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Abstract

In this thesis, we develop and apply methods which allow to compute multi-scale two-

loop amplitudes in analytic form. These amplitudes are an important ingredient for

precise theoretical predictions for scattering processes at the Large Hadron Collider. We

develop new approaches to construct unitarity compatible integration-by-parts relations

through generating vectors by using an embedding space formulation of the problem and

combining methods from algebraic geometry with linear algebra. With these methods, we

obtain relations that can be used to reduce planar and non-planar two-loop amplitudes

with up to one external mass to master integrals. We use these relations together with the

method of numerical unitarity to numerically obtain master integral decompositions of the

planar two-loop amplitudes contributing to W (→ ℓν)-production in association with two

jets, the planar and non-planar amplitudes contributing to three-photon production and

the amplitudes contributing to Higgs-production in association with two jets at leading

colour and in the heavy-top-loop approximation. Furthermore, the W+jets amplitudes

and the 3γ amplitudes are obtained analytically via functional reconstruction in a finite

field together with some physically motivated improvements.
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4.2.2 Gröbner Basis and Syzygies . . . . . . . . . . . . . . . . . . . . . . 57

4.2.3 Syzygies from Linear Algebra . . . . . . . . . . . . . . . . . . . . . 66

4.2.4 Semi-Numeric IBP-Vectors . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.5 Semi-Numeric Power Reduction . . . . . . . . . . . . . . . . . . . . 68

4.3 Properties of IBP-Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 IBP-Vectors as Polynomial Tangent Vector Fields . . . . . . . . . . 71

4.3.2 IBP-Vectors at Extrema & Singularities of the Baikov Polynomial . 73

4.3.3 Gauge-Transformations of IBPs . . . . . . . . . . . . . . . . . . . . 75

4.4 Implementation & Validation . . . . . . . . . . . . . . . . . . . . . . . . . 76

5 Multi-Loop Amplitude Computation 77

5.1 Colour-Ordering & Recursion Relations . . . . . . . . . . . . . . . . . . . . 77

5.1.1 Unitarity and Factorisation . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Heavy-Top-Loop Approximation . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Leading-Colour Approximation . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Finite Remainders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Two-Loop Numerical Unitarity . . . . . . . . . . . . . . . . . . . . . . . . 85

5.5.1 Dimensions of Internal States . . . . . . . . . . . . . . . . . . . . . 87

5.5.2 Remainders and Pentagon Functions . . . . . . . . . . . . . . . . . 88

5.6 Analytic Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6.1 Parametrisation in Terms of Mandelstam Invariants . . . . . . . . . 89

5.6.2 Denominators from Univariate Slices . . . . . . . . . . . . . . . . . 89

5.6.3 Linear Dependencies of Coefficients . . . . . . . . . . . . . . . . . . 91

5.6.4 Partial-Fraction Ansatz . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.6.5 Vandermonde Sampling Procedure . . . . . . . . . . . . . . . . . . 94

5.6.6 Spinor Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . 96

6 Results 99

6.1 W -Boson + Four Partons . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1.1 Notation & Conventions . . . . . . . . . . . . . . . . . . . . . . . . 100



CONTENTS iii

6.1.2 Reduction to Five-Point One-Mass Kinematics . . . . . . . . . . . . 101

6.1.3 Analytic Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.4 Results and Validation . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.2 Tri-Photon Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.1 Helicity Amplitudes . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2.2 Results & Validation . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.3 Surface-Terms for Higgs + Four Partons . . . . . . . . . . . . . . . . . . . 112

6.3.1 Notation and Conventions . . . . . . . . . . . . . . . . . . . . . . . 112

6.3.2 Surface Terms & Master-Integral Decomposition . . . . . . . . . . . 114

7 Conclusions and Outlook 115

7.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Appendices

A QCD Feynman-Rules 118

B Treatment of γ5 in Dimensional Regularisation 120

C Finite Fields 122

C.1 Rational Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

C.1.1 The Chinese Remainder Theorem . . . . . . . . . . . . . . . . . . . 123

C.1.2 Denominator Guessing & Integer Reconstruction . . . . . . . . . . . 124

D Interpolation Formulae 126

D.1 Thieles Interpolation Formula . . . . . . . . . . . . . . . . . . . . . . . . . 126

D.2 Multivariate Newton Interpolation . . . . . . . . . . . . . . . . . . . . . . . 127

E Spinor Helicity Formalism 128

F Rationalization of Momenta & tr5 130

F.1 Five-Point Zero-Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

F.2 Five-Point One-Mass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

G Bibliography 132



iv CONTENTS

List of Abbreviations 155

List of Figures 157

List of Tables 160

List of Publications 161

Abstract in German 162

Acknowledgements 163



Chapter 1

Introduction

1.1 Motivation

The Standard Model of Particle Physics (SM) describes the fundamental forces of the elec-

tromagnetic, weak and strong interactions together with the fundamental constituents of

matter, the quarks, leptons and neutrinos. It has demonstrated huge success in providing

predictions for experiments. For instance, the existence and properties of the Higgs-, W-

and Z-bosons and the running of coupling constants have been first predicted by the SM

and then later were confirmed experimentally [1]. Nonetheless, observations e.g. from

astrophysics have shown phenomena which are not explained by the SM, such as Dark

Matter [2, 3], neutrino oscillations [4] and the matter-antimatter asymmetry in the uni-

verse [5]. Moreover, collider experiments have lead to a few experimental results which

appear to differ from the SM prediction, such as the anomalous magnetic dipole moment

of muons [6]. Furthermore, the SM includes a few ad hoc features such as the mass

hierarchy of the fermions or the absence of a CP-violating term in QCD [7]. These fea-

tures, although they are not problematic per se, hint towards an underlying structure

which is not understood. These concerns and the so-far lacking description of gravity and

dark energy within the SM demonstrate that the SM is not yet a complete description

of nature and therefore, its predictions should be violated. These violations could either

be pronounced but only visible at energies which are inaccessible for current collider ex-

periments (energy frontier) or subtle deviations which can only be found via extremely

accurate measurements and predictions (precision frontier).

The strongly interacting gluons and quarks form hadrons with binding energies of

≈ 1 GeV, which appear as point-like particles at lower energies. The W-, Z-, and Higgs

bosons, on the other hand, have masses ranging from 80 − 125 GeV and are therefore

usually negligible at lower energies (β-decays are an exception). Hence, at the MeV-

scale, physical phenomena are usually well-described by electromagnetic interactions. In

order to reveal the full structure of fundamental interactions, experiments thus have to

1



2 CHAPTER 1. INTRODUCTION

be carried out with an energy transfer at GeV or higher scales1. Experiments in particle

physics therefore typically involve accelerators which collide particles with large kinetic

energy2.

The current collider experiments at the Large Hadron Collider (LHC), in particular

ATLAS and CMS have confirmed the SM including the Higgs boson and several predicted

hadrons [1]. They did, however, not find clear violations of the SM predictions. Therefore,

we are now in the precision era of the LHC, where theoretical predictions are compared

to cross-section measurements with very low uncertainties.

Such precision comparison, even if it should not directly lead to discoveries of physics

beyond the SM (BSM), can also constrain the energy scales where BSM physics can be

expected. These can then in turn be used to plan future colliders at certain energy scales.

For example, the LEP experiment at CERN permitted to conclude that the Higgs boson

was heavier than 114 GeV (see e.g. [8]). At the beginning of the third run of the LHC,

the statistical errors for many cross-section measurements are as small as a few percent

(see e.g. [1] and the references therein), which is expected to further improve within this

run and, even more, with the planned High-Luminosity LHC. Theory predictions should

therefore reach a comparable level of accuracy. In order to achieve this, higher-order

corrections in the perturbative expansion of cross-section predictions have to be taken into

account. The electromagnetic coupling constant αem(0) = 1/137, or αem(1TeV) = 1/125

is relatively small at the energy scales of current colliders. Thus, predictions with next-to-

leading-order (NLO) corrections are often sufficient in the electroweak sector3. However,

in the expansion of the strong interaction, at least next-to-next-to-leading-order (NNLO)

corrections are required, due to the relatively large coupling constant αs(91GeV) = 0.118

or αs(1TeV) = 0.089. While today the computation of next-to-leading-order corrections is

largely automatised (see e.g references [10–21]), next-to-next-to-leading-order corrections

still remain an active area of research, although many 2 → 2 (see e.g. [22–26]) processes

and some 2 → 3 processes [27,28] have been calculated during the last years.

One of the most intricate problems in the process of providing higher order QCD

predictions is the computation of two-loop scattering amplitudes. In recent years, this

field experienced substantial progress on the two fundamental aspects of the calculation.

First, there have been important advances in computing the required master integrals,

specifically using the methods of differential equations [29,30] in their canonical form [31].

Combining this method with Ansatz techniques [32] has led to the computation of all five-

point massless and all planar five-point one-mass master integrals [33–36] as well as most

of the non-planar five-point one-mass master integrals [37]. Furthermore, there now exist

1Therefore particle physics is often also called high energy physics.
2A complementary branch of particle physics called astro-particle physics instead studies particles

from astronomical origins.
3In some kinematic regions, Sudakov lograithms log s/MW can enhance EW corrections [9], making

additional corrections necessary.
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multiple frameworks for the numerical evaluation of master integrals, such as generalized

series expansions [34,38–40], or iterated integral methods in the form of so-called pentagon

functions [41–43].

On the second front, there have been important technical advances in the reduction

of scattering amplitudes to master integrals through so-called integration-by-pars (IBP)

reduction [44, 45], both in a simplified approach to the construction of IBP relations

with unitarity-compatible techniques [46–48], as well as reconstructing the results from

numerical evaluations over a finite field [49–53]. An improvement of these techniques

is to build ansätze from studying the divergences of master integral coefficients near

singular surfaces using p−adic numbers [54]. The direct numeric solution of IBP-systems

can be computationally intense. As an alternative, the development of the multi-loop

numerical unitarity method [48,55–57], where loop amplitudes are numerically computed

by exploiting their analytic properties has been an important step forward.

The focus of this thesis is to discuss methods of finding suitable sets of IBPs and

their usage within the context of numerical unitarity, as well as methods of functional

reconstruction of master integral coefficients. These methods are applied to cutting edge

cases of two-loop amplitude computation, in particular the amplitudes contributing to

W+2-jet production, 3γ production at the LHC. Furthermore, we present important

steps towards computing amplitudes contributing to H+2-jet production.

The thesis is organised as follows: In the first chapter, we will review the Standard

Model as a gauge theory, starting with the principles of relativistic field-theories before

introducing the gauge group and field-content of the SM and spontaneous symmetry

breaking via the Higgs mechanism. Furthermore, we will review the quantisation of gauge

theories with Fadeev-Popov ghosts, leading to a gauge fixed effective SM-Lagrangian.

In the second chapter, we will review how scattering amplitudes are computed in the

SM and how they are related to cross-sections. The discussion of amplitudes involves

the computation of correlation functions from Feynman diagrams and -rules and the

Lehmann-Symanzik-Zimmermann reduction formula. Furthermore, we will discuss how

Feynman integrals arise in amplitude computations and how their divergences can be

handled through dimensional regularisation and renormalisation. Finally, we will briefly

review other aspects required for cross-section computations, such as defining infrared-

save observables and parton-distribution functions.

In the third chapter, we will review modern methods for multi-loop integral compu-

tation, discussing their reduction both at integrand level through Passarino-Veltmann re-

duction and at integral level through integration-by-parts relations. Then, we will discuss

how the remaining integrals can be computed with the method of differential equations.

In the fourth chapter, we discuss the construction of unitarity compatible IBPs. We

will review aspects of algebraic geometry and discuss technical advances which allow to
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construct sets of IBP-relations for challenging multi-scale integrals. Moreover, we will

discuss some interesting properties of IBP vectors and the relations generated by them

which are relevant for the study of Feynman integrals.

In the fifth chapter, we will discuss the computational setup we used for the compu-

tation of multi-loop amplitudes. As technical tools, we will review colour-decomposition

and recurrence relations of tree-level amplitudes, before discussing the numerical unitarity

method and functional reconstruction together with some physically motivated improve-

ments.

We present two amplitude computations and first steps towards a third using these

methods together with some process-dependent features in chapter 6 before coming to

conclusions and an outlook.

1.2 Short Introduction to the Standard Model

Before discussing the computations of cross-sections and scattering amplitudes, we will

review some basic principles of the underlying theory. In particular, we will review the

gauge group and field content of the SM including spontaneous symmetry breaking and

discuss its functional quantization in the path integral formalism. For further details, we

refer the reader to the many excellent textbooks on the matter, such as [58,59].

1.2.1 Lagrangian Mechanics & Gauge Theories

The SM is a local quantum field theory (QFT), whose interactions are governed by gauge

principles. Relativistic QFT’s can be described through a Lagrangian density L(x), which
is a Poincaré-invariant and hermitian function of a set of fields {φi(x)} and its derivatives4

{∂µφi(x)}. Conventionally, the Lagrangian density is abbreviated as the Lagrangian. The

time-evolution of the fields is then described by the Euler-Lagrange equations

∂µ

(
∂L

∂(∂µφi)

)
− ∂L
∂φi

= 0. (1.1)

Poincaré invariance of L guarantees conservation of four momentum and angular momen-

tum. For physical theories such as the SM, it is usually required that appearing ultraviolet

(UV) divergencies can be absorbed into a redefinition of the fields and constants, so that

predictions remain finite (see section 2.4). In natural units (i.e. ℏ = 1, c = 1, where ℏ is

the reduced Planck constant and c is the speed of light) this requires coupling constants

to have mass dimensions greater than or equal to zero. In the following, we will briefly

review the field content and the gauge structure of the SM.

4In principle a dependence on higher derivatiaves is also possible, however, we omit them here since
first derivatives are sufficient to describe the SM.
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The Lorentz group is described by six generators, three boostsK and three rotations L.

This group can be represented using two commuting SUC(2) subgroups, whose generators

are given by

J i+ =
1

2
(Li + iKi), J i− =

1

2
(Li − iKi), (1.2)

which fulfil the Lie-Algebra

[J i+, J
j
−] = 0, [J i±, J

j
±] = iϵijkJk±. (1.3)

Lorentz transformations are then expressed as Λ = ei(θ
+
i J

i
++θ−j J

j
−), with θ+ = (θ−)∗. In the

SM, there are four types of fields which can be classified according to their transformation

properties under such a transformation:

• spin 0, scalar: ϕ(x) → ϕ(Λ−1x),

• spin 1/2, left-chiral Weyl fermion [60]: ξa → eiθ
+
i

σab̃
i
2 ξb̃(Λ

−1x), where ξb̃ = δab̃ξ
a,

• spin 1/2, right-chiral Weyl fermion: χb̃(x) → eiθ
−
i

σab̃
i
2 χa(Λ

−1x), where χa = δab̃χ
b̃,

• spin 1, vector boson: Aµ(x) → Λ ν
µ Aν(Λ

−1x),

where σi are the Pauli matrices, which are conventionally chosen as

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (1.4)

Lorentz-vectors can also be expressed as a tensor product of left- and right-chiral

Weyl-spinors via [61]

Aµ = σab̃µ ξaχb̃, (1.5)

where σ0 is the identity matrix. Higher-dimensional representations of the Lorentz group,

as they appear e.g. in theories of gravity, can be constructed from these lower dimensional

representations in a similar way. Conventionally, a left- and right-chiral Weyl spinor are

grouped together to a Dirac spinor5

(ψα) =

(
ξa

χã

)
(ψ̄α) =

(
χa ξã

)
. (1.6)

5In the literature, Dirac spinors are often defined in other representations, however, we stick to this
so called chiral representation to keep the chiral structure of the SM as clear as possible.
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In analogy to non-relativistic quantum mechanics, an equation of motion should result

in pψ ∝ ∂
∂x
ψ, while at the same time preserving the relativistic condition that p2 = m2.

In terms of Dirac-spinors, this is possible through the Dirac equation [62], which is the

equation of motion for a relativistic spin 1/2 particle

iγαβµ ∂µψβ −mδαβψβ = 0, (1.7)

using the Dirac-matrices which (in the chiral basis) are given by

γ0 =

(
0 1

1 0

)
γi =

(
0 σi

−σi 0

)
. (1.8)

These matrices fulfil the anti-commutation relations {γµ, γν} = 2gµν . The Dirac equation

corresponds to the Lagrangian

L = ψ̄(i/∂ −m)ψ, (1.9)

where we used Feynman-slash notation, i.e. for any Lorentz vector Aµ, /A = γµA
µ. The

basic principle of gauge theories is to start from such a Lagrangian of free fermionic

fields which contains a global symmetry and then impose that this symmetry also holds

locally, which can only be fulfilled by introducing additional bosonic fields [63, 64]. Such

a symmetry transformation is described by a Lie group with generators Ta acting on the

fields which transform as a representation of that group

ψ → eiϕaT
a

ψ, ψ̄ → ψ̄e−iϕaT
a

, (1.10)

so that the Lagrangian remains constant L → L. Locality of the symmetry is then

imposed by making the transformation parameter space-time dependent

ψ → eiϕa(x)T
a

ψ, ψ̄ → ψ̄e−iϕa(x)T
a

. (1.11)

This transformation is then referred to as a gauge transformation. Under such a transfor-

mation, the kinetic term is not left invariant but transforms as

L → ψ̄(i/∂ −m)ψ − ψ̄e−iϕa(x)T
a

(∂µϕa(x))T
aeiϕa(x)T

a

ψ ̸= L. (1.12)

The symmetry, however, can be restored by introducing an additional field Aaµ which

transforms as Aaµ → Aa + i
g
∂µϕ

a
µT

a and replacing the derivative ∂µ by the covariant

derivative

Dµ = ∂µ − igAaµT
a. (1.13)
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The resulting Lagrangian is invariant under gauge transformations. The Euler-Lagrange

equations for Aaµ, however, would require that ψ̄ψ = 0. Hence it is necessary to include

a gauge invariant kinetic term for the boson. This is achieved through the definition of

antisymmetric field-strength tensors

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gfabcAµ,bAν,c, (1.14)

where fabc are the structure constants defining the Lie algebra of the group

[T b, T c] = ifabcTa. (1.15)

This tensor is constructed in such a way that the derivatives of ϕa cancel out in gauge

transformations. There are then two gauge invariant choices for the kinetic term in the

Lagrangian

−1

4
F a
µνF

µν
a , −1

4
ϵµνρσF

µν
a F ρσ

a . (1.16)

The second term, however, appears to have a vanishing coefficient in the strong interac-

tion6.

1.2.2 The Gauge-Group & Field Content of the SM

The gauge group of the SM is given by

SU(3)C ⊗ SU(2)L ⊗ U(1)y. (1.17)

The three parts of the SM associated to the three sub-groups are called quantum

chromodynamics (QCD) [66], quantum flavourdynamics (QFD) [67] and quantum elec-

trodynamics (QED) [68–70]. The first corresponds to the strong force, while the second

and third can be combined to the electro-weak theory (EW) [71, 72], which contains the

weak and electromagnetic interactions. We will denote the gauge fields and field-strength

tensors of the three groups by Ga
µ and Ga

µν , W
a
µ and W a

µν , respectively Bµ and Bµν . The

group generators of the first and second group are denoted λa and τa, respectively.

Gauge theories, as they were introduced above, do not permit a mass term of the form

m2AµA
µ, (1.18)

6Although this is not an inconsistency, this fact implies a lack of understanding, which goes by the
name of strong CP-problem. An interesting solution, the Peccei-Quinn mechanism, implies the existence
of an additional scalar field whose pseudo Nambu-Goldstone boson couples to this term anomalously and
thereby dynamically sets it to zero [65].
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because such a term would not be invariant under gauge transformations. This is prob-

lematic, since the bosons of the weak force are known to be massive. In addition, the

SU(2)L gauge symmetry group only transforms left-chiral fermions, such that a Dirac

mass term for fermions m2ψ̄ψ would violate this symmetry. Both these problems are

solved in the SM by introducing a scalar field ϕ which carries hypercharge (i.e. transforms

in the U(1)y group) and transforms as a doublet under the SU(2)L group [73–75], i.e.

(Dµϕ) = ∂µϕ− ig1Bµϕ− ig2W
a
µ τaϕ, (1.19)

where τa are the generators of SU(2)L, conventionally represented by the Pauli-matrices.

The Lagrangian permits a potential term for this field, which takes the form

Vϕ = −µ2ϕ†ϕ+
λ

4
(ϕ†ϕ)2, (1.20)

where ϕ† = (ϕT )∗.

It is also permitted to couple this field to the fermion fields via Yukawa interactions

LYukawa =
∑
fL,fR

GfL,fRψ̄fLϕ
∗ψfR +G∗

fL,fR
ψ̄fRϕ

T

(
0 −1

1 0

)
ψfL , (1.21)

where ψfL are (left-chiral) SU(2)L doublets while ψfR are (right chiral) SU(2)L singlets,

and the GfL,fR are coupling constants describing the strength of the interaction and the

matrix acts on the space defined by the SU(2)L doublet representation. These terms have

to involve both left- and right-chiral fields, since the SU(2)L index of the ϕ-field has to

be contracted with a left-chiral doublet, while the spinor indices of that doublet have to

be contracted with spinors that do not transform under SU(2)L.

The full SM Lagrangian (before symmetry breaking) is then given by

LSM = −1

4
Gµν
a G

a
µν −

1

4
W µν
b W b

µν −
1

4
BµνBµν (1.22)

+ i
∑
f

ψ̄f /Dψf

+ (Dµϕ)
†(Dµϕ) + Vϕ + LYukawa,

using the covariant derivative

Dµ =
(
∂µ − igscfG

a
µλ

a − i
g1
2
tfW b

µτ
b − i

g2
2
yfBµ

)
, (1.23)

where cf , tf ∈ {0, 1} specify if the field f on which the derivative acts carries colour,

respectively weak iso-spin and yf is the weak hypercharge of the particle. The fermion-

field content of the SM with charges is given in table 1.1.
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Fermion family Members
Colour-
triplet

Isospin
doublet

Hyper-
charge

Left-chiral
lepton doublets

ℓ1 =

(
νe
eL

)
, ℓ2 =

(
νµ
µL

)
ℓ3 =

(
ντ
τL

) no yes −1

Right-chiral
leptons

eR, µR, τR no no −2

Left-chiral
quark doublets

q1 =

(
uL
dL

)
, q2 =

(
cL
sL

)
,

q3 =

(
tL
bL

) yes yes 1
3

Right-chiral
up-type quarks

uR, cR, tR yes no 4
3

Right-chiral
down-type quarks

dR, sR, bR yes no −2
3

Table 1.1: Fermion field content of the SM.
The fermions are organized into left-chiral doublets with and without strong interaction,
which are called quarks and leptons, resepectively. Additionally, there are two types of
strongly interacting right-chiral fermions and one type of right-chiral fermions without
strong interaction. Each of these particles appears in three generations which differ by
their Yukawa interactions. Remarkably, the values of the hypercharge cannot be chosen
arbitrarily but are constrained by requiring a cancellation of U(1)y anomalies [76].

1.2.3 Spontaneous Symmetry Breaking

With µ2 > 0 in eqn. (1.20), the scalar field ϕ acquires a vacuum expectation value (VEV)
v√
2
=
√

2µ2

λ
. By choosing an SU(2)L-gauge, the doublet can be rewritten as

ϕ(x) =
1√
2

(
0

(v +H(x))

)
, (1.24)

where H(x) is the field corresponding to the Higgs boson [74]. ϕ has two complex, i.e. four

real degrees of freedom, out of which only one corresponds to the Higgs boson while the

others are Goldstone-bosons corresponding to gauge symmetries of SU(2)⊗U(1). Their

physical degrees of freedom reappear as the additional polarization states of the three

massive vector-bosons. Considering only terms including the vacuum expectation value,

(Dµϕ)
†(Dµϕ) becomes

v2

2

(
g22W

a
µW

µ
a − 2ig22W

µ
1 W

2
µ + g21BµB

µ + 2g1g2W
µ
3 Bµ

)
(1.25)
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and thus gives masses to the gauge-bosons. The mass eigenstates corresponding to phys-

ical particles are given by

W±
µ =

1√
2
(W 1

µ ± iW 2
µ), mW = g2

v

2
, (1.26)

Zµ =
1√

g22 + g21
(g2W

3
µ + g1Bµ), mZ =

v

2

√
g21 + g22, (1.27)

Aµ =
1√

g22 + g21
(−g1W 3

µ + g2Bµ), mA = 0 (1.28)

and describe the bosons of the electroweak interaction, i.e. theW±- and Z-bosons and the

(massless) photon Aµ. The ratio of the boson masses is a parameter of particular interest

and is often abbreviated as cos θW = mW/mZ . Due to the VEV, the fermions also acquire

masses through the Yukawa interactions. The physical particles again correspond to mass

eigenstates, which are combinations of left- and right-chiral fields and whose Yukawa

terms are given by

Y f

2
ψ̄f (v +H)ψf , (1.29)

which attributes a mass mf
−Y fv

2
to them. Since there is only one type of right-chiral

lepton-fields, each of the lepton doublets contains one eigenstate with zero mass, corre-

sponding to the neutrinos7. It is possible to extract the left-chiral components of such

a mass eigenstate by the chirality projector 1−γ5
2

, where γ5 anticommutes with all other

Dirac γ matrices and γ25 = 1. In the chiral basis, it is given by

γ5 =
i

4!
ϵµνρσγ

µγνγργσ

(
1 0

0 −1

)
. (1.30)

The Lagrangian describing the interactions between the mass-eigenstate fermions and

EW bosons after symmetry breaking is given by

Lint =− i
∑
i,j

g1√
2
MCKM

ij ūi
(
1− γ5

2
/W

+
)
dj − i

∑
i,j

g1√
2
MCKM∗

ij d̄
i

(
/W

−1− γ5

2

)
uj

(1.31)

− i
∑
i

g1√
2
ν̄i
(
1− γ5

2
/W

+
)
ei − i

∑
i

g1√
2
ēi
(
/W

−1− γ5

2

)
νi

− i
∑
f

eqf ψ̄f /Aψf − i
∑
f

g

cos θW
ψ̄f

((
I3f

1− γ5
2

− qf sin
2 θW

)
/Z

)
ψf ,

7In fact, the observation of neutrino oscillation hints that neutrinos are actually not massless and
that the neutrino sector in SM has to be modified.
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where qf = tf + 1
2
Yf is the electro-magnetic charge, I3 is the weak isospin (+1

2
for

f ∈ {νi, ui}, −1
2
else) and e = g sin θW is the electro-magnetic coupling constant. The

ui, di, ei, νi describe the different generations of up-type quarks, down-type quarks, leptons

and neutrinos, respectively, while ψf contains all fermions.

Since it is not possible to diagonalise both the Yukawa mass-terms and the interac-

tion with W±-bosons at the same time, it is necessary to include MCKM
ij , the Cabibbo-

Kobayashi-Maskawa matrix8. In the following, we consider the top-quark as infinitely

heavy, while all other quarks are considered as massless. With this degeneracy, the CKM

matrix can be considered as diagonal again. For the leptons, this matrix can be diago-

nalized through a redefinition of neutrino fields9. The strong interaction is not affected

by symmetry breaking and takes the same form as before for all mass states.

For simplicity, we will not discuss the interactions between the W,A,Z and H bosons

after symmetry breaking in detail, since this work focusses on QCD corrections to pro-

cesses where these bosons couple to quarks.

1.3 Quantisation

So far we have reviewed the definition of the SM Lagrangian only as a classical field

theory. In this section, we will review the quantization of gauge theories in a path integral

formulation.

The basic objects of QFTs are the quantum fields φ. In the case of a free bosonic

particle, they can be described by plane waves

φ(x) =

∫
d3k

(
eik·xak + e−ik·a†k

)
. (1.32)

In the canonical quantisation procedure, bosonic fields are quantised through their

commutators [79]

[φ(x),Π(y)] = iδ(x− y), (1.33)

with the conjugate momentum Π = ∂L
∂∂0φ

. This then leads to commutation relations

between the ai

[ap, a
†
q] = (2π)3δ(p⃗− q⃗), [ap, aq] = [a†p, a

†
q] = 0. (1.34)

8This matrix contains, in fact, the only term violating a symmetry under charge-parity conjugation
(CP) in the SM.

9With massive neutrinos, this is not possible and a similar matrix, known as the Pontecorvo-Maki-
Nakagawa-Sakata-Matrix appears [77,78].
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By definition, field operators should have no effect when acting on the vacuum

ap|0⟩ = 0, for all p⃗. (1.35)

Any field configuration can be created by applying operators a†k to the vacuum

|p⟩ = a†p|0⟩. (1.36)

Therefore, these operators are also called creation operators, while the ak are called an-

nihilation operators. The quantum states corresponding to a field φ are denoted |φ⟩.
Similarly, the corresponding operators for fermionic fields can be defined, which, how-

ever, have to obey anti-commutation relations in order to have a positive energy spectrum

{bαp , (bβq )†} = (2π)3δ(p⃗− q⃗)δαβ, {bαp , bβq } = {(bαp )†, (bβq )†} = 0, (1.37)

where α and β are Dirac spinor indices. In gauge theories, this quantisation procedure

cannot be applied directly as it also quantises the unphysical degrees of freedom which

correspond to gauge transformations. This problem can conveniently be dealt with in the

path integral quantisation, which we will review now.

An important object in QFT is the path integral∫
DϕDψDψ̄e−iS[ϕ,ψ,ψ̄], (1.38)

where S is the action and

Dϕ =
∏
x

dϕ(x), Dψ =
∏
x

dψ(x), Dψ̄ =
∏
x

dψ̄(x), (1.39)

are integrals over all field values of bosons, Dirac fields and their respective conjugations

at all points in space-time. Bosonic field values are integrated over real numbers, while

the Dirac fields take values in Grassmanian (i.e. anti-commuting) numbers. Integrals over

anti-commuting numbers take the simple form∫
dϕ = 1,

∫
dϕϕn = 0 ∀n > 0. (1.40)

By decomposing a time interval (t0, T ) into a set of smaller intervals t0 < t1 < ... < tn < T ,

the path integral can be approximated by

∏
k,j

∫
x

dφj(x⃗, tk)

(
1− i

∫ tk+1

tk

dtL({φi(x⃗, t)})
)
⟨φj(x⃗, tk+1)|φj(x⃗, tk)⟩+O(tk+1 − tk),

(1.41)
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where a complete set of states

1 =
∏
x⃗,j

∫
dφk(x⃗, tk)|φj(x⃗, tk)⟩⟨φj(x⃗, tk)|, (1.42)

was inserted at every tk. This allows to interpret the integrand as a product of transition

amplitudes, which are then integrated over all possible configurations on intermediate

time scales.

In gauge theories, this integral would be divergent due to the integration over physi-

cally equivalent configurations which are related by gauge transformations. However, in

the path integral formulation this integral can be made explicit and split off [80].

Employing a gauge fixing term F (φ) and a functional analogue of the δ function, the

integral over the gauge orbit is made explicit∫
DFδ(F (φ)) = 1. (1.43)

This integral can be parametrized by gauge transformation parameters ω which are inde-

pendent of the field values φ(x)∫
Dω det

(
∂F

∂ω

)
δ(F ) = 1. (1.44)

The Fadeev-Popov determinant det(∂F
∂ω

) is the (functional equivalent to the) Jacobian

of the coordinate transformation. This is now inserted into the path integral and the

(unphysical) integration over gauge parameters is omitted.

It is possible to bring the path integral back into a form where it only depends on

an action, employing several auxiliary fields. First, to remove the δ-function, a field Θ is

employed and the gauge condition is redefined as F (φ) = G(φ)−Θ. The integral is then

integrated with a finite Gaussian integrand, which cancels the delta-function and moves

the gauge fixing term into the exponent. Then, the Fadeev-Popov determinant can be

exponentiated using two Grassmanian ghost fields [80]

ig det(M) =

∫
DχDχ̄ exp

(
i

∫
d4x1d

4x2χ̄(x1)(gM(x1 − x2))χ(x2)

)
. (1.45)

In this form, the path integral can be defined through an exponentiated action again,

where the Lagrangian is replaced by a gauge-fixed effective Lagrangian which involves the

original Lagrangian, gauge fixing terms and the Fadeev-Popov ghosts.

Introducing these ghost fields and gauge-fixing terms replaces the original local gauge

symmetry of the Lagrangian by the global Becchi-Rouet-Stora-Tyutin symmetry [81,82],

which allows to quantise only the physical degrees of freedom.
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For QCD in ’t Hooft-Feynman gauge, i.e. Ga(A) = ∂µA
aµ, this Lagrangian is then

given by [81]

L = −1

4
Ga
µνG

µν
a − 1

2ξ
(∂µA

µ(x))2 + q̄if (iγµD
µ
ij −mfδij)q

j
f + ∂µχ̄a(∂

µδab − gfabcAµc )χb.

(1.46)

This gauge fixed effective action is the basis for computing correlation functions in gauge

theories. In the following chapters, we will discuss how scattering amplitudes and cross-

sections can be computed employing this effective action.



Chapter 2

Scattering Amplitudes &

Feynman Rules

One of the most important observables in high energy physics are scattering cross sections,

which give probabilities for finding a given set of particles in a volume element of their

phase space after a collision of initial states. These cross sections are computed as phase-

space integrals over squared scattering amplitudes.

In this chapter we will discuss how these amplitudes are computed in QFT, employing

correlation functions which are computed from Feynman rules and the LSZ-reduction

formula. Furthermore, we will review how Feynman integrals arise in the computation of

amplitudes and how their ultraviolet divergences are regularised and absorbed through

renormalisation.

Finally, we will briefly discuss how amplitudes are related to cross sections. In this

context, we will review aspects of real radiation and infrared-save observables at fixed

order in perturbation theory as well as parton distribution functions in hadronic cross-

sections.

