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Abstract
In quantum key distribution‐secured optical networks (QKD‐ONs), constrained network
resources limit the success probability of QKD lightpath requests (QLRs). Thus, the
selection of an appropriate route and the efficient utilisation of network resources for
establishment of QLRs are the essential and challenging problems. This work addresses
the routing and resource assignment (RRA) problem in the quantum signal channel of
QKD‐ONs. The RRA problem of QKD‐ONs is a complex decision making problem,
where appropriate solutions depend on understanding the networking environment.
Motivated by the recent advances in deep reinforcement learning (DRL) for complex
problems and also because of its capability to learn directly from experiences, DRL is
exploited to solve the RRA problem and a DRL‐based RRA scheme is proposed. The
proposed scheme learns the optimal policy to select an appropriate route and assigns
suitable network resources for establishment of QLRs by using deep neural networks.
The performance of the proposed scheme is compared with the deep‐Q network (DQN)
method and two baseline schemes, namely, first‐fit (FF) and random‐fit (RF) for two
different networks, namely The National Science Foundation Network (NSFNET) and
UBN24. Simulation results indicate that the proposed scheme reduces blocking by 7.19%,
10.11%, and 33.50% for NSFNET and 2.47%, 3.20%, and 19.60% for UBN24 and
improves resource utilisation up to 3.40%, 4.33%, and 7.18% for NSFNET and 1.34%,
1.96%, and 6.44% for UBN24 as compared with DQN, FF, and RF, respectively.
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1 | INTRODUCTION

With the rise of various high security‐hungry applications, such
as finance, cloud‐based and several other government services,
the importance of optical network security is growing rapidly.
This decade will be expected to witness a surge in quantum
computers' availability and capability. This evolution of quan-
tum computers is expected to easily break security of the
existing and the future optical networks as their security is built
on the conventional cryptographic algorithms [1–3]. Thus, to
secure the data on optical networks, quantum key distribution
(QKD) is proposed as a solution. Quantum keys enhance the

security of optical networks, generated by using the QKD
technique [4–9] as QKD is based on the fundamental princi-
ples of quantum mechanics, namely, the Heisenberg's uncer-
tainty principle [10] and the quantum no‐cloning theorem [11],
instead of the computational complexity of algorithms [4, 5,
12]. These fundamental principles ensure that a third party
trying to eavesdrop on a secret key is easily detected. QKD
generates and distributes secret keys over an insecure
communication channel using QKD protocols, such as BB84
[13, 14] and others [7, 15–17]. The generated secret keys are
then used to encrypt/decrypt the information. The generated
quantum keys are impossible to copy because of the
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fundamental principles of quantum mechanics [11]. This is an
important advantage of QKD systems over current and any
future public‐key cryptography/classical systems/methods.
Hence, QKD, when combined with optical networks, provides
long‐term security against security breaches compared to the
conventional cryptographic systems/methods [4, 5].

A QKD‐secured optical network (QKD‐ON) involves the
realisation of quantum signal channel for transmission of
quantum bits, public interaction channel for verification of the
exchanged key information (these two channels form a QKD
system), as well as the traditional data channel for encrypted
data transmission between the sender and the receiver [18–21].
A cost‐efficient solution for deployment of QKD‐ONs is to
integrate QKD (quantum signal channel/public interaction
channel) into existing optical networks (traditional data chan-
nel) using wavelength division multiplexing as shown in
Figure 1 [18, 19]. In [22], for better transmission performance,
it was proposed that the quantum signal channel can be placed
at the highest frequency in the C‐band with a large guard band
of 200 GHz between the quantum signal channel and the two
classical channels (traditional data channel/public interaction
channel) [23]. However, the co‐existence of quantum signal
channel and the two classical channels introduce various
networking challenges, such as routing, wavelength and time‐
slot allocation [18, 19], trusted repeater node placement [24],
survivability [25], quantum key recycling [26], and QKD for
multicast service [27] in QKD‐ONs [5, 18].

