizen sind von der Form: 
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10.1.2 Gell-Mann-Matrizen 
Die Gell-Mann-Matrizen stellen eine mögliche Darstellung der infinitesimalen Gene-
ratoren der Speziellen Unitären Gruppen SU(3) dar. Diese Gruppe hat acht hermi-
tesche Generatoren iF  mit i = 1 … 8.  Die Generatoren erfüllen die Vertauschungs-

relation [10] 
   

 [ ] kijkji TfiFF =, , (10.3) 

   

wobei ijkf  als Strukturkonstanten bezeichnet werden. 

Die Generatoren sind über die Beziehung 
   

 iiF λ
2

1=  (10.4) 

   

mit den nachfolgenden 3x3 Matrizen verknüpft 
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10.1.3 Gamma Matrizen 
Die Gamma-Matrizen oder auch Dirac-Matrizen sind 4x4 Matrizen, die der Dirac-
Algebra genügen [10]. Die einfachste Darstellung dieser Matrizen, kann mit Hilfe 
der Pauli-Matrizen erreicht werden: 
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==
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−
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0
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σ
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αβγ  mit k=1,2,3. (10.6) 

   

Zudem ergibt sich die Matrix 5γ  als Produkt der einzelnen Gamma-Matrizen: 
   

 







==

01

1032105 γγγγγ i . (10.7) 

   

10.2 Fehlerfunktion 
Die Fehlerfunktion (engl. error function) ist in der Theorie der speziellen Funktionen 
über das Integral 
   

 ( ) ( ) ( )∫ ∈−=
z

Czdzerf
0

2exp
2 ττ
π

 (10.8) 

   

definiert. Angewendet wird die Fehlerfunktion in der Statistik und der Theorie der 
partiellen Differentialgleichungen. Die Fehlerfunktion ist durch keine geschlossene 
Funktion darstellbar und muss numerisch bestimmt werden. Einige Werte können 
der nachfolgenden Tabelle entnommen werden: 

 

x erf(x) 

0,00 0,00000 

0,10 0,11246 

0,40 0,42839 

0,70 0,67780 

1,20 0,91031 

1,40 0,95229 

2,10 0,99702 

Tabelle 10.1: Wertetabelle der Fehlerfunktion erf(x). 
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10.3 Eindimensionale Scans 
Im Folgenden sind die mehrstufigen Optimierungen verschiedener Einschränkun-
gen dargestellt. Für die Optimierung wurde nur tan(β) variiert. A0 nimmt dabei den 
Wert Null an. Die Überschrift der Abbildungen gibt die verwendete Einschränkung 
wider. 

10.3.1 Relic Density Ωh2 

 

10.3.2 BR(b → s γ) und Ωh2 

 

10.3.3 BR(B s →µ
+ µ-) und Ωh2 
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10.3.4 Anomales magnetisches Moment des Myons und Ωh2 

 

10.3.5 BREXP(B → τ ν)/ BRSM(B → τ ν) und Ωh2 

 

10.3.6 Higgsmasse m h und Ωh2 
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10.3.7 Kombination aller Einschränkungen 

 

10.4 Ausschlussgrenzen LHC 
Zunächst wird der χ2-Beitrag des LHC Limits dargestellt, wobei hierfür σLHC = 4,5 
gewählt wurde. 
 

 
Nachfolgend sind m0-m1/2 Ausschnitte gezeigt, die für unterschiedliche Werte von 
σLHC erstellt wurden. Zunächst der berechnete Wert σLHC = 5,48. Es wird gezeigt, 
dass für den berechneten Fehler einige Punkte unterhalb der Kurve erlaubt sind. 
Dies sollte jedoch nicht eintreten, weshalb σLHC verändert wurde. Die Punkte ober-
halb von ∆χ2 > 5,99 sind in diesen Abbildungen weggeschnitten. 
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Als weiteres Beispiel ist hier σLHC = 3 aufgeführt. Es wird gezeigt, dass in diesem 
Fall der ausgeschlossene Berech oberhalb der LHC Grenze liegt, so dass ein zu 
großer Bereich ausgeschlossen wird. Die Wahl für σLHC = 4,5 hat die beste Über-
einstimmung mit den gezeigten Kurven erbracht. 
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10.5 Massenspektren  
Im Folgenden sind die Massenspektren der ausgewählten Punkte aus Kapitel 7.3 
tabelliert. Die Angaben der Massen sind in der Einheit GeV. 

 

 Punkt 1 Punkt 2 Punkt 3 Punkt 4 

Re~  183.1 519,1 1925,2 1549,3 

Le~  287,9 712,1 1980,3 1548,3 

Rµ~  183.1 519,1 1925,2 1549,3 

Lµ~  287,9 712,1 1980,3 1548,3 

1
~τ  169,7 386,8 1365,1 1136,7 

2
~τ  291,7 689,2 1736,8 1359,5 

eν~  277,1 707,9 1978,8 1546,3 

µν~  277,1 707,9 1978,8 1546,3 

τν~  275,6 671,5 1733,7 1357,1 

Ru~  826,9 1761,7 2529,1 1584,1 

Lu~  855,5 1829,1 2570,5 1581,4 

Rd
~

 824,5 1753,8 2524,5 1585,2 

Ld
~

 859,1 1830,8 2571,7 1582,1 

Rc~  826,9 1761,7 2529,1 1584,1 

Lc~  855,5 1829,1 2570,5 1581,4 

Rs~  824,5 1753,8 2524,5 1585,2 

Ls~  859,1 1830,8 2571,7 1583,4 

1

~
b  791,0 1620,8 2060,9 1092,6 

2

~
b  8,22,5 1677,6 2138,5 1204,6 

1
~t  659,9 1456,0 1840,9 956,9 

2
~t  841,0 1672,0 2071,3 1096,8 

0
1

~χ  161.8 382,9 388,0 72,1 
0
2

~χ  302,9 718,4 718,1 119,6 
0
3

~χ  501,9 973,0 832,6 169,9 
0
4

~χ  518,1 984,9 859,8 226,2 
±
1

~χ  302,6 718,4 717,9 113,2 
±
2

~χ  518,2 984,9 859,5 226,6 

g~  932,7 1977,8 2075,2 575,0 
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10.6 Vergleich der PDF und Massen 
Die rechte Abbildung zeigt den Unterschied des Verlaufs des WQ über die Masse 
des pseudoskalaren Higgs für unterschiedliche Partonverteilungsfunktionen. Der 
Wert für tan(β) beträgt hier 30. Zusätzlich wurden Schnitte der Pseudorapidität η < 
2,5 und des transversalen Impuls pt > 20 GeV eines b-Quarks durchgeführt. 
In der rechten Abbildung wird gezeigt, dass der Verlauf des WQ für die unter-
schiedlichen Higgs Bosonen A und H annähernd als gleich anzusehen ist. Es wur-
de erneut tan(β) = 30 gewählt, diesmal jedoch keine Schnitte durchgeführt. 
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