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ABSTRACT

This study employed a quantum-annealing framework to solve spacecraft trajectory
optimization problems. Quantum annealing belongs to the field of quantum computing
and is a promising technique for tackling hard binary optimization problems by employing
quantum annealers. To address the optimal control of a trajectory using quantum annealing,
a transcription procedure was introduced to express the problem in the binary optimization
form required. The proposed procedure leverages the pseudospectral method to discretize
the trajectory and represents the dynamical constraints as algebraic equality constraints
at specific nodes. Subsequently, both a linearization procedure and binary representation
strategy for the real-valued variables of the problem were presented, leading to the
quadratic binary unconstrained optimization form. The quantum-annealing-based method
was tested in the context of an interplanetary low-thrust transfer from the Earth to Mars.
First, we discussed which instances of the problem, especially in terms of their dimensions,
are implementable on currently available quantum annealers; then, a solution was sought
by employing annealers from D-Wave systems. Solutions from hybrid solvers that combine
classical and quantum resources, and fully quantum solvers were explored. The results
demonstrate the validity of the transcription approach, demonstrate the ability of the
hybrid solver to tackle the case-study problem, and highlight the promising features and

current limitations of practical trajectory optimization with quantum annealing.
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1 Introduction

been conducted to discover new approaches, methods,

and algorithms for trajectory optimization.

The trajectory of a space mission directly affects its

feasibility and design, and it influences various aspects of

In the space engineering community, considerable

the mission-planning process. The design of an optimal
trajectory is essential to ensure that mission objectives
can be met within the given constraints. By carefully
analyzing and optimizing the trajectory, space missions
can be made more efficient, cost-effective, and feasible.
Therefore, trajectory optimization is a crucial aspect of
space mission planning and holds significant importance

in the field of aerospace engineering. Active research has

= and.carbone@uniromal.it

attention has been devoted to methods for transcribing
the trajectory design problem into an optimization
problem; hence, traditionally, optimization methods
have been divided into indirect and direct methods
[1, 2]. Indirect methods rely on the theoretical results
from the calculus of variations to derive the necessary
conditions for optimality [3]. These methods involve
expanding the system with costate equations that evolve
over time and transform the problem into a two-point
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boundary-value problem. While indirect methods provide
guaranteed extremal solutions, they have drawbacks
such as sensitivity to initial estimates and convergence
challenges. Conversely, direct methods discretize the
problem, thereby allowing a finite set of parameters to be
optimized. This transforms the problem into a nonlinear
programming (NLP) problem that is solvable using
optimization algorithms. Occasionally, metaheuristic
methods are considered a separate category, although
they are more closely related to the algorithms used to
solve optimization problems. Metaheuristics have also
achieved noteworthy results in the field of spacecraft
trajectory optimization, providing good-quality solutions
to complex problems in a reasonable time [4]. In the
metaheuristic optimization field and partly related to
the quantum computing field, although still classical,
quantum-inspired algorithms have also been found useful
[5, 6].

Over the past two decades, significant advancements
have been made in trajectory optimization methods owing
to increasing computational power and the emergence
of new tools that facilitate implementation. Notably,
the utilization of neural networks has opened new
possibilities and has been applied in various scenarios.
For example, Federici et al. [7] employed reinforcement
learning techniques to autonomously guide a spacecraft
during a mission targeting a binary asteroid. This
approach utilized neural networks for processing optical
observations and demonstrated a notable success rate
in reaching the mission target despite uncertainties.
Similarly, Scorsoglio et al. [8] applied reinforcement meta-
learning techniques combined with hazard detection and
avoidance strategies. Their system relies on both image
and radar data to identify potential hazards and select
secure landing locations. Jiang et al. [9] addressed the
challenges associated with exploring asteroid surfaces
characterized by a complex terrain and irregular gravity.
Their proposed solution deployed hopping rovers and
explored deep reinforcement learning methods for three-
dimensional path planning. Gaudet et al. [10] optimized
an asteroid-hovering controller using reinforcement meta-
learning. This approach allows stable positioning even
when precise asteroid data are not readily available.
The integration of reinforcement learning and meta-
learning methods has demonstrated potential advantages
for achieving optimal outcomes, as discussed in Refs.
[11, 12]. The proposed frameworks were built upon a
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combination of particle swarm optimization for trajectory
planning and an extreme learning machine for accurately
estimating asteroid gravitational acceleration. These
advancements have paved the way for more sophisticated
and efficient trajectory optimization techniques.

Quantum computing (QC) is a fundamentally different
model of computation based on the principles of quantum
mechanics, which are known to solve some specific
mathematical problems more quickly (up to exponential
factors) compared to the best-known classical algorithms.
Just as the fundamental unit of information in a
classical computer is the bit, an object that can assume
two values, in a quantum computer, the fundamental
unit is the gqubit, which is a quantum system with
only two possible states. Because qubits can exist in
superposition and entangled states, operations that are
impossible for classical computers can be performed.
Owing to these characteristics, quantum computers can
process information in parallel and explore multiple
solutions simultaneously (quantum parallelism) [13].
Some problems for which QC provides an advantage over
classical computers include the factorization of prime
numbers [14], unstructured database search [15], solution
of linear systems of equations [16], and simulation of
quantum systems [17-19]. Research on QC is ongoing,
and many algorithms have been proposed in other areas,
such as differential equations [20], artificial intelligence
and machine learning [21, 22], and optimization [23, 24].

While the above-cited literature mainly concerns gate-
based QC, that is, quantum computers, where the qubits
are manipulated by applying a series of gates, similar
to classical computers, another important model of QC
is the quantum adiabatic computing (QAC) framework.
QAC leverages and drives the natural evolution of a
quantum system to obtain the results for a problem
[25]. Quantum annealing (QA) is an algorithm in the
QAC framework that is particularly well suited for
solving combinatorial optimization problems. During
computation, the system gradually transitions from an
initial state to a low-energy state, resembling the cooling
process in metallurgy, hence the term “annealing”. QA
offers more efficient optimization solutions than classical
optimization algorithms, particularly for large-scale and
complex problems [26].

Although QAC and QA are formulated as optimization
problem solvers, they can be generalized and applied
to various mathematical problems. In fact, they have
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been proposed for several of the same problems as gate-
based QC, allowing for even faster computations because
quantum annealers can perform computations with a
number of qubits that is approximately one order of
magnitude higher than that of gate-based machines. The
proposed applications of QA include the factorization
of prime numbers [27], polynomial systems of equations
[28], and differential equations [29, 30].

Applying QA to practical engineering problems is
also being researched [31]; however, there are limited
resources available for current quantum annealers. In
the field of aerospace engineering, a few applications of
QA have been proposed such as casting some classes
of artificial intelligence problems as combinatorial [32],
aircraft trajectory deconfliction [33], and agile Earth
observation scheduling for the maximum number of image
acquisitions [34].