The routing and wavelength assignment is one of the most
important networking challenges of QKD‐ONs since few
network resources are reserved for quantum signal channel due
to limited network resources in a single optical fiber. There-
fore, in order to utilise the network resources more efficiently,
optical time division multiplexing has been used to construct
the quantum signal channel [18]. Hence, the modified routing
and wavelength assignment problem of QKD‐ONs is termed
as routing, wavelength and time‐slot assignment [19]. In
addition, to prevent the encrypted data from the eavesdropper,
quantum keys of QKD lightpath requests (QLRs) must be

updated often. This unique updation/modification feature of
keys enhances the security level of the QLRs, where resources
in the quantum signal channel should be reassigned periodically
to update the key of QLRs [19]. These diverse assignment and
reassignment (during QLR modification because of unique key
updation/modification feature) of network resources for
establishment of QLR make routing, wavelength and time‐slot
assignment or routing and resource assignment (RRA) prob-
lem of QKD‐ONs complex, challenging, and different from
the conventional optical networks [18, 19]. Furthermore, RRA
is one of the most important networking challenges of QKD‐
ONs [18], especially in dynamic traffic scenario, where light-
path requests are not known in advance.

In the recent years, comprehensive research has been
conducted on different networking challenges of QKD‐ONs
[5, 18]. To solve the RRA problem of QKD‐ONs, various
schemes have been proposed in the literature [18, 19]. The
RRA problem was first investigated in [19], and an integer
linear programming model along with the heuristic algorithms
was proposed to solve this problem in a static traffic scenario,
where the set of QLRs is known a priori. In the context of
dynamic traffic scenario, where the arrival and the departure of
QLRs are not known, the RRA algorithm was proposed in [18]
to address the resource assignment problem. Moreover, to
prevent the encrypted QLR from eavesdroppers, periodic
updation/modification of the secret key was introduced in [19].
In the literature, different security‐level provisioning solutions
were proposed in [18, 19] to solve the aforementioned prob-
lem. A new key on‐demand approach with the quantum key
pool construction technique over a software‐defined optical
network was proposed to maintain a balance between the se-
curity level and the resource utilisation efficiency [28]. In [29], a
time‐scheduled scheme with the quantum key pool technique
by considering three sub‐problems was presented for the
purpose of providing sufficient secret keys across QKD‐ONs.
Furthermore, two new heuristic routing, wavelength and time‐
slot assignment algorithms were proposed based on the new
node structure and auxiliary graph, where some trusted

F I GURE 1 An illustration of a basic quantum key distribution‐secured optical networks with three channels [5, 18, 19].
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repeater nodes can be bypassed to reduce the wastage of
quantum key resources [24]. In [30], for effective distribution
of secret keys for multicast services (where data is transmitted
from single source node to multiple destination nodes), a new
distributed subkey‐relay tree‐based secure multicast‐routing
and key assignment technique was developed. However, as
the dynamicity increases, the performance of the existing
strategies becomes inefficient as these rely on fixed policies
that focus on the immediate optimisation goals for the current
network state and are unable to achieve the optimal solution to
solve the dynamic RRA problem of QKD‐ONs. Inspired by
the recent advances in artificial intelligence/machine learning,
which allow systems/machines to learn from historical data
and make predictions to solve decision‐making problems, we
explored the capability of different options available in artificial
intelligence/machine learning. Typically, machine learning re-
quires data labelling to identify the raw data and add mean-
ingful and informative labels that help the machine learning
model to learn. In machine learning, the aim of training or
validating the model with a labelled dataset is sometimes
referred to as ‘ground truth.’ However, in this work, the
problem of routing and resource assignment is a complex
decision‐making problem (explained in Section 1) and also the
mapping of input and output variables or labelling of data is
not feasible as it is based on the observation of QKD‐ON's
environment conditions.

