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Noninvertible symmetries in quantum field theory (QFT) generalize the familiar product rule of groups
to a more general fusion rule. In many cases, gauged versions of these symmetries can be regarded as dual
descriptions of invertible gauge symmetries. One may ask: are there any other types of noninvertible gauge
symmetries? In theories with gravity we find a new form of noninvertible gauge symmetry that emerges in
the limit of fundamental, tensionless strings. These stringy noninvertible gauge symmetries appear in
standard examples such as non-Abelian orbifolds. Moving away from the tensionless limit always breaks
these symmetries. We also find that both the conventional form of noninvertible gauge symmetries and
these stringy generalizations are realized in AdS/CFT. Although generically broken, approximate
noninvertible symmetries have implications for swampland constraints: in certain cases they can be used
to prove the existence of towers of states related to the distance conjecture, and can sometimes explain the
existence of slightly subextremal states which fill in the gaps in the sublattice weak gravity conjecture.
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I. INTRODUCTION

Symmetries play an important role in constraining the
dynamics of quantum systems. This is especially true in the
case of an unbroken symmetry, where we can derive exact
selection rules, but it also applies in situations where the
symmetry breaking is controlled by a small parameter.
Recently a number of investigations have suggested a

generalization of global symmetries in quantum field
theory (QFT) beyond the more familiar grouplike compo-
sition rule. In this broader setting of noninvertible sym-
metry, one defines a symmetry in terms of a topological

operator that links with the charged object of interest [1].
The product of two such topological operators might end
up realizing a more general fusion rule such as

N i ⊗ N j ¼
X
k

T k
ijN k; ð1:1Þ

where the T k
ij denote c-number coefficients.1 There are by

now many examples of this sort, such as in 2D rational
conformal field theories (CFTs) with noninvertible
Verlinde lines [2], in 4D gauge theories with a gauged
charge conjugation symmetry [3], as well as in many other
contexts.2

What becomes of these noninvertible symmetries in
quantum gravity? On general grounds one expects that
unbroken symmetries are “gauged,” namely they instead
specify a redundancy in physical configurations. In the
context of QFT, where both the spacetime metric and
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1In general, T k
ij is the partition function of a decoupled TQFT.

2The literature has substantially grown in the past few years.
For reasonably up to date reviews, see e.g., the reviews [4–9] and
references therein.
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topology are not dynamical, there is a notion of “gauging a
noninvertible symmetry” by inserting a mesh of topological
operators (see e.g., [10–14]). We can view this as producing
a notion of noninvertible gauge theory.3 Based on this, it is
natural to ask whether we can produce examples of this sort
of noninvertible symmetries directly in quantum gravity.
Here we find a few surprises, both from the point of view of
world sheet constructions, and also from the perspective of
the AdS/CFT correspondence.
To begin, recall that invertible global symmetries of a

string world sheet theory correspond to gauge symmetries
in the target space [16]. From this perspective, it would
seem natural to expect that all we require to achieve a
gauged, noninvertible spacetime symmetry is an example
of a noninvertible global symmetry in the 2D world sheet
CFT. Such noninvertible world sheet symmetries were
recently discussed in the context of string theory in [17].
As a simple example, consider an orbifold as specified by a
non-Abelian group Γ; the operation of gauging a global Γ
symmetry on the world sheet results in an orbifold theory
with Hilbert space sectors labeled by conjugacy classes of Γ
(see Refs. [18,19]). In categorical terms, gauging the Γ
symmetry results in a “magnetic” global zero-form cat-
egorical symmetry RepðΓÞ.4 In this case, symmetry oper-
ators are labeled by representations of Γ and we get a
nontrivial fusion rule whenever Γ is non-Abelian (more
than one summand can appear in the fusion of two
irreducible representations of Γ). So, the appearance of
this noninvertible global symmetry in the 2D CFT would
seem to suggest the existence of a corresponding non-
invertible gauge symmetry in the target space.
But string theory is more than just a 2D CFT; it also

involves coupling this system to 2D gravity! Moreover, it is
well-known that the selection rules arising from RepðΓÞ
symmetry are violated at higher-loop order [23,24], leaving
only the selection rules corresponding to representations
RepðΓabÞ of the Abelianization, an invertible symmetry. So,
while tree level string theory appears to enjoy a non-
invertible RepðΓÞ symmetry, it is broken by gs ≠ 0 effects.
This is an example of a more general phenomenon [25]:
when a QFT in any dimension is coupled to semiclassical
gravity, the appearance of nontrivial topologies in the
gravitational path integral leads to a generic breaking of
all noninvertible symmetries in the absence of extreme
cancellations. We also present a similar construction of
noninvertible symmetries broken at gs ≠ 0 for the case of
string theory on toroidal orbifolds.
The lesson we draw is that the target space physics of

noninvertible world sheet symmetries does not correspond
to the QFT notion of noninvertible gauge symmetry coming

from “summing over a mesh of topological operators”,
since the selection rules that would be exact in such a gauge
theory are explicitly broken by string loops. Indeed, to see
the noninvertible world sheet symmetry emerge we must
take gs → 0 and consider the entire structure of perturbative
string theory, taking us well outside the regime of local
effective field theory. We will describe the target space
physics of noninvertible world sheet symmetries as “stringy
noninvertible gauge symmetry,” which is generically
Higgsed, but which can be restored in a limit where the
string becomes tensionless in Planck units.
Given this state of affairs, it is natural to ask whether the

breaking of this sort of noninvertible gauge symmetry at
gs ≠ 0 is merely an artifact of this specific class of
examples, or is something that holds more generally in
quantum gravity. Along these lines, we consider another
context where noninvertible gauge symmetries seem easy
to realize in quantum gravity: examples from holography in
which the CFT of an AdS/CFT pair enjoys a noninvertible
symmetry. Indeed, recently there has been progress in
realizing examples of noninvertible symmetries in a num-
ber of stringy and holographic constructions [26–37]. From
this perspective, a noninvertible global symmetry of the
boundary theory would seem to automatically imply the
existence of a gauged noninvertible symmetry in the bulk.
In all examples with a semiclassical bulk, this is indeed the

case, as has previously been discussed in the literature: the
bulk contains a topological sector described by the symmetry
topological field theory (SymTFT) (see, e.g., [10,38–53]).
For a noninvertible global symmetry on the boundary, the
corresponding SymTFT can be understood as a noninvertible
bulk gauging of the boundary symmetry in the conventional
sense.5 However, it is alsoworth noting that in every example
we consider, the sense in which the gauge symmetry in the
bulk is noninvertible is rather benign: this topological sector
admits a more conventional characterization as an invertible
gauge theory, possibly after switching to a dual basis of
fields. If the bulk quantum gravity theory admits a world
sheet description, the invertible gauge theory presentation is
more natural, as it is the one that acts most naturally on the
string world sheet.
A particularly instructive example in this regard is the

background AdS3 × S3 × T4. For tuned values of the T4

moduli, we can have a non-Abelian symmetry Γ acting on
T4, leading to a Γ gauge theory propagating in the AdS3 ×
S3 factor. For suitable boundary conditions we get a RepðΓÞ
symmetry in the boundary CFT2, and the bulk Γ gauge
theory in 6D could dually be viewed as a 3-form RepðΓÞ

3See also [15] for a recent discussion of the sense in which this
procedure can really be viewed as producing a “gauge theory.”

4See Refs. [12,20], and for a complementary perspective see
e.g., Refs. [21,22].

5This is always true in the sense of “summing over a mesh of
topological operators,” which are given by condensates of the
gapped boundary condition (see, e.g., [10–12]). We expect
further that the very recent work [15] for 3D SymTFTs general-
izes to any dimension, so any SymTFT can be viewed as a gauge
theory for the higher tube algebra [54–58] of the boundary
symmetry.
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gauge theory (reducing on the S3 factor, this is a 0-form
RepðΓÞ gauge theory in AdS3). Nevertheless, if we con-
sider the world sheet description of the bulk (or at least the
T4 factor), the symmetry that acts on the world sheet is still
just Γ.
Moving beyond semiclassical bulks, we can also consider

the limit of AdS3 × S3 × T4 with only a single unit of flux,
such that the bulk is described by a tensionless string
theory [59–61]. In this limit, we expect an enormous non-
invertible symmetry to emerge in the CFT: the CFT dual is
given by the symmetric orbifold CFT SymNðT4Þ.6 Exactly at
the symmetric orbifold point, this CFT2 admits a noninver-
tible RepðSNÞ symmetry, where SN is the symmetric group.
We find that the bulk dual of this is not any conventional
noninvertible gauge symmetry in AdS3 × S3 × T4. Instead,
the large N limit RepðS∞Þ is realized as a noninvertible
global symmetry of the tensionless string theory world sheet,
which remains unbroken as a result of the extreme cancella-
tions that appear in the tensionless limit. We do not have a
general characterization of which noninvertible symmetries
of holographic CFTs are realized as conventional noninver-
tiblebulkgauge symmetries or as stringy noninvertiblegauge
symmetries, but it is worth noting that the quantum dimen-
sions of topological operators for RepðSNÞ symmetry scale
with N, while the RepðΓÞ symmetry does not.7

The common theme in these examples is that in quantum
gravity, less benign forms of gauged noninvertible sym-
metries are generically broken and only seem to emerge in
special limits in field space (like the tensionless string limit
gs → 0). This implies that the breaking effects become
suppressed in these limits, so they appear as approximate
symmetries in the effective field theory. Therefore, despite
being broken, they can still have interesting applications in
the string landscape. In particular, they fit rather well with a
number of related swampland considerations connected
with infinite distance limits (see Refs. [62–65] for reviews).
The most important result is that the presence of a non-
invertible symmetry in the world sheet combined with
modular invariance implies the existence of an infinite
tower of states which is charged under the noninvertible
symmetry and becomes light at infinite distance, as
predicted by the distance conjecture. In these cases this
allows us to generalize the usual world sheet proof of the
weak gravity conjecture [66–68] to the case in which the
tower is not charged under a massless gauge field. We will

also see that in these cases the approximate noninvertible
symmetries provide a complementary perspective on a
number of subtle examples for several swampland con-
jectures. In particular, they can sometimes explain the
existence of slightly subextremal states which fill in the
gaps in the sublattice weak gravity conjecture. Moreover, in
certain cases, the existence of 4D N ¼ 2 theories with
properties more analogous to theories with N ¼ 4 super-
symmetry can be reinterpreted in terms of the existence of a
noninvertible symmetry. Even though these features also
have other more general explanations not related to non-
invertible symmetries, it is satisfying to find a comple-
mentary explanation of these connected to symmetry
principles, at least in certain cases.
The rest of this paper is organized as follows. In Sec. II

we review the fact that noninvertible symmetries of the
world sheet CFT are generically broken by string loop
effects, and illustrate this effect in a few concrete examples.
In Sec. III we discuss examples in AdS/CFT. In Sec. IV we
prove the existence of an infinite tower of states charged
under the noninvertible symmetry that becomes light at
infinite field distance. We then explain the different
applications of the weakly broken noninvertible symmetry
for several swampland considerations. We present a
broader discussion and some avenues for future investiga-
tion in Sec. V.

II. NONINVERTIBLE SYMMETRY BREAKING
BY STRING LOOPS

In this section, we argue that any noninvertible sym-
metries of the world sheet CFT are generically broken by
string loop effects, in the absence of conspiracies. More
concretely, we review the well-known fact that the selection
rules placed on sphere correlation functions by noninver-
tible symmetry fail to hold at higher genus. A simple
example is the energy operator ε of the 2D Ising model:
while ε is charged under the noninvertible Kramers-
Wannier symmetry, it picks up a nonzero one-point
function on Riemann surfaces of positive genus [69–72].
As a result of this breaking effect, if we use string

perturbation theory to compute some scattering process
forbidden at tree level by a noninvertible symmetry, we will
generically pick up nonzero contributions at higher order in
the string coupling gs. From the perspective of target space
physics, this means that the noninvertible gauge symmetry
is only visible as an approximate symmetry for gs small. In
contrast, any invertible symmetry of the world sheet is
preserved to all orders in gs. Note that in Planck units, the
limit gs → 0 in flat space corresponds to the tensionless
limit of the string.
This section is organized as follows. First, we briefly

review the general form of tree-level selection rules
imposed by noninvertible symmetry derived in [73], and
explain why these selection rules can fail to hold at higher
genus. We then illustrate this effect in examples of

6If we choose boundary conditions that realize RepðΓÞ
symmetry, we should strictly speaking discuss the Γ orbifold
SymNðT4Þ=Γ.

7It is not enough to have the size of the symmetry scale with N:
for example, even the invertible ZN center 1-form symmetry of
N ¼ 4 SUðNÞ super Yang-Mills scales with N. Note also that in
orbifolds based on theDN-series of finite subgroups in SUð2Þ, the
order of the group can be parametrically large, but the dimensions
of irreducible representations remains small so that the fusion rule
is still rather benign.
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noninvertible symmetries in familiar string compactifica-
tions. Finally, we comment on the story for a general
noninvertible symmetry of a 2D CFT.

