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Noninvertible symmetries in quantum field theory (QFT) generalize the familiar product rule of groups
to a more general fusion rule. In many cases, gauged versions of these symmetries can be regarded as dual
descriptions of invertible gauge symmetries. One may ask: are there any other types of noninvertible gauge
symmetries? In theories with gravity we find a new form of noninvertible gauge symmetry that emerges in
the limit of fundamental, tensionless strings. These stringy noninvertible gauge symmetries appear in
standard examples such as non-Abelian orbifolds. Moving away from the tensionless limit always breaks
these symmetries. We also find that both the conventional form of noninvertible gauge symmetries and
these stringy generalizations are realized in AdS/CFT. Although generically broken, approximate
noninvertible symmetries have implications for swampland constraints: in certain cases they can be used
to prove the existence of towers of states related to the distance conjecture, and can sometimes explain the
existence of slightly subextremal states which fill in the gaps in the sublattice weak gravity conjecture.
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I. INTRODUCTION

Symmetries play an important role in constraining the
dynamics of quantum systems. This is especially true in the
case of an unbroken symmetry, where we can derive exact
selection rules, but it also applies in situations where the
symmetry breaking is controlled by a small parameter.

Recently a number of investigations have suggested a
generalization of global symmetries in quantum field
theory (QFT) beyond the more familiar grouplike compo-
sition rule. In this broader setting of noninvertible sym-
metry, one defines a symmetry in terms of a topological
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operator that links with the charged object of interest [1].
The product of two such topological operators might end
up realizing a more general fusion rule such as

k

where the 7" f] denote c-number coefficients.' There are by
now many examples of this sort, such as in 2D rational
conformal field theories (CFTs) with noninvertible
Verlinde lines [2], in 4D gauge theories with a gauged
charge conjugation symmetry [3], as well as in many other
contexts.

What becomes of these noninvertible symmetries in
quantum gravity? On general grounds one expects that
unbroken symmetries are “gauged,” namely they instead
specify a redundancy in physical configurations. In the
context of QFT, where both the spacetime metric and

'In general, Tfj is the partition function of a decoupled TQFT.
*The literature has substantially grown in the past few years.
For reasonably up to date reviews, see e.g., the reviews [4-9] and

references therein.
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topology are not dynamical, there is a notion of “gauging a
noninvertible symmetry” by inserting a mesh of topological
operators (see e.g., [10-14]). We can view this as producing
a notion of noninvertible gauge theory.3 Based on this, it is
natural to ask whether we can produce examples of this sort
of noninvertible symmetries directly in quantum gravity.
Here we find a few surprises, both from the point of view of
world sheet constructions, and also from the perspective of
the AdS/CFT correspondence.

To begin, recall that invertible global symmetries of a
string world sheet theory correspond to gauge symmetries
in the target space [16]. From this perspective, it would
seem natural to expect that all we require to achieve a
gauged, noninvertible spacetime symmetry is an example
of a noninvertible global symmetry in the 2D world sheet
CFT. Such noninvertible world sheet symmetries were
recently discussed in the context of string theory in [17].
As a simple example, consider an orbifold as specified by a
non-Abelian group I'; the operation of gauging a global I
symmetry on the world sheet results in an orbifold theory
with Hilbert space sectors labeled by conjugacy classes of I"
(see Refs. [18,19]). In categorical terms, gauging the I’
symmetry results in a “magnetic” global zero-form cat-
egorical symmetry Rep(F).4 In this case, symmetry oper-
ators are labeled by representations of I" and we get a
nontrivial fusion rule whenever I' is non-Abelian (more
than one summand can appear in the fusion of two
irreducible representations of I'). So, the appearance of
this noninvertible global symmetry in the 2D CFT would
seem to suggest the existence of a corresponding non-
invertible gauge symmetry in the target space.

But string theory is more than just a 2D CFT; it also
involves coupling this system to 2D gravity! Moreover, it is
well-known that the selection rules arising from Rep(T)
symmetry are violated at higher-loop order [23,24], leaving
only the selection rules corresponding to representations
Rep(T,p) of the Abelianization, an invertible symmetry. So,
while tree level string theory appears to enjoy a non-
invertible Rep(I") symmetry, it is broken by g, # 0 effects.
This is an example of a more general phenomenon [25]:
when a QFT in any dimension is coupled to semiclassical
gravity, the appearance of nontrivial topologies in the
gravitational path integral leads to a generic breaking of
all noninvertible symmetries in the absence of extreme
cancellations. We also present a similar construction of
noninvertible symmetries broken at g, # 0 for the case of
string theory on toroidal orbifolds.

The lesson we draw is that the target space physics of
noninvertible world sheet symmetries does not correspond
to the QFT notion of noninvertible gauge symmetry coming

3See also [15] for a recent discussion of the sense in which this
procedure can really be viewed as producing a “gauge theory.”

*See Refs. [12,20], and for a complementary perspective see
e.g., Refs. [21,22].

from “summing over a mesh of topological operators”,
since the selection rules that would be exact in such a gauge
theory are explicitly broken by string loops. Indeed, to see
the noninvertible world sheet symmetry emerge we must
take g, — 0 and consider the entire structure of perturbative
string theory, taking us well outside the regime of local
effective field theory. We will describe the target space
physics of noninvertible world sheet symmetries as “stringy
noninvertible gauge symmetry,” which is generically
Higgsed, but which can be restored in a limit where the
string becomes tensionless in Planck units.

Given this state of affairs, it is natural to ask whether the
breaking of this sort of noninvertible gauge symmetry at
gy 70 is merely an artifact of this specific class of
examples, or is something that holds more generally in
quantum gravity. Along these lines, we consider another
context where noninvertible gauge symmetries seem easy
to realize in quantum gravity: examples from holography in
which the CFT of an AdS/CFT pair enjoys a noninvertible
symmetry. Indeed, recently there has been progress in
realizing examples of noninvertible symmetries in a num-
ber of stringy and holographic constructions [26—37]. From
this perspective, a noninvertible global symmetry of the
boundary theory would seem to automatically imply the
existence of a gauged noninvertible symmetry in the bulk.

In all examples with a semiclassical bulk, this is indeed the
case, as has previously been discussed in the literature: the
bulk contains a topological sector described by the symmetry
topological field theory (SymTFT) (see, e.g., [10,38-53]).
For a noninvertible global symmetry on the boundary, the
corresponding SymTFT can be understood as a noninvertible
bulk gauging of the boundary symmetry in the conventional
sense.” However, it is also worth noting that in every example
we consider, the sense in which the gauge symmetry in the
bulk is noninvertible is rather benign: this topological sector
admits a more conventional characterization as an invertible
gauge theory, possibly after switching to a dual basis of
fields. If the bulk quantum gravity theory admits a world
sheet description, the invertible gauge theory presentation is
more natural, as it is the one that acts most naturally on the
string world sheet.

A particularly instructive example in this regard is the
background AdS; x §* x T*. For tuned values of the T*
moduli, we can have a non-Abelian symmetry I" acting on
T*, leading to a I" gauge theory propagating in the AdS; x
3 factor. For suitable boundary conditions we get a Rep(I'")
symmetry in the boundary CFT,, and the bulk I" gauge
theory in 6D could dually be viewed as a 3-form Rep(T)

>This is always true in the sense of “summing over a mesh of
topological operators,” which are given by condensates of the
gapped boundary condition (see, e.g., [10-12]). We expect
further that the very recent work [15] for 3D SymTFTs general-
izes to any dimension, so any SymTFT can be viewed as a gauge
theory for the higher tube algebra [54-58] of the boundary
symmetry.
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gauge theory (reducing on the $3 factor, this is a 0-form
Rep(I") gauge theory in AdS;). Nevertheless, if we con-
sider the world sheet description of the bulk (or at least the
T* factor), the symmetry that acts on the world sheet is still
just T

Moving beyond semiclassical bulks, we can also consider
the limit of AdS; x $* x T* with only a single unit of flux,
such that the bulk is described by a tensionless string
theory [59-61]. In this limit, we expect an enormous non-
invertible symmetry to emerge in the CFT: the CFT dual is
given by the symmetric orbifold CFT Sym" (7*).° Exactly at
the symmetric orbifold point, this CFT, admits a noninver-
tible Rep(Sy) symmetry, where Sy is the symmetric group.
We find that the bulk dual of this is not any conventional
noninvertible gauge symmetry in AdS; x §* x T*. Instead,
the large N limit Rep(S,,) is realized as a noninvertible
global symmetry of the tensionless string theory world sheet,
which remains unbroken as a result of the extreme cancella-
tions that appear in the tensionless limit. We do not have a
general characterization of which noninvertible symmetries
of holographic CFTs are realized as conventional noninver-
tible bulk gauge symmetries or as stringy noninvertible gauge
symmetries, but it is worth noting that the quantum dimen-
sions of topological operators for Rep(Sy) symmetry scale
with N, while the Rep(I") symmetry does not.”

The common theme in these examples is that in quantum
gravity, less benign forms of gauged noninvertible sym-
metries are generically broken and only seem to emerge in
special limits in field space (like the tensionless string limit
g, = 0). This implies that the breaking effects become
suppressed in these limits, so they appear as approximate
symmetries in the effective field theory. Therefore, despite
being broken, they can still have interesting applications in
the string landscape. In particular, they fit rather well with a
number of related swampland considerations connected
with infinite distance limits (see Refs. [62—-65] for reviews).
The most important result is that the presence of a non-
invertible symmetry in the world sheet combined with
modular invariance implies the existence of an infinite
tower of states which is charged under the noninvertible
symmetry and becomes light at infinite distance, as
predicted by the distance conjecture. In these cases this
allows us to generalize the usual world sheet proof of the
weak gravity conjecture [66—68] to the case in which the
tower is not charged under a massless gauge field. We will

°If we choose boundary conditions that realize Rep(T)
symmetry, we should strictly speaking discuss the I' orbifold
Sym" (T*)/T.

"It is not enou gh to have the size of the symmetry scale with N:
for example, even the invertible Zy center 1-form symmetry of
N =4 SU(N) super Yang-Mills scales with N. Note also that in
orbifolds based on the D y-series of finite subgroups in SU(2), the
order of the group can be parametrically large, but the dimensions
of irreducible representations remains small so that the fusion rule
is still rather benign.

also see that in these cases the approximate noninvertible
symmetries provide a complementary perspective on a
number of subtle examples for several swampland con-
jectures. In particular, they can sometimes explain the
existence of slightly subextremal states which fill in the
gaps in the sublattice weak gravity conjecture. Moreover, in
certain cases, the existence of 4D N = 2 theories with
properties more analogous to theories with N = 4 super-
symmetry can be reinterpreted in terms of the existence of a
noninvertible symmetry. Even though these features also
have other more general explanations not related to non-
invertible symmetries, it is satisfying to find a comple-
mentary explanation of these connected to symmetry
principles, at least in certain cases.

The rest of this paper is organized as follows. In Sec. II
we review the fact that noninvertible symmetries of the
world sheet CFT are generically broken by string loop
effects, and illustrate this effect in a few concrete examples.
In Sec. IIT we discuss examples in AAS/CFT. In Sec. IV we
prove the existence of an infinite tower of states charged
under the noninvertible symmetry that becomes light at
infinite field distance. We then explain the different
applications of the weakly broken noninvertible symmetry
for several swampland considerations. We present a
broader discussion and some avenues for future investiga-
tion in Sec. V.

II. NONINVERTIBLE SYMMETRY BREAKING
BY STRING LOOPS

In this section, we argue that any noninvertible sym-
metries of the world sheet CFT are generically broken by
string loop effects, in the absence of conspiracies. More
concretely, we review the well-known fact that the selection
rules placed on sphere correlation functions by noninver-
tible symmetry fail to hold at higher genus. A simple
example is the energy operator ¢ of the 2D Ising model:
while ¢ is charged under the noninvertible Kramers-
Wannier symmetry, it picks up a nonzero one-point
function on Riemann surfaces of positive genus [69-72].

As a result of this breaking effect, if we use string
perturbation theory to compute some scattering process
forbidden at tree level by a noninvertible symmetry, we will
generically pick up nonzero contributions at higher order in
the string coupling g,. From the perspective of target space
physics, this means that the noninvertible gauge symmetry
is only visible as an approximate symmetry for g, small. In
contrast, any invertible symmetry of the world sheet is
preserved to all orders in g,. Note that in Planck units, the
limit g, — O in flat space corresponds to the tensionless
limit of the string.

This section is organized as follows. First, we briefly
review the general form of tree-level selection rules
imposed by noninvertible symmetry derived in [73], and
explain why these selection rules can fail to hold at higher
genus. We then illustrate this effect in examples of
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noninvertible symmetries in familiar string compactifica-
tions. Finally, we comment on the story for a general
noninvertible symmetry of a 2D CFT.

A. Selection rules from topological operators

As stated in the Introduction, the modern understanding
of symmetries in QFT is based around the notion of
topological extended operators. In this section, we will
focus on O-form symmetries of 2D CFTs, which are
generated by topological defect lines (TDLs). For a com-
prehensive discussion of TDLs in 2D CFTs, see Ref. [74].

