
Astrodynamics Vol. 9, No. 2, 195–215, 2025 https://doi.org/10.1007/s42064-024-0216-6

Transcription and optimization of an interplanetary trajectory through

quantum annealing

Federico De Grossi1, Andrea Carbone1(B), Dario Spiller2, Daniele Ottaviani3,

Riccardo Mengoni3, and Christian Circi1

1. Sapienza University of Rome, Rome 00138, Italy

2. School of Aerospace Engineering, Sapienza University of Rome, Rome 00138, Italy

3. CINECA, Casalecchio di Reno, Bologna 40033, Italy

ABSTRACT

This study employed a quantum-annealing framework to solve spacecraft trajectory

optimization problems. Quantum annealing belongs to the field of quantum computing

and is a promising technique for tackling hard binary optimization problems by employing

quantum annealers. To address the optimal control of a trajectory using quantum annealing,

a transcription procedure was introduced to express the problem in the binary optimization

form required. The proposed procedure leverages the pseudospectral method to discretize

the trajectory and represents the dynamical constraints as algebraic equality constraints

at specific nodes. Subsequently, both a linearization procedure and binary representation

strategy for the real-valued variables of the problem were presented, leading to the

quadratic binary unconstrained optimization form. The quantum-annealing-based method

was tested in the context of an interplanetary low-thrust transfer from the Earth to Mars.

First, we discussed which instances of the problem, especially in terms of their dimensions,

are implementable on currently available quantum annealers; then, a solution was sought

by employing annealers from D-Wave systems. Solutions from hybrid solvers that combine

classical and quantum resources, and fully quantum solvers were explored. The results

demonstrate the validity of the transcription approach, demonstrate the ability of the

hybrid solver to tackle the case-study problem, and highlight the promising features and

current limitations of practical trajectory optimization with quantum annealing.
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1 Introduction

The trajectory of a space mission directly affects its

feasibility and design, and it influences various aspects of

the mission-planning process. The design of an optimal

trajectory is essential to ensure that mission objectives

can be met within the given constraints. By carefully

analyzing and optimizing the trajectory, space missions

can be made more efficient, cost-effective, and feasible.

Therefore, trajectory optimization is a crucial aspect of

space mission planning and holds significant importance

in the field of aerospace engineering. Active research has

been conducted to discover new approaches, methods,

and algorithms for trajectory optimization.

In the space engineering community, considerable

attention has been devoted to methods for transcribing

the trajectory design problem into an optimization

problem; hence, traditionally, optimization methods

have been divided into indirect and direct methods

[1, 2]. Indirect methods rely on the theoretical results

from the calculus of variations to derive the necessary

conditions for optimality [3]. These methods involve

expanding the system with costate equations that evolve

over time and transform the problem into a two-point
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boundary-value problem. While indirect methods provide

guaranteed extremal solutions, they have drawbacks

such as sensitivity to initial estimates and convergence

challenges. Conversely, direct methods discretize the

problem, thereby allowing a finite set of parameters to be

optimized. This transforms the problem into a nonlinear

programming (NLP) problem that is solvable using

optimization algorithms. Occasionally, metaheuristic

methods are considered a separate category, although

they are more closely related to the algorithms used to

solve optimization problems. Metaheuristics have also

achieved noteworthy results in the field of spacecraft

trajectory optimization, providing good-quality solutions

to complex problems in a reasonable time [4]. In the

metaheuristic optimization field and partly related to

the quantum computing field, although still classical,

quantum-inspired algorithms have also been found useful

[5, 6].

Over the past two decades, significant advancements

have been made in trajectory optimization methods owing

to increasing computational power and the emergence

of new tools that facilitate implementation. Notably,

the utilization of neural networks has opened new

possibilities and has been applied in various scenarios.

For example, Federici et al. [7] employed reinforcement

learning techniques to autonomously guide a spacecraft

during a mission targeting a binary asteroid. This

approach utilized neural networks for processing optical

observations and demonstrated a notable success rate

in reaching the mission target despite uncertainties.

Similarly, Scorsoglio et al. [8] applied reinforcement meta-

learning techniques combined with hazard detection and

avoidance strategies. Their system relies on both image

and radar data to identify potential hazards and select

secure landing locations. Jiang et al. [9] addressed the

challenges associated with exploring asteroid surfaces

characterized by a complex terrain and irregular gravity.

Their proposed solution deployed hopping rovers and

explored deep reinforcement learning methods for three-

dimensional path planning. Gaudet et al. [10] optimized

an asteroid-hovering controller using reinforcement meta-

learning. This approach allows stable positioning even

when precise asteroid data are not readily available.

The integration of reinforcement learning and meta-

learning methods has demonstrated potential advantages

for achieving optimal outcomes, as discussed in Refs.

[11, 12]. The proposed frameworks were built upon a

combination of particle swarm optimization for trajectory

planning and an extreme learning machine for accurately

estimating asteroid gravitational acceleration. These

advancements have paved the way for more sophisticated

and efficient trajectory optimization techniques.

Quantum computing (QC) is a fundamentally different

model of computation based on the principles of quantum

mechanics, which are known to solve some specific

mathematical problems more quickly (up to exponential

factors) compared to the best-known classical algorithms.

Just as the fundamental unit of information in a

classical computer is the bit, an object that can assume

two values, in a quantum computer, the fundamental

unit is the qubit, which is a quantum system with

only two possible states. Because qubits can exist in

superposition and entangled states, operations that are

impossible for classical computers can be performed.

Owing to these characteristics, quantum computers can

process information in parallel and explore multiple

solutions simultaneously (quantum parallelism) [13].

Some problems for which QC provides an advantage over

classical computers include the factorization of prime

numbers [14], unstructured database search [15], solution

of linear systems of equations [16], and simulation of

quantum systems [17–19]. Research on QC is ongoing,

and many algorithms have been proposed in other areas,

such as differential equations [20], artificial intelligence

and machine learning [21, 22], and optimization [23, 24].

While the above-cited literature mainly concerns gate-

based QC, that is, quantum computers, where the qubits

are manipulated by applying a series of gates, similar

to classical computers, another important model of QC

is the quantum adiabatic computing (QAC) framework.

QAC leverages and drives the natural evolution of a

quantum system to obtain the results for a problem

[25]. Quantum annealing (QA) is an algorithm in the

QAC framework that is particularly well suited for

solving combinatorial optimization problems. During

computation, the system gradually transitions from an

initial state to a low-energy state, resembling the cooling

process in metallurgy, hence the term “annealing”. QA

offers more efficient optimization solutions than classical

optimization algorithms, particularly for large-scale and

complex problems [26].

Although QAC and QA are formulated as optimization

problem solvers, they can be generalized and applied

to various mathematical problems. In fact, they have



Transcription and optimization of an interplanetary trajectory through quantum annealing 197

been proposed for several of the same problems as gate-

based QC, allowing for even faster computations because

quantum annealers can perform computations with a

number of qubits that is approximately one order of

magnitude higher than that of gate-based machines. The

proposed applications of QA include the factorization

of prime numbers [27], polynomial systems of equations

[28], and differential equations [29, 30].