Recently, reinforcement learning, one of the most impor-
tant subfields of machine learning, has received extensive
research attention as it is a feedback‐based machine learning
method. In reinforcement learning, an agent continuously in-
teracts with the environment to make decisions, observe the
results of decisions, and then automatically adjust its strategy
based on the feedback of the previous decision to achieve the
optimal/best policy. However, reinforcement learning, a
learning process, is inapplicable and unsuitable for large and
complex networks because it takes a lot of time to reach the
optimal/best policy as it has to explore and learn about the
whole system. As a result, reinforcement learning's applications
are quite limited in practice. Deep learning has recently been
introduced as a new ground‐breaking method and has potential
to overcome the limitations of reinforcement learning. Deep
learning helps to design complex environments and extract
important features, thereby reducing computation complexity.
Deep learning is implemented using Neural Networks, thus
opening a new era for improving the reinforcement learning
algorithms' learning process. This combined form of rein-
forcement learning and deep neural networks (DNNs) is
known as Deep Reinforcement Learning (DRL). DRL has
ability to approximate optimal policy by employing DNNs for
complex decision‐making problems and improves the learning
speed and performance of the reinforcement learning algo-
rithms. As a result, the application of DRL [31, 32] has
received intensive research interest in communication and
networking to solve the complex decision‐making problems
[33, 34] and has become one of the most active areas of
research in machine learning. However, in QKD‐ONs, limited

works have been reported using the application of DRL to
address the RRA problem [35, 36].

The main contributions of this work are as follows:

(i) The DRL method is exploited to address the RRA
problem in the quantum signal channel of QKD‐ONs.

(ii) A RRA scheme based on DRL to select an optimal route
and allocate suitable network resources during assignment
and reassignment is proposed in this work.

(iii) The performance of the proposed DRL‐based RRA
scheme is compared with the deep‐Q network (DQN)
method and the two baseline schemes, namely, First Fit
(FF) and Random Fit (RF).

(iv) Simulation results demonstrated that the proposed DRL‐
based RRA scheme outperforms the DQN and the two
baseline schemes in terms of blocking probability (BP)
and resource utilisation (RU) for both the considered
networks.

The paper is structured as follows. Section 2 describes the
system model along with the notation used. The concept of a
proposed DRL‐based RRA scheme, working principle of DRL
framework for RRA in QKD‐ONs, and modelling and training
are presented in Section 3. The simulation results are discussed
in Section 4. Section 5 concludes the paper.

2 | SYSTEM MODEL

The network topology of QKD‐ON is modelled as G(VQ, EQ,
WT, WQ, KT), where VQ and EQ are the sets of QKD‐ON
nodes and links, respectively. WT and WQ denote the total
attainable wavelengths on each link and the number of wave-
lengths reserved for the quantum signal channel in the QKD‐
ONs, respectively. The total number of attainable time‐slots on
each quantum link is denoted by KT. Moreover, the number of
attainable time‐slots, that is, KT, is the same on each quantum
link in the QKD‐ONs for this work. A QLR is modelled as Qt
(ot, dt, tarr, tupd, tdep, T, Z

c
t;k, Z

m
t;k), Qt ∈ Q. ot and dt denote the

source and destination node of a QLR, respectively. The
arrival, update, and departure time of a QLR are represented
by tarr, tupd, and tdep, respectively. T is the secret key update
period of a QLR. A set of total incoming QLRs over the QKD
networks is represented by Q. Then, the number of specific
QLRs (Qs) can be determined by the expression as follows:

Qs

�
�
�
�¼

VQ
�
�

�
� ∗ VQ

�
�

�
� − 1

� �

2
ð1Þ

where VQ
�
�

�
� represents the total number of QKD‐ON nodes in

the network.
Let Zc

t;k and Zm
t;k denote the required number of secret key

time slots for a QLR creation and modification, respectively.
To establish Qt, it is required to compute and select an end‐to‐
end routing path Pot, dt from source‐destination QKD‐ON
nodes and allocate network resources on each quantum link
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along the selected path Pot, dt using the proposed DRL‐based
RRA scheme. QLR is served if network resources are available
on one of the pre‐calculated paths (Kot, dt) during assignment
and reassignment, else QLR is blocked.