Although QA has gained significant attention in
the optimization community, its potential in space
trajectory optimization remains unexplored. Thus, in
this study, a transcription procedure is proposed to
transform a trajectory optimization problem into a
binary optimization problem, specifically a quadratic
unconstrained binary optimization (QUBO) form suitable
for QA computation. The procedure can be applied
to a wide range of optimal control problems that
involve satisfying dynamic, terminal, and path boundary
constraints. Dynamic constraints capture the system
dynamic behavior and ensure that the state and
control inputs obey the relevant equations of motion.
The terminal constraints define the initial and final
states that the system must attain. The boundary
constraints are active throughout the trajectory and
can express limits on the state and control variables.
To apply QA, the pseudospectral method is employed
to discretize the state and control variables as a sum
of the interpolated Lagrange polynomials over the time
interval [35]. The pseudospectral method is an established
direct optimization technique suitable for low-thrust
trajectory design [36, 37]. Thus, the continuous-time
optimal control problem is transformed into a finite-
dimensional NLP problem. The pseudospectral method
provides a compact and simple formulation of dynamic
constraints, which is leveraged to transcribe the optimal
control problem into a quadratic problem with linearized
constraints. Subsequently, the binary representation
of the real-valued variables is transformed into the

QUBO form. The resulting QUBO problem is solved
using QA to determine the optimal binary variables
that minimize the cost function while satisfying the
imposed constraints. A sequential optimization approach
is employed in which the solution obtained from one
iteration is used as the reference trajectory for the next
iteration, gradually improving the optimization process.
The proposed transcription procedure is tested in a low-
thrust Earth—Mars transfer—a relatively simple problem
chosen because it is commonly used to test new methods
and techniques, and can be simplified and implemented
on existing quantum annealers.

The remainder of this paper is structured as follows.
Section 2 provides a summary description of QA. Section
3 presents an overview of the proposed transcription
procedure and explains the mathematical formulation
of the problem, including its cost function and relevant
constraints. Section 4 presents the low-thrust Earth—
Mars transfer problem with the relevant assumptions
used to implement it on a quantum annealer. Section 5
discusses the results of the transcription procedure and
optimization, where both full-quantum and hybrid solvers
are explored. Finally, Section 6 concludes the paper and
discusses potential future research directions in the field
of QA for trajectory optimization.

2 Quantum annealing optimization

To present a concept based on QA, we introduce the
Hamiltonian of a quantum system and its eigenstates.
The Hamiltonian is an operator—an object that in
quantum mechanics represents a physical quantity—in
this case, energy. Every operator gives rise to the so-called
eigenvalue problem in the form

where |1),,) is the state of the system satisfying the
equation (the Dirac “ket” notation is used, expressing a
quantum state in the brackets |-)), H is the Hamiltonian,
and FE, is the n-th eigenvalue. The eigenvalue F,, is a
physical interpretation of one of the possible values of
energy that the system can have after a measurement,
and [¢,) is the state of the system that corresponds to
that energy, called an eigenvector or eigensate. Among all
the possible energy values, one that is lower than all the
others is called the ground state, and it is the minimum
possible energy value of the system.
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The system evolution in time is given by the
Schrodinger equation, where the Hamiltonian has a
central role. If the system is at the start of evolution
in one of the energy eigenstates, it remains in that state
every subsequent time, provided that the Hamiltonian is
constant in time. The Schrodinger equation is

o)

S = H ) e)

where |¥) is the system state, i is an imaginary unit,
h = h/27, and h is Planck’s constant.

When H varies over time, the situation becomes more
complicated. However, the quantum adiabatic theorem
provides insight into the time evolution of a slowly varying
system.

The quantum adiabatic theorem states that if a system
is in the nth eigenstate of the Hamiltonian H(0) at time
t = 0, and if the Hamiltonian changes sufficiently slowly
in time, then the system will remain in the nth eigenstate
of the instantaneous Hamiltonian H(t) [32]. Therefore,
for each t, the system state is a solution to the eigenvalue
equation in Eq. (3):

This implies that if the system is prepared in an eigenstate
(for example, the ground state) at the end of the
evolution, it will be in the corresponding eigenstate of
the final Hamiltonian.

From the adiabatic evolution, it is easy to infer that
the QAC framework, of which QA belongs, naturally
accommodates optimization problems. If the cost function
corresponds to the energy of a Hamiltonian, then it is in
the ground state, where the minimum energy value is the
global optimum of the cost function.

A quantum annealer is composed of a network of qubits,
and for such a quantum system, the Hamiltonian can be
written as a matrix with dimensions 2™ x 2" if n is the
number of qubits. The optimization procedure starts by
preparing the systems in the ground state of a simple
Hamiltonian, called the Hamiltonian driver (Hp). The
optimization problem is encoded in the energy eigenvalues
of a Hamiltonian problem Hp. Then, the system is evolved
adiabatically from Hp to Hp, so that the system state
at the end of the evolution is the ground state of the
Hamiltonian problem. Finally, to obtain the solution, the
qubits of the register are measured. Eq. (4) shows a linear
interpolation between Hp and Hp, and Eq. (5) shows the
eigenvalues equation at the start and end of the annealing
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process. In general, the interpolation between Hp and
Hp may also be nonlinear with the general functions
A(t/T) and B(t/T) such that A(0) =1, B(0) =0, and
A(l)=0, B(1)=1.
t t
H(t)=11- = |H —H, 4
(0= (1= 7)o+ 0

t=[0,T
Hp |[v0,p) = Eop [%o,p) 07]

Hp |¢o,p) = Eop [Yo,p)
(5)

The driver Hamiltonian is related to the fully

symmetric state of the quantum register |1g), where all

qubits in superposition and all qubit configurations are
equally probable and have the same energy, as Eq. (6):

= .
lvo0,p) = |¢s) = WD ; |4) (6)

The velocity of the adiabatic evolution, that is, how
slowly the Hamiltonian must change, is related to the
minimum energy gap, which is the minimum difference
between the evolution of the ground state energy and
the first excited state. When the gap is small and the
evolution is too fast, the system may jump from the
ground state to the upper state, and the computation
results in a suboptimal value. This condition can be

expressed by
(w1 F0) o (1)) | < PO 7

Therefore, by calling g, the minimum energy gap, the
annealing time is of the order of T'= O(1/¢2,,)-

Figure 1 illustrates the above physical concepts,
where the energy levels of the two Hamiltonians are
schematically represented. Given the capability of
transcribing the cost function values of the optimization
problem into the energy values of Hp and that the
annealing process can start at the minimum energy level
of the Hamiltonian Hp, adiabatic evolution allows the
path between the two problems to remain at the minimum
energy level. In Fig. 1, this transition is represented by
the blue line connecting the two ground states, while
the bar below shows the initial state (Eq. (7)) and final
solution for optimization. In the figure, the minimum
energy gap dictates the time required for QA to be
considered adiabatic. In fact, at time ¢, during evolution,
the ground state and first excited states are the closest.

The optimization problem that can be solved by QA
has a specific structure and quantum annealers have
been built to implement this structure. The problem has
two equivalent formulations: the Ising model inherited
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Fig. 1 Adiabatic evolution and annealing process.

from the physics of spin glasses and QUBO from the

combinatorial optimization field [38].

e The Ising model is commonly used in physics and
statistical mechanics to represent certain physical

In this model,

configuration of a system of interacting spins must

systems. the minimum energy
be found. Let us consider an Ising model with n spins,
denoted as s = (s1,82, -+ ,8,), where each spin can

be in the states +1 (up) or —1 (down). The energy of

>

i<j,(i,4) €€

the Ising model is given by

Ei(s) = Z his; + bi;jsis; (8)
i

where h; and b;; are the linear coupling coefficients for
the individual and pairs of spins, respectively. The first
sum takes into account the energy associated with the
individual spin states, while the second sum represents
the energy due to interactions between spins. The set
of interacting spins is £.

e QUBO uses a quadratic function of binary variables.
Consider a problem with n binary variables, denoted
as z = (21,292, , 2n), where each z; value can be 0 or

1. The objective is to minimize the quadratic function

in Eq. (9):

Eg(z)=2"Qz = Z Z Qijzi%j

i=1 j=1

9)

where 27T is the transpose of the binary variable vector

z and @ is an n X n matrix of coefficients. The goal

is to find the binary values of z; that minimize the

quadratic function Eg(z).