2.1 Correlation Functions

A class of important object in quantum field theory calculations are correlation functions,

which can be obtained by inserting fields into the path integral.

The path integral (in the way it was defined in the previous chapter) contains unwanted

factors, we therefore normalize it by the path integral without insertions, obtaining the

correlation function

⟨Ω|φj1(x1) · · ·φjn(xn)|Ω⟩ =
∫
Dφe−iS[ϕ]φj1(x1) · · ·φjn(xn)∫

Dφe−i
∫
d4xL

, (2.1)

where |Ω⟩ is the ground state of the interacting theory. This quantity is computed pertur-

15
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batively by expanding the exponentiated action in the path integral into a Dyson series1∫
Dφe−i

∫
d4xL0φj1(x1) · · ·φjn(xn)

∞∑
n

1

n!

(
−i
∫

d4xLint(x)

)n
, (2.2)

where L0 contains only the kinematic terms of the Lagrangian, which are quadratic in

the fields while Lint contains the interactions.

Each power of Lint adds additional field insertion to the correlation function, but is

suppressed by a coupling constant, which are small enough to use them as expansion

parameters.

The simplest case of interest is the correlation function of two scalar fields at different

points in space-time to lowest order in the coupling constant, i.e. expanding the Dyson

series to order 0. ∫
Dφe−id4x(∂µφ∗∂µφ−(m2−iε)|φ|2)φ(x1)φ(x2), (2.3)

where the mass was replaced m2 → m2 − iε, to be considered in the limit ε → 0 for

reasons that will soon be apparent. Fourier transforming all φ fields, the correlation

function becomes proportional to∫
Dφ̃

∫
d4k1
(2π)4

d4k2
(2π)4

e−i
∫
d4k(k2−m2+iε)|φ̃(k)|2e−ik1·x1−ik2·x2φ̃(k1)φ̃(k2) (2.4)

For k1 ̸= −k2, the integral over φ̃(k1) vanishes due to symmetry. Thus the only contribu-

tion comes from the slice k1 = −k2, where φ̃(k1)φ̃(−k1) = |φ̃|2(k1) can then be expressed

as a derivative ∫
d4k

(2π)4
ie−ik·(x1−x2)

∂

∂k2

∫
Dφ̃e−i

∫
d4k′(k′2−m2+iε)|φ̃(k′)|2 . (2.5)

For Im(k′2 − m2 + iε) > 0, it is possible to evaluate the Dφ̃ integral as a product of

Gaussian integrals (in fact, this is the reason why the iε term was included)∫
d4k

(2π)4
− ie−ik·(x1−x2)

∂

∂k2

∏
k′

√
−iπ

m2 − k′2 − iε
(2.6)

=

∫
d4k

(2π)4
ie−ik·(x1−x2)

k2 −m2 + iε

∏
k′

√
−iπ

m2 − k′2 − iε
,

1In fact, this series is divergent, because the number of terms per order grows factorially with the
order of perturbation. In simpler perturbation series, which can be computed exactly, such divergences

appear due to ignoring non-perturbative corrections of the form e−
1
g and thus only at an order where

k ≈ 1
g , where g is the expansion parameter while k is the perturbative order. Up to this order, the

perturbation series correctly approximates the full result (see e.g. [83]). Though there is, so far, no
rigorous proof on this, it is widely assumed that the same is true for quantum field theories.
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where the product over the square roots is equal to the path integral and is therefore

cancelled by the normalization. This results in the two-point correlation function for

vanishing interaction, alias the Feynman propagator [84]

DF (x, x0) =

∫
d4k

(2π)4
ie−ik·(x−x0)

k2 −m2 + iε
. (2.7)

More complicated correlation functions, such as∫
Dφe−i

∫
d4xL0φj1(x1) · · ·φjn(xn)φk1(y1) · · ·φkn(y1) (2.8)

can then be carried out by using Wick’s theorem [85], i.e. pairing fields of the same type at

different points in space-time in all possible ways and inserting Feynman propagators for

each of the pairs. This theorem holds since every non-paired field has expectation value

zero and therefore vanishes. The integrations over the space time x lead to δ functions in

k, which cancel momentum space integrals and impose momentum conservation.

Typically, this expansion is carried out in momentum space, where the scalar Feynman-

propagator takes the simple form

DF (k) =
i

k2 −m2 + iε
. (2.9)

For fermions, on the other hand, the Feynman propagator becomes

DF =
/p+m

p2 −m2 + iε
, (2.10)

owing to the Dirac-equation. Moreover, additional colour- and polarisation-indices are

contracted along the propagator.

2.1.1 Feynman-Rules

The method how correlation functions are carried out in practice is to employ Feynman

diagrams [84] which correspond to certain terms in the expansion2. In particular, these

diagrams include propagators corresponding to the contractions of two fields, and vertices

that correspond to terms in Lint which appear through the expansion in eqn. (2.2).

It should be noted that, in the context of correlation functions, the diagrams cannot

be interpreted as space-time diagrams showing physical particle paths, but only as terms

in the expansion of a perturbation series.

The Feynman-rules relevant for this thesis, expressed in momentum space and t’Hooft-

Feynman gauge (i.e. ∂µA
aµ = 0) are given in appendix A.

2These diagrams where first introduced by Ernst Stueckelberg, whose paper was rejected and then
lost, however. They were then introduced again by Feynman in [84]
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With these diagramatic building blocks and the rules to replace them by analytic

expressions, Fourier transformed correlation functions are computed as follows:

1. Draw all Feynman diagrams up to a given order in the coupling constants.

2. Insert the analytic expressions and impose momentum conservation at each vertex.

3. Integrate over all momenta which are not fixed by momentum conservation [84].

This yields the Fourier transformed correlation function for a fixed polarisation and colour

of the external particles. A diagram is called connected when every pair of two vertices

in the diagram is connected via propagators and vertices and disconnected otherwise.

The contributions of disconnected diagrams to correlation functions only have δ-function

support for special values of external momenta. In the following, we are mostly concerned

with connected diagrams.

Furthermore, we distinguish tree-level diagrams from loop-level diagrams, where con-

nected tree-level diagrams become disconnected when removing any of the propagators.

For connected loop-level diagrams, it is possible to remove a propagator such that the

resulting diagram is still connected (see figure 2.1 for example diagrams). Similarly, we

will denote amplitudes where only tree-level diagrams contribute as tree-level amplitudes.

(a) A disconnected dia-
gram

(b) A connected tree-level
diagram

(c) A connected loop-level di-
agram

Figure 2.1: Examples for the different classes of Feynman diagrams.

2.2 Lehmann-Symanzik-Zimmermann Reduction

Formula

Correlation functions are related to scattering amplitudes through the Lehman-Symanzik-

Zimmermann (LSZ) reduction formula. The transition matrix elements M transform

in-states which describe the system in a far away past to out-states which describe the

particles long after a scattering process which is technically assumed to happen in a finite

time interval.
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The transition matrix element fi is closely related to the corresponding S-matrix

element or amplitude

Sfi = ⟨f |i⟩δfi + i(2π)3δ4

(∑
k

pkMfi

)
, (2.11)

considering all momenta as incoming. The states in this formula are Heisenberg states

whose time evolution is given by the Hamiltonian of the theory. Assuming small coupling

constants, the most important part of the time evolution is given by the free Hamiltonian

H0, which contains the kinetic terms and self-interactions of the field.

The time evolution of a field φ under only this Hamiltonian is described by the Klein-

Gordon equation (respectively Dirac for Fermions) and gives plane-wave solutions

φI(x⃗, t) =

∫
d3p

(2π)3
1√
2Ep

(
aI(p)e

−ip·x + aI(p)
†eip·x

)
. (2.12)

This field is denoted as the interaction picture field. The initial and final states of an

interaction are described by such fields φin and φout. The creation and annihilation

operators of this field can be expressed in terms of the field

aI(k) =
i√
2Ek

∫
d3x

eikx
√
2π

3

↔
∂0φI , (2.13)

a†I(k) =
i√
2Ek

∫
d3x

e−ikx
√
2π

3

↔
∂0φI (2.14)

where f
↔
∂0g = f∂0g − g∂0f .

Unfortunately, it is not possible to identify the interacting Heisenberg field directly

with the in and out-fields before and after the scattering process, due to self interactions

of the field which are present at all times.

A weaker, but equally useful asymptotic relation developed by Lehmann, Symanzik

and Zimmermann [86] is that for physical states |α⟩, |β⟩ and a solution f(x) to the Klein-

Gordon equation (respectively Dirac equation for fermions), a transition from the inter-

acting field to the in and out fields is given by

lim
t→±∞

∫
d3x⟨α|f(x)

↔
∂0φ(x)|β⟩ =

√
Z

∫
d3x⟨α|f(x)

↔
∂0φout,in(x)|β⟩ (2.15)

where
√
Z is a renormalization constant (see section 2.4).

In the LSZ-reduction formula, these weak asymtotic relations are used to express S-

matrix elements in terms of correlation functions. Assuming i initial state and f final
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state particles, the transition amplitude is given by

Mfi = ⟨q1...qf |p1...pi⟩ =
√

2ωp1⟨q1...qf |a†in(p1)|p2...pf⟩. (2.16)

To demonstrate how the fields integrate into the time ordering, we include an additional

time ordered product of field operators T [φ(y1)φ(y2)] into the bracket in the following.

Assuming that the final state particles are different from the initial state particles, we

have ⟨out|a†out(p) = 0, and thus it is possible to write

Mfi =
√
2ωp1⟨q1 · · · qf |T [φ(y1)φ(y2)]a†in(p1)− a†out(p1)T [φ(y1)φ(y2)]|p2...pf⟩ (2.17)

Using eqns. (2.13, 2.14), the matrix element is written as

Mfi = −i
∫

d3x
eip1x
√
2π

3

↔
∂0⟨q1...qf |

(
T [φ(y1)φ(y2)]φin(x) (2.18)

− φout(x)T [φ(y1)φ(y2)]
)
|p2...pf⟩.

Now, the weak asymptotic assumption can be inserted

Mfi = −i 1√
Z
( lim
t→−∞

− lim
t→∞

)

∫
d3x

eip1x
√
2π

3

↔
∂0⟨q1...qf |T [φ(x)φ(y1)φ(y2)]|p2...pf⟩, (2.19)

where φ(x) can be included into the time ordering since it is ordered to the right for

t→ −∞ and to the left for t→ ∞.

The function evaluated at t = −∞ and t = ∞ is equal to an integral over a total time

derivative, hence

Mfi = −i 1√
Z

∫
d4x∂0

(
eip1x
√
2π

3

↔
∂0⟨q1...qf |T [φ(x)φ(y1)sφ(y2)]|p2...pf⟩

)
. (2.20)

Inserting the equation of motion replaces the time-derivative on eikx by spatial derivatives.

Partial integration then gives

Mfi = −i 1√
Z

∫
d4x

eikx
√
2π

3 (∂µ∂
µ −m2)⟨q1...qf |T [φ(x)φ(y1)φ(y2)]|p2...pf⟩. (2.21)

Following the same steps as before (now dropping the additional fields), all in- and out-

fields can be pulled into the time ordered product

Mfi =

∫ [∏
i

d4xi
e−iqi·xi(∂xiµ∂

xµi +m2
in,i)√

2π
3√
Z

][∏
j

d4yj
eipj ·yj(∂yjµ∂

yµj +m2
out,j)

√
2π

3√
Z

]
(2.22)

× ⟨0|T [φ(x1) · · ·φ(xi)φ(y1) · · ·φ(yf )]|0⟩.
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This allows to obtain the S−matrix elements from correlation functions [86].

In the Fourier-transformed picture, this becomes

Mfi =

[∏
i

(p2i −m2
i )√

2π
3√
Z

][∏
j

(q2j −m2
j)√

2π
3√
Z

]
Γ(p1, ..., pi, q1...qf ), (2.23)

using the Fourier-transformed correlation function

Γ(p1, ..., pn) =

∫ ∏
i

d4xie
ipi·xi⟨0|Tφ(x1) · · ·φ(xn)|0⟩. (2.24)

For fermions, the procedure is similar, however, leading to factors i/∂ + m instead of

∂µ∂
µ − m2, respectively /p − m instead of p2 − m2, since the fields satisfy Dirac rather

than Klein-Gordon equations. Note that the factors p2i −m2
j and /p−m are not only the

inverse Feynman-propagators of the external particles, but the full inverse of two-point

correlation functions (i.e. formally expanding the Dyson series in eqn. (2.2) to all orders).

The correlation function can be computed using Feynman rules, as was described in

the previous section. Since the inverse propagators of external particles are set to zero in

the cross section, this formula asserts that amplitudes are the residues of the correlation

function on the points where the external particles are set on-shell.

This reduction formula therefore leads to a truncation of Feynman diagrams, i.e. the

propagators (including quantum corrections) of external particles are cancelled by the

pre-factors from the reduction formula. In the literature, Feynman-rules directly for am-

plitudes are often found, which have additional rules for external lines which are identified

with polarisation vectors.

2.3 Loop-Integrals

In Feynman-rules, coupling constants appear at three- and four-point vertices. Therefore,

higher orders in the coupling constant imply additional internal or external lines. Adding

an internal line to a connected graph, while leaving the number of external lines constant,

however implies adding a loop to the graph. Therefore, the perturbation series can be

understood as a series in loops and external legs.

A different number of external legs for two diagrams does not necessarily imply that

they contribute to different physical processes, since it is not possible to experimentally

distinguish two states which differ by e.g. a zero energy gluon [87]. Thus a diagram with

n + k external legs may as well be seen as a correction to an n-point process, if for k

final state particles the energy or the angular difference to another particles are too small

to be experimentally distinguished. In fact, such real radiative corrections have to be

calculated and combined with the loop amplitudes in order to cancel so called infrared
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divergent contributions (see section 2.5.1).

In diagrams involving loops, momentum conservation does not uniquely determine the

momenta in all propagators, giving rise to integrals over momentum variables. Through-

out the thesis, we will refer to these loop momenta as ℓµ, while the external momenta

will be referred to as kµ. These integrals over loop-momenta are notoriously difficult to

compute, especially for multi-loop diagrams.

The integrands resulting from Feynman rules are rational functions in both loop mo-

menta and external momenta. The loop-momentum dependent denominator is given by a

product of inverse propagators, which are in general given by a squared sum of momenta

minus a squared mass. Thus a general L-loop Feynman integral is defined as

I =

∫
dDℓ1
iπD/2

· · · d
DℓL
iπD/2

N(ℓ1, ..., ℓL)

ϱ1 · · · ϱn
, (2.25)

where N is a polynomial in the loop momenta and using the inverse propagators

ϱj = (α1
jℓ1 + ...+ αLj ℓL + β1

j k1 + ...+ βNj kN)
2 −m2

j , (2.26)

where αij, β
i
j ∈ {−1, 0, 1}. Conventionally, all spinor, tensor and colour indices in such an

integral are factored out by contracting them with indices of external states and only the

remaining scalar object is called the Feynman integral.

Since rational functions have no primitive functions in general, the integration over

loop momenta is highly non-trivial. Furthermore, the integration region may contain non-

integrable zeroes of the denominator, which lead to infrared singularities which have to

be merged with divergences in real emission contributions3. Moreover, for theories which

are not finite, ultraviolet divergences appear and have to be regularised and absorbed into

counter-terms [89], as will be discussed in the following sections.

2.3.1 Dimensional Regularisation

A peculiar property of QFT’s such as the SM is that often Feynman integrals are divergent.

These divergences occur due to poles in the integrand (infrared or IR divergences) as

well as in the region of large momentum (ultraviolet or UV divergences). Ultraviolet

divergences are cancelled through renormalisation, where coupling constants, fields and

masses are redefined with infinite quantities, rendering the physical observables finite

[90]. To do this in a well defined way, the integral has to be regularised first, i.e. it

is necessary to define a finite integral with a new parameter whose integrand has the

original integrand as a limit. The renormalisation constants are then also functions of

3In fact, these divergences are proven to cancel at each order in perturbation theory by the Kinoshita-
Lee-Nauenberg theorem [87,88].
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these additional parameters, which are defined such that physical observables (for which

infrared divergences cancel in a suitable regularisation) are finite in this limit.

Currently the most commonly used regularisation scheme for QCD-computations is

dimensional regularisation, where the four-dimensional space-time integral is replaced by

a D dimensional one. The integral is defined to be an analytic function in D and physical

results are obtained by taking the limit D → 4 [91,92].

Other regularisation schemes, such as removing the integration up to infinity by intro-

ducing a cut-off [93], or imposing additional particles which cancel the UV divergences [94]

exist but are seldom used in QCD calculations.

Dimensional regularisation has several advantages over other schemes: For instance, all

symmetries, in particular gauge symmetries, are preserved. This implies that Ward iden-

tities [95,96] are preserved, conserving the unitarity of the S-matrix [92]. Moreover, poles

in four dimensions (i.e terms proportional to
(

1
D−4

)n
, n > 0) are Lorentz covariant and

hence give a natural choice for counter-terms. Furthermore, for massless external particles,

dimensional regularisation also regularises infrared divergences. Finally, integration-by-

parts identities may contain unwanted boundary terms in other regularisation schemes,

as will be discussed later on.

All integrals, integration-by-parts relations and amplitudes discussed in this thesis are

defined in dimensional regularisation, therefore we will review the concept in this section.

As a trivial example, consider the logarithmically divergent two-dimensional integral

I ′ =

∫
d2ℓ

1

ℓ2 +m2
, (2.27)

where we define the momentum-space to be two-dimensional and Euclidean.

In dimensional regularisation, the vector-space of ℓ and also the integral is taken to

be D-dimensional. Since the integrand only depends on the absolute value |ℓ| =
√
ℓ2, the

D − 1 dimensional solid angle can be integrated out

I =

∫
dDℓ

1

ℓ2 +m2
=

∫ ∞

0

d|ℓ|dD−1Ω |ℓ|D−1 1

ℓ2 +m2
(2.28)

=
SD−1

2πD

∫ ∞

0

d|ℓ||ℓ|D−1 1

ℓ2 +m2
, (2.29)

where

SD−1 =
2πD/2

Γ(D/2)
(2.30)

is the volume of the (D − 1)-dimensional unit sphere, which is finite except for isolated

values of D.

The remaining one-dimensional integral can be simplified by the substitution ℓ2 = m2y,
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resulting in a Beta function

mD−2

∫ ∞

0

dyy
D−2
2

1

y + 1
= mD−2B

(
D/2,

2−D

2

)
= mD−2Γ(D − 1)Γ(2−D

2
)

Γ(1)
, (2.31)

which is finite for D/∈N>1.

For more general Feynman-integrals, the integrand only depends on scalar products

of loop momenta with four-dimensional momenta or loop momenta among themselves.

Thus a D dimensional L-loop Feynman integral with n (4-dimensional) external legs can

be parametrized with at most N = L × 4 + L(L + 1)/2 parameters while the other

degrees of freedom can be integrated as an LD−N -dimensional solid angle. In order for

the action to remain dimensionless, the fermionic and bosonic fields have to have mass

dimension [ψ] = D−1
2

and [A] = D−2
2

, respectively. By dimensional analysis, it follows

that the couplings have to be rescaled by a mass scale µ: g → gµ2−D
2 which can be chosen

arbitrarily.

Remarkably, dimensional regularisation does not only change the UV-behaviour of

Feynman integrals, but also has an effect on their analytic structure which, to a large

extend, is given by the residues on the leading poles of the integrand. Consider for

example the integral

F =

∫
dDℓ

1

ℓ2(ℓ− p1)2(ℓ− p1 − p2)2(ℓ+ p4)2
. (2.32)

In four dimensions, the leading poles of the integrand are zero-dimensional isolated points,

since ϱj = 0 ∀j determines all components of the four-dimensional loop-momentum. In

dimensional regularisation, these four equations define a continuous (D − 4)-dimensional

surface, which can be parametrised with one parameter after solid (D − 5)-dimensional

angles are integrated out. Such properties are known to influence the analytic form of the

integrals.

Furthermore, one-loop integrals with five distinct propagators, can be decomposed

into integrals with at most four propagators via partial fractioning in four dimensions. In

D dimensions, in contrast, their leading pole is a (D − 5)-dimensional surface and they

are independent of the integrals with fewer propagators.

There are two important variants of this regularisation scheme:

• Conventional dimensional regularization (CDR) for which both loop- and external

momenta are considered in D dimensions.

• The ’t Hooft-Veltman scheme (HV) for which loop-momenta are taken to be D-

dimensional while the external momenta remain four-dimensional. This scheme

violates D-dimensional Lorentz invariance, however, it allows to treat the polarisa-

tion states or helicities of external particles in four dimensions. We therefore employ
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’t Hooft-Veltman scheme for all calculations.

Some difficulties in Dimensional Regularisation arise from objects which are only defined

in specific dimensions, such as the fifth Dirac matrix γ5. We detail the treatment of this

object in appendix B.

2.4 Renormalisation

To illustrate the physical meaning of the renormalisation procedure, we will first consider

a heuristic explanation.

Fundamental constants, such as (bare) masses or couplings, cannot be directly mea-

sured but have to be extracted from measurements of e.g. scattering processes. As an

example, consider fitting a leading-order theory prediction to a process where an electron

moves in an electric field to obtain the mass of the electron.

Then, the obtained mass is only valid at leading order. If one would use this bare

value to compute NLO corrections, the result would match the observation worse then

the leading order result, since e.g. an increase in the mass would evidently not be found

in the experiment.

Therefore, even in finite theories, it is necessary to adjust the constants at each order

in perturbation theory, which goes by the name of renormalisation. In particle physics,

an additional complexity of this procedure arises from UV divergencies. As a correction

to the electron mass, consider the energy density of the electric field surrounding it. The

energy density goes with |E⃗|2 ∝ 1/r4, leading to an integral
∫
dr 1

r2
→ ∞.

At NNLO, this divergence would be shielded by virtual particle-antiparticle pairs

being created close to the electron. However, new divergences would occur which would

be shielded at N3LO and so forth. At each fixed order, the bare mass therefore has to

redefined to m0 → −∞ in a consistent way so that the visible mass remains finite.

We will discuss this procedure and the renormalisation of massless QCD in this section.

Furthermore, we will briefly discuss how the renormalisation scale is chosen and how this

leads to running coupling constants.

2.4.1 Renormalisation of QCD

In a renormalisable theory, the fields and constants are each multiplied with a renormal-

isation factor [68–70]

ψ0(x) = Z
1
2
ψψ(x), Gµ

0(x) = Z
1
2
GG

µ(x), (2.33)

ξ0(c) = Z
1
2
η ξ(x), g0 = Zgg. (2.34)
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Conventionally, these renormalisation constants are split into a constant piece and a

divergent counter term which is of higher order in the coupling constant

Zi = 1 + δZi
. (2.35)

By splitting off the counter terms δZ , the bare Lagrangian is split into a renormalised

contribution and a counter-term Lagrangian

L0 = Lrenorm. + Lc.t.. (2.36)

For the Lagrangian of massless QCD, these pieces are given by

L0 =
∑
f

ψ̄f,0i /D0ψf,0 −
1

4
Ga
µν,0G

µν
a,0 (2.37)

Lrenorm. =
∑
f

ψ̄f i /Dψf −
1

4
Ga
µνG

µν
a (2.38)

Lc.t. = (Zψ − 1)
∑
f

ψ̄f i/∂ψf + g(ZgZψZ
1
2
G − 1)

∑
f

ψ̄f i /G
a
T aψf (2.39)

− 1

4
(ZG − 1)(∂µG

a
ν − ∂νG

a
µ)

2 − g(Z
3
2
GZg − 1)∂µG

a
νG

b
µG

c
νf

abc

+
1

4
g2(Z2

GZ
2
g − 1)(fabcGµ

bG
ν
c )

2.

The fact that the four-gluon, three-gluon and quark-gluon vertices can be renormalized

with the same constant Zg is guaranteed by Ward-Takahashi identities, which (in dimen-

sional regularisation) are valid in gauge theories to all orders. To get finite results for

physical observables, the constants Zψ and ZG and Zg have to be chosen such that they

cancel the UV-divergencies from loop integrals. Consider the correction to the gluonic

(a) Quark bubble insertion (b) Gluon bubble insertion

(c) Gluon tadpole insertion (d) Ghost bubble insertion

Figure 2.2: One-loop corrections to the gluon propagator

two-point Green’s function with momentum q given by the production and anihilation
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of a quark pair (see figure 2.2a)4. According to Feynman rules, in Feynman-gauge this

diagram is given by

Πµν
ab (q) =

gµρ

q2
δabTr(T

cT c)µ4−D g
ν
ρ

q2
Σq(q), (2.40)

with

−iΣq(q) = −αs
∫
dDℓ

Tr(/ℓγµ(/ℓ − /q)γµ)

(ℓ2 + iε)((ℓ− q)2 + iε)
, (2.41)

where αs =
g2s
4π
. Using Feynman parameters, this becomes

Σq(q) = −4iαs

∫ 1

0

dx

∫
dDℓ

Tr
(
/ℓγµ(/ℓ − /q)

)
((ℓ+ xq)2 −M2)2 + iε

, (2.42)

where M2 = −q2x(1− x). In order to simplify the denominator, the integration variables

are redefined ℓ → ℓ + xq. By a Wick rotation, i.e. integrating ℓ0 over a closed contour

containing the real axis, the imaginary axis and a closure at infinity where the integrand

vanishes, the integral over the real axis can be replaced by an integral over the imaginary

axis which makes space-time Euclidean

Σq(q) = −4αs

∫ 1

0

dx

∫
dDℓE

−x(1− x)q2

(ℓ2E +M2)2 − iε
, (2.43)

where the spinor algebra has been carried out and parts linear in ℓ vanish due to symmetry.

Note that the Wick rotation is only possible because we carried along the iε terms, which

we can set to zero now. By using a Schwinger parameter the integrand is written as an

exponential

Σq(q) = 4αs

∫ 1

0

dxx(1− x)q2
∫

dDℓE

∫ ∞

0

dλλe−λ(ℓ
2
E+M2) (2.44)

= 4αs

∫ 1

0

dxx(1− x)q2
∫ ∞

0

dλλe−λM
2

(∫
dℓ0Ee

−λ(ℓ0E)
2

)D
. (2.45)

This is now a Gaussian integral, which can be solved before integrating over the

Schwinger parameter

Σq(q) = 4αsΓ(2−
D

2
)πD/2q2

∫ 1

0

dx(1− x)x(M2(x))
D−4
2 . (2.46)

This term has to be multiplied with the number of quarks nf running in the loop. Simi-

4This contribution is individually gauge invariant because by contrast to the others, it scales with
the number of light fermions Nf .
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larly, the other contributions to the gluon propagator can be computed [58]. The sum of

these contributions gives

Πµν
ab =

1

q2
gµνδab

αs(4π
D
2
−2)Γ(2− D

2
)qD−4

µD−4

Γ(D/2)2

Γ(D)

(
5CA
3

− 2nf
3

)
, (2.47)

which is divergent in four dimensions due to the pole of the Γ(2 − D
2
) at D = 4. The

counter terms have to cancel this divergence.

There are several schemes how to do this, with the modified minimal subtraction

scheme (MS) being the most frequently used in QCD calculations. In this scheme, the

pole is subtracted together with a constant finite contribution coming from the pole

1

ϵ
+ log(4π)− γE, (2.48)

where γE is the Euler-Mascheroni constant. The renormalisation constant ZG is then

chosen as

ZG = 1− αsπ
D
2
−2Γ

(
2− D

2

)(
5CA
3

− 2nf
3

)
. (2.49)

In a similar manner, the other renormalization constants can be computed [97]

Zψ = 1− αsπ
D
2
−2Γ

(
2− D

2

)
CF , (2.50)

ZgZψZ
1
2
G = 1− αsπ

D
2
−2Γ

(
2− D

2

)
(CF + CA) . (2.51)

The renormalised and bare couplings are related in the following way:

α0
s = µ2ϵαs(µ

2)

(
1− αs(µ

2)

2π

β0
ϵ
+ ...

)
. (2.52)

Up to two loops, this relation becomes [98]

α0
s/µ

2ϵ = αs(µ
2)

(
1− αs(µ)

2π

β0
ϵ
+

(
αs(µ

2)

2π

)2(
β2
0

ϵ2
− β1

2ϵ

)
+O(α3

s(µ
2))

)
, (2.53)

where

β0 =
11CA − 2nf

6
, β1 =

17C2
A − 5Canf − 3CFnf

6
. (2.54)

It is, in fact, possible to absorb the field-renormalisations into a redefinition of fields. The

renormalised amplitudes can then be computed by expressing the bare coupling in terms

of the renormalized coupling, up to the total required order in αs.



2.4. RENORMALISATION 29

2.4.2 Choice of the Renormalisation Scale & Running

Couplings

Physical observables computed exactly are independent of the renormalisation scale, since

it is only an artefact of the renormalisation procedure. This is, however, not true for

their perturbative expansion. Thus, varying the renormalisation scale shifts contributions

between different orders in the expansion. As is given in eqn. (2.47), the µ-dependence of

the one-loop vacuum polarisation is of the form(
q2

µ2

)−ϵ

Γ(ϵ)(4π)−ϵ =
1

ϵ
+ log(4π)− γE − log

(
q2

µ2

)
+O(ϵ). (2.55)

In the MS-scheme, the constant piece cancels against the counter term contribution leaving

the finite piece to be− log
(
q2

µ2

)
. Such logarithms recur at all orders in perturbation theory

and can be potentially large when the renormalisation scale is far from the physical scales

of the process. Thus, in order for the fixed-order computation to be a good approximation,

the renormalisation scale should be similar to the physical scales of the process, e.g. here

the optimal scale choice is µ2 = q2.

For simple processes such as e+e− → µ+µ− in QED, it can be shown that the vacuum

polarisation contributions to the amplitude at all orders can be resummed into the leading

order term by the choice µ = s, where s is the center of mass energy [99].

Respecting such optimal choices of the renormalisation scale has an important conse-

quence: the renormalised couplings will depend on the energy scale of the process. The

bare coupling a0s is a constant of the theory and hence is independent of the renormalisa-

tion scale

∂α0
s

∂µ2
= 0. (2.56)

This leads to a differential equation for the renormalised coupling

0 = µ(2+2ϵ)∂α
0
s

∂µ2
= µ2∂αs(µ

2)

∂µ2

(
1− 2

αs(µ)

4π

β0
ϵ

)
+ ϵαs(µ)

(
1− αs(µ)

4π

β0
ϵ

)
O(α3

s) (2.57)

⇒∂αs(µ)

∂µ2
= −α

2
s

4π

β0
µ2

+O(ϵ). (2.58)

This equation can be solved, giving

αs(µ) =
αs(µ0)

1 + β0αs(µ0) log(
µ2

µ20
)
. (2.59)

Since β0 > 0, this implies that at the MeV scale, we have αs ≳ 1 and the theory cannot

be approximated by perturbative expansion in αs. At higher energies, we have αs < 1
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and hence partons behave like weakly coupled particles (asymptotic freedom) [100, 101].

For QED, however, it is found that ∂αe

∂µ
> 0 and hence the coupling increases for large

energies. At the energy scales of current and planned collider experimentsm however, the

expansion parameters are small enough for the perturbation series to approximate the

result.

2.5 Cross-Sections from Scattering Amplitudes

The topic of this thesis are scattering amplitudes. The physical observables measured

at the LHC, however, are scattering cross sections. We will therefore briefly review how

these objects are related.

Cross sections are given by phase space integrals over squared matrix elements. For

2 → n elementary particle scattering with initial momenta k1, k2 with masses m1,m2

and final state momenta k1f , ..., k
n
f with masses mf

1 , ...,m
f
n, the differential cross section

(summed over polarisations and colours) is given by [102,103]

dσi→f =
1

S

1√
(k1k2)2 − (m1)2(m2)2

dφn(k1, k2, k
1
f , ..., k

n
f )|Mfi|2, (2.60)

where S is a symmetry factor that avoids double counting of identical particles and the

flux factor
√
(k1k2)2 −m2

1m
2
2 is a measure of the number of particles that pass each other

per area and time. The phase space measure dϕ is given by

dφn(k1, k2, k
1
f , ..., k

n
f ) =(2π)4δ4

(
k1 + k2 −

∑
j

kfj

)
(2.61)

×
∏
j1

d4kfj1
(2π)3

δ
[
(kfj1)

2 − (mf
j1
)2
]∏
j2

d4kj2
(2π)3

δ
[
(kj2)

2 − (mj2)
2
]

accounting for the space of possible initial- and final-state momenta.

2.5.1 Final State Radiation

Cross sections for a fixed number of massless particles in the final state cannot be measured

directly, because this would require, for instance, to distinguish a charged particle from the

photons of the electrical field surrounding it. This, however, is not possible experimentally.

As a consequence, final states where massless particles cannot be resolved are physically

equivalent and have to be summed, integrating over their unresolved phase-space.

In this sense, additional particles in the final state are considered as radiative correc-

tions to a process rather than as a different process. For a process with a final state f ,
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the physical cross section is given by

σ2→f,phys =
∞∑
j=0

∫
dΦf+jσ2→n+jJ(Φf , xn+1, ..., xn+j, 0, ..., 0), (2.62)

where the variables x integrate over the regions of phase-space where the additional par-

ticles {1, ..., j} cannot be resolved. The function J must have the limit

lim
xi→0

J(Φf , {x}) = J(Φf ) (2.63)

and can be used e.g. to cluster strongly interacting particles in the final state into jets.

The definition of an observable depends on the choice of J , which therefore has to be

chosen consistently between theory calculations and experiments. Physical observables

have to be defined as infrared save, i.e. such that physically indistinguishable states are

summed over. For such observables, the infrared divergences in theory calculations cancel

and only such observables can be measured experimentally.