Applying QA to practical engineering problems is

also being researched [31]; however, there are limited

resources available for current quantum annealers. In

the field of aerospace engineering, a few applications of

QA have been proposed such as casting some classes

of artificial intelligence problems as combinatorial [32],

aircraft trajectory deconfliction [33], and agile Earth

observation scheduling for the maximum number of image

acquisitions [34].

Although QA has gained significant attention in

the optimization community, its potential in space

trajectory optimization remains unexplored. Thus, in

this study, a transcription procedure is proposed to

transform a trajectory optimization problem into a

binary optimization problem, specifically a quadratic

unconstrained binary optimization (QUBO) form suitable

for QA computation. The procedure can be applied

to a wide range of optimal control problems that

involve satisfying dynamic, terminal, and path boundary

constraints. Dynamic constraints capture the system

dynamic behavior and ensure that the state and

control inputs obey the relevant equations of motion.

The terminal constraints define the initial and final

states that the system must attain. The boundary

constraints are active throughout the trajectory and

can express limits on the state and control variables.

To apply QA, the pseudospectral method is employed

to discretize the state and control variables as a sum

of the interpolated Lagrange polynomials over the time

interval [35]. The pseudospectral method is an established

direct optimization technique suitable for low-thrust

trajectory design [36, 37]. Thus, the continuous-time

optimal control problem is transformed into a finite-

dimensional NLP problem. The pseudospectral method

provides a compact and simple formulation of dynamic

constraints, which is leveraged to transcribe the optimal

control problem into a quadratic problem with linearized

constraints. Subsequently, the binary representation

of the real-valued variables is transformed into the

QUBO form. The resulting QUBO problem is solved

using QA to determine the optimal binary variables

that minimize the cost function while satisfying the

imposed constraints. A sequential optimization approach

is employed in which the solution obtained from one

iteration is used as the reference trajectory for the next

iteration, gradually improving the optimization process.

The proposed transcription procedure is tested in a low-

thrust Earth–Mars transfer—a relatively simple problem

chosen because it is commonly used to test new methods

and techniques, and can be simplified and implemented

on existing quantum annealers.

The remainder of this paper is structured as follows.

Section 2 provides a summary description of QA. Section

3 presents an overview of the proposed transcription

procedure and explains the mathematical formulation

of the problem, including its cost function and relevant

constraints. Section 4 presents the low-thrust Earth–

Mars transfer problem with the relevant assumptions

used to implement it on a quantum annealer. Section 5

discusses the results of the transcription procedure and

optimization, where both full-quantum and hybrid solvers

are explored. Finally, Section 6 concludes the paper and

discusses potential future research directions in the field

of QA for trajectory optimization.

2 Quantum annealing optimization

To present a concept based on QA, we introduce the

Hamiltonian of a quantum system and its eigenstates.

The Hamiltonian is an operator—an object that in

quantum mechanics represents a physical quantity—in

this case, energy. Every operator gives rise to the so-called

eigenvalue problem in the form

H |ψn〉 = En |ψn〉 (1)

where |ψn〉 is the state of the system satisfying the

equation (the Dirac “ket” notation is used, expressing a

quantum state in the brackets |·〉), H is the Hamiltonian,

and En is the n-th eigenvalue. The eigenvalue En is a

physical interpretation of one of the possible values of

energy that the system can have after a measurement,

and |ψn〉 is the state of the system that corresponds to

that energy, called an eigenvector or eigensate. Among all

the possible energy values, one that is lower than all the

others is called the ground state, and it is the minimum

possible energy value of the system.
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The system evolution in time is given by the

Schrödinger equation, where the Hamiltonian has a

central role. If the system is at the start of evolution

in one of the energy eigenstates, it remains in that state

every subsequent time, provided that the Hamiltonian is

constant in time. The Schrödinger equation is

∂ |Ψ〉
∂t

= − i

~
H |Ψ〉 (2)

where |Ψ〉 is the system state, i is an imaginary unit,

~ = h/2π, and h is Planck’s constant.

When H varies over time, the situation becomes more

complicated. However, the quantum adiabatic theorem

provides insight into the time evolution of a slowly varying

system.

The quantum adiabatic theorem states that if a system

is in the nth eigenstate of the Hamiltonian H(0) at time

t = 0, and if the Hamiltonian changes sufficiently slowly

in time, then the system will remain in the nth eigenstate

of the instantaneous Hamiltonian H(t) [32]. Therefore,

for each t, the system state is a solution to the eigenvalue

equation in Eq. (3):

H(t) |ψn(t)〉 = En(t) |ψn(t)〉 (3)

This implies that if the system is prepared in an eigenstate

(for example, the ground state) at the end of the

evolution, it will be in the corresponding eigenstate of

the final Hamiltonian.

From the adiabatic evolution, it is easy to infer that

the QAC framework, of which QA belongs, naturally

accommodates optimization problems. If the cost function

corresponds to the energy of a Hamiltonian, then it is in

the ground state, where the minimum energy value is the

global optimum of the cost function.

A quantum annealer is composed of a network of qubits,

and for such a quantum system, the Hamiltonian can be

written as a matrix with dimensions 2n × 2n if n is the

number of qubits. The optimization procedure starts by

preparing the systems in the ground state of a simple

Hamiltonian, called the Hamiltonian driver (HD). The

optimization problem is encoded in the energy eigenvalues

of a Hamiltonian problem HP. Then, the system is evolved

adiabatically from HD to HP, so that the system state

at the end of the evolution is the ground state of the

Hamiltonian problem. Finally, to obtain the solution, the

qubits of the register are measured. Eq. (4) shows a linear

interpolation between HD and HP, and Eq. (5) shows the

eigenvalues equation at the start and end of the annealing

process. In general, the interpolation between HD and

HP may also be nonlinear with the general functions

A(t/T ) and B(t/T ) such that A(0) = 1, B(0) = 0, and

A(1) = 0, B(1) = 1.

H(t) =

(
1− t

T

)
HD +

t

T
HP (4)

HD |ψ0,D〉 = E0,D |ψ0,D〉
t=[0,T ]−−−−→ HP |ψ0,P〉 = E0,P |ψ0,P〉

(5)

The driver Hamiltonian is related to the fully

symmetric state of the quantum register |ψS〉, where all

qubits in superposition and all qubit configurations are

equally probable and have the same energy, as Eq. (6):

|ψ0,D〉 = |ψS〉 =
1√
2n

2n−1∑
i=0

|i〉 (6)

The velocity of the adiabatic evolution, that is, how

slowly the Hamiltonian must change, is related to the

minimum energy gap, which is the minimum difference

between the evolution of the ground state energy and

the first excited state. When the gap is small and the

evolution is too fast, the system may jump from the

ground state to the upper state, and the computation

results in a suboptimal value. This condition can be

expressed by

| 〈ψ0(t)| Ḣ(t) |ψ1(t)〉 | � |E1(t)− E0(t)|
~

(7)

Therefore, by calling gmin the minimum energy gap, the

annealing time is of the order of T = O(1/g2
min).