Eqs. (8), and (9) are strictly related through the
transformation z; = (s; + 1)/2, which maps the Ising
spins (s;) to binary variables (z;). In particular, in the
Ising model, the linear coupling coefficients (h;) are
transformed into diagonal components of the matrix @
in the QUBO, whereas the coupling coefficients for spin

pairs (b;;) are represented by off-diagonal components.
The Ising model and QUBO provide powerful
mathematical frameworks for representing and solving
optimization problems. However, they are mathematical
abstractions that facilitate the expression of optimization
problems in a convenient and general format, and
to implement these formulations in physical quantum
computers, additional challenges stemming from the
physical constraints imposed by the underlying qubit
lattice must be addressed. These challenges include
the physical qubits, which are arranged in a specific
connectivity pattern or topology to form a lattice
structure, and current annealers, which have limited
connectivity between qubits; therefore, an arbitrary
QUBO or Ising problem does not match the topology
of a specific machine. To overcome these challenges, an
embedding technique was employed, which was adapted
for the working graph of the annealer by forming
chains of qubits to create the required connections.
Thus, the working graph includes a logical graph that
includes the connection of the QUBO/Ising problem to
be solved and a physical graph that represents the actual
connectivity of the annealer. If a logical variable in a
problem requires interactions between qubits that are not
directly connected in a physical lattice, an embedding
technique may create a chain by connecting multiple
qubits in series. Figure 2 shows a logical graph with
three interacting variables (represented as circles), where
variable 1 interacts with variables 3 and 4. However,
the physical graph on the right does not provide a
direct connection between qubits 1 and 4. Therefore,
an embedding can create a chain including qubits 2
and 4 such that connections 1-4 can be implemented by
exploiting connections 1-2 and 2—4, with qubit 2 acting
as a bridge. Although the logical problem includes three
variables, the embedded problem must use four qubits,
Y EZEL L
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Fig. 2 Simple embedding procedure. Embedding connects
qubits 1 and 4 by creating a chain with qubit 2.

and the embedding procedure increases the number of
qubits required to implement the problem. Consequently,
a problem that requires embedding could require an
annealer with a number of qubits that is much larger
than the number of variables.

Thus, the embedding procedure in QA solves the
generic QUBO problem even if it does not match the
annealer topology, but it uses more qubits than the logical
binary variables of the problem. Moreover, if the chains
are long, there may be an increased susceptibility to noise
and error. This susceptibility arises because some chains
may break, creating a discrepancy between the logical
problem and annealer.

The D-Wave system is a commercialized quantum
annealer [39]. Several options are available to users
who wish to employ D-Wave quantum annealers
to tackle optimization problems with the different
available samplers. Full-quantum solvers, called quantum
processing units, tackle a user-provided QUBO problem
directly on a quantum annealer, but embedding is
required and these solvers have size limitations. Quantum-
classical hybrid solvers combine classical algorithms
with quantum processing, and are better suited for
more complex optimization problems because the size
limitations are much larger. These solvers employ classical
algorithms to preprocess the problem before leveraging
its quantum-processing capabilities to complete the
optimization process.

3 Transcription procedure

To implement a trajectory optimization problem with a
quantum annealer, a suitable transcription must be found
such that the optimal control problem can be transformed
into an equivalent binary optimization problem in the
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QUBO form; therefore, a transcription procedure is
proposed in this section. This procedure can be applied to
a wide range of optimal-control problems. Its limitations,
as discussed, are due to the necessity of obtaining a
QUBO structure.

In general, trajectory optimization, or optimal control,
is a fundamental problem in control theory that deals
with finding the optimal control inputs that guide a
system from an initial state to a desired final state while
minimizing a specified cost function and satisfying a set
of constraints of various types. In trajectory optimal
control, the cost function is typically expressed in the
Bolza form as Eq. (10):

J = x(xo, @, to, tr) + /tf L(x(t),u(t), t)dt (10)

to

where x(t) is the system state at time ¢, u(t) denotes
the control, ¢y is the initial time, xg is the initial state,
te is the final time, and @y is the final state. The optimal
trajectory control problem involves satisfying a set of
constraints that can include dynamic, terminal, and path
constraints. Dynamic constraints capture the dynamic
behavior of the system and ensure that the state and
control input of the system obey the relevant equations
of motion. Therefore, these constraints have a differential
form as Eq. (11):

w(t) = f(x(t), u(t),t) (11)
where f is the system dynamics. Terminal constraints
express a relationship that depends on the state and must
be verified at the initial and final times. In this study, to
impose the initial and final states that the system must
attain, they are expressed as

x(ty) =
(to) = 2

$(tf) = It
Path constraints are active throughout the entire
trajectory. In general, they can be defined as inequalities

and are typically expressed as

h(z(t), u(t),1) < 0 (13)
The path constraints express the common boundary
constraints on the state and control, which express the

state and control variables as belonging to a determined
limited space, as Eq. (14):

Lmin < €T < Lmax (14)
u <

Umin < Umax

To solve the optimal control problem, a control law that
minimizes the cost function while satisfying all constraints
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must be determined. In the context of direct optimization,
the pseudospectral method is a known and successful
technique, belonging to the collocation-based methods.
The pseudospectral method discretizes the trajectory by
representing the state and control variables as the sum of
interpolated Lagrange polynomials over a time interval
[36]. Thus, the continuous-time optimal control problem
is transformed into a finite-dimensional NLP problem.
The Lagrange polynomial ¢; is expressed as

T—1T0 T —T1
o) - (122 (222
Ti —T0 T —T1
T —Ti—1 T — Ti4+1 T—TN (15)
Ti — Ti—1 Ti — Ti+1 Ti —TN

The Lagrange polynomial is expressed over a non-

dimensional time interval 7 € [—1, 1], and if it is evaluated
at one of the points 7;, denoted as nodes, it is equal to
zero or one, as Eq. (16):

¢i(7-j) = 61‘,]' s lfj S {O,l,'” ,N}

Considering a dynamic system of state & with

(16)

dimension d, and control w with dimension d,, the
interpolation for the state and control over N + 1 nodes
or interpolation points is given by

N N
o(r) =Y ¢i(m)mi, u(r) =Y ¢i(r)u; (17)
=0 =0

Note that the number of nodes is related to the degree
of the overall polynomial.