2.5.2 Fixed-Order Computations

Both the cross-section and the amplitudes of a process can be expanded in terms of

fundamental coupling constants. For a 2 → n amplitude which is expanded in some

coupling constant g, this expansion is given by

A2→n = F (g)
(
A(0) + g2A(1) + g4A(2) +O(g6)

)
, (2.64)

where A(L) corresponds to an L−loop amplitude and F (g) is the coupling structure of the

tree-level amplitude. Amplitudes with additional final state radiation have extra powers

of the coupling constant

A2→n+j = F (g)gj
(
A(0) + g2A(1) + g4A(2) +O(g6)

)
. (2.65)

Thus, all squared amplitudes needed to calculate the physical cross-section for A2→n to

order F (g)g4 are

|A2→n|2 = F 2(g)
[
|A(0)

2→n|2 + g2A
(0)∗
2→nA

(1)
2→n + g2A

(1)∗
2→nA

(0)
2→n (2.66)

+ g4A
(2)∗
2→nA

(0)
2→n + g4A(0)∗A

(2)
2→n + g4|A(1)

2→n|2 +O(g6)
]
,

|A2→n+1|2 = F 2(g)
[
g2|A(0)

2→n+1|2 + g4A
(0)∗
2→n+1A

(1)
2→n+1 + g4A

(1)∗
2→n+1A

(0)
2→n+1 +O(g6)

]
,

(2.67)

|A2→n+2|2 = F 2(g)
[
g4|A(0)

2→n+2|2 +O(g6)
]
. (2.68)
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Inserting this into eqn. (2.60) and performing the summation of eqn. (2.62) we find for

the infrared save observable

σ2→n,phys =
F (g)2√

(k1k2)2 − (mi
1)

2(mi
2)

2

[∫
dΦn|A(0)

2→n|2J (2.69)

+ g2
[(∫

dΦnA
(0)∗
2→nA

(1)
2→nJ + A

(1)∗
2→nA

(0)
2→nJ

)
+

(∫
dΦn+1|A(0)

2→n+1|2J
)]

+ g4
[ ∫

dΦnA
(2)∗
2→nA

(0)
2→n + A(0)∗A

(2)
2→nJ + |A(1)

2→n|2J

+
( ∫

dΦn+1A
(0)∗
2→n+1A

(1)
2→n+1J + A

(1)∗
2→n+1A

(0)
2→n+1J

)
+

∫
dΦn+2|A(0)

2→n+2|2J
]
+O(g6)

]
,

where we dropped the arguments of J . The amplitudes A(n) each contain infrared diver-

gences for n > 0, i.e. they can only be defined as the (singular) limits of their regularised

versions (see section 2.3.1). The same is true for the phase space integrals which become

singular when the unresolved particles have zero energy (soft divergence) or are parallel

to the final state particles (collinear divergence). It turns out, however, that these diver-

gences cancel against each other at each order in perturbation theory, which is proven by

the Kinoshita-Lee-Nauenberg theorem [87,104]. Thus, the complete terms proportional to

F (g)g2 and F (g)g4 are finite5. Since the integrations over the phase-spaces are typically

carried out numerically, making these cancellaions explicit is a highly non-trivial problem

which is actively being investigated (see e.g. [27,105–113]). This applies, in particular, for

processes whose final states contain several light partons. Recently, such a cross-section

computation was carried out at NNLO for three strongly interacting particles in the final

state for the first time [27]. In this work, however, we focus on another bottleneck of the

computation: the two-loop amplitudes A
(2)
2→n.

2.5.3 Parton Model

At the LHC protons are collided instead of elementary particles. At sufficiently high

energies, however, the strong coupling constant becomes small (see section 2.4), so that

the process can be modelled as the constituents colliding as free particles [114,115] . The

constituents, however, will only carry a fraction of the protons momentum.

To obtain predictions for a proton-proton collision the partonic cross-section therefore

has to be equipped with the parton distribution functions (PDFs) fP,p(x, µF ), describing

the probability that the proton P contains a parton p carrying the momentum fraction

x. These functions depend on the energy scale µF at which the protons scatter.

5Assuming that the ultraviolet divergences are removed through renormalisation (see section 2.4)
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The differential cross-section is then given by

dσPP→f (k1, k2, {kf}) = dx1dx2
∑
p1,p2

fP,p1(x1, µF )fP,p2(x2, µF )
dσp1,p2→f (x1k1, x2k2, {kf})

dx1dx2
.

(2.70)

These PDF’s cannot be computed in perturbation theory, since QCD is non-perturbative

at the binding energy of the proton. Instead, they are typically extracted from measure-

ments6. The dependence of the PDFs on the scale µF can however be computed per-

turbatively by Dokshitzer-Gribow-Lipatow-Altarelli-Parisi evolution equations [118–120]

(DGLAP). It is therefore possible to measure the PDFs at one energy scale and extrap-

olate to another, or combine data from different scales to fit PDFs. In addition to the

PDFs, strongly interacting final states will radiate additional strongly interacting parti-

cles due to the strength of their interaction and eventually form hadrons. Therefore, in

a particle detector multi-particle jets are observed instead of elementary quarks and glu-

ons. This multi-particle creation from a single parton is modelled in parton showers (see

e.g. [121]) and hadronisation models (see e.g. [122–124]). These have to be multiplied to

the partonic cross-section and merged carefully with real radiation corrections, avoiding

double counting. Since this work focusses on amplitudes, however, we will not go into

details of PDF evolution, parton showers or hadronisation here.

6An alternative could be to use lattice QCD for PDF determination (see e.g. [116, 117] for recent
reviews), which however is not competitive to this day.



Chapter 3

Multi-Loop Feynman-Integrals

So far, we have reviewed the definition of scattering amplitudes and how they can be

computed using Feynman rules. In this approach, however, a number of challenges appear

for increasing the number of loops and/or external legs: First, drawing all diagrams and

applying Feynman rules can be algebraically very complicated due to the factorial growth

of diagrams with loops and external legs. Second, reducing Feynman diagrams to a basis

of master integrals via integration-by-parts reduction leads to enormous equation systems.

Finally, the remaining multi-dimensional master integrals are difficult to integrate.

In this chapter, we will review integral reduction and the powerful approach of differ-

ential equations used for the computation of master integrals.

3.1 Integral Reduction

In this thesis we are concerned with Feynman integrals defined in dimensional regularisa-

tion which have at most two loops and whose propagators are massless. Therefore, their

most general form is

I =

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

N(ℓ1, ℓ2)

ϱe11 · · · ϱenn
, (3.1)

where

ϱj = (αj1ℓ1 + αj2ℓ2 + βj1k1 + ...+ βjnkn)
2

are the inverse propagators with αji , β
j
i ∈ {−1, 0, 1}. N is a polynomial in loop momenta

and the exponents ej ∈ N>0.

Note that in this context, propagators involving only external momenta are factored

from the integral and only the loop-momentum dependent denominators are considered

the denominator of the integrand. In the following, the term inverse propagator will refer

to loop-momentum dependent inverse propagators unless explicitly stated otherwise.

Conventionally, Feynman integrals sharing the same set of inverse propagators are

34
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defined to belong to the same integral topology. Such topologies are denoted according

to the number of propagators involving ℓ1, respectively ℓ2. Integrals involving n internal

propagators that depend on ℓ1 and k propagators depending on ℓ2 are called a n− k-gon

integral. If these propagators involving ℓ1, respectively ℓ2 do not overlap, the integrals

over the loop momenta factorise, and hence such a topology is called factorising. If there

is exactly one propagator involving both ℓ1 and ℓ2, the topology is called planar and

diagrams which are neither factorizing nor planar are called non-planar. It is conven-

tional to denote mono-, di-, tri- and tetragons as tadpoles, bubbles, triangles and boxes,

respectively. Two-loop diagrams have one or two nodes, i.e. vertices which are attached

to propagators containing only ℓ1 as well as propagators involving only ℓ2.

We denote topologies as simple if no external lines are attached to the nodes, generic

if external lines are attached to all nodes and semi-simple else (see figure 3.1 for example

topologies).

(a) Simple planar BoxBox (b) Semi-simple non-
planar BoxPentagon

(c) Generic factorizing
TriangleBox

Figure 3.1: Examples of our naming convention for topologies.

There are some graph-theoretic symmetries between the diagrams; e.g. a n−k-gon and

a k − n-gon can be transformed into each other by exchanging ℓ1 and ℓ2. Similarly, non-

planar n−triangles are related to planar (n− 1)-triangles by substituting ℓ2 → −ℓ2 − ℓ1.

We consider topolgies only modulo these symmetries.

Some diagrams are related in a more subtle way. In particular, a semi-simple n−bubble

with momentum p1 attached to one of the nodes and p2, ..., pn−1 on the loop is equal to a

(graph-theoretically) different n−bubble with pn attached to the node (see figure 3.2 for

an example 3.2). For technical reasons, these topologies are considered as different.

After Feynman integrals and their possible numerators are defined, the first step is to

find as many relations between these integrals as possible, leaving a minimal independent

basis of integrals to be computed.

This is done both at integrand and integral level. In this section we will review the

concepts of integrand level reduction, in particular the decomposition of scalar insertions

into inverse propagators and irreducible scalar products. Moreover, the reduction at

integral level through integration-by-partsrelations (IBPs) will be discussed.
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Figure 3.2: Two seemingly different integral topolgies which turn out to be equivalent.

3.1.1 Passarino-Veltmann Reduction

At first we will review relations between different integrands following the discussion of

Passarino and Veltman [125].

The numerators N(ℓ1, ℓ2) of the integrand are a polynomial in the loop-momenta ℓ

and can be expressed in a basis of scalar products ℓi · ℓj, ℓi · kj, where kj are exter-

nal momenta and ℓj · nj, where the nj describe the D-dimensional vectors transverse

to the scattering plane, i.e. the space spanned by the ki. The nj are conveniently nor-

malised to ni · nj = δij. Many of these scalar products are linear combinations of inverse

propagators, hence the coordinate set which is used to describe numerators is chosen as

{ϱ1, ..., ϱn, α1, ..., αa, β1, ..., βb, nj · ℓi} [126]. The products of loop momenta with the trans-

verse vectors ℓi · nj are denoted transverse irreducible scalar products (transverse ISPs)

while the non-transverse ISPs αj, βj are a basis of scalar products of loop-momenta with

external momenta which cannot be reduced to a linear combination of inverse propagators.

In terms of these coordinates, the numerator can then be expressed as

N = ∆({α}, {β}, {ℓi · nj}) +
∑
j

fj(ℓ1, ℓ2)ϱj, (3.2)

where both ∆ and fj are polynomials. All terms proportional to an inverse propagator ϱj

cancel with the denominator and hence correspond to Feynman integrals in topologies with

fewer propagators, conventionally called descendant topologies. Conversely, a topology is

called an ancestor topology of another topology if the latter is a descendant of the first1.

In Passarino-Veltman reduction these terms are split off and merged with the inte-

grands of descendant topologies, such that the remainder ∆ only depends on transverse

and non-transverse ISPs. Equivalently, instead of ISPs it is possible to use quadratic

terms, e.g. instead of ℓ1 · k4 one can use (ℓ1+ k4)
2 if ℓ21 is an inverse propagator, providing

a more uniform treatment of propagators and ISPs.

To illustrate the treatment of the terms involving transverse ISPs n · ℓ, we consider

the one-loop box diagram in D dimensions where the four inverse propagators are given

1In the literature ancestor and descendant topologies are sometimes also denoted parent and daughter
topologies.
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by

ϱ1 = ℓ2 −m2
1, ϱ2 = (ℓ− k1)

2 −m2
2, (3.3)

ϱ3 = (ℓ− k1 − k2)
2 −m2

3, ϱ4 = (ℓ− k1 − k2 − k3)
2 −m2

4. (3.4)

In this example, all scalar products of loop and external momenta as well as ℓ2 can be

expressed through inverse propagators

ℓ2 = m2
1 + ϱ1, (3.5)

ℓ · k1 =
1

2

(
−ϱ2 + ϱ1 −m2

2 + k21
)
, (3.6)

ℓ · k2 =
1

2

(
−ϱ3 + ϱ2 −m2

3 +m2
2 + 2k1 · k2 + k21 + k22

)
, (3.7)

ℓ · k3 =
1

2

(
−ϱ4 + ϱ3 −m2

4 +m2
3 + 2k1 · k3 + 2k2 · k3 + k3 · k3

)
, (3.8)

k4 · ℓ1 =− (k1 + k2 + k3) · ℓ, (3.9)

hence the remaining numerator ∆ only depends on transverse ISPs ni · ℓ.
These vectors can be split into a four-dimensional vector n4 and vectors niϵ which

are transverse to the four-dimensional plane. The (D − 4)-dimensional parts of ℓ can

only enter into the numerator through squaring of the loop momentum, hence the scalar

products niϵ · ℓ appear exclusively as the (D − 4)-dimensional modulus

µ2 =
∑
i

(niϵ · ℓ)2. (3.10)

Expanding the loop momentum in terms of the external momenta and nj

ℓ =
3∑
j=1

kj + a4n4 +
∑
i

aiϵn
i
ϵ, (3.11)

gives coefficients ai = G−1
ij ℓ · pj, where p1,2,3 = k1,2,3 and p4,5,6,... = n4, n

1,2,...
ϵ while G =

{pi · pj} is the Gram matrix of the external momenta and the nj
2.

Inserting this expansion into the first inverse propagator gives

ℓ2 = (n4 · ℓ)2 +
∑
i

(niϵ · ℓ)2 +
∑
i,j

G−1
ij (ki · ℓ)(kj · ℓ), (3.12)

⇒ (n4 · ℓ)2 + µ2 = constant+inv. propagators. (3.13)

Hence all insertions in µ2 can be reduced to insertions in the transverse momentum n4 · ℓ,

2For i > 3 or j > 3, this matrix becomes δij such that inversion is possible despite it being formally
infinite dimensional.
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the constant numerator and descendant integrals. In the multi-loop case, the number

of propagators and the number of external legs do not coincide, hence some of the non-

transverse scalar products ki · ℓj are ISPs themselves. Thus, the relevant variables are

transverse and non-transverse ISPs. A basis of numerators is given by all monomials in

these ISPs up to some maximal degree.

3.1.2 Integral-Level Reduction

Passarino-Veltman reduction allowed to e.g. reduce the integrand basis for the one-loop

box diagram to be evaluated from 126 to five (not counting descendant topologies), namely

the numerators (ℓ·n4)
n, n ∈ {0, 1, 2, 3, 4}. Although this is a great simplification, the com-

putation of the remaining integrals is still difficult, especially at multi-loop level. In this

section we will review how further reduction is possible employing traceless completions

following from Lorentz invariance and (more generally) integration-by-parts relations.

Traceless Completions

Integrals which are different at integrand level can still be related in their integrated form.

As an example for such an identity consider the integrals

I1 =

∫
dDℓ1d

Dℓ2
(ℓ1 · k)2
ℓ21ℓ

2
2

, I2 =

∫
dDℓ1d

Dℓ2
(ℓ2 · k)2
ℓ21ℓ

2
2

. (3.14)

Evidently I1 = I2, although ℓ1 · k ̸= ℓ2 · k and the denominator does not permit a further

reduction. For the computation of scattering amplitudes it is extremely useful to find and

apply such relations in order to reduce the computational effort.

As an example, we consider again the one-loop box, whose integrand basis in YM-

theories is given by

{1, n4 · ℓ, (n4 · ℓ)2, (n4 · ℓ)3, (n4 · ℓ)4}. (3.15)

Odd powers of n4 · ℓ are antisymmetric in the component of ℓ parallel to n4. Propa-

gators, on the other hand, are quadratic in these components, hence the integrand is

anti-symmetric and therefore vanishes upon integration. Another integral-level identity

allows the complete reduction of even powers. If the integrand does not explicitly de-

pend on transverse vectors, the rotational symmetry between transverse vectors prohibits

that the integral depends on them and thus it can be parametrised with the metric and

external momenta only∫
dDℓ1
iπD/2

dDℓ2
iπD/2

N(ℓ1, ℓ2, {k})ℓµaℓνa
ϱe11 · · · ϱenn

= c0g
µν +

∑
i,j

ci,jk
µ
i k

ν
j . (3.16)
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Contracting both sides with nµj n
ν
j −

gµν
[D−4]

D−4
(without summation over j), where

gµν[D−4] = gµν for µ, ν > 3, 0 else (3.17)

gives [127]

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

N(ℓ1, ℓ2, {k})
(
(ℓa · nj)2 − µaa

D−4

)
ϱe11 · · · ϱenn

= 0. (3.18)

Similarly, relations for any even power of ℓi · nj can be created by contracting products

of loop-momenta
∏

j ℓ
µj
kj

with the tensors

nµ1j · · ·nµnj − 1

n

1

D − 4

∑
σ∈perm. of(1,...,n)

g
µσ(1)µσ(2)

[D−4] n
µσ(3)

j · · ·nµσ(n)

j . (3.19)

These tensors vanish when contracted with gµiµj , hence the name traceless. The resulting

relations, called traceless completions, allow to reduce the dependence on transverse ISPs

for all integrals. For example, this allows to completely reduce the box-integral to the

scalar numerator 1.

Integration-by-Parts Reduction

There are additional relations between integrals depending on non-transverse ISPs. Such

relations were first constructed and applied by Chetrykin and Tkachov [128] by applying

derivatives to the integrand: ∫
dDℓ1
iπD/2

· · · d
DℓL
iπD/2

∂

∂ℓµa

N

ϱ1 · · · ϱN
. (3.20)

By Stokes theorem such integrals give boundary terms∫
dDℓ1
iπD/2

· · · d
D−1ℓa
iπD/2

· · · d
DℓL
iπD/2

N

ϱ1 · · · ϱN

∣∣∣ℓµa = ∞
ℓµa = −∞. (3.21)

In dimensional regularisation, these boundary terms are treated to be zero since for each

integral there is a dimensional parameter D′ ∈ R such that for Re(D) < D′ these surface

terms are zero. Analytically continuing in D, starting from this region, the boundary

terms vanish in all dimensions [129]. Since Feynman integrals have no branch cuts in D,

the analytical continuation is independent from the starting point.

When applying such derivatives to integrals with fixed dimension in a finite theory, or

a four-dimensional regularisation involving e.g. a cut-off, non-vanishing boundary terms

have to be taken into account [130]. Since Stokes theorem is only valid for finite inte-

grals, it is furthermore necessary to regularise IR divergences formally before applying



40 CHAPTER 3. MULTI-LOOP FEYNMAN-INTEGRALS

derivatives. While this requires some care in other regularisation schemes, IR divergences

are automatically regularised in dimensional regularisation (see section 2.3.1). Taking

eqn. (3.20) and expanding the derivative gives a vanishing sum of integrands, i.e. a linear

dependence. Such relations are known as integration-by-parts (IBP) relations [128]. The

standard procedure to reduce integrals via such relations is Laporta’s alorithm. The idea

is to apply all derivatives kµ · ∂
∂ℓaµ
, ℓbµ · ∂

∂ℓaµ
to a set of monomials and reduce the resulting

linear system [131].

This allows, for example, to reduce one-loop integrals with arbitrary propagator powers

to integrals where all propagators have power one, e.g. for the massless one-loop box [132]∫
dDℓ

iπD/2
1

ϱ21ϱ2ϱ3ϱ4
=
D − 5

s

∫
dDℓ

iπD/2
1

ϱ1ϱ2ϱ3ϱ4
− 4(D − 5)(D − 3)

(D − 6)st2

∫
dDℓ

iπD/2
1

ϱ2ϱ4
, (3.22)

where s = (k1+k2)
2, t = (k1−k3)2 and ϱ are the inverse propagators from eqn. (3.3) with

mj = 0. IBP-reduction furthermore allows to reduce triangles with two massless legs to

bubbles [132] ∫
dDℓ

iπD/2
1

ϱ1ϱ2ϱ4
=

2(D − 3)

(D − 4)t

∫
dDℓ

iπD/2
1

ϱ2ϱ4
, (3.23)

with the inverse propagators defined in eqn. (3.3). In the multi-loop case, IBPs reduce

all possible numerators down to a small number of irreducible integrals. These remaining

integrals are then called master integrals.

For two-loop processes with five external momenta, typically O(100) different mono-

mials per topology contribute to the amplitude, while most topologies have zero to two

master integrals, with a few exceptions where up to nine masters have to be computed.

In principle, IBP-relations between different topologies on the same level are possible.

For example, this can occur when a derivative applied to an integral gives only terms which

are integrals in the descendant topologies. This could lead to cases where the master

integrals of two topologies which are only related by common ancestors are dependent

[133]. We find it convenient, however, to consider the topologies one by one, reducing

each topology to its own masters and descendants and therefore not considering such

relations.

Solving the linear systems obtained by such generic derivatives is challenging in gen-

eral, since the relations span a huge function space. In fact, the reduction to master

integrals is a bottleneck in the computation of multi-loop amplitudes. There are many

publicly available programs which automate this procedure, such as Fire [134], Re-

duze [135], LiteRed [136] or Kira [137]. However, for two-loop integral topologies with

more than four kinematic invariants these programs are computationally intense.

We therefore use an alternative approach: unitarity compatible IBP-relations (see
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chapter 4) combined with numerical unitarity (see section 5.5).

3.2 The Differential Equation Approach to Master

Integrals

Integration-by-parts reduction allows to reduce the large amount of Feynman-Integral

numerators to a relatively small number of master integrals. These master integrals can

be computed via direct integration (see e.g. [138–143]), or with the method of differential

equations [29,30,144–146].

Multi-loop amplitude computation consists of computing sets of master integrals and

expressing amplitudes through them. This work focusses on the latter part, i.e. expressing

amplitudes in terms of master integrals. Nevertheless, since we will exploit some prop-

erties of the master integral basis chosen and since the master integrals themselves are

an important ingredient in the computation, we will briefly review how they have been

computed for the processes that we consider. Specifically, we will review the approach of

differential equations in their canonical form [31] which has demonstrated great success

in the computation of multi-loop master-integrals.

In the previous section, derivatives with respect to loop momenta have been a applied

to Feynman integrands. Similarly, the integrals (or equivalently the integrands) can be

differentiated with respect to an external momentum

I = kµi
∂

∂kµj

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

N(ℓ1, ℓ2)

ϱ1 · · · ϱn
(3.24)

=

∫
dDℓ1
iπD/2

dDℓ2
iπD/2

kµi ∂
∂kµj

N(ℓ1, ℓ2)

ϱ1 · · · ϱn
−
∑
i

N(ℓ1, ℓ2)k
µ
i

∂
∂kµj

ϱi

ϱ1 · · · ϱ2i · · · ϱn

 ,

where the objects on the right hand side are again Feynmn integrals, in the same topology

or its descendants. Typically, the derivatives are not taken w.r.t. external momenta but

kinematic invariants ∂
∂sij

= (
∂soj
∂kµn

)−1 ∂
∂kµn

. As was discussed in the previous section, all

integrals in a topology and its descendants can be reduced to a basis of a few master

integrals.

Differentiating such a basis f⃗({sij, D) w.r.t. kinematic invariants and reducing the

r.h.s. back to the basis therefore gives a linear partial differential equation of first order

[29,30,144–146]

∂sij f⃗({sij}, D) = Asij({sij}, D)f⃗({sij}, D). (3.25)
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For example, for the massless one-loop box with the master integral basis

f⃗(s, t,D) =
(∫

dDℓ
iπD/2

1
ϱ2ϱ4

,
∫

dDℓ
iπD/2

1
ϱ1ϱ3

,
∫

dDℓ
iπD/2

1
ϱ1ϱ2ϱ3ϱ4

)T
, (3.26)

the differential equations are given by

∂sf⃗(s, t,D) =

 0 0 0

0 D−4
2s

0
−2(D−3)
st(s+t)

2(D−3)
s2(s+t)

−2s+t(D−6)
2s(s+t)

 f⃗(s, t,D), (3.27)

∂tf⃗(s, t,D) =


D−4
2t

0 0

0 0 0
−2(D−3)
t2(s+t)

−2(D−3)
st(s+t)

−2t+s(D−6)
2t(s+t)

 f⃗(s, t,D). (3.28)

Instead of directly integrating the Feynman integrals in loop-momentum space, their solu-

tion can be obtained by solving this differential equations and fixing boundary conditions.

3.2.1 Differential Equations in Canonical Form

During IBP-reduction a choice has to be made as to which integrals are considered as mas-

ter integrals. Moreover, it is always possible to multiply master integrals with functions

in the kinematic invariants and D, since such functions factorise from the IBP-reduction.

It is desirable to exploit this non-uniqueness of master-integrals in order to find a basis

for which the differential equation is particularly simple.

From the structure of Feynman integrals it is natural to expect that near a singular

variety described by a polynomial W ({sij}) = 0, the integral behaves like W ({sij})−n for

some n ∈ Z, i.e. that the system of differential equations is Fuchsian.

If this is the case, there is always a linear transformation g⃗ = A({sij}, D)f⃗ such that

the differential equation for an arbitrary combination of kinematic invariants x becomes

∂xg⃗ =

(
1

W ({sij})
A(D) +O(W 0)

)
g⃗, (3.29)

where A(D) is a matrix depending only on the dimension D. It turns out that this can be

done for all singularities at the same time, reducing the differential equation to the sum3

∂xg⃗({sij}, D) =

(∑
i

∂xWi

Wi

Ai(D) + p(sij, D)

)
g⃗({sij}, D), (3.30)

where p is a polynomial in the kinematic invariants. This polynomial can be removed by

introducing additional (rational) Wi.

3The objects ∂Wi

Wi
= ∂x log(Wi) are often referred to as dlog forms.



3.2. THE DIFFERENTIAL EQUATION APPROACH TO MASTER INTEGRALS 43

In most cases, in particular in phenomenological applications, master integrals are

studied close to four dimensions, i.e. they are expressed in terms of ϵ = 4−D
2

and expanded

for small ϵ. Therefore, a particularly convenient form of the differential equation is to

have the epsilon-dependence factorised from the integral, such that the derivatives are of

higher order in ϵ than the integral itself. If this is the case and, at the same time, the

integral can be written in the form of eqn. (3.30) [147], the basis is called pure and the

differential equation in its canonical form is given by [31]

d

dx
g⃗({sij}), ϵ) = ϵ

∑
i

∂xWi

Wi

Aig⃗({sij}, ϵ), (3.31)

where the Ai are constant matrices, i.e. they contain only rational numbers. The Wi in

such a basis are called letters of the symbol alphabet. In the one-loop massless box example

discussed above, such a basis is given by

g1 = ϵeϵγE(−s)ϵt
∫

dDℓ

iπD/2
1

ϱ2ϱ24
, (3.32)

g2 = ϵeϵγE(−s)ϵs
∫

dDℓ

iπD/2
1

ϱ1ϱ23
, (3.33)

g3 = ϵ2eϵγE(−s)ϵst
∫

dDℓ

iπD/2
1

ϱ1ϱ2ϱ3ϱ4
, (3.34)

which fulfils the (canonical) differential equation

∂xg⃗ = ϵ

∂xW1

W1

−1 0 0

0 0 0

−2 0 1

− ∂xW2

W2

−1 0 0

0 0 0

−2 0 1

− b
∂xW3

W3

0 0 0

0 0 0

2 2 1


 g⃗, (3.35)

with the three letters W1 = s,W2 = t,W3 = t
s+t

. The advantage of such a differential

equation with factorized ϵ is that the pieces of the ϵ expansion can be computed recursively.

With

g⃗ =
∑
i

g⃗iϵ
i, (3.36)

the individual terms are given by

g⃗n+1(sij) = g⃗n+1(s
0
ij) +

∫ sij

s0ij

(∑
j

∂s′ijWj

Wj

g⃗n(s
′
ij)

)
ds′ij. (3.37)

The boundary conditions g⃗n(s
0
ij) can be found either by limits in which the integrals are

known (e.g. when external momenta become zero and thus the n−point integral becomes
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an n − 1−point integral) or by demanding certain properties of Feynman integrals such

as the absence of spurious logarithms [34].

The integration can then be done either numerically along a path [34,38–40], through

iterated integral methods in the form of so called pentagon functions [41–43] or analyti-

cally in terms of multiple poly-logarithms [33,36].

There are known cases, in particular elliptic integrals, where no canonical form of the

differential equation exists. Nevertheless, great progress on elliptic integrals has been

made in recent years, partially employing the method of differential equations (see e.g.

[148–166]). For the processes considered in this thesis, however, such bases have been

found in [167] and [42], respectively.

Another advantage of using a pure basis is that the coefficients of integral reduction

in this basis are particularly simple (see section 5.6). In particular, it has been observed

that for pure basis the ϵ-dependence factorises from master-integral coefficients and the

kinematically dependent numerators factor into symbol letters [57].



Chapter 4

Integral Reduction via Generating

Vectors

In the previous chapter we have reviewed integration-by-parts identities. In general,

the function space spanned by these IBP-relations generated by generic derivatives is

unnecessarily larger than the space of functions needed for the integral reduction, making

a direct application of Laporta’s algorithm computationally intense. In this chapter,

we will discuss how integral relations within defined function spaces can be generated

by applying derivatives in special directions described by polynomial vector-fields called

IBP-generating vectors [47]. Besides the smaller function space, another advantage of

this representation is that the relations can be expressed in terms of vector components

which cache the complicated functional dependencies and hence reduce the file-size and

numerical-evaluation time of the sets of relations. We will describe how we compute these

vectors and discuss some observed properties.

4.1 Integration-by-Parts Generating Vectors

Depending on the coordinates employed for the construction of IBP’s, the problem of

a reduced function-space takes different forms. In this section, we will review different

formulations and their respective defining equations for IBP-vectors. In particular, we will

discuss the formulations in loop-momentum space, Baikov-coordinates and a projective

embedding space of the loop momenta.

4.1.1 Fixed Propagator Powers

A general (Lorentz-invariant) IBP-relation is obtained as a divergence

0 =

∫
dDℓ1

(iπ)D/2
· · · dDℓL

(iπ)D/2
∂

∂ℓµa

vµaN

ϱa11 · · · ϱanN
, (4.1)

45
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where ϱaii are the inverse propagators raised to some power ai, while N and vµa are poly-

nomials in the loop-momenta. Applying such derivatives with respect to loop momenta

to Feynman-integrals in general leads to raised propagator powers, since

∂

∂ℓµa

1

ϱaii
= −ai

1

ϱai+1
i

∂ϱi
∂ℓµa

. (4.2)

Feynman rules, however, typically give integrals with propagator powers less or equal to

one1. Therefore, for integral reduction the space of functions can be greatly reduced by

avoiding raised propagator powers. Such IBP-relations without doubled propagators are

in fact also necessary for generalised unitarity (see section 5.5). Therefore, such relations

are denoted as unitarity compatible IBPs [46].

IBP-relations with this property can be obtained by imposing conditions on the vector

fields vµa (ℓb), in particular

vµa (ℓb)
∂ϱi
∂ℓµa

= Pi(ℓb)ϱi ∀i, (4.3)

where the Pi and the vector components vµi are polynomials in the loop momenta [46,47].

Such IBP-generating vectors lead to the relations

0 =

∫
dDℓ1

(iπ)D/2
· · · dDℓL

(iπ)D/2
∂

∂ℓµa

vµaN

ϱa11 · · · ϱanN
(4.4)

=

∫
dDℓ1

(iπ)D/2
· · · dDℓL

(iπ)D/2

vµa

(
∂N
∂ℓµa

)
+N

(
∂vµa
∂ℓµa

−∑i aiPi

)
ϱa11 · · · ϱanN

. (4.5)

One-Loop Example: Massless Box

To exemplify the reduction with unitarity compatible IBP-relations, we consider again

the one-loop box integral

I =

∫
dDℓ

iπD/2
N

ϱ1 · · · ϱ4
. (4.6)

An IBP-generating vector satisfying eqn. (4.3) can be constructed constructed by taking

n4 and components of ℓ which are transverse to the scattering plane and antisymmetrising

over them

vµ = µ2nµ4 − (n4 · ℓ)
[
ℓµ −G−1

ij (ℓ · ki)kµj − (n4 · ℓ)nµ4
]
, (4.7)

where µ2 is the (D−4) dimensional part of the loop-momentum squared (see eqn. (3.10))

and n4 is a vector transverse to the scattering plane with n2
4 = 1. The term proportional

1Exceptions are topologies where two propagators attached to a sub-loop bubble are the same.
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to n4 · ℓ projects ℓ onto the D − 4 dimensional subspace, thereby

vµℓµ = µ2(n4 · ℓ)− (n4 · ℓ)µ2 = 0, vµkjµ = 0 ∀j (4.8)

⇒ vµ
∂

∂ℓµ
ϱi = 0 ∀i. (4.9)

Applying this vector to the integrand with numerator N = n4 · ℓ gives

0 =

∫
dDℓ

iπD/2
∂

∂ℓµ
(n4 · ℓ)vµ
ϱ1 · · · ϱ4

=

∫
dDℓ

iπD/2
1

ϱ1 · · · ϱ4

[
(n4 · ℓ)

(
nµ4
∂µ2

∂ℓµ
− 2nµ4 [ℓµ − (n4 · ℓ)n4,µ]

(4.10)

− (n4 · ℓ)
[
∂ℓµ

∂ℓµ
−G−1

ij Gij − n2
4

])
+ µ2n2

4

]
=

∫
dDℓ

iπD/2
1

ϱ1 · · · ϱ4
(
(4−D)(n4 · ℓ)2 + µ2

)
. (4.11)

This reproduces the traceless completion from eqn. (3.18). We will now consider an

example where ISP’s without transverse vectors nµi are present.