3 | PROPOSED DRL‐BASED ROUTING
AND RESOURCE ASSIGNMENT IN QKD‐
ON

3.1 | Proposed DRL‐based RRA scheme

This subsection discusses the concept of a proposed DRL‐
based RRA scheme, where the objective is to maximise the
number of QLRs, while reducing blocking and efficiently uti-
lising network resources.

The proposed DRL‐based RRA scheme jointly addresses
the routing and resource assignment problem of the quantum
signal channel. In this scheme, for routing, the DRL agent
selects an optimal path based on the hop counts Ht ∈ H,
where QLR will utilise less number of links, thereby resulting
in more accommodation of QLRs in QKD‐ONs. The re-
sources on the selected path Pot, dt will be assigned using I
candidate of the DRL‐based RRA scheme. In this work, I
candidate describes the process of assigning resources to QLR
on the selected path Pot, dt during assignment and reassign-
ment. The I candidate of DRL‐based RRA scheme selects the
closest available time slots to Zc

t;k during assignment (for QLR
creation) and Zm

t;k reassignment (for QLR modification). The
reason is that the selection of the closest available time slots
reduces the wastage of network resources and enhances the
possibilities of the available resources for the upcoming QLRs
in the QKD‐ONs, hence resulting in lower blocking of QLRs.

For ease of understanding, Figure 2 depicts the steps of I
candidate of the proposed DRL‐based RRA scheme during
assignment. Consider a scenario in which a QLR AC arrives in
the QKD‐ON from the source node A to the destination node

C, requires two time slots for assignment, and selects the best
path A–B–C out of the pre‐calculated K paths (Assume K = 3,
then Kot, dt for a QLR AC (KA, C) are A–B–C, A–E–D–C, A–
E–B–C), as shown in Figure 2. The I candidate of the pro-
posed DRL‐based RRA scheme first calculates the sizes and
initial indices of all the available I time‐slot blocks on the cor-
responding quantum links represented by Za

t;k;i and Zb
t;k;i,

where i represents the number of available I time‐slot blocks
of the selected path A–B–C, respectively. As shown in Figure 2,
the calculated sizes (Za

t;k;i [represented with the green das-
hed box in Figure 2]) and initial indices (Zb

t;k;i [represented with
the red box in Figure 2]) of all the available I time slot blocks
are Za

t;k;1 = {3}, Za
t;k;2 = {2}, Za

t;k;3 = {4}, and Zb
t;k;1 = (0),

Zb
t;k;2 = (4), Zb

t;k;3 = (10), respectively. Based on the above
mentioned criterion of the resource assignment and reassign-
ment, the I candidate finds one of the closest I time‐slot blocks
represented by Zclosest, and assigns it to the QLR AC on the
selected path A–B–C. In the above example, the Zclosest on the
basis of size is Za

t;k;2 = {2}, and its initial index is Zb
t;k;2 = (4) for

the assignment of QLRAC (time slots filled with yellow colour)
as shown in Figure 2. During reassignment, similar steps of I
candidate of the proposed DRL‐based RRA have been followed
to improve the security level of QLR in QKD‐ONs.

3.2 | Working principle of DRL framework
for RRA in QKD‐ON

This subsection describes the working principle of DRL
framework to address the RRA problem of QKD‐ONs.