For interpolation points in the interval [—1,1], there
are some common choices with suitable quadrature
properties, where these set of points are obtained as
roots of Legendre polynomials or of their derivative [40].
Legendre-Gauss points (LG) are the most commonly
used, which correspond to the roots of the Nth degree
Legendre polynomial. They do not include the extreme
points —1 and 1. The Legendre-Gauss-Radau (LGR)
roots are py (7)+pn—1(7), where py (7) is the Nth degree
Legendre polynomial. These include only initial or final
points. The Legendr—Gauss—Lobatto (LGL) are the roots
of py_1(7), with the addition of the extreme points —1
and 1. In this study, the LGL points are considered
because they include both terminal points; therefore, for
a Lagrange polynomial of degree N, there are N + 1
collocation points.

To enforce the dynamic constraints, the continuous-
time differential equations are transformed into a finite
set of algebraic equality constraints imposed at the nodes.
This transformation is achieved by evaluating the system

dynamics (Eq. (11)) for each node, where the resulting
constraints link the state and control variables at adjacent
nodes, effectively capturing the dynamic behavior of the
system throughout the trajectory, as Eq. (18):

. S Atg
©(1j) =Y @igi(rj) = — F@j u5,75) (18)
=0

where At¢/2 = (tf — to)/2 appears because the time
interval is normalized by [—1,1]. Eq. (18) is an equality
between vectors of dimension d and the number of
state variables. There are N + 1 of such equalities that
constitute the set of dynamics constraints, which can be
expressed compactly in matrix form, as Eq. (19):

(Z:SO,OIdm (i}l,ofdx d:)N,OIdw o
dola, 111a, onla, T
donla, d1nla, dnnla,] L®EN

f($07u0,7'0)
_ % f(mh:u'laTl) (19)
.f(anﬂ.iN,TN)

At
Dyt Xior = Tme(Xm, Usot) (20)

where I is an identity matrix of dimensions d, and éj,i =
$i(7;). The matrices in Eq. (20) depend on the variable
Xiot, which includes all the state vectors at the nodes
and is therefore a vector of dimension d,(N + 1), and
Usiot, which is analogous to a vector composed of all the
control vectors at the nodes and has dimension d,, (N +1).

Before including Eq. (20) as a constraint in the
QUBO problem, two steps are required: linearizing
Fiot and representing the variables of the problem
Xiot, Utot as binary variables Zi;. Dynamic linearization
is expressed as

fl@,u,7) = f(@,0,7) + Ai(x — &) + Bi(u — ;)
(21)
Because the linearization is realized around a reference
point &, u, a reference trajectory that can coincide with
the first guess is required.
The linearized constraints (A¢ot) are expressed in the
matrix form:

At
Ato‘c = DtotXtot - !

T[AtotXtot + BiotUsot
~ A~ A, !
— (Aot Xtot + BrotUtot — Fiot)] =0 (22)

where the matricies Atot, Biot are composed of the Ai =

(0F /02)|a;, Bi = (0f /0u)

w; Sub-matricies with a block-

NEZE LX) Springer

7" Tsinghua University Press




202

F. De Grossi, A. Carbone, D. Spiller, et al.

diagonal structure. The terms in parentheses on the right
side of Eq. (22
reference trajectory pointS—E.

) includes the known terms linked to the

Suppose that the cost indices in Eq. (10) is reduced to

so= [ ui?

where the objective is to minimize the control over

u(r)dr = UgtUtot (23)

the time interval 7 € [—1,1] and Lagrange polynomial
interpolation is employed. The constraints expressed in
Eq. (22) can be enforced using a penalty strategy, leading
to a comprehensive cost function as Eq. (24):

J=c UL Uit + P AL Aoy (24)

where ¢, and P are the opportune weights for the
control minimization and constraint satisfaction terms,
respectively.

By stacking the variables in a single array Yioz =
[Xior
highlight the dependence on the optimization variables,
as Eq. (25):

UZL.]T, the constraints A can be written to

At 5
AloiAior = Yi5QaYior + 24" Yier + ( 2f> b"b (25)

where the matrix Qa and vector ¢ depend on the
matrices and vectors Diot, Atot, Brot, b by simple matrix
multiplication operations. The cost function is therefore
expressed as

J =Y CuYior

Aty
+ P|Yi5:QaYi0t + 27 Ytot+< 5 ) bTb} (26)

where Cy is a diagonal matrix whose first d, (N + 1)
diagonal elements are null (corresponding to the Xios
variables) and the remaining are equal to the weight
value ¢, (corresponding to Usot).

In the formulation above, both the initial and final
states, xg, «, are free optimization variables; therefore,
additional terms should be added to the cost function to
impose the terminal constraints. Otherwise, the terminal
constraints cannot be included because xq, Ty is fixed
and therefore excluded from the X, vector of the
zy_q]"
which differs from X;.; because it lacks initial and final

)

state variables. In this case, let Xiot = [sch e

states, and has d,(N — 1) components. Additionally,
the number of dynamic constraints remains equal to
d.(N + 1). In matrix form, the dynamical constraints
b~ecome Diot Xtot + bre = (At /2) Frot (Xtot Usot), where
Dyt is modified by excluding the first and last d,
(B T % 2 2 e AN Springer
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columns, which are part of an additional known term brc
that is related to the xo, xy fixed nodes, as Eq. (27):

_¢;1,0de (Z:SQ,OIdw (Z}Nfl,OIdz
. d11la,  P2114, on—1,114,
Dtot - : . . )
_(i)l,NIdm éQ,NId, éN—l,NIdx
i G}o,o-’ﬂo + ¢:>N,033N
$0,1T0 + ON1TN
brc = ) (27)
_d.)O,NCBO + d)N,NﬁcN

The size of the Do matrix is d, (N +1) xdy(N-1).
The Aot expression can be rewritten as

L Atg
Aot = Dot Xiot — —— <AtotXtot + Biot Utot)

At
(fb + bTC)

The cost function J can be redefined in an equivalent

(28)

way, as Eq. (29):

J = VICuTi + P [f/gt@mot 2 Vi

At T /At
+ (fb+ch) (be+ch>]

The matrix and vector Q A, G are obtained analogously
and depend on [)tot, Atot, Biot, I; brc. With respect to
Aoty Agor 18 a dy(N +1) x dyp(N —
the first and last d, columns. The vector of variables
Yier = [XE, UELT contains dy(N — 1) + dy(N + 1)
real-valued components.

To obtain the QUBO formulation, each real variable
must be expressed using ny, binary variables. In this case,

(29)

1) matrix that lacks

the boundary constraints in Eq. (14) should be imposed.
Therefore, a fixed-point binary representation is sought
such that the maximum and minimum real values that
can be represented correspond to the boundaries of each
state and control the real variables. When every z; = 0,
Y = Ymin a0d 2x = 1, ¥ = Ymax, We express the real
variable y as Eq. (30):
np—1
ymax

— Ymin Z 2kzk = Ymin

Y = Ymin + onn _ 1
k=0

o e I g T2 with 2 = {0, 1)

The complete Yio or Ytot is expressed in terms of all

(30)

NpNreal binary variables collected in the vector Ziot, as
Eq. (31):

Kot = Ymin + GZtot (31)
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where the matrix G has a size Npeal X NpNreal and is

defined by
1
T
(ymaxl — Ymin, )gT 0 e 0
0 (Ymaxe — Yming )G -+ 0
0 0 * Umaaynyy ~ Yming ) 9

(32)

By substituting Eq. (31) into Egs. (26) and (29), an

expression for the cost function in terms of the binary
variables Zi.; is obtained as

J=2ZY LZi + M  Zyot + N = ZE L' Zioy + N (33)

where L is the matrix of quadratic terms, m is the vector
of linear terms, and N is a constant. Because, for binary
variables 27 = z, the linear term is included in the
quadratic matrix, the formulation on the right-hand side
of Eq. (33), with L' = L + diag(m), and the constant N
can be ignored for optimization purposes.