Two-Loop Example: The Sunrise

Consider the two-loop sunrise integral with massive external legs with momentum p

and massless internal propagators

ϱ1 = ℓ21, ϱ2 = (ℓ2 − p)2, ϱ3 = (ℓ1 − ℓ2)
2. (4.12)

This integral topology has eight ISPs

ν1 = ℓ1 · n2, ν2 = ℓ1 · n3, ν3 = ℓ1 · n3, (4.13)

ν4 = ℓ2 · n2, ν5 = ℓ2 · n3, ν6 = ℓ2 · n3, (4.14)

α1 = ℓ1 · p, β1 = ℓ22, (4.15)

where n1,2,3 are chosen such that ni · nj = δij and ni · p = 0. Since the reduction of

transverse ISPs can be achieved through transverse completions, we only consider non-

transvwerse ISPs and IBP-vectors within the space spanned by ℓ1, ℓ2, p

vµa = b1aℓ
µ
1 + b2aℓ

µ
2 + b3ap

µ. (4.16)



48 CHAPTER 4. INTEGRAL REDUCTION VIA GENERATING VECTORS

The condition that propagator powers are not raised (eqn. (4.3)) is thus expressed as

b11ℓ
2
1 + b21ℓ2 · ℓ1 + b31p · ℓ1 = P1ℓ

2
1, (4.17)

b12ℓ1 · (ℓ2 + p) + b21ℓ2 · (ℓ2 + p) + b32p · (ℓ2 + p) = P2(ℓ2 + p)2, (4.18)

b11ℓ1 · (ℓ1 − ℓ2) + b21ℓ2 · (ℓ2 − ℓ2) + b31p · (ℓ1 − ℓ2) (4.19)

+b12ℓ1 · (ℓ1 − ℓ2) + b21ℓ2 · (ℓ1 − ℓ2) + b32p · (ℓ1 − ℓ2) = P3(ℓ1 − ℓ2)
2.

One of the solutions to this system of equations is given by

vµ1 = ℓµ1(ℓ1 · ℓ2 + ℓ2 · p), (4.20)

vµ2 = ℓµ1(ℓ2 · p+ p2) + ℓµ2(ℓ1 · ℓ2 + ℓ1 · p). (4.21)

Applying this vector to a generic numerator gives the IBP

0 =

∫
dDℓ1d

Dℓ2
∂

∂ℓµa

vµaα
e1
1 β

e2
1

ϱ1ϱ2ϱ3
(4.22)

=

∫
dDℓ1d

Dℓ2
1

ϱ1ϱ2ϱ3
(4.23)

×
(
3e1sα

e1βe2+1 + 3e2p
2αe1βe2+1 − 6p2αe1βe2+1 + 2e1α

e1βe2+2 + 3e2α
e1βe2+2

− 6αe1βe2+2 + 2e1α
e1+1βe2+1 + 4e2α

e1+1βe2+1 − 8αe1+1βe2+1
)
+O(ϱ),

where we omitted terms proportional to inverse propagators, because they correspond to

massless tadpole integrals which vanish in dimensional regularisation. It can be shown

that these IBPs, together with the relations generated by a second vector, allow to reduce

all powers of α1 and β1 to the scalar integral (i.e. e1 = e2 = 0) [168].

The defining equations of IBP-generating vectors (eqns. (4.3,4.17)) are linear equations

defined over the ring of polynomials in ℓ. In the context of algebraic geometry, the

solutions to such equations are called syzygies2. We will discuss how these syzygies are

found using Gröbner basis methods in section 4.2.2. Before, however, we will discuss

two other formulations of the syzygy problem, which we find useful for the practical

computation but also for the analysis of IBP-vectors.

4.1.2 Fixed Dimension in Baikov Coordinates

A different approach to the syzygy-problem uses Baikov coordinates [169,170] which triv-

ialise the constraint of doubled propagators. The idea of Baikov coordinates is to use the

inverse propagators and ISPs directly as variables.

For this purpose, first the D − 4 dimensional loop momentum dependence is trans-

2from ancient Greek συζυγια , conjunction, yoked together.
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formed to µ’s

I =

∫
dDℓ1 · · · dDℓL

N(ℓ)

ϱ1(ℓ) · · · ϱN(ℓ)
(4.24)

=F (D)

∫
d4ℓ1 · · · d4ℓL

det


µ11 ... µ1L

...
. . .

...

µ1L ... µLL




(D−5−L)/2∏
1≤i≤j≤L

dµij
N(ℓ)

ϱ1(ℓ) · · · ϱN(ℓ)
, (4.25)

where F (D) is a function that arises from the integration D−n dimensional unit spheres

for some integers n. Since it factorises from the integral, we will omit it in the following.

The desired integration variables are inverse propagators and ISPs. In order to achieve

this, we first use a linear transformation to the inverse propagators and ISPs to a set of

variables {ℓa · ℓb}, {ℓa · pi}, where pi contains the external momenta pi but also the

transverse vectors in four dimensions ni. We then have

∂µab
∂(ℓa · pj)

= 2G−1
ij pi · ℓb,

∂µab
∂(ℓc · ℓd)

= δacδbd + δadδbc, (4.26)

∂ℓµ=0,...,3
b

∂(ℓa · pi)
= const.,

∂ℓµ=0,...,3
b

∂(ℓa · ℓb)
= 0, (4.27)

where G is the Gram matrix of external momenta and n. The last equation is valid since

the pi span the four-dimensional space. The transformation matrix thus can be written

as block-triangular, with the loop-momentum dependent pieces in the off-diagonal block.

Therefore, the total Jacobian is constant.

The linear transformation from the {ℓa · ℓb}, {ℓa · pi} back to inverse propagators and

ISPs evidently also has a constant Jacobian, hence the integral in Baikov coordinates is

given by

I =C

∫
dα1 · · · dαmdϱ1 · · · dϱNB(αj, ϱj)

(D−5−L)/2N({α, ϱ})
ϱ1 · · · ϱN

, (4.28)

where the Baikov Polynomial B(αj, ϱj) is the D − 4 dimensional determinant of {µij}
expressed in terms of the ISPs and inverse propagators. The integration region in µ’s is

defined such that the moduli of (D− 4)-dimensional parts of loop momenta are positive,

i.e. That all eigenvalues of {µij} are positive. In Baikov coordinates, this defines one

component of the space where B > 0. In these coordinates IBP-relations are generated

by vectors

vαi

∂

∂αi

+ vϱi
∂

∂ϱi
. (4.29)

In contrast to loop-momentum coordinates, the integration domain now has boundaries
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within the finite region. However, since all integrands are proportional to some power of

the Baikov BD−N and B = 0 at the boundary of the integration domain, these boundary

terms are zero forD large enough. By analytical continuation, it follows that the boundary

terms can be ignored for all D.

The constraint that propagator powers should not be raised takes the simple form(
vαj

∂

∂αj
+ vϱk

∂

∂ϱk

)
ϱi = Piϱi ∀i, (4.30)

⇒ vϱi = Piϱi, (4.31)

rendering the propagator doubling condition (eqn. (4.3)) trivial. However, the space

of integral relations is enlarged in a different way, since the derivatives also act on the

Baikov-polynomial

∂

∂αi
B(αj, ϱk)

(D−5−L)/2 =
(D − 5− L)

2
B(αj, ϱk)

((D−2)−5−L)/2∂B(αj, ϱk)

∂αi
, (4.32)

which corresponds to an integral of the same topology in a lower dimension. Similar

dimension shifts can be obtained by taking derivatives with respect to propagators. This

displacement in the dimension can, in fact, be translated to raised propagator powers

using Tarasov shifts [171]. In order to construct integration-by-parts relations within the

same dimension, one therefore needs to impose the condition

∑
j

vαj

∂B

∂α1

+
∑
i

ϱi
∂B

∂ϱi
= P (α, ϱ)B. (4.33)

The parametrisation in Baikov coordinates has certain advantages, in particular, only

one syzygy equation has to be considered instead of a set. This equation, however, is of

higher polynomial degree than the equation in loop-momentum space. We therefore use

these coordinates for formal discussions and for the application of IBP-vectors. For their

explicit construction, however, we find it useful to split the problem into several equations

which can be solved sequentially.

4.1.3 Embedding-Space Formulation

Planar Feynman integrals with massless propagators can be written in region-space co-

ordinates {xi, ya} such that all inverse propagators are written as either (ya − xj)
2 or

(ya − yb)
2, for a ̸= b [172]. For an n−point process, region space momenta are implicitly

defined as

kj<n = xj+1 − xj, kn = x1 − xn, ℓk = yk − x1. (4.34)
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The points xj and ya are denoted as external and internal points, respectively.

Figure 4.1: The planar double-box with momentum space coordinates and region-space
coordinates.

These variables are defined in an affine space with Poincaré-symmetry, automatically

imposing momentum conservation. As an example, consider the two-loop planar double

box integral (see figure 4.1)

I =

∫
dDℓ1d

Dℓ2
N(ℓa

ℓ21(ℓ1 − k1)2(ℓ1 − k1 − k2)2ℓ22(ℓ2 + k4)2(ℓ2 + k3 + k4)2(ℓ1 − ℓ2)2
. (4.35)

The dual points are defined as

k1 = x2 − x1, k2 = x3 − x2, k3 = x4 − x3, k4 = x1 − x4,

ℓ1 = y1 − x1, ℓ2 = y2 − x1. (4.36)

In these coordinates the integral is expressed as

I =

∫
dDy1d

Dy2
N(y)

(y1 − x1)2(y1 − x2)2(y1 − x3)2(y2 − x2)2(y2 − x3)2(y2 − x4)2(y1 − y2)2
.

(4.37)

In the non-planar case it is not possible to write all inverse propagators as (ya − xj)
2 or

(ya− yb)
2. However, all inverse propagators can be expressed as sums over such binomial

squares. For a suitable ordering of external momenta all inverse propagators are squared

sums of loop momenta plus sums of consecutive external momenta and can therefore be
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expressed as

(ℓ1 − k0 − ...+−n1)
2 = (y1 − xn1)

2, (4.38)

(ℓ2 − km − ...+−n2)
2 = (y2 − xn2)

2, (4.39)

(ℓ1 − ℓ2 − kI − ...+−F )
2 = (y1 − y2 + xi − xf )

2

=(y1 − y2)
2 + (xi − xf )

2 + (y1 − xi)
2 + (y2 − xf )

2 − (y1 − xf )
2 − (y2 − xi)

2. (4.40)

Starting from these region-space coordinates most of the quadratic terms can be removed

from the polynomial equations by embedding the momenta into a (D + 1)-dimensional

projective embedding space [173]. The embedding maps each dual point z to a (D + 2)-

component object

zµ → ZA =

Z
µ

Z−

Z+

 =

 zµ

−ẑ2
1

 . (4.41)

For now, we consider ẑ2 as an independent variable which can differ from zµz
µ. As this

space is projective, the vectors are defined modulo a GL(1) transformation, i.e. Z →
αZ, with α ̸= 0. The vector (0, 0, 0) is not part of the projective space; the vector

xµ = 0, x̂2 = 0 translates to (0, 0, 1). A scalar product on this space is defined with the

(SO(D, 2)-invariant) inner product

(XY ) = XAYA = 2XµYµ +X+Y − +X−Y +. (4.42)

This product is not scaling invariant but is bilinear in the scalings of X and Y . The

physical points are identified with embedding-space points for which ẑ2 = zµzµ. The

physical space can hence be defined using quadratic surfaces (ZZ) = 0. Derivatives with

respect to projective vectors are given by

∂

∂Y A
(XY ) = XA. (4.43)

Additionally, the point at infinity

I =

0

1

0

 (4.44)

is introduced which can be interpreted as a non-light-like vector xµ taken to infinity

modulo scaling. Allowing this point for the parametrisation of loop-momenta compactifies

the momentum space [174]. The scaling freedom of this point is removed by the gauge
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choice I− = 1, such that it can be used to remove the scaling dependence of all other

scalar products

(ZiZj) →
(ZiZj)

(ZiI)(ZjI)
. (4.45)

This allows to write inverse propagators as scalar products with a normalisation

(ya − xj)
2 = − (XjYa)

(IXj)(IYa)
, (y1 − y2)

2 = − (Y1Y2)

(IY1)(IY2)
. (4.46)

It is also possible to define massive propagators in embedding space, either by changing

the products to sums (XY ) → (XY ) +m2(IY ) or, more elegantly, by including the mass

terms to the external points [174]

Xj =

 xµj
−x2j +m2

1

 (4.47)

and thus changing the propagator equations to

(xj − ya)
2 −m2

j = −(YaXj)

(YaI)
. (4.48)

This changes the on-shell condition for X to (XX) = 2m2. At one-loop level, this

allows general masses for propagators. At two-loop level, on the other hand, this way

of adding masses requires some degeneracy among the propagator masses. Within this

thesis, however, we are only concerned with massless propagators.

Since the external points are considered as parameters rather than variables, it is

possible to remove their scaling degree of freedom by imposing (XI) = 1. Feynman

integrals in these coordinates are defined as scaling invariant and on the physical spaces

i.e.

I =

∫ [ L∏
a=1

1

Vol(GL(1))
d(D+2)Yaδ[(YaYa)](IYa)

−D

]
N

ϱ1 · · · ϱn
, (4.49)

where the numerator N and the inverse propagators ϱ are polynomial expressions in

(YaXi) and (YaYb), that are invariant under rescalings of Ya (i.e. divided by the corre-

sponding powers of IYa). Moreover, since the integral also goes over the rescaling-orbit

for each internal point Y , the volume of the rescaling group is formally divided out. In

the following, we specialise on the case L = 2.

For inverse propagators in the form3 (Y Xi)/(IY ) or (Y1Y2)/
(
(IY1)(IY2)

)
, the condition

3For planar diagrams, all propagators can be written in this form.
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that propagator powers are not raised in the IBP-relation translates to

∑
a,A

V A
a

∂

∂Y A
a

(XiY ) = Pi(Yb) (XiY ) (4.50)

∑
a,A

V A
a

∂

∂Y A
a

(Y1Y2) = P (Yb) (Y1Y2.) (4.51)

Since the Feynman integrands are defined to be scaling invariant, components of Va in

the direction of Ya map any integrand to zero as

Ya
∂

∂Ya

(ZYa)
n

(IYa)n
= n

(ZYa)
n

(IYa)n
− n

(ZYa)
n

(IYa)n
= 0. (4.52)

An IBP-generating vector can therefore be parametrised by

V a
i = v1X1 + ...+ vnXn + viI +

∑
a̸=b

vybYb. (4.53)

where the redundant directions Ya
∂
∂Ya

have been removed. The components vα are polyno-

mials in the Y variables chosen such that V a
i ∂Ya is scaling invariant. The syzygy equation

described in eqn. (4.51) then becomes∑
i

c′1
i
(XiXp) + cI1 + d21(Y2XP ) = P (Ya) (Y1XP ),

for the original inverse propagator (Y1Xp)/(Y1I). Note that this equation contains only

two linear terms with the rest being constant. In contrast, for loop-momentum coordinates

the equations are quadratic. For inverse propagators (Y1Y2)/ ((IY1)(IY2)) the equation is

also linear in embedding space formulation.

In addition to the requirement that the IBP-vectors should not raise propagator pow-

ers, they also should not change δ-functions in the integrand (eqn. (4.49)), which is

achieved by imposing4

Va
∂

∂Ya
δ[(YaYa)] = 0 (4.54)

⇔ Va
∂

∂Ya
(YaYa) = 0. (4.55)

This gives two additional conditions whose terms are proportional to inverse propagators

and ISP’s. However, especially for planar topologies, the advantages of the constant terms

outweigh the complexity of these additional equations. In the following, we set (YaYa) to

4Since
∫
dxδ′(x)xF (x) = −F (0), one might argue that it is possible to replace xδ′(x) → −δ(x) and

thus it would be sufficient to have V ∂Ya(YaYa) ∝ (YaYa). However, this replacement in fact involves
integration-by-parts and hence the resulting surface-terms are trivially zero.
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zero, since terms proportional to it vanish due to the δ−function. For a general planar

two-loop N -point topology the conditions can be expressed in matrix form. To this end,

we introduce the matrix corresponding to the l.h.s. of eqns. (4.54,4.55)

C =



(X1X1) ... (X1XN ) 1 (X1Y2)
...

. . .
...

...
...

(XKX1) ... (XKXN ) 1 (XKY2)

2(X1Y1) ... 2(XNY1) 2(IY1) 2(Y2Y1)

(X1X1) · · · (X1XN ) 1 (X1Y1)

(XKX1) · · · (XKXN ) 1 (XKY1)

(XK+1X1) · · · (XK+1XN ) 1 (XK+1Y1)
...

. . .
...

...
...

(XNX1) · · · (XNXN ) 1 (XNY1)

2(X1Y2) ... 2(XNY2) 2(IY2) 2(Y1Y2)

(X1Y2) ... (XNY2) (IY2) 0 (X1Y1) ... (XNY1) (IY1) 0


(4.56)

and a matrix corresponding to their r.h.s

W =



diag ((X1Y1), ..., (XKY1))

0 0

diag ((X1Y2), (XKY2), (XK+1Y2), ..., (XNY2))

0 0

(Y1Y2)


. (4.57)

The grey lines are present for simple diagrams (i.e. no external legs are attached to the

nodes) while one or two of them should be omitted for semi-simple and generic diagrams,

respectively. For an IBP-vector V A
a =

∑
j v

j
aX

A
j + vIaI

A + vyaY
A
b ̸=a, the defining equations

are

C · (v11, ..., vy1 , v12, ..., vy2)T = W · (W1
1 , ...,WK

1 ,W1
2 , ...,W

M
2 ,W12)

T , (4.58)

where v and W are polynomials. For non-planar diagrams the scaling factors (IY ) do not

factor for all propagators. The defining equation for IBP-vectors that do not raise the

power of an inverse propagator (y1 − y2 − xi + xf ) is thus

V a ∂

∂Ya
[(Y1Y2) + (IY2) [(X1Y1)− (XfY1)] + (IY1) [(XfY2)− (XiY2)]− (XiXf )(Y1I)(Y2I)]

∝ [(Y1Y2) + (IY2) [(X1Y1)− (XfY1)] + (IY1) [(XfY2)− (XiY2)]− (XiXf )(Y1I)(Y2I)] ,

(4.59)

adding a further equation which is bilinear in Y1 and Y2.
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We find the low-polynomial degree of the conditions in embedding space useful for

the practical computation of syzygies. Therefore, we will mostly construct IBP-vectors

in embedding space and then translate them to Baikov-coordinates where we apply them

to generic numerators.

4.2 Constructing IBP-Vectors

In the previous section we have reviewed the defining equations for IBP-generating vectors

in loop-momentum Baikov and embedding space coordinates. In this section, we will

present methods to solve these equations in order to construct IBP-generating vectors.

4.2.1 Generic IBP-Vectors from Cramer’s Rule

The defining equation for IBP-vectors in embedding space is

(
C,−W

)
· (v11, ..., vy1 , v12, ..., vy2 ,W1

1 , ...,WK
1 ,W1

2 , ...,W
M
2 ,W12)

T = 0, (4.60)

with the matrices C and W defined in eqn. (4.57). Any solution to this problem is at

the same time a solution to the linear-algebra problem where the v and W are defined as

rational functions. Conversely, every solution to the linear algebra problem can be turned

into a syzygy by multiplying it with common denominators. For an n × m matrix, a

straightforward way to obtain such syzygies (which we will call trivial syzygies) is to pick

square sub-matrices Ci, ..., Ci+m and compute their null-space via Cramer’s rule5 [48]

vj = (−1)idet(Ci, ..., Cj−1, Cj+1, ..., Cm). (4.61)

An improvement of this method is to set inverse propagators in the equation to zero,

solving the equations and compute the coefficients W at the end. This gives, in general,

vectors with comparably high polynomial degree. When considering the syzygies as a

vector space, rather than a module, the on-shell parts of non-trivial IBP-vectors are

linearly dependent on the trivial ones. This implies that non-trivial vectors can always

be written as a linear combination of trivial IBP-vectors with a polynomial factored out.

In general, these sets of trivial vectors do not generate all IBP-relations. Therefore, they

are only used in combination with other vectors.

Crossing of Simpler Vectors

The method described above can be used to solve all syzygy equations. However, it is also

possible to single out the equation of one propagator which is solved by antisymmetrisa-

5The columns of W are not included here, as the resulting vectors would vanish on-shell.
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tion, while the other equations are solved before through other means. Let (C,−W ) be

the matrix defining the syzygy-problem for a descendant topology for which we obtain a

set of solutions {vi}

C · vi = {W1ϱ1, ...,Wnϱn}. (4.62)

The additional syzygy equation that vectors of a topology with one more propagator have

to fulfil can be expressed by some vector f . Then, all pairs of vectors are taken and

combined to IBP-vectors for the parent topology via anti-symmetrisation.

vij = (vi · f)vj − (vj · f)vi. (4.63)

Again, the inverse propagator ϱn can be set to zero, leading to a non-zero coefficient Wn.

This technique is called crossing over ϱn [175]. In ref. [175], this technique was applied

to planar diagrams, computing one-loop sub-vectors and crossing over the propagator

containing both loop momenta.

We also find this method very useful for non-planar diagrams where we cross over

the inverse propagators (Y1Y2) or (Y1Y2) + (Y1Xi)(IY2) + ... . We also find it beneficial

to not only cross over one propagator, but apply it to several propagators and combine

the results. We find that this method is often sufficient to reduce complicated integral-

topologies. In other cases, these vectors can be added to vectors obtained through other

means to obtain all necessary integral relations. It is, however, necessary to compute

the syzygies of the simplified problem (i.e. the equations for the propagators which are

not crossed over). In the following we will discuss how this is done using methods from

algebraic geometry.

4.2.2 Gröbner Basis and Syzygies

Unitarity-compatible IBP-vectors are defined by solutions to syzygy equations, which are

thoroughly studied in the context of algebraic geometry. Therefore, we will review some

definitions and theorems from algebraic geometry and a general algorithm which finds the

solutions to syzygy equations.

A central object in algebraic geometry is the polynomial ring F[z1, ..., zn], i.e. all

polynomials in variables z1, ..., zn with coefficients in the field F. In this thesis, the field

will usually be the complex numbers C or a finite field. The polynomials can be expressed

in a basis of monomials mi = zα⃗ := zα1
1 · · · zαn

n .

Definition 1 For two monomials m1 = zα⃗1 ,m2 = zα⃗2, m1 divides m2 iff α1j < α2j ∀j.

Any polynomial can be written as cimi, where the ci are numbers in the field. On the

ring of polynomials, sub-rings which are called ideals are defined.
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Definition 2 Given a polynomial ring R = F[z1, ..., zn] , an ideal I ∈ R is a subset of R

such that

• 0 ∈ I,

• f ∈ I ⇒ −f ∈ I,

• f1, f2 ∈ I ⇒ f1 + f2 ∈ I,

• f ∈ I, h ∈ R ⇒ fh ∈ I,

A generating set for an ideal is given by polynomials f1, ..., fn such that for every g ∈ I

g = h1f1 + ...+ hnfn, h1, ..., hn ∈ F(z1, ..., zm). (4.64)

Usually, ideals are introduced through a defining generating set I = ⟨f1, ..., fn⟩. Ideal

membership can be verified by polynomial division (see algorithm 1), where the polyno-

mials are ordered by the leading term LT(g) which, in the univariate case, is given by the

monomial in g with the highest degree.

Algorithm 1 Polynomial division

Input: g,f1, ..., fn

1: hi = 0 ∀i, r = 0

2: while g ̸= 0 do

3: divisible=false

4: for i = 1 to n do

5: if LT(fi) divides LT(g) then

6: hi:=hi +
LT(g)
LT(fi)

7: g:=g − LT(g)
LT(fi)

fi

8: divisible=true

9: break

10: end if

11: end for

12: if divisible=false then

13: r := r+LT(g)

14: g = g−LT(g)

15: end if

16: end while

17: return h1, ..., hk, r

If this algorithm returns r = 0, then g ∈ ⟨f1, ..., fn⟩. In order to define polynomial

division for multivariate polynomials, an ordering of the monomials has to be defined, as

a simple ordering by degree is not unique.
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Definition 3 Given a polynomial ring R = F[z1, ..., zn] and all monomials with coefficient

one M = {zk11 · · · zknn |k1, ..., kn ∈ N0}, a monomial ordering ≺ is an ordering on R such

that

1. For m1 ̸= m2 ∈M , either m1 ≺ m2 or m2 ≺ m1

2. For m1 ≺ m2 and m3 ∈M , m1m3 ≺ m2m3.

3. For all m ∈M , m ̸= 1, 1 ≺ m.

Such an ordering always involves an ordering of variables. Without loss of generality, we

will order them as z1 ≺ ... ≺ zn. For two monomials g1 = za11 · · · zann and g2 = zb11 · · · zbnn
examples for monomial orderings are

• Lexicographic order. If a1 < b1, g1 ≺ g2. If ai = bi ∀i < k, if ak < bk, g1 ≺ g2.

• Reverse lexicographic order. If an < bn, g1 ≺ g2. If ai = bi ∀i > k, if ak < bk

g1 ≺ g2.

• Degree reverse lexicographic order (grevlex). If
∑

j aj <
∑

j bj, then g1 ≺ g2. If∑
j aj =

∑
j bj order g1 and g2 by reverse lexicographic order.

E.g. the set of all degree three polynomials in xyz in lexicographic or reverse lexicoraphic

ordering is given by

• Lexicographic x3, x2y, x2z, xy2, xyz, xz2, y3, y2z, yz2, z3

• Reverse Lexicographic x3, x2y, xy2, y3, x2z, xyz, y2z, xz2, yz2, z3.

For the application in the context of IBP-vectors, ordering unwanted variables to the end

turns out to be beneficial, hence the most efficient ordering appears to be degree reverse

lexicographic ordering. Another important ordering is weighted reverse lexicographic or-

dering with weights w1, ..., wn which orders the monomials za11 · · · zann first by
∑

i aiwi and

then by reversed lexicographic ordering.

The definition of a monomial ordering allows to define the leading term of multivariate

polynomials. For f = c1m1 + ... + cnmn, where cj ̸= 0 are constants, LT(f) = cjmj such

that mi ≺ mj, for all i ̸= j. This definition allows to apply algorithm 1 to multivariate

polynomials, providing a way to verify (not falsify, however) ideal membership in the

multivariate case.

The generating set of an ideal is ambiguous. As a simple example, consider

f1 = x3 + 4x2 + 4x+ 1, f2 = x2 + 2x+ 1, f3 = x+ 1, (4.65)

I = ⟨f1, f2⟩ = ⟨f3⟩. (4.66)
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Both generating sets can be expressed through each other, since f2(x+ 2)− f1 = f3 and

f2 = f 2
1 . However, there is no polynomial h such that f3 = hf2, hence given the first

basis it is not obvious that the ideal can be generated by just one polynomial. This simple

example also demonstrates that polynomial division does not provide a necessary criterion

for ideal membership, since LT(f3) = x is neither divided by x3 nor x2 and therefore f3

is not decomposed to f1, f2 by the polynomial division algorithm.

In this example, the basis {x+ 1} has the peculiar property that polynomial division

does not only provide a sufficient criterion for ideal membership, but a necessary one.

Generating systems with this property are called Gröbner bases.

Definition 4 For an ideal I over the ring R and a given monomial order ≺, a Gröbner

basis is a generating system G(I) = {g1, ...gn} such that for every f ∈ I, there exists a

gi ∈ G(I) such that

LT(gi) divides LT(f). (4.67)

For any polynomial p ∈ I with leading term LT(f), this means that line 5 of algorithm 1

applies for some i. The remaining polynomial p′ = p − LT(p)
LT(gi)gi

is again a member of the

ideal with LT(p′) ≺LT(p). Repeatedly applying this argument, the leading term of the

remaining polynomial is strictly monotonously decreasing w.r.t. the monomial ordering

until (after finitely many steps) the remainder is 0. Thus indeed any polynomial in I can

be expressed through the Gröbner basis.

The Gröbner basis depends on the choice of the monomial ordering through the defini-

tion of leading terms. For example {x+ y2, x2} is the Gröbner basis of the corresponding

ideal in grevlex, while in lexicographic ordering the Gröbner basis is {x+ y2, y4}.

Buchberger’s Algorithm

We will now review how Gröbner bases can be computed via Buchberger’s algorithm,

thereby proving their existence. Moreover, we will review how all solutions to syzygy-

equations can be found using Gröbner bases.

For each two polynomials f, g from the generating set of an ideal I, the S-polynomial

S ∈ I is defined as

S(f, g) =
LCM(LT(f),LT(g))

LT(f)
f − LCM(LT(f),LT(g))

LT(g)
g, (4.68)

where LCM(a, b) is the least common multiple of a and b. The leading terms of S cancel

out so neither f, g divide S. This property of S polynomials is used in Buchberger’s

algorithm (algorithm 2) [176], which, given a monomial ordering and a generating set

{f1, ..., fn} returns the Gröbner basis of I = ⟨f1, ..., fn⟩.
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Algorithm 2 Buchberger’s algorithm

Input: monomial order ≺ and f1, ..., fn

1: B:={f1, ..., fn}
2: pairs := all pairs {fi, fj}
3: while pairs ̸= ∅ do

4: {f, g} :=pairs1

5: Apply polynomial division (algorithm 1) to S(f, g), over all polynomials in B.

(gives, q1, ..., qn, r)

6: if r ̸= 0 then

7: B := B ∪ r
8: pairs :=pairs∪{{B1, r}, ..., {(BN), r}}
9: end if

10: delete pairs1

11: end while

12: for i=1 to Length(B) do

13: Apply polynomial division to Bi over all other elements of B (gives q1, ..., qn, r)

14: if r = 0 then

15: delete Bi from B

16: end if

17: end for

18: return B

Theorem 1 This algorithm terminates [176].

Proof: For every remainder r that is added to B in line 7, LT(r) cannot be divided by

the leading terms of B by the definition of polynomial division. Thus, the monomial ideal

given by {LT(b)|b ∈ B} is strictly monotonously increasing.

It can be shown by induction, however, that this increase has to terminate after finitely

many iterations. In the univariate case, where the generating system contains a leading

term xa, it is clear that only functions with leading term xb, b < a can be added to the

basis, thus the computation terminates after at most a steps. In the bivariate case with

leading term xa11 x
a2
2 in the generating system, there are two possibilities for the leading

term of a new function

• xa1−j11 x
a2+mj1
2 where 0 < j1 < a1 and mj,1 ∈ Z,

• x
a1+mj2
1 xa2−j22 where 0 < j2 < a2 and mj,2 ∈ Z.

In the first case, for every j1 the first occurence of such a term fixes the maximum of mj1

and only a finite number of monomials xa1−j11 x
a2+m′

j1
2 , with m′

j1
< mj1 can be added to the



62 CHAPTER 4. INTEGRAL REDUCTION VIA GENERATING VECTORS

monomial ideal. Vice versa, for every j2 the number of terms is also finite. Since there is

only a finite number of choices for j1, j2 the monomial ideal can only increase in a finite

number of steps.

The induction hypothesis is that for n−1 variables this is true. For n variables, where

the generating system contains a leading term xa11 · · ·xann a new monomial takes the form

x
a1+mji,1

1 · · ·xai−1+mji,i−1

i−1 xai−jii x
ai+1+mji,i+1

i+1 · · ·xan+mji,n
n . (4.69)

By the induction hypothesis, for each ji, the monomial ideal is only increased a finite

number of times and thereby it is only increased a finite number of times in total [177].

This proves that after a finite number of iterations, the remainder of every polynomial

division in line five of algorithm 2 is 0 and the algorithm terminates.

Theorem 2 The resulting generating system is a Gröbner basis [176].

Proof: As provided by the terminating condition for f, g ∈ B, S(f, g) is divided by

the basis B. Suppose a function f ∈ I which cannot be divided by B. After applying

polynomial division the remainder g cannot be divided by the leading terms of B. Since

g is in the ideal, it can be expanded into

g = h1b1 + ...+ hnbn. (4.70)

The maximal term of this decomposition is given by M = max{LT(h1b1), ...,LT(hnbn)},
where the maximum is given by LT(hibi) such that for all j either LT(hjbj) ≺LT(hibi) or

LT(hibi) =LT(hjbj). The sum can then be decomposed into terms which contribute to M

and terms that do not

g =
∑

LT(hj)LT(bj)=cjM

hjbj +
∑

LT(hj)LT(bj)≺M

hjbj (4.71)

=
∑

LT(hj)LT(bj)=cjM

LT(hj)bj +
∑

LT(hj)LT(bj)=cjM

(hj − LT(hj)) bj +
∑

LT(hj)LT(bj)≺M

hjbj. (4.72)

By assumption, LT(g) ≺ M , since M can clearly be divided by the leading terms of B.

This implies that the leading term of the first sum is ≺ M . The leading terms of hj can

be expressed as cjx
αj

j , where for α = {a1, ..., an}, xα = xa11 · · ·xann . The first sum in eqn.

(4.72) can then be written as a telescope sum∑
cjx

αjbj =c1(x
α1b1 − bα2b2) + (c1 + c2)(x

α2b2 − xα3b3) + ...+

(c1 + ...+ ck−1)(x
αk−1bk−1 − xαkbk) + (c1 + ...+ ck)x

αkbk. (4.73)
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All coefficients c1, ..., ck contribute to M , therefore c1 + ... + cn = 0. For the remaining

terms, the S-polynomials are given by

S(xαibi, x
αjbj) =

M

M
xαibi −

M

M
xajbj = xαibi − xαjbj, (4.74)

since we only considered terms which contribute to M . On the other hand

S(xaibi, x
αjbj) =

M

xαiLT(bi)
xαibi −

M

xαjLT(bj)
xαjbj ∝ S(bi, bj). (4.75)

All terms xαjbj−xαkbk can therefore be decomposed into S-polynomials of the generating

system which by assumption can be decomposed into the basis elements bi by polynomial

division, ∑
LT(hj)LT(bj)=M

LT(hj)bj =
∑
i

dibi, with max{LT(di)LT(bi)} ≺M. (4.76)

Therefore, for every {h1, ..., hn} such that g =
∑

j hjbj with maximal term M it is

possible to find h′j = hj−LT(hj) + dj such that g = h′jbj with maximal term M ′ ≺ M .