Figure 1 illustrates the above physical concepts,

where the energy levels of the two Hamiltonians are

schematically represented. Given the capability of

transcribing the cost function values of the optimization

problem into the energy values of HP and that the

annealing process can start at the minimum energy level

of the Hamiltonian HD, adiabatic evolution allows the

path between the two problems to remain at the minimum

energy level. In Fig. 1, this transition is represented by

the blue line connecting the two ground states, while

the bar below shows the initial state (Eq. (7)) and final

solution for optimization. In the figure, the minimum

energy gap dictates the time required for QA to be

considered adiabatic. In fact, at time tc during evolution,

the ground state and first excited states are the closest.

The optimization problem that can be solved by QA

has a specific structure and quantum annealers have

been built to implement this structure. The problem has

two equivalent formulations: the Ising model inherited
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Fig. 1 Adiabatic evolution and annealing process.

from the physics of spin glasses and QUBO from the

combinatorial optimization field [38].

• The Ising model is commonly used in physics and

statistical mechanics to represent certain physical

systems. In this model, the minimum energy

configuration of a system of interacting spins must

be found. Let us consider an Ising model with n spins,

denoted as s = (s1, s2, · · · , sn), where each spin can

be in the states +1 (up) or −1 (down). The energy of

the Ising model is given by

EI(s) =
∑
i

hisi +
∑

i<j,(i,j)∈E

bijsisj (8)

where hi and bij are the linear coupling coefficients for

the individual and pairs of spins, respectively. The first

sum takes into account the energy associated with the

individual spin states, while the second sum represents

the energy due to interactions between spins. The set

of interacting spins is E .

• QUBO uses a quadratic function of binary variables.

Consider a problem with n binary variables, denoted

as z = (z1, z2, · · · , zn), where each zi value can be 0 or

1. The objective is to minimize the quadratic function

in Eq. (9):

EQ(z) = zTQz =
n∑
i=1

n∑
j=1

Qijzizj (9)

where zT is the transpose of the binary variable vector

z and Q is an n × n matrix of coefficients. The goal

is to find the binary values of zi that minimize the

quadratic function EQ(z).

Eqs. (8), and (9) are strictly related through the

transformation zi = (si + 1)/2, which maps the Ising

spins (si) to binary variables (zi). In particular, in the

Ising model, the linear coupling coefficients (hi) are

transformed into diagonal components of the matrix Q

in the QUBO, whereas the coupling coefficients for spin

pairs (bij) are represented by off-diagonal components.

The Ising model and QUBO provide powerful

mathematical frameworks for representing and solving

optimization problems. However, they are mathematical

abstractions that facilitate the expression of optimization

problems in a convenient and general format, and

to implement these formulations in physical quantum

computers, additional challenges stemming from the

physical constraints imposed by the underlying qubit

lattice must be addressed. These challenges include

the physical qubits, which are arranged in a specific

connectivity pattern or topology to form a lattice

structure, and current annealers, which have limited

connectivity between qubits; therefore, an arbitrary

QUBO or Ising problem does not match the topology

of a specific machine. To overcome these challenges, an

embedding technique was employed, which was adapted

for the working graph of the annealer by forming

chains of qubits to create the required connections.

Thus, the working graph includes a logical graph that

includes the connection of the QUBO/Ising problem to

be solved and a physical graph that represents the actual

connectivity of the annealer. If a logical variable in a

problem requires interactions between qubits that are not

directly connected in a physical lattice, an embedding

technique may create a chain by connecting multiple

qubits in series. Figure 2 shows a logical graph with

three interacting variables (represented as circles), where

variable 1 interacts with variables 3 and 4. However,

the physical graph on the right does not provide a

direct connection between qubits 1 and 4. Therefore,

an embedding can create a chain including qubits 2

and 4 such that connections 1–4 can be implemented by

exploiting connections 1–2 and 2–4, with qubit 2 acting

as a bridge. Although the logical problem includes three

variables, the embedded problem must use four qubits,
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Fig. 2 Simple embedding procedure. Embedding connects
qubits 1 and 4 by creating a chain with qubit 2.

and the embedding procedure increases the number of

qubits required to implement the problem. Consequently,

a problem that requires embedding could require an

annealer with a number of qubits that is much larger

than the number of variables.

Thus, the embedding procedure in QA solves the

generic QUBO problem even if it does not match the

annealer topology, but it uses more qubits than the logical

binary variables of the problem. Moreover, if the chains

are long, there may be an increased susceptibility to noise

and error. This susceptibility arises because some chains

may break, creating a discrepancy between the logical

problem and annealer.

The D-Wave system is a commercialized quantum

annealer [39]. Several options are available to users

who wish to employ D-Wave quantum annealers

to tackle optimization problems with the different

available samplers. Full-quantum solvers, called quantum

processing units, tackle a user-provided QUBO problem

directly on a quantum annealer, but embedding is

required and these solvers have size limitations. Quantum-

classical hybrid solvers combine classical algorithms

with quantum processing, and are better suited for

more complex optimization problems because the size

limitations are much larger. These solvers employ classical

algorithms to preprocess the problem before leveraging

its quantum-processing capabilities to complete the

optimization process.

3 Transcription procedure

To implement a trajectory optimization problem with a

quantum annealer, a suitable transcription must be found

such that the optimal control problem can be transformed

into an equivalent binary optimization problem in the

QUBO form; therefore, a transcription procedure is

proposed in this section. This procedure can be applied to

a wide range of optimal-control problems. Its limitations,

as discussed, are due to the necessity of obtaining a

QUBO structure.

In general, trajectory optimization, or optimal control,

is a fundamental problem in control theory that deals

with finding the optimal control inputs that guide a

system from an initial state to a desired final state while

minimizing a specified cost function and satisfying a set

of constraints of various types. In trajectory optimal

control, the cost function is typically expressed in the

Bolza form as Eq. (10):

J = χ(x0,xf , t0, tf) +

∫ tf

t0

L(x(t),u(t), t)dt (10)

where x(t) is the system state at time t, u(t) denotes

the control, t0 is the initial time, x0 is the initial state,

tf is the final time, and xf is the final state. The optimal

trajectory control problem involves satisfying a set of

constraints that can include dynamic, terminal, and path

constraints. Dynamic constraints capture the dynamic

behavior of the system and ensure that the state and

control input of the system obey the relevant equations

of motion. Therefore, these constraints have a differential

form as Eq. (11):

ẋ(t) = f(x(t),u(t), t) (11)

where f is the system dynamics. Terminal constraints

express a relationship that depends on the state and must

be verified at the initial and final times. In this study, to

impose the initial and final states that the system must

attain, they are expressed as{
x(t0) = x0

x(tf) = xf

(12)

Path constraints are active throughout the entire

trajectory. In general, they can be defined as inequalities

and are typically expressed as

h(x(t),u(t), t) 6 0 (13)

The path constraints express the common boundary

constraints on the state and control, which express the

state and control variables as belonging to a determined

limited space, as Eq. (14):{
xmin 6 x 6 xmax

umin 6 u 6 umax

(14)

To solve the optimal control problem, a control law that

minimizes the cost function while satisfying all constraints
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must be determined. In the context of direct optimization,

the pseudospectral method is a known and successful

technique, belonging to the collocation-based methods.

The pseudospectral method discretizes the trajectory by

representing the state and control variables as the sum of

interpolated Lagrange polynomials over a time interval

[36]. Thus, the continuous-time optimal control problem

is transformed into a finite-dimensional NLP problem.