The methodology described above allows the linearized
trajectory optimization to be formulated as a QUBO
problem, where the objective is to minimize the control
employed, and dynamical and boundary constraints are
included. As shown in Fig. 3, a sequential approach is used
to generalize the method and alleviate the linearization
using a reference trajectory [XT, UT,]T around which
the dynamics are linearized. Subsequently, the QUBO
problem is solved and the solution is used as a new
reference trajectory, which in turn gives a new QUBO.
This process is repeated until an optimal solution is
achieved. Because the boundaries play an important
role in guiding the sequential optimization process, they

Xy
"

State boundaries

New trajectory
Reference trajectory

Xo

Fig. 3 Visualization of two sequential iteration during
QUBO-based optimization procedure with initial and final
state fixed and boundaries visualized as circles.

must be chosen such that the linear dynamics is a good
approximation of the nonlinear dynamics. To do this,
several strategies can be implemented by varying the
boundaries during the process.

In the transcription procedure, the flight time Ay must
be fixed because the optimization must be reduced to
the QUBO form. In fact, if Ats is a variable, it is Xio¢
multiplied by Uyt in Eq. (22), causing AL, A¢or to have
fourth-degree terms, which in turn causes the binary cost
function to be a fourth-order binary polynomial with
interacting triplets and quartets of binary variables.
Earth—Mars

4 Low-thrust transfer

problem

In this section, the Earth—Mars transfer problem with
continuous thrust is presented as the central test case for
the proposed transcription procedure and optimization
by QA. The Earth-Mars transfer is a classical and well-
studied trajectory optimization problem found in the
literature for many different declinations and is often
used to test new algorithms and techniques. In this study,
the dimensions of the direct optimization problem must
be sufficiently reduced so that it can be implemented
on a quantum annealer. Current machines can only
deal with a limited number of (binary) variables and
interactions between the variables. Therefore, a series
of simplifications were considered to reduce the binary
variables required to represent the problem.

First, the orbits of the Earth and Mars were considered
circular and coplanar, respectively, assuming that their
orbital planes align precisely; therefore, the transfer
problem was planar, with a state vector composed of
four variables. Furthermore, two-body dynamics were
considered, as they are customary in the preliminary
interplanetary trajectory design. The equations of motion
are expressed in Eq. (34) and expressed in polar
coordinates. r, #, v,, and vy are the radial distance
from the Sun, angular position, and radial and angular
velocities, respectively. pug = GM, where G is the
universal gravitational constant and M is the mass of
the Sun. uw, and ug are the accelerations given by the
thrust and represent the controls of the optimal control
problem. The variables are non-dimensional in such a
way that the astronomical unit is the unit length and

ps = 1.
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6="22
r
2
7.)7‘ = _IU/*S + ,Ui + Uy
r r
Bp = — 0 1y (34)
The boundary conditions are expressed by
7(to) = R, v(to) =0, wp(to) = Vi (35)
r(te) = Ry, vp(te) =0,  wp(te) =Vt

where Rg and Ry are the radial distances of the Earth
and Mars, and Vg and Vj are the orbital velocities of
the Earth and Mars, respectively.

Because we aimed to determine the minimum-fuel
trajectory that enabled the spacecraft to transition from
Earth’s orbit to Mar’s orbit, the cost function, in line
with the transcription procedure described in Section 3,
assumes the form in Eq. (36):

J:/f(ur(t)Q—l—ug(t)z)dt:/fu(t)Tu(t)dt (36)

to to
Furthermore, boundary inequality constraints on the
state and control variables were added, as shown in
Eq. (14):

Note that the state variable 6 does not appear in the
terminal constraints (the trajectory can end at any point
on Mars’ orbit) or in the cost function; therefore, it was
excluded from the optimization problem.

Subsequently, the angular position can be computed
from the optimal trajectory by integrating only 6 =
vg(t)/r(t) given r(t) and vg(t). Therefore, the number of
state variables was reduced to d, = 3 and the number of
control variables was d,, = 2. Once the number of nodes
of the direct transcription and bits per real variable were
defined, the total number of real and binary variables
were computed as described in Section 3.

In addition to the planar, circular, and two-body
dynamic hypotheses mentioned previously, the following
simplifications were considered:

(1) The trajectory optimization was considered with a
fixed time of flight ¢¢ since, as mentioned in Section 3,
considering it an optimization variable would result in a
nonquadratic cost function expression.

(2) The spacecraft mass was considered constant to
avoid including either an additional state variable or
increasing the non-linearity of the problem. Low-thrust
high specific impulse propulsion was considered, which
justifies the assumption.

(3) As implied by the way in which the boundary
constraints on u are expressed in Eq. (14), the control

¥ A 2 it ) Springer
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variables are u,, ug and were considered individually
bounded. Therefore, u was not bounded at every time
but rather each component of the vector. This was done
to avoid including a nonlinear inequality constraint on
the norm of the control, which would be more difficult
to handle.

Furthermore, the initial and final points &g and x
were fixed, as explained in the previous section, allowing
the implicit inclusion of terminal constraints in Ay and
reducing the overall number of variables.

The particular instance of the problem considered in
this study had an admissible maximum acceleration value
of 10=* m/s?, which corresponds to 10 mN for every 100
kg of mass, and a fixed time of flight of 2 yr.

By employing the transcription procedure, the Earth—
Mars transfer problem was translated into the QUBO
form, where its size depended on the nodes and ny, values
chosen, while its sparsity was determined partly by the
intrinsic structure of the pseudo-spectral formulation and
partly by the specific problem dynamics.

As described in Section 2, a quantum annealer is
composed of a lattice of interconnected qubits based
on a precise topology. When encoding a general QUBO
onto a quantum annealer, the total number of available
qubits, which limits the maximum number of binary
variables, and the total number of interconnections, which
limits the maximum number of quadratic terms or off-
diagonal nonzero elements in the QUBO matrix, must be
considered. The quantum annealer employed during the
development of this study was the D-Wave Advantage
[41], which has approximately 5000 qubits available for
computation and a topology called Pegasus, where each
qubit is connected to another 15, with approximately
35,000 interconnections.

Table 1 shows the number of nonzero quadratic
elements of the QUBO matrix with varying N (degree of
polynomial) and ny, (number of bits for the real variable)
for the problem described. It appears that only a small
number of nodes and bits are valid. Furthermore, the
problem size that can be implemented practically is below
the maximum number of annealer connections. In fact,
there is an embedding process to consider because it
creates chains of qubits that are natively connected in the
annealer working graph, and not all 35,000 connections
can be directly exploited. With the D-Wave Advantage,
embedding can be performed using automatic heuristic
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algorithms, as shown in Table 1, and the problems with
embedding are highlighted in bold and blue.