Let us recall the standard derivation of selection rules for
an invertible symmetry using the associated TDL U.
Consider a sphere correlation function (O, - - - O,,) of local
operators transforming as O; — ¢'%(; under the action of
U. We can nucleate a small loop of U, pass it through the
various operators and then annihilate it “at infinity,” leading
to the same correlation function weighted by the sum of the
charges:

(O, 0,) = 2250, ---0,) (2.1)
If the sum of charges is nonzero, the correlator must vanish,
and so we have derived a selection rule from the presence of
an invertible symmetry.

What would happen if we tried to perform the same
argument for a noninvertible TDL N? First of all, when we
nucleate a loop of N, we would pick up a factor of the
quantum dimension (N\'); however, this factor will cancel
when we annihilate A" at infinity, so we ignore it. More
interestingly, as we sweep N past any local operators, we
might leave behind some network of TDLs, producing a
correlation function of both local operators and disorder
operators, i.e., point operators attached to topological lines
(see Fig. 1). If we do produce such a network, then rather
than deriving a constraint on a single correlation function,
we might instead derive relationships between different
correlation functions.

In fact, we could have run into a similar issue when
deriving selection rules for invertible symmetries if we had
not chosen our local operators to have definite charge,
especially if our symmetry group were non-Abelian. In the
invertible context, the solution is well known: we should
organize our operators (; into representations y; of our
symmetry group. A correlation function can only be
nonzero provided the fusion y; ® --- ® u, of the repre-
sentations includes a copy of the trivial representation.

This motivates us to organize our operators into “rep-
resentations” of the action of the noninvertible symmetry.
Importantly, a given “representation” might involve both
local operators and disorder operators. In general, if our
TDLs form a fusion category C, these charges for our
noninvertible symmetry are given by representations of
Ocneanu’s tube algebra Tube(C) (see, e.g., [75]), or
equivalently [76,77], by objects y; in the Drinfeld center

AV

FIG. 1. Attempting to derive selection rules for a noninvertible
symmetry on torus correlators. Starting with our correlator, we
nucleate a topological line (green), and pass it through the various
local operators (red) picking up weights corresponding to their
charges. Since the operator is noninvertible, there may be a
network of lines (green, dashed) which attach the operators back
to the topological operator (see Ref. [74] for a comprehensive
discussion). Moreover, once we have pushed our topological line
past all the local operator, we still cannot annihilate it, and instead
are left with the fusion A" ® N7 wrapped on the two nontrivial
cycles of T2.

Z(C). The most general selection rule for noninvertible
symmetry tells us that a sphere correlation function
involving local operators and disorder operators can only
be nonzero if the fusion y; ® - - - ® u,, includes the trivial
representation [73]. While this abstract characterization is
very powerful, we will not use it directly in examples
below, and instead describe selection rules on sphere
correlation functions on a case-by-case basis.

What goes wrong with the argument when we consider
correlation functions on a more general Riemann surface X,
such as the torus (see Fig. 1)? Locally, we can proceed as
before: we nucleate a loop of our noninvertible TDL N and
pass it through our operators, possibly leaving behind a
network of TDLs as before. The issue appears in the final
step, where we attempt to annihilate N~ “at infinity.” In
addition to possibly getting caught on our local operators in
the correlation function, N may also get caught on the
nontrivial topology of our Riemann surface X. Thus, in
addition to the network of TDLs connecting our local
operators, we pick up a network of the fusion N’ ® N
wrapping the noncontractible cycles of £.* Note that the
fusion N ® N is the identity operator if and only if A/ is
invertible.

We will return to the meaning of this particular network
of TDLs in Sec. V. For now, let us note that the appearance
of an additional network of TDLs spoils the derivation of

%To make this argument precise for general X, choose a Morse
function on ¥, and sweep N down X according to the level sets of
the Morse function. Each time we pass a Morse critical point of
index one, A/ will get caught, leaving behind an insertion of the
fusion A" ® N'* on the descending manifold. This argument can
be generalized to a noninvertible O-form symmetry in any number
of dimensions, where we will leave behind condensates built from
N of various dimension on the descending manifolds of each
Morse critical point of index 0 < i < n.
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selection rules, so that whatever selection rules hold for
sphere correlation functions need not hold on a general
Riemann surface X. If we were simply studying 2D CFT,
then this effect could be viewed as a mixed gravitational
anomaly of any noninvertible symmetry’: the selection
rules that hold on the sphere are violated in the presence of
a background topology. However, in the context of string
theory, this violation of selection rules constitutes a genuine
breaking of the symmetry, since we have made the world
sheet topology dynamical.

B. Example: Non-Abelian orbifolds

Our first class of examples of noninvertible symmetry in
the world sheet CFT are provided by non-Abelian
orbifolds [18,19]. Suppose we have a 2D CFT with non-
Abelian symmetry group I', and we form the orbifold CFT
by gauging I'. The twisted sectors are labeled by conjugacy
classes [g] C I, whose fusion is defined as follows [24]:
given conjugacy classes [g], [h], choose representative
elements g€ [g], he[h],'" and form the conjugacy class
of their product [gh]. The fusion [g] & [A] is the sum of all
conjugacy classes produced this way for different choices
of g, h modulo simultaneous conjugation by I

From this description, we can easily derive selection
rules on sphere correlation functions of twisted sector
operators. If we have a sphere correlation function

(O Oy ))s?

of operators in twisted sectors [g;], this correlation function
can only be nonzero if the fusion [¢;] ® - - - ® [g,] contains
the conjugacy class [1] of the identity element. But this is
true if and only if we can choose some representatives
g; €[g;] such that the product g;...g, = 1 in the group I.

Let us now re-derive this selection rule using non-
invertible topological operators (this is essentially the
argument in [23]). In the orbifold theory, we have topo-
logical Wilson line operators WV, labeled by representations
p€Rep(T"), which fuse according to the fusion of

(2.2)

°Not to be confused with two distinct notions of anomaly for
noninvertible symmetry that have previously been considered. In
the case of invertible symmetries, one can consider three
equivalent notions: the obstruction to gauging, the obstruction
to a trivially gapped phase, or the violation of Ward identities in
the presence of a background field. In the case of noninvertible
symmetry these notions are different, and the one we mean is the
third, where we view the (pseudo)Riemannian manifold on which
we place our CFT, possibly decorated with additional tangential
structure (spin structure, etc) depending on the theory, as a
generalized notion of background gravitational field. For further
discussion see Refs. [78,79].

This is a slight abuse of notation, where we use the same
symbol ¢ to denote the different possible representatives of its
orbit [g] under conjugation. We will continue to use this abuse of
notation for representatives of orbits throughout this section for
the purpose of readability.

byt

b1

>
ai

FIG. 2. We can construct a Riemann surface of genus g by
gluing the edges of a 4g-gon in the pattern specified in (2.3).
When we encircle a collection of twisted-sector operator in-
sertions (red) with a topological Wilson line (green), we conclude
that the holonomy around our collection of operators is a product
of g commutators in I'. See also [23] [Fig. 11].

representations. Thus, the orbifold theory has Rep(I)
noninvertible symmetry. Given a sphere correlation func-
tion (2.2) of twisted sector operators as before, for any
representation p, we can insert ¥V, along a loop encircling
each of the operator insertions in turn. By annihilating this
insertion ““at infinity,” we learn that the holonomy around
the loop must act trivially in p. Since p was arbitrary, we
learn that the holonomy must be the identity element 1 €T
But this holonomy is also the product in I" of the
holonomies around each twisted sector operator, given
by some representative elements g; € [g;] that multiply to
the identity, so we have recovered the selection rule.

What happens on a nontrivial Riemann surface X of
genus g?'' Following [23], we note that a Riemann surface
of genus g can be formed by gluing the edges of a 4g-gon in
the pattern

(2.3)

alblal_lbl_l...agbgaglbgl
as depicted in Fig. 2. Now, when we push the topological
Wilson line W, “to infinity,” we cannot simply annihilate
W,. Instead, we pick up the action in p of an element in the

commutator subgroup [I',T'] C T formed from a product of
g commutators ghg~'h~!. Thus, for a correlation function

"By another abuse of notation we shall use the same letter g to
now refer also to a genus. It should be clear from the context
which notion is meant.
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(O O )x (2.4)

of twisted sector operators to be nonzero, it is enough for
the fusion [g;] ® - - - ® [g,] to contain the conjugacy class
of a product of g commutators in G. Note that the
conjugacy classes of commutators [ghg~'h~!] are precisely
those that appear in fusions [g] ® [¢~!] of conjugacy classes
with their inverses. See, e.g., [25] and references therein for
further discussion.

What selection rules are preserved on all Riemann
surfaces? In other words, how can we tell if a fusion
product [g;] ® --- ® [g,] does not contain a conjugacy
class in the commutator subgroup [, I'], so that (2.4) must
vanish at any genus? The answer is straightforward: the
fusion product [g;] ® -+ ® [g,] lands in the commutator
subgroup if and only if images of [g;] in the Abelianization
Iy, = /[, T'] multiply to the identity. In other words, the
conjugacy class [g;] carries a charge valued in I'y, given by
its image, and these charges must cancel on any Riemann
surface.

These charges are, in fact, simply the charges of the
operators O; under an invertible symmetry [25]. While the
Rep(I") symmetry is, in general, noninvertible, it contains
an invertible subsymmetry, generated by invertible Wilson
lines W, corresponding to one-dimensional representations
p. These invertible Wilson lines can still be “annihilated at
infinity” even on a nontrivial Riemann surface, and so they
impose the same selection rules on every Riemann surface.
Moreover, the commutator subgroup [[,I'] must act trivi-
ally in any one-dimensional representation, and we have
that the set of one-dimensional Wilson lines forms a
Rep(T'y,) = I'y, invertible subsymmetry of our noninver-
tible Rep(I') symmetry, which is the maximal invertible
subsymmetry.

This example illustrates an important point: while we
expect any noninvertible symmetry to be broken down to its
maximal invertible subsymmetry by string loop effects, it is
not true that the consequences of this breaking are always
entirely visible at one loop. For example, suppose I" were a
group such that some element g, in the commutator
subgroup could only be written as a product of commu-
tators, but not as a single commutator (such I" exist, see,
e.g., [80] for a source of examples). Then a local operator in
the twisted sector [gy] could not have a nonzero torus
partition function, but could have a nonzero partition
function on some higher-genus Riemann surface.

However, in general, the set of charges that can get a
nonzero one-point function at some order in the string loop
expansion is always generated under fusion by the charges
that can get a nonzero torus one-point function. This can be
seen by realizing that a one-point function on a Riemann
surface of genus g can be built by sewing together g torus
one-point functions with a single sphere (g + 1)-point
function (see Fig. 3). Each torus one-point function
produces some charge, and these charges simply fuse in

< eoe <

T
\°/

FIG. 3. A one-point function on a Riemann surface of genus g
(left) can be built be sewing together g torus one-point functions
and one sphere (g + 1)-point function (right).

the sphere (g + 1)-point function. Thus, whatever sym-
metry is broken by string loops must be entirely broken at
one-loop, even if the nonzero one-point functions of certain
charges do not show up until higher loop order.

C. Example: Toroidal orbifolds

Our next class of examples of noninvertible symmetry in
the world sheet CFT are given by toroidal orbifolds that
break some part of the translation symmetry. These
examples fall into the general class of noninvertible
symmetries obtained by gauging a non-normal subgroup
of a larger symmetry group (see, e.g., [3,81,82]); similar
statements could be made for any of these more general
examples, and in fact we will discuss one such generali-
zation below in Sec. IV C. These noninvertible symmetries
capture, in the case of toroidal orbifolds, the general
perturbative string theory expectation that tree-level scat-
tering amplitudes are independent of the choice of com-
pactification for states whose existence is unchanged by the
compactification.’ 2

Suppose we have a world sheet CFT containing a 7"
sigma model. We will denote the sigma model fields by X*,
as is standard in string theory. Let us now orbifold by a
finite group I" of isometries of 7" (I" can be Abelian or non-
Abelian). Before orbifolding, the sigma model CFT has a
continuous “momentum” symmetry which acts by trans-
lation (we could tell a completely analogous story for the
“winding” symmetry). Let Usy denote the invertible topo-
logical operator implementing a translation X* — X* +5X*.
In general, Usy will not be preserved by the I' action, and
will be taken to a different translation operator under the
action of g €I'. Thus, if we gauge I', the operators U sy will
no longer be gauge-invariant.

However, while the operators Usy are not individually
gauge invariant, they can still be grouped into orbits [6X] of

PFor example the tree-level scattering of graviton amplitudes
in 4D is the same as those in 10D at string tree-level, independent
of the compactification.
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the T action."? For each orbit [6X], we can define a gauge-
invariant topological operator by summing over the orbit

D Usx.

86X € [6X]

Lisx) = (25)

The quantum dimension (L(sy]) is given by the size of the
orbit [56X].