The Lagrange polynomial φi is expressed as

φi(τ) =

(
τ − τ0
τi − τ0

)(
τ − τ1
τi − τ1

)
· · ·(

τ − τi−1

τi − τi−1

)(
τ − τi+1

τi − τi+1

)
· · ·
(
τ − τN
τi − τN

)
(15)

The Lagrange polynomial is expressed over a non-

dimensional time interval τ ∈ [−1, 1], and if it is evaluated

at one of the points τj , denoted as nodes, it is equal to

zero or one, as Eq. (16):

φi(τj) = δi,j , if j ∈ {0, 1, · · · , N} (16)

Considering a dynamic system of state x with

dimension dx and control u with dimension du, the

interpolation for the state and control over N + 1 nodes

or interpolation points is given by

x(τ) =
N∑
i=0

φi(τ)xi , u(τ) =
N∑
i=0

φi(τ)ui (17)

Note that the number of nodes is related to the degree

of the overall polynomial.

For interpolation points in the interval [−1, 1], there

are some common choices with suitable quadrature

properties, where these set of points are obtained as

roots of Legendre polynomials or of their derivative [40].

Legendre–Gauss points (LG) are the most commonly

used, which correspond to the roots of the Nth degree

Legendre polynomial. They do not include the extreme

points −1 and 1. The Legendre–Gauss–Radau (LGR)

roots are pN (τ)+pN−1(τ), where pN (τ) is the Nth degree

Legendre polynomial. These include only initial or final

points. The Legendr–Gauss–Lobatto (LGL) are the roots

of ṗN−1(τ), with the addition of the extreme points −1

and 1. In this study, the LGL points are considered

because they include both terminal points; therefore, for

a Lagrange polynomial of degree N , there are N + 1

collocation points.

To enforce the dynamic constraints, the continuous-

time differential equations are transformed into a finite

set of algebraic equality constraints imposed at the nodes.

This transformation is achieved by evaluating the system

dynamics (Eq. (11)) for each node, where the resulting

constraints link the state and control variables at adjacent

nodes, effectively capturing the dynamic behavior of the

system throughout the trajectory, as Eq. (18):

ẋ(τj) =
N∑
i=0

xiφ̇i(τj) =
∆tf
2

f(xj ,uj , τj) (18)

where ∆tf/2 = (tf − t0)/2 appears because the time

interval is normalized by [−1, 1]. Eq. (18) is an equality

between vectors of dimension d and the number of

state variables. There are N + 1 of such equalities that

constitute the set of dynamics constraints, which can be

expressed compactly in matrix form, as Eq. (19):
φ̇0,0Idx φ̇1,0Idx · · · φ̇N,0Idx
φ̇0,1Idx φ̇1,1Idx · · · φ̇N,1Idx

...
...

. . .
...

φ̇0,NIdx φ̇1,NIdx · · · φ̇N,NIdx



x0

x1

...
xN



=
∆tf
2


f(x0,u0, τ0)
f(x1,u1, τ1)

...
f(xN ,uN , τN )

 (19)

DtotXtot =
∆tf
2
Ftot(Xtot, Utot) (20)

where Id is an identity matrix of dimensions d, and φ̇j,i =

φ̇i(τj). The matrices in Eq. (20) depend on the variable

Xtot, which includes all the state vectors at the nodes

and is therefore a vector of dimension dx(N + 1), and

Utot, which is analogous to a vector composed of all the

control vectors at the nodes and has dimension du(N+1).

Before including Eq. (20) as a constraint in the

QUBO problem, two steps are required: linearizing

Ftot and representing the variables of the problem

Xtot, Utot as binary variables Ztot. Dynamic linearization

is expressed as

f(x,u, τ) ' f(x̂i, ûi, τi) + Âi(x− x̂i) + B̂i(u− ûi)
(21)

Because the linearization is realized around a reference

point x̂, û, a reference trajectory that can coincide with

the first guess is required.

The linearized constraints (∆tot) are expressed in the

matrix form:

∆tot = DtotXtot −
∆tf
2

[AtotXtot +BtotUtot

− (AtotX̂tot +BtotÛtot − F̂tot)]
!
= 0 (22)

where the matricies Atot, Btot are composed of the Âi =

(∂f/∂x)|xi
, B̂i = (∂f/∂u)|ui

sub-matricies with a block-
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diagonal structure. The terms in parentheses on the right

side of Eq. (22) includes the known terms linked to the

reference trajectory points—b̂.

Suppose that the cost indices in Eq. (10) is reduced to

JU =

∫ 1

−1

u(τ)Tu(τ)dτ = UT
totUtot (23)

where the objective is to minimize the control over

the time interval τ ∈ [−1, 1] and Lagrange polynomial

interpolation is employed. The constraints expressed in

Eq. (22) can be enforced using a penalty strategy, leading

to a comprehensive cost function as Eq. (24):

J = cu U
T
totUtot + P ∆T

tot∆tot (24)

where cu and P are the opportune weights for the

control minimization and constraint satisfaction terms,

respectively.

By stacking the variables in a single array Ytot =

[XT
tot UT

tot]
T, the constraints ∆tot can be written to

highlight the dependence on the optimization variables,

as Eq. (25):

∆T
tot∆tot = Y T

totQ∆Ytot + 2q̄TYtot +

(
∆tf
2

)2

b̂Tb̂ (25)

where the matrix Q∆ and vector q̄ depend on the

matrices and vectors Dtot, Atot, Btot, b̂ by simple matrix

multiplication operations. The cost function is therefore

expressed as

J = Y T
totCUYtot

+ P

[
Y T

totQ∆Ytot + 2q̄TYtot +

(
∆tf
2

)2

b̂Tb̂

]
(26)

where CU is a diagonal matrix whose first dx(N + 1)

diagonal elements are null (corresponding to the Xtot

variables) and the remaining are equal to the weight

value cu (corresponding to Utot).

In the formulation above, both the initial and final

states, x0, xN , are free optimization variables; therefore,

additional terms should be added to the cost function to

impose the terminal constraints. Otherwise, the terminal

constraints cannot be included because x0, xN is fixed

and therefore excluded from the Xtot vector of the

state variables. In this case, let X̃tot = [xT
1 · · ·xT

N−1]T,

which differs from Xtot because it lacks initial and final

states, and has dx(N − 1) components. Additionally,

the number of dynamic constraints remains equal to

dx(N + 1). In matrix form, the dynamical constraints

become D̃totX̃tot + bTC = (∆tf/2)Ftot(X̃tot, Utot), where

D̃tot is modified by excluding the first and last dx

columns, which are part of an additional known term bTC

that is related to the x0, xN fixed nodes, as Eq. (27):

D̃tot =


φ̇1,0Idx φ̇2,0Idx · · · φ̇N−1,0Idx
φ̇1,1Idx φ̇2,1Idx · · · φ̇N−1,1Idx

...
...

. . .
...

φ̇1,NIdx φ̇2,NIdx · · · φ̇N−1,NIdx

 ,

bTC =


φ̇0,0x0 + φ̇N,0xN
φ̇0,1x0 + φ̇N,1xN

...

φ̇0,Nx0 + φ̇N,NxN

 (27)

The size of the D̃tot matrix is dx(N + 1)× dx(N − 1).