Considering the value of the number of nodes
that appear in Table 1 for the Earth-Mars transfer
problem, the pseudospectral method allows interpolated
trajectories to be obtained with sufficient precision, even
with a low N, owing to the difference between the
interpolated and numerically propagated trajectories,
both with the same control history. Note that because
the initial and final points are fixed, the interpolated
trajectory always starts and ends precisely at the terminal
points g and x . If the problem is properly solved and
the dynamical constraints, given by Ay, are satisfied,
then the numerically propagated trajectory will terminate
at the final point, in general, with an error determined by
how well Ayt are satisfied and how well the polynomial
interpolation approximates the real dynamics. Therefore,
the final error between the numerically propagated
trajectory and the required final state can be considered
a metric of the convergence quality of a solution.

For example, the transfer solved using traditional

methods (with real variables, the full nonlinear problem,
and an NLP problem commercial solver), where N = 7, is
shown in Fig. 4). The final errors between the propagated
and desired final states were Ar = 60 x 10% km, Av, = 3
m/s, and Avy = 6 m/s. The difference between the
interpolated and propagated trajectories remained in the
order of 10~ in nondimensional units. AV, computed as
the integral of the norm of u, was 6640 m/s.

5 Results and discussion

In this section, the Earth—Mars transfer problem with
the QUBO transcription is addressed using the samplers
available through the D-Wave cloud service “Leap” [42].
D-Wave systems provide a cloud-computing platform for
accessing quantum computers, where users can interact
with quantum processors utilizing their Python-based
SDK, called Ocean. Through this service, it is possible
to access the advantageous QA chip as well as hybrid
solvers. Leap allows for the programming of a QUBO
problem fairly easily through the Python interface. Once
the QUBO is properly defined, a solver (or sampler)

Table 1 Number of off-diagonal elements of QUBO matrix for different values of nodes and bits. Values below 35,000 are
highlighted in green and italics, and values with embedding are highlighted in blue and bold

ny = 6 n, =7 n, = 8 n, =9 ny = 10 n, = 11 ny = 12
N =4 6300 8575 11,200 14,175 17,500 21,175 25,200
N=5 10,224 13,916 18,176 23,004 28,400 34,364 40,896
N =6 15,084 20,531 26,816 33,939 41,900 50,699 60,336
N=T 20,880 28,420 37,120 46,980 58,000 70,180 83,520
N =28 27,612 37,583 49,088 62,127 76,700 92,807 110,448
N=9 35,280 48,020 62,720 79,380 98,000 118,580 141,120
N =10 43,884 59,731 78,016 98,739 121,900 147,499 175,536
s ' ' Tlrar}s—fer trajf:izt()'ry 0.02 Conltrol hisfory
W 0.015}
0.01
0.5 1
g £ 0.005
g 0 1 &
= e of
0.5 17
—0.005
-1 ~0.01}
15l L hee e . .

-1.5 -1 -05 0 0.5 1 1.5
x (ndim.)

—0.015 - . . - . .
0 2 4 6 8 10 12 14
Time (ndim.)

Fig. 4 Classical solution with NV = 7. Trajectory shown on left, where red circles represent node positions. Control history of

u, and ug shown on right, where circles represent nodes.
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sends the problem to the quantum annealer. Once the
annealer finishes its computation, the result is sent back
to the user and post-processed again through the Python
interface. While basic access is typically free (limited
to one minute per month), costs may apply for larger
computations or extended usage. This platform offers
developers a convenient means of harnessing QC power
for optimization problems.

First, the results with hybrid solvers are presented,
followed by a consideration of the number of iterations
and computational time, and a comparison with the
traditional solution. The results obtained using QPU are
then presented and discussed, focusing on the current
limitations of quantum annealers and comparisons with
classical and hybrid solutions. The quantities of interest
for classifying and assessing the solutions are the number
of nodes N, number of bits per real variable ny, and
starting guess, as well as the following:

Final error: the error between the desired final state
and the trajectory numerically propagated with the
control obtained from the optimization process. This
is a measure of the feasibility of the found solution
and whether the optimization converges.

Delta V: the integrated norm of the control over the
flight time. This is equivalent to the optimization
objective, which is a measure of the cost of the
propellant trajectory.

Number of iterations: the number of linearized
QUBO problems that have been solved prior to
convergence.

Optimization time: the time required for the solution
of each iteration, obtained directly from the time
employed by the D-Wave solver.

‘Wall time: the total time measured for each iteration.
Different from the optimization time, it also includes
the time required to re-elaborate the optimizer
output and the internet delay to access the solver
and retrieve the results. Furthermore, it is dependent
on the computer on which the code is run. In our
case, it was run on the Leap cloud.

5.1 Hybrid results
In general, it was found that through the hybrid

solver, the problem was easily solved, and the solutions
obtained were comparable to those of the traditional
solver. The sampler employed for these cases was the
“LeapHybridSampler”. The first solution presented had
(B %4 % i &) Springer
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N = 7 and ny, = 10 for 340 binary variables. First,
the trajectory was considered to have the following
control law with purely tangential thrust: w,.(t) = 0,
ug(t) = Umax, Which is a basic estimate that produces
a good starting point. A plot of the first estimated
trajectory is shown in Fig. 5.

15F

y (ndim.)
S

—15L . . el oo . . i
-1.5 -1 -05 0 0.5 1 1.5
x (ndim.)

Fig. 5 First guess trajectory with u-(t) = 0, ug(t) = Umax-

The
converging after a few iterations. Here, the solution
presented has six iterations, AV = 6577.16 m/s, and
final errors of Ar = 75 x 10® km, Av, = 14.8 m/s, and
Avyg = 5.3 m/s. The optimization time of the hybrid
sampler can be considered fixed at 3 s per iteration

hybrid solver was consistently capable of

with minimal variations, which is a parameter of the
solver and, for the current problem, cannot be reduced
by the user. The wall time remained almost constant at
approximately 10 s/iteration. The trajectory and control
histories are presented in Fig. 6.

To test the capability of the hybrid solver to converge
with a more difficult starting guess, the first guess, in
which the control was set to zero for the entire flight
duration, was set to u,(t) = 0, ug(t) = 0. Therefore, the
resulting starting trajectory remained along the Earth’s
orbit.

The results show that for this initial guess, which
was far from the solution, the optimization procedure
converged to a trajectory similar to that of the previous
case. However, additional iterations were required. The
presented solution required 13 iterations, AV = 6676.38
m/s, and the final errors were Ar = 27 x 10° km, Av, =
17.7 m/s, and Avg = 1.8 m/s. The optimization and wall
times were comparable to the previous case for every
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iteration. The trajectory and control histories are shown
in Fig. 7.

The results of Figs. 6 and 7 highlight the importance
of setting boundary constraints for the state variables
and control. In fact, Tmin, Tmax, Wmin, and Uma, are
user-definable parameters with the greatest influence on
the optimization procedure and resulting trajectory. For
example, in the first case, they were chosen as constants
among iterations, with the same upper and lower values
for every state variable (Zmin / max = 0.05, Umin /max =
0.005 in non-dimensional units). Using the same values
for the second case would lead to a slower convergence
because the first guess is far from the actual solution, and
larger search areas allow faster transfer trajectories to be
attained. While it is possible to converge with the “zero
thrust” first guess by setting the boundaries as constant

with adequate values, in the solution shown in Fig. 7, a

boundary reduction strategy was applied. In particular,
a larger value of the state variables was initially chosen,
and was later reduced when the cost function no longer
decreased from one iteration to the next, thus allowing
a faster initial search, followed by a tighter and more
accurate search. This strategy proved to be useful for
QPU solutions, as discussed in Section 5.2.