A. Selection rules from topological operators

As stated in the Introduction, the modern understanding
of symmetries in QFT is based around the notion of
topological extended operators. In this section, we will
focus on 0-form symmetries of 2D CFTs, which are
generated by topological defect lines (TDLs). For a com-
prehensive discussion of TDLs in 2D CFTs, see Ref. [74].
Let us recall the standard derivation of selection rules for

an invertible symmetry using the associated TDL U.
Consider a sphere correlation function hO1 � � �Oni of local
operators transforming as Oi → eiqiOi under the action of
U. We can nucleate a small loop of U, pass it through the
various operators and then annihilate it “at infinity,” leading
to the same correlation function weighted by the sum of the
charges:

hO1 � � �Oni ¼ ei
P

i
qihO1 � � �Oni ð2:1Þ

If the sum of charges is nonzero, the correlator must vanish,
and so we have derived a selection rule from the presence of
an invertible symmetry.
What would happen if we tried to perform the same

argument for a noninvertible TDLN ? First of all, when we
nucleate a loop of N , we would pick up a factor of the
quantum dimension hN i; however, this factor will cancel
when we annihilate N at infinity, so we ignore it. More
interestingly, as we sweep N past any local operators, we
might leave behind some network of TDLs, producing a
correlation function of both local operators and disorder
operators, i.e., point operators attached to topological lines
(see Fig. 1). If we do produce such a network, then rather
than deriving a constraint on a single correlation function,
we might instead derive relationships between different
correlation functions.
In fact, we could have run into a similar issue when

deriving selection rules for invertible symmetries if we had
not chosen our local operators to have definite charge,
especially if our symmetry group were non-Abelian. In the
invertible context, the solution is well known: we should
organize our operators Oi into representations μi of our
symmetry group. A correlation function can only be
nonzero provided the fusion μ1 ⊗ � � � ⊗ μn of the repre-
sentations includes a copy of the trivial representation.
This motivates us to organize our operators into “rep-

resentations” of the action of the noninvertible symmetry.
Importantly, a given “representation” might involve both
local operators and disorder operators. In general, if our
TDLs form a fusion category C, these charges for our
noninvertible symmetry are given by representations of
Ocneanu’s tube algebra TubeðCÞ (see, e.g., [75]), or
equivalently [76,77], by objects μi in the Drinfeld center

ZðCÞ. The most general selection rule for noninvertible
symmetry tells us that a sphere correlation function
involving local operators and disorder operators can only
be nonzero if the fusion μ1 ⊗ � � � ⊗ μn includes the trivial
representation [73]. While this abstract characterization is
very powerful, we will not use it directly in examples
below, and instead describe selection rules on sphere
correlation functions on a case-by-case basis.
What goes wrong with the argument when we consider

correlation functions on a more general Riemann surface Σ,
such as the torus (see Fig. 1)? Locally, we can proceed as
before: we nucleate a loop of our noninvertible TDLN and
pass it through our operators, possibly leaving behind a
network of TDLs as before. The issue appears in the final
step, where we attempt to annihilate N “at infinity.” In
addition to possibly getting caught on our local operators in
the correlation function, N may also get caught on the
nontrivial topology of our Riemann surface Σ. Thus, in
addition to the network of TDLs connecting our local
operators, we pick up a network of the fusion N ⊗ N †

wrapping the noncontractible cycles of Σ.8 Note that the
fusion N ⊗ N † is the identity operator if and only if N is
invertible.
We will return to the meaning of this particular network

of TDLs in Sec. V. For now, let us note that the appearance
of an additional network of TDLs spoils the derivation of

FIG. 1. Attempting to derive selection rules for a noninvertible
symmetry on torus correlators. Starting with our correlator, we
nucleate a topological line (green), and pass it through the various
local operators (red) picking up weights corresponding to their
charges. Since the operator is noninvertible, there may be a
network of lines (green, dashed) which attach the operators back
to the topological operator (see Ref. [74] for a comprehensive
discussion). Moreover, once we have pushed our topological line
past all the local operator, we still cannot annihilate it, and instead
are left with the fusion N ⊗ N † wrapped on the two nontrivial
cycles of T 2.

8To make this argument precise for general Σ, choose a Morse
function on Σ, and sweepN down Σ according to the level sets of
the Morse function. Each time we pass a Morse critical point of
index one, N will get caught, leaving behind an insertion of the
fusion N ⊗ N † on the descending manifold. This argument can
be generalized to a noninvertible 0-form symmetry in any number
of dimensions, where wewill leave behind condensates built from
N of various dimension on the descending manifolds of each
Morse critical point of index 0 < i < n.
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selection rules, so that whatever selection rules hold for
sphere correlation functions need not hold on a general
Riemann surface Σ. If we were simply studying 2D CFT,
then this effect could be viewed as a mixed gravitational
anomaly of any noninvertible symmetry9: the selection
rules that hold on the sphere are violated in the presence of
a background topology. However, in the context of string
theory, this violation of selection rules constitutes a genuine
breaking of the symmetry, since we have made the world
sheet topology dynamical.

B. Example: Non-Abelian orbifolds

Our first class of examples of noninvertible symmetry in
the world sheet CFT are provided by non-Abelian
orbifolds [18,19]. Suppose we have a 2D CFT with non-
Abelian symmetry group Γ, and we form the orbifold CFT
by gauging Γ. The twisted sectors are labeled by conjugacy
classes ½g� ⊂ Γ, whose fusion is defined as follows [24]:
given conjugacy classes ½g�; ½h�, choose representative
elements g∈ ½g�; h∈ ½h�,10 and form the conjugacy class
of their product ½gh�. The fusion ½g� ⊗ ½h� is the sum of all
conjugacy classes produced this way for different choices
of g, h modulo simultaneous conjugation by Γ.
From this description, we can easily derive selection

rules on sphere correlation functions of twisted sector
operators. If we have a sphere correlation function

hO½g1� � � �O½gn�iS2 ð2:2Þ

of operators in twisted sectors ½gi�, this correlation function
can only be nonzero if the fusion ½g1� ⊗ � � � ⊗ ½gn� contains
the conjugacy class ½1� of the identity element. But this is
true if and only if we can choose some representatives
gi ∈ ½gi� such that the product g1…gn ¼ 1 in the group Γ.
Let us now re-derive this selection rule using non-

invertible topological operators (this is essentially the
argument in [23]). In the orbifold theory, we have topo-
logical Wilson line operatorsWρ labeled by representations
ρ∈RepðΓÞ, which fuse according to the fusion of

representations. Thus, the orbifold theory has RepðΓÞ
noninvertible symmetry. Given a sphere correlation func-
tion (2.2) of twisted sector operators as before, for any
representation ρ, we can insert Wρ along a loop encircling
each of the operator insertions in turn. By annihilating this
insertion “at infinity,” we learn that the holonomy around
the loop must act trivially in ρ. Since ρ was arbitrary, we
learn that the holonomy must be the identity element 1∈Γ.
But this holonomy is also the product in Γ of the
holonomies around each twisted sector operator, given
by some representative elements gi ∈ ½gi� that multiply to
the identity, so we have recovered the selection rule.
What happens on a nontrivial Riemann surface Σ of

genus g?11 Following [23], we note that a Riemann surface
of genus g can be formed by gluing the edges of a 4g-gon in
the pattern

a1b1a−11 b−11 …agbga−1g b−1g ð2:3Þ

as depicted in Fig. 2. Now, when we push the topological
Wilson line Wρ “to infinity,” we cannot simply annihilate
Wρ. Instead, we pick up the action in ρ of an element in the
commutator subgroup ½Γ;Γ� ⊂ Γ formed from a product of
g commutators ghg−1h−1. Thus, for a correlation function

FIG. 2. We can construct a Riemann surface of genus g by
gluing the edges of a 4g-gon in the pattern specified in (2.3).
When we encircle a collection of twisted-sector operator in-
sertions (red) with a topological Wilson line (green), we conclude
that the holonomy around our collection of operators is a product
of g commutators in Γ. See also [23] [Fig. 11].

9Not to be confused with two distinct notions of anomaly for
noninvertible symmetry that have previously been considered. In
the case of invertible symmetries, one can consider three
equivalent notions: the obstruction to gauging, the obstruction
to a trivially gapped phase, or the violation of Ward identities in
the presence of a background field. In the case of noninvertible
symmetry these notions are different, and the one we mean is the
third, where we view the (pseudo)Riemannian manifold on which
we place our CFT, possibly decorated with additional tangential
structure (spin structure, etc) depending on the theory, as a
generalized notion of background gravitational field. For further
discussion see Refs. [78,79].

10This is a slight abuse of notation, where we use the same
symbol g to denote the different possible representatives of its
orbit [g] under conjugation. We will continue to use this abuse of
notation for representatives of orbits throughout this section for
the purpose of readability.

11By another abuse of notation we shall use the same letter g to
now refer also to a genus. It should be clear from the context
which notion is meant.
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hO½g1� � � �O½gn�iΣ ð2:4Þ

of twisted sector operators to be nonzero, it is enough for
the fusion ½g1� ⊗ � � � ⊗ ½gn� to contain the conjugacy class
of a product of g commutators in G. Note that the
conjugacy classes of commutators ½ghg−1h−1� are precisely
those that appear in fusions ½g� ⊗ ½g−1� of conjugacy classes
with their inverses. See, e.g., [25] and references therein for
further discussion.
What selection rules are preserved on all Riemann

surfaces? In other words, how can we tell if a fusion
product ½g1� ⊗ � � � ⊗ ½gn� does not contain a conjugacy
class in the commutator subgroup ½Γ;Γ�, so that (2.4) must
vanish at any genus? The answer is straightforward: the
fusion product ½g1� ⊗ � � � ⊗ ½gn� lands in the commutator
subgroup if and only if images of ½gi� in the Abelianization
Γab ¼ Γ=½Γ;Γ� multiply to the identity. In other words, the
conjugacy class ½gi� carries a charge valued in Γab given by
its image, and these charges must cancel on any Riemann
surface.
These charges are, in fact, simply the charges of the

operators Oi under an invertible symmetry [25]. While the
RepðΓÞ symmetry is, in general, noninvertible, it contains
an invertible subsymmetry, generated by invertible Wilson
linesWρ corresponding to one-dimensional representations
ρ. These invertible Wilson lines can still be “annihilated at
infinity” even on a nontrivial Riemann surface, and so they
impose the same selection rules on every Riemann surface.
Moreover, the commutator subgroup ½Γ;Γ� must act trivi-
ally in any one-dimensional representation, and we have
that the set of one-dimensional Wilson lines forms a
RepðΓabÞ ¼ Γ∨

ab invertible subsymmetry of our noninver-
tible RepðΓÞ symmetry, which is the maximal invertible
subsymmetry.
This example illustrates an important point: while we

expect any noninvertible symmetry to be broken down to its
maximal invertible subsymmetry by string loop effects, it is
not true that the consequences of this breaking are always
entirely visible at one loop. For example, suppose Γ were a
group such that some element g0 in the commutator
subgroup could only be written as a product of commu-
tators, but not as a single commutator (such Γ exist, see,
e.g., [80] for a source of examples). Then a local operator in
the twisted sector ½g0� could not have a nonzero torus
partition function, but could have a nonzero partition
function on some higher-genus Riemann surface.
However, in general, the set of charges that can get a

nonzero one-point function at some order in the string loop
expansion is always generated under fusion by the charges
that can get a nonzero torus one-point function. This can be
seen by realizing that a one-point function on a Riemann
surface of genus g can be built by sewing together g torus
one-point functions with a single sphere (gþ 1)-point
function (see Fig. 3). Each torus one-point function
produces some charge, and these charges simply fuse in

the sphere (gþ 1)-point function. Thus, whatever sym-
metry is broken by string loops must be entirely broken at
one-loop, even if the nonzero one-point functions of certain
charges do not show up until higher loop order.

C. Example: Toroidal orbifolds

Our next class of examples of noninvertible symmetry in
the world sheet CFT are given by toroidal orbifolds that
break some part of the translation symmetry. These
examples fall into the general class of noninvertible
symmetries obtained by gauging a non-normal subgroup
of a larger symmetry group (see, e.g., [3,81,82]); similar
statements could be made for any of these more general
examples, and in fact we will discuss one such generali-
zation below in Sec. IV C. These noninvertible symmetries
capture, in the case of toroidal orbifolds, the general
perturbative string theory expectation that tree-level scat-
tering amplitudes are independent of the choice of com-
pactification for states whose existence is unchanged by the
compactification.12

Suppose we have a world sheet CFT containing a Tn

sigma model. We will denote the sigma model fields by Xμ,
as is standard in string theory. Let us now orbifold by a
finite group Γ of isometries of Tn (Γ can be Abelian or non-
Abelian). Before orbifolding, the sigma model CFT has a
continuous “momentum” symmetry which acts by trans-
lation (we could tell a completely analogous story for the
“winding” symmetry). Let UδX denote the invertible topo-
logical operator implementing a translation Xμ→XμþδXμ.
In general, UδX will not be preserved by the Γ action, and
will be taken to a different translation operator under the
action of g∈Γ. Thus, if we gauge Γ, the operators UδX will
no longer be gauge-invariant.
However, while the operators UδX are not individually

gauge invariant, they can still be grouped into orbits ½δX� of

FIG. 3. A one-point function on a Riemann surface of genus g
(left) can be built be sewing together g torus one-point functions
and one sphere (gþ 1)-point function (right).