The collection of operators Lsx) define a noninvertible
“momentum” symmetry of the toroidal orbifold 7"/T
which is the unbroken piece of the full translation sym-
metry of the unorbifolded theory 7. The charged operators
include (unnormalized) vertex operators:

Oy = ) enX,

PElp]

(2.6)

defined by summing plane waves of definite momentum p
over a [-orbit [p] in order to form a [-invariant wave
function.

What selection rules does the noninvertible symmetry
place on correlation functions

™/
(O Op e

SZ

pil (27)
in the orbifolded theory? The answer is simple: the
associated selection rules are merely the selection rules
coming from conservation of momentum before orbifold-
ing, because the tree-level correlators of untwisted oper-
ators are exactly equal to those in the unorbifolded theory.
In more detail, the correlation function (2.7) can only be
nonzero if there are representatives p; € [p;] such that
pr+-+p,=0, (2.8)

i.e., such that momentum is conserved. In Appendix A, we
explain in detail how to re-derive this selection rule using
the topological operators (2.5) for the simple ¢ = 1 orbifold
S1/Z, (see also [83,84]).

Suppose we want to calculate the torus correlation
function

/T
(Opy - Op,)

r (2.9)

Be careful: the action of " on the group of translations is not
equal to the action on the sigma model target 7". If g €I" acts on
sigma model fields as X — AJXY + X}, then it acts on Usy as
Usy — gUsxg~" = Uxsx. Thus, even if T' acts on the sigma
model without fixed points, there may still be fixed points in its
action on the symmetry operators Usy. For example, if we
quotient a square T2 by the Z, action (X,Y)+ (X +x,-Y)
in order to obtain a Klein bottle (as discussed in Appendix D), the
action on translation operators is U sy sy) H Usx —sy), and the
space of orbits of symmetry operators is S' x (S'/Z,), not a
Klein bottle.

y/i y/i
L4 L L 4
g
O O
} ® [p]‘, E } ® [p]‘,

2 g7h y73 h

[/ 4 7”7

FIG. 4. The torus one-point function (2.10) in the orbifold
theory (left, shaded) is computed by summing torus one-point
functions in the unorbifolded theory (right) with insertions of I
symmetry lines (green). The sum runs over all pairs g, h €T of
commuting elements. Even if the contribution from g =h =1
vanishes, the other terms with nontrivial line insertions may be
nonzero. This illustrates that the difference between a theory and
its orbifold is simply which topological line insertions are
considered to contribute to “vacuum” correlation functions.

in the orbifold theory. For simplicity of the discussion, let
us focus on the case of a torus 1-point function

™/
(O’

5 (2.10)

Because of the selection rule for the momentum symmetry
“upstairs,” the torus one-point function (Op,)%; in the
unorbifolded theory must vanish if p # 0. However, in the
orbifold theory, the torus one-point function (2.10) involves
summing over insertions of commuting pairs of I' symmetry
lines on the two cycles of T2, as illustrated in Fig. 4. In contrast
to the torus one-point function (Oj,)%; in the vacuum of the
unorbifolded theory, the torus one-point function of Oy, in
the presence of I" symmetry lines may be nonzero.'*

To see why this can happen, let us track momentum
charge as it flows through the torus with the insertion of a
symmetry line for g €I (see Fig. 5). Our insertion of O,
inserts some momentum p € [p], which can split into two
parts k, p — k running through the two sides of the torus.
Before joining, one of the parts, say k, is acted on by the I
symmetry line, transforming to some other momentum
g(k). Finally, the momentum charge running through the
two sides meets, and must annihilate by the selection rules
in the unorbifolded theory. Thus, we have

p—k+gk) =0, or, p=k+g(-k). (2.11)
Thus, any operator Oy, such that p = k + g(—k) for some
g and some k could acquire a nonzero torus one-point
function. For example, in the ¢ = 1 orbifold S'/Z, by
X — —X discussed in Appendix A, the condition (2.11) is
equivalent to the condition that p be even. This remaining
selection rule corresponds to an unbroken invertible trans-
lation symmetry, given by a z-rotation of S'.

"“This can be understood by saying that the I" symmetry lines
can carry momentum charge, due to their failure to commute with
translation.
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p—k
K\ p

—
<D

4

FIG.5. Tracking the flow of momentum charge through a torus
one-point function of Oy, with the insertion of a symmetry line g
(green). In the orbifold theory, this contributes to the torus one-
point function of O, in the orbifold vacuum.

Opp)
g(k)

An alternative way to make this argument is to build the
torus one-point function (2.10) by sewing together sphere
three-point functions (see Fig. 6)

/T
(OpOWOLn)g

o (2.12)
Because of the I" orbifold, we have (’)[_k] = (’)[g(_k)], and so
this sphere three-point function can be nonzero if (2.11) is
satisfied. Let us conclude this section by noting that if we
define the fusion of orbits [p;] ® [p,] analogously to the
fusion of conjugacy classes (defined in the previous
section), then (2.11) is precisely the condition that [p]
appears in a fusion [k] ® [—k].

D. General story

So far, we have seen that in the example of the Rep(T")
symmetry of non-Abelian orbifolds and in the example of the
noninvertible momentum symmetry of toroidal orbifolds, the
noninvertible symmetry present at tree level is broken at one
loop. In both cases, we saw that the charges y of the
symmetry that could acquire nonzero one-point functions
on the torus T? were those that appeared in fusions p ® p of
some charge with its dual. These charges generate what is
known as the “adjoint subcategory” of the category of
charges [85][Definition 4.14.5.] (see also [25]). A natural
guess, then, would be that this is the general story.

However, this is certainly wrong, due to the possibility of
non-Abelian symmetry. For example, rather than a non-
Abelian orbifold with Rep(I') symmetry, consider the
unorbifolded theory itself, with non-Abelian I" symmetry.
Then, the charges of local operators are given by repre-
sentations u of I'. Even if u appears in a fusion p ® p, an
operator O, charged in y cannot acquire a nonzero torus
one-point function (or, indeed, a one-point function at any
order in g,), as it is charged under the invertible symmetry
I, whose selection rules hold on any topology.

To see the issue, suppose we try to replicate the argu-
ment from the previous section depicted in Fig. 6 for an

»
Bats
o
.

=%

FIG. 6. A torus one-point function can be written as a sphere
three-point function with two points sewn together. The sewing
procedure involves a trace over the sewn operators’ Hilbert space.

operator charged under a non-Abelian invertible symmetry.
Thus, consider a torus one-point function
(O, (2.13)

of an operator O charged in a representation u C p ® p,
where a = 1, ..., dim(y) is an internal index running over a
basis for u. If we try to build the one-point function (2.13)
by sewing together sphere three-point functions
(Oﬁ@g@§>§z, (2.14)

we are forced to trace over the internal indices b, ¢ of the
charged operators 0%, O5. While (2.14) may be nonzero, it
will be proportional to the Clebsch-Gordan coefficients

C?% for the fusion channel p ® p — u. But if y is a
nontrivial irreducible representation, then the trace

>, Co%P must vanish, so we do not produce a nonzero
torus one-point function.

While the “adjoint subcategory” of charges appearing in
fusions p ® p of charges with their duals does not generally
describe the subset of charges that can acquire a torus one-
point function, it does still have an important meaning: it
described the set of charges that can acquire a torus one-
point function possibly in the presence of topological line
insertions on nontrivial cycles of T2 (see Appendix B). This
set of charges is invariant under any possible orbifoldings,
as the difference between a theory and its orbifold is
merely which topological lines we consider “gauged,” or
“condensed,” i.e., part of the vacuum.

However, for the purposes of string theory, where we only
sum over world sheets without the insertion of topological
lines, the more refined question of which charges can get a
torus one-point function without any line insertions is
essential. In Appendix B, we give a formal characterization
of this set of charges. We strongly suspect that this set is
always precisely the set of charges needed to break our
noninvertible symmetry to its maximal invertible subsym-
metry, but we were not able to give a full proof (outside of
special cases such as the Verlinde lines of a diagonal RCFT,
see Appendix B 1). As evidence for the generality of this
claim, we verify it explicitly for the case of a truly exotic
noninvertible symmetry (Haagerup) in Appendix C.
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As a final note, strictly speaking, what we expect in
general is that the selection rules of any noninvertible
symmetry are not automatically imposed by the symmetry
on correlation functions at higher genus. Thus, in the
absence of a conspiracy, we expect the symmetry to be
broken at g; # 0. Of course, one could imagine there might
be exceptional string theories where the selection rules of
the noninvertible symmetry continue to hold at higher
genus due to nontrivial cancellations, even though they did
not have to. In fact, we will see precisely such a case below
in Sec. III B on the world sheet of a tensionless (but not
infinitely weakly coupled) string theory in AdS.

III. NONINVERTIBLE GAUGE SYMMETRIES
IN ADS/CFT

In the previous section we argued that at least in
perturbative string backgrounds, unbroken noninvertible
gauge symmetries coupled to gravity can only arise in a
suitable limit where a tower of light states enter the
spectrum. In this section we explore more general back-
grounds in quantum gravity such as anti—de Sitter (AdS)
space using the AdS/CFT correspondence.

Indeed, there is a well-studied sense in which noninver-
tible gauge symmetries can easily arise in AdS backgrounds.
To see why, suppose we have a D-dimensional CFT, with a
semiclassical gravity dual. Suppose also that the CFT}, has a
noninvertible global symmetry. According to the “standard
rules” of the AdSp,|/CFTp correspondence, any global
symmetry of the boundary theory ought to be gauged in the
bulk. From this perspective, we can immediately generate
examples of gauged noninvertible symmetries in the bulk.

To better understand this, it is helpful to briefly review
some aspects of categorical symmetries for a general
D-dimensional quantum field theory QFT,. One way to
capture the categorical symmetries of the QFT), is in terms
of a (D + 1)-dimensional topological field theory (TFT)
known as the symmetry TFT (SymTFT)."”” Working on a
(D + 1)-dimensional spacetime of the form I x Mp with I
an interval and M, the original D-dimensional spacetime,
we specify physical boundary conditions at one end of the
interval and gapped (i.e., topological) boundary conditions
at the other end. The theory on the physical boundary
conditions is referred to as a “relative QFT” in the sense
of [46]. The possible global forms of the QFT, are specified
by the choice of gapped boundary condition.'® Contracting
the interval then produces an absolute QFT,. Switching
from one choice of boundary conditions to another is

BFor discussion of various aspects of SymTFTs, see, e.g.,
Refs. [10,35,38-53].

There are some subtleties with imposing such boundary
conditions in the case of continuous symmetries, and in the
context of holography one ought not entertain a gapped bulk
anyway. For further discussion on this in the context of SymTFTs
and holography, see respectively [52,53] and [35].

interpreted in the boundary QFT, as the gauging of a
nonanomalous (possibly noninvertible) global symmetry.

For a holographic CFT,, with a semiclassical AdSp
dual, one can view the SymTFT, , | as a topological subsector
of the bulk gravitational theory, as has been explicitly verified
in a number of top down constructions [26-34], as well as
from a bottom up point of view in [35]. More precisely, the
SymTFTp, | should be viewed as a small sliver in the bulk
AdSp,, where the physical boundary conditions of the
relative QFT have now been “smeared out” over the rest of the
(D + 1)-dimensional bulk [35]. For our present purposes, it is
enough to observe that the bulk AdSp | has a topological
subsector given by the SymTFT,_ ;.

As an illustrative example, consider 4D AN = 4 super
Yang-Mills (SYM) gauge theory with gauge algebra 81 (N).
The global form of the gauge group could, in general, be of
the form SU(N)/Z for any K which divides N. The 1-form
symmetries of this SYM theory are described by the 5D
SymTFT with topological term of the form

N
Stsog - E/BQ VAN dCz,

where B, and C, are, in the 4D boundary, interpreted as the
background fields for electric and magnetic 1-form sym-
metries of the theory. The global form of the SYM gauge
group is specified by the boundary conditions for B, C: we
can specify B = 0 or C = 0, or some more general admix-
ture. This topological term naturally arises in type IIB
supergravity via the 10D topological term F5 A B, A dC,
reduced over the S° factor of AdSs x S° in the presence of N
units of F’5 flux. As explained in [86], the choice of boundary
conditions for this doublet of 2-form potentials fixes the
center of the gauge group on the boundary. More generally,
there are now many known realizations of SymTFTs via
string constructions (see, e.g., [48,51,87]). As a final com-
ment on this example, observe that gauging the 1-form
symmetry of the 4D CFT allows us to switch polarizations,
i.e., this corresponds to changing the gapped boundary
conditions of the boundary theory. For example, starting
with SU(N) gauge theory and an electric 1-form symmetry,
gauging the 1-form symmetry produces the SU(N)/Zy
gauge theory with a magnetic 1-form symmetry.

This simple example describes the SymTFT for an
invertible global symmetry of a CFT}, with a holographic
dual, but many examples studied in the literature involve
the SymTFT of a noninvertible global symmetry of the
CFTp [26-34]. For these cases, one could rightfully
describe the bulk SymTFT sector as a noninvertible gauge
theory in the conventional sense,17 and so there are
certainly many examples of unbroken noninvertible gauge

(3.1)

7As noted in the Introduction, this is true in the sense of
“summing over a mesh of topological operators,” and likely also
in the sense of a redundancy of the description assuming the
results of [15] generalize.
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symmetries in string theory. However, in spite of appear-
ances, in all examples we know how to explicitly realize,
these “noninvertible gauge symmetries” are of a rather mild
type: they could alternatively be described by invertible
gauge theories, either in a dual frame or with appropriate
Chern-Simons terms.