Since this cannot be true for M = 1, a g ∈ I that is not divisible by B does not exist and

hence the generating set is indeed a Gröbner basis [176].

Corollary 1 For every ideal defined by a generating set I = ⟨f1, ..., fn⟩ a Gröbner ba-

sis exists, since Buchbergers algorithm terminates after finitely many steps and gives a

Gröbner basis.

In this thesis, we use a public implementation Singular [178], which uses Faugère’s F4

algorithm. This algorithm is based on the same mathematical principles as Buchberger’s

algorithm, but uses fast row-reduction to reduce the S-polynomials of all pairs at the same

time [179], which, in general, leads to a great reduction in computing time compared to

Buchbergers algorithm.

Gröbner-Bases for Modules

In the computation of IBP-vectors, one is not only interested in solving just one syzygy,

but several of them at the same time. This requires to extend the definitions made above

to modules.

Definition 5 A module M over a ring R is an abelian group with group operation (+)

and a map · : R×M →M such that

1. r · (m1 +m2),= r ·m1 + r ·m2,

2. (r1 + r2) ·m = r1 ·m+ r2 ·m,



64 CHAPTER 4. INTEGRAL REDUCTION VIA GENERATING VECTORS

3. r1r2 ·m = r1 · (r2 ·m),

4. 1 ·m = m

for all m,m1,m2 ∈M and r1, r2, r ∈ R.

In the context of IBP-vectors sub-modules of Fm appear where each element is a set

of polynomials m = (f1, ..., fn) =
∑

j fjej. A monomial in a module is defined as ejx
α⃗,

where xα⃗ is a monomial over the field. Monomial division of module elements is defined

such that a monomial eix
β⃗ divides a monomial eix

α⃗ if and only if i = j and xβ⃗ divides

xα⃗. The quotient of the two monomials is then xα⃗/xβ⃗. Given a monomial ordering, the

leading term of a module element m = (f1, ..., fn) is defined as LT(m) = ejLT(fj) such

that LT(fj) = max{LT(f1), ...,LT(fn)}, where LT on the r.h.s. is the leading term defined

for polynomials and the maximum is defined with respect to the monomial ordering. If

there are more than one components with the same leading term, the term with smallest

j is chosen as the leading term. With these definitions, the algorithm for polynomial

division (algorithm 1) can also be applied in the module case.

The missing ingredient for Gröbner basis compuation is the least common multiple

of two monomials in M , defined as LCM(x⃗αej, x⃗
βei) = δijLCM(x⃗α, x⃗β). This allows to

define the S-vector of two module elements m1 = {f1, ..., fn}, m2 = {g1, ..., gn} as

S(m1,m2) =
LCM(LT(m1),LT(m2))

|LT(m1)|
m1 −

LCM(LT(m1),LT(m2))

|LT(m2)|
m2, (4.77)

where |ejxα⃗| = xα⃗. With these definitions, Buchberger’s algorithm (algorithm 2) also

extends to the module case. In particular, the proof that Buchbergers algorithm produces

a Gröbner basis also remains valid, since eqns. (4.73-4.75) are valid for modules.

Syzygy Computation

In the context of IBP-reduction, we are particularly interested in syzygy-modules.

Definition 6 Given a polynomial ring R and a module M with elements m1, ...,mk ∈M ,

the syzygy module syz(m1, ...,mk) is a sub-module of Rk which consists of all elements

(a1, ..., ak) such that

a1 ·m1 + ...+ ak ·mk = 0. (4.78)

The fact that syzygies form a module also implies that IBP-vectors also form a module, i.e.

any linear combination of IBP-vectors with polynomial coefficients is again an IBP-vector.
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The syzygy module is trivial to compute for a set of monomials {M1, ...,Mn}. With

Mij the greatest common divisor of Mi and Mj, the generators of the syzygy module are

{0, ..., 0,Mi/Mij, 0, ..., 0,−Mj/Mij, 0, ..., 0}. (4.79)

For more general polynomials, syzygies can be found by Gröbner basis computation.

Taking the S-polynomial S(gi, gj) = aigi + ajgj, a syzygy is given by the reduction of an

S-polynomial

0 = aigi + ajgj +
∑
k

qkgk = (ai + qi)gi + (aj + qj)gj +
∑
k ̸=i,j

qkgk, (4.80)

where q1, ..., qk is the output of the polynomial division algorithm. Since the leading term

of S(gi, gj) cannot be divided by the leading terms of gi, gj, the set

{q1, ..., (ai + qi), ..., (aj + qj), ..., qn} (4.81)

is a non-trivial member of the syzygy module of gi, ..., gn.

According to Schreyer’s theorem [180], reductions of S-polynomials generate the syzygy

module for any ideal in Gröbner basis form. The proof of this theorem is similar to the

proof that the output of Buchbergers algorithm is a Gröbner basis:

The Gröbner basis of the syzygies of the monomial ideal ⟨LT(gi)⟩ is generated by

the leading terms of reduced S−polynomials, as follows from the syzygy module of a

monomial list (see eqn. (4.79)). Therefore, the leading terms of a general element of the

syzygy module (f1, ..., fn) ∈ syz(g1, ..., gn) can be reduced to leading terms in reduced

S−polynomials. This allows to rewrite (f1, ..., fn) as a part generated by reduced S-

polynomials and a remainder (f ′
1, ..., f

′
n) which is smaller than (f1, ..., fn) in the chosen

module ordering. Repeating this a finite number of times expresses f1, ..., fn in terms of

reductions of S-polynomials with remainder zero.

For generic polynomials f1, ..., fk the syzygy module is computed by transforming

to a Gröbner basis g1, ..., gm with fi = ajigj and transforming back the reductions of S-

polynmomials via aijei. In fact, the Gröbner basis algorithms already produce the reduced

S-polynomials and the transformation matrix, since the fifth line in algorithm 2 in the

case of vanishing remainder is the reduction of S-polynomials, while the transformation

matrix is computed in line thirteen. With the definition of leading terms and S-vectors,

the proof of this theorem carries over to syzygy modules of modules, which we will use to

construct IBP-generating vectors.

A useful modification of the Gröbner basis algorithms implemented in Singular, is

to drop all S-vectors with total degree d > dmax, for some choice of the maximal degree

dmax. This limit will greatly speed up syzygy computations which otherwise would not
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be feasible. In general, however, the algorithm will then not exactly produce Gröbner

bases and therefore the reduced S-polynomials will not generate the full syzygy module

(Schreyer’s theorem only applies to Gröbner bases). If the degree bound is set too low,

the syzygies should be extended by solutions computed with linear algebra methods.

Moreover, when considering kinematic invariants as variables, a degree bound can also be

used to limit the complexity IBP-relations as functions of external kinematics.

Gröbner basis algorithms give the complete set of IBP-vectors. However, for many

complicated topologies these algorithms do not terminate within reasonable time or need

an excessive amount of memory when the degree bound is set sufficiently high. In such

cases, we typically solve a simpler syzygy problem with Gröbner basis methods and use

its solutions to construct solutions to the full problem via linear algebra.

4.2.3 Syzygies from Linear Algebra

Polynomials form an (infinite dimensional) vector-space over their defining field which has

the set of all monomials as a basis. Truncating the polynomials at some maximal dmax,

this vector space becomes finite-dimensional [181]. The solutions to the syzygy problem

within this finite space can be found by considering the problem up to degree dmax +1 as

a linear equation system. For example, for the syzygy problem

p1(x, y)x+ p2(x, y)y = 0 (4.82)

and a maximal degree of 2, one can use the ansatz

pj = c0j + c10j x+ c01j y + c20j x
2 + c11j xy + c02j y

2 (4.83)

to obtain the linear equation system



0 ... 0

1 0 ... 0

0 ... 0 1 0 ... 0

0 1 0 ... 0

0 0 1 0 0 0 0 1 0 ... 0

0 ... 0 1 0 0 0

0 0 0 1 ... 0

0 0 0 0 1 0 0 0 0 1 0 0

0 ... 0 1 0 0 0 0 1 0

0 ... 0 1





c01

c101

c011

c201

c111

c021

c02

c102

c012

c202

c112

c022



= 0. (4.84)
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Here, c01, ..., c
02
2 are constants and thus the syzygy-problem is reduced to linear algebra. A

clear advantage of this method compared to Gröbner basis methods with degree bound

is that it is guaranteed to find all syzygies up to the specified degree. In realistic cases,

however, these computations are challenging due to the large function spaces. For compli-

cated topologies the solution of such large linear systems even remains challenging when

using numeric values for the kinematic invariants.

In suitable coordinates, such as the embedding space formulation, we can remedy this

situation, however, by splitting the matrix in the defining equation for IBP-vectors into

a constant and a linear part

C = C0 + C1. (4.85)

We have C · V = 0, thus in particular for all monomials with degree dmax + 1

C1Vm = 0, (4.86)

where Vm is the piece of V with maximal degree dmax. This defines a simpler syzygy

problem, which can be solved with Gröbner basis methods. The obtained vectors vim of

degree dmax are combined in an Ansatz together with all monomials up to degree dmax−1,

which then has to be constrained up to degree dmax (at degree dmax+1, the equations are

trivially solved since the vm are in the syzygy-module of C1)

v = c0 + c10...0α1 + ....+ c0,...,dmax−1ϱ
dmax−1
n +

∑
i

civv
i
m (4.87)

In realistic cases, in embedding space coordinates, the necessary degrees of vectors are

typically ≤ 4, while there are > 10 variables. Hence removing the highest degree term

reduces the size of the system by a factor ≳ 10. We find this way of solving the syzygy

equation particularly fruitful in approaches where the equations are solved numerically,

as we will discuss now.

4.2.4 Semi-Numeric IBP-Vectors

Presently, two-loop ampliudes are often computed in finite fields and these evaluations are

then used to functionally reconstruct their analytic form [50]. For such approaches it is in

fact not necessary to compute analytic IBP-relations. Instead, it is sufficient to provide

a (fast enough) way to generate them for numerical values of the kinematic invariants.

We achieve this with the following method:

• For a syzygy defining matrix C, set sij to numeric values and solve the problem to

obtain the numeric IBP-vectors vn.
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• Replace each non-zero number in vn by a coefficient ci to construct an ansatz va for

the vector.

• Insert the ansatz back into the syzygy equation 0 = C · va. This gives a linear

equation system L.

• Find all linear dependencies of the columns of L. Reduce the number of coefficients

ci in va by inserting these dependencies. Remove dependent rows.

• If the system does not have full rank, generate all n× (n+1) minors of the system.

This results in small linear system L′ and an IBP-vector with coefficients c′i which, at

a (generic) numerical point, are given by the (unique) solution to L′ on this point. In

practice, we use numbers in a finite field (see appendix C) rather than floating point or

rational numbers, since this gives fast and stable results.

We find that this method works particularly well together with the method of reducing

the syzygy-problem to linear algebra (see section 4.2.3), since there the linear equation

system becomes a purely numeric system which can be solved efficiently. E.g. for the

massless non-planar double-pentagon, the resulting systems are of the size 2000 × 2000

and 20 vectors are necessary to span the complete space of IBP-relations.

The linear systems can be further improved by finding linear relations of the solutions

via numeric sampling, which allows to even further reduce the linear system.

4.2.5 Semi-Numeric Power Reduction

For the reduction of amplitudes using surface terms and numerical unitarity, it is usually

required to have a set of surface terms which together with the master integrals span the

space of all monomials in ISPs up to some maximal power. In the SM, loop momenta in

the numerator appear either at vertices of bosons or through the numerators of fermion

propagators. An upper bound for the degree of the numerator in Yang-Mills theories is

therefore given by the number of vertices. For planar diagrams, it is possible to addition-

ally constrain the degrees of the individual loop momenta, since propagators and ISP’s

involving ℓ1 and ℓ2 can only appear at propagators that include this momentum. This is,

however, not true in the non-planar case, since for inverse propagators ϱ1 = ℓ21, ϱ2 = ℓ22,

ϱ3 = (ℓ1 − ℓ2)
2 and ϱ4 = (ℓ1 − ℓ2 − p)2 we have

(ℓ1 − p)2 = ρ4 − ρ3 + ρ1 + ρ2 + p2 − (ℓ2 + p)2 (4.88)

and hence both inverse propagators and ISPs including only ℓ2 can appear at vertices in

the first sub-loop. Total power-counting nevertheless remains valid.

After having computed a set of IBP-vectors for a topology, we often find that the

relations within power-counting generated by them do not span the space completely.
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Instead, it is necessary to include linear combinations of IBP-relations that go beyond the

power-counting. As a simple example consider a case where the space of monomials that

should be spanned is given by {1, x, y, xy} with one IBP-vector

v = (x+ y, x+ y), (4.89)

which gives the following surface-term when applied to a monomial m

r(v,m) =
∂

∂x
(v1m) +

∂

∂y
(v2m). (4.90)

Applying this vector to {1, x, y, x2, xy, y2} gives

{ri}i=1,...,6 = {2, 3x+ y, x+ 3y, 4x2 + 2xy, x2 + 4xy + y2, 2xy + 4y2}. (4.91)

Evidently, there is no subset of these functions that spans the desired space of monomials

while being contained in it. Such a set can be obtained, however, by combining relations

that go beyond power-counting

{r′i}i=1,...,4 = {r1, r2, r3, r4 + r6 − 4r5}. (4.92)

Due to such effects at the boundary of the space of relations, it is necessary to compute

IBP-relations whose degrees exceed the power-counting and combine them in such a way

that the pieces beyond power-counting cancel.

In realistic cases, this reduction is far less straightforward than in the example above,

since the coefficients of the monomials are functions of kinematic invariants rather than

constants and the space of functions required is considerably larger. Therefore, analytic

solutions to the linear system are often not feasible. As a work-around for this obstacle

we employ a procedure similar to the computation of semi-numerical IBP-vectors:

• Compute all IBP-relations up to power-counting degree plus one.

• Take the relations ri that go beyond power-counting and split them into parts within

and beyond power counting rwi , r
b
i .

• Fix numerical values for the sij. Solve the system rb1, ..., r
b
1 as a syzygy with the

dimension D as variable.

• Pick solutions that span the desired space of IBP-relations together with the rela-

tions within. We denote their maximal degree in D by d.

• For each non-vanishing coefficient in the picked solution, make an ansatz by replac-

ing each number by coefficients c0i , c
1
iD, ..., c

d
iD

d.
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• Build the linear system

0 =
∑
i

d∑
k=0

ckiD
krib, (4.93)

remove linearly dependent rows and remove dependent columns by inserting depen-

dencies of coefficients into the ansatz.

As in the previous section, we compute in a finite field to get fast and stable results. The

resulting equation system typically has sizes ≲ 1500× 1500.

There are two useful improvements to this method: First, the complexity of the re-

duction greatly depends on the space of functions that needs to be spanned by master

integrands and surface terms. Therefore, the reduction often becomes feasible by in-

creasing the function space. In the trivial example discussed above (eqn. (4.91)), the

reduction becomes trivial when increasing the function space to 1, x, y, x2, xy, y2. This

will, in general, slow down the computation of the amplitude however.

Secondly, it can be helpful to allow relations that go beyond power-counting but are

contained in it on-shell. For most amplitudes, the numerator insertions on top-level

topologies do not span the full space expected by näıve Yang-Mills power-counting; thus

it is possible to compute their surface-terms only to a reduced power-counting. Since the

power-counting of descendant topologies needs to be higher anyway, it is not necessary to

solve the power-counting equations for the top-level topologies fully off-shell. Moreover,

if descendant integrals are considerably simpler (e.g. factorizing topologies or planar de-

scendants of non-planar topologies), the additional cost of increasing their power-counting

is often tolerable.

For non-planar topologies, we have to employ all of these methods: We increase power-

counting such that it is possible to numerically solve the power-counting equations with

all planar descendants set to zero. We then use these numeric solutions to generate

linear systems that can be solved at every phase-space point during reconstruction. The

power-counting of the planar topologies is then adjusted accordingly.

4.3 Properties of IBP-Vectors

IBP-vectors are not only a useful technical tool for integral reduction but also have some

interesting properties which can be related to the geometry of the cut-surface. In this

section, we will discuss some of these observed properties.
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4.3.1 IBP-Vectors as Polynomial Tangent Vector Fields

While the algebraic aspects of algebraic geometry are very useful for practical compu-

tations, it also contains geometric aspects which permit a deeper understanding of IBP-

reduction. For each ideal I, the algebraic set Z(I) is defined as the set of points zi such

that f(zi) = 0 for all f ∈ I. Ideals and algebraic sets are related via Hilbert’s Nullstel-

lensatz [182]:

For any ideal I with algebraic set Z(I), and any function f such that

f(p) = 0 ∀p ∈ Z(I), (4.94)

∃k ∈ N such that fk ∈ I.

An ideal is defined to be prime if

fk ∈ I ⇒ f ∈ I. (4.95)

For such prime ideals, there is a one-to-one correspondence between the algebraic set of an

ideal and the ideal itself. In the context of Feynman integrals the algebraic set whose ideal

is generated by the inverse propagators ϱi is called the maximal cut-surface. Modules, in

this geometric interpretation, provide a vector space on every point of such a variety. In

particular, the IBP-vectors are tangent vector fields to the cut-surface [183]. The latter

are defined by

vi
∂ϱj
∂zi

|ϱj=0= 0 ∀i. (4.96)

for the surface Z(⟨ϱ1, ..., ϱn⟩). The generators vi
∂
∂zi

hence form a set of Lie-derivatives

from R/⟨ϱ1, ..., ϱn⟩ to R/⟨ϱ1, ..., ϱn⟩, since in a parametrisation of the surface ϱi = 0∀i
these are directional derivatives vi

∂
∂zi

in R.

Therefore, unitarity-compatible IBP-vectors lie in the vector bundle of the maximal

cut surface. Feynman integrals restricted to the cut are volume forms on this manifolds

(and therefore closed forms). Applying an IBP-generator to a Feynman integrand gives

a form which can be written as a derivative. Hence IBP-relations define exact forms on

the cut-surface. The complete tangent space of the cut-surface is given by the vectors

vµi
∂

∂ℓµi
ϱj =

∑
k

ckρk. (4.97)

The IBP-vectors satisfy this equation but, in addition, they are also tangent to each

individual surface ϱi = 0, i.e. they do not include vectors which lead to terms ϱi/ϱ
2
j .

In fact, however, for all known cases the IBP-vectors do span the full tangent space,
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since terms with doubled propagators apparently can always be reduced to integrals with

propagators of power one. Since the generators are related to the tangent space of the

surface, one expects them to fulfil a Lie-algebra[
(va)

µ
i

∂

∂ℓµi
, (vb)

ν
j ·

∂

∂ℓνj

]
= fabc · (vc)σk

∂

∂ℓσk
, (4.98)

where the fabc are polynomial structure constants. We find that this is indeed the case,

since the left hand side gives(
(va)

µ
i

∂(vb)
σ
k

∂ℓµi
− (vb)

ν
j

∂(va)
σ
k

∂ℓνj

)
∂

∂ℓσk
. (4.99)

Since the IBP-vectors form a module (see section 4.2.2), the expression in the bracket is

clearly an IBP-vector. The Lie-derivatives along the tangent space span the space of exact

forms on the cut-surface. Master integrals are therefore all closed forms modulo exact

forms on the cut-surface, which defines the De-Rham cohomology group of this surface

[184]. Due to Poincaré-duality, the master integrals can be related to the incontractible

cycles on the cut-surface, i.e. the singular homology group [185]. This property can be used

e.g. to count the number of master-integrals as a check of completeness for IBP-systems.

It is natural to study the geometry of this surface in Baikov coordinates, where the

conditions that ϱj = 0∀j define a hyperplane. The geometry of the integration region in

these coordinates is defined by the Baikov polynomial B (see section 4.1.2). For all of

the topologies relevant for this thesis, the number of incontractible cycles is given by the

number of extrema of the Baikov polynomial on the hyperplane that are not singularities,

i.e.

∂B({α̂i}, {ϱ̂j})
∂αk

= 0 ∀k, (4.100)

ϱ̂i = 0 ∀i, (4.101)

B({α̂i}, {ϱ̂j}) ̸= 0. (4.102)

This is plausible since within the area described by a non-contractible cycle of the surface

B = 0, we have either B > 0 or B < 0 and therefore there has to be a local minimum or

maximum. There are, however certain caveats of this argument (see e.g. [185]).

Complementary to the approaches discussed in this thesis, there are efforts to exploit

the duality between the cycles and master integrals by integrating Feynman integrands

over such cycles in order to obtain their master integral coefficients (see e.g. [186–191]).

While in general the number of incontractible cycles is only a lower bound for the

number of master integrals due to the vectors possibly not spanning the full tangent

space, these numbers are the same for all topologies discussed in this thesis.
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4.3.2 IBP-Vectors at Extrema & Singularities of the Baikov

Polynomial

One of the challenges in IBP-reduction is to find a sufficient set of generators. In this

section, we provide a geometric criterion that such a set has to fulfil in order to generate

all surface-terms.

Recall the formulation of the syzygy problem in Baikov coordinates [192].

∑
i

ci
∂

∂αi
B({αi, ϱi}) +

∑
j

djϱj
∂

∂ϱj
B({αi, ϱi}) = f({αi, ϱi})B. (4.103)

We are interested in the solutions to this problem around the extrema and singularities

of the Baikov polynomial which are respectively defined by

∂

∂αi
B = 0 ∀i, B ̸= 0 ϱk = 0 ∀k, (4.104)

∂

∂αi
B = 0 ∀i, B = 0 ϱk = 0 ∀k. (4.105)

For most topologies, in particular for those which are challenging to reduce, the singular-

ities are given by isolated points6. Close to these points, the Baikov polynomial can be

expanded in some local coordinates z, such that

B = b0 + ziCijzj +O(z3), (4.106)

where Cij is as symmetric matrix with full rank. A global solution to the syzygy problem

must also be a local solution. The local IBP-problem is given by

vi(2Cij)zj = P (z)(b0 + ziCijzj) +O(z2). (4.107)

There are three types of vectors that fulfil this equation

(a) Rotation vectors: Choose two components j1, j2. The IBP-vector is then given by

vj1 =
∑
i

Cj2,izi +O(z2), (4.108)

vj2 = −
∑
i

Cj1,izi +O(z2), (4.109)

vk = O(z2) ∀k ̸= j1, j2, (4.110)

P = O(z2). (4.111)

6In cases where the singularities are not point-like, higher derivatives of the Baikov polynomial can
be set to zero until the surface is zero dimensional.



74 CHAPTER 4. INTEGRAL REDUCTION VIA GENERATING VECTORS

(b) Generic vectors: Choose a component j. The vector is given by

vj = B +O(z2), (4.112)

vk = 0 +O(z2) ∀k ̸= j, (4.113)

P = Cjkzk +O(z2). (4.114)

(c) At singularities b0 = 0, we additionally have scaling vectors:

vi = zi +O(z2)∀i, (4.115)

P = 1 +O(z2). (4.116)

Locally, all IBP-generating vectors can be written as a linear combination of such vectors

or are of higher order in z. It is noteworthy that the vector components vanish on the

singularities, which implies that all IBP-vectors vanish on all singularities. In fact, this

property can be used to find the ideal whose algebraic set is given by the singularities

analytically. In particular, the vector-components are a generating set of this ideal. More-

over, vectors that can locally be described as rotation vectors (case (a)) also vanish on

the extrema, while generic vectors become constant there. the proportionality constants

P , however, do vanish at the extrema for all vectors. This means that IBP-vectors can

also be used to find the extrema, which for instance allows to determine the number of

master integrals. Vectors which are constructed via anti-symmetrisation globally, i.e.

v = {0, ..., ∂

∂αj
B, ...,− ∂

∂αi
B, .., 0}, (4.117)

v = {0, ..., B, 0, ..., 0} (4.118)

are rotation, respectively generic vectors also on the singularities and extrema. Therefore,

vectors which are scaling vectors on a sub-set of the singularities are not within the module

spanned by these trivial vectors.

The IBP-relations corresponding to the vectors applied to some polynomial f(zi) are

locally given by

(a) Rotation vectors

∑
i

Cj2,izi
∂

∂zj1
f − Cj1,izi

∂

∂zj2
f +O(z2). (4.119)

(b) Generic vectors

B
∂

∂zj
f + (D − n)f

∂

∂zj
B +O(z2), (4.120)
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where n is an integer depending on the dimension of the scattering plane associated

to the Feynman diagram.

(c) Scaling vectors

(D − n)f +
∑
i

zi
∂

∂zi
f +O(z2). (4.121)

By inspection, we find that the IBP-relations generated by rotation vectors vanish both

on singularities and extrema. The relations generated by generic vectors vanish at singu-

larities while they are proportional to the Baikov polynomial near an extremum. Thus

locally, the space of IBP-relations generated via generic and rotation vectors lies within

the ideal generated by the Baikov-polynomial and its derivatives. The relations generated

by scaling vectors, on the other hand, can be non-zero on the singularity.

This implies that, for generic D, at a singularity, at least one relation generated by a

scaling vector is linearly independent from the relations generated by rotation and generic

vectors. Hence in order to obtain all IBP-relations, for each singularity the set of vectors

has to contain at least one vector which locally is a scaling vector at the singularity. We

find this a useful criterion to decide whether a set of vectors could be sufficient before

computing all IBP-relations.

4.3.3 Gauge-Transformations of IBPs

Applying IBP-generating vectors to polynomials gives surface terms. The inverse map

from surface-terms to IBP-generators is however not unique. For instance, in Baikov

formulation it is possible to obtain vectors which produce vanishing IBP-relations by

applying the vector

{0, ..., 0,
(
∂(Bf)

∂αj

)
, 0, ..., 0,

(
∂(Bf)

∂αi

)
, 0, ..., 0}, (4.122)

where B is the Baikov polynomial and f is an arbitrary polynomial to functions g that

depend neither on αi nor αj, which gives

∂

∂αi

(
∂(Bf)

∂αj

)
g − ∂

∂αj

(
∂(Bf)

∂αi

)
g = 0. (4.123)

We denote such generators as gauge-transformations of IBP-generators7. The existence

of such gauge generators has two important consequences: First, it is not necessary to

have a complete basis for the module of IBP-vectors in order to achieve the full IBP-

7In this language we absorb the numerator polynomial into the vector, thereby giving up the module
structure of IBP-generators.
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reduction. Second, when applying IBP-vectors to monomials in order to construct a set

of IBP-relations, it is possible to work modulo gauge generators from the start.

4.4 Implementation & Validation

The methods described in this chapter are implemented in a Mathematica-package, using

interfaces to Singular and Rust. We automatically compute the propagators and ISP’s,

their representation in embedding space and the definition of the syzygy problem in

Mathematica. We then use Singular for Gröbner basis methods, or a finite-field linear

solver implemented in Rust for linear-algebra based approaches.

We then use Mathematica to translate these vectors to Baikov coordinates and apply

them to all monomials. Afterwards we identify an independent set and construct the

linear equation defining the power-counting reduction, which is then solved with the

Rust solver. As a cross-check we fix numerical values for the kinematic invariants and

the dimension D and reduce the surface-terms with FIRE5 [193]. Finally, we convert

the surface-terms and linear systems to files readable by the C++-framework Caravel by

using Mathematica’s build-in package SymbolicC.



Chapter 5

Multi-Loop Amplitude Computation

In the previous chapters we have reviewed how amplitudes are defined in particle physics

and how they relate to scattering cross-sections. This included the discussion how multi-

loop integrals arise, how they can be reduced to master integrals and how these master

integrals can be computed employing differential equations. Furthermore, we have dis-

cussed how unitarity-compatible IBP-relations can be obtained from IBP-vectors which

are defined through syzygy computations.

In this section, we will discuss how these relations are used in the numerical unitarity

method and how analytic two-loop amplitudes are obtained with functional reconstruc-

tion. We will first review some technical tools for the computation of tree-level amplitudes,

discussing colour decomposition and recursion relations. We will furthermore review some

useful approximations, such as the leading-colour approximation and the heavy-top-loop

approximation. Furthermore, we will discuss the definition of finite remainders which we

will eventually compute. Next, we will review the method of numerical unitarity. Finally,

we will explain the methods of functional reconstruction which used to obtain analytic

results.

5.1 Colour-Ordering & Recursion Relations

Explicit computations with Feynman diagrams are often cumbersome, e.g. a six gluon

amplitude at tree level has 220 contributing Feynman-diagrams, while the 10 gluon am-

plitude already has more than a million contributing diagrams. Since the Feynman rules

for the gluon-self-interaction vertices moreover involve six terms each, each of these dia-

grams contributes hundreds of thousands of terms.

A first step towards a simplification is to organise the computation through colour

decomposition. Each external gluon carries a colour matrix T ija while quarks carry a single

colour index i. The algebra of these colour operators is independent of the kinematics,

77
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hence it is possible to organise the computation by it. Employing the identities

ifabc = Tr(T aT bT c)− Tr(T bT aT c), (5.1)

T aijT
kl
a = δilδkj −

1

Nc

δijδkl, (5.2)

the colour dependence of the amplitude can be expressed in terms of traces over a prod-

uct of matrices T ija . In the case of an n-gluon amplitude, this leads to the colour-trace

decomposition [194]

A =
1

n!

∑
σ∈Sn({1,...,n})

Tr(T a1T aσ(2) , ..., T aσ(n))A (σ(1), ..., σ(n)) , (5.3)

where Sn is the group of permutations of n elements. The colour ordered amplitudes A

have cyclically ordered external particles1 and their gluonic Feynman rules simplify to

• 3-gluon vertex V {µ1µ2µ3}(p1, p2, p3) = −
√
2(gµ1µ2pµ31 + gµ2µ3pµ11 + gµ3µ1pµ21 ),

• 4-gluon vertex V {mu1µ2µ3µ4}(p1, p2, p3, p4) = gµ1µ3gµ2µ4 .

In practice, such a decompositions is employed and Feynman rules for colour-ordered

amplitudes are used. These are then summed according to eqn. (5.3).

Additional simplification can be achieved by employing recursion relations. To make

this visible, the last gluon in an amplitude is set off-shell and its polarisation vector is

omitted defining the current

Jµ(kλ11 , ..., k
λn
n )ϵ±µ |(∑n

i=1 pi)
2=0= A(kλ11 , ..., k

λn
n , k±n+1). (5.4)

These currents can be computed recursively. Consider a colour ordered (n + 1)-gluon

current. Following the (n + 1)th gluon, after the first vertex, any graph splits into 2

or 3 sub-graphs with i, n − i, respectively i, j − i, n − j external gluons (see figure 5.1).

From the construction using Feynman rules, it is evident that, in the sum over all possible

diagrams, in any split, all possible sub-graphs are summed over. This sum is then again

a current. Therefore, the following recursion relation is valid

Jµ(kλ11 , ..., k
λn
n ) =

n−1∑
i=1

V µνρ
3

1

(
∑i

j=1 pj)
2(
∑n

k=i+1 pk)
2
Jν(k

λ1
1 , ..., k

λi
i )Jρ(k

λi+1
1 , ..., kλni ) (5.5)

+
∑

0<i<j<n

V µνρσ
4

1

(
∑i

k1=1 pk1)
2(
∑j

k2=i+1 pk2)
2(
∑n

k3=j+1 pk3)
2

× Jν(k
λ1
1 , ..., k

λi
i )Jρ(k

λi+1
1 , ..., k

λj
i )Jσ(k

λj+1
1 , ..., kλni ),

1Not that the cyclic ordering is only respected for coloured particles.
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Figure 5.1: Visualization of the Berends-Giele recursion [195].

where the prefactors of V3 and V4 are the vertices in the colour trace decomposition

and the factors 1/
∑
p are the propagators of the off-intermediate gluons. The simplest

one-particle currents are given by polarisation vectors

Jµ(kλ) = ϵλµ(k). (5.6)

Setting the (n+1)th gluon on-shell and contracting with a polarisation vector, this allows

to compute tree-level amplitudes with many gluons recursively from currents with less

gluons. Similar recursion formulae exist also for qq̄+n-gluon and qq̄V+n-gluon, where qq̄ is

quark line and V is a massive or massless vector boson [195]. We employ these recurrence

relations whenever we compute tree-amplitudes, making their evaluation straightforward.

5.1.1 Unitarity and Factorisation

Recursion relations are related to the unitarity of the S-matrix defined in eqn. (2.11)

S†S = 1. (5.7)

For the transition matrix T = −i(S − 1) unitarity implies that

i(T † − T ) = T †T. (5.8)

inserting a complete set of (multi-particle) states T †
1T =

∑
x T

†|x⟩⟨x|T and considering

initial and final states f and i gives a similar relation between amplitudes

i
(
(Ai→f (s)− A∗

f→i(s)
)
δpf−pi =

∑
x

δpx−piδpf−pxAi→x(s)A
∗
f→x(s), (5.9)

since ⟨x|T †|f⟩ = ⟨f |T |x⟩∗ = A∗
f→xδpx−pf (s). The parameters s describe the momenta

and helicities of the external particles. Since both sides only have δ-function support for

pi − pf = 0, we can drop each one δ−function. By crossing symmetry, this gives the
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relation [196]

Ai→f (s)− Ai→f (s
∗) =

∑
x

δpi−pxAi→x(s)Ax→f (s
∗). (5.10)

Recall that in order for propagators to be causal, squared momenta were replaced as

k2 → k2 − iε in section 2.2. Thus, the l.h.s. of eqn. (5.10) is only non-zero when such a

propagator is set on-shell. In the case of one-particle intermediate states at leading order,

the equation gives the residue of the amplitude on an intermediate propagator. Summing

over all possible residues of a tree amplitude, this allows to express a tree amplitude in

terms of products of simpler tree amplitudes, similar to eqn. (5.5) [197].