12For example the tree-level scattering of graviton amplitudes
in 4D is the same as those in 10D at string tree-level, independent
of the compactification.
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the Γ action.13 For each orbit ½δX�, we can define a gauge-
invariant topological operator by summing over the orbit

L½δX� ¼ ⨁
δX∈ ½δX�

UδX: ð2:5Þ

The quantum dimension hL½δX�i is given by the size of the
orbit ½δX�.
The collection of operators L½δX� define a noninvertible

“momentum” symmetry of the toroidal orbifold Tn=Γ
which is the unbroken piece of the full translation sym-
metry of the unorbifolded theory Tn. The charged operators
include (unnormalized) vertex operators:

O½p� ¼
X
p∈ ½p�

eipμXμ
; ð2:6Þ

defined by summing plane waves of definite momentum p
over a Γ-orbit [p] in order to form a Γ-invariant wave
function.
What selection rules does the noninvertible symmetry

place on correlation functions

hO½p1� � � �O½pn�iT
n=Γ

S2 ; ð2:7Þ

in the orbifolded theory? The answer is simple: the
associated selection rules are merely the selection rules
coming from conservation of momentum before orbifold-
ing, because the tree-level correlators of untwisted oper-
ators are exactly equal to those in the unorbifolded theory.
In more detail, the correlation function (2.7) can only be
nonzero if there are representatives pi ∈ ½pi� such that

p1 þ � � � þ pn ¼ 0; ð2:8Þ

i.e., such that momentum is conserved. In Appendix A, we
explain in detail how to re-derive this selection rule using
the topological operators (2.5) for the simple c ¼ 1 orbifold
S1=Z2 (see also [83,84]).
Suppose we want to calculate the torus correlation

function

hO½p1� � � �O½pn�iT
n=Γ

T2 ð2:9Þ

in the orbifold theory. For simplicity of the discussion, let
us focus on the case of a torus 1-point function

hO½p�iT
n=Γ

T2 ð2:10Þ

Because of the selection rule for the momentum symmetry
“upstairs,” the torus one-point function hO½p�iTn

T2 in the
unorbifolded theory must vanish if p ≠ 0. However, in the
orbifold theory, the torus one-point function (2.10) involves
summing over insertions of commuting pairs of Γ symmetry
lines on the twocycles ofT 2, as illustrated inFig. 4. In contrast
to the torus one-point function hO½p�iTn

T2 in the vacuum of the
unorbifolded theory, the torus one-point function of O½p� in
the presence of Γ symmetry lines may be nonzero.14

To see why this can happen, let us track momentum
charge as it flows through the torus with the insertion of a
symmetry line for g∈Γ (see Fig. 5). Our insertion of O½p�
inserts some momentum p∈ ½p�, which can split into two
parts k; p − k running through the two sides of the torus.
Before joining, one of the parts, say k, is acted on by the Γ
symmetry line, transforming to some other momentum
gðkÞ. Finally, the momentum charge running through the
two sides meets, and must annihilate by the selection rules
in the unorbifolded theory. Thus, we have

p − kþ gðkÞ ¼ 0; or; p ¼ kþ gð−kÞ: ð2:11Þ

Thus, any operator O½p� such that p ¼ kþ gð−kÞ for some
g and some k could acquire a nonzero torus one-point
function. For example, in the c ¼ 1 orbifold S1=Z2 by
X ↦ −X discussed in Appendix A, the condition (2.11) is
equivalent to the condition that p be even. This remaining
selection rule corresponds to an unbroken invertible trans-
lation symmetry, given by a π-rotation of S1.

FIG. 4. The torus one-point function (2.10) in the orbifold
theory (left, shaded) is computed by summing torus one-point
functions in the unorbifolded theory (right) with insertions of Γ
symmetry lines (green). The sum runs over all pairs g; h∈Γ of
commuting elements. Even if the contribution from g ¼ h ¼ 1
vanishes, the other terms with nontrivial line insertions may be
nonzero. This illustrates that the difference between a theory and
its orbifold is simply which topological line insertions are
considered to contribute to “vacuum” correlation functions.

13Be careful: the action of Γ on the group of translations is not
equal to the action on the sigma model target Tn. If g∈Γ acts on
sigma model fields as Xμ ↦ Λμ

νXν þ Xμ
0, then it acts on UδX as

UδX ↦ gUδXg−1 ¼ UΛ·δX . Thus, even if Γ acts on the sigma
model without fixed points, there may still be fixed points in its
action on the symmetry operators UδX . For example, if we
quotient a square T2 by the Z2 action ðX; YÞ ↦ ðX þ π;−YÞ
in order to obtain a Klein bottle (as discussed in Appendix D), the
action on translation operators is UðδX;δYÞ ↦ UðδX;−δYÞ, and the
space of orbits of symmetry operators is S1 × ðS1=Z2Þ, not a
Klein bottle.

14This can be understood by saying that the Γ symmetry lines
can carry momentum charge, due to their failure to commute with
translation.
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An alternative way to make this argument is to build the
torus one-point function (2.10) by sewing together sphere
three-point functions (see Fig. 6)

hO½p�O½k�O½−k�iT
n=Γ

S2 : ð2:12Þ

Because of the Γ orbifold, we haveO½−k� ¼ O½gð−kÞ�, and so
this sphere three-point function can be nonzero if (2.11) is
satisfied. Let us conclude this section by noting that if we
define the fusion of orbits ½p1� ⊗ ½p2� analogously to the
fusion of conjugacy classes (defined in the previous
section), then (2.11) is precisely the condition that [p]
appears in a fusion ½k� ⊗ ½−k�.

D. General story

So far, we have seen that in the example of the RepðΓÞ
symmetry of non-Abelian orbifolds and in the example of the
noninvertiblemomentum symmetry of toroidal orbifolds, the
noninvertible symmetry present at tree level is broken at one
loop. In both cases, we saw that the charges μ of the
symmetry that could acquire nonzero one-point functions
on the torus T2 were those that appeared in fusions ρ ⊗ ρ̄ of
some charge with its dual. These charges generate what is
known as the “adjoint subcategory” of the category of
charges [85][Definition 4.14.5.] (see also [25]). A natural
guess, then, would be that this is the general story.
However, this is certainly wrong, due to the possibility of

non-Abelian symmetry. For example, rather than a non-
Abelian orbifold with RepðΓÞ symmetry, consider the
unorbifolded theory itself, with non-Abelian Γ symmetry.
Then, the charges of local operators are given by repre-
sentations μ of Γ. Even if μ appears in a fusion ρ ⊗ ρ̄, an
operator Oμ charged in μ cannot acquire a nonzero torus
one-point function (or, indeed, a one-point function at any
order in gs), as it is charged under the invertible symmetry
Γ, whose selection rules hold on any topology.
To see the issue, suppose we try to replicate the argu-

ment from the previous section depicted in Fig. 6 for an

operator charged under a non-Abelian invertible symmetry.
Thus, consider a torus one-point function

hOa
μiT2 ; ð2:13Þ

of an operator Oa
μ charged in a representation μ ⊂ ρ ⊗ ρ̄,

where a ¼ 1;…; dimðμÞ is an internal index running over a
basis for μ. If we try to build the one-point function (2.13)
by sewing together sphere three-point functions

hOa
μOb

ρOc̄
ρ̄iS2 ; ð2:14Þ

we are forced to trace over the internal indices b, c of the
charged operators Ob

ρ;Oc̄
ρ̄. While (2.14) may be nonzero, it

will be proportional to the Clebsch-Gordan coefficients
Cabc̄ for the fusion channel ρ ⊗ ρ̄ → μ. But if μ is a
nontrivial irreducible representation, then the traceP

b C
abb̄ must vanish, so we do not produce a nonzero

torus one-point function.
While the “adjoint subcategory” of charges appearing in

fusions ρ ⊗ ρ̄ of charges with their duals does not generally
describe the subset of charges that can acquire a torus one-
point function, it does still have an important meaning: it
described the set of charges that can acquire a torus one-
point function possibly in the presence of topological line
insertions on nontrivial cycles of T 2 (see Appendix B). This
set of charges is invariant under any possible orbifoldings,
as the difference between a theory and its orbifold is
merely which topological lines we consider “gauged,” or
“condensed,” i.e., part of the vacuum.
However, for the purposes of string theory, wherewe only

sum over world sheets without the insertion of topological
lines, the more refined question of which charges can get a
torus one-point function without any line insertions is
essential. In Appendix B, we give a formal characterization
of this set of charges. We strongly suspect that this set is
always precisely the set of charges needed to break our
noninvertible symmetry to its maximal invertible subsym-
metry, but we were not able to give a full proof (outside of
special cases such as the Verlinde lines of a diagonal RCFT,
see Appendix B 1). As evidence for the generality of this
claim, we verify it explicitly for the case of a truly exotic
noninvertible symmetry (Haagerup) in Appendix C.

FIG. 6. A torus one-point function can be written as a sphere
three-point function with two points sewn together. The sewing
procedure involves a trace over the sewn operators’Hilbert space.

FIG. 5. Tracking the flow of momentum charge through a torus
one-point function of O½p� with the insertion of a symmetry line g
(green). In the orbifold theory, this contributes to the torus one-
point function of O½p� in the orbifold vacuum.
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As a final note, strictly speaking, what we expect in
general is that the selection rules of any noninvertible
symmetry are not automatically imposed by the symmetry
on correlation functions at higher genus. Thus, in the
absence of a conspiracy, we expect the symmetry to be
broken at gs ≠ 0. Of course, one could imagine there might
be exceptional string theories where the selection rules of
the noninvertible symmetry continue to hold at higher
genus due to nontrivial cancellations, even though they did
not have to. In fact, we will see precisely such a case below
in Sec. III B on the world sheet of a tensionless (but not
infinitely weakly coupled) string theory in AdS.

III. NONINVERTIBLE GAUGE SYMMETRIES
IN ADS/CFT

In the previous section we argued that at least in
perturbative string backgrounds, unbroken noninvertible
gauge symmetries coupled to gravity can only arise in a
suitable limit where a tower of light states enter the
spectrum. In this section we explore more general back-
grounds in quantum gravity such as anti–de Sitter (AdS)
space using the AdS/CFT correspondence.
Indeed, there is a well-studied sense in which noninver-

tible gauge symmetries can easily arise in AdS backgrounds.
To see why, suppose we have aD-dimensional CFTD with a
semiclassical gravity dual. Suppose also that the CFTD has a
noninvertible global symmetry. According to the “standard
rules” of the AdSDþ1=CFTD correspondence, any global
symmetry of the boundary theory ought to be gauged in the
bulk. From this perspective, we can immediately generate
examples of gauged noninvertible symmetries in the bulk.
To better understand this, it is helpful to briefly review

some aspects of categorical symmetries for a general
D-dimensional quantum field theory QFTD. One way to
capture the categorical symmetries of the QFTD is in terms
of a (Dþ 1)-dimensional topological field theory (TFT)
known as the symmetry TFT (SymTFT).15 Working on a
(Dþ 1)-dimensional spacetime of the form I ×MD with I
an interval and MD the original D-dimensional spacetime,
we specify physical boundary conditions at one end of the
interval and gapped (i.e., topological) boundary conditions
at the other end. The theory on the physical boundary
conditions is referred to as a “relative QFT” in the sense
of [46]. The possible global forms of the QFTD are specified
by the choice of gapped boundary condition.16 Contracting
the interval then produces an absolute QFTD. Switching
from one choice of boundary conditions to another is

interpreted in the boundary QFTD as the gauging of a
nonanomalous (possibly noninvertible) global symmetry.
For a holographic CFTD with a semiclassical AdSDþ1

dual, one canview the SymTFTDþ1 as a topological subsector
of the bulk gravitational theory, as has been explicitly verified
in a number of top down constructions [26–34], as well as
from a bottom up point of view in [35]. More precisely, the
SymTFTDþ1 should be viewed as a small sliver in the bulk
AdSDþ1, where the physical boundary conditions of the
relativeQFThave nowbeen “smeared out” over the rest of the
(Dþ 1)-dimensional bulk [35]. For our present purposes, it is
enough to observe that the bulk AdSDþ1 has a topological
subsector given by the SymTFTDþ1.
As an illustrative example, consider 4D N ¼ 4 super

Yang-Mills (SYM) gauge theory with gauge algebra suðNÞ.
The global form of the gauge group could, in general, be of
the form SUðNÞ=ZK for anyK which dividesN. The 1-form
symmetries of this SYM theory are described by the 5D
SymTFT with topological term of the form

Stop5D ¼ N
2π

Z
B2 ∧ dC2; ð3:1Þ

where B2 and C2 are, in the 4D boundary, interpreted as the
background fields for electric and magnetic 1-form sym-
metries of the theory. The global form of the SYM gauge
group is specified by the boundary conditions for B, C: we
can specify B ¼ 0 or C ¼ 0, or some more general admix-
ture. This topological term naturally arises in type IIB
supergravity via the 10D topological term F5 ∧ B2 ∧ dC2

reduced over the S5 factor of AdS5 × S5 in the presence ofN
units ofF5 flux. As explained in [86], the choice of boundary
conditions for this doublet of 2-form potentials fixes the
center of the gauge group on the boundary. More generally,
there are now many known realizations of SymTFTs via
string constructions (see, e.g., [48,51,87]). As a final com-
ment on this example, observe that gauging the 1-form
symmetry of the 4D CFT allows us to switch polarizations,
i.e., this corresponds to changing the gapped boundary
conditions of the boundary theory. For example, starting
with SUðNÞ gauge theory and an electric 1-form symmetry,
gauging the 1-form symmetry produces the SUðNÞ=ZN
gauge theory with a magnetic 1-form symmetry.
This simple example describes the SymTFT for an

invertible global symmetry of a CFTD with a holographic
dual, but many examples studied in the literature involve
the SymTFT of a noninvertible global symmetry of the
CFTD [26–34]. For these cases, one could rightfully
describe the bulk SymTFT sector as a noninvertible gauge
theory in the conventional sense,17 and so there are
certainly many examples of unbroken noninvertible gauge

15For discussion of various aspects of SymTFTs, see, e.g.,
Refs. [10,35,38–53].

16There are some subtleties with imposing such boundary
conditions in the case of continuous symmetries, and in the
context of holography one ought not entertain a gapped bulk
anyway. For further discussion on this in the context of SymTFTs
and holography, see respectively [52,53] and [35].