So far, our discussion has focused on examples of AdS/
CFT where the bulk dual is well described by semiclassical
Einstein gravity. If we relax this assumption, we can look
for examples of noninvertible symmetries in CFTs whose
bulk duals are not semiclassical, and which are described
by something like a tensionless string theory. We find, in
the example of AdS; x S° x T* with one unit of NS5
flux [59-61] that the CFT, admits noninvertible sym-
metries whose bulk dual is not described by the associated
SymTFT. Instead, the bulk dual is the less-benign stringy
noninvertible gauge symmetry described in the previous
section, realized as noninvertible symmetry on the world
sheet of the tensionless string.

The rest of this section is organized as follows. To illustrate
some of the general issues, we first revisit the case of
Rep(I") symmetries in the special case of the background
AdS; x §% x T*. In this case, we argue that although the
boundary theory admits a polarization with a global Rep(I")
symmetry, the bulk theory is nevertheless captured by a
conventional I gauge symmetry (i.e., an invertible theory),
so in this sense in the bulk we have an invertible symmetry in
disguise. We then turn to the limit captured by a tensionless
string, where we see a large Rep(Sy) noninvertible sym-
metry, and argue that the bulk dual is a stringy noninvertible
gauge symmetry, realized on the world sheet of the tension-
less string. After this, we turn to a broader discussion of
AdSp,/CFTp pairs for D > 2, where we typically encoun-
ter symmetries whose noninvertibility is of a very mild type.
Consolidating these lessons, we put forward some conjec-
tures on noninvertible symmetries motivated by gravity.

A. Example: Semiclassical AdS;/CFT,

To illustrate some of the general considerations just
presented, we now turn to an explicit example. Consider the
type IIB NS flux background AdS; x §* x T#, with its
corresponding CFT, dual given by the F1/NS5 system.
This configuration can be obtained from the near horizon
limit of coincident N; Fl-strings and N5 NS5-branes on
RLI x R* x T*, where both stacks of branes fill the R!!
factor, and the NS5-branes wrap the 7# factor as well. In the
near horizon limit, the string coupling is frozen via the
attractor mechanism, and satisfies

N
G~ N—j x Vol(T?),

(3.2)

to leading order in 1/Nj.
We briefly note that this is S-dual to a D1/D5 system,
although for our present purposes we will find the F1/NS5

description more convenient. Let us also note that in the
special case of N5 =1 there is a tensionless world sheet
description of the full 10D bulk gravity solution, given
in [59-61]. This is not a semiclassical gravity theory, but it
has the advantage of being a tractable example of an
explicit world sheet description of the entire bulk. Let us
note that instead of 7% we can also consider a K3 surface,
and a specific case of interest are limits of K3 realized as
orbifolds of 7.

We would now like to understand the presence/absence of
noninvertible symmetries in this background, where we
work in the large charge/supergravity limit. To begin, let us
determine some of the discrete gauge symmetries in the
bulk. Tuning the moduli of 7* we can reach special points in
moduli space where the tuned 7%, ., admits a non-Abelian
isometry I'. So, in addition to the continuous gauge sym-
metries that arise generically (from translations of 7+) we see
that the 6D spacetime AdS; x S* has a discrete I' gauge
symmetry (from discrete isometries of T ). If we place the
usual Dirichlet boundary conditions on AdS; x $* x T¢ .,
this leads in the CFT, to a global, invertible O-form I'
symmetry. Now, since this O-form symmetry is nonanom-
alous in the 2D CFT, it is natural to ask what happens if we
gauge it. This yields another 2D CFT which we denote as
CFT,/TI". Asexplained in [12,20], and above in Sec. II B, the
theory CFT,/T" has a O-form noninvertible symmetry given
by Rep(I'). In this symmetry category the symmetry
operators are labeled by finite-dimensional representations
of I', and there is an accompanying fusion rule given by
tensor products of such representations.

What is the bulk dual description of the CFT,/T"? From
the perspective of the accompanying SymTFTj, all we have
done is modified the topological boundary conditions for
the theory, changing them from Dirichlet to Neumann for
the I' gauge fields. Consequently, we conclude that in the
AdS;/CFT, pair with 6D geometry AdS; x S (after
reduction on the T% ., factor) we have changed from
electric to magnetic boundary conditions for the bulk I’
gauge theory on AdS; x S3. This example illustrates an
important lesson: although one may certainly say that “the
Rep(I") symmetry is gauged in the bulk,” there is an
alternative presentation of the bulk theory which is an
invertible O-form I" gauge theory.

Do not confuse the bulk dual of CFT,/T" with the related
background AdS; x S x (T*/T'). This is related to AdS; x
§3 x T4 ., example by gauging the global I' symmetry of
the bulk world sheet theory (which has ¢ = 10). We
emphasize that this gauging operation is not happening
in the boundary CFT, (which has ¢ > 1), nor in the target
space quantum gravity theory. In AdS; x §* x (T¢_.,/T),
we generically expect the Rep(I") symmetry on the world
sheet to be broken by string loops as described in Sec. IL.

Summarizing, we have seen that in an explicit example
with a noninvertible symmetry of the boundary CFT,, the
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bulk description is rather benign: it is simply a question of
how we choose boundary conditions for the bulk theory.

B. Example: Tensionless string in AdS;

Let us consider more closely the special case N5 = 1 and
N; = N, considered extensively in [59-61]. Although there is
no semiclassical gravity dual, this special case admits an
explicit bulk world sheet description as a tensionless string
theory and a characterization of the CFT, as the N-fold
symmetric product orbifold of the 7% sigma model, i.e.,
Sym™ (T*) = (T*)N /Sy (where the symmetric group Sy acts
by permutation). In this case the CFT, admits a Rep(Sy)
noninvertible symmetry, which emerges precisely at the
orbifold point. Because the bulk theory contains a tensionless
string, it admits a higher spin gauge symmetry. For details of
this Higgsing of this higher-spin symmetry as we move away
from the symmetric orbifold point, see Ref. [88] (see also [89]).

What is the bulk dual of this enormous Rep(Sy) non-
invertible symmetry? In [59,60], it was shown that, in the
bulk world sheet theory, the vertex operators in the wth
spectrally flowed sectors satisfy the same selection rules as
the conjugacy classes of w-cycles in Sy, in the limit
N — 0. In other words, the bulk world sheet theory admits
a noninvertible Rep(S,,) symmetry,'® described as the
N — oo limit of Rep(Sy) symmetry. This noninvertible
symmetry on the world sheet of the bulk string is the
holographic dual of the Rep(Sy) noninvertible global
symmetry of the symmetric product orbifold Sym" (7).

This identification raises a puzzle: the bulk string theory,
while tensionless, is not infinitely weakly coupled; indeed,
gs ~ v/ Vol(T*)/N to leading order in 1/N, as in (3.2). So
why is it not the case that the Rep(S,, ) symmetry broken by
string loops, as in our general story in Sec. II? There, we
had noted a possible way to avoid the breaking effect: if the
world sheet CFT correlation functions were subject to some
highly nontrivial cancellations. This is exactly what hap-
pens on the tensionless string world sheet: as described
in [61], world sheet correlation functions of the spectrally
flowed vertex operators exactly localize on Riemann
surfaces that admit a holomorphic branched cover of
S? = 0AdS;, with branching specified by the charges w;
of the operator insertions. This localization exactly imposes
the selection rules of Rep(S,,) noninvertible symmetry at
any order in the string loop expansion, since z;(S?) = 0
and the only interchange of sheets comes from operator
insertions." For a concrete example, no vertex operator

"We would not expect to see the finiteness of Rep(Sy)
symmetry in the bulk world sheet theory, since this finiteness
is nonperturbative in 1/N.

This argument will fail if we consider a more general
hyperbolic 3-manifold than AdS;, for example a handlebody
of higher genus. However, we do not expect the selection rules to
hold even in the nongravitational CFT, when we place it on a
boundary manifold of nontrivial topology.

with w > 1 can acquire a one-point function at any genus,
since there are no holomorphic branched covers of S with
only one branch point besides the identity map, which can
be viewed as having “trivial branching” w =1 (see e.g.
[61], Equation 8.14]).

C. Weak invertibility

Recently a number of examples of noninvertible sym-
metries in holographic CFTp for D > 2 have been dis-
cussed, along with their string theory realization in the
bulk [26—36].20 As discussed above, this means that there is
a conventional noninvertible gauge symmetry in the bulk
gravity dual, described by the SymTFT for the noninver-
tible symmetry.

However, an important caveat is that all of these examples
are “weakly invertible,” in the sense that the noninverti-
bility in their fusion rule only includes defects supported
on lower-dimensional subspaces, i.e., a condensate (see,
e.g., [90,91]). More explicitly, suppose we have a non-
invertible symmetry defect A/ supported on a g-dimensional
subspace. We say A\ is weakly invertible,”" or invertible up
to condensates, if the fusion of N with A" on any given
g-manifold N satisfies

N(N) @ N(N) =Y M(m), (3.3)
MM

where the sum runs over some topological operators M
supported on submanifolds M C N of strictly lower dimen-
sions dim(M) < q. If we have two such operators NV;, NV,
their fusion can be described as

Ni(N) ® N;(N) =N;(N) ® Z M;;(M), (3.4)
MM

where \V; ; 1s another weakly invertible operator of the same
dimension, and M;; runs over some set of topological
operators of lower dimension.”” Note that if we ignore

20See, e.g., [4-9] for reviews discussing noninvertible sym-
metries in D > 2 in general.

*'Note that a “weakly invertible” symmetry need not be
invertible, following the convention that the “weak” version of
a property does not imply the unmodified version.

*To prove this, it suffices to show that N'; @ N ; is irreduc-
ible. Suppose it were not, so we had N'; @ N/ = A @ B. Then

by fusing with N, we would have N;® (condensates) =
(AN ;) ® BN j) Since reducibility is invariant under
fusing with condensates, we would learn that \/; were reducible,
which is incompatible with the weak invertibility of A/;. By the

same argument, the fusion of any irreducible operator with a
weakly invertible operator is irreducible.
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condensates, the fusion of weakly invertible operators
defines a group law.”

Weakly invertible operators are to be contrasted with, e.g.,
the case of Verlinde lines of a 2D RCFT, where the fusion
products involve multiple summands of topological defect
lines of the same dimension. One of the general lessons from
top down realizations of noninvertible symmetries is that
bulk dual of weakly invertible symmetries is the well-known
process of brane/antibrane annihilation [26,32], which pro-
duce lower-dimensional branes that were dissolved in the
original brane/antibrane pair via the dielectric-brane
effect [92].** The corresponding bulk gauge theory is an
invertible gauge theory with triple Chern-Simons terms
turned on (see also [93]), which capture the possibility of
branes of different dimensions to dissolve into one another.
Again, we see that the bulk dual of boundary noninvertible
symmetry can be rephrased in terms of an invertible gauge
theory, now with nontrivial topological couplings. Notably,
in this case, we do not have to perform any electromagnetic
duality in the bulk: the bulk gauge fields are invertible, but
their electric symmetries are rendered noninvertible by the
triple Chern-Simons terms [94-96].%

There may be more general notions of weak-invertibility
beyond the definition (3.3), whose bulk duals correspond to
invertible symmetries directly, without switching to a
magnetic duality frame. For example, suppose we had a
CFT), with a global O(2) = U(1)xZS symmetry. If we
gauge Z$, we obtain a continuous noninvertible symmetry,
with topological operators £y defined as in Appendix A
(see also [3,82-84] for more discussion of this construc-
tion). In the bulk, where we have a dynamical O(2) gauge
theory, this corresponds to switching our boundary con-
ditions for the Z$ discrete gauge field, while leaving the
Dirichlet boundary conditions for U(1) unchanged. Thus,
while we have switched to a magnetic duality frame for Z¥,
the U(1) gauge field is directly holographically dual to the

3 A further comment here is that for nontopological operators,
one can of course expect more general fusion rules. An interesting
example in this regard is that of [32] where the brane fusion rule
in the gravity dual produces multiple branes in the bulk (i.e.,
seemingly a stronger notion of noninvertibility). Even so, in all
known cases where this occurs not all the bulk branes simulta-
neously specify topological operators in the dual CFT. That is to
say, once one chooses a polarization/global structure, some of
these bulk branes do not descend to topological operators of
the CFTp. See also the discussion to follow near Eq. (3.5) on
trivialization up to condensation defects.

HFor explicit examples in AdS/CFT, see, e.g,
Refs. [26-30,32,35,36].