The ∆tot expression can be rewritten as

∆tot = D̃totX̃tot −
∆tf
2

(
ÃtotX̃tot +BtotUtot

)
+

(
∆tf
2
b̂+ bTC

)
(28)

The cost function J can be redefined in an equivalent

way, as Eq. (29):

J = Ỹ T
totC̃U Ỹtot + P

[
Ỹ T

totQ̃∆Ỹtot + 2q̃TỸtot

+

(
∆tf
2
b̂+ bTC

)T(
∆tf
2
b̂+ bTC

)]
(29)

The matrix and vector Q̃∆, q̃ are obtained analogously

and depend on D̃tot, Ãtot, Btot, b̂, bTC. With respect to

Atot, Ãtot is a dx(N + 1)× dx(N − 1) matrix that lacks

the first and last dx columns. The vector of variables

Ỹtot = [X̃T
tot UT

tot]
T contains dx(N − 1) + du(N + 1)

real-valued components.

To obtain the QUBO formulation, each real variable

must be expressed using nb binary variables. In this case,

the boundary constraints in Eq. (14) should be imposed.

Therefore, a fixed-point binary representation is sought

such that the maximum and minimum real values that

can be represented correspond to the boundaries of each

state and control the real variables. When every zk = 0,

y = ymin and zk = 1, y = ymax, we express the real

variable y as Eq. (30):

y = ymin +
ymax − ymin

2nb − 1

nb−1∑
k=0

2kzk = ymin

+
ymax − ymin

2nb − 1
gTz with zk = {0, 1} (30)

The complete Ytot or Ỹtot is expressed in terms of all

nbnreal binary variables collected in the vector Ztot, as

Eq. (31):

Ytot = Ymin +GZtot (31)
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where the matrix G has a size nreal × nbnreal and is

defined by

G =
1

2nb − 1
(ymax1

− ymin1
)gT 0 · · · 0

0 (ymax2
− ymin2

)gT · · · 0
...

...
. . .

...
0 0 · · · (ymax(nrealnb)

− ymin(nrealnb)
)gT


(32)

By substituting Eq. (31) into Eqs. (26) and (29), an

expression for the cost function in terms of the binary

variables Ztot is obtained as

J = ZT
totLZtot + m̄TZtot +N = ZT

totL
′Ztot +N (33)

where L is the matrix of quadratic terms, m̄ is the vector

of linear terms, and N is a constant. Because, for binary

variables z2
k = zk, the linear term is included in the

quadratic matrix, the formulation on the right-hand side

of Eq. (33), with L′ = L+ diag(m̄), and the constant N

can be ignored for optimization purposes.

The methodology described above allows the linearized

trajectory optimization to be formulated as a QUBO

problem, where the objective is to minimize the control

employed, and dynamical and boundary constraints are

included. As shown in Fig. 3, a sequential approach is used

to generalize the method and alleviate the linearization

using a reference trajectory [X̂T
tot ÛT

tot]
T around which

the dynamics are linearized. Subsequently, the QUBO

problem is solved and the solution is used as a new

reference trajectory, which in turn gives a new QUBO.

This process is repeated until an optimal solution is

achieved. Because the boundaries play an important

role in guiding the sequential optimization process, they

State boundaries

Reference trajectory

x1

x2

x3

x0

New trajectory

x1

x2

x3

x4

Fig. 3 Visualization of two sequential iteration during
QUBO-based optimization procedure with initial and final
state fixed and boundaries visualized as circles.

must be chosen such that the linear dynamics is a good

approximation of the nonlinear dynamics. To do this,

several strategies can be implemented by varying the

boundaries during the process.

In the transcription procedure, the flight time ∆tf must

be fixed because the optimization must be reduced to

the QUBO form. In fact, if ∆tf is a variable, it is Xtot

multiplied by Utot in Eq. (22), causing ∆T
tot∆tot to have

fourth-degree terms, which in turn causes the binary cost

function to be a fourth-order binary polynomial with

interacting triplets and quartets of binary variables.

4 Low-thrust Earth–Mars transfer
problem

In this section, the Earth–Mars transfer problem with

continuous thrust is presented as the central test case for

the proposed transcription procedure and optimization

by QA. The Earth–Mars transfer is a classical and well-

studied trajectory optimization problem found in the

literature for many different declinations and is often

used to test new algorithms and techniques. In this study,

the dimensions of the direct optimization problem must

be sufficiently reduced so that it can be implemented

on a quantum annealer. Current machines can only

deal with a limited number of (binary) variables and

interactions between the variables. Therefore, a series

of simplifications were considered to reduce the binary

variables required to represent the problem.

First, the orbits of the Earth and Mars were considered

circular and coplanar, respectively, assuming that their

orbital planes align precisely; therefore, the transfer

problem was planar, with a state vector composed of

four variables. Furthermore, two-body dynamics were

considered, as they are customary in the preliminary

interplanetary trajectory design. The equations of motion

are expressed in Eq. (34) and expressed in polar

coordinates. r, θ, vr, and vθ are the radial distance

from the Sun, angular position, and radial and angular

velocities, respectively. µS = GM , where G is the

universal gravitational constant and M is the mass of

the Sun. ur and uθ are the accelerations given by the

thrust and represent the controls of the optimal control

problem. The variables are non-dimensional in such a

way that the astronomical unit is the unit length and

µS = 1.

ṙ = vr
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θ̇ =
vθ
r

v̇r = −µS

r2
+
v2
θ

r
+ ur

v̇θ = −vrvθ
r

+ uθ (34)

The boundary conditions are expressed by{
r(t0) = RE, vr(t0) = 0, vθ(t0) = VE

r(tf) = RM, vr(tf) = 0, vθ(tf) = VM

(35)

where RE and RM are the radial distances of the Earth

and Mars, and VE and VM are the orbital velocities of

the Earth and Mars, respectively.

Because we aimed to determine the minimum-fuel

trajectory that enabled the spacecraft to transition from

Earth’s orbit to Mar’s orbit, the cost function, in line

with the transcription procedure described in Section 3,

assumes the form in Eq. (36):

J =

∫ tf

t0

(ur(t)
2 + uθ(t)

2)dt =

∫ tf

t0

u(t)Tu(t)dt (36)

Furthermore, boundary inequality constraints on the

state and control variables were added, as shown in

Eq. (14):

Note that the state variable θ does not appear in the

terminal constraints (the trajectory can end at any point

on Mars’ orbit) or in the cost function; therefore, it was

excluded from the optimization problem.

Subsequently, the angular position can be computed

from the optimal trajectory by integrating only θ̇ =

vθ(t)/r(t) given r(t) and vθ(t). Therefore, the number of

state variables was reduced to dx = 3 and the number of

control variables was du = 2. Once the number of nodes

of the direct transcription and bits per real variable were

defined, the total number of real and binary variables

were computed as described in Section 3.

In addition to the planar, circular, and two-body

dynamic hypotheses mentioned previously, the following

simplifications were considered:

(1) The trajectory optimization was considered with a

fixed time of flight tf since, as mentioned in Section 3,

considering it an optimization variable would result in a

nonquadratic cost function expression.