17As noted in the Introduction, this is true in the sense of
“summing over a mesh of topological operators,” and likely also
in the sense of a redundancy of the description assuming the
results of [15] generalize.
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symmetries in string theory. However, in spite of appear-
ances, in all examples we know how to explicitly realize,
these “noninvertible gauge symmetries” are of a rather mild
type: they could alternatively be described by invertible
gauge theories, either in a dual frame or with appropriate
Chern-Simons terms.
So far, our discussion has focused on examples of AdS/

CFTwhere the bulk dual is well described by semiclassical
Einstein gravity. If we relax this assumption, we can look
for examples of noninvertible symmetries in CFTs whose
bulk duals are not semiclassical, and which are described
by something like a tensionless string theory. We find, in
the example of AdS3 × S3 × T4 with one unit of NS5
flux [59–61] that the CFT2 admits noninvertible sym-
metries whose bulk dual is not described by the associated
SymTFT. Instead, the bulk dual is the less-benign stringy
noninvertible gauge symmetry described in the previous
section, realized as noninvertible symmetry on the world
sheet of the tensionless string.
The rest of this section is organized as follows.To illustrate

some of the general issues, we first revisit the case of
RepðΓÞ symmetries in the special case of the background
AdS3 × S3 × T4. In this case, we argue that although the
boundary theory admits a polarization with a global RepðΓÞ
symmetry, the bulk theory is nevertheless captured by a
conventional Γ gauge symmetry (i.e., an invertible theory),
so in this sense in the bulkwe have an invertible symmetry in
disguise. We then turn to the limit captured by a tensionless
string, where we see a large RepðSNÞ noninvertible sym-
metry, and argue that the bulk dual is a stringy noninvertible
gauge symmetry, realized on the world sheet of the tension-
less string. After this, we turn to a broader discussion of
AdSDþ1=CFTD pairs forD > 2, wherewe typically encoun-
ter symmetries whose noninvertibility is of a very mild type.
Consolidating these lessons, we put forward some conjec-
tures on noninvertible symmetries motivated by gravity.

A. Example: Semiclassical AdS3=CFT2

To illustrate some of the general considerations just
presented, we now turn to an explicit example. Consider the
type IIB NS flux background AdS3 × S3 × T4, with its
corresponding CFT2 dual given by the F1/NS5 system.
This configuration can be obtained from the near horizon
limit of coincident N1 F1-strings and N5 NS5-branes on
R1;1 ×R4 × T4, where both stacks of branes fill the R1;1

factor, and the NS5-branes wrap the T4 factor as well. In the
near horizon limit, the string coupling is frozen via the
attractor mechanism, and satisfies

g2s ∼
N5

N1

× VolðT4Þ; ð3:2Þ

to leading order in 1=N1.
We briefly note that this is S-dual to a D1/D5 system,

although for our present purposes we will find the F1/NS5

description more convenient. Let us also note that in the
special case of N5 ¼ 1 there is a tensionless world sheet
description of the full 10D bulk gravity solution, given
in [59–61]. This is not a semiclassical gravity theory, but it
has the advantage of being a tractable example of an
explicit world sheet description of the entire bulk. Let us
note that instead of T4 we can also consider a K3 surface,
and a specific case of interest are limits of K3 realized as
orbifolds of T4.
Wewould now like to understand the presence/absence of

noninvertible symmetries in this background, where we
work in the large charge/supergravity limit. To begin, let us
determine some of the discrete gauge symmetries in the
bulk. Tuning the moduli of T4 we can reach special points in
moduli space where the tuned T4

tuned admits a non-Abelian
isometry Γ. So, in addition to the continuous gauge sym-
metries that arise generically (from translations ofT4)we see
that the 6D spacetime AdS3 × S3 has a discrete Γ gauge
symmetry (fromdiscrete isometries ofT4

tuned). Ifweplace the
usual Dirichlet boundary conditions on AdS3 × S3 × T4

tuned,
this leads in the CFT2 to a global, invertible 0-form Γ
symmetry. Now, since this 0-form symmetry is nonanom-
alous in the 2D CFT, it is natural to ask what happens if we
gauge it. This yields another 2D CFT which we denote as
CFT2=Γ. As explained in [12,20], and above in Sec. II B, the
theory CFT2=Γ has a 0-form noninvertible symmetry given
by RepðΓÞ. In this symmetry category the symmetry
operators are labeled by finite-dimensional representations
of Γ, and there is an accompanying fusion rule given by
tensor products of such representations.
What is the bulk dual description of the CFT2=Γ? From

the perspective of the accompanying SymTFT3, all we have
done is modified the topological boundary conditions for
the theory, changing them from Dirichlet to Neumann for
the Γ gauge fields. Consequently, we conclude that in the
AdS3=CFT2 pair with 6D geometry AdS3 × S3 (after
reduction on the T4

tuned factor) we have changed from
electric to magnetic boundary conditions for the bulk Γ
gauge theory on AdS3 × S3. This example illustrates an
important lesson: although one may certainly say that “the
RepðΓÞ symmetry is gauged in the bulk,” there is an
alternative presentation of the bulk theory which is an
invertible 0-form Γ gauge theory.
Do not confuse the bulk dual of CFT2=Γ with the related

background AdS3 × S3 × ðT4=ΓÞ. This is related to AdS3 ×
S3 × T4

tuned example by gauging the global Γ symmetry of
the bulk world sheet theory (which has ĉ ¼ 10). We
emphasize that this gauging operation is not happening
in the boundary CFT2 (which has c ≫ 1), nor in the target
space quantum gravity theory. In AdS3 × S3 × ðT4

tuned=ΓÞ,
we generically expect the RepðΓÞ symmetry on the world
sheet to be broken by string loops as described in Sec. II.
Summarizing, we have seen that in an explicit example

with a noninvertible symmetry of the boundary CFT2, the
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bulk description is rather benign: it is simply a question of
how we choose boundary conditions for the bulk theory.

B. Example: Tensionless string in AdS3

Let us consider more closely the special case N5 ¼ 1 and
N1 ¼ N, considered extensively in [59–61]. Although there is
no semiclassical gravity dual, this special case admits an
explicit bulk world sheet description as a tensionless string
theory and a characterization of the CFT2 as the N-fold
symmetric product orbifold of the T4 sigma model, i.e.,
SymNðT4Þ ¼ ðT4ÞN=SN (where the symmetric group SN acts
by permutation). In this case the CFT2 admits a RepðSNÞ
noninvertible symmetry, which emerges precisely at the
orbifold point. Because the bulk theory contains a tensionless
string, it admits a higher spin gauge symmetry. For details of
this Higgsing of this higher-spin symmetry as we move away
from the symmetric orbifold point, seeRef. [88] (see also [89]).
What is the bulk dual of this enormous RepðSNÞ non-

invertible symmetry? In [59,60], it was shown that, in the
bulk world sheet theory, the vertex operators in the wth
spectrally flowed sectors satisfy the same selection rules as
the conjugacy classes of w-cycles in SN , in the limit
N → ∞. In other words, the bulk world sheet theory admits
a noninvertible RepðS∞Þ symmetry,18 described as the
N → ∞ limit of RepðSNÞ symmetry. This noninvertible
symmetry on the world sheet of the bulk string is the
holographic dual of the RepðSNÞ noninvertible global
symmetry of the symmetric product orbifold SymNðT4Þ.
This identification raises a puzzle: the bulk string theory,

while tensionless, is not infinitely weakly coupled; indeed,
gs ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VolðT4Þ=N

p
to leading order in 1=N, as in (3.2). So

why is it not the case that the RepðS∞Þ symmetry broken by
string loops, as in our general story in Sec. II? There, we
had noted a possible way to avoid the breaking effect: if the
world sheet CFT correlation functions were subject to some
highly nontrivial cancellations. This is exactly what hap-
pens on the tensionless string world sheet: as described
in [61], world sheet correlation functions of the spectrally
flowed vertex operators exactly localize on Riemann
surfaces that admit a holomorphic branched cover of
S2 ¼ ∂AdS3, with branching specified by the charges wi
of the operator insertions. This localization exactly imposes
the selection rules of RepðS∞Þ noninvertible symmetry at
any order in the string loop expansion, since π1ðS2Þ ¼ 0
and the only interchange of sheets comes from operator
insertions.19 For a concrete example, no vertex operator

with w > 1 can acquire a one-point function at any genus,
since there are no holomorphic branched covers of S2 with
only one branch point besides the identity map, which can
be viewed as having “trivial branching” w ¼ 1 (see e.g.
[61], Equation 8.14]).

C. Weak invertibility

Recently a number of examples of noninvertible sym-
metries in holographic CFTD for D > 2 have been dis-
cussed, along with their string theory realization in the
bulk [26–36].20 As discussed above, this means that there is
a conventional noninvertible gauge symmetry in the bulk
gravity dual, described by the SymTFT for the noninver-
tible symmetry.
However, an important caveat is that all of these examples

are “weakly invertible,” in the sense that the noninverti-
bility in their fusion rule only includes defects supported
on lower-dimensional subspaces, i.e., a condensate (see,
e.g., [90,91]). More explicitly, suppose we have a non-
invertible symmetry defectN supported on a q-dimensional
subspace. We say N is weakly invertible,21 or invertible up
to condensates, if the fusion of N with N † on any given
q-manifold N satisfies

N ðNÞ ⊗ N ðNÞ† ¼
X
M;M

MðMÞ; ð3:3Þ

where the sum runs over some topological operators M
supported on submanifoldsM ⊂ N of strictly lower dimen-
sions dimðMÞ < q. If we have two such operators N i, N j,
their fusion can be described as

N iðNÞ ⊗ N jðNÞ ¼ N ijðNÞ ⊗
X
Mij;M

MijðMÞ; ð3:4Þ

whereN ij is another weakly invertible operator of the same
dimension, and Mij runs over some set of topological
operators of lower dimension.22 Note that if we ignore

18We would not expect to see the finiteness of RepðSNÞ
symmetry in the bulk world sheet theory, since this finiteness
is nonperturbative in 1=N.

19This argument will fail if we consider a more general
hyperbolic 3-manifold than AdS3, for example a handlebody
of higher genus. However, we do not expect the selection rules to
hold even in the nongravitational CFT2 when we place it on a
boundary manifold of nontrivial topology.

20See, e.g., [4–9] for reviews discussing noninvertible sym-
metries in D > 2 in general.

21Note that a “weakly invertible” symmetry need not be
invertible, following the convention that the “weak” version of
a property does not imply the unmodified version.

22To prove this, it suffices to show that N i ⊗ N j is irreduc-
ible. Suppose it were not, so we had N i ⊗ N j ¼ A ⊕ B. Then
by fusing with N †

j , we would have N i ⊗ ðcondensatesÞ ¼
ðA ⊗ N †

jÞ ⊕ ðB ⊗ N †
jÞ. Since reducibility is invariant under

fusing with condensates, we would learn that N i were reducible,
which is incompatible with the weak invertibility of N i. By the
same argument, the fusion of any irreducible operator with a
weakly invertible operator is irreducible.

FATE OF STRINGY NONINVERTIBLE SYMMETRIES PHYS. REV. D 110, 106001 (2024)

106001-11



condensates, the fusion of weakly invertible operators
defines a group law.23

Weakly invertible operators are to be contrasted with, e.g.,
the case of Verlinde lines of a 2D RCFT, where the fusion
products involve multiple summands of topological defect
lines of the same dimension. One of the general lessons from
top down realizations of noninvertible symmetries is that
bulk dual of weakly invertible symmetries is thewell-known
process of brane/antibrane annihilation [26,32], which pro-
duce lower-dimensional branes that were dissolved in the
original brane/antibrane pair via the dielectric-brane
effect [92].24 The corresponding bulk gauge theory is an
invertible gauge theory with triple Chern-Simons terms
turned on (see also [93]), which capture the possibility of
branes of different dimensions to dissolve into one another.
Again, we see that the bulk dual of boundary noninvertible
symmetry can be rephrased in terms of an invertible gauge
theory, now with nontrivial topological couplings. Notably,
in this case, we do not have to perform any electromagnetic
duality in the bulk: the bulk gauge fields are invertible, but
their electric symmetries are rendered noninvertible by the
triple Chern-Simons terms [94–96].25
There may be more general notions of weak-invertibility

beyond the definition (3.3), whose bulk duals correspond to
invertible symmetries directly, without switching to a
magnetic duality frame. For example, suppose we had a
CFTD with a global Oð2Þ ¼ Uð1Þ⋊ZC

2 symmetry. If we
gauge ZC

2 , we obtain a continuous noninvertible symmetry,
with topological operators Lθ defined as in Appendix A
(see also [3,82–84] for more discussion of this construc-
tion). In the bulk, where we have a dynamical Oð2Þ gauge
theory, this corresponds to switching our boundary con-
ditions for the ZC

2 discrete gauge field, while leaving the
Dirichlet boundary conditions for Uð1Þ unchanged. Thus,
while we have switched to a magnetic duality frame for ZC

2 ,
the Uð1Þ gauge field is directly holographically dual to the

noninvertible symmetry in the CFTD, without any electro-
magnetic duality.26

From the perspective of the fusion algebra of symmetry
operators in the CFTD, what is happening is that we have a
continuous family of topological operators Lθ such that the
limit θ → 0 of Lθ is a condensate.27 In particular, this
means that these operators can be written as

LθðNÞ ¼ CondensateðNÞ ⊗ exp

�
iθ
Z
N
⋆J

�
; ð3:5Þ

where J is a 1-form conserved current operator that is only
well-defined along the condensate (see also [83,99–101]).
The formula (3.5) defines a more general sort of “weak
invertibility” or “invertibility up to condensates” beyond
(3.3), whose bulk dual involves a photon field which is
itself charged under some other discrete gauge symmetry
(in this case, ZC

2 ). It would be very interesting to determine
the most general notion of “weak invertibility” in QFT (see
section V for further comments on this question).