»This illustrates a general pattern: strictly speaking, the bulk
dual of a global symmetry in the CFT is the approximate electric
global symmetry of the bulk gauge fields (see Ref. [35] for a
recent discussion of the approximate bulk symmetry operators
arising from the boundary symmetries). This was referred to as
“long range gauge symmetry” in [97]; see also [98] for the
approximate noninvertible electric symmetry of a non-Abelian
gauge theory in Maxwell phase.

noninvertible symmetry in the CFTp, without any electro-
magnetic duality.26

From the perspective of the fusion algebra of symmetry
operators in the CFTp, what is happening is that we have a
continuous family of topological operators L, such that the
limit & — 0 of L, is a condensate.”’ In particular, this
means that these operators can be written as

Ly(N) = Condensate(N) ® exp (ié’[v *J), (3.5)

where J is a 1-form conserved current operator that is only
well-defined along the condensate (see also [83,99-101]).
The formula (3.5) defines a more general sort of “weak
invertibility” or “invertibility up to condensates” beyond
(3.3), whose bulk dual involves a photon field which is
itself charged under some other discrete gauge symmetry
(in this case, Z5). It would be very interesting to determine
the most general notion of “weak invertibility” in QFT (see
section V for further comments on this question).

D. Conjectures motivated by gravity

The general lesson from these examples is that while we
do expect a gravity dual for noninvertible symmetries in
theories with a semiclassical bulk, the bulk description is
typically “benign,” and can be rephrased as a more
conventional invertible gauge theory description, either
in an electromagnetically dual frame, or directly as is in
the case of weak invertibility. Motivated by these con-
siderations, it is natural to ask whether the SymTFTp
for any QFTp, (whether or not it has a semiclassical
gravity dual) can always be presented as a more conven-
tional invertible gauge theory with appropriate topological
couplings (i.e., Chern-Simons terms). This is a broader
QFT question, but the evidence we have from holographic
examples suggests that this more general statement might
be true.

Gravity also suggests that there may end up being an
upper bound on the number of separate operators that can
appear in the fusion products

kmax

k=1

(3.6)

of topological operators in holographic CFTs with semi-
classical bulk duals. It is tempting to conjecture that
kmax ~ O(1) for noninvertible symmetries which are dual
to conventional noninvertible gauge symmetries in actual

*As in Footnote 25 what is really happening is that the
approximate electric 1-form symmetry of O(2) gauge theory in
the bulk is noninvertible [3].

“More precisely, it is the condensate of the dual (D — 2)-form
symmetry generated by topological Wilson lines for Z§ [3,82-84].
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UV complete backgrounds.28 Indeed, returning to the
examples presented in Sec. III A, the collection of non-
Abelian orbifolds I which can serve as isometries of an
explicit tuned T* is rather small, and the resulting dimensions
of irreducible representations is also quite limited. Indeed,
the only case we saw with a possibly large number of fusion
products involved Sy, whose bulk dual was realized as a
stringy noninvertible gauge symmetry in a tensionless string
theory. Observe that in other AdS backgrounds such as
AdS x 8" /T (see Ref. [102]), the order of I" can be arbitrarily
large, but the dimensions of the irreducible representations
(and thus the number & ,,,, of fusion products) are far smaller.
Clearly, it would be interesting to see whether there exist
holographic CFTs having noninvertible symmetries with
large k., or conversely, whether there is a nontrivial
swampland constraint.

IV. APPROXIMATE NONINVERTIBLE
SYMMETRIES IN THE STRING LANDSCAPE

Despite being broken in spacetime, in this section we will
show that noninvertible symmetries on the world sheet can
still have interesting implications for effective fields the-
ories arising from string theory. First, we will explain the
interplay of noninvertible symmetries with several swamp-
land constrains, including the distance conjecture and the
sub(lattice) weak gravity conjecture.

A. Existence of towers of states

In section IIC we showed the generic presence of
noninvertible symmetries at g, = 0 whenever we have
string theory compactified on toroidal orbifolds such as
S'/Z,. More generically, there are noninvertible sym-
metries present in any orbifold M/G where M is a
smooth manifold with isometries broken by the G action.
This includes many examples with fixed points (including
toroidal orbifold Calabi-Yau manifolds); in these cases,
there is a question of whether the noninvertible symmetries
may be explicitly broken by turning on deformations
corresponding to marginal twisted sector operators local-
ized at the fixed points. All of the above arguments,
however, also apply to the case when G is freely acting.
In these cases, the noninvertible symmetry is exact clas-
sically for any choice of geometric moduli, and as dis-
cussed in the previous subsection, is only broken by
quantum effects at g, # 0. Examples of these manifolds
include Riemmann and Ricci-flat examples, such as freely
acting quotients of 7" and quotients of the form

K3 x Tk
— (4.1)

**This statement could possibly be extended to the general case
by placing a bound on the bulk EFT cutoff.

where the Z,, is a common subgroup of isometries. Some of
these constitute examples of Calabi-Yau manifolds with
infinite fundamental group [103,104].

As we have seen, these noninvertible symmetries are
only approximate unless we are in a decompactification or
tensionless string limit. A natural question is then whether
it plays any role in the physics close, but not exactly at the
asymptotic/perturbative limits of effective field theory. We
will now show that this noninvertible symmetry can be used
to prove the existence of a tower of states that becomes light
at infinite field distance, as predicted by the distance
conjecture [105]. Using noninvertible symmetries we can
therefore extend the range of asymptotic limits where a
proof of the distance conjecture is available.” Importantly,
for the first time, the argument does not use the existence of
an unbroken gauge symmetry, as is the case in the usual
perturbative string [107] and complex structure moduli
space examples [108,109]. Since the noninvertible sym-
metry is not exact, we can expect small corrections to the
mass and lifetime of the particles in the tower. However the
existence of the tower itself in the asymptotic limit is
guaranteed by the noninvertible symmetry.

The argument we have in mind is a minor modification
of the proof in [66,67] of the sublattice weak gravity
conjecture, which itself is a direct application of spectral
flow.™® We will now briefly review the argument in [66,67]
(which was itself described inline in [106]), in the particular
case of a single U(1) gauge field and then explain how it
gets modified for the case of a noninvertible symmetry.

Consider a 2D world sheet CFT with an invertible U(1)
symmetry generated by a holomorphic current j at level N.
In other words,

20~

(4.2)

In these circumstances, one may consider the partition
function with complex chemical potential

Z(u, 7) = Tr(glogoe?min), g=e*.  (4.3)

This partition function transforms covariantly under
SL(2,27)

7z u ar+b
ct+d ct+d

N
> = ™z (p, 1) (4.4)

(the lack of exact invariance is due to the anomalous
conservation of the holomorphic current, see, e.g., [110])
and it also satisfies

0f course another way to argue that in the large radius limit for
arbitrary compactifications the light KK tower is related to gauge
symmetry, as is anticipated by weak gravity conjecture [106], is to
note that in this limit we get approximate translational symmetries
which lead to gauge symmetries broken by 1/R effects.

9See also [68] for extremely recent progress in this direction.
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Z(p,t)=Z(u+1,7) (4.5)
since the charges are quantized. As shown in [66,67],
imposing (4.5) and (4.4) together implies that the whole
spectrum of CFT operators is invariant under a simulta-
neous shift
2
h— h+ Q—,

N Q= 0+N,

(4.6)
known as a spectral flow automorphism. Equation (4.6)
implies that the CFT spectrum arranges itself into towers of
states where the U(1) charge shifts by N and the dimen-
sions increase accordingly. In particular, the tower asso-
ciated to the identity is labeled by a parameter k and has
charges Q = kN and weight i = Nk?/2. In a perturbative
string context, after level-matching, these operators corre-
spond to a tower of particles with mass and U(1) charge

m~\/ﬁk,

which exactly saturates or satisfies the sublattice weak
gravity conjecture [66,67]. More to the point, this tower of
states becomes light in the perturbative string limit: the
proof of the sublattice WGC is also a particular case of the
distance conjecture. Although we reviewed here the case of
a single holomorphic current, the setup is general, applying
to any number of Abelian currents of any chirality.

The basic point of this subsection is that the above
argument goes through almost unchanged in the case where
the symmetry is noninvertible. Imagine gauging a Z,
symmetry that sends j to —j, as would be the case when
going from S' to the S'/Z, sigma model of section II C.
The partition function (4.3) is no longer a well-defined
object, but the quantity

0 = kN (4.7)

Z(u.7) = Z(p,7) + Z(—p.7) (4.8)

is,31 and clearly, it inherits the modular transformation

properties (4.4), leading to the existence of a noninvertible
version of spectral flow (notice that the weight / in (4.6) is
invariant under sign flip of Q). Therefore, we obtain again a
tower of particles in the spacetime, which are just the
particles from the tower in the unorbifolded tower which
were not projected out. Importantly, in the orbifold case
they are not charged under any massless gauge field.

In the particular case of an S'/Z, sigma model, what the
spectral flow automorphism predicts is precisely the tower of
interval KK modes. More generally, for M /G, the tower of
states thus predicted is that of KK modes. Although the

*'In the orbifold theory, it is the partition function in the
untwisted sector with an insertion of a line for the quantum
symmetry with complex potential. We are allowed to ignore the
contribution of the twisted sector in the orbifold theory since it is
charged under the quantum Z, symmetry and we can consider
only the uncharged states.

existence of these states was known directly from a bulk EFT
analysis, it is interesting to see it arise purely from a
noninvertible symmetry. The fact that one has a world sheet
argument implies that similar towers can be obtained for
winding modes and nongeometric models, too. Moreover, it
supports the idea of interpreting the tower of states as a
quantum gravity obstruction to restoring a global symmetry
at infinite distance [98,108,109]. We have seen that these
noninvertible symmetries are restored at weak string cou-
pling. A preliminary argument in Appendix D suggests that
they also seem to be restored at large radius, even without
having a string world sheet description, and would become
exact at infinite field distance in these decompactification
limits. In all known examples in string theory, the towers of
the distance conjecture are either KK modes or string
modes [111], getting light and weakly coupled asymptoti-
cally. For the latter case, it seems we can sometimes identify a
weakly broken symmetry that becomes exact as the string
coupling vanishes. For the former case, any translational
diffeomorphism of the higher-dimensional vacuum corre-
sponds to a sort of approximate symmetry from the lower-
dimensional perspective that gets restored upon decompac-
tification. However, in most cases, these symmetries are
already broken at classical level, unlike the noninvertible
symmetry that is only broken by loop effects. If the compact
manifold has some isometry, this yields a continuous gauge
symmetry in the lower dimensional EFT (which would
become global at infinite distance unless there is a KK tower
of states signaling decompactification of extra dimensions).
In the absence of an isometry, we can still have in certain
cases an approximate noninvertible symmetry that is pre-
served at classical level and only broken by quantum
corrections. It would be interesting to see whether this
weakly broken noninvertible symmetry can be generalized
to other decompactification limits beyond toroidal orbifolds.

B. Interplay with (sub)lattice WGC

The noninvertible symmetry also has implications for the
sublattice WGC described in the previous subsection. As
shown in Eq. (4.7), the states shown to exist via spectral flow
only have charge given by a multiple of N, the level of the
U(1) current algebra. The charged states therefore only live
in a sublattice. Since the value of N is unconstrained, this
sublattice can be made arbitrarily sparse, in principle, and the
swampland implications get correspondingly diluted; inter-
esting swampland statements are about constraining the
spectrum of light states, while for large enough N, the states
predicted by spectral flow can become arbitrarily massive.
This undesirable feature of the sublattice version of WGC is
known as the “loophole” in the literature [112—-1 15].32

*This loophole and a related construction [116] was already
noted in [106] and was the basis of the observation in the original
paper that the WGC does not always hold for the minimally
charged state in the theory.
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Explicit examples realizing this loophole are known [66],
though they all take the form of freely acting orbifolds of
T", just like the ones discussed above. Although in the
covering T" there are n currents realized at level 1, after
orbifolding it is possible to obtain currents that are realized
at higher level, resulting in a sublattice of states. In those
cases, though, we have seen that there is still a noninvertible
global symmetry that survives at tree level in the world
sheet. We will now explain how the interplay between this
noninvertible and invertible currents can be used to
improve on the sublattice WGC, to conclude that even
for nonsuperextremal states there are light charged states
(though they are not superextremal).

To illustrate this, let us consider for example the orbifold
T3/Z, x 7, discussed in [66], where the freely acting
group acts as

Zy: 0, =0, +m0,—0,+r, (4.9)

z,:0, - —0,.0, >0, +nx. (4.10)

The unorbifolded toroidal compactification contains three
massless gauge fields, but the Z), projects out the first one
associated to the direction w. Hence, the charge lattice is
only given by KK charges (k,, k). In what follows we will
focus in the subspace with k, = 0 for simplicity, but the
lessons are general. Even in this subspace, we have KK
modes with nonvanishing momentum k,; Notice that
the first Z, implies that unprojected KK modes with
odd values of k, must also have an odd value of k,.
The corresponding charge lattice is represented in Fig. 7 as
dots in a two dimensional slice. The KK masses and
charges are given by

i S

0 o o

L L o

0 ® o

® [ o

0 ® o

@ @ @ >

K

FIG. 7. Two dimensional slice of the lattice of KK momenta.
Only the vertical axis is associated to a U(1) gauge charge. The
blue dots are extremal states (saturating the WGC) while the gray
ones are subextremal.