Figure 3 illustrates the working principle of DRL‐based
RRA scheme for QKD‐ONs. When the software‐defined
network (SDN) controller receives a QLR Qt, it fetches the
state representation, which includes the in‐service QLRs,
network topology, and resource utilisation information. The
fetched information is fed into the DRL through a feature
engineering module (represented with a dashed red line in

F I GURE 2 An illustration of I candidate of the proposed DRL‐based RRA. DRL, deep reinforcement learning; RRA, routing and resource assignment.
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Figure 3), which generates the customised state st, where st
represents the environment's state (Step 1). The DNN of
DLR‐based RRA reads the generated customised state data
and takes action at ∈ A, where A is a definite action space. The
DRL agent takes action according to the RRA policy πt (A|st,
θ), where A in this case defines a set of routing and resource
assignment schemes for Qt (where resources are assigned using
the steps of I candidate of DRL‐based RRA scheme (discussed
in Section 3 [3.1]) and a set of DNNs' parameters is repre-
sented by θ. A policy πt of RRA scheme generates a probability
distribution over A. The SDN controller selects an action
at ∈ A based on the probability distribution and sets up the
corresponding Qt (represented with a dashed purple line in
Figure 3) (Step 2). A reward system produces an immediate
reward rt for DRL‐based RRA by receiving feedback from the
previous RRA operation (represented with a dashed brown
line in Figure 3) (Step 3). An experience E and a tuple {st, at, rt,

γ} are stored in an experience buffer (a dashed green line
represents this action in Figure 3) (Step 4), which will be used
for training the DNN (represented with a dashed blue line in
Figure 3) (Step 5) in order to achieve the optimal policy, where
γ ∈ [0, 1] is a discount factor. The objective of the DRL
framework for RRA is to maximise the discounted cumulative
reward Gt, which is defined as follows:

Gt ¼
X∞

j¼0
γj ⋅ π ajstþj

� �
R stþj ; a
� �

ð2Þ

3.3 | Modelling and training

This section first introduces DRL‐based RRA modelling,
which includes definitions of state representation, action, and
reward, and then explains the training mechanism.

F I GURE 3 An illustration of the proposed DRL framework for RRA in QKD‐ONs. DRL, deep reinforcement learning; QKD‐ONs, quantum key
distribution‐secured optical networks; RRA, routing and resource assignment.
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3.3.1 | Modelling

State
The state st is defined as a vector, expressed in Equation (3). It
contains information of Qt and the current network resource
utilisation state, as well as the key feature of the I candidate of
DRL‐based RRA to provision Qt during assignment and
reassignment. When the number of possible pre‐calculated
paths (Kot, dt) between ot and dt is smaller than K, we assign
{{Za

t;k;i, Z
b
t;k;i}|i ∈ [1, I], Z

c
t;k, Z

m
t;k, Z

Total
t;k |k ∈ [1, K]} as an array

of −1 (∀k > Kot, dt) in order to maintain the state's st format
consistent.

st ot; dtf ; Za
t;k;i;Z

b
t;k;i

n o
ji∈½1;I �;Z

c
t;k;Z

m
t;k;Z

Total
t;k jk∈½1;K�

n o
ð3Þ

Action
For each Qt to be served, the DRL agent selects a routing path
from the pre‐calculated candidate paths (K) and performs
resource assignment and reassignment according to the I
candidate of DRL‐based RRA on the selected path. Therefore,
the action space A includes K.I actions.

Reward
The designed reward function R(st, at) depends on two factors,
that is, successful provision of Qt and hop counts of selected
path Pot, dt. DRL‐based RRA receives an immediate positive
reward rt = +X on successful provisioning of Qt, otherwise
rt = −X. Additionally, more positive rewards will be received if
the agent selects a path having less hop counts.

3.3.2 | Training

This work uses the DRL algorithm, namely, proximal policy
optimisation (PPO) [37], for training RRA. A DQN method
[38] is also utilised to compare the proposed DRL‐based RRA
scheme based on PPO. DQN algorithms employ Q‐learning to
determine the best action to be taken in a given state and a
deep neural network to estimate the Q‐value function. PPO is
a first‐order policy gradient optimisation algorithm, which
ensures that the policy update is not too large. A large step in a
policy update results in learning a bad policy and may lead to
instability during training.