D. Conjectures motivated by gravity

The general lesson from these examples is that while we
do expect a gravity dual for noninvertible symmetries in
theories with a semiclassical bulk, the bulk description is
typically “benign,” and can be rephrased as a more
conventional invertible gauge theory description, either
in an electromagnetically dual frame, or directly as is in
the case of weak invertibility. Motivated by these con-
siderations, it is natural to ask whether the SymTFTDþ1

for any QFTD (whether or not it has a semiclassical
gravity dual) can always be presented as a more conven-
tional invertible gauge theory with appropriate topological
couplings (i.e., Chern-Simons terms). This is a broader
QFT question, but the evidence we have from holographic
examples suggests that this more general statement might
be true.
Gravity also suggests that there may end up being an

upper bound on the number of separate operators that can
appear in the fusion products

N i ⊗ N j ¼
Xkmax

k¼1

T k
ijN k: ð3:6Þ

of topological operators in holographic CFTs with semi-
classical bulk duals. It is tempting to conjecture that
kmax ∼Oð1Þ for noninvertible symmetries which are dual
to conventional noninvertible gauge symmetries in actual

23A further comment here is that for nontopological operators,
one can of course expect more general fusion rules. An interesting
example in this regard is that of [32] where the brane fusion rule
in the gravity dual produces multiple branes in the bulk (i.e.,
seemingly a stronger notion of noninvertibility). Even so, in all
known cases where this occurs not all the bulk branes simulta-
neously specify topological operators in the dual CFTD. That is to
say, once one chooses a polarization/global structure, some of
these bulk branes do not descend to topological operators of
the CFTD. See also the discussion to follow near Eq. (3.5) on
trivialization up to condensation defects.

24For explicit examples in AdS/CFT, see, e.g.,
Refs. [26–30,32,35,36].

25This illustrates a general pattern: strictly speaking, the bulk
dual of a global symmetry in the CFT is the approximate electric
global symmetry of the bulk gauge fields (see Ref. [35] for a
recent discussion of the approximate bulk symmetry operators
arising from the boundary symmetries). This was referred to as
“long range gauge symmetry” in [97]; see also [98] for the
approximate noninvertible electric symmetry of a non-Abelian
gauge theory in Maxwell phase.

26As in Footnote 25 what is really happening is that the
approximate electric 1-form symmetry of Oð2Þ gauge theory in
the bulk is noninvertible [3].

27More precisely, it is the condensate of the dual (D − 2)-form
symmetry generated by topologicalWilson lines forZC

2 [3,82–84].
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UV complete backgrounds.28 Indeed, returning to the
examples presented in Sec. III A, the collection of non-
Abelian orbifolds Γ which can serve as isometries of an
explicit tunedT4 is rather small, and the resulting dimensions
of irreducible representations is also quite limited. Indeed,
the only case we saw with a possibly large number of fusion
products involved SN , whose bulk dual was realized as a
stringy noninvertible gauge symmetry in a tensionless string
theory. Observe that in other AdS backgrounds such as
AdS × Sn=Γ (seeRef. [102]), the order ofΓ can be arbitrarily
large, but the dimensions of the irreducible representations
(and thus the number kmax of fusion products) are far smaller.
Clearly, it would be interesting to see whether there exist
holographic CFTs having noninvertible symmetries with
large kmax, or conversely, whether there is a nontrivial
swampland constraint.

IV. APPROXIMATE NONINVERTIBLE
SYMMETRIES IN THE STRING LANDSCAPE

Despite being broken in spacetime, in this section wewill
show that noninvertible symmetries on the world sheet can
still have interesting implications for effective fields the-
ories arising from string theory. First, we will explain the
interplay of noninvertible symmetries with several swamp-
land constrains, including the distance conjecture and the
sub(lattice) weak gravity conjecture.

A. Existence of towers of states

In section II C we showed the generic presence of
noninvertible symmetries at gs ¼ 0 whenever we have
string theory compactified on toroidal orbifolds such as
S1=Z2. More generically, there are noninvertible sym-
metries present in any orbifold M=G where M is a
smooth manifold with isometries broken by the G action.
This includes many examples with fixed points (including
toroidal orbifold Calabi-Yau manifolds); in these cases,
there is a question of whether the noninvertible symmetries
may be explicitly broken by turning on deformations
corresponding to marginal twisted sector operators local-
ized at the fixed points. All of the above arguments,
however, also apply to the case when G is freely acting.
In these cases, the noninvertible symmetry is exact clas-
sically for any choice of geometric moduli, and as dis-
cussed in the previous subsection, is only broken by
quantum effects at gs ≠ 0. Examples of these manifolds
include Riemmann and Ricci-flat examples, such as freely
acting quotients of Tn and quotients of the form

K3 × Tk

Zn
; ð4:1Þ

where theZn is a common subgroup of isometries. Some of
these constitute examples of Calabi-Yau manifolds with
infinite fundamental group [103,104].
As we have seen, these noninvertible symmetries are

only approximate unless we are in a decompactification or
tensionless string limit. A natural question is then whether
it plays any role in the physics close, but not exactly at the
asymptotic/perturbative limits of effective field theory. We
will now show that this noninvertible symmetry can be used
to prove the existence of a tower of states that becomes light
at infinite field distance, as predicted by the distance
conjecture [105]. Using noninvertible symmetries we can
therefore extend the range of asymptotic limits where a
proof of the distance conjecture is available.29 Importantly,
for the first time, the argument does not use the existence of
an unbroken gauge symmetry, as is the case in the usual
perturbative string [107] and complex structure moduli
space examples [108,109]. Since the noninvertible sym-
metry is not exact, we can expect small corrections to the
mass and lifetime of the particles in the tower. However the
existence of the tower itself in the asymptotic limit is
guaranteed by the noninvertible symmetry.
The argument we have in mind is a minor modification

of the proof in [66,67] of the sublattice weak gravity
conjecture, which itself is a direct application of spectral
flow.30 We will now briefly review the argument in [66,67]
(which was itself described inline in [106]), in the particular
case of a single Uð1Þ gauge field and then explain how it
gets modified for the case of a noninvertible symmetry.
Consider a 2D world sheet CFT with an invertible Uð1Þ

symmetry generated by a holomorphic current j at level N.
In other words,

jðzÞjð0Þ ∼ N
z2

ð4:2Þ

In these circumstances, one may consider the partition
function with complex chemical potential

Zðμ; τÞ≡ TrðqL0qL̄0e2πiQμÞ; q≡ e2πiτ: ð4:3Þ

This partition function transforms covariantly under
SLð2;ZÞ

Z

�
μ

cτ þ d
;
aτ þ b
cτ þ d

�
¼ eiπN

cμ2

cτþdZðμ; τÞ ð4:4Þ

(the lack of exact invariance is due to the anomalous
conservation of the holomorphic current, see, e.g., [110])
and it also satisfies

28This statement could possibly be extended to the general case
by placing a bound on the bulk EFT cutoff.

29Of course another way to argue that in the large radius limit for
arbitrary compactifications the light KK tower is related to gauge
symmetry, as is anticipated by weak gravity conjecture [106], is to
note that in this limit we get approximate translational symmetries
which lead to gauge symmetries broken by 1=R effects.

30See also [68] for extremely recent progress in this direction.
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Zðμ; τÞ ¼ Zðμþ 1; τÞ ð4:5Þ

since the charges are quantized. As shown in [66,67],
imposing (4.5) and (4.4) together implies that the whole
spectrum of CFT operators is invariant under a simulta-
neous shift

h → hþ Q2

2N
; Q → Qþ N; ð4:6Þ

known as a spectral flow automorphism. Equation (4.6)
implies that the CFT spectrum arranges itself into towers of
states where the Uð1Þ charge shifts by N and the dimen-
sions increase accordingly. In particular, the tower asso-
ciated to the identity is labeled by a parameter k and has
charges Q ¼ kN and weight h ¼ Nk2=2. In a perturbative
string context, after level-matching, these operators corre-
spond to a tower of particles with mass and Uð1Þ charge

m ∼
ffiffiffiffi
N

p
k; Q ¼ kN ð4:7Þ

which exactly saturates or satisfies the sublattice weak
gravity conjecture [66,67]. More to the point, this tower of
states becomes light in the perturbative string limit: the
proof of the sublattice WGC is also a particular case of the
distance conjecture. Although we reviewed here the case of
a single holomorphic current, the setup is general, applying
to any number of Abelian currents of any chirality.
The basic point of this subsection is that the above

argument goes through almost unchanged in the case where
the symmetry is noninvertible. Imagine gauging a Z2

symmetry that sends j to −j, as would be the case when
going from S1 to the S1=Z2 sigma model of section II C.
The partition function (4.3) is no longer a well-defined
object, but the quantity

Z̃ðμ; τÞ≡ Zðμ; τÞ þ Zð−μ; τÞ ð4:8Þ
is,31 and clearly, it inherits the modular transformation
properties (4.4), leading to the existence of a noninvertible
version of spectral flow (notice that the weight h in (4.6) is
invariant under sign flip ofQ). Therefore, we obtain again a
tower of particles in the spacetime, which are just the
particles from the tower in the unorbifolded tower which
were not projected out. Importantly, in the orbifold case
they are not charged under any massless gauge field.
In the particular case of an S1=Z2 sigma model, what the

spectral flow automorphism predicts is precisely the tower of
interval KK modes. More generally, forM=G, the tower of
states thus predicted is that of KK modes. Although the

existence of these states was known directly from a bulk EFT
analysis, it is interesting to see it arise purely from a
noninvertible symmetry. The fact that one has a world sheet
argument implies that similar towers can be obtained for
winding modes and nongeometric models, too. Moreover, it
supports the idea of interpreting the tower of states as a
quantum gravity obstruction to restoring a global symmetry
at infinite distance [98,108,109]. We have seen that these
noninvertible symmetries are restored at weak string cou-
pling. A preliminary argument in Appendix D suggests that
they also seem to be restored at large radius, even without
having a string world sheet description, and would become
exact at infinite field distance in these decompactification
limits. In all known examples in string theory, the towers of
the distance conjecture are either KK modes or string
modes [111], getting light and weakly coupled asymptoti-
cally. For the latter case, it seemswe can sometimes identify a
weakly broken symmetry that becomes exact as the string
coupling vanishes. For the former case, any translational
diffeomorphism of the higher-dimensional vacuum corre-
sponds to a sort of approximate symmetry from the lower-
dimensional perspective that gets restored upon decompac-
tification. However, in most cases, these symmetries are
already broken at classical level, unlike the noninvertible
symmetry that is only broken by loop effects. If the compact
manifold has some isometry, this yields a continuous gauge
symmetry in the lower dimensional EFT (which would
become global at infinite distance unless there is a KK tower
of states signaling decompactification of extra dimensions).
In the absence of an isometry, we can still have in certain
cases an approximate noninvertible symmetry that is pre-
served at classical level and only broken by quantum
corrections. It would be interesting to see whether this
weakly broken noninvertible symmetry can be generalized
to other decompactification limits beyond toroidal orbifolds.

B. Interplay with (sub)lattice WGC

The noninvertible symmetry also has implications for the
sublattice WGC described in the previous subsection. As
shown in Eq. (4.7), the states shown to exist via spectral flow
only have charge given by a multiple of N, the level of the
Uð1Þ current algebra. The charged states therefore only live
in a sublattice. Since the value of N is unconstrained, this
sublattice can bemade arbitrarily sparse, in principle, and the
swampland implications get correspondingly diluted; inter-
esting swampland statements are about constraining the
spectrum of light states, while for large enough N, the states
predicted by spectral flow can become arbitrarily massive.
This undesirable feature of the sublattice version of WGC is
known as the “loophole” in the literature [112–115].3231In the orbifold theory, it is the partition function in the

untwisted sector with an insertion of a line for the quantum
symmetry with complex potential. We are allowed to ignore the
contribution of the twisted sector in the orbifold theory since it is
charged under the quantum Z2 symmetry and we can consider
only the uncharged states.

32This loophole and a related construction [116] was already
noted in [106] and was the basis of the observation in the original
paper that the WGC does not always hold for the minimally
charged state in the theory.
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Explicit examples realizing this loophole are known [66],
though they all take the form of freely acting orbifolds of
Tn, just like the ones discussed above. Although in the
covering Tn there are n currents realized at level 1, after
orbifolding it is possible to obtain currents that are realized
at higher level, resulting in a sublattice of states. In those
cases, though, we have seen that there is still a noninvertible
global symmetry that survives at tree level in the world
sheet. We will now explain how the interplay between this
noninvertible and invertible currents can be used to
improve on the sublattice WGC, to conclude that even
for nonsuperextremal states there are light charged states
(though they are not superextremal).
To illustrate this, let us consider for example the orbifold

T3=Z2 × Z0
2 discussed in [66], where the freely acting

group acts as

Z2∶ θw → θw þ π; θy → θy þ π; ð4:9Þ

Z0
2∶θw → −θw; θz → θz þ π: ð4:10Þ

The unorbifolded toroidal compactification contains three
massless gauge fields, but the Z0

2 projects out the first one
associated to the direction w. Hence, the charge lattice is
only given by KK charges ðky; kzÞ. In what follows we will
focus in the subspace with kz ¼ 0 for simplicity, but the
lessons are general. Even in this subspace, we have KK
modes with nonvanishing momentum kw; Notice that
the first Z2 implies that unprojected KK modes with
odd values of ky must also have an odd value of kw.
The corresponding charge lattice is represented in Fig. 7 as
dots in a two dimensional slice. The KK masses and
charges are given by

m2 ¼ k2w
R2
w
þ k2y
R2
y
þ k2z
R2
z
; gQ ¼ ðky; kzÞ

1

R
ð4:11Þ

where we have also included the KK gauge coupling 1=R.
As emphasized above, only the vertical direction in the

figure corresponds to the charge direction of the massless
gauge field that survives the orbifold action, so only ky (and
not kw) is truly a gauge charge. Hence, we need to project
all KK states over the vertical direction to obtain the set of
charged states under the massless gauge field. The KK
states with kw ¼ 0 and even ky are extremal (i.e., saturate
the WGC bound) since jQj ¼ M (there are lattice sites
on the vertical axis). However, states with odd ky and odd
kw are subextremal (i.e., violate the WGC bound) since

jQj < M due to the k2w
R2
w
contribution on the mass. Therefore,

there is only a sublattice of states satisfying the WGC, as
noticed in [66].
Our main point here is that the modular flow argument

for noninvertible symmetries of the previous section allows
us to recover the existence of the full lattice of KK towers,
including those with nonvanishing kw that are not charged
under any massless gauge field, even though they will be
charged under some discrete gauge symmetries.
Noninvertible spectral flow predicts the existence of states
with masses and charges given by (4.11) for all allowed
values of kw, ky, kz. Moreover, it allows us to quantify how
much these subextremal particles are violating the WGC. In
this particular case we have that

m2

Q2
¼ 1þ k2w

k2y

R2
y

R2
w
> 1: ð4:12Þ

We see that the violation of the lattice WGC becomes
negligible for very large charges ky; while it depends on the
ratio of the radii for small charges. Hence, even if the first
light state satisfying the WGC does not have the minimal
possible value of the charge (the WGC states start with
charge 2 in this example), we can still use spectral flow of
the noninvertible symmetry to show the existence of light
states of unit charge whose charge to mass ratio is con-
strained and which only mildly violate the WGC. For small
charges, the charge-to-mass ratio is of order one, so in any
case, the dangers of the sublattice WGC loophole for
phenomenological applications in this example is signifi-
cantly ameliorated; we still get a full lattice of light (in
terms of the gauge coupling) charged states, even if they are
not exactly superextremal.
However, part of the reason why one still gets light states

is that in this example, the sublattice is of index 2 (half the
lattice sites contain superextremal particles). It is possible
to consider bottom-up constructions [66] where the index
of the sublattice becomes very large; in these examples, the
first values of the charge may still contain very heavy

FIG. 7. Two dimensional slice of the lattice of KK momenta.
Only the vertical axis is associated to a U(1) gauge charge. The
blue dots are extremal states (saturating the WGC) while the gray
ones are subextremal.
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states.33 It therefore remains an essential question to bound
the index of the lattice in general. A related question
suggested by the above analysis is whether all examples
with an Abelian current at level N contain additional
noninvertible symmetries that allow one to predict the
masses of subextremal states.