2 KKk

1
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where we have also included the KK gauge coupling 1/R.

As emphasized above, only the vertical direction in the
figure corresponds to the charge direction of the massless
gauge field that survives the orbifold action, so only k, (and
not k,,) is truly a gauge charge. Hence, we need to project
all KK states over the vertical direction to obtain the set of
charged states under the massless gauge field. The KK
states with k,, = 0 and even k, are extremal (i.e., saturate
the WGC bound) since |Q| =M (there are lattice sites
on the vertical axis). However, states with odd ky and odd
k,, are subextremal (i.e., violate the WGC bound) since
|Q| < M due to the I];—zz contribution on the mass. Therefore,
there is only a sublattice of states satisfying the WGC, as
noticed in [66].

Our main point here is that the modular flow argument
for noninvertible symmetries of the previous section allows
us to recover the existence of the full lattice of KK towers,
including those with nonvanishing k,, that are not charged
under any massless gauge field, even though they will be
charged wunder some discrete gauge symmetries.
Noninvertible spectral flow predicts the existence of states
with masses and charges given by (4.11) for all allowed
values of k,,, k,, k.. Moreover, it allows us to quantify how
much these subextremal particles are violating the WGC. In
this particular case we have that

2 2 R?
—”2”—% > 1. (4.12)
k3 R;;

We see that the violation of the lattice WGC becomes
negligible for very large charges k,; while it depends on the
ratio of the radii for small charges. Hence, even if the first
light state satisfying the WGC does not have the minimal
possible value of the charge (the WGC states start with
charge 2 in this example), we can still use spectral flow of
the noninvertible symmetry to show the existence of light
states of unit charge whose charge to mass ratio is con-
strained and which only mildly violate the WGC. For small
charges, the charge-to-mass ratio is of order one, so in any
case, the dangers of the sublattice WGC loophole for
phenomenological applications in this example is signifi-
cantly ameliorated; we still get a full lattice of light (in
terms of the gauge coupling) charged states, even if they are
not exactly superextremal.

However, part of the reason why one still gets light states
is that in this example, the sublattice is of index 2 (half the
lattice sites contain superextremal particles). It is possible
to consider bottom-up constructions [66] where the index
of the sublattice becomes very large; in these examples, the
first values of the charge may still contain very heavy
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states.® It therefore remains an essential question to bound
the index of the lattice in general. A related question
suggested by the above analysis is whether all examples
with an Abelian current at level N contain additional
noninvertible symmetries that allow one to predict the
masses of subextremal states.

C. Supersymmetric protection

The paper [117] discusses an interesting phenomenon in
certain SUGRA theories, where observables which are
generically nonvanishing were shown to vanish exactly, in
violation of the naturalness principle. This violation could
be avoided in the presence of higher SUSY, but this higher
SUSY was not observed in these examples. This observa-
tion led to the “supersymmetric genericity conjecture,’
which states that such protections must be a result of the
theory being related to a higher-SUSY theory in some
indirect way. In practice, in all of the examples considered,
the lower-SUSY theory was related to the higher-SUSY
theory through the gauging of a discrete subgroup of the R-
symmetry. The examples in the rest of this section follow
from the discussions in [117].

Our discussion of noninvertible symmetries gives a new
perspective on this observation. The construction in Sec. II C
applies here as well, since certain supercharges appear to be
projected out when we gauge a discrete subgroup of the R-
symmetry, but instead they reappear as noninvertible sym-
metries.”* Naturalness is thus not violated if we generalize its
definition to include noninvertible symmetries.

For concreteness we discuss a specific example. In 4D
N =2 SUGRA, the prepotential F for a vector multiplet
contains a polynomial term in the superfields (of degree at
most 3) and exponential terms generated by world sheet
instanton effects,

F = ‘Fpolynomial(q)) + ZB" (CI))@‘“LCD,'.

n,i

(4.13)

The coefficients B,, are generically nonzero, although if
SUSY is enhanced to N = 4 the coefficients B, vanish for
all n. We can now discuss an explicit example of an
apparent violation of naturalness. Consider Type II string
theory on orbifolds of 7% or K3 x T2, If the orbifold
preserves A > 4 SUSY, then the coefficients B, vanish
automatically. However, these coefficients vanish also if the
orbifold preserves only N' = 2 SUSY. The reason for this is

SIndeed, there are open string examples where the index
of the sublattice can be made very large, provided that a
sufficiently long warped throat exists in a Calabi-Yau with fluxes.

*On the world sheet, the construction is analogous to (2.5) for
toroidal orbifolds: one can take sums of the world sheet symmetry
operators for target space SUSY over an orbit of the orbifold
group. This definition is likely easier in the Green-Schwarz
formalism, where target space SUSY is manifest on the world
sheet.

that the prepotential is computed using only the genus-zero
contribution on the world sheet. As a result, amplitudes of
the orbifold theory restricted to untwisted operators are
identical to that of the unorbifolded theory, and so
restricting F to the untwisted fields gives only a cubic
term. If the twisted sectors do not include massless fields,
the prepotential will then be exactly cubic.

As discussed above, this violation of naturalness is
avoided since the supercharges which are projected out
under orbifolding still leave behind a noninvertible sym-
metry and its corresponding sphere selection rules. While
these are broken at leading order in g,, they are preserved at
genus 0, and as a result they constrain tree-level amplitudes
of untwisted operators just like their invertible versions in
the unorbifolded theory.”® Then the puzzling protection of
F in this example can be attributed to noninvertible
symmetries.

V. DISCUSSION AND FUTURE DIRECTIONS

In this paper we have studied potential realizations of
gauged noninvertible symmetries in quantum gravity. In
cases where we have a global noninvertible symmetry in the
world sheet CFT, we found that higher-loop effects generi-
cally break the putative noninvertible symmetry to its
maximal invertible subsymmetry, unless there are nontrivial
cancellations as in the case of the tensionless string consid-
ered in Sec. [II B. As a result, the target space physics of
noninvertible world sheet symmetry, which we referred to as
“stringy noninvertible gauge symmetry,” is broken (Higgsed)
away from the tensionless limit. Moreover, in CFTs with a
semiclassical holographic dual, we found that the bulk dual
of noninvertible symmetry was always “benign,” in the sense
that it could alternatively be characterized by an invertible
gauge theory in one way or another, while in CFTs whose
dual contained a tensionless string, we recovered an unbro-
ken stringy noninvertible gauge symmetry.

How should we think about stringy noninvertible gauge
symmetry? It is something beyond any gauge symmetry
that can be described in effective field theory. One answer
would be that it should be viewed as a noninvertible
extension of the gauge symmetries of string field theory,
which are generically Higgsed when the string acquires a
tension. This would give a natural explanation for the fact
that stringy noninvertible gauge symmetries are restored
only in the limit of a tensionless string.

To support this picture, consider the continuous non-
invertible symmetry in the simple orbifold S' /Z?, studied in
detail in Appendix A. What is the corresponding gauge
boson? On the world sheet, the current for the invertible U(1)

It is crucial that F is computed at genus 0, where the
noninvertible symmetry is unbroken. In an analogous computa-
tion for the heterotic string on T® /T, the prepotential also receives
one-loop corrections, and as a result the noninvertible SUSY is
not enough to protect it, and indeed one finds nonvanishing B,,’s.
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symmetry of the S sigma model has been projected out, and
only survives as a disorder operator attached to a topological
line. Thus, it cannot be used to create an on-shell state in the
string theory spectrum. However, perhaps such disorder
operators could be included in string field theory as a way
to describe the Higgsed gauge bosons for stringy non-
invertible gauge symmetry. A caveat is that these disorder
operators appear for any value of g, so such an interpretation
would also require understanding their role at nonzero g,
where the noninvertible symmetry is broken.

As a further comment, consider again the mesh of N' ®
N7 that appears on a Riemann surface when we sweep a
noninvertible operator N across, as discussed in Sec. Il A.
This mesh has a very natural interpretation: the fusion
N ® N7 has the structure of a Frobenius algebra, meaning
it corresponds to a (possibly noninvertible) orbifolding of
the world sheet theory, defined exactly by inserting it as a
mesh (see, e.g., [12]). Moreover, N’ ® N is manifestly
Morita trivial, meaning that the world sheet theory we
obtain by orbifolding is the original world sheet theory!
Thus, in general, a noninvertible operator tells us that the
string theory at hand is a self-orbifold, possibly under a
noninvertible orbifolding [83,118,119].

As a result, one way to interpret the results of this paper
is that “the orbifold procedure” itself should be viewed as
part of the gauge symmetries of string field theory. In a
sense, it is then very odd that noninvertible symmetries are
generically broken at g, # 0, since the orbifold procedure
(even by noninvertible symmetries) still makes sense order-
by-order in string perturbation theory. One way to resolve
the tension is to note that the orbifold procedure is acting on
the string background: a fixed 2D CFT, viewed as a
solution to the classical string theory equations of motion
with g, = 0. Thus, it makes sense to study string pertur-
bations about this background to any loop order, even if
those same loop effects lead to a breaking of the corre-
sponding noninvertible symmetry at g, # 0.

The low-energy limit of string theory is the effective field
theory of supergravity. Therefore, whenever the relevant
string states survive the field theory limit, it might be
possible to reinterpret the one-loop effects that break
noninvertible world sheet symmetries as a sum of ordinary
field theory diagrams. For example, if we consider a
toroidal orbifold as in Sec. II C with no fixed points, in
the large-volume limit, the effects from twisted sectors
running in the loop will be suppressed, so the breaking can
be understood entirely from Kaluza-Klein modes running
in the loop. In this sense, it may be possible to see
noninvertible symmetries emerging not just in limits with
a tensionless string, but also in decompactification limits,
where the lower dimensional EFT breaks down to be
replaced by a higher-dimensional one. We give some
preliminary comments in this direction in Appendix D.

In this paper, we described how a stringy realization of
noninvertible symmetries arises near the perturbative string

limit where the symmetry gets approximately restored. It
would be interesting to better understand the fate of these
symmetries in other tuned backgrounds. For example, one
might naively expect that M-theory compactified on a non-
Abelian orbifold would have a noninvertible 1-form sym-
metry arising from the noninvertible 1-form symmetry on the
M2-brane worldvolume theory. However, this symmetry
seems to be badly broken,’® unless we put the theory on a
further circle, where in the limit of small radius it would lead
to an approximate noninvertible O-form symmetry as realized
on the dual Type IIA string theory. It would be interesting to
find further evidence for this expectation or to find evidence
to the contrary.

As a practical comment, let us note that the breaking of
noninvertible world sheet symmetries away from the ten-
sionless limit does not mean they are useless: since they are
still good approximate symmetries, they can be used to
constrain the spectrum and interactions of the theory. We
have shown how noninvertible symmetries are able to fill in
the gaps left by the usual world sheet derivation of the
sublattice WGC, and more generally, how they can be used to
predict the existence of towers of states which are not charged
under any continuous gauge symmetry, which is of interest
for the Distance conjecture. Moreover, the existence of
certain examples which exhibit properties as if they had
higher supersymmetry can be attributed to the presence of a
noninvertible fermionic symmetry (i.e., a Z, odd internal
symmetry) on the world sheet. The examples we considered
here can also be understood via more elementary techniques;
the role of noninvertible symmetries here is to provide a new
perspective on an old physical phenomenon.

While our discussions have been phrased in the context
of quantum gravity, there may be general lessons for
noninvertible symmetries in D-dimensional QFTs without
gravity. In particular, in Sec. III, we saw that the only
example of a noninvertible symmetry which could not be
viewed as “weakly invertible” in one sense or another’’ was
the case of global categorical symmetries of a CFT,. In this
case, the bulk dual description in AdS; could be described
as a non-Abelian gauge theory after performing electro-
magnetic duality. Notably, the magnetically charged
objects under a discrete non-Abelian gauge symmetry have
codimension 2. Now, in any dimension D, we can always
find (D — 2)-form global symmetries that cannot be viewed
as “weakly invertible” simply by considering I" gauge
theory for a non-Abelian group I'. However, it is possible
that in any QFT ), the only noninvertible symmetries which
cannot be viewed as “weakly invertible” must be p-form

This fits with the fact that there is no small parameter
controlling any sum over M2-brane world volume topologies,
which could have suppressed the symmetry breaking effect from
topologically nontrivial configurations.

37Meaning that the bulk dual is directly an invertible gauge
theory without switching duality frames, as discussed in Sec. III C.
The general QFT definition of this property is still unclear.
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symmetries for p > D — 2% This statement must be
restricted to local QFT, as we have discussed examples
of O-form stringy noninvertible gauge symmetries in
dimensions D > 3 which cannot be viewed as “weakly
invertible,” such as the symmetries restored as g, — 0 in 6D
from non-Abelian orbifolds 7% /T

Lastly, let us mention that in the context of holography
with a semiclassical bulk gravity, we did not find any
examples of noninvertible symmetries that could not be
regarded as invertible gauge symmetries in the bulk with
appropriate choices of boundary conditions and topological
terms. It would be interesting to study whether this pattern
holds up in general, and whether there are nontrivial
constraints on the noninvertible symmetries of holographic
CFTs coming from constraints on UV complete quantum
gravity.