(2) The spacecraft mass was considered constant to

avoid including either an additional state variable or

increasing the non-linearity of the problem. Low-thrust

high specific impulse propulsion was considered, which

justifies the assumption.

(3) As implied by the way in which the boundary

constraints on u are expressed in Eq. (14), the control

variables are ur, uθ and were considered individually

bounded. Therefore, u was not bounded at every time

but rather each component of the vector. This was done

to avoid including a nonlinear inequality constraint on

the norm of the control, which would be more difficult

to handle.

Furthermore, the initial and final points x0 and xN

were fixed, as explained in the previous section, allowing

the implicit inclusion of terminal constraints in ∆tot and

reducing the overall number of variables.

The particular instance of the problem considered in

this study had an admissible maximum acceleration value

of 10−4 m/s2, which corresponds to 10 mN for every 100

kg of mass, and a fixed time of flight of 2 yr.

By employing the transcription procedure, the Earth–

Mars transfer problem was translated into the QUBO

form, where its size depended on the nodes and nb values

chosen, while its sparsity was determined partly by the

intrinsic structure of the pseudo-spectral formulation and

partly by the specific problem dynamics.

As described in Section 2, a quantum annealer is

composed of a lattice of interconnected qubits based

on a precise topology. When encoding a general QUBO

onto a quantum annealer, the total number of available

qubits, which limits the maximum number of binary

variables, and the total number of interconnections, which

limits the maximum number of quadratic terms or off-

diagonal nonzero elements in the QUBO matrix, must be

considered. The quantum annealer employed during the

development of this study was the D-Wave Advantage

[41], which has approximately 5000 qubits available for

computation and a topology called Pegasus, where each

qubit is connected to another 15, with approximately

35,000 interconnections.

Table 1 shows the number of nonzero quadratic

elements of the QUBO matrix with varying N (degree of

polynomial) and nb (number of bits for the real variable)

for the problem described. It appears that only a small

number of nodes and bits are valid. Furthermore, the

problem size that can be implemented practically is below

the maximum number of annealer connections. In fact,

there is an embedding process to consider because it

creates chains of qubits that are natively connected in the

annealer working graph, and not all 35,000 connections

can be directly exploited. With the D-Wave Advantage,

embedding can be performed using automatic heuristic
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algorithms, as shown in Table 1, and the problems with

embedding are highlighted in bold and blue.

Considering the value of the number of nodes

that appear in Table 1 for the Earth–Mars transfer

problem, the pseudospectral method allows interpolated

trajectories to be obtained with sufficient precision, even

with a low N , owing to the difference between the

interpolated and numerically propagated trajectories,

both with the same control history. Note that because

the initial and final points are fixed, the interpolated

trajectory always starts and ends precisely at the terminal

points x0 and xN . If the problem is properly solved and

the dynamical constraints, given by ∆tot, are satisfied,

then the numerically propagated trajectory will terminate

at the final point, in general, with an error determined by

how well ∆tot are satisfied and how well the polynomial

interpolation approximates the real dynamics. Therefore,

the final error between the numerically propagated

trajectory and the required final state can be considered

a metric of the convergence quality of a solution.

For example, the transfer solved using traditional

methods (with real variables, the full nonlinear problem,

and an NLP problem commercial solver), where N = 7, is

shown in Fig. 4). The final errors between the propagated

and desired final states were ∆r = 60× 103 km, ∆vr = 3

m/s, and ∆vθ = 6 m/s. The difference between the

interpolated and propagated trajectories remained in the

order of 10−4 in nondimensional units. ∆V , computed as

the integral of the norm of u, was 6640 m/s.

5 Results and discussion

In this section, the Earth–Mars transfer problem with

the QUBO transcription is addressed using the samplers

available through the D-Wave cloud service “Leap” [42].

D-Wave systems provide a cloud-computing platform for

accessing quantum computers, where users can interact

with quantum processors utilizing their Python-based

SDK, called Ocean. Through this service, it is possible

to access the advantageous QA chip as well as hybrid

solvers. Leap allows for the programming of a QUBO

problem fairly easily through the Python interface. Once

the QUBO is properly defined, a solver (or sampler)

Table 1 Number of off-diagonal elements of QUBO matrix for different values of nodes and bits. Values below 35,000 are
highlighted in green and italics, and values with embedding are highlighted in blue and bold

nb = 6 nb = 7 nb = 8 nb = 9 nb = 10 nb = 11 nb = 12

N = 4 6300 8575 11,200 14,175 17,500 21,175 25,200
N = 5 10,224 13,916 18,176 23,004 28,400 34,364 40,896
N = 6 15,084 20,531 26,816 33,939 41,900 50,699 60,336
N = 7 20,880 28,420 37,120 46,980 58,000 70,180 83,520
N = 8 27,612 37,583 49,088 62,127 76,700 92,807 110,448
N = 9 35,280 48,020 62,720 79,380 98,000 118,580 141,120
N = 10 43,884 59,731 78,016 98,739 121,900 147,499 175,536
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Fig. 4 Classical solution with N = 7. Trajectory shown on left, where red circles represent node positions. Control history of
ur and uθ shown on right, where circles represent nodes.
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sends the problem to the quantum annealer. Once the

annealer finishes its computation, the result is sent back

to the user and post-processed again through the Python

interface. While basic access is typically free (limited

to one minute per month), costs may apply for larger

computations or extended usage. This platform offers

developers a convenient means of harnessing QC power

for optimization problems.

First, the results with hybrid solvers are presented,

followed by a consideration of the number of iterations

and computational time, and a comparison with the

traditional solution. The results obtained using QPU are

then presented and discussed, focusing on the current

limitations of quantum annealers and comparisons with

classical and hybrid solutions. The quantities of interest

for classifying and assessing the solutions are the number

of nodes N , number of bits per real variable nb, and

starting guess, as well as the following:

Final error: the error between the desired final state

and the trajectory numerically propagated with the

control obtained from the optimization process. This

is a measure of the feasibility of the found solution

and whether the optimization converges.

Delta V: the integrated norm of the control over the

flight time. This is equivalent to the optimization

objective, which is a measure of the cost of the

propellant trajectory.

Number of iterations: the number of linearized

QUBO problems that have been solved prior to

convergence.

Optimization time: the time required for the solution

of each iteration, obtained directly from the time

employed by the D-Wave solver.

Wall time: the total time measured for each iteration.

Different from the optimization time, it also includes

the time required to re-elaborate the optimizer

output and the internet delay to access the solver

and retrieve the results. Furthermore, it is dependent

on the computer on which the code is run. In our

case, it was run on the Leap cloud.

5.1 Hybrid results

In general, it was found that through the hybrid

solver, the problem was easily solved, and the solutions

obtained were comparable to those of the traditional

solver. The sampler employed for these cases was the

“LeapHybridSampler”. The first solution presented had

N = 7 and nb = 10 for 340 binary variables. First,

the trajectory was considered to have the following

control law with purely tangential thrust: ur(t) = 0,

uθ(t) = umax, which is a basic estimate that produces

a good starting point. A plot of the first estimated

trajectory is shown in Fig. 5.
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Fig. 5 First guess trajectory with ur(t) = 0, uθ(t) = umax.