C. Supersymmetric protection

The paper [117] discusses an interesting phenomenon in
certain SUGRA theories, where observables which are
generically nonvanishing were shown to vanish exactly, in
violation of the naturalness principle. This violation could
be avoided in the presence of higher SUSY, but this higher
SUSY was not observed in these examples. This observa-
tion led to the “supersymmetric genericity conjecture,”
which states that such protections must be a result of the
theory being related to a higher-SUSY theory in some
indirect way. In practice, in all of the examples considered,
the lower-SUSY theory was related to the higher-SUSY
theory through the gauging of a discrete subgroup of the R-
symmetry. The examples in the rest of this section follow
from the discussions in [117].
Our discussion of noninvertible symmetries gives a new

perspective on this observation. The construction in Sec. II C
applies here as well, since certain supercharges appear to be
projected out when we gauge a discrete subgroup of the R-
symmetry, but instead they reappear as noninvertible sym-
metries.34 Naturalness is thus not violated if we generalize its
definition to include noninvertible symmetries.
For concreteness we discuss a specific example. In 4D

N ¼ 2 SUGRA, the prepotential F for a vector multiplet
contains a polynomial term in the superfields (of degree at
most 3) and exponential terms generated by world sheet
instanton effects,

F ¼ F polynomialðΦÞ þ
X
n;i

BnðΦÞe−ainΦi : ð4:13Þ

The coefficients Bn are generically nonzero, although if
SUSY is enhanced to N ¼ 4 the coefficients Bn vanish for
all n. We can now discuss an explicit example of an
apparent violation of naturalness. Consider Type II string
theory on orbifolds of T6 or K3 × T2. If the orbifold
preserves N ≥ 4 SUSY, then the coefficients Bn vanish
automatically. However, these coefficients vanish also if the
orbifold preserves onlyN ¼ 2 SUSY. The reason for this is

that the prepotential is computed using only the genus-zero
contribution on the world sheet. As a result, amplitudes of
the orbifold theory restricted to untwisted operators are
identical to that of the unorbifolded theory, and so
restricting F to the untwisted fields gives only a cubic
term. If the twisted sectors do not include massless fields,
the prepotential will then be exactly cubic.
As discussed above, this violation of naturalness is

avoided since the supercharges which are projected out
under orbifolding still leave behind a noninvertible sym-
metry and its corresponding sphere selection rules. While
these are broken at leading order in gs, they are preserved at
genus 0, and as a result they constrain tree-level amplitudes
of untwisted operators just like their invertible versions in
the unorbifolded theory.35 Then the puzzling protection of
F in this example can be attributed to noninvertible
symmetries.

V. DISCUSSION AND FUTURE DIRECTIONS

In this paper we have studied potential realizations of
gauged noninvertible symmetries in quantum gravity. In
cases where we have a global noninvertible symmetry in the
world sheet CFT, we found that higher-loop effects generi-
cally break the putative noninvertible symmetry to its
maximal invertible subsymmetry, unless there are nontrivial
cancellations as in the case of the tensionless string consid-
ered in Sec. III B. As a result, the target space physics of
noninvertible world sheet symmetry, which we referred to as
“stringy noninvertible gauge symmetry,” is broken (Higgsed)
away from the tensionless limit. Moreover, in CFTs with a
semiclassical holographic dual, we found that the bulk dual
of noninvertible symmetrywas always “benign,” in the sense
that it could alternatively be characterized by an invertible
gauge theory in one way or another, while in CFTs whose
dual contained a tensionless string, we recovered an unbro-
ken stringy noninvertible gauge symmetry.
How should we think about stringy noninvertible gauge

symmetry? It is something beyond any gauge symmetry
that can be described in effective field theory. One answer
would be that it should be viewed as a noninvertible
extension of the gauge symmetries of string field theory,
which are generically Higgsed when the string acquires a
tension. This would give a natural explanation for the fact
that stringy noninvertible gauge symmetries are restored
only in the limit of a tensionless string.
To support this picture, consider the continuous non-

invertible symmetry in the simple orbifold S1=Z2, studied in
detail in Appendix A. What is the corresponding gauge
boson?On theworld sheet, the current for the invertibleUð1Þ

33Indeed, there are open string examples where the index
of the sublattice can be made very large, provided that a
sufficiently long warped throat exists in a Calabi-Yau with fluxes.

34On the world sheet, the construction is analogous to (2.5) for
toroidal orbifolds: one can take sums of the world sheet symmetry
operators for target space SUSY over an orbit of the orbifold
group. This definition is likely easier in the Green-Schwarz
formalism, where target space SUSY is manifest on the world
sheet.

35It is crucial that F is computed at genus 0, where the
noninvertible symmetry is unbroken. In an analogous computa-
tion for the heterotic string on T 6=Γ, the prepotential also receives
one-loop corrections, and as a result the noninvertible SUSY is
not enough to protect it, and indeed one finds nonvanishing Bn’s.
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symmetry of the S1 sigmamodel has been projected out, and
only survives as a disorder operator attached to a topological
line. Thus, it cannot be used to create an on-shell state in the
string theory spectrum. However, perhaps such disorder
operators could be included in string field theory as a way
to describe the Higgsed gauge bosons for stringy non-
invertible gauge symmetry. A caveat is that these disorder
operators appear for any value of gs, so such an interpretation
would also require understanding their role at nonzero gs
where the noninvertible symmetry is broken.
As a further comment, consider again the mesh of N ⊗

N † that appears on a Riemann surface when we sweep a
noninvertible operator N across, as discussed in Sec. II A.
This mesh has a very natural interpretation: the fusion
N ⊗ N † has the structure of a Frobenius algebra, meaning
it corresponds to a (possibly noninvertible) orbifolding of
the world sheet theory, defined exactly by inserting it as a
mesh (see, e.g., [12]). Moreover, N ⊗ N † is manifestly
Morita trivial, meaning that the world sheet theory we
obtain by orbifolding is the original world sheet theory!
Thus, in general, a noninvertible operator tells us that the
string theory at hand is a self-orbifold, possibly under a
noninvertible orbifolding [83,118,119].
As a result, one way to interpret the results of this paper

is that “the orbifold procedure” itself should be viewed as
part of the gauge symmetries of string field theory. In a
sense, it is then very odd that noninvertible symmetries are
generically broken at gs ≠ 0, since the orbifold procedure
(even by noninvertible symmetries) still makes sense order-
by-order in string perturbation theory. One way to resolve
the tension is to note that the orbifold procedure is acting on
the string background: a fixed 2D CFT, viewed as a
solution to the classical string theory equations of motion
with gs ¼ 0. Thus, it makes sense to study string pertur-
bations about this background to any loop order, even if
those same loop effects lead to a breaking of the corre-
sponding noninvertible symmetry at gs ≠ 0.
The low-energy limit of string theory is the effective field

theory of supergravity. Therefore, whenever the relevant
string states survive the field theory limit, it might be
possible to reinterpret the one-loop effects that break
noninvertible world sheet symmetries as a sum of ordinary
field theory diagrams. For example, if we consider a
toroidal orbifold as in Sec. II C with no fixed points, in
the large-volume limit, the effects from twisted sectors
running in the loop will be suppressed, so the breaking can
be understood entirely from Kaluza-Klein modes running
in the loop. In this sense, it may be possible to see
noninvertible symmetries emerging not just in limits with
a tensionless string, but also in decompactification limits,
where the lower dimensional EFT breaks down to be
replaced by a higher-dimensional one. We give some
preliminary comments in this direction in Appendix D.
In this paper, we described how a stringy realization of

noninvertible symmetries arises near the perturbative string

limit where the symmetry gets approximately restored. It
would be interesting to better understand the fate of these
symmetries in other tuned backgrounds. For example, one
might naively expect that M-theory compactified on a non-
Abelian orbifold would have a noninvertible 1-form sym-
metry arising from the noninvertible 1-form symmetry on the
M2-brane worldvolume theory. However, this symmetry
seems to be badly broken,36 unless we put the theory on a
further circle, where in the limit of small radius it would lead
to an approximate noninvertible 0-form symmetry as realized
on the dual Type IIA string theory. It would be interesting to
find further evidence for this expectation or to find evidence
to the contrary.
As a practical comment, let us note that the breaking of

noninvertible world sheet symmetries away from the ten-
sionless limit does not mean they are useless: since they are
still good approximate symmetries, they can be used to
constrain the spectrum and interactions of the theory. We
have shown how noninvertible symmetries are able to fill in
the gaps left by the usual world sheet derivation of the
sublatticeWGC, andmore generally, how they can be used to
predict the existence of towers of stateswhich are not charged
under any continuous gauge symmetry, which is of interest
for the Distance conjecture. Moreover, the existence of
certain examples which exhibit properties as if they had
higher supersymmetry can be attributed to the presence of a
noninvertible fermionic symmetry (i.e., a Z2 odd internal
symmetry) on the world sheet. The examples we considered
here can also be understood viamore elementary techniques;
the role of noninvertible symmetries here is to provide a new
perspective on an old physical phenomenon.
While our discussions have been phrased in the context

of quantum gravity, there may be general lessons for
noninvertible symmetries in D-dimensional QFTs without
gravity. In particular, in Sec. III, we saw that the only
example of a noninvertible symmetry which could not be
viewed as “weakly invertible” in one sense or another37 was
the case of global categorical symmetries of a CFT2. In this
case, the bulk dual description in AdS3 could be described
as a non-Abelian gauge theory after performing electro-
magnetic duality. Notably, the magnetically charged
objects under a discrete non-Abelian gauge symmetry have
codimension 2. Now, in any dimension D, we can always
find (D − 2)-form global symmetries that cannot be viewed
as “weakly invertible” simply by considering Γ gauge
theory for a non-Abelian group Γ. However, it is possible
that in any QFTD, the only noninvertible symmetries which
cannot be viewed as “weakly invertible” must be p-form

36This fits with the fact that there is no small parameter
controlling any sum over M2-brane world volume topologies,
which could have suppressed the symmetry breaking effect from
topologically nontrivial configurations.

37Meaning that the bulk dual is directly an invertible gauge
theorywithout switching duality frames, as discussed in Sec. III C.
The general QFT definition of this property is still unclear.
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symmetries for p ≥ D − 2.38 This statement must be
restricted to local QFT, as we have discussed examples
of 0-form stringy noninvertible gauge symmetries in
dimensions D > 3 which cannot be viewed as “weakly
invertible,” such as the symmetries restored as gs → 0 in 6D
from non-Abelian orbifolds T4=Γ.
Lastly, let us mention that in the context of holography

with a semiclassical bulk gravity, we did not find any
examples of noninvertible symmetries that could not be
regarded as invertible gauge symmetries in the bulk with
appropriate choices of boundary conditions and topological
terms. It would be interesting to study whether this pattern
holds up in general, and whether there are nontrivial
constraints on the noninvertible symmetries of holographic
CFTs coming from constraints on UV complete quantum
gravity.

Note added. As we were completing this work, we learned
of [121] which we understand will also discuss noninver-
tible world sheet symmetries.
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APPENDIX A: SELECTION RULES FOR S1=Z2

In this Appendix we illustrate the discussion in Sec. II C
in the simple torodial orbifold S1=Z2, and explicitly
rederive the selection rules on sphere correlation functions
from the noninvertible symmetries.