5.2 QPU results

As shown in Table 1, when using the QPU sampler of
D-Wave, the dimensions of the implementable problem
are significantly constrained. Furthermore, the found
embeddings are characterized by long chains; for example,
for N =4, n, =7 and N = 5, np, = 8, the maximum
chain lengths are 22 and 29, respectively. Subsequently,
the problem quickly becomes too large, and it is no longer
possible to find an embedding.

1.5 1
0.015 1
1 4
0.01 1
°u,
0.5 oy
0.005 1
~ 01 =
O 4
03 ~0.005
- ~0.01 -
—1.51 ~0.015
-1.5 -1 05 0 0.5 1 1.5 0 2 4 6 8 10 12
x t
(a) Trajectory (b) Control history
Fig. 6 Hybrid solution with N = 7, ny, = 10. Circles represent nodes positions.
1.5 1
0.015 1
1 4
0.01 1
0.5
0.005 4
=~ 01 3
O 4
0 ~0.005 1
] Mr
11 ou
—0.01 - 0
e I -0.0151_, , , , , ,
-1.5 -1 05 0 0.5 1 1.5 0 4 6 8 10 12
X t
(a) Trajectory (b) Control history

Fig. 7 Hybrid solution with N =7, n, = 10 and “zero thrust” starting guess. Circles represent nodes positions.
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With the allowed values of N,

approximation of the trajectory starts to lose accuracy,

the polynomial

while the value of ny, requires the real variables to be
bounded quite tightly to obtain a sufficiently precise
binary representation, while long chain lengths are more
likely to break and produce inaccurate solutions.

Considering these limitations due to the capability of
currently available machines, we attempted to solve the
Earth—Mars transfer problem. All results were obtained
using the Advantage 4.1 QPU chip.

First, for N =4, np, = 7, the structure of the ensuing
QUBO problem is shown in Fig. 8, where the y- and
z-axes coordinates represent respectively the columns

and rows of the () matrix, the nonzero elements are

QUBO matrix-N=4, n,=7

20
40

60

Row

80

100

120

0 20 40 60 80 100 120
Column

Fig. 8 Example of QUBO matrix structure for the Earth—
Mars transfer problem.

0.020
1.51
0.015 1
1
0.01 A
0.5
0.005 1
N
e 0 0
0.5 1 ~0.005 1
iy ~0.01
s ~0.015 1

15 -1 05 0 05 1 15
X
(a) Trajectory

highlighted by blue dots, and the null elements are on the
left in white. The sparsity of the matrix, computed as the
number of nonzero elements divided by the total number
of elements, is equal to sg = 0.48, and for the range of
nodes and bits allowed, values of approximately 0.5 are
always obtained. The nonzero elements are not uniformly
distributed: the top-left submatrix is dense, whereas the
bottom-right submatrix is sparse with a block diagonal
structure. This can be related to the structure of the
polynomial interpolation by a term appearing in Qo that
depends on Dy and Ao, and the Cp term given by the
minimization of the control. The top-right and bottom-
left submatrices are given by mixed terms that depend
on Dyyt, Atot, and Biot. The matrix structure depends
on the reference trajectory around which linearization is
performed; therefore, its numerical values change from
iteration to iteration, and, in principle, its structure can
vary, although the simulations show that these structural
variations can be ignored.

A solution with N = 4, n, = 7 is shown in Fig. 9,
where the tangential thrust-first estimate is employed.
The number of iterations required in this QPU case was
significantly higher than that of the hybrid solutions,
with 55 sequential QUBO problems. The QPU solutions
were unable to handle the same boundaries of the hybrid
solutions well, and they behaved better with tighter
boundary values. Therefore, the cost function improved
less for each iteration and more iterations were required.
Additionally, a boundary-reduction strategy had to be
applied to improve the solution after a certain point, and
the results show that the boundaries were reduced every
time the cost function did not improve for two iterations

o 2 4 6 8 10 12
t
(b) Control history

Fig. 9 Solution by QPU with N =4, n, = 7. First guess is as in Fig. 5. Circles represent node positions.
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(not necessarily consecutive). The trajectories are shown
in Fig. 9, where two boundary reductions are applied.

Regarding the final errors, acceptable values and full
convergence were more difficult to obtain. In Fig. 9,
the following values are obtained: Ar = 3.2 x 10° km,
Av, = 98.7 m/s, Avyp = 83.9 m/s, and AV = 6333.98
m/s. The optimization time coincides with the time the
Advantage chip was accessed, and it was equal to 54.19
ms for each iteration. The wall time varied in the range
of 2.2-3 s.

Another striking difference from the previous hybrid
cases is the values of the optimization and wall times,
which were approximately 55 and 3 times shorter than
those in the hybrid results, respectively. The rapid
optimization time is strictly related to the annealing
process, which is an important parameter. For the hybrid
solver, there was a comparably short time given by the
access of the solver compared to that of the QPU solver;
however, the classical elaboration and processing of the
problem performed by the solver increased the total
optimization time. The faster optimization per iteration
of the QPU-only solver was partly sacrificed by the higher
number of iterations required, as discussed later.

5.3 Discussion

The differences between the first and third solutions
obtained with the hybrid and full-quantum solvers,
respectively, appear especially in the final error, which is
linked to the satisfaction of the dynamical constraints,
number of iterations, and optimization time required
for each iteration. These two solutions were compared
in terms of the decrease in the cost function value as
the optimization process advanced. A comparison of the
results is presented in Fig. 10, where the three plots,

from left to right, compare the solutions based on the
number of iterations, cumulative optimization time, and
wall time, respectively.

A large difference in the final cost function value
between the two solutions appears immediately, which
reflects their difference in quality and constraint
satisfaction. Although several iterations were executed
from the QPU solution compared to only a few in the
hybrid solution based on the optimization time, the
QPU solution was faster. However, considering the total
wall time, even though it was shorter for a single QPU
iteration, a higher number of iterations resulted in an
longer overall time required to obtain the QPU solution
compared to that of the hybrid solution.

Notably, Fig. 10 compares two QUBO representations
of the Earth—Mars transfer problem with different sizes;
the hybrid solver had 340 binary variables, while the
QPU solver had 133. Therefore, although the plots in
Fig. 10 can be a visual demonstration of the difference
in the current capabilities of the two solvers, the hybrid
method provides a more accurate representation of the
trajectory owing to the higher N and ny,.

A comparison of the same number of variables is shown
in Fig. 11. With respect to Fig. 10, the final values of
the cost function are similar, and the final error of the
hybrid solution is comparable to that of the QP U solution.
Figure 11 shows that a reduction in the dimensions of
the problem has an impact on the solution quality.

Based on the considerations shown in Figs. 10 and 11,
we attempted to solve the problem of the intermediate
dimensions between the two solvers, with N =5, n,, =8
(192 binary variables). In this case, the hybrid solver
was able to achieve better constraint satisfaction in a
few iterations, although it was worse than that shown in
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——QPU —QPU

10! 10! — Hybrid 10! — Hybrid
g
5 100 10° 100
=]
3
é 1071 ¢ 110! 107!