The hybrid solver was consistently capable of

converging after a few iterations. Here, the solution

presented has six iterations, ∆V = 6577.16 m/s, and

final errors of ∆r = 75× 103 km, ∆vr = 14.8 m/s, and

∆vθ = 5.3 m/s. The optimization time of the hybrid

sampler can be considered fixed at 3 s per iteration

with minimal variations, which is a parameter of the

solver and, for the current problem, cannot be reduced

by the user. The wall time remained almost constant at

approximately 10 s/iteration. The trajectory and control

histories are presented in Fig. 6.

To test the capability of the hybrid solver to converge

with a more difficult starting guess, the first guess, in

which the control was set to zero for the entire flight

duration, was set to ur(t) = 0, uθ(t) = 0. Therefore, the

resulting starting trajectory remained along the Earth’s

orbit.

The results show that for this initial guess, which

was far from the solution, the optimization procedure

converged to a trajectory similar to that of the previous

case. However, additional iterations were required. The

presented solution required 13 iterations, ∆V = 6676.38

m/s, and the final errors were ∆r = 27× 103 km, ∆vr =

17.7 m/s, and ∆vθ = 1.8 m/s. The optimization and wall

times were comparable to the previous case for every
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iteration. The trajectory and control histories are shown

in Fig. 7.

The results of Figs. 6 and 7 highlight the importance

of setting boundary constraints for the state variables

and control. In fact, xmin, xmax, umin, and umax are

user-definable parameters with the greatest influence on

the optimization procedure and resulting trajectory. For

example, in the first case, they were chosen as constants

among iterations, with the same upper and lower values

for every state variable (xmin /max = 0.05, umin /max =

0.005 in non-dimensional units). Using the same values

for the second case would lead to a slower convergence

because the first guess is far from the actual solution, and

larger search areas allow faster transfer trajectories to be

attained. While it is possible to converge with the “zero

thrust” first guess by setting the boundaries as constant

with adequate values, in the solution shown in Fig. 7, a

boundary reduction strategy was applied. In particular,

a larger value of the state variables was initially chosen,

and was later reduced when the cost function no longer

decreased from one iteration to the next, thus allowing

a faster initial search, followed by a tighter and more

accurate search. This strategy proved to be useful for

QPU solutions, as discussed in Section 5.2.

5.2 QPU results

As shown in Table 1, when using the QPU sampler of

D-Wave, the dimensions of the implementable problem

are significantly constrained. Furthermore, the found

embeddings are characterized by long chains; for example,

for N = 4, nb = 7 and N = 5, nb = 8, the maximum

chain lengths are 22 and 29, respectively. Subsequently,

the problem quickly becomes too large, and it is no longer

possible to find an embedding.

ur
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With the allowed values of N , the polynomial

approximation of the trajectory starts to lose accuracy,

while the value of nb requires the real variables to be

bounded quite tightly to obtain a sufficiently precise

binary representation, while long chain lengths are more

likely to break and produce inaccurate solutions.

Considering these limitations due to the capability of

currently available machines, we attempted to solve the

Earth–Mars transfer problem. All results were obtained

using the Advantage 4.1 QPU chip.

First, for N = 4, nb = 7, the structure of the ensuing

QUBO problem is shown in Fig. 8, where the y- and

x-axes coordinates represent respectively the columns

and rows of the Q matrix, the nonzero elements are
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QUBO matrix-N=4, nb=7

Fig. 8 Example of QUBO matrix structure for the Earth–
Mars transfer problem.

highlighted by blue dots, and the null elements are on the

left in white. The sparsity of the matrix, computed as the

number of nonzero elements divided by the total number

of elements, is equal to sQ = 0.48, and for the range of

nodes and bits allowed, values of approximately 0.5 are

always obtained. The nonzero elements are not uniformly

distributed: the top-left submatrix is dense, whereas the

bottom-right submatrix is sparse with a block diagonal

structure. This can be related to the structure of the

polynomial interpolation by a term appearing in Q̄∆ that

depends on Dtot and Atot, and the C̄U term given by the

minimization of the control. The top-right and bottom-

left submatrices are given by mixed terms that depend

on Dtot, Atot, and Btot. The matrix structure depends

on the reference trajectory around which linearization is

performed; therefore, its numerical values change from

iteration to iteration, and, in principle, its structure can

vary, although the simulations show that these structural

variations can be ignored.

A solution with N = 4, nb = 7 is shown in Fig. 9,

where the tangential thrust-first estimate is employed.

The number of iterations required in this QPU case was

significantly higher than that of the hybrid solutions,

with 55 sequential QUBO problems. The QPU solutions

were unable to handle the same boundaries of the hybrid

solutions well, and they behaved better with tighter

boundary values. Therefore, the cost function improved

less for each iteration and more iterations were required.

Additionally, a boundary-reduction strategy had to be

applied to improve the solution after a certain point, and

the results show that the boundaries were reduced every

time the cost function did not improve for two iterations
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Fig. 9 Solution by QPU with N = 4, nb = 7. First guess is as in Fig. 5. Circles represent node positions.
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(not necessarily consecutive). The trajectories are shown

in Fig. 9, where two boundary reductions are applied.

Regarding the final errors, acceptable values and full

convergence were more difficult to obtain. In Fig. 9,

the following values are obtained: ∆r = 3.2 × 105 km,

∆vr = 98.7 m/s, ∆vθ = 88.9 m/s, and ∆V = 6333.98

m/s. The optimization time coincides with the time the

Advantage chip was accessed, and it was equal to 54.19

ms for each iteration. The wall time varied in the range

of 2.2–3 s.

Another striking difference from the previous hybrid

cases is the values of the optimization and wall times,

which were approximately 55 and 3 times shorter than

those in the hybrid results, respectively. The rapid

optimization time is strictly related to the annealing

process, which is an important parameter. For the hybrid

solver, there was a comparably short time given by the

access of the solver compared to that of the QPU solver;

however, the classical elaboration and processing of the

problem performed by the solver increased the total

optimization time. The faster optimization per iteration

of the QPU-only solver was partly sacrificed by the higher

number of iterations required, as discussed later.

5.3 Discussion

The differences between the first and third solutions

obtained with the hybrid and full-quantum solvers,

respectively, appear especially in the final error, which is

linked to the satisfaction of the dynamical constraints,

number of iterations, and optimization time required

for each iteration. These two solutions were compared

in terms of the decrease in the cost function value as

the optimization process advanced. A comparison of the

results is presented in Fig. 10, where the three plots,

from left to right, compare the solutions based on the

number of iterations, cumulative optimization time, and

wall time, respectively.

A large difference in the final cost function value

between the two solutions appears immediately, which

reflects their difference in quality and constraint

satisfaction. Although several iterations were executed

from the QPU solution compared to only a few in the

hybrid solution based on the optimization time, the

QPU solution was faster. However, considering the total

wall time, even though it was shorter for a single QPU

iteration, a higher number of iterations resulted in an

longer overall time required to obtain the QPU solution

compared to that of the hybrid solution.

Notably, Fig. 10 compares two QUBO representations

of the Earth–Mars transfer problem with different sizes;

the hybrid solver had 340 binary variables, while the

QPU solver had 133. Therefore, although the plots in

Fig. 10 can be a visual demonstration of the difference

in the current capabilities of the two solvers, the hybrid

method provides a more accurate representation of the

trajectory owing to the higher N and nb.