For multi-particle intermediate states, comparison of the order of coupling constants

shows that this formula relates discontinuities of loop-level amplitudes to products of am-

plitudes with less loops. Techniques based on generalised unitarity employ these factori-

sation formulae to express the integrands of higher order amplitudes in terms of tree-level

amplitudes (see section 5.5).

5.2 Heavy-Top-Loop Approximation

A particularly interesting part of the SM is the Higgs-sector, whose coupling to light parti-

cles is dominated by top-quark loops. Including these loops into multi-loop computations,

however, is notoriously difficult since Feynman-integrals with massive propagators often

have a complicated analytical structure leading to elliptic (or even more complicated)

integrals. To circumvent this problem and calculate amplitudes to higher orders in the

coupling, the full theory can be approximated by a simpler effective theory. We will briefly

review this theory and its effective operator.

In the heavy-top-loop approximation (HTL) the top quark mass is considered the

largest scale in the compuation. This allows to integrate out top-loops, resulting in an

effective operator [8]

αggHG
µν
a G

a
µνH. (5.11)

The coupling constant of this operator at leading order is obtained from computing the

amplitude of two on-shell gluons with momenta k1 and k2 producing an on-shell Higgs

via a top loop. After computing the colour trace, this amplitude is given by the integral

I =− ig2sδ
abmt

v

∫
dDℓ

(2π)D
× (5.12)

8mt [k
µ
1k

ν
2 − kν1k

µ
2 + 2kµ2 ℓ

ν − 2kν1ℓ
µ + 4ℓµℓν − gµνk1 · k2 − gµνℓ2 + gµνm2

t ]

(ℓ21 −m2
t ) ((ℓ− k1)2 −m2

2) ((ℓ+ k2)2 −mt2)
.
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Since k21 and k22 are zero, the solution can only depend on the Higgs mass. The result of

this integral is well known [198]:

I = δab
−ig2s
2πv

(
1−

(
1− 4m2

t

m2
H

)
arcsin2

(
mH

2mt

))
. (5.13)

This determines the coefficient of the GGH operator which has to be equal to this in the

mt → ∞ limit. This SU(3) gauge invariant operator leads to vertices with two, three and

four gluons plus a Higgs. The Lagrangian of the effective theory is therefore given by

omitting all terms containing top quarks and adding the additional piece2

LggH =
g2s
2πv

(
1−

(
1− 4m2

t

m2
H

)
arcsin2

(
mH

2mt

))
Gµν
a G

a
µνH. (5.14)

For scattering energies which are too small to produce two top-quarks close to their mass-

shells s≪ 2mt this effective theory gives a good approximation to the SM.

In general, the renormalisation of effective theories cannot be carried out in the way

described in section 2.4, since a redefinition of the existing couplings does not remove

all UV divergences and therefore, additional operators such as αggHHG
a
µνG

µν
a HH have tu

be introduced. However, no such operators are necessary for QCD corrections to single

Higgs-production in association with jets and hence it is sufficient to renormalise the

coupling αggH . Up to order α2
s, this renormalisation is given by [199]

α0
ggH/µ

2ϵ = αggH(µ
2)

(
1− αs(µ)

2π

β0
ϵ
+

(
αs(µ

2)

2π

)2(
β2
0

ϵ2
− β1

ϵ

)
+O(α3

s(µ
2))

)
, (5.15)

with β0 and β1 as defined in eqn. (2.54).

5.3 Leading-Colour Approximation

It is possible to split the amplitude into gauge invariant contributions which scale dif-

ferently with the number of colours Nc. Due to the size of the strong coupling constant

αs ∼ 0.1, it is possible to use the leading colour contribution as an approximation, which

often greatly simplifies the calculation. We will review this approximation and its effect

on the diagrams.

Approximating 1
Nc

≪ 1, the colour indices of gluons can be replaced by two quark

colour indices using T aijT
a
kl =

1
2
δilδjk + O( 1

Nc
) and omitting the 1

Nc
part (see figure 5.2).

This approximation allows a very simple treatment of the colour algebra which is then

reduced to the possible colour lines (see figure 5.2) [200].

2We ignore additional operators that do not contribute to single Higgs-production from QCD pro-
cesses.
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−→

−→

(a) Leading-colour approximation for a simple gluon
propagator: The colour flow is described by δikδjl,
omitting the factor 1

Nc
δijδkl.

−→

−→

(b) Leading-colour approximation for the
one-loop gluonic box diagram.

Figure 5.2: Approximation of a gluon using two quark colour indices: the gluon colour
transport T aijδabT

b
kl is replaced by δikδkl using the Fierz identity, omitting subleading terms

In this approximation colour non-planar diagrams are suppressed, where planar de-

notes the property that the colour flow lines can be drawn to infinity without crossing

internal lines in the diagrammatic representation. For colour planar diagrams, each loop

contains a closed colour flow line, which results in a factor of Nc (see figure 5.3).

(a) A colour planar one-loop

box diagram. Every inter-

nal and extermal colout line

yields a sum over fundamen-

tal colour indices.

(b) A colour non-planar dia-

gram. Only external colour

lines yield a sum over fun-

damental colour indices, be-

cause no closed colour line is

present. Therefore, the di-

agram is supressed by 1/Nc

compared to (a).

(c) A kinematically non-planar two-loop

diagram. There is no colour configura-

tion such that two closed colour lines

appear, hence the diagram is automati-

cally subleading in colour.

Figure 5.3: Planar and non-planar gluonic diagrams with colour-flow lines. Each coloured
line is summed over all quark colours in an amplitude.

For colour non-planar diagrams there are less of these traces and hence their con-

tribution to pure QCD amplitudes is suppressed by at least a factor of 1/Nc. For pure

Yang-Mills amplitudes, the diagrams contributing to non-planar integral topologies are

automatically also colour non-planar, since the colour flow line of at least one loop has

to be interrupted at external particles attached to the central rung. This allows to com-

pute the leading colour approximation of amplitudes without taking non-planar integral
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−→

Figure 5.4: A kinematically non-planar diagram contributing to Higgs production via
gluon fusion at leading colour.

topologies into account.

The suppression of (kinematically) non-planar diagrams by 1/Nc is, in general, not

valid for amplitudes containing Yukawa- or electro-weak couplings. For instance, using

the high top-mass approximation discussed in section 5.2 for Higgs production via gluon

fusion, the two-gluon-Higgs vertex imposes colour conservation among the gluons. There-

fore, some non-planar diagrams contribute e.g. to Higgs-plus-two-jet production from

gluon fusion at leading colour (see figure 5.4).

Another type of processes where non-planar pieces might matter are processes where

electro-weak bosons couple to closed fermion loops. While these processes are usually

colour suppressed compared to processes with gluon loops, they are enhanced by the

number of fermions circulating in the loop and therefore may lead to sizeable corrections.

5.4 Finite Remainders

As described in section 2.4, the renormalized amplitudes in MS scheme can be obtained

by replacing bare couplings α0
κ by renormalised couplings by renormalized coupling ακ(µ).

e.g. for αs

α0
s(µ) = αs(µ)

(
1− β0

ϵ

αs(µ)

2π
+

(
β2
0

ϵ2
− β1

2ϵ

)(
αs(µ)

2π

)2

+O
(
α3
s(µ)

))
. (5.16)

The coefficients β0 and β1 defined as in eqn. (2.54). Replacing bare couplings by renor-

malised couplings gives renormalised amplitudes. For example, for an amplitude where

A(0)
κ ∝ αqs, the renormalised amplitudes A(L)

κ,R relate to the bare amplitudes A(L)
κ via

A(0)
κ,R = A(0)

κ ,

A(1)
κ,R = A(1)

κ − q
2β0
ϵNc

A(0)
κ ,

A(2)
κ,R = A(2)

κ − (q + 1)
2β0
ϵNc

A(1)
κ +

(
(q + 1)

2β2
0

ϵ2N2
c

− q
2β1
ϵN2

c

)
A(0)
κ .

(5.17)
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Infrared divergences of multi-loop QCD-integrals occur when a gluon that is exchanged

between two external legs becomes soft or collinear to one of the legs. In fact, these

divergencies appear as universal factors which can be subtracted to obtain the finite

remainder [201–203]

Rκ = R(0)
κ +

αs
2π

R(1)
κ +

(αs
2π

)2
R(2)
κ +O(α3

s) , (5.18)

with the R(i)
κ defined as

R(0)
κ = A(0)

κ,R,

R(1)
κ = A(1)

κ,R − I(1)κ A(0)
κ,R +O(ϵ),

R(2)
κ = A(2)

κ,R − I(1)κ A(1)
κ,R − I(2)κ A(0)

κ,R +O(ϵ).

(5.19)

For colour-ordered N−point amplitudes, the operator I
(1)
κ is given by [201]

I(1)κ (ϵ) =− eγEϵ

Γ(1− ϵ)

N∑
i=1

(si,i+1)
−ϵγti,ti+1

, (5.20)

where sij are the Mandelstam variables, ti denotes the particle type of the ith external

particle and the anomalous dimension γ depends on the particles

γgg =

(
1

ϵ2
+

1

ϵ

β0
Nc

)
, γq1 ̸=q2 =

(
1

ϵ2
+

3

2ϵ

)
, (5.21)

γqg =

(
1

ϵ2
+

1

ϵ

β0
2Nc

+
3

4ϵ

)
. (5.22)

The operator I
(2)
κ is given by [201]

I(2)κ (ϵ) =− 1

2
I(1)κ (ϵ)I(1)κ (ϵ)− 2β0

Ncϵ
I(1)κ (ϵ) +

e−γEϵΓ(1− 2ϵ)

Γ(1− ϵ)

(
2β0
Ncϵ

+K

)
I(1)κ (2ϵ)

+
eγEϵ

ϵΓ(1− ϵ)
Hκ ,

(5.23)

where

K =
67

9
− π2

3
− 10

9

Nf

Nc

. (5.24)

The operator Hκ is given by Hκ =
∑

iHti , where

Hg =

(
ζ3
2
+

5

12
+

11π2

144

)
−
(
π2

72
+

89

108

)
Nf

Nc

+
5

27

(
Nf

Nc

)2

,

Hq =

(
7ζ3
4

+
409

864
− 11π2

96

)
+

(
π2

48
− 25

216

)
Nf

Nc

.

(5.25)
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The representation in terms of finite remainders is independent of the renormalisation

and regularisation schemes (see e.g. [204]) and can be used for physical applications (see

e.g. [205]). Moreover, it often takes a simpler form than the full amplitude by subtracting

contributions from the ϵ0 terms of the amplitudes.

Note that, however, the cancellation of poles in ϵ only becomes explicit when the

one- and two-loop amplitudes are expressed in the same set of linearly independent and

ϵ-free functions. Such a basis can be obtained by expanding the master integrals order

by order in the dimensional regulator ϵ. In such an expansion the master integrals can

often be expressed in terms of multiple polylogarithms (MPLs), whose linear relations are

well understood [206–208] or iterated integrals satisfying a shuffle-algebra. This allows to

construct a basis of linearly independent pentagon functions, which are available for all

amplitudes and remainders discussed in this thesis [41–43].

A useful strategy for the computation of the loop amplitudes is to directly reconstruct

the finite remainders defined in eqn. (5.19) from numerical evaluations of the amplitude.

This is achieved by first numerically reducing the amplitude to a basis of master integrals,

which are themselves expanded in terms of a basis of pentagon functions. We can then

subtract the known divergences and obtain a numerical decomposition of the remainders

in terms of pentagon functions.

In the following, we will discuss how we obtain the numeric decomposition of ampli-

tudes to master-integral coefficients. The maps from these master-integral coefficients to

pentagon-function coefficients are given in the ancillary files of [41–43].

5.5 Two-Loop Numerical Unitarity

In order to obtain a decomposition of amplitudes in terms of master integrals, we use the

framework of two-loop numerical unitarity [48, 55–57, 167, 209], which we will review in

this section.

We begin by parametrizing the integrand of the colour-ordered amplitude A(2)[j]
κ (ℓl) in

terms of surface terms (a.k.a. unitarity compatible IBP-relations) and master integrands

[48]. The latter become the master integrals when integrated while the surface terms

integrate to zero. We organize this decomposition by the topologies, i.e. the propagator

structures of Feynman integrals contributing to the process

A(2)[j]
κ (ℓl) =

∑
Γ∈∆

∑
i∈MΓ∪SΓ

cΓ,i
mΓ,i(ℓl)∏
j∈PΓ

ϱj
, (5.26)

where ∆ is the set of propagator structures Γ, and PΓ are the multisets of inverse prop-

agators and MΓ, SΓ denote the sets of master integrands and surface terms mΓ,i(ℓl),

respectively. The cΓ,i are the coefficients of the ansatz. The l.h.s. of eqn. (5.26) could,
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in principle, be obtained as the sum of all possible Feynman diagrams. However, we use

a different approach based on unitarity. The sets of surface terms are constructed with

the methods described in chapter 4. Since this ansatz will be fitted only numerically, we

can either use fully analytic surface terms, or we can employ files which generate numeric

surface terms sufficiently fast for every phase-space point (see sections 4.2.5, 4.2.4).

The master-integral bases for the processes under consideration have been computed

in [42, 167]. These master integrals are often not in a form compatible with eqn. (5.26),

since they include doubled propagators or integrals which are linearly dependent on-

shell and only differ by descendant topologies. Reducing these integrals to a unitarity

compatible basis could be done with the methods discussed in chapter 4. However, since

they typically have low degree in the loop momenta, while IBP-relations generated from

IBP-vectors have high degrees, it turns out that Laporta’s algorithm, in combination

with functional reconstruction (see section 5.6), is more efficient. For this purpose, a

public implementation of this method in LiteRed [136] has been used to obtain unitarity

compatible master integrals.

Constraining this ansatz via numeric sampling of the l.h.s. directly would lead to enor-

mous linear systems whose solution would be very time-consuming even when choosing

external momenta numerically. We therefore employ numerical unitarity, a cut-based

method which naturally block-triangularises these systems. The principle of methods

based on generalised unitarity is to rely on factorization properties of the integrand.

In particular, when taking the integrand A(2)[j]
κ (ℓl) to loop-momentum configurations ℓΓl

where a set of propagators are on-shell, that is ϱj(ℓ
Γ
l ) = 0 iff j ∈ PΓ, the residue of the

ansatz in eqn. (5.26) is equal to a product of tree-level amplitudes

∑
states

∏
i∈TΓ

A(0)
i (ℓΓl ) =

∑
Γ′≥Γ,i∈MΓ′∪SΓ′

cΓ′,imΓ′,i(ℓ
Γ
l )∏

j∈(PΓ′\PΓ)
ρj(ℓΓl )

. (5.27)

On the left-hand side of this equation we denote by TΓ the set of tree-level amplitudes

associated with the vertices in the diagram corresponding to Γ and the sum is over the

states propagating through the internal lines of Γ. On the right-hand side, we sum over

the propagator structures which contribute to the limit, denoted Γ′, for which PΓ ⊆ PΓ′ .

The fact that the factorization on the l.h.s. holds can be seen from the construction

via Feynman rules: The amplitude is defined as the sum over all possible graphs with

a given set of external particles. The residue can be constructed from Feynman-rules

by drawing these propagators with all possible particles, and connect the propagators

and external particles in all ways allowed by Feynman rules. These connections in all

possible ways are in fact all possible ways to draw diagrams which have the particles in

the propagators as external states and are thus tree-level amplitudes [210–214]. When

taking only physical polarisation states into account for internal gluons, it is in fact
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possible to omit the contributions of ghost fields, which otherwise would be necessary to

cancel the longitudinal polarisation states of gluons.

Alternatively, one could obtain such factorization formulae from the unitarity of the

S-matrix as we discussed in section 5.1.1 (hence the name generalised unitarity).

In numerical unitarity the coefficients cΓ,i are determined numerically by sampling

eqn. (5.27) over a sufficient number of values of ℓΓl . This allows to constrain the ansatz

topology by topology, where ancestor integrals with their coefficients have to be subtracted

from the amplitudes when constraining the coefficients of descendants. For eqn. (5.27)

to be valid for colour-stripped amplitudes, a special unitarity-based colour decomposition

approach introduced in refs. [215,216] has to be used.

5.5.1 Dimensions of Internal States

The tree-level amplitudes in eqn. (5.27) are defined in D-dimensions, giving rise to D-

dependence on the left-hand side of the ansatz due to sums over the polarisation states. In

order to compute these D-dimensional tree-level amplitudes, the D-dependence of master

integrals and surface terms is differentiated from the dimension of internal states Ds. The

Ds dependence arises only from sums over polarizations of the tree amplitudes. Their

(Ds− 4) dimensional spinor- and vector-indices have to be contracted either along one of

the loops, or with one of the external particles, where they vanish. Therefore, the residue

can depend on Ds at most quadratically in the two-loop case.

For even integer values of Ds, spinor representations with 2Ds/2 dimensions exist (see

e.g. [127]). It is therefore possible to constrain the ansatz by evaluating the tree-level

amplitudes with explicit representations of the Ds-dimensional Clifford algebra in Ds =

{6, 8, 10} dimensions and reconstruct the analytic Ds dependence from there [127, 217,

218]. Afterwards, the dimensions are considered in ’t Hooft-Veltmann scheme again, i.e.

Ds → D. The tree-level amplitudes are evaluated through Berends-Giele recursion [195],

which seamlessly carries over to the Ds dimensional case.

In this way a constraining system of equations for the cΓ,i can be built which allows

to determine the numeric master integral coefficients. By performing all these calcula-

tions using finite-field arithmetic (see appendix C) fast computations without any loss

of precision are possible. This however requires a rational parametrization of the phase

space, which can be obtained using momentum twistors (see e.g. [219]). By solving these

systems and discarding the surface-term coefficients, we arrive at a decomposition of the

amplitude in terms of master integrals.

As a final remark, we emphasize that after the computation of the amplitude on one

(sufficiently generic) phase-space point, it is possible to analyse which of the coefficients of

master integrals and surface terms vanish. When repeating the computation on different

phase-space points, these master integrals and surface terms are excluded from the ansatz
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which reduces the number of sampling points and thereby leads to a significant efficiency

gain.

5.5.2 Remainders and Pentagon Functions

Having evaluated the coefficients cΓ,i as described above, we insert expressions for the

master integrals in terms of pentagon functions, thereby obtaining a decomposition of the

amplitude in terms of pentagon functions

A(2)[j]
κ =

∑
i∈B

0∑
k=−4

ϵkdk,ihi +O(ϵ) , (5.28)

with pentagon function monomials {hi}i∈B, and the the associated set of labels B. Em-

ploying the same procedure for one-loop amplitudes, we obtain

R(2)[j]
κ =

∑
i∈B

rihi , (5.29)

where the ri are rational functions of the external kinematics.

We employ a twistor parametrisation of the phase space to get rational results and

obtain the pentagon-function decomposition in finite field arithmetic.

5.6 Analytic Reconstruction

In the previous sections we have described how master integral coefficients of amplitudes,

respectively the pentagon function coefficients of finite remainders are computed numeri-

cally within the framework of two-loop numerical unitarity.

In this section, we will discuss how the analytic coefficients can be obtained from

the numeric evaluations and functional reconstruction. Compared to generic functional

reconstruction algorithms we use several improvements based on the physical properties of

amplitudes: First, in ref. [57] it has been conjectured that the denominators of pentagon

function coefficients can be extracted from the coefficients reconstructed on a univariate

slice and knowledge of the symbol alphabet describing the branch-cut structure of the

pentagon functions.3

Second, in ref. [40] it was noticed that the analytic form of the coefficients can be sim-

plified by univariate partial fractioning which can be performed before the full functional

reconstruction.

Finally, in ref. [51], an advantageous choice of sampling points was used to reconstruct

3Related methods have since been put forward [220].
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polynomials from structured linear systems which can be efficiently solved. Complemen-

tary to this approach, we also review a reconstruction method based on spinor brackets.

5.6.1 Parametrisation in Terms of Mandelstam Invariants

A natural choice of variables to perform the analytic reconstruction is given by the Man-

delstam variables, as they are Lorentz-invariant and resemble physical configurations, e.g.

propagators of tree-level amplitudes. In general, helicity-amplitudes have a spinor-weight

(see appendix E), due to the contraction with fermion polarisation vectors. We there-

fore normalise loop-amplitudes by a spinor weight factor, leaving a function which can

be expressed through only Mandelstam Invariants. The pentagon function coefficients

in normalised finite remainders with up to five external particles are then rational func-

tions of the Mandelstam invariants and tr5 = ϵ(p1, p2, p3, p4). Furthermore, since tr25 is a

polynomial in the Mandelstam invariants the dependence on it simplifies

ri(s⃗, tr5) = r+i (s⃗) + tr5 r
−
i (s⃗) , (5.30)

where the r±i are rational functions of the Mandelstam invariants. The Mandelstam

variables themselves are parity invariant while the pseudo-scalar tr5 transforms as parity

odd. It is therefore clear that we can extract the r±i by computing the ri on parity-

conjugate phase-space points [218].

r+ =
1

2
(r(s⃗, tr5) + r(s⃗,−tr5)) , r− =

1

2tr5
(r(s⃗, tr5)− r(s⃗,−tr5)) . (5.31)

The split of the remainder into parity even and parity odd parts is in a sense unphysical,

because the SM is organised by chirality rather than parity. Therefore, it is sometimes

fruitful to not split the amplitude into parity even and odd parts, but directly reconstruct

in terms of spinor brackets [ij],⟨ij⟩ (see section 5.6.6).

5.6.2 Denominators from Univariate Slices

The analytic structure of the master integrals in a pure basis is, to a large extent, described

by the symbol letters Wk of this basis (see section 3.2). Any unphysical pole in the

pentagon function coefficients has to cancel out in the amplitude and thereby requires a

degeneracy of the pentagon functions on this pole. It has therefore been conjectured in

ref. [57], that the denominators of the r±i factorize into products of symbol letters raised

to some power

r±i =
n±
i∏n

j=1W
q±ij
j

, (5.32)

where the q±ij are (potentially negative) integers.
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The exponents q±ij can be determined by reconstructing the amplitude on a (sufficiently

generic) univariate slice in the kinematic invariants [57]. The denominators of the resulting

coefficients factorize into simple functions which can be mapped to the letters and whose

exponents then correspond to the exponents of symbol letters in eqn. (5.32).

To obtain such a reconstruction on a univariate slice, we construct parametrisations

of the external momenta in one parameter t which leads to Mandelstam variables which

are linear in t and also rationalises tr5. We achieve this with a generic method based on

generalised Britto–Cachazo–Feng–Witten (BCFW)-shifts [221]. Specifically, a multi-line

purely holomorphic shift [222] naturally results in Mandelstam variables that are linear

in the shift parameter. In order to be sufficiently generic, we shift all of the lines (see

e.g. ref. [223]) as proposed in ref. [224]. Starting from a randomly chosen point defined by

its spinor-representation {λ1, ..., λn, λ̃1, ..., λ̃n}, a holomorphic shift adjusts every λ spinor

in a way which is proportional to a common reference spinor η

λi → λi + tciη. (5.33)

The ci have to be chosen such that the shifted kinematics satisfy momentum conservation

0 =
n∑
i=1

ki =
n∑
i=1

λ̃iλi →
n∑
i=1

(
λ̃iλi + citλ̃iη

)
=

(
n∑
i=1

citλ̃i

)
η = 0, (5.34)

which is ensured by choosing

n∑
i=1

ciλ̃i = 0, (5.35)

We chose a random set ci out of the four-dimensional solution space of this equation.

Under such a shift the holomorphic spinor products transform linearly in t

⟨ij⟩ → ⟨ij⟩+ t
(
ci⟨ηj⟩+ cj⟨iη⟩

)
, (5.36)

whereas the anti-holomorphic spinor products [ij] are constant, such that the Mandelstam

invariants sij = ⟨ij⟩[ji] become linear in t while tr5 is quadratic in t. For each point on

this slice the parity conjugate point is trivially obtained by [i| ↔ ⟨i|, |i] ↔ |i⟩.

On the univariate slice, given by this shift, we can obtain the coefficients r̃±i (t) =
n±
i (t)

d±i (t)

by Thieles interpolation formula [225] (see appendix D.1).

The lettersWk become simple univariate rational functionsWk(t) = νk(t)/δk(t) on the

slice, which are unique if the slice is chosen sufficiently generic. Due to the conjecture in

eqn. (5.32), the denominator di(t) factorises into these simple functions. By comparing the

degrees of the factors νk(t) and δj(t) in the factorised form of the denominator, the analytic
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denominator of the pentagon-function coefficients can be obtained. The reconstructed

coefficients on the univariate slice also reveal the exponents q±ij in eqn. (5.32). It is also

possible to extract letters which appear as a factor in the numerator the same way.

Moreover, the univariate reconstruction gives the polynomial degrees of the n±
i , giving

a measure of the complexity of the ansatz. If the degrees are sufficiently low, we can

construct an ansatz with all monomials up to the maximal degree and constrain it from

numerical evaluations. For many amplitudes, however, the complexity involved in solving

the linear systems required to constrain such an ansatz makes this an inviable approach

to determining the analytic form of the r±i .

5.6.3 Linear Dependencies of Coefficients

Pentagon functions make many physical properties of the amplitude such as the pole

structure and the transcendentality (i.e. the number of iterated logarithmic integrals)

explicit, which makes them a very suitable basis to expand the amplitude in. However,

they still do contain spurious (multi-)logarithmic singularities which have to cancel in

the amplitude. In practice this implies that many of the pentagon function coefficients

are linearly dependent [226]. We can use this property by sampling the amplitude on

a sufficient number of points pi. This cancellation happens for the even and odd parts

individually. We can hence construct two matrices

M+
ij = r+i (pj), M−

ij = r−i (pj) (5.37)

by sampling over different values of pj. When choosing a sufficient number of pj, the

reduced row echelon form of this matrix expresses the linear dependencies of the analytic

remainder. In practice we increase the number of sampling points until the ranks of the

matrices M± saturate.

We choose a basis of coefficient functions r±k , k ∈ K such that the degrees computed

via univariate sampling is minimal. This allows to systematically express complicated

coefficients in terms of simpler coefficients. The remainder then takes the form [218]

R(2) =
∑

i∈K,j∈B

riLijhj, (5.38)

where hj are the pentagon functions, ri are the independent (rational function) coefficients

and Lij is a matrix of rational numbers expressing the linear dependencies.

Furthermore, it is possible to include known analytic functions into this sampling

procedure in order to express coefficient functions through them [40]. We find that this

is particularly fruitful when including the coefficients of similar but simpler amplitudes.

For instance, many of the most complicated coefficients of non-planar amplitudes can be
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expressed through the coefficients of planar-amplitudes with the same particles or at least

the same kinematic structure.

Often, the ansätze for the ri have several ten-thousands to several hundred-thousands

of free coefficients, while only a few hundred ri are independent, thus making the sam-

pling to get linear dependencies negligible as compared to the sampling required for the

reconstruction. The linear dependencies, however, contain complicated rational numbers.

We find it convenient to do the sampling over several finite fields and reconstruct these

rational numbers via the Chinese Remainder Theorem (see appendix C).

5.6.4 Partial-Fraction Ansatz

If the polynomial degrees of the numerators of pentagon function coefficients in common-

denominator form is too high for simple ansatzing to be feasible, it is necessary to identify

simpler polynomials whose reconstruction is possible with moderate computational effort.

In previous computations of two-loop amplitudes it has been observed that pentagon

function coefficients greatly simplify in a partial fraction decomposition. This simpli-

fication can be exploited by employing a univariate partial-fraction decomposition as

suggested in ref. [40], which we will review in the following.

We perform a partial fraction decomposition with respect to one kinematic invariant

sij, where we group the remaining kinematic invariants into some vector s⃗rem. For any

two distinct letters Wk1 ,Wk2 with powers Qk1Qk2 , Hilberts’s Nullstellensatz guarantees

the existence of a solution to the equation

1 =
nk1(s⃗rem, sij)

dk1(s⃗rem)
W

Qk1
k1

+
nk2(s⃗rem, sij)

dk2(s⃗rem)
W

Qk2
k2

, (5.39)

where the n and d are polynomials. Note that when only considering sij as a variable

this means that 1 is the Gröbner basis of W
Qk1
k1

and W
Qk2
k2

and we can use Buchberger’s

algorithm to obtain the n and d.

Repeatedly inserting such identities into the numerator of a coefficient in common

denominator form, the denominator can be decomposed into pieces with only one sij

dependent letter in the denominator.

In general, this procedure will generate spurious poles, i.e. poles which appear for

individual terms but cancel in the sum. For example, in

1

(x− b) (cx2 − a)

part. fract w.r.t x
=

−bc− cx

(b2c− a) (cx2 − a)
+

1

(x− b) (b2c− a)
(5.40)

the term (b2c − a) is a spurious pole. In the context of pentagon function coefficients

such spurious poles are not necessarily symbol letters themselves. We find, however,

that when repeatedly applying the decomposition in eqn. (5.39), such spurious poles can
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only occur from pairwise correlations of letters. We can therefore construct all possible

spurious factors systematically by solving eqn. (5.39) for all pairs of letters via Gröbner

basis methods and taking the denominators djk , giving a new set of letter-like objects

W = {W 1(s⃗rem), . . . ,W |W|(s⃗rem)}.
After cancelling the s34 dependent polynomials in the numerator via polynomial divi-

sion, we arrive at a canonical partial fraction decomposition of the coefficients r±

r±=

ni∑
k=1

∑
m

P±
km(s⃗rem)s

m
ij

Wk(s⃗rem, sij)β
±
k

∏
lWl(s⃗rem)γ

±
kl

, (5.41)

where the P±
ij are polynomial in s⃗rem. The Wk and Wl are known fully analytically,

while the polynomials P±
ij and and the exponents β±

k and γ±kl have to be determined from

numerical samples. We first discuss how to determine the exponents, the contributing

degrees smij in the numerator and the total degrees of the polynomials P±
ij . Similarly to

the univariate slice, which we have used to determine the denominators and total degrees

in common denominator form, we achieve this by reconstructing on a bivariate slice. This

slice is chosen such that sij varies freely while the other Mandelstam variables are chosen

as linear in one parameter. Specifically, we set

sij = s, srem,i = ai + bit, (5.42)

where the ai and bi are fixed, randomly chosen elements of a finite field. This again raises

the problem that Mandelstam invariantes do not rationally parametrize the phase space.

For the cases we consider, however, it is always possible to parametrise the n-dimensional

phase space by n−1 Mandelstam invariants and one twistor parameter x (for the details,

see appendix F). We choose such a parametrisation with all Mandelstams but sij and an

additional x. sij and tr5 then depend rationally on these variables. It is then trivial to

choose s⃗rem with a t dependence as in eqn. (5.42).

To obtain the dependence on s, we apply the methodology of ref. [218], where we sam-

ple over values of {t, x}, and reconstruct the rational functions through their dependence

on

{sij, t} = {sij(t, x), t}. (5.43)

This approach also requires the ability to find parity conjugate phase-space points, which

we detail in appendix F as well. With this parametrisation it is possible to reconstruct

the numerators of coefficients4 on the bivariate slice via iterated Newton interpolation

(see appendix D.2).

After reconstructing the finite remainder on such a slice, the terms of a partial fraction

4Recall that the denominators is known analytically and can hence be multiplied out.
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decomposition w.r.t. s are equivalent to the terms in eqn. (5.41) and can be easily identified

by their sij dependence. The maximal degrees of P±
km and the exponents of the letters

in the denominator βk and γkl can be identified with the standard univariate analysis,

leaving only the explicit form of the P±
km to be determined.

As a final remark, we note that the partial fraction expansion is disadvantageous

when one letter correlates with many others, i.e. they appear together in irreducible

denominators. For instance, in the comparably simple function

−xs45 + s45 + 3

(s45 + 1)(s45 − x)(s45x− 2)
(5.44)

=− x

(s45x− 2)(x2 − 2)
+

1

(s45 + 1)(x+ 1)
+

−x2 + x+ 3

(s45 − x)(x+ 1)(x2 − 2)

=
1

x− s45

(
1

2− s45x
+

1

s45 + 1

)
(5.45)

the letter (x − s45) appears together with all other letters. This has the effect that the

term with (s45 − x) as a denominator factor has, in fact, a higher polynomial degree in x

than the common denominator form (see eqn. (5.44)). However, by excluding this factor

from the partial fraction expansion a very simple ansatz is found indeed (see eqn. (5.45)).

Such factors could appear e.g. from a badly chosen normalization, but also seem to

appear naturally in the coefficients. Since the partial fraction expansion is computation-

ally rather lightweight compared to sampling the amplitude, we can determine by trial an

error which factors have to be excluded from the partial fraction expansion for an optimal

ansatz for each coefficient. Nevertheless, it would certainly be interesting to study these

correlations in more detail.

5.6.5 Vandermonde Sampling Procedure

After reducing the reconstruction problem to sufficiently simple polynomials P±
km, we can

use an ansatz consisting of all monomials up to the known total degree and constrain

it from numerical evaluations. For r±i = c±ikmk, where the mk are the monomials of the

ansatz, this could be realised in the following way:

c±ik = {mk(pj)}−1r±i (pj), (5.46)

where the pj are sampling points in the phase-space of the external kinematics. In practice,

however, the ansätze can still have a few hundred-thousands of free coefficients. Therefore,

sampling on random points and inverting this linear system is not a viable option. We

can overcome this problem, however, by special choices of the sampling points pj. In

this section, we will describe a sampling procedure introduced in ref. [51] which leads to

(generalized) Vandermonde matrices whose inversion is possible for very large sizes and
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therefore allows for an efficient determination of the P±
km.