1. Noninvertible symmetries of S1=Z2

We start with the unorbifolded theory S1 with coordinate
X ∼ X þ 2πR, which is the c ¼ 1 compact boson CFTwith
radius R. We will discuss only the momentum symmetry,
but there is a completely analogous discussion for the
winding symmetry as well. We have local momentum
vertex operators

Omðz; z̄Þ ¼ eimXðz;z̄Þ=R: ðA1Þ

The Uð1Þ momentum symmetry is generated by the
invertible TDLs

Uθ ¼ exp

�
iθR
2π

Z
⋆dX

�
; ðA2Þ

whose action on local operators is

Uθ∶ Om ↦ eimθOm: ðA3Þ

Now, we consider the orbifold by X → −X, under which
we have

Om → O−m; Uθ → U−θ: ðA4Þ

In the orbifolded theory, the spectrum of local operators
consists of twisted and untwisted sectors. In the untwisted
sectors we have vertex operators

Oþ
m ¼ 1ffiffiffi

2
p ðOm þO−mÞ; ðA5Þ

We also have a topological, invertible Wilson line for the
gauged Z2 symmetry, which we will denote by η, and
which implements the quantumZ2 symmetry. At the end of
η, we have a sector of disorder operators, which includes
the gauge-noninvariant operators

O−
m ¼ iffiffiffi

2
p ðOm −O−mÞ ðA6Þ38In fact, one could view [120] as establishing something like

this in D ¼ 3.
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which have been projected out of the spectrum of local
operators.39

In theorbifolded theory, theUð1Þmomentumoperators are
generically projected out, leaving only the identity operator
U0 and the half-shift operator Uπ, which corresponds to the
invertible Z2 symmetry that flips the interval S1=Z2.
However, using the construction in equation (2.5), we have
a continuumofnoninvertibleTDLs, labeledbyθ∈ ð0; πÞ (see
Refs. [3,83,84]):

Lθ ¼ Uθ ⊕ U−θ: ðA7Þ

The actionof these noninvertible lines on the physical degrees
of freedom actually has a simple intuitive description: we first
“unorbifold,” then rotate S1 by an angle θ (or −θ, either will
work), then “reorbifold,” obtaining S1=Z2 again, but folded
along an axis rotated by θ.40

As described above, the action of noninvertible sym-
metries by sweeping generally maps local operators (or
disorder operators) to linear combinations of local oper-
ators and disorder operators (see Fig. 8). We have

Lθ∶ Oþ
m ↦ cosðmθÞOþ

m þ sinðmθÞO−
m;

Lθ ∶ O−
m ↦ − sinðmθÞOþ

m þ cosðmθÞO−
m: ðA8Þ

Their fusion rules are given by

LθLθ0 ¼ Lθþθ0 þ Lθ−θ0 ; ðA9Þ

where we have defined the reducible lines

L0 ¼ 1þ η; Lπ ¼ ð1þ ηÞ ⊗ Uπ; ðA10Þ

to simplify notation.

2. Selection rules

We can now discuss selection rules on the sphere.
Following Sec. II A, a naive attempt would be to consider
some correlation function

hOþ
m1
ðx1Þ…Oþ

mn
ðxnÞi; ðA11Þ

and then generate a selection rule by nucleating a non-
invertible line Lθ and sweeping it past the operators (see
Fig. 1). This fails, since the action of the noninvertible lines
in (A8) inevitably maps this correlator to correlators
involving O−

m. We are thus instead forced to consider all
correlators of the form

hO�
m1
ðx1Þ…O�

mn
ðxnÞi; ðA12Þ

and see how the noninvertible lines relate them.
For simplicity we start with the general two-point

functions hOþ
mO

þ
m0 i; hO−

mO−
m0 i, where we suppress the

position dependence. Following the procedure in Fig. 1,
one finds the following set of equations:

�
1 − cosðθmÞ cosðθm0Þ − sinðθmÞ sinðθm0Þ
− sinðθmÞ sinðθm0Þ 1 − cosðθmÞ cosðθm0Þ

�

×

� hOþ
mO

þ
m0 i

hO−
mO−

m0 i

�
¼ 0: ðA13Þ

These equations have a nontrivial solution for generic θ
only if the determinant of the matrix vanishes. Its eigen-
values are

E� ¼ 1 − cosðθmÞ cosðθm0Þ � sinðθmÞ sinðθm0Þ
¼ 1 − cosðθðm�m0ÞÞ: ðA14Þ

The nonzero correlators are thus only those with m ¼ �m0,
as expected.
Next we consider three-point functions. A similar

analysis results in the set of equations

ð1þMÞ

0
BBBBB@

hOþ
mO

þ
m0Oþ

m00 i
hOþ

mO−
m0O−

m00 i
hO−

mO
þ
m0O−

m00 i
hO−

mO−
m0Oþ

m00 i

1
CCCCCA

¼ 0; ðA15Þ

(a)

(b)

FIG. 8. (a) Rules for sweeping a TDL past vertex operators.
A black “X” is used to denote the orientation of a junction (see
e.g. [74]). (b) Conventions for the orientation of the junctions.

39We have included a factor of i so that O−
m descends from a

Hermitian operator in the unorbifolded theory.
40This intuitive language can be made precise by noting that

Lθ ¼ D ⊗ Uθ ⊗ D†, where D is the topological gauging inter-
face from S1 to S1=Z2, i.e., the Dirichlet boundary condition for
the Z2 gauge fields.
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where M is the matrix (using c≡ cos, s≡ sin)

0
BBB@

−8cðθmÞcðθm0Þcðθm00Þ −2cðθmÞsðθm0Þsðθm00Þ −2cðθm0ÞsðθmÞsðθm00Þ −2cðθm00Þsðθm0ÞsðθmÞ
−2cðθmÞsðθm0Þsðθm00Þ −8cðθmÞcðθm0Þcðθm00Þ 2cðθm00Þsðθm0ÞsðθmÞ 2cðθm0ÞsðθmÞsðθm00Þ
−2cðθm0ÞsðθmÞsðθm00Þ 2cðθm00Þsðθm0ÞsðθmÞ −8cðθmÞcðθm0Þcðθm00Þ 2cðθmÞsðθm0Þsðθm00Þ
−2cðθm00Þsðθm0ÞsðθmÞ 2cðθm0ÞsðθmÞsðθm00Þ 2cðθmÞsðθm0Þsðθm00Þ −8cðθmÞcðθm0Þcðθm00Þ

1
CCCA: ðA16Þ

The eigenvalues of 1þM are

Es1;s2 ¼ 1 − cosðθðmþ s1m0 þ s2m00ÞÞ; s1; s2 ∈ f�1g:
ðA17Þ

so we find that a nontrivial correlator must have mþ
s1m0 þ s2m00 ¼ 0 for some choice of s1, s2, again as
expected. The general result for longer correlators follows
from repeated application of this method.
Finally, we explain why this procedure fails to generate

selection rules on higher-genus surfaces. For simplicity we
put the theory on the torus T2. The main caveat in the
process appears in the last step of Fig. 1, where we
annihilate the topological line “at infinity.” On T 2, this
means taking the fusion of the two lines which meet from
opposite ends of each cycle. For invertible lines, this fusion
gives the identity and so annihilates the lines, leading to a
selection rule. However, for noninvertible lines the result is
more complicated. Using the fusion rule (A9) we find

LθL−θ ¼ 1þ ηþ L2θ: ðA18Þ

Importantly, in addition to the contribution from the
identity, noninvertibility forces other contributions to
appear. As a result, the process for generating selection
rules on the sphere fails to generate a selection rule on the
torus (and similarly for higher-genus surfaces). Instead, this
process relates a correlation function in the vacuum to the
same correlation function but with the topological line 1þ
ηþ L2θ wrapping every 1-cycle of the manifold. We thus
cannot extract a selection rule from this procedure.

APPENDIX B: GENERAL TORUS
ONE-POINT FUNCTIONS

In this appendix, we give a general characterization of
the set of charges described in Sec. II D that can acquire a
torus one-point function, both with and without the
insertion of topological lines wrapping nontrivial cycles.
Recall from II A that if we have a 2D CFT with fusion
category C, the set of charges of local and disorder operators
are described by representations of the tube algebra
TubeðCÞ, or equivalently, by objects in the Drinfeld center
ZðCÞ (for a physicist-friendly discussion, see Ref. [73]).
For our discussion here, it will be helpful to recall the 3D
(SymTFT) perspective on symmetries of 2D CFTs (again,

see Ref. [73]). To any 2D CFT with symmetry C, we can
define a boundary condition B of the 3D Turaev-Viro
(Levin-Wen) TQFT [122,123] associated to C, which we
will denote TVC.

41 We can recover our original 2D CFT
by dimensionally reducing TVC on an interval, with the
physical boundary condition B on one end, and the
topological Dirichlet boundary condition for C on the other.
The category of bulk anyons is given by the Drinfeld center
ZðCÞ. We can form local and disorder operators in our 2D
CFT by stretching anyon line operators across the interval,
possibly attached to a topological line running along the
Dirichlet boundary.
The Dirichlet boundary condition is associated to a

Lagrangian algebra A∈ZðCÞ, which describes the anyons
that are condensed on the boundary (can end on it).42 More
specifically, we have

A ¼
X

μ∈ZðCÞ
Vμ · μ; ðB1Þ

where the vector spaceVμ is the space of topological junction
operators between the anyon line μ and the Dirichlet
boundary.43 An anyon μ describes a charge that can carried
by a local (not disorder) operator if and only if μ∈A, i.e., we
have dimðVμÞ > 0. The algebra A is equipped with a
multiplication map m∶A ⊗ A → A, defined by fusing
anyon lines attached to the boundary. In components, the
multiplication map is defined by a family of maps

ðmρ
μνÞi∶ Vμ ⊗ Vν → Vρ; ðB2Þ

where i ¼ 1;…; Nρ
μν runs over the distinct fusion channels

i∶μ ⊗ ν → ρ (see Fig. 9).
We can now describe the set of charges that can acquire a

torus one-point function, both with and without additional
topological line insertions.

(i) The set of charges μ∈ZðCÞ of local or disorder
operators that can acquire a torus one-point function,
possibly with other topological line insertions, are
those that appear in fusions ρ ⊗ ρ̄. This set of charges

41TVC can be viewed as “TubeðCÞ gauge theory,” due to very
recent work [15].

42See, e.g., Ref. [124] for further discussion on Lagrangian
algebras and their relationship to gapped boundary conditions.

43Formally, we have Vμ¼HomCðFðμÞ;1CÞ, where F∶ZðCÞ→C
is the forgetful functor. In the notation of [73], we have Vμ ¼ Wμ

1.
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generates the adjoint subcategory ZðCÞad of the Drin-
feld center. Note that this set of charges is independent
of the choice of boundary condition, and is manifestly
invariant under any possible orbifolding.

(ii) The set of charges μ∈A of local operators that can
acquire a torus one-point function in the vacuum can
be described as follows. First, according to the
previous statement, there must exist an anyon ρ
such that μ appears in the fusion ρ ⊗ ρ̄. For any
fusion channel i∶ρ ⊗ ρ̄ → μ, we compute the state

ðmμ
ρρ̄Þi

�X
k

jψki ⊗ jψ̄ki
�
∈Vμ; ðB3Þ

where jψki denotes an orthonormal basis for Vρ.
Then a local operator with charge μ can get only get
a nonzero torus one-point function if the state (B3)
in Vμ is nonzero. This answer is simply an abstract
version of the operation illustrated above in Fig. 6, of
sewing together sphere three-point functions by
summing over a basis of local operators. The differ-
ence is that we have stripped off the physical
boundary condition B, obtaining a universal char-
acterization for any 2D CFT with C symmetry.

We strongly suspect that the set of anyons described by
(B3) are precisely those anyons uncharged under the
maximal invertible subsymmetry C×, i.e., the group of
invertible objects of C.44 One direction is obvious: any

anyon that gets a torus one-point function in the vacuum
cannot carry charge under any invertible symmetry. While
we were unable to provide a proof of the converse, this
equivalence holds in every example we considered, includ-
ing arbitrary modular symmetry categories (Appendix B 1)
and exotic examples such as Haagerup symmetry
(Appendix C).
Let us now derive this characterization using the tools of

TQFT. Recall that the Turaev-Viro theory (equipped with
Dirichlet boundary condition) is a fully extended TQFT
with boundary (see, e.g., [125]):

TVC∶ 3-Cob∂ → 3-Vect; ðB4Þ

characterized through the cobordism hypothesis [126,127]
by its value on the point,

TVCðptÞ ¼ C-Mod; ðB5Þ

the 3-vector space of C-module categories, and its value on
the half-open interval I� ¼ ½0; 1Þ (viewed as a cobordism
∅ → pt)

TVCðI�Þ ¼ C; ðB6Þ

viewed as a module category over itself. The categoryZðCÞ
of bulk anyons is given by the value TVCðS1Þ on the circle,
and the algebra A of anyons condensable on the boundary
is given by the value TVCðAnnÞ on the half-open annulus
Ann ¼ S1 × I�∶ ∅ → S1.
The set of anyons that can acquire a torus one-point

function with possible insertions of arbitrary topological
lines along the Dirichlet boundary are equivalent to the set
of anyons which admit a nonzero state in the defect Hilbert
space of the Turaev-Viro theory on the torus with one
anyon insertion. To see this, note that any state in this
Hilbert space can be prepared by adding arbitrary topo-
logical line insertions along the Dirichlet boundary. This
defect Hilbert space is characterized by the value TVCðT 2�Þ
on a punctured torus. To compute TVCðT2�Þ, note that the
punctured torus can be decomposed (see Fig. 10) as a
composition

FIG. 10. We can decompose the punctured torus T 2�∶ ∅ → S1

as the composition of a bent cylinder Cyl∶∅ → S1⊔S1 with a
pair-of-pants Pants∶S1⊔S1 → S1.

FIG. 9. Starting with two topological junctions in Vμ, Vν and a
fusion channel i∶μ ⊗ ν → ρ, we can describe the algebra
multiplication maps ðmρ

μνÞi as follows. First, we fuse the anyon
lines with the bulk junction operator corresponding to our chosen
fusion channel. We then shrink the three junction operators (two
boundary, one bulk) to a point, obtaining some topological
junction in Vρ.