Note added. As we were completing this work, we learned
of [121] which we understand will also discuss noninver-
tible world sheet symmetries.
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APPENDIX A: SELECTION RULES FOR $!/7,

In this Appendix we illustrate the discussion in Sec. II C
in the simple torodial orbifold S'/Z,, and explicitly
rederive the selection rules on sphere correlation functions
from the noninvertible symmetries.

1. Noninvertible symmetries of S'/Z,

We start with the unorbifolded theory S' with coordinate
X ~ X + 2zR, which is the ¢ = 1 compact boson CFT with
radius R. We will discuss only the momentum symmetry,
but there is a completely analogous discussion for the
winding symmetry as well. We have local momentum
vertex operators
Om(Z,Z) — eimX(z,z)/R‘ (Al)
The U(1) momentum symmetry is generated by the
invertible TDLs

iOR
U, = exp [’— / *dX |, (A2)
2z
whose action on local operators is
Uy: O, e™O,,. (A3)

Now, we consider the orbifold by X — —X, under which
we have
Om - O—mv Z/lg = u_g. (A4)
In the orbifolded theory, the spectrum of local operators
consists of twisted and untwisted sectors. In the untwisted
sectors we have vertex operators

1
V2

We also have a topological, invertible Wilson line for the
gauged Z, symmetry, which we will denote by #, and
which implements the quantum Z, symmetry. At the end of
n, we have a sector of disorder operators, which includes
the gauge-noninvariant operators

O =—= (0, + 0_y), (AS)

Or = (0= 0.,) (A6)
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@esnannns -_— @®  rrreunean _. ..........
(a)
Ly Lg Lo Ly
TR =—.10 I . — NS
N e
(b)
FIG. 8. (a) Rules for sweeping a TDL past vertex operators.

A black “X” is used to denote the orientation of a junction (see
e.g. [74]). (b) Conventions for the orientation of the junctions.

which have been projected out of the spectrum of local
operators.”’

In the orbifolded theory, the U (1) momentum operators are
generically projected out, leaving only the identity operator
U, and the half-shift operator {/,,, which corresponds to the
invertible Z, symmetry that flips the interval S'/Z,.
However, using the construction in equation (2.5), we have
acontinuum of noninvertible TDLs, labeled by 6 € (0, 7) (see
Refs. [3,83,84]):

;Cg - Z/{Q @ Z/{_g. (A7)
The action of these noninvertible lines on the physical degrees
of freedom actually has a simple intuitive description: we first
“unorbifold,” then rotate S' by an angle € (or —6, either will
work), then “reorbifold,” obtaining S! /Z, again, but folded
along an axis rotated by 6.*

As described above, the action of noninvertible sym-
metries by sweeping generally maps local operators (or
disorder operators) to linear combinations of local oper-
ators and disorder operators (see Fig. 8). We have

Ly: O+ cos(m0) Oy, + sin(m0)O,,,

Ly: O, — —sin(m0)O;;, + cos(mh)O,,. (A8)

Their fusion rules are given by

¥We have included a factor of i so that O;, descends from a
Hermitian operator in the unorbifolded theory.
This intuitive language can be made precise by noting that
Ly =D ®Uy ® D', where D is the topological gauging inter-
face from S! to S* /Z,, i.e., the Dirichlet boundary condition for
the Z, gauge fields.

LoLy = Loy + Lo—g, (A9)
where we have defined the reducible lines
Ly=1+n, L,=(1+n) U, (Al0)

to simplify notation.

2. Selection rules

We can now discuss selection rules on the sphere.
Following Sec. II A, a naive attempt would be to consider
some correlation function

(05, (1)...0%, (%)), (Al1)
and then generate a selection rule by nucleating a non-
invertible line £, and sweeping it past the operators (see
Fig. 1). This fails, since the action of the noninvertible lines
in (A8) inevitably maps this correlator to correlators
involving O;,. We are thus instead forced to consider all
correlators of the form

(0%, (x1)...0%, (x.)), (A12)
and see how the noninvertible lines relate them.

For simplicity we start with the general two-point
functions (0,0, (0;,,0:,), where we suppress the
position dependence. Following the procedure in Fig. 1,
one finds the following set of equations:

< 1 — cos(6m) cos(Om’)
— sin(@m) sin(Om’)

<<O$O;/>>

X =0
(0n0,,)

These equations have a nontrivial solution for generic 6

only if the determinant of the matrix vanishes. Its eigen-
values are

—sin(Om) sin(6m’") >
1 — cos(Om) cos(Om’)

(A13)

E. =1—cos(0m)cos(0m’) + sin(Om) sin(Om')

=1—cos(0(m £ m')). (A14)
The nonzero correlators are thus only those with m = +m/,
as expected.

Next we consider three-point functions. A similar
analysis results in the set of equations

)

)
V= 0, (A15)
)
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where M is the matrix (using ¢ = cos, § = sin)

—8c(Om)c(Om’)c(Om”)  —=2c¢(0m)s(Om’)s(Om’)
—2¢(0m)s(0m')s(Om") —8c(Om)c(Om')c(Om”)
—2¢(0m’)s(Om)s(Om")  2c(Om")s(Om')s(Om)
—2¢(0m")s(Om')s(Om)  2c(Om')s(Om)s(Om”)

The eigenvalues of 1 + M are

Esl,sz =1- COS(@(m + slm/ + Szm”)),
(A17)

so we find that a nontrivial correlator must have m +
sym' 4+ s,m” =0 for some choice of s;, s,, again as
expected. The general result for longer correlators follows
from repeated application of this method.

Finally, we explain why this procedure fails to generate
selection rules on higher-genus surfaces. For simplicity we
put the theory on the torus T2. The main caveat in the
process appears in the last step of Fig. 1, where we
annihilate the topological line “at infinity.” On T2, this
means taking the fusion of the two lines which meet from
opposite ends of each cycle. For invertible lines, this fusion
gives the identity and so annihilates the lines, leading to a
selection rule. However, for noninvertible lines the result is
more complicated. Using the fusion rule (A9) we find

£9£_9 = 1 + n + ﬁzg. (A18)
Importantly, in addition to the contribution from the
identity, noninvertibility forces other contributions to
appear. As a result, the process for generating selection
rules on the sphere fails to generate a selection rule on the
torus (and similarly for higher-genus surfaces). Instead, this
process relates a correlation function in the vacuum to the
same correlation function but with the topological line 1 4
n + L,y wrapping every 1-cycle of the manifold. We thus
cannot extract a selection rule from this procedure.

APPENDIX B: GENERAL TORUS
ONE-POINT FUNCTIONS

In this appendix, we give a general characterization of
the set of charges described in Sec. II D that can acquire a
torus one-point function, both with and without the
insertion of topological lines wrapping nontrivial cycles.
Recall from IT A that if we have a 2D CFT with fusion
category C, the set of charges of local and disorder operators
are described by representations of the tube algebra
Tube(C), or equivalently, by objects in the Drinfeld center
Z(C) (for a physicist-friendly discussion, see Ref. [73]).
For our discussion here, it will be helpful to recall the 3D
(SymTFT) perspective on symmetries of 2D CFTs (again,

Sl,Sze{:tl}.

=2c(0m’)s(Om)s(Om") =2c(Om")s(0m’)s(Om)
2¢(0m")s(Om')s(Om)  2c(Om')s(Om)s(Om”) (AL6)
—8c(Om)c(Om’)c(0m”)  2c(0m)s(Om’)s(Om”)

2¢(0m)s(Om’)s(Om”)
|

—8¢(Om)c(Om’)c(Om”)

see Ref. [73]). To any 2D CFT with symmetry C, we can
define a boundary condition B of the 3D Turaev-Viro
(Levin-Wen) TQFT [122,123] associated to C, which we
will denote TVC.4] We can recover our original 2D CFT
by dimensionally reducing TV, on an interval, with the
physical boundary condition B on one end, and the
topological Dirichlet boundary condition for C on the other.
The category of bulk anyons is given by the Drinfeld center
Z(C). We can form local and disorder operators in our 2D
CFT by stretching anyon line operators across the interval,
possibly attached to a topological line running along the
Dirichlet boundary.

The Dirichlet boundary condition is associated to a
Lagrangian algebra A € Z(C), which describes the anyons
that are condensed on the boundary (can end on it).* More
specifically, we have

A= ZV" U,

uez(C

(B1)

where the vector space V* is the space of topological junction
operators between the anyon line p and the Dirichlet
boundary.*’ An anyon y describes a charge that can carried
by alocal (not disorder) operator if and only if y € A, i.e., we
have dim(V#) > 0. The algebra A is equipped with a
multiplication map m: A ® A — A, defined by fusing
anyon lines attached to the boundary. In components, the
multiplication map is defined by a family of maps

(mhy);: VA VY — VP, (B2)
where i =1, ..., N,pw runs over the distinct fusion channels
i:p®uv— p (see Fig. 9).

We can now describe the set of charges that can acquire a
torus one-point function, both with and without additional
topological line insertions.

(i) The set of charges u€ Z(C) of local or disorder
operators that can acquire a torus one-point function,
possibly with other topological line insertions, are
those that appear in fusions p ® p. This set of charges

TV, can be viewed as “Tube(C) gauge theory,” due to very
recent work [15].

See, e.g., Ref. [124] for further discussion on Lagrangian

algebras and their relationship to gapped boundary conditions.

*Formally, we have V* =Homg(F (i), 1), where F: Z(C) = C

is the forgetful functor. In the notation of [73], we have V¥ = W’f .
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FIG. 9. Starting with two topological junctions in V¥, V¥ and a
fusion channel i:y @ v — p, we can describe the algebra
multiplication maps (m,); as follows. First, we fuse the anyon
lines with the bulk junction operator corresponding to our chosen
fusion channel. We then shrink the three junction operators (two
boundary, one bulk) to a point, obtaining some topological
junction in V7.

generates the adjoint subcategory Z(C),4 of the Drin-
feld center. Note that this set of charges is independent
of the choice of boundary condition, and is manifestly
invariant under any possible orbifolding.

(i) The set of charges u € A of local operators that can
acquire a torus one-point function in the vacuum can
be described as follows. First, according to the
previous statement, there must exist an anyon p
such that u appears in the fusion p ® p. For any
fusion channel i:p ® p — u, we compute the state

<mzp>,.(2|wk> ® |wk>) eve.  (B3)
k

where |y;) denotes an orthonormal basis for V7.
Then a local operator with charge ¢ can get only get
a nonzero torus one-point function if the state (B3)
in V¥ is nonzero. This answer is simply an abstract
version of the operation illustrated above in Fig. 6, of
sewing together sphere three-point functions by
summing over a basis of local operators. The differ-
ence is that we have stripped off the physical
boundary condition B, obtaining a universal char-
acterization for any 2D CFT with C symmetry.

We strongly suspect that the set of anyons described by
(B3) are precisely those anyons uncharged under the
maximal invertible subsymmetry C*, i.e., the group of
invertible objects of C.** One direction is obvious: any

44Formally, note that the invertible action of C* on topological
junctions with the Dirichlet boundary defines a C* action on A,
i.e., a functor BC* — Z(C), whose value on the basepoint of BC*
is given by \A. The desired statement is that the C* invariants in .4
generate the same fusion subcategory of Z(C) as the objects
characterized by the map (B3) being nonzero.

> G

FIG. 10. We can decompose the punctured torus T2: @ — S!
as the composition of a bent cylinder Cyl: @ — S'US! with a
pair-of-pants Pants:S'US! — S

anyon that gets a torus one-point function in the vacuum
cannot carry charge under any invertible symmetry. While
we were unable to provide a proof of the converse, this
equivalence holds in every example we considered, includ-
ing arbitrary modular symmetry categories (Appendix B 1)
and exotic examples such as Haagerup symmetry
(Appendix C).

Let us now derive this characterization using the tools of
TQFT. Recall that the Turaev-Viro theory (equipped with
Dirichlet boundary condition) is a fully extended TQFT
with boundary (see, e.g., [125]):

TV¢: 3-Cob, — 3-Vect, (B4)

characterized through the cobordism hypothesis [126,127]
by its value on the point,

TV, (pt) = C-Mod, (BS)

the 3-vector space of C-module categories, and its value on
the half-open interval I, = [0, 1) (viewed as a cobordism
@ —pH

TVc(I.) =C, (B6)

viewed as a module category over itself. The category Z(C)
of bulk anyons is given by the value TV,(S') on the circle,
and the algebra A of anyons condensable on the boundary
is given by the value TV(Ann) on the half-open annulus
Ann=S'xL: @ - S

The set of anyons that can acquire a torus one-point
function with possible insertions of arbitrary topological
lines along the Dirichlet boundary are equivalent to the set
of anyons which admit a nonzero state in the defect Hilbert
space of the Turaev-Viro theory on the torus with one
anyon insertion. To see this, note that any state in this
Hilbert space can be prepared by adding arbitrary topo-
logical line insertions along the Dirichlet boundary. This
defect Hilbert space is characterized by the value TV (T2)
on a punctured torus. To compute TV(T?), note that the
punctured torus can be decomposed (see Fig. 10) as a
composition
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Cyl
g ——— Stus!