To begin with, we discuss how to separate the individual P±
km from eqn (5.41). We

can only directly compute the numerical values of the r±i (using the algorithm outlined in

section 5.5) and the numerical values of the denominators (using their analytic expression).

We can, however, extract the value of the P±
km(s⃗

(k)
rem) by sampling eqn. (5.41) over enough

values of sij = sij,a, that is by solving the system
s0ij,1

W1(s⃗rem,sij,1)
β±1

∏
lWl(s⃗rem)

γ±
1l

· · · sMij,1

Wni (s⃗rem,sij,1)
β±n

∏
lWl(s⃗rem)

γ±
nl

...
. . .

...
s0ij,N

W1(s⃗rem,sij,N )β
±
1

∏
lWl(s⃗rem)

γ±
1l

· · · sMij,N

Wni (s⃗rem,sij,N )β
±
n

∏
lWl(s⃗rem)

γ±
nl



P±
11(s⃗rem)

...

P±
niM

(s⃗rem)



=


r±i (s⃗rem, sij,1)

...

r±i (s⃗rem, sij,N)

 . (5.47)

The sampling is done in a finite field and the number of sample points, denoted by N ,

is the number of terms in the partial-fraction decomposition ansatz of eqn. (5.41). This

sampling has to be done for each value of s⃗rem. For the amplitudes we consider this

number is O(30). The sampling over different values of sij is realised by sampling over

different values of x in our twistor parametrisation (see appendix F).

Having described how to numerically evaluate the P±
ij (s⃗

(a)
rem) for a given value s⃗

(a)
rem, we

describe how these evaluations can be used to determine the analytic form of Pkm. We

begin by considering a polynomial

q(s⃗rem) =
∑
α⃗i∈S

cα⃗i
mα⃗i

, where mα⃗i
= s

αi,1

12 · · · sαi,n

n1 , (5.48)

and the sum over exponent vectors α⃗i runs over some finite set S.
We then introduce a so-called anchor point,

s⃗rem,(0) =
(
s1,(0), ..., sn,(0)

)
, (5.49)

and choose the further sampling points as powers of the original point

s⃗rem,(a) = (sa1, ..., s
a
n) . (5.50)

On these sampling points, the monomials also behave as powers of the monomials on the

anchor-point

mα⃗i
(s⃗(a)rem) =

[
mα⃗i

(s⃗rem,(0))
]a
. (5.51)

When using these sampling points in the procedure described in eqn. (5.46), the con-
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straining linear system is of generalised Vandermonde form [51]
[
mα⃗1(s⃗rem,(0))

]0 · · ·
[
mα⃗|S|(s⃗rem,(0))

]0
...

. . .
...[

mα⃗1(s⃗rem,(0))
]|S| · · ·

[
mα⃗|S|(s⃗rem,(0))

]|S|

 cα⃗1

. . .

cα⃗|S|

 =

q(s⃗
(1)
rem)

. . .

q(s⃗
(|S|)
rem )

 . (5.52)

Such a Vandermonde matrix has several interesting properties, e.g. it’s determinant can

easily be computed as

det V (mα⃗1 , ...,mα⃗|S|) =
∏

1<a<b≤|S|

(mα⃗a −mα⃗b
). (5.53)

The special structure of this system allows it to be efficiently solved in O(|S|2) time and

O(|S|) space. A discussion of an efficient algorithm for solving the Vandermonde system

can be found in refs. [51, 224, 227]. In practice, Vandermonde systems with a side length

|S| of around 105 can be solved in just over a minute on a modern laptop computer.

When one of the polynomials P±
km is fully reconstructed, we can subtract it in eqn.

(5.47) such that less evaluations over sij are needed. This procedure known as “prun-

ing” [51] leads to a siginificant efficiency gain. The maximal number of evaluations needed

to reconstruct each P±
km can be computed before the reconstruction from their total de-

grees. Therefore, the generation of points which can be done on a laptop-computer, is

completely decoupled from the evaluations of the amplitude which are performed on a

cluster.

The numeric coefficients in the polynomials P±
ik are, in general rational, numbers.

The reconstruction algorithm, however, returns them in a finite field, making rational

reconstruction necessary (see appendix C). In some cases one finite field with cardinality

O(231) is not enough to uniquely determine all rational numbers and hence reconstruction

in additional finite fields is necessary to use the Chinese Remainder Theorem. In practice,

after reconstruction in one finite field, we can identify which coefficients cα⃗i
are zero. This

makes the reconstruction in additional finite fields significantly more efficient by repeating

the procedure with a reduced set S.

5.6.6 Spinor Reconstruction

The reconstruction of analytic master integral coefficients from numerical samples has a

developing methodology in recent years. In this section, we discuss a latest advance using

spinor variables.

The normalisation of the amplitude as well as the unphysical split of the coefficients

into parity even and parity odd parts can be avoided by reconstructing directly in terms

of spinor brackets (see appendix E for a review of spinor helicity variables). At first
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glance this seems to be disadvantageous, since it doubles the number of variables that the

amplitude depends on. Moreover, since every Mandelstam sij = ⟨i|j⟩[j|i] corresponds to
a product of two spinor brackets, one would naively expect the degree in spinor brackets

to be much higher than in Mandelstams.

However, the monomials in the ansatz are constrained by the total spinor-weight

and Schouten-identities give further dependencies, such that the physical advantages of

the spinor parametrisation outweigh the appearent disadvantages. Therefore, ansätze

for the coefficients in terms of spinor brackets are often simpler than the ansätze in

Mandelstams [54,228]. Moreover, the reconstruction in spinor variables allows to employ

additional physical conjectures about the form of the amplitude.

In common denominator form the pentagon function coefficients are given by

ri =
Ni∏
j D

qij
j

. (5.54)

To obtain the denominators in spinor-brackets we can use the univariate slice discussed

in section 5.6.2 to obtain the ⟨ij⟩ dependent denominators and the parity conjugate slice

to obtain the [ij] dependent denominators, both of which also factorize into (slightly

different) letters5. The denominator of pentagon function coefficients is then given by

their least common multiple. The linear dependencies between the coefficients are found

in the same way as described in section 5.6.3. It is well known that the pentagon function

coefficients simplify in a partial fraction decomposition

ri =
∑
k

Nik∏
j D

qijk
j

, (5.55)

where qijk ≤ qij.

In previous computations it has been observed that poles of the form ⟨i|j + k|i]α can

be separated into different terms in the partial fraction decomposition, i.e.

r =
∑

d∈{⟨i|j+k|i⟩α}

Nd

d
∏

j D
qjd
j

(5.56)

This can be proven for pure bases at one-loop level. At two loops, it is possible to take such

a partial fraction decomposition as an ansatz and verify that it reproduces the amplitude

later.

In this form it turns out that most of the terms in the partial fraction decomposition of

complicated coefficients are linearly dependent on simpler coefficients. Assuming that only

one term in the decomposition with respect to the ⟨i|j + k|i]α denominators is independent

of simpler coefficients, an ansatz is made containing a basis of simpler coefficients and all

5The difference is that letters sij turn into two letters [ij] and ⟨ij⟩
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independent spinor brackets allowed by mass-dimension and spinor-weight6.

r =
N

⟨i|j + k|i⟩α∏nDnnqn
+
∑
n

cnr
simpler
n . (5.57)

This ansatz only works when it is known which of the terms Nd

d
∏

j D
qjd
j

is independent from

simpler coefficients. Since the reduction of linear systems is very fast compared to the

evaluation of the amplitude, the most efficient way to determine this is trial and error.

Compared to the reconstruction in Mandelstams without partial fraction decomposition,

this method was found to reduce the number of necessary samples by almost two orders

of magnitude.

6They should also be independent w.r.t. momentum conservation and Schouten identities (see ref [54]).



Chapter 6

Results

So far, we have outlined the method of combining surface terms from algebraic geome-

try, multi-loop numerical unitarity and functional reconstruction to compute multi-loop

amplitudes. In this chapter, we will present some results that we have calculated with

these methods; in particular, the planar helicity amplitudes for vector-boson + two-jet

production at the LHC and the full colour NNLO corrections to tri-photon production at

the LHC.

6.1 W -Boson + Four Partons

A major success of this approach was the computation of the two-loop helicity amplitudes

contributing to the production of an off-shell W -boson (including the leptonic decay-

products) in association with two jets at leading colour [229]. This process is an important

standard candle which can be used for detector calibration and can contribute to PDF

determination (see e.g. [230–232]). Moreover, it is an important background to processes

like vector-boson-pair production or vector-boson plus Higgs production [233, 234]. This

process is also interesting from a theoretical perspective, since all production channels are

present at tree-level and therefore a fast perturbative convergence is expected. It is an

interesting question whether this fast convergence is found indeed.

The computation of these amplitudes was carried out using the methods discussed in

chapters 4 and 5. In this section we will discuss the details and results of this computation,

following the discussion in ref. [229].

In the SM the W couples to left-handed quarks. In this process, at leading colour,

the W -boson couples only to external quark-lines and hence the vector and axial contri-

butions are equal up to an overall sign (see section 2.3.1). This allows us to assemble the

amplitudes for four partons and a W -boson from amplitudes for four partons and a V

boson which couples to the quarks only through vector coupling.

99
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6.1.1 Notation & Conventions

There are two independent partonic processes contributing to the production, one with

a single quark line and two external gluons and one with two quark lines. In the latter

case, we can assume without loss of generality that the vector boson only couples to one

of the quark flavours, which we denote as q. Representative diagrams for the two tree

level processes are given in fig. 6.1. According to the notation in ref. [229], the respective

amplitudes are denoted as

Mg

(
q̄h1p1 , g

h2
p2
, gh3p3 , q

h4
p4
; ℓ̄h5p5 , ℓ

h6
p6

)
,

MQ

(
q̄h1p1 ,Q

h2
p2
, Q̄h3

p3
, qh4p4 ; ℓ̄

h5
p5
, ℓh6p6

)
,

(6.1)

where g denotes a gluon, q and Q denote massless quarks which we assume have different

flavours1. The indices hi and pi denote the helicity and the momentum of the ith external

particle, respectively. For the physical case under consideration, we have e.g. q = u,

q̄ = d̄, ℓ = e and ℓ̄ = ν̄e and the axial part is equal to the vector-part up to a sign.

Closely following the notation of ref. [235] the amplitudes including the W -boson can

be expressed by these amplitudes as

MW
(
ūRp1 , g

h2
p2
, gh3p3 , d

L
p4
, ēRp5 , ν

L
p6

)
= v2PW (s56)Mg

(
q̄+p1 , g

h2
p2
, gh3p3 , q

−
p4
; ℓ̄+p5 , ℓ

−
p6

)
,

MW
(
ūRp1 , c

h
p2
, c̄−hp3 , d

L
p4
, ēRp5 , ν

L
p6

)
= v2PW (s56)MQ

(
q̄+p1 , Q

h
p2
, Q̄−h

p3
, q−p4 ; ℓ̄

+
p5
, ℓ−p6

)
,

(6.2)

where u and d denote a quark doublet2 while c denotes any distinct (massless) quark

flavour and v2 = e2

2 sin2 θw
with θW the weak mixing angle denotes the vector-coupling of

the W boson. The propagator PW (s) is given by

PW (s) =
s

s−M2
W + iΓWMW

, (6.3)

where MW and ΓW are the mass and decay width of the W boson, respectively.

These amplitudes also determine the planar gauge-invariant contributions for the am-

plitudes for four partons plus a Z/γ∗ decaying to leptons. For this process, however,

the term in the amplitude proportional to Nf/Nc receives contributions from non-planar

diagrams (e.g. fig. 6.4). They only contribute to gauge-invariant piece with a distinct

coupling structure, however.

We perform the evaluation of the amplitudes in eq. (6.1) in the ’t Hooft-Veltman

scheme of dimensional regularization with D = 4 − 2ϵ. We compute for the first time

the two-loop corrections M(2)
κ and also recompute the one-loop corrections [211, 235]

up to order ϵ2 in the dimensional regulator. This is necessary because the ϵ1,2 pieces

1The case of equal flavours can be computed as a suitable linear combination of amplitudes where
flavours are assumed to be different.

2We assume diagonal CKM matrix.



6.1. W -BOSON + FOUR PARTONS 101

g

g ℓ

ℓ̄

q

q̄

V

(a) Partonic process with gluons
as external particles

Q̄

Q ℓ

ℓ̄

q

q̄

V

(b) Partonic process with only
quarks as external particles

Figure 6.1: Representative diagrams for the two partonic processes in eq. (6.1)

together with the universal form-factors in Catani-operators contribute to the ϵ−1 and the

finite piece. Moreover, in the NNLO cross-section contributions, rhe ϵ1,2 pieces contribute

through the squared one-loop amplitude.

We use a colour-trace decomposition (see 5.3)

M(k)
g =

(
SϵNc

2

)k ∑
σ∈S2

(T aσ(3)T aσ(2)) ī1i4 A(k)
g ,

M(k)
Q =

(
SϵNc

2

)k
δ ī1i2δ

ī3
i4
A(k)
Q ,

(6.4)

where Sϵ = (4π)ϵe−ϵγE . The partial amplitudes A(k)
κ can be further decomposed into

powers of Nf and Nc, where Nf denotes the number of massless quark flavors, while Nc

denotes the number of colours

A(k)
κ =

∑
k1

∑
k2

(
Nf

k1

Nc
k2

)
A(k)[j]
κ , for κ = g, Q . (6.5)

In this decomposition we consider the pieces which receive contributions from planar

diagrams only, that is Nf
0/Nc

0, Nf
1/Nc

1 and Nf
2/Nc

2. Compared to these, other con-

tributions are suppressed by 1/Nc
2 or 1/Nf

2. We do not include any loop contributions

from massive quark flavours. Figures 6.2 and 6.3 show representative diagrams for the

different powers of Nf for the different external states.

6.1.2 Reduction to Five-Point One-Mass Kinematics

The (partonic) amplitudes described in eq. (6.1) depend on six massless momenta, p1

through p6. They can be factorised, however, into the production of an off-shell vector

boson in association with jets and its decay into a pair of leptons (see eqn. (6.2). While

Mκ depends on six massless momenta and thus eight kinematic invariants, the inherently

two-loop parts of the amplitude only depend on the five momenta p1, p2, p3, p4 and

pv = p5 + p6, with p
2
v ̸= 0 and thus six kinematic invariants {s12, s23, s34, s4V , s1V , p2V }.
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g
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q

q̄

ℓ

ℓ̄V

(a) N0
f /N

0
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g
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q̄
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(b) N1
f /N

1
c

g

g ℓ
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q

q̄

V

(c) N2
f /N

2
c

Figure 6.2: Representative diagrams for the different contributions to Mg.
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Q ℓ

ℓ̄

q

q̄

V

(a) N0
f /N

0
c

Q̄

Q
ℓ

ℓ̄

q

q̄

V

(b) N1
f /N

1
c

Q̄

Q
ℓ

ℓ̄

q

q̄

V

(c) N2
f /N

2
c

Figure 6.3: Representative diagrams for the different contributions to MQ.

Since we will obtain analytic expressions via functional reconstruction, it is crucial

to express the amplitude dependent on six variables only. For example, a homogeneous

polynomial of degree 30 in six variables has 3 · 105 unconstrained parameters while it has

107 for eight variables. This implies that functional reconstruction would require roughly

30 times as many evaluations in the eight variable setup. Despite this simplification, the

process still is considerably more complex than the five-point massless processes previously

considered in the context of numerical unitarity.

In the following, we discuss how we carry out the reduction from six-point kinematics

to the underlying set of five-point one-mass kinematics in practice. The amplitudes A
under consideration factorize into a QCD current Aµ and a tree-level leptonic current Jµ

A = AµJµ, where Jµ = u(p6)γµv(p5). (6.6)

u and v are the Dirac spinors associated to the leptons ℓ̄ and ℓ in fig. 6.1, and Aµ depends

only on the five-point one-mass kinematics. In HV scheme, thus Aµ has four components

(see e.g. [236]), since external states are four-dimensional. Additionally, both currents

satisfy the Ward identity

pµvAµ = 0, and pµvJµ = 0, (6.7)

thus trivially determining one of the components.

We compute the remaining components by considering sets of six-point kinematic
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Q̄

Q
ℓ

ℓ̄

q

q̄

V

Figure 6.4: A non-planar diagram contributing to Z-boson production at order N1
f /N

1
c .

This type of contribution has a unique coupling structure proportional to the sum over
the couplings of the Z to all quarks that can appear in the loop. It is therefore a gauge
invariant piece that can be dropped consistently.

configurations that do not introduce new kinematic invariants compared to the five-point

case. This is achieved by requiring the first lepton to be collinear to the ith parton,

leading to the configurations

p
(i)
5 =

p2v
2pi · pv

pi, p
(i)
6 = pv −

p2v
2pi · pv

pi. (6.8)

We compute the amplitude in three such collinear configurations, which are arbitrarily

chosen as i = 1, 2, 3. Other choices, e.g. with p6 chosen parallel to a parton or linear

combinations are possible, however, we did not find them to be advantageous.

We use the leptonic current Jµ evaluated in each collinear configuration to define three

reference directions ni

nµi = Jµ
(
p
(i)
5 , p

(i)
6

)
, i = 1, 2, 3 (6.9)

and we furthermore define nµ4 = pµv . These four auxiliary vectors allow to decompose the

four-dimensional metric tensor gµν(4) as

gµν(4) =
4∑

i,j=1

G−1
ij n

µ
i n

ν
j , where Gij = ni · nj. (6.10)

Due to the Ward identity in eq. (6.7), Gi4 = G4j = 0 for i, j = 1, 2, 3.

With this decomposition of unity, the QCD current Aµ is given by

Aµ =
3∑

i,j=1

G−1
ij (A · ni)nµj , (6.11)

where

A · ni = A
(
p1, p2, p3, p4, p

(i)
5 , p

(i)
6

)
, for i = 1, 2, 3 (6.12)

and the Ward identity A·n4 = 0. It is therefore sufficient to compute the on-shell six-point
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amplitudes A
(
p1, p2, p3, p4, p

(i)
5 , p

(i)
6

)
for i = 1, 2, 3 in order to obtain the QCD current

Aµ or the six-point amplitude for generic phase-space points. As a side remark, we point

out that the amplitude has no spurious or physical poles on the chosen kinematic point.

6.1.3 Analytic Reconstruction

As described in section 5.6, a technical subtlety in applying a functional reconstruction

in Mandelstam variables is that the A{i} are not little group invariant. This is easily

remedied by factoring out some function with the same little group weights, where we

employ a standard spinor weight defined in Caravel (see Appendix A.3 of ref. [167]).

We shall suppress this normalisation factor in the rest of the discussion and regard A{i}

as a rational function of

s⃗ = {sv1, s12, s23, s34, s4v, p2v} and tr5 = 4 i εµ1µ2µ3µ4p
µ1
1 p

µ2
2 p

µ3
3 p

µ4
4 . (6.13)

To close this discussion, we note that it is straightforward to define an analogue of the

form factors A{i} for the finite remainders

R{i} = R
(
p1, p2, p3, p4, p

(i)
5 , p

(i)
6

)
, i = 1, 2, 3, (6.14)

which are implicitly considered to be normalized by the Caravel spinor weight.

These remainders R{i} can be decomposed in terms of pentagon functions similarly to

eq. (5.29),

R{i} =
∑
i∈B

ri(s⃗, tr5)hi , (6.15)

where the ri(s⃗, tr5) are rational functions of their arguments which we obtain via functional

reconstruction. We evaluate these functions numerically via the method of multi-loop nu-

merical unitarity described in section 5.5. These evaluations are performed first for points

generated via a purely holomorphic all-line BCFW-shift in order to extract the denomi-

nators and total degrees (see section 5.6.2). Having obtained this information, we employ

the bivariate reconstruction discussed in section 5.6.4 where we choose s34 as one variable,

while {s12, s23, s4V , s1V , p2V } are each chosen as a linear function in some parameter t. This

allows to generate ansätze for the coefficients in a partial fraction decomposition with re-

spect to s34, where some letters are excluded from the partial fraction decomposition to

achieve simpler ansätze (see section 5.6.4).

We analyse the linear dependencies between the coefficients (see section 5.6.3) and

choose a basis of coefficients with the minimal number of terms in the ansatz. Finally,

we employ the Vandermonde-based reconstruction strategy discussed in section 5.6.5 to

obtain the analytic coefficients. To illustrate the impact of the partial-fraction ansätze,

we present the number of free coefficients in the two ansätze in tables 6.1 and 6.2 [229],
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Max Ansatz Size Max Non-Zero Terms

RQ p5 ∥ pi —K—
Common

Denominator

Partial

Fraction
Result

+− N0
f

1 50 1200 k 53 k 11 k

2 57 1700 k 210 k 56 k

3 56 1400 k 240 k 56 k

+− N1
f

1 18 26 k 13 k 1.5 k

2 20 140 k 47 k 5.1 k

3 20 140 k 54 k 8.4 k

−+ N0
f

1 69 2300 k 64 k 14 k

2 75 2300 k 230 k 57 k

3 79 5500 k 220 k 48 k

−+ N1
f

1 30 240 k 21 k 3.9 k

2 31 380 k 52 k 11 k

3 31 380 k 51 k 9.1 k

Table 6.1: Characterizing information for remainders with κ = Q at various stages of the
computation. The remainders are specified by the helicity states of the gluon pair and the
power of Nf . |K| is the dimension of the space of rational functions of the corresponding
amplitude. We give the maximal Ansatz size in common denominator and partial-fraction
form. The last column gives the largest number of non-zero monomial coefficients. Term
counts are given to two significant digits for readability.

where we omitted the N2
f /N

2
c pieces and the case of two gluons with positive helicity since

they are trivial compared to the others.

It can clearly be seen that, for all amplitudes, the univariate partial fraction decomposi-

tion has a large effect. In particular, the dimension of the ansatz for the most complicated

pentagon function coefficient in common denominator form is almost 50 times larger than

the most complicated partial-fraction.

Despite this simplification, we note that there are still contributions with O(500 k)

undetermined parameters even after partial fractioning, and there is a large number of

linear systems with O(100 k) side length to be solved. While this would be challenging

when using Gaussian elimination, the solutions can be obtained O(1min) on a laptop

when these systems are in Vandermonde form.

Furthermore, we point out that once the ansatz has been fit many of the coefficients

turn out to be zero (see the last column of tables 6.1 and 6.2), which allows to use smaller

ansätze when reconstruction in additional finite fields is necessary.

In practice, we could perform the rational reconstruction employing only two finite

fields of cardinality O(231).
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Max Ansatz Size Max Non-Zero Terms

Rg p5 ∥ pi |K| Common

Denominator

Partial

Fraction
Result

+− N0
f

1 58 5500 k 180 k 37 k

2 67 7000 k 480 k 110 k

3 67 5900 k 380 k 90 k

+− N1
f

1 50 4600 k 160 k 33 k

2 53 5000 k 380 k 87 k

3 53 4200 k 310 k 75 k

−+ N0
f

1 75 12000 k 210 k 46 k

2 85 14000 k 500 k 130 k

3 85 24000 k 430 k 99 k

−+ N1
f

1 44 4600 k 120 k 25 k

2 49 3800 k 210 k 54 k

3 49 8900 k 270 k 63 k

Table 6.2: Information about the complexity for remainders with κ = g at various stages
of the computation. Column headings are identical to table 6.2. Term counts are given
to two significant digits for readability.

6.1.4 Results and Validation

The main result presented in this section are the two-loop remainders R(2)[j]
κ in analytic

form, which can be obtained from the ancillary files of [229]. We also provide the one-

loop amplitudes A(1)[j] to arbitary orders in ϵ (provided that the integrals are known),

thereby extending the results of refs. [211,235]. These one-loop amplitudes can be used to

also assemble the two-loop amplitudes A(2)[j] employing eq. (5.19). In fact, the one-loop

amplitudes are presented as a decomposition in terms of the one-loop master integral

basis used in [34].

The same ancillary files also include a map from the one-loop integrals to the pentagon

functions of ref. [43] up to weight 4, such that the one-loop expressions can be written in

the same pentagon-function decomposition as the remainders.

To demonstrate the use of these ancillary files, we include a Mathematica script called

amp eval.m which assembles the one-loop and two-loop amplitudes and remainders, and

evaluates them at a given phase-space point.

We have performed a number of checks on the final results as well as on intermediate

steps of our calculation. As discussed in section 4, the surface terms where numerically

cross-checked against FIRE [134, 237]. The numerical-unitarity code Caravel [167], in-

cludes many internal self-consistency checks including the dimensions of master-surface

decompositions, the consistency of Ds and D reconstruction among others. The numeri-



6.1. W -BOSON + FOUR PARTONS 107

cal calculation of the two-loop remainders is also performed within Caravel, where the

finiteness of the finite remainder at each phase-space point confirms that the amplitude

has indeed the pole structure predicted by eqn. (5.19). We have compared the functionally

reconstructed results for the analytic one-loop amplitudes and two-loop finite remainders

against numerical evaluations obtained from Caravel, thereby confirming the validity of

the functional and rational reconstruction.

The final results for the one-loop amplitudes were checked up to order ϵ0 with the

results obtained from the BlackHat library [238]. For the two-loop remainders, we have

reproduced the numerical table of ref. [239] usingCaravel to evaluate the master integral

coefficients and DiffExp [39] to evaluate the master integrals, confirming the correctness

of the numerical evaluations within Caravel.

By intefering our currents Aµ in eq. (6.6) with the tree amplitudes appropriately and

setting the W on-shell, we have reproduced the results of (the revised version of) ref. [40].

The calculation in ref. [40] is performed in the conventional dimensional regularization

scheme employing Larin’s scheme for the treatment of γ5 in dimensional regularisation

[240], which produces non-trivial differences between vector and axial currents. We find

full agreement at the level of the finite remainders, which is a particularly stringent test

of our γ5 treatment and the analytic result as a whole.

Our analytic results as they are given in the ancillary files of [37] are valid for the par-

tonic channels of eqn. (6.1) with momenta p1 and p2 incoming. It is, however, straight-

forward to obtain results in other partonic channels by permutations of the particles’

momenta. While the action of permutations on the rational functions r̃i(s⃗, tr5) is obvious,

the action of permutations on the one-mass pentagon functions hi is discussed in section

3.2 of ref. [43], and is explicitly provided in the supplementary materials thereof. We

emphasize that this allows us to replace the dedicated analytic continuation procedure

which had to be employed, for instance, in ref. [241], by simple substitutions.

We close the discussion of these amplitudes with some comments on the analytic

structure of our results. In ref. [40], the pentagon functions involving the letters3

{W16,W17,W27,W28,W29,W30}

where observed to drop out for an on-shell Wbb production when expanded to finite order

in ϵ and summing over polarizations. The same observation was made for the production

of a H boson in association with a bb̄ pair in ref. [226], where the authors considered the

b as massless, but with non-vanishing Yukawa coupling. We observe that the same holds

also for the finite remainders with a polarised off-shell W . We also observe that pentagon

functions involving the letter tr5 do not contribute to the finite remainders, a fact that

has been previously linked to cluster algebras [242]. We use the pentagon-function basis

3using the notation of ref. [34].



108 CHAPTER 6. RESULTS

of ref. [43], which has been constructed such that these cancellations are manifest.

6.2 Tri-Photon Production

Colour-singlet final states are particularly interesting processes for precision studies, be-

cause they have a clear signature over the QCD-background. Moreover, many models

for physics beyond the Standard Model couple to the electro-weak or Higgs sector. As

of today, NNLO-predictions for the production of two vector bosons are standard (see

e.g. [243–272]), while the first computations for the production of three-particle colour-

less final states have only been performed recently [273,274].

Both of these calculations targeted the production of three massless photons and

have been performed at leading colour. The leading-colour approximation, however, is

not necessarily suitable for this process since it ignores contributions where the photons

couple to closed fermion loops. These contributions are indeed suppressed by the number

of colours, but enhanced by the number of generations of massless quarks which are

considered to be running in the loop. We therefore compute for the first time the two-

loop amplitudes for tri-photon production to full colour.

6.2.1 Helicity Amplitudes

In principle, there are two partonic processes contributing to the production of three

photons, one with two external quarks and one with two external gluons. However, since

at NNLO the two-loop amplitudes are always multiplied with the corresponding tree-

amplitude (see section 2.70) and there is no tree-level amplitude for two gluons scattering

to three photons, only the amplitudes with quarks in the initial state have to be computed.

The colour decomposition of this amplitude is given by

A(1) = CFA
(1),

A(2) = C2
FB

(2,0) + CFCAB
(2,1) + CFTFNfA

(2,Nf ) + CFTF

 Nf∑
f=1

Q2
f

 Ã(2,Nf ),
(6.16)

where Nf is the number of light quarks, and Qf are the electric charges of the quarks.

Note that contributions with an odd number of photons coupling to the quark loop cancel

due to the summation over quarks and their antiquarks, while the colour trace of two

gluons is symmetric under such an exchange. The non-Nf terms of the amplitude can be

organised by their scaling with the number of colours Nc

A(2) =
N2
c

4

(
A(2,0) − 1

Nc
2 (A

(2,0) + A(2,1)) +
1

Nc
4A

(2,1)

)
+O(Nf ), (6.17)
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with

A(2,1) := B(2,0) + 2B(2,1), (6.18)

A(2,0) := B(2,0). (6.19)

We compute, for the first time, the non-planar pieces A(2,1) and Ã(2,Nf ). We also recompute

the other pieces in order to compare to ref. [275] and thereby validate our approach.

Example diagrams contributing to the different pieces are given in figure 6.5.

(a) A(2,0) (b) A(2,Nf )

(c) A(2,1) (d) Ã(2,Nf )

Figure 6.5: Representative Feynman diagrams for the individual contributions to the
qq̄ → γγγ amplitude at two loops. These contributions scale differently with the number
of colours, the number of light fermions and the charge of the external fermions and are
therefore individually gauge invariant. The contribution A(2,1) is the only piece where all
non-planar integral topologies contribute.

We have computed a set of surface-terms for all massless non-planar five-point topolo-

gies up to a total power-counting of 5 for the top-level topologies, using the methods

described in chapter 4. In particular, we have generated linear systems which allow to

rapidly generate numeric IBP-vectors for arbitrary phase-space points. For the A(2,Nf )

amplitude, to which all topologies contribute, solving these linear systems takes 5 min-

utes per phase-space point, making it sub-dominant in the 36 minute computation of the

amplitude.

For the non-planar topologies, power-counting equations are only solved on-shell and

the power-counting of their planar descendants is increased such that the function space

of the off-shell terms is covered.
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max. degree
Contribution Before lin. dep. after lin. dep. max ansatz size

A
(2,0)
−++ 30/30 25/25 24k

A
(2,0)
+++ 16/13 10/10 1k

Ã
(2,Nf )
−++ 41/41 21/21 13k

Ã
(2,Nf )
+++ 21/18 19/16 9k

A
(2,1)
−++ 41/41 32/32 59k

A
(2,1)
+++ 20/17 16/13 5k

A
(2,Nf )
−++ 13/13 13/13 2k

A
(2,Nf )
+++ 12/9 10/7 1k

Table 6.3: Degrees and ansatz size of each the most complex pentagon function coefficient
of the 2-quark 3-photon finite remainders at various stages of the computation. The
remainders are specified by their coupling structure and the helicities of the photons.
Term counts are given to two digits for readability.

We have used these surface-terms and the master integrals expressed in terms of

pentagon-functions from ref. [42] as an ansatz which is fitted with the numerical unitarity

method (see section 5.5). This allows to evaluate the amplitude or the remainder for finite-

field numerical values of the kinematic invariants. We have then used these evaluations to

reconstruct the analytic two-loop remainders. First, we have reconstructed the remainders

on a univariate slice to obtain analytic denominators and degrees (see section 5.6.2).

Then, we have analysed the linear dependencies (see section 5.6.3) and then recon-

structed the numerators via Vandermonde sampling (see section 5.6.5). The maximal

degrees of the pentagon function coefficients for the remainder of each amplitude and the

sizes of their common denominator ansätze are given in table 6.3.

The ansatz sizes are considerably smaller than for the amplitude considered in the

previous section, even when the latter are in their partial-fractioned form. We therefore

renounce the bivariate reconstruction and construction of partial fraction ansätze and

simply perform the reconstruction in common denominator form.

Spinor Reconstruction

Complementary to this approach, the non-planar contributions have also been recon-

structed using a spinor reconstruction method (see section 5.6.6). After reconstruction

on a univariate slice and removal of linear dependencies, the sizes of the ansätze are given

in table 6.4.

Evidently, the ansatz sizes of the remainder coefficients are smaller than for the par-

ity split Mandelstam reconstruction4. For the contributions with positive helicity these

4We emphasize that the number of evaluations needed in Mandelstam reconstruction is two times
the size of the ansatz, since the amplitude is evaluated on pairs of parity conjugate points. In spinor-
reconstruction, this is not necessary.
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ansätze are directly constrained in common denominator form via numerical samples.

When employing the decomposition w.r.t. to the ⟨i|j + k|i] terms described in section

5.6.6, the size of the ansätze is again cut in half.

Contribution
Numerator

mass dimension
Numerator

spinor weight
Common Den.
Ansatz Size

Ã
(2,Nf )
+++ 20 [2, 4, 6, 6, 6] 535

A
(2,1)
+++ 21 [5, 4, 3, 3, 3] 1092

Ã
(2,Nf )
−++ 47 [4, 4, -5, 3, 4] 24582

A
(2,1)
−++ 48 [1, -3, -6, 2, 2] 29059

Table 6.4: Information about non-planar amplitude coefficients in spinor form.