1072 1102 102

1073 - - 1073 1073

0 20 40 60 " 0 5 10 15 20 0 50 100 150

Iteration

Optimization time (s)

Wall time (s)

Fig. 10 Comparison between hybrid solution of Fig. 6 and QPU solution of Fig. 9.
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Fig. 6 and had a higher AV with respect to the previous
results. The QPU solver, based on the final error, did
not improve in the N = 4, n;, = 7 case; it also had
an increased AV, and the cost function continued to
decrease for a very long number of iterations, but with
diminishing returns. The history of the cost function is
presented in Fig. 12 (the wall time plot was omitted)
and the final cost function values are slightly different in
favor of the hybrid solution.

Figure 13 shows the hybrid and QPU solutions for
the last case. The two plots are similar; however, the
QPU solver does not reach the same trajectory as the
hybrid solver owing to a local search issue. The difference
between the two solutions could be because the full-
quantum solver faced greater difficulty when handling
all the variables as embedding requires long chains (a
maximum length of 29) or the overall QUBO problem
was excessively sensitive.

The results are summarized in Table 2, where all the

main features are reported: error, AV cost, iterations,
and optimization and wall times. The table includes the
hybrid and QPU results specifying the number of nodes
and bits. The first two rows differ in the initial guess. In
the last two rows, the full-classical solutions are reported.
In the second-to-last row, the traditional nonlinear and
real-valued solutions are presented, as shown in Section
4; in this case, the optimization was performed using
MATLAB, so the times reported may not be immediately
comparable with the others because a different computing
environment and computer were used. The last row shows
a solution to the QUBO problem obtained with the
simulated annealing (SA) algorithm, which is available as
a solver in the D-Wave Leap. The results were obtained
with an initial point equal to the reference trajectory
and 300 runs of the algorithm for each iteration. The
SA was capable of solving the QUBO problem, with a
performance comparable to that of the hybrid solver, but
with longer optimization and wall times.

102 102 102
— QPU — QPU
—— Hybrid —— Hybrid
10! { 10! { 10
g
E
g 10 1 10° 100}
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Iteration Optimization time (s) Wall time (s)

Fig. 11 Comparison between hybrid solution with N = 4, ny, = 7 and QPU solution of Fig. 9.
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Fig. 12 Comparison between hybrid and QPU solutions with N = 5, ny, = 8. Left plot has a logarithmic scale on z-axis.
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Fig. 13 Control histories for solutions with N =5, n;, = 8
Table 2 Summary of results.
Ar (km) Av, (m/s) Avg (m/s) AV (m/s) Niter Topt (8) WT (s)
Hybrid N =7, n, = 10, Fig. 6 7.5 x 10% 14.8 5.3 6577.16 6 18.0 59.5
Hybrid N =7, n, = 10, Fig. 7 2.7 x 10* 17.7 1.8 6676.38 13 38.9 117.0
Hybrid N =4, n, =7 5.7 x 10° 65.7 92.6 6369.35 4 12.0 394
Hybrid N =5, n, =8 1.9 x 10° 4.9 36.9 7025.64 6 17.9 54.0
QPUN =4, n, =7 3.2 x 10° 98.7 88.9 6333.98 55 3.0 120.42
QPU N =5,np, =38 1.2 x 10° 6.3 63.4 6853.91 201 13.7 612.1
Classical N =7 6.0 x 10* 3.0 6.0 6640.37 — 2.46 2.46
SAN=T7n,=10 1.1 x 10° 7.8 0.9 6434.09 5 57.83 65.11

6 Conclusions

In this study, QA was explored for optimizing spacecraft
trajectories. Because a specific formulation is required
to employ QA, a transcription procedure was proposed
to transform a general trajectory problem into the
QUBO form. The transcription procedure uses the
pseudospectral method, linearization, and the binary
representation of real variables. Using a sequential
approach and starting a reference trajectory, nonlinear
problems can be tackled using this method.

An Earth—Mars low-thrust transfer was considered as
a case study. Employing the D-Wave cloud computing
platform, Leap, to access real quantum annealers, hybrid
and QPU solvers were tested. The hybrid solver used
classical and quantum resources and alleviated the severe
restrictions of full-quantum solvers for the case study.
The QPU solver required the problem dimensions to
be reduced and performed an embedding of the QUBO
problem.

The solutions obtained using the hybrid solver were
promising, returning trajectories comparable to the
classical nonlinear solution of the problem. The hybrid

solver can converge after a few iterations and is robust to
initial guesses that are far from the solution. Although,
in this case study, more iterations were required.

As mentioned previously, QPU solvers are constrained
by the maximum number of variables. With N =4, ny, =
7, equivalent to 133 binary variables, the QPU solver
achieved trajectories that were close to convergence, but
did not reach them entirely, presenting higher final state
errors. Many more iterations were required compared
the hybrid solver, and the cost function decreased more
slowly for each iteration. However, the single iterations
were much faster, and the total optimization time was
shorter. The total wall time, including the communication
time within the cloud and internet latency as well as the
waiting time to access the solvers, was longer. Both time
measures can be considered important in testing the
QA optimization, and the optimization time was more
indicative of the QA /hybrid solver speed, whereas the
wall time provided a measure of the entire process but was
affected by the cloud computing platform characteristics.

A comparison of the hybrid and QPU results shows that
the QPU solver did not achieve complete convergence
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partly because of the reduced problem dimensions as
the hybrid solver reached a similar solution with the
same number of nodes and bits. However, the test results
presented in Fig. 12 indicate that other factors may also
be involved. With 192 binary variables, the hybrid solver
achieved a better solution than the QPU solver, but it
was still worse than that obtained with more variables,
and both presented higher AV costs. Because the hybrid
solver only preprocessed the problem before submitting
smaller instances to the QPU solver, the difference in
behavior can be caused by the difficulties the QPU solver
had when handling the problem as a whole.

In conclusion, the obtained results prove that the
proposed transcription method is valid because it yields
trajectories similar to those of traditional methods.
Furthermore, QA was tested for trajectory optimization
and it was found that the hybrid solver was capable of
reliably solving the test problem. In contrast, the QPU
solver results show that quantum annealers must evolve
further before being considered for this task. However,
the fast optimization time of the single QUBO problem,
in the order of milliseconds, is promising.

Further development of this work can proceed in
several ways. In the transcription procedure, alternatives
with higher QUBO sparsity could be beneficial, and
mixed hp methods could be considered [43]. Direct
collocation methods, such as the Hermite—Simpson and
Gauss—Lobatto methods [36] are also known to lead
to sparser problems; however, the linearized QUBO
formulation is less obvious. In the solvers and application
fields, more complex problems will likely be required
to surpass the linearization need, and a straightforward
way to do so is to test the constrained quadratic model
solver by D-Wave, which is a hybrid solver that allows
the inclusion of a set of quadratic constraints in the
binary optimization problem. Therefore, the dynamical
constraints may possibly be expressed as a second-order
expansion, increasing accuracy. Additionally, a more
general QUBO formulation that avoids linearization can
be provided by an arbitrary high-order expansion of the
dynamics, resulting in a high-order binary polynomial
that can be reduced to a QUBO formulation using
quadratization techniques [28]. This can reduce the
overall order of a binary optimization problem to the
second order; however, this requires adding more binary
variables.
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