\ J/Pants
TQ

: M

of two cobordisms: a bent cylinder Cyl: @ — S'US! and a
pair-of-pants Pants: S'US' — S!. The value of TV, on Cyl
and Pants can be easily computed, so by applying TV,
to (B7), we get a commutative diagram in 2-Vect:

Vect % Z(C)XR Z(C)
l@ (B8)

Z(C)

TVe(T2)

Thus, we have TV (T?) = @,p ® p, and any anyon 4 that
appears in a fusion p ® p has a nonzero state in the
associated T2 defect Hilbert space, as claimed.

Now, the set of anyons that can acquire a torus one-point
function in the CFT vacuum is characterized by the
boundary state associated to the Dirichlet boundary con-
dition in the punctured torus Hilbert space. This boundary
state is described by the value TV (T2 x1,) on the
manifold with corners T2 x I, viewed as a cobordism
T2 - S! x I, from the punctured torus to the annulus (see
Fig. 11). As before, we can view our cobordism as a
composition of a bent cylinder and a pair of pants, now both
multiplied by I,. Thus, we obtain a commutative diagram in
the 2-category (1,2,3)-Cob,:

7N - A
/, \-—1\ ,”—{l "‘\\ Y
J ]
> ‘\ i,
RS Y Tl
— AL VAV g

FIG. 11. The product T2 x I, of the punctured torus with a half-
open interval can be decomposed as a composition similarly to
how we decomposed the punctured torus itself (Fig. 10). Each
manifold with corners pictured here is viewed as a 2-morphism in
(1,2,3)-Cob, from the composition of its left edge with its top
edge to its right edge. Note that the bottom edges, given by the
Dirichlet boundary, does not count as a source or target from the
perspective of (1,2,3)-Cob,. The corresponding commutative
diagram in (1,2,3)-Cob is given by (B9).

Cyl
@ H Sty st —Fems gt
Annll Ann

ﬂ

Ann
(B9)

Applying TV, we get a commutative diagram in 2-Vect:

D, rXp

Vect Z(CO)RZ(C) —2— Z(C)

A
(B10)
The top 2-morphism is the map
PrXp - AKA, (B11)
p
defined on a component pXp by the state
(B12)

> i) ® i) e Ve @ V7,
k

where |y;) denotes an orthonormal basis for V” as
above. Horizontally composing with the 1-morphism

Z(CO)RZ(C) 2 Z(C) and then vertically composing with
the 2-morphism A ® A = A, we obtain the desired
2-morphism

TVe(T? xL):Pp ® p — A, (B13)
P

which characterizes the set of charges pye€.A of local
operators in the 2D CFT that can acquire a torus one-point
function in the vacuum. Expanding (B13) in components,
we recover the desired formula (B3).

1. Diagonal RCFTs and modular symmetry categories

As an application, we can prove that all noninvertible
symmetries are broken by string loops for the special case
when the symmetry category C of our 2D CFT is itself a
modular tensor category before passing to the Drinfeld
center Z(C). This includes, in particular, the collection of
Verlinde lines of any diagonal RCFT.

106001-22



FATE OF STRINGY NONINVERTIBLE SYMMETRIES

PHYS. REV. D 110, 106001 (2024)

Suppose, then, we have a 2D CFT with a modular
symmetry category C.* By modularity, we have Z(C) =
CXC as modular tensor cat«-‘:gories.46 The algebra A
associated to the Dirichlet boundary condition of the
Turaev-Viro theory TV is given by

A = PpKp.

P

(B14)

Note that all the vector spaces V”*? are one-dimensional.
The multiplication map m: A ® A — A is defined via
diagonal fusion. In components, for a fusion channel

(i.7): (uRit) ® (VRw) — pKp, (B15)

we have

(M) i.3) = 6ij- (B16)
Since each V*®7 is one-dimensional, there is no sum in
(B3), and so a charge y ® ii can get a torus one-point
function in the vacuum if and only if 4 appears in a fusion
p ® p. This set of u generate the adjoint subcategory C,4 of
C itself.

Thus, we need to show that having operators with
charges in the adjoint subcategory C,q breaks the non-
invertible symmetry down to the maximal invertible sub-
symmetry C*. Now, the symmetry preserved once local
operators of charges generating C,q acquire nonzero one-
point functions is given [25] by the dual U} of the universal
grading group of C [[85], Definition 4.14.2]. The action of
invertible lines on charges by linking defines a grading of C
by the group of characters (C*), which induces a map
Ue — (C*)Y, or dually, a map C* — U}. But by modu-
larity of C, this map is an isomorphism [[128], Theorem
6.3], so we see that the nonzero torus one-point functions of
operators generating C,q precisely breaks C to its maximal
invertible subsymmetry C*.

APPENDIX C: EXAMPLE:
HAAGERUP SYMMETRY

As evidence that the breaking of all noninvertible sym-
metries by string loops happens generally, let us quickly
verify this effect in the case of a truly exotic noninvertible
symmetry in 2D: Haagerup symmetry, described by the
Haagerup fusion category H3, with simple objects

“Note that C might not describe all the symmetries of our CFT
(and certainly does not describe any non-Abelian symmetries,
since C is assumed to be braided). For example, consider a WZW
model based on a compact Lie group G. While the set of Verlinde
lines describes all the symmetries that commute with the current
algebra, it only includes the invertible symmetries corresponding
to the center Z of G, and not the larger (G; x Gg)/Z invertible
symmetry of the WZW model.

*Here, C denotes the category with the opposite braiding.

1, a &, p, ap, ap, (C1)

and fusion rules specified by

=1,

ap=pa’, p*=l+p+ap+a’p. (C2)
If there were a counterexample to our general story, one
might expect it to be something like Haagerup symmetry: a
noninvertible, non-Abelian symmetry that cannot be
obtained from group-like symmetry or Verlinde lines via
discrete gaugings. Nevertheless, we will see that our general
story holds true: at one-loop, Haagerup symmetry is broken
to its Z5 invertible subsymmetry generated by a. While there
is no formal construction of a 2D CFT with Haagerup
symmetry (which could be used in a string compactification),
recent numerical evidence favors its existence [129].47

What are the selection rules that Haagerup symmetry
places on sphere correlation functions of local operators?
The Drinfeld center Z(H;) of the Haagerup fusion cat-
egory is described in [[130], section 8]. We will only need
to consider two nontrivial anyons, given by z; and z,. The
Dirichlet boundary condition is specified by the Lagrangian
algebra

./421@77.'1 @(Cz'ﬂ'z). (C3)
It will help to recall the analogy [131] between Haagerup
symmetry and invertible S; symmetry; note that if we
replaced the third equation in (C2) with p> = 1, we would
recover a presentation of the symmetric group S;. In this
analogy, 7; is analogous to the sign representation of Ss,
while 7, is analogous to the standard two-dimensional
irreducible representation. Thus, it should not be surprising
that local operators O, of charge 7, are uncharged under
the invertible Z; subsymmetry, while local operators O,, of
charge 7, come in a multiplet Oi of two local operators,
with charges ™! under the Z; symmetry, where w is a
primitive third root of unity. Moreover, the action of p on
O,, is by a sign, while the action of p on OF, produces OF,
together with a superposition of disorder operators.

Now, what charges can acquire a nonzero torus one-point
function? Clearly, any operator charged in 7, cannot, since
it has nonzero charge under the invertible Z; symmetry.
What about operators of charge 7;? If we took the analogy
with S35 too seriously, we might guess that they could not,
since there might be cancellations in (B3) similarly to those
that appear for S; symmetry. If this were true, then
Haagerup symmetry would be a counterexample to our
general expectation, since the noninvertible symmetry p
would remain unbroken to all orders in the string loop
expansion.

“In fact, [129] suggests that it might even exist in something
as ordinary as a Z orbifold of 72.
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Let us check this guess in the 2D TQFT with Haagerup
symmetry constructed in [132,133].*® This TQFT has six
(topological) local operators 1, v, uy, ity, u,, it,. The oper-
ator v has charge 7|, while the operators u;, i1; have charge
7y. We will compute the torus one-point function (v);2 by
sewing together sphere three point functions. For this, we
need the fusion of the local operators with their conjugates,
which are given by
up X 17!1 =1 —Z_:_IU,

vxv=1+3v, Uy X ily =1+,

(C4)
where ¢ = (3 ++/13)/2 = {(p). We can now compute

(V) =) (100)s» =3 -2 420 =0.
O

(C5)

So the torus one-point function (v)y is nonzero. The
cancellation that would have happened for S3 symmetry
does not occur.”’ As a result, we see that the selection rules
for Haagerup symmetry are violated at one loop, and even
something as exotic as H3 symmetry on the world sheet
would be broken to its maximal invertible subsymmetry
after considering string loops.

APPENDIX D: EMERGENT NONINVERTIBLE
SYMMETRIES BEYOND
PERTURBATIVE STRINGS

One of the main points of this paper is that selection rules
of noninvertible world sheet symmetries are generically
broken by loop effects in string perturbation theory. When
the states running in the loop survive the field theory limit,
this string loop contribution can be rewritten as a sum of
one-loop field theory diagrams, which suggests that these
sorts of emergent symmetries may also appear in QFT or in
quantum gravity away from the perturbative string limit. To
illustrate this point, consider a perturbative string back-
ground with the Klein bottle as target space. Since the Klein
bottle is a toroidal orbifold

T?/7,, (X,Y)~ (X +nR,-Y), (D1)
this sigma model has a noninvertible symmetry of the kind
discussed in Sec. II C.

We can see echoes of this noninvertible symmetry in the

low-energy approximation of string theory (supergravity),

“®Even though the Haagerup symmetry is spontaneously
broken in this TQFT, we should still expect its selection rules
to hold if we define correlation functions in a direct sum over all
of its distinct vacua, analogously to the selection rules for S5 in
the S; symmetry-breaking TQFT.

We could have done an analogous calculation for S3; the
result can be obtained by taking 3 — 0, { — 1 in (C4) and (C5),
reproducing the cancellation in (v).

even if we keep the Klein bottle large in string units.
Reducing any supergravity theory on the Klein bottle and
keeping the full Kaluza-Klein (KK) tower, the interaction
terms in the supergravity theory lead to couplings between
KK modes that respect the selection rule for the non-
invertible symmetry: i.e., if we label the KK modes by pairs
(kx,ky) of momenta, only defined up to ky — —ky,
interaction terms are only possible if

sz,i =0, Z +ky; =0,

for some choice of + signs. This symmetry is likely the
low-energy EFT avatar of the one we found in the world
sheet; the fact that the vertices satisfy the selection rules
matches with the fact that the noninvertible symmetry is
satisfied at tree level. Note that keeping the entire KK tower
does not make sense as an EFT in the lower dimensional
sense, since the lower-dimensional EFT cutoff is the KK
scale. Instead, it is better understood as a way to organize
the higher dimensional EFT when placed on a large Klein
bottle; in any case, the KK states exist as physical
excitations, and they are long-live enough that one can
ask questions about their dynamics.

Breaking of a selection rule like (D2) at the quantum level
is very natural; for instance, an external particle with Y
momentum ky ; can become a loop pair with momenta ky ,
and ky; — ky, [respecting (D2)], and then recombine to
form a particle with momentum —ky, +ky; —ky, =
ky, —2ky, (analogously to the process illustrated in
Fig. 5). The loop then mediates a transition of a particle
with ¥ momentum ky; to another with momentum
ky,—2ky,, and since ky, was arbitrary, the resulting
process manifestly violates (D2). In this way ordinary, field
theory loop effects can violate a noninvertible symmetry
preserved by the couplings, just like in string theory. Again,
we emphasize that the noninvertible symmetry does not actin
any EFT of a fixed dimension: the states we are considering
are above the cutoff of the lower-dimensional EFT, while the
noninvertibility is coming from the Klein bottle reduction,
and would not appear in the fully decompactified theory.

Because the symmetry is broken by quantum effects, one
expects it to become a good approximate close to any
classical limit, even away from the perturbative string. For
instance, we could consider M-theory on the Klein bottle.
Its low-dimensional expansion, 11D supergravity, is a
power series expansion in powers of the 11D Planck mass
M;; in the decompactification limit, when the character-
istic size of the Klein bottle R is very large in 11D Planck
units, quantum corrections that break the noninvertible
symmetry are naturally suppressed in powers of 1/(MR),
and they should vanish in the limit, where the noninvertible
symmetry becomes a subsymmetry of higher-dimensional
Poincaré, which are exact. It would be interesting to check
this example in detail; although we have not done so, we

(D2)
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have checked that corrections are suppressed in this way for
a simple toy model (a @ theory) when a regularization
preserving higher-dimensional Poincaré symmetry is used,
as in [134,135].

From this point of view, it may be that the phenomenon
of noninvertible selection rules of the classical action being

weakly broken by quantum effects is not necessarily an
intrinsically stringy phenomenon, but rather also appears as
a general feature of compactification on manifolds with
local isometries that fail to be well-defined globally.
Clearly, it would be interesting to flesh this story out in
more detail.
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