44Formally, note that the invertible action of C× on topological
junctions with the Dirichlet boundary defines a C× action on A,
i.e., a functor BC× → ZðCÞ, whose value on the basepoint of BC×
is given byA. The desired statement is that the C× invariants inA
generate the same fusion subcategory of ZðCÞ as the objects
characterized by the map (B3) being nonzero.
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ðB7Þ

of two cobordisms: a bent cylinder Cyl∶∅ → S1⊔S1 and a
pair-of-pants Pants∶S1⊔S1 → S1. The value of TVC on Cyl
and Pants can be easily computed, so by applying TVC
to (B7), we get a commutative diagram in 2-Vect:

ðB8Þ

Thus, we have TVCðT2�Þ ¼ ⨁ρρ ⊗ ρ̄, and any anyon μ that
appears in a fusion ρ ⊗ ρ̄ has a nonzero state in the
associated T 2 defect Hilbert space, as claimed.
Now, the set of anyons that can acquire a torus one-point

function in the CFT vacuum is characterized by the
boundary state associated to the Dirichlet boundary con-
dition in the punctured torus Hilbert space. This boundary
state is described by the value TVCðT2� × I�Þ on the
manifold with corners T2� × I�, viewed as a cobordism
T2� → S1 × I� from the punctured torus to the annulus (see
Fig. 11). As before, we can view our cobordism as a
composition of a bent cylinder and a pair of pants, now both
multiplied by I�. Thus, we obtain a commutative diagram in
the 2-category (1,2,3)-Cob∂:

ðB9Þ

Applying TVC, we get a commutative diagram in 2-Vect:

ðB10Þ

The top 2-morphism is the map

⨁
ρ
ρ⊠ρ̄ → A⊠A; ðB11Þ

defined on a component ρ⊠ρ̄ by the state

X
k

jψki ⊗ jψ̄ki∈Vρ ⊗ V ρ̄; ðB12Þ

where jψki denotes an orthonormal basis for Vρ as
above. Horizontally composing with the 1-morphism

ZðCÞ⊠ZðCÞ→⊗ ZðCÞ and then vertically composing with

the 2-morphism A ⊗ A→
m
A, we obtain the desired

2-morphism

TVCðT 2� × I�Þ∶⨁
ρ
ρ ⊗ ρ̄ → A; ðB13Þ

which characterizes the set of charges μ∈A of local
operators in the 2D CFT that can acquire a torus one-point
function in the vacuum. Expanding (B13) in components,
we recover the desired formula (B3).

1. Diagonal RCFTs and modular symmetry categories

As an application, we can prove that all noninvertible
symmetries are broken by string loops for the special case
when the symmetry category C of our 2D CFT is itself a
modular tensor category before passing to the Drinfeld
center ZðCÞ. This includes, in particular, the collection of
Verlinde lines of any diagonal RCFT.

FIG. 11. The product T 2� × I� of the punctured torus with a half-
open interval can be decomposed as a composition similarly to
how we decomposed the punctured torus itself (Fig. 10). Each
manifold with corners pictured here is viewed as a 2-morphism in
(1,2,3)-Cob∂ from the composition of its left edge with its top
edge to its right edge. Note that the bottom edges, given by the
Dirichlet boundary, does not count as a source or target from the
perspective of (1,2,3)-Cob∂. The corresponding commutative
diagram in (1,2,3)-Cob is given by (B9).

JONATHAN J. HECKMAN et al. PHYS. REV. D 110, 106001 (2024)

106001-22



Suppose, then, we have a 2D CFT with a modular
symmetry category C.45 By modularity, we have ZðCÞ ¼
C⊠C̄ as modular tensor categories.46 The algebra A
associated to the Dirichlet boundary condition of the
Turaev-Viro theory TVC is given by

A ¼ ⨁
ρ
ρ⊠ρ̄: ðB14Þ

Note that all the vector spaces Vρ⊠ρ̄ are one-dimensional.
The multiplication map m∶A ⊗ A → A is defined via
diagonal fusion. In components, for a fusion channel

ði; |̄Þ∶ðμ⊠μ̄Þ ⊗ ðν⊠ν̄Þ → ρ⊠ρ̄; ðB15Þ

we have

ðmρ
μνÞði;|̄Þ ¼ δij: ðB16Þ

Since each Vρ⊠ρ̄ is one-dimensional, there is no sum in
(B3), and so a charge μ ⊗ μ̄ can get a torus one-point
function in the vacuum if and only if μ appears in a fusion
ρ ⊗ ρ̄. This set of μ generate the adjoint subcategory Cad of
C itself.
Thus, we need to show that having operators with

charges in the adjoint subcategory Cad breaks the non-
invertible symmetry down to the maximal invertible sub-
symmetry C×. Now, the symmetry preserved once local
operators of charges generating Cad acquire nonzero one-
point functions is given [25] by the dualU∨

C of the universal
grading group of C [[85], Definition 4.14.2]. The action of
invertible lines on charges by linking defines a grading of C
by the group of characters ðC×Þ∨, which induces a map
UC → ðC×Þ∨, or dually, a map C× → U∨

C . But by modu-
larity of C, this map is an isomorphism [[128], Theorem
6.3], so we see that the nonzero torus one-point functions of
operators generating Cad precisely breaks C to its maximal
invertible subsymmetry C×.

APPENDIX C: EXAMPLE:
HAAGERUP SYMMETRY

As evidence that the breaking of all noninvertible sym-
metries by string loops happens generally, let us quickly
verify this effect in the case of a truly exotic noninvertible
symmetry in 2D: Haagerup symmetry, described by the
Haagerup fusion category H3, with simple objects

1; α; α2; ρ; αρ; α2ρ; ðC1Þ

and fusion rules specified by

α3 ¼ 1; αρ¼ ρα2; ρ2¼ 1þρþαρþα2ρ: ðC2Þ

If there were a counterexample to our general story, one
might expect it to be something like Haagerup symmetry: a
noninvertible, non-Abelian symmetry that cannot be
obtained from group-like symmetry or Verlinde lines via
discrete gaugings. Nevertheless, we will see that our general
story holds true: at one-loop, Haagerup symmetry is broken
to itsZ3 invertible subsymmetry generated by α. While there
is no formal construction of a 2D CFT with Haagerup
symmetry (which could be used in a string compactification),
recent numerical evidence favors its existence [129].47

What are the selection rules that Haagerup symmetry
places on sphere correlation functions of local operators?
The Drinfeld center ZðH3Þ of the Haagerup fusion cat-
egory is described in [[130], section 8]. We will only need
to consider two nontrivial anyons, given by π1 and π2. The
Dirichlet boundary condition is specified by the Lagrangian
algebra

A ¼ 1 ⊕ π1 ⊕ ðC2 · π2Þ: ðC3Þ

It will help to recall the analogy [131] between Haagerup
symmetry and invertible S3 symmetry; note that if we
replaced the third equation in (C2) with ρ2 ¼ 1, we would
recover a presentation of the symmetric group S3. In this
analogy, π1 is analogous to the sign representation of S3,
while π2 is analogous to the standard two-dimensional
irreducible representation. Thus, it should not be surprising
that local operators Oπ1 of charge π1 are uncharged under
the invertibleZ3 subsymmetry, while local operatorsOπ2 of
charge π2 come in a multiplet O�

π2 of two local operators,
with charges ω�1 under the Z3 symmetry, where ω is a
primitive third root of unity. Moreover, the action of ρ on
Oπ1 is by a sign, while the action of ρ onO

�
π2 producesO

∓
π2

together with a superposition of disorder operators.
Now, what charges can acquire a nonzero torus one-point

function? Clearly, any operator charged in π2 cannot, since
it has nonzero charge under the invertible Z3 symmetry.
What about operators of charge π1? If we took the analogy
with S3 too seriously, we might guess that they could not,
since there might be cancellations in (B3) similarly to those
that appear for S3 symmetry. If this were true, then
Haagerup symmetry would be a counterexample to our
general expectation, since the noninvertible symmetry ρ
would remain unbroken to all orders in the string loop
expansion.

45Note that C might not describe all the symmetries of our CFT
(and certainly does not describe any non-Abelian symmetries,
since C is assumed to be braided). For example, consider a WZW
model based on a compact Lie group G. While the set of Verlinde
lines describes all the symmetries that commute with the current
algebra, it only includes the invertible symmetries corresponding
to the center Z of G, and not the larger ðGL × GRÞ=Z invertible
symmetry of the WZW model.

46Here, C̄ denotes the category with the opposite braiding.

47In fact, [129] suggests that it might even exist in something
as ordinary as a Z3 orbifold of T2.
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Let us check this guess in the 2D TQFT with Haagerup
symmetry constructed in [132,133].48 This TQFT has six
(topological) local operators 1; v; u1; ū1; u2; ū2. The oper-
ator v has charge π1, while the operators ui; ūi have charge
π2. We will compute the torus one-point function hviT2 by
sewing together sphere three point functions. For this, we
need the fusion of the local operators with their conjugates,
which are given by

v×v¼ 1þ3v; u1× ū1 ¼ 1− ζ−1v; u2× ū2 ¼ 1þ ζv;

ðC4Þ

where ζ ¼ ð3þ ffiffiffiffiffi
13

p Þ=2 ¼ hρi. We can now compute

hviT2 ¼
X
O

hvOŌiS2 ¼ 3 − 2ζ−1 þ 2ζ ¼ 9: ðC5Þ

So the torus one-point function hviT2 is nonzero. The
cancellation that would have happened for S3 symmetry
does not occur.49 As a result, we see that the selection rules
for Haagerup symmetry are violated at one loop, and even
something as exotic as H3 symmetry on the world sheet
would be broken to its maximal invertible subsymmetry
after considering string loops.

APPENDIX D: EMERGENT NONINVERTIBLE
SYMMETRIES BEYOND

PERTURBATIVE STRINGS

One of the main points of this paper is that selection rules
of noninvertible world sheet symmetries are generically
broken by loop effects in string perturbation theory. When
the states running in the loop survive the field theory limit,
this string loop contribution can be rewritten as a sum of
one-loop field theory diagrams, which suggests that these
sorts of emergent symmetries may also appear in QFTor in
quantum gravity away from the perturbative string limit. To
illustrate this point, consider a perturbative string back-
ground with the Klein bottle as target space. Since the Klein
bottle is a toroidal orbifold

T2=Z2; ðX; YÞ ∼ ðX þ πR;−YÞ; ðD1Þ

this sigma model has a noninvertible symmetry of the kind
discussed in Sec. II C.
We can see echoes of this noninvertible symmetry in the

low-energy approximation of string theory (supergravity),

even if we keep the Klein bottle large in string units.
Reducing any supergravity theory on the Klein bottle and
keeping the full Kaluza-Klein (KK) tower, the interaction
terms in the supergravity theory lead to couplings between
KK modes that respect the selection rule for the non-
invertible symmetry: i.e., if we label the KKmodes by pairs
ðkX; kYÞ of momenta, only defined up to kY → −kY ,
interaction terms are only possible if

X
i

kX;i ¼ 0;
X
i

� kY;i ¼ 0; ðD2Þ

for some choice of � signs. This symmetry is likely the
low-energy EFT avatar of the one we found in the world
sheet; the fact that the vertices satisfy the selection rules
matches with the fact that the noninvertible symmetry is
satisfied at tree level. Note that keeping the entire KK tower
does not make sense as an EFT in the lower dimensional
sense, since the lower-dimensional EFT cutoff is the KK
scale. Instead, it is better understood as a way to organize
the higher dimensional EFT when placed on a large Klein
bottle; in any case, the KK states exist as physical
excitations, and they are long-live enough that one can
ask questions about their dynamics.
Breaking of a selection rule like (D2) at the quantum level

is very natural; for instance, an external particle with Y
momentum kY;1 can become a loop pair with momenta kY;2
and kY;1 − kY;2 [respecting (D2)], and then recombine to
form a particle with momentum −kY;2 þ kY;1 − kY;2 ¼
kY;1 − 2kY;2 (analogously to the process illustrated in
Fig. 5). The loop then mediates a transition of a particle
with Y momentum kY;1 to another with momentum
kY;1 − 2kY;2, and since kY;2 was arbitrary, the resulting
process manifestly violates (D2). In this way ordinary, field
theory loop effects can violate a noninvertible symmetry
preserved by the couplings, just like in string theory. Again,
we emphasize that the noninvertible symmetry does not act in
any EFT of a fixed dimension: the states we are considering
are above the cutoff of the lower-dimensional EFT, while the
noninvertibility is coming from the Klein bottle reduction,
and would not appear in the fully decompactified theory.
Because the symmetry is broken by quantum effects, one

expects it to become a good approximate close to any
classical limit, even away from the perturbative string. For
instance, we could consider M-theory on the Klein bottle.
Its low-dimensional expansion, 11D supergravity, is a
power series expansion in powers of the 11D Planck mass
M11; in the decompactification limit, when the character-
istic size of the Klein bottle R is very large in 11D Planck
units, quantum corrections that break the noninvertible
symmetry are naturally suppressed in powers of 1=ðM11RÞ,
and they should vanish in the limit, where the noninvertible
symmetry becomes a subsymmetry of higher-dimensional
Poincaré, which are exact. It would be interesting to check
this example in detail; although we have not done so, we

48Even though the Haagerup symmetry is spontaneously
broken in this TQFT, we should still expect its selection rules
to hold if we define correlation functions in a direct sum over all
of its distinct vacua, analogously to the selection rules for S3 in
the S3 symmetry-breaking TQFT.

49We could have done an analogous calculation for S3; the
result can be obtained by taking 3 → 0, ζ → 1 in (C4) and (C5),
reproducing the cancellation in hviT2 .
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have checked that corrections are suppressed in this way for
a simple toy model (a Φ3 theory) when a regularization
preserving higher-dimensional Poincaré symmetry is used,
as in [134,135].
From this point of view, it may be that the phenomenon

of noninvertible selection rules of the classical action being

weakly broken by quantum effects is not necessarily an
intrinsically stringy phenomenon, but rather also appears as
a general feature of compactification on manifolds with
local isometries that fail to be well-defined globally.
Clearly, it would be interesting to flesh this story out in
more detail.
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