In general, DRL environments are modelled as Markov
Decision Process attributed to their finite state transitions [31].
However, DRL‐based RRA comprehends infinite possible
state transitions based on incoming Q. Hence, it is difficult to
model it as the Markov Decision Process. Therefore, in this
work, an experience buffer has been created of length N,
where the experience E{st, at, rt, γ} generated after provi-
sioning of each Qt will be stored. The proposed DRL‐based
RRA has the following steps: (1) During initialisation, the
experience buffer is cleared, (2) the QKD‐ON state updates by
releasing the network resources of the expired Qt and the
previous Qt for reassignment, (3) the state model of Qt

modelled as st defined in Section 3 (3.3.1), (4) when the
experience buffer is filled with N samples, DRL‐RRA invokes
training based on the working principle of the DRL framework
for RRA as discussed in Section 3 (3.2). During the training
process, a ϵ‐greedy strategy has been employed for exploration
and exploitation, and (5) at the end, discounted cumulative
reward Gt has been calculated using Equation (2), and the
buffer will be emptied.

4 | RESULTS AND DISCUSSION

4.1 | Simulation setup

In this work, two popularly used different sizes of network,
namely 14‐node The National Science Foundation Network
(NSFNET) and 24‐node UBN24 [39], are used to evaluate the
performance of DRL‐based RRA in comparison with the DQN
method and the baseline schemes, namely FF and RF. A short‐
distance QKD network, where the maximum distance between
the two end nodes is less than the distance that can accomplish
the point‐to‐point QKD mechanism is assumed. In this work,
80 wavelengths with 50 GHz channel spacing for three types of
channels, namely, traditional data channel, quantum signal
channel, and public interaction channel in QKD‐ONs, are
considered. Same number of wavelengths are reserved for both
the quantum signal channel and the public interaction channel
[19]. Therefore, this work analyses the performance of DRL‐
based RRA, DQN, and the baseline schemes only for the
quantum signal channel. In this work, a dynamic RRA problem
is considered in which QLRs are randomly generated according
to Poisson distribution between source and destination nodes
following uniform traffic distribution.

During the training, the hyper‐parameters γ (determines
how much DRL agents care about rewards, γ ∈ [0, 1]) and the
learning rate (controls how quickly the model is adapted to the
RRA problem) are set to 0.95 and 10−3, respectively. DNNs
used ReLU as an activation function in the hidden layers
because it allows models to learn faster and perform better.
Adam algorithm [40] is used as an optimiser because of its fast
computation time and simple parameter tuning and is
considered as a default optimiser for most applications. The
simulations of the proposed DRL‐based RRA, DQN, and
baseline schemes are performed with a customised Python‐
based simulator. This simulator uses NetworkX to design the
graph representation of the network model and Pytorch‐based
preferred RL library for the DRL algorithms. The imple-
mentation of QKD‐ON system model, QLR model, and
simulations is performed using Python.

4.2 | Evaluation results

4.2.1 | Training

The training results of blocking probability (BP) and average
reward (AR) versus training iterations for the proposed DRL‐
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based RRA, DQN, FF, and RF for both the considered net-
works are illustrated in Figures 4 and 5, respectively.

BP is defined as the ratio of the total rejected QLRs to the
total QLRs in the QKD‐ONs. AR is the average of total re-
wards after each training iteration. At initial training iteration,
the BP of the proposed DRL‐based RRA and DQN is equal or
higher than the two baseline schemes represented with the
straight line, and the AR is minimum as shown in Figures 4
and 5, respectively. The performance metrics, namely, BP and
AR, of DRL‐based RRA and DQN improve with the number
of training iterations during training. However, BP and AR of
DRL‐based RRA using PPO are much better than the DQN
method because PPO has smaller policy updates, which help to
obtain an optimal solution with better training stability, as
shown in Figures 4 and 5, respectively.