A comparison of the same number of variables is shown

in Fig. 11. With respect to Fig. 10, the final values of

the cost function are similar, and the final error of the

hybrid solution is comparable to that of the QPU solution.

Figure 11 shows that a reduction in the dimensions of

the problem has an impact on the solution quality.

Based on the considerations shown in Figs. 10 and 11,

we attempted to solve the problem of the intermediate

dimensions between the two solvers, with N = 5, nb = 8

(192 binary variables). In this case, the hybrid solver

was able to achieve better constraint satisfaction in a

few iterations, although it was worse than that shown in
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Fig. 6 and had a higher ∆V with respect to the previous

results. The QPU solver, based on the final error, did

not improve in the N = 4, nb = 7 case; it also had

an increased ∆V , and the cost function continued to

decrease for a very long number of iterations, but with

diminishing returns. The history of the cost function is

presented in Fig. 12 (the wall time plot was omitted)

and the final cost function values are slightly different in

favor of the hybrid solution.

Figure 13 shows the hybrid and QPU solutions for

the last case. The two plots are similar; however, the

QPU solver does not reach the same trajectory as the

hybrid solver owing to a local search issue. The difference

between the two solutions could be because the full-

quantum solver faced greater difficulty when handling

all the variables as embedding requires long chains (a

maximum length of 29) or the overall QUBO problem

was excessively sensitive.

The results are summarized in Table 2, where all the

main features are reported: error, ∆V cost, iterations,

and optimization and wall times. The table includes the

hybrid and QPU results specifying the number of nodes

and bits. The first two rows differ in the initial guess. In

the last two rows, the full-classical solutions are reported.

In the second-to-last row, the traditional nonlinear and

real-valued solutions are presented, as shown in Section

4; in this case, the optimization was performed using

MATLAB, so the times reported may not be immediately

comparable with the others because a different computing

environment and computer were used. The last row shows

a solution to the QUBO problem obtained with the

simulated annealing (SA) algorithm, which is available as

a solver in the D-Wave Leap. The results were obtained

with an initial point equal to the reference trajectory

and 300 runs of the algorithm for each iteration. The

SA was capable of solving the QUBO problem, with a

performance comparable to that of the hybrid solver, but

with longer optimization and wall times.
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Table 2 Summary of results.

∆r (km) ∆vr (m/s) ∆vθ (m/s) ∆V (m/s) Niter Topt (s) WT (s)

Hybrid N = 7, nb = 10, Fig. 6 7.5 × 104 14.8 5.3 6577.16 6 18.0 59.5
Hybrid N = 7, nb = 10, Fig. 7 2.7 × 104 17.7 1.8 6676.38 13 38.9 117.0

Hybrid N = 4, nb = 7 5.7 × 105 65.7 92.6 6369.35 4 12.0 39.4
Hybrid N = 5, nb = 8 1.9 × 105 4.9 36.9 7025.64 6 17.9 54.0
QPU N = 4, nb = 7 3.2 × 105 98.7 88.9 6333.98 55 3.0 120.42
QPU N = 5, nb = 8 1.2 × 106 6.3 63.4 6853.91 201 13.7 612.1

Classical N = 7 6.0 × 104 3.0 6.0 6640.37 — 2.46 2.46
SA N = 7, nb = 10 1.1 × 105 7.8 0.9 6434.09 5 57.83 65.11

6 Conclusions

In this study, QA was explored for optimizing spacecraft

trajectories. Because a specific formulation is required

to employ QA, a transcription procedure was proposed

to transform a general trajectory problem into the

QUBO form. The transcription procedure uses the

pseudospectral method, linearization, and the binary

representation of real variables. Using a sequential

approach and starting a reference trajectory, nonlinear

problems can be tackled using this method.

An Earth–Mars low-thrust transfer was considered as

a case study. Employing the D-Wave cloud computing

platform, Leap, to access real quantum annealers, hybrid

and QPU solvers were tested. The hybrid solver used

classical and quantum resources and alleviated the severe

restrictions of full-quantum solvers for the case study.

The QPU solver required the problem dimensions to

be reduced and performed an embedding of the QUBO

problem.

The solutions obtained using the hybrid solver were

promising, returning trajectories comparable to the

classical nonlinear solution of the problem. The hybrid

solver can converge after a few iterations and is robust to

initial guesses that are far from the solution. Although,

in this case study, more iterations were required.

As mentioned previously, QPU solvers are constrained

by the maximum number of variables. With N = 4, nb =

7, equivalent to 133 binary variables, the QPU solver

achieved trajectories that were close to convergence, but

did not reach them entirely, presenting higher final state

errors. Many more iterations were required compared

the hybrid solver, and the cost function decreased more

slowly for each iteration. However, the single iterations

were much faster, and the total optimization time was

shorter. The total wall time, including the communication

time within the cloud and internet latency as well as the

waiting time to access the solvers, was longer. Both time

measures can be considered important in testing the

QA optimization, and the optimization time was more

indicative of the QA/hybrid solver speed, whereas the

wall time provided a measure of the entire process but was

affected by the cloud computing platform characteristics.

A comparison of the hybrid and QPU results shows that

the QPU solver did not achieve complete convergence
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partly because of the reduced problem dimensions as

the hybrid solver reached a similar solution with the

same number of nodes and bits. However, the test results

presented in Fig. 12 indicate that other factors may also

be involved. With 192 binary variables, the hybrid solver

achieved a better solution than the QPU solver, but it

was still worse than that obtained with more variables,

and both presented higher ∆V costs. Because the hybrid

solver only preprocessed the problem before submitting

smaller instances to the QPU solver, the difference in

behavior can be caused by the difficulties the QPU solver

had when handling the problem as a whole.

In conclusion, the obtained results prove that the

proposed transcription method is valid because it yields

trajectories similar to those of traditional methods.

Furthermore, QA was tested for trajectory optimization

and it was found that the hybrid solver was capable of

reliably solving the test problem. In contrast, the QPU

solver results show that quantum annealers must evolve

further before being considered for this task. However,

the fast optimization time of the single QUBO problem,

in the order of milliseconds, is promising.

Further development of this work can proceed in

several ways. In the transcription procedure, alternatives

with higher QUBO sparsity could be beneficial, and

mixed hp methods could be considered [43]. Direct

collocation methods, such as the Hermite–Simpson and

Gauss–Lobatto methods [36] are also known to lead

to sparser problems; however, the linearized QUBO

formulation is less obvious. In the solvers and application

fields, more complex problems will likely be required

to surpass the linearization need, and a straightforward

way to do so is to test the constrained quadratic model

solver by D-Wave, which is a hybrid solver that allows

the inclusion of a set of quadratic constraints in the

binary optimization problem. Therefore, the dynamical

constraints may possibly be expressed as a second-order

expansion, increasing accuracy. Additionally, a more

general QUBO formulation that avoids linearization can

be provided by an arbitrary high-order expansion of the

dynamics, resulting in a high-order binary polynomial

that can be reduced to a QUBO formulation using

quadratization techniques [28]. This can reduce the

overall order of a binary optimization problem to the

second order; however, this requires adding more binary

variables.
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