For the most complicated pentagon coefficients, there are seven terms with each a

different factor ⟨i|j + k|i] factor in the denominator, out of which six are dependent on

simpler remainder coefficients. Additionally, the symmetry of the amplitude under an

exchange of the two positive helicity gluons can be exploited, further reducing the Ansatz

size. The last terms can then be constrained with slightly over 2000 evaluations.

6.2.2 Results & Validation

The main result presented in this section are the finite remainders of the non-planar

two-loop contributions A
(2,1)
h1h2h3

, Ã
(2,Nf )

h1h2h3
to the amplitudes contributing to three-photon

production. By sampling these remainders over random points in the phase-space, it turns

out that the full colour two-loop remainder is 0 − 40% smaller than the leading colour

two-loop remainder, with a peak at 30%. This confirms the expectations of ref. [273] and

would be significant, if the contribution of the finite-remainder to the cross-section was

not small.

To validate our calculation, we performed several checks on intermediate steps, as

well as on the final result. The surface terms where numerically cross-checked against

FIRE [134, 237]. The numerical unitarity method was carried out by the well-tested code

Caravel [167], which furthermore includes many internal self-consistency checks.

We have verified that the result reproduces the pole structure predicted by eqn. (5.19).

We have compared the analytic results against Caravel evaluations in a different finite-

field, thereby confirming the validity of the functional and rational reconstruction. The

analytic results of the two reconstruction approaches are in full agreement with each

other. Furthermore, the planar amplitudes match with the results previously obtained in

ref. [275].



112 CHAPTER 6. RESULTS

6.3 Surface-Terms for Higgs + Four Partons

One of the main objectives of Run 3 and the high-luminosity phase of the LHC is a detailed

analysis of the Higgs-sector. One of the key observables, in this regard, is the transverse

momentum distribution of the Higgs boson, pT,H which probes many models in BSM

physics [276–285]. At high pT,H vector-boson fusion (VBF) contributes significantly to

Higgs production while at lower energies the production is dominated by gluon fusion [286].

Given the connection of the Higgs and the electro-weak sector, the electroweak couplings

of the Higgs are of particular interest. Precise studies of Higgs-production via VBF are

therefore important.

In this regard, one of the dominant uncertainties to this process is the production of a

Higgs with two associated light partons via gluon fusion. When considering the full theory

including mass-effects, higher order corrections to this process are notoriously difficult to

compute due to the loop-induced nature.

Indeed, Higgs and Higgs+jet production are currently only known at NLO [287–290],

[291] while Higgs plus dijet production is only known at leading order [292–296]. For mo-

mentum transfers below the top-quark threshold, however, it is possible to obtain higher

precision in the heavy-top-loop approximation (see section 5.2). In this approximation,

Higgs plus jet production is known at NNLO [297–301] and Higgs plus dijet production

at NLO [302,303].

A bottleneck of the computation of Higgs+dijet production at NNLO is the calcula-

tion of the analytic two-loop amplitudes. We provide some important steps towards the

computation of the leading terms of this amplitude in the Nf/Nc expansion.

6.3.1 Notation and Conventions

There are three partonic processes contributing to the production of a Higgs boson in

association with jets with zero, two or four quarks as external particles, respectively. We

denote the respective helicity amplitudes as

M4g(g
h1
p1
, gh2p2 , g

h3
p3
, gh4p4 , Hp5), (6.20)

Mggqq(q
h1
p1
, q̄h2p2 , g

h3
p3
, gh4p4 , Hp5) (6.21)

MqqQQ(q
h1
p1
, q̄h2p2 , Q

h3
p3
, Q̄h4

p4
, Hp5), (6.22)

where g denotes a gluon, while q and Q are massless quarks which we again assume to

have different flavours, while H denotes the Higgs-boson. The indices pi, hi denote the

momenta and helicities, respectively. As before, the amplitude can be decomposed by the
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numbers of colours and light fermions

A(k)
κ =

∑
k1

∑
k2

(
Nk1
f

Nk2
c

)
A(k,k1,k2)
κ . (6.23)

In this decomposition for each power of Nf we only consider the leading power in Nc,

i.e.
N0

f

N0
c
,
N1

f

N1
c
,
N2

f

N2
c
. Figures 6.6 - 6.8 show representative diagrams for each contribution. By

contrast to W+ 4 partons, the terms proportional to
N0

f

N0
c
do contain non-planar integral

topologies. However, they do not contain all non-planar topologies, since diagrams with

each a quark or gluon on every rung are colour suppressed (see figure 6.9).

(a) N0
f /N

0
c (b) N1

f /N
1
c (c) N2

f /N
2
c

Figure 6.6: Representative diagrams of MqqQQ at two loops.

(a) N0
f /N

0
c (b) N1

f /N
1
c (c) N2

f /N
2
c

Figure 6.7: Representative diagrams of Mggqq at two loops.

(a) N0
f /N

0
c (b) N1

f /N
1
c (c) N2

f /N
2
c

Figure 6.8: Representative diagrams of M4g at two loops.
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Figure 6.9: A non-planar diagram contributing to N0
f /N

1
c .

6.3.2 Surface Terms & Master-Integral Decomposition

We have constructed a set of surface terms which allow the reduction of these amplitudes,

using the methods described in chapter 4. In particular, we have generated linear equation

systems that can be solved on every phase-space point to get IBP-generators and expressed

analytic surface terms in terms of these generators. The set covers the function space up to

degree six for all non-planar topologies. The surface terms are validated against numeric

reductions with FIRE5.

We have employed these surface terms within the numerical unitarity method, im-

plemented in the framework Caravel. The reduction to a basis of integrals takes 4:51

hours on a single core per phase-space point. Given the efficiency of the spinor ap-

proach described in section 5.6.6, we estimate that we will need ≲ 105 evaluations to

constrain pentagon function coefficients, which would be feasible on a mid-size cluster. A

pure basis of non-planar five-point master integrals has recently become available [304].

This basis has been implemented in Caravel and we have evaluated decompositions

of leading colour amplitudes in this basis. We find that the ϵ-dependent denominators

factorize from the kinematically dependent denominators, which is a non-trivial check of

the master-surface decomposition. For the planar-pieces, where pentagon functions are

available, we have formulated Catani-operators and verified that the ϵ poles of the two-

loop amplitude take the predicted form. As can be seen by considering the full theory,

the renormalised amplitudes are thus obtained by taking eqn. (5.17) with q = 2.

We presume that when a pentagon function decomposition of the master-integrals

becomes available, the functional reconstruction of the finite remainders will be within

reach.



Chapter 7

Conclusions and Outlook

7.1 Conclusions

In this thesis, we have demonstrated advances in the computation and analysis of unitarity

compatible Integration-by-Parts (IBP) relations and their application in the framework

of numerical unitarity and functional reconstruction. These techniques were applied to

cutting-edge case of multi-loop amplitude computation. The numerical unitarity approach

circumvents the inversion of large IBP-systems that appear in Laporta-reduction, directly

targeting the simpler final result.

We have generated unitarity compatible IBP-relations via suitable polynomial vector

fields (IBP generators), which we have computed with methods from computational al-

gebraic geometry. We have used a formulation of this problem in a conformal embedding

space and have used numerical solutions to generate linear systems that can quickly be

solved on different phase-space points. In particular, we have used Gröbner-basis methods

to solve the syzygy problem at highest order in loop-momentum space and then solved

the lower degrees numerically via linear algebra. This approach allowed to compute sets

of surface-terms for non-planar five-point-massless topologies as well as the (previously

unknown) planar and non-planar five-point-one-mass topologies.

We have observed several interesting properties of IBP-generating vectors. In par-

ticular, we have demonstrated that IBP-vector components vanish on critical points of

the Baikov-polynomial, while their divergence vanishes on its extrema. This can be used

to identify these points and count master-integrals. We have also observed that a large

class of unitarity compatible IBP-relations vanishes on the critical points of the Baikov

polynomial, which allowed us to deduce a criterion that a set of IBP-vectors has to fulfill

in order to produce all surface-terms necessary for the reduction of a topology.

We have used the unitarity compatible IBP-relations in the framework of numerical

unitarity to numerically compute master-integral decompositions of cutting-edge two-loop

amplitudes, in particular the helicity amplitudes necessary for three-photon production
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at full colour, the production of aW -boson in association with two jets at leading order in

Nc for each Nf contribution and the production of a Higgs-boson in association with two

jets in the heavy-top-loop approximation and at leading colour for (finite-field) numeric

phase space point. This method of reducing amplitudes to a master-integral basis is very

flexible, robust and less sensitive to additional scales than standard multi-loop techniques.

We have used the numerical evaluations of the master-integral coefficients of theW+2-

jet amplitude to reconstruct analytic expressions for this amplitude. We have developed

a rational parametrisation of the five-point one-mass phase-space and a method to han-

dle the W -boson polarisations based on different choices for the momenta of its decay-

products. These expressions allow to compute leading colour two-loop QCD corrections

to amplitudes for four partons and an off-shellW -boson decaying into a lepton pair. They

also determine the gauge-invariant planar contributions to Z/γ∗-production in association

with two jets (in this case the N1
f /N

1
c contributions involve non-planar diagrams). For

their reconstruction, we have used an approach based on partial-fraction ansätze and a

sampling procedure that gives constraining systems for them in Vandermonde-form.

We have applied similar methods to compute the scattering amplitudes contributing

to the production of three photons at full colour. The computation relied on linear sys-

tems that, for every phase-space point, give surface terms that can be used for numerical

unitarity. The reconstruction of the amplitude was carried out using the univariate anal-

ysis and the reconstruction method based on Vandermonde sampling. Complementary

to this, the reconstruction was also carried out using a novel approach based on spinor

variables. It has been demonstrated that this approach allows to constrain an ansatz with

very few evaluations.

We have constructed a set of IBP-relations for non-planar five-point-one-mass integral

topologies with sufficient power-counting for the production of a Higgs-boson in associa-

tion with two jets. These surface terms have been used together with numerical unitarity

to compute master-integral decompositions for this amplitude for a few phase-space points

in a finite field. The analytic computation of these amplitudes is work in progress.

7.2 Outlook

Given the recent progress in handling the real-radiation contributions (see e.g. [27]), we

expect that our results can be used to compute NNLO QCD predictions for W -boson

plus two-jet production at hadron colliders in the near future. In fact, for the special case

dū→ bb̄W (ℓν̄), such a calculation has recently been carried out [305].

For 3γ-productions, full colour NNLO QCD predictions using our amplitudes are also

possible. However, the numerical contribution of the non-planar remainders is relatively

small.
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Given the efficiency of the spinor-reconstruction technique and the moderate computa-

tional effort required for the numerical computation of the master-integral decomposition

of the Higgs plus four parton amplitude, we expect that the reconstruction of the analytic

amplitudes will be feasible.

We expect that our method of generating linear systems can be used to compute surface

terms for integral topologies with more loops and/or mass-scales. In combination with

the efficient spinor-reconstruction technology, we assume that this will allow to compute

analytic multi-loop amplitudes for many interesting processes.



Appendix A

QCD Feynman-Rules

The diagramatic objects and their corresponding analytic expressions employed in this

thesis, expressed in momentum space and ’t Hooft-Feynman-gauge, are [306]:

Gluon propagator:
µ, a ν, b

~p

i j

µ

a, ~p1, µ b, ~p2, ν

c, ~p3, ρ

a, µ b, ν

c, ρ
d, σ

a b, ~p

c, µ

i j

~p

a b

~p

=
−igµνδab
p2 + iε

Fermion propagator:

µ, a ν, b

~p

i j

µ

a, ~p1, µ b, ~p2, ν

c, ~p3, ρ

a, µ b, ν

c, ρ
d, σ

a b, ~p

c, µ

i j

~p

a b

~p

=
δij

γµpµ −m+ iε′
=
δijγµpµ +m

p2 −m2 + iε

Ghost propagator:

µ, a ν, b

~p

i j

µ

a, ~p1, µ b, ~p2, ν

c, ~p3, ρ

a, µ b, ν

c, ρ
d, σ

a b, ~p

c, µ

i j

~p

a b

~p
=

−iδab
p2 + iε

Gluon-quark vertex:

µ, a ν, b

~p

i j

µ

a, ~p1, µ b, ~p2, ν

c, ~p3, ρ

a, µ b, ν

c, ρ
d, σ

a b, ~p

c, µ

i j

~p

a b

~p

= igsγ
µT aij

Three-gluon vertex:

µ, a ν, b

~p

i j

µ

a, ~p1, µ b, ~p2, ν

c, ~p3, ρ

a, µ b, ν

c, ρ
d, σ

a b, ~p

c, µ

i j

~p

a b

~p

= −gsfabc
[
gµν(p1 − p2)

ρ + gνρ(p2 − p3)
µ

+ gρµ(p3 − p1)
ν
]

Four-gluon vertex:

µ, a ν, b

~p

i j

µ

a, ~p1, µ b, ~p2, ν

c, ~p3, ρ

a, µ b, ν

c, ρ
d, σ

a b, ~p

c, µ

i j

~p

a b

~p

= −ig2s

 fabef ecd
(
gµρgνσ − gνρgµσ

)
+f bcef ead

(
gµνgρσ − gµρgνσ

)
+f caef ebd

(
gνρgµσ + gσρgµν

)

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Gluon-ghost vertex:

µ, a ν, b

~p

i j

µ

a, ~p1, µ b, ~p2, ν

c, ~p3, ρ

a, µ b, ν

c, ρ
d, σ

a b, ~p

c, µ

i j

~p

a b

~p

= −fabcpµ

Quark-W± vertex with an

incoming up-type and out-

going down-type field:

µ, a ν, b

~p

g g

t t

H

i j

~p

a b

~p

i j

W±
µ

i j

Z±
µ

H

=
−ig2√
2
3 γ

µ(1− γ5)V
f1,f2
CKM

,

Lepton-neutrino-W± vertex

with an incoming lepton and

an outgoing neutrino:

µ, a ν, b

~p

g g

t t

H

i j

~p

a b

~p

i j

W±
µ

i j

Z±
µ

H

=
−ig2√
2
3 γ

µ(1− γ5)

Quark-γ vertex:
=

−ig2√
2
3 γ

µ(1− γ5)

Quark-Z vertex:

µ, a ν, b

~p

g g

t t

H

i j

~p

a b

~p

i j

W±
µ

i j

Z±
µ

H

=
−igz
2

γµ(vf − afγ5),

,

abbreviating gz = i g2√
g21+g

2
2

, af = 1 and vf = 1 − 2Yf
g21

g21+g
2
2
, where Yf denotes the hyper-

charge of the quark qf

Top-Higgs vertex

µ, a ν, b

~p

g g

t t

H

i j

~p

a b

~p

i j

W±
µ

i j

Z±
µ

H

= −imt

v

We consider all external momenta as incoming. We consider all quarks except the

top-quark as massless, which is a good approximation at the TeV scale.



Appendix B

Treatment of γ5 in Dimensional

Regularisation

Complications with Dimensional Regularization arise from quantities which are only de-

fined for fixed dimensions, in particular the additional Dirac-matrix γ5.

Since we will compute amplitudes involving bosons of the electroweak interaction, we

will briefly review why the treatment of γ5 is problematic and how it can be dealt with

consistently. The Clifford-algebra of γ−matrices carries over to D dimensions, hence

formally it is possible to define γµ in arbitrary dimensions. We distinguish these form

the four-dimensional γ
[4]
µ . The canonical four-dimensional γ5 matrix is defined to be

anticommuting

{γ[4]µ , γ[4]5 } = 0. (B.1)

Considering the trace with seven Dirac matrices Tr
[
(
∏4

i=0 γ
µi)γ5γ

α
]
, using cyclicity of

the trace and anti-commuting γα with γµ0 , ..., γµ4 , the following identity is obtained:

Tr

[(
4∏
i=0

γµi

)
{γ5, γα}

]
+ 2

4∑
i=0

gαµiTr

[(
4∏

j=0,j ̸=i

γµj

)
γ5

]
= 0. (B.2)

Contracting with gµ0α gives

Tr

[(
4∏
i=1

γµi

)
{γ5, γα}γα

]
+ 2(D − 4)Tr

[(
4∏
i=1

γµi

)
γ5

]
= 0. (B.3)

If the first term is set to zero, the second term also has to be set to zero.

Therefore, it is not possible to define a γ5 which is anti-commuting in D-dimensions
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and has the conventional γ5 as a limit1, since this would require

Tr(γµγνγργσγ5)
D→4−−−→ iεµνρσ. (B.4)

The standard procedure to deal with this problem is to employ Larin’s scheme [240],

where the anti-commutativity is given up, while the condition in eqn. (B.4) is kept.

This can be achieved for example by using the four-dimensional γ5 in the lowest four

dimensions and zero else. Giving up the anti-commutation, however, leads to a violation of

Ward-Takahashi identities. Therefore, γ5 is equipped with an additional renormalisation

constant which is used to restore these identities. Alternatively, one can use Keimer’s

scheme where an anti-commuting γ̃ is introduced together with a prescription to translate

traces with γ5 to traces with γ̃ [307,308].

In this thesis, however, we can employ a simpler approach: We define block-diagonal

γµ matrices that equal the four-dimensional definitions in the lowest 4× 4 block. For all

amplitudes discussed in this thesis, γ5 only appears within spinor traces involving external

fermions. Carrying these out in HV-scheme, the spinor-algebra beyond four-dimensions

vanishes and we can therefore treat γ5 as anti-commuting2. When considering Z-bosons

or (multiple) W -bosons coupled to closed quark loops, however, this problem has to be

dealt with. Physical observables, defined as a four-dimensional limit do not depend on

the chosen scheme, however.

1In fact, such a prescription is possible when redefining the D−dimensional spinor trace to be non-
cyclic; an option which we will however not discuss in this work.

2In fact, this is equivalent to a trivial application of Kreimer’s scheme



Appendix C

Finite Fields

In this thesis, we heavily rely on the use of finite fields which we use to analyse the

structure of the coefficients and for functional reconstruction [49, 50]. We will therefore

briefly review the concepts of finite fields and rational reconstruction in this section.

A finite field with cardinality F is given by all integer numbers {0, 1, ..., F−1}. Among

these numbers, arithmetic operations are defined modulo the prime number F . For ad-

dition, subtraction and multiplication this is straightforward. The multiplicative inverse

(with a prime number chosen as cardinality) is usually implemented via the Extended

Euclidean Algorithm:

Algorithm 3 Extended Euclidean Algorithm

Input: cardinality F , number n

1: r0 = −F r1 = n

2: (s0 = 1 s1 = 0)

3: t0 = 0 t1 = 1

4: i = 1

5: while ri ̸= 0 do

6: ri+1 = ri−1 − qri, where q is (uniquely) chosen such that 0 ≤ ri+1 < |ri|
7: (si+1 = si−1 − qsi)

8: ti+1 = ti−1 − qsi

9: i = i+ 1

10: end while

11: return ti

This algorithm is constructed such that the remainder ri = siF − tin is monotonously

decreasing. If ri+1 and ri are both divisible by a number m, then all previous numbers

r1, ..., ri−1 are also divisible by this number. It follows that for a prime cardinality the

last rn = 1 and hence the algorithm indeed gives a solution for tin = 1 + siF .
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This algorithm is of complexity O(log(F )) and hence allows for fast determination of

quotients. Note that for operations with rational numbers, the greatest common divisor

of the numerator and denominator have to be found with the same algorithm, hence

finite-field operations are not any slower than operations with rational numbers where

the numerator and denominator are numbers ⪅ F . Since the parts proportional to s are

always omitted in finite-field computations, we can drop the variable (which is why the

corresponding lines are written in brackets).

C.1 Rational Reconstruction

The Extended Euclidean Algorithm can also be used to obtain rational numbers that cor-

respond to a value in a finite-field [309]. This rational reconstruction is needed because

after functional reconstruction the rational numbers appearing in the master integral co-

efficients are only given in the finite field. Such rational numbers arise e.g. from symmetry

factors or summations over diagrams and are therefore difficult to avoid.

The rational reconstruction employing the Extended Euclidean Algorithm is based on

the observation that

ri = −siF + tin (C.1)

⇒ri
ti

mod F = n. (C.2)

If a solution with 2|ri| · |ti| < F, exists, then it is unique in the sense that for all other

solutions |n| · |d| > F . Moreover, one can show that if such a solution exists, it will be

found by the Extended Euclidean Algorithm [309]. After one has constructed such a guess

for a rational number, it is usually verified by comparing to a computation in a different

finite-field.

C.1.1 The Chinese Remainder Theorem

If a rational number cannot be extracted from it’s value in one finite field, it can be

extracted from several computations using the Chinese Remainder Theorem, discovered

by the third century Chinese mathematician Sun-Tzu. Given a rational number a and k

finite fields with cardinalities F1, ..., Fk such that

a mod F1 = n1,
...

a mod Fk = nk,

, (C.3)
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one can compute the number in a larger cardinality

a mod
k∏
i=1

Fi =
∑
j

nj

( k∏
i=1,i ̸=j

Fi

)−1

mod Fj

 . (C.4)

Thus for a = n
d
, one can reconstruct a result which is unique for 2|n| · |d| <∏i F , as long

as n and d are not divisible by any of the cardinalities.

C.1.2 Denominator Guessing & Integer Reconstruction

The rational reconstruction algorithm described above does not include any knowledge

about the structure of the numbers. In the case of master-integral coefficients (or pentagon

function coefficients), however, the rational numbers after functional reconstruction are

not generic. When shifting all rational numbers to the numerator of the coefficients, the

denominators of rational numbers originate only in symmetry factors and rational numbers

in the definition of pentagon functions. In principle, it would therefore be possible to trace

back the greatest possible denominator for each rational number from this information.

In practice, however, we find it more convenient to experimentally determine this

denominator by using the rational reconstruction described above and computing the

greatest common denominator of all reasonable results, that is all results whose denomi-

nators factorise into small prime numbers1. Then, for a finite-field number n, two guesses

for the rationally reconstruction number are

a1 =
nd mod F

d
, a2 = −F − nd mod F

d
, (C.5)

and we take the one with the smaller absolute value. This approach gives unique results

for |a| · |d| < F/2 and thus has a much larger range than the algorithm described before.

This approach can also be combined with the Chinese Remainder Theorem. With this

reconstruction method, we were able to determine all rational numbers in the W + 2j

amplitude by reconstructing it in two finite-fields and the numbers in the γ amplitudes

with one finite-field.

The rational numbers in the linear relations between pentagon coefficients, however, do

not have such simple denominators in general. Therefore, there we rely on the Extended

Euclidean Algorithm and the Chinese Remainder Theorem to obtain the numbers from

evaluations in several fields. In particular, for the non-planar amplitudes contributing to

three-photon production, we evaluated the linear relations in four finite fields to rationally

reconstruct them and verified the results in a fifth.

1What small means in this context is decided case-by-case. For W +2jet production, prime numbers
up to 17 appear.



Appendix D

Interpolation Formulae

We obtain analytic amplitudes by functional reconstruction over finite-field evaluations

[50]. We will therefore review two important interpolation formulae in this appendix.

D.1 Thieles Interpolation Formula

We use Thieles interpolation formula [225] to reconstruct univariate rational functions

or multivariate rational functions on univariate slices. In this section, we will therefore

review the interpolation formula. The basic idea is to represent a rational function as a

continued fraction

ri(t) = ri(t1) +
t− t1

ρ(t1, t2) +
t− t2

ρ2(t1, t2, t3)− ri(t1) +
t− t3

ρ3(t1, t2, t3, t4)− ρ(t1, t2) + · · ·

, (D.1)

with the reciprocal differences

ρ1(t0, t1) =
t0 − t1

ri(t0)− ri(t1)
(D.2)

ρ2(t0, t1, t2) =
t0 − t2

ρ1(t0, t1)− ρ1(t1, t2)
+ ri(t1) (D.3)

ρn(t0, t1, . . . , tn) =
t0 − tn

ρn−1(t0, t1, . . . , tn−1)− ρn−1(t1, t2, . . . , tn)
+ ρn−2(t1, . . . , tn−1). (D.4)

The interpolation is finished when the nth reciprocal difference ρn(t) is zero. For a rational

function with numerator degree Rn and denominator degree Rd, the interpolation finishes

after 2max(Rn, Rd) steps.
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D.2 Multivariate Newton Interpolation

We use iterated Newton interpolation to reconstruct pentagon function coefficients on

bivariate slices. We will therefore review the interpolation formula in this section. In

particular, we focus on the special case where we want to interpolate in a variable which

we cannot choose freely, but that is expressed as a rational function of other variables.

Suppose a polynomial f(s, t) where s(x, t) is a rational function of x and t. First, for each

value of t = tj we can reconstruct f(x, tj) by simple Newton interpolation

f0(s, tj) = f(s(x0), tj), (D.5)

fi(s, tj) = fi−1(s, tj) +
f(s(xitj), tj)− fi−1(f(s(xi, tj), tj)

(s(xi, tj)− s(xi−1, tj))i
(s− s(xi−1,tj))

i, (D.6)

f(s, tj) = fmj
(s, tj). (D.7)

(D.8)

Then, we reconstruct the dependence on t, for which we again use univariate Newton

interpolation

.f0(s, t) = f(s, t0), (D.9)

fj(s, t) = fj−1(s, t) +
f(s, tj)− fj−1(s, tj)

(tj − tj−1)j
(t− tj−1)

j, (D.10)

f(s, t) = fN(s, t). (D.11)

The points of this interpolation f(s, ti) are obtained as D.5. When we use this interpola-

tion, the maximal degree of the numerator Rf is usually known from a previous univariate

interpolation. Therefore, in the expansion

f(s, t) =
∑

i,j=0,i+j≤Rf

cijs
itj, (D.12)

the coefficients ci=R,j≤Rf−R are known after evaluating f(s, tj) for Rf −R+1 values of tj.

This allows to systematically subtract them from f , such that for the (n+1)th evaluation

of f(s, tk), we can interpolate f(s, tk)−
∑Rn

i=Rf−n
∑Rn−i

j=0 cijs
itjk by evaluating f(s(xi, tk), tk)

for Rn−n values of xn. This procedure known as pruning leads to a considerable efficiency

gain. As a side remark, we note that it is straightforward to extend this interpolation

method to more than two variables, which we will not need in this thesis, however.



Appendix E

Spinor Helicity Formalism

As described in section 1.2.1 any four-vector can be decomposed into a pair of left- and

right-handed Weyl spinors

Aµ = σµ
ab̃
ξaχb̃. (E.1)

This decomposition can be used as a particularly useful decomposition of massless four-

momenta, where

χ ∝ (ξ)∗. (E.2)

Conventionally, for a massless momentum pj, these are described in a bra-ket notation

{ξaj } = |j⟩, {ξja} = ⟨j| (E.3)

{χãj} = |j], {χjã} = [j|, (E.4)

such that the momenta are written as

pµj = σµ|j⟩[j|, (p∗j)
µ = σµ|j]⟨j|, sij = ⟨ij⟩[ij], (E.5)

with the Pauli-matrices {σµ} = (1, σi). The spinors are only defined modulo a global

rescaling |j⟩ → e−iλ|j⟩, |j] → eiλ|j], as such a transformation leaves the momenta and

Mandelstam variables invariant. Amplitudes in a helicity basis, however, are chiral objects

and, thus, not invariant under such a rescaling. The rescaling property of an amplitude

with each such redefinition is referred to as spinor weight. When computing cross-sections,

the spinor weights cancel when taking |M|2.
A clear advantage of this parametrisation is that it is trivial to construct on-shell

massless momenta pµ employing eq. E.2. Note that such momenta are in general complex,

however. Moreover, this parametrisation of momenta allows to distinguish left-handed
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from right-handed objects, which is often advantageous since the SM is indeed a chiral

theory.



Appendix F

Rationalization of Momenta & tr5

In this work we have used rational parametrizations of the five-point zero-mass and the

five-point one-mass phase-space, as was described in section 5.6.4, were we required that

all but one variables are Mandelstam-variables. In this appendix, we detail the explicit

form of the rational phase-space parametrisations.

F.1 Five-Point Zero-Mass

Following reference [218], we use the phase-space parameters

{s12, s23, s45, s15, x}, (F.1)

where the remaining Mandelstams and tr5 are given by

s34 =
(s45 − s12)s15x− s23(s23 − s45 − s15 − xs12)

(s45 − s23 + x)x
, (F.2)

tr5 =
−s223 + (−s12 + s45)s15x+ s23(s45 + s15 + s12x)

x(−s23 + s45 + s12x)
. (F.3)

In this parameters, parity conjugation is given by

x→ x̄ =
s23(s23s45 − s15)

s12s34(s12, s23, s45, s15, x)x
, (F.4)

which leads to

s34 → s34, tr5 → − tr5 . (F.5)
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F.2 Five-Point One-Mass

We use the variables

{sv1, s12, s23, s4v, p2v, x}. (F.6)

This allows to choose s34(x) and tr5(x) as rational functions

tr5(sv1, s12, s23, s4v, p
2
v, x) =

sv1(s4v − s12) + (s12 − p2v)s23

4
(
(s4v − s23)2 − [sv1(s4v − s12) + (s12 − p2v)s23]

2x2)
)

×
[
(s4v − s23)

2+

2
(
sv1s4v(s12−s4v) + [p2v(s4v−2s12) + s4vs12 + sv1(s4v+s12)]s23 − (p2v+s12)s

2
23

)
x

+ (sv1(s4v − s12) + (s12 − p2v)s23)
2x2
]
,

(F.7)

s34(sv1, s12, s23, s4v, p
2
v, x) =

2

(sv1(s4v − s12) + (s12 − p2v)s23)
2x2 − (s4v − s23)2

×
[
(sv1s4vs12 − sv1s

2
4v + p2vs4vs23 + sv1s4vs23 − 2p2vs12s23 + sv1s12s23

+ s4vs12s23 − p2vs
2
23 − s12s

2
23 + (sv1(s4v − s12) + (s12 − p2v)s23)

2x)
]
.

(F.8)

The parity conjugate point {sv1, s12, s23, s4v, p2v, x̄} to such a point is defined by the same

kinematic-invariants, but a sign-flip for tr5

tr5(sv1, s12, s23, s4v, p
2
v, x̄) = −tr5(sv1, s12, s23, s4v, p

2
v, x),

s34(sv1, s12, s23, s4v, p
2
v, x̄) = s34(sv1, s12, s23, s4v, p

2
v, x).

(F.9)

Solving for x̄, we find

x̄ =
[
− (s4v − s23)

2 + (sv1s4v(s4v − s12)− (p2v(s4v − 2s12)

+ s4vs12 + sv1(s4v + s12))s23 + (p2v + s12)s
2
23)x

]
/
[
sv1s4vs12

− sv1s
2
4v + p2vs4vs23 + sv1s4vs23 − 2p2vs12s23 + sv1s12s23

+ s4vs12s23 − p2vs
2
23 − s12s

2
23 + (sv1(s4v − s12) + (−p2v + s12)s23)

2x
]
.

(F.10)

Thus we provide a rational parametrisation of the phase-space with the possibility to

compute parity-conjugate points.
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et al., Differential higgs boson pair production at next-to-next-to-leading order in

QCD, Journal of High Energy Physics 2016 (2016) .

[269] M. Grazzini, G. Heinrich, S. Jones, S. Kallweit, M. Kerner, J. M. Lindert et al.,

Higgs boson pair production at NNLO with top quark mass effects, Journal of High

Energy Physics 2018 (2018) .
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Kurzzusammenfassung

In dieser Arbeit werden Methoden zur Berechnung von Zwei-Schleifen-Streumplituden

weiterentwickelt und angewendet. Diese Amplituden werden benötigt, um für die Stre-

uprozesse am Large Hadron Collider Korrekturen zu berechnen, welche in der starken

Kopplungskonstante αs zwei Ordnungen über der führenden Ordnung liegen (NNLO QCD

Korrekturen).

Zur Berechnung von Streuamplituden werden Feynman-Integrale mit Hilfe von Rela-

tionen, welche durch partielle Integration gewonnen werden (IBP-Relationen) auf Master-

Integrale reduziert. Wir präsentieren neue Methoden zur Berechnung solcher unitaritäts-

kompatibler IBP-Relationen welche mit Hilfe bestimmter Vektorfelder (IBP-Vektoren)

generiert werden. Wir verwenden eine Formulierung in einem konformen Einbettungsraum

und kombinieren Methoden der algebraischen Geometrie mit linearer Algebra um solche

Vektorfelder zu berechnen. Auf diese Weise werden Relationen erhalten, mit denen

planare und nicht-planare Streuamplituden mit zwei schleifen und insgesamt fünf Teilchen

in Anfangs- und Endzustand, von denen eines massiv sein kann auf Master-Integrale re-

duziert werden können.

In der numerischen Unitaritätsmethode werden die Integranden von Streuamplitu-

den durch Master-Integrale und kompatible IBP-Relationen ausgedrückt. Diese Methode

wird verwendet um die planaren Amplituden zu berechnen, welche zur Produktion eines

W -Bosons (welches in ein Lepton und ein Neutrino zerfällt) zusammen mit zwei leichten

Partonen beitragen, sowie die nicht-planaren Amplituden, welche zur Produktion von drei

Photonen am LHC beitragen. Die analytische Form dieser Amplituden wird mittels funk-

tioneller Rekonstruktion in einem Primzahlkörper erhalten. Dabei werden analyitsche In-

formationen über die Form der Amplitude verwendet um die Effizienz der Rekonstruktion

zu steigern. Für die (nicht-planaren) Amplituden, die zur Produktion eines Higgs-Bosons

zusammen mit zwei leichten Partonen in der Näherung schwerer Top-Quark-Schleifen

beitragen wurden erste Phasenraumpunkte berechnet.

Wir erwarten, dass mit den vorhandenen Methoden die Higgs-Amplitude bald ana-

lytisch rekonstruiert werden kann und dass die analytischen Amplituden für Präzisions-

vorhersagen genutzt werden können.
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