The BP of the proposed DRL‐based RRA surpassed RF
and FF after 6000th and 8000th training iterations, respectively,
whereas the BP of DQN surpassed RF and FF after 8000th
and 10,000th training iterations for NSFNET, respectively.
Similarly, for UBN24, the BP of the proposed DRL‐based
RRA and DQN surpassed RF and FF at 2000th training

iterations. The BP of DRL‐based RRA and DQN reaches its
minimum value, and the training performance becomes stable
after 40,000th and 42,000th training iterations for NSFNET
and 38,000th and 42,000th training iterations for UBN24,
respectively. The size of a network topology can have a sig-
nificant impact on network performance as large size networks
tend to be more complex. However, it has been observed that
the proposed DRL‐based RRA performs better than the DQN
method and the two baseline schemes for the considered
networks of different sizes and connectivity.

4.2.2 | Blocking probability

Figure 6 illustrates the performance of the DRL‐based RRA
compared to the DQN method and the two baseline schemes,
namely, FF and RF, for NSFNET and UBN24 in terms of BP
under different average arrival rates of traffic. The average
arrival rate is the mean number of arrivals of QLRs per
unit time. It can be observed from Figure 6 that the BP of
QLRs increases with the rise in the traffic arrival rate for the

F I GURE 4 Training results of BP versus training iterations for (a) the
National Science Foundation Network and (b) the UBN24.

F I GURE 5 Training results of AR versus training iterations for (a) the
National Science Foundation Network and (b) the UBN24.
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proposed DRL‐based RRA as well as for the DQN and the two
baseline schemes because more resources get occupied during
assignment and reassignment in the QKD‐ONs. With the
approximation capability of DNN, the DRL agent is able to
build an optimal policy in order to minimise the blocking of
QLRs, and the proposed scheme outperforms the DQN
method and the two baseline schemes in terms of BP.
Compared to the DQN, FF, and RF, the proposed DRL‐based
RRA achieves an average reduction in BP of 7.19%, 10.11%, and
33.50% for NSFNET, shown in Figures 6a, and 2.47%, 3.20%,
and 19.60% for UBN24, shown in Figure 6b, respectively.

4.2.3 | Resource utilisation

RU for different average traffic arrival rate is an important
metric and shown in Figure 7a,b for NSFNET and UBN24,
respectively. RU is defined as the ratio of resources (time slots)
utilised by the QLRs to the total resources available in QKD‐
ONs. It can be seen from Figure 7 that the RU for proposed
DRL‐based RRA, DQN, FF, and RF schemes increases with
the increase in the arrival rate of traffic due to the accommo-
dation of more QLRs in the QKD‐ONs. The proposed DRL‐
based RRA achieved an average improvement in RU of 3.40%,
4.33%, and 7.18% for NSFNET and 1.34%, 1.96%, and 6.44%
for UBN24 because of the acceptance of more QLRs

(reduction in BP at each corresponding arrival rate, shown in
Figure 6) compared to the DQN, FF, and RF, respectively.

5 | CONCLUSION

This work addressed the routing and resource assignment
problem in the quantum signal channel of QKD‐ONs by
exploiting the deep reinforcement learning (DRL) technique. A
deep reinforcement learning‐based routing and resource
assignment (DRL‐based RRA) scheme using proximal policy
optimisation to select an optimal route and efficient utilisation
of network resources to satisfy the resource requirements of
QLRs in the quantum signal channel of QKD‐ONs is proposed.
The simulation results indicate that the proposed DRL‐based
RRA scheme considerably outperforms the deep‐Q network
and the two baseline schemes, namely first‐fit and random‐fit,
for the considered networks in terms of both blocking proba-
bility and resource utilisation. In future, methods to address
various networking challenges of QKD‐ONs based on DRL
can be developed.
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