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Abstract. Here, we discuss the cosmic evolution in the presence of collisional matter (CM)
with and without radiations within the framework of modified teleparallel theories. We opt
f(T,B) theory (where T stands for torsion scalar and B represents the boundary term associated
to the divergence of torsion 2∇µT

µ = B), which makes a good connection between f(R) (R for
Ricci Scalar) and f(T ) (T for torsion) theory under reasonable conditions. The power law and
logarithmic f(T,B) models are selected to discuss the behavior of deceleration parameter q(z),
Hubble parameter H(z), Equation of state (EoS) for dark energy (DE), and effective EoS. We
found the great oscillations of EoS for DE across the phantom divide line. Effective EoS also
crossed the phantom divide line without any oscillations. The graphs for H(z), q(z), effective
EoS are alike for NCM with radiations, CM without radiaitons and CM with radiations.

1. Introduction
Now a days, it’s widely known fact that the cosmos is passing through the phase of accelerated
expansion [2,3] which is confirmed by different observational schemes like, Supernovae SNeIa.
Temperature anisotropies, baryon acoustic oscillation (BAO) [4] and cosmic microwave
background (CMB) [5] given the strength to this cosmic acceleration. To explain this phenomena,
we have two ways [6-14], first one is that, we consider the DE dominated universe which is
accountable for this expansion due to negative pressure. In second approach by ignoring the
DE, we amend the general relativity (GR) action as given by Einstein-Hilbert. Second approach
leads us to the modified theories like f(R) [15] (where R is Ricci scalar), f(T ) [16] (where
T is torsion), f(R, T ) [17-25] (where R is Ricci scalar and T is trace of energy momentum
tensor (EMT)), f(T,B) [26,27], f(R, T , RµνTµν) [28-30] (where Tµν is for EMT and Rµν is
Ricci tensor) and f(R,G) [31-39]. DE can also be considered to be geometric component,
specially in modified theories of gravity (MTG) because when we make the comparison of
field equations in GR and MTG then LHS remains invariant. Recently, after the late time
cosmic acceleration, we got confirmation about inflationary era [40,41] at early universe observed
through B-mode power spectrum [42]. Different observational, experimental and indirect
methods are introduced in the literature to show that how our universe develop according to
cosmological time. The observations from the spectrum of direct DM scattering [43] was the
indirect method to check inflationary era. In [44] authors observe the DM directly in the ground
base laboratory. Therefore, to describe these two phenomena, we need a single theoretical
framework. Observational data sustain the non zero cosmological constant (ω = −1) [45] as well
as flat universe (p = 0). Most recent Planck’s data [46] also sustain the ΛCDM model.
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Einstein introduced GR with source of gravity being scalar curvature but he also put in the
concept of torsional formalism [47-50] which is noted as teleparallel equivalent of GR (TEGR).
Lately, TEGR has been generalized as a function of torsion T known as f(T ) gravity [16].
Harko et al. [51] discussed the non-minimal interaction of torsion with matter in the Lagrangian
density which leads to the more generalized f(T ) gravity. Authors [52,53] have also studied the
efficacy of energy bounds for significant models and find the viable constraints on the associated
free parameters and also explored the validity of thermodynamic laws. Kofinas and Saridakis
[54-56] formulated a interesting and new theory noted as f(TG) gravity and then its extended
form f(T, TG) theory. Zubair and Waheed also discussed the cosmological importance and
energy conditions of this theory [57,58]. Further, Sebastain et al. [26] generalized the f(T )
theory by replacing the Lagrangian f(T ) with f(T,B). One remarkable aspect of this theory is
that, if we take particular form of Lagrangian like f(−T + B) [26] then this theory has a good
equivalence with f(R) gravity. The big puzzle for cosmologists is that, how universe progress
from decelerated phase [59] to accelerated phase? As we know that, the acceleration of universe
is low that build two phases first is redshift transition and it’s current value is zt = 0.46± 0.13
[9,10]. This transition from deceleration to acceleration is denoted by zt. It is prime to be in
touch with both the universe inflationary era and the late time acceleration.

MTG play a key role to discuss these both phenomena in a single theory by considering the
CM. A very convenient question comes to mind that, why we have to study this CM and what
are the effects of this CM? To explain this it is fascinating enough that we have strong evidence
which shows the dark matter (DM) behaves like CM [60] at some extent. This is the reason
that DM directly effects the dynamics of cosmos. Experiments like WMAP survey, PAMELA
and ATIC showed that the production of electron-positron from supernova [60] is less than the
actual production in the universe. This collisional nature of DM can also be found in direct
searches of DM [44]. Most recent Planck’s data [46] also confirmed that our universe made up
of 26.8% DM which is very significant amount, DE contributes the 68.3% and visible matter is
just accounts for 4.8% therefore, we must go for DM or CM in some extent. In this direction,
Oikonomou and Karagiannakis [61,62] studied the CM in f(R) gravity as well as they discussed
the matter dominated era in the exponential MTG and discussed the DE oscillatory effects.
They found, this study is purely model based. Zubair [63] also discussed the significant models
of f(T ) theory by considering the CM and he showed the transition phase in his study for CM.
Baffou et al. [64] also studied the CM in more generalized f(R, T ) gravity and they found the
good consistency with ΛCDM model and recent observations. In recent work [65], Zubair et al.
discussed the comic evolution of non-minimal coupled f(R, T ) models in collisional framework.
It was found that cosmic evolution in the presence of CM was fairly similar to that of NCM
case, but they found different transition points for CM and NCM. Furthermore, they [65] also
found the variance in the acceleration rate for CM(with and without radiations) and NCM case.

In teleparallel f(T,B) gravity, Sebastian et al. [1] reconstructed the power law, logarithmic,
and exponential models and they discussed the thermodynamics in this theory. They found
equilibrium description of thermodynamics and they found that GSLT is valid for phantom era
of universe. In this paper, our main focus is to discus the constructed [1] power law model
and logarithmic model for self interacting CM and radiations. We will make a comparison
for evolution of deceleration parameter q(z), Hubble parameter H(z), EoS for DE ωDE , and
effective EoS ωeff in the presence of NCM with radiation, CM without radiation and CM with
radiations. We will study the phantom crossing behavior for these models in the presence of
CM. This article has the following pattern: In section II, we will study the basic formalism of
f(T,B) gravity and its modifications. In section III, we will discus the CM in f(T,B) gravity
and in section IV, we shall discuss the cosmic evolution of H(z), q(z), ωDE , and ωeff for NCM,
and CM with and without radiation. Section V summarizes our results.
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2. TEGR and its modifications
Now, we are going to discus the basis of TEGR. The vital variable in this theory is given by the
tetrad eµm and Eµm is the inverse of the tetrad. This theory depends on the manifold which has
a non-zero torsion but zero curvature. For the justification of this type of geometry, we have
to make assumption that universe is globally flat, commonly known as Weitzenböck connection
W a
µ ν . This another concept of gravity has an important fact that, the field equation of TEGR

has equivalence with the field equation of GR. The following equation represents the relation
between metric and the dynamical variable which is tetrad field,

gµν = eaµe
b
νηab, (1)

where the Minkowski metric with this signature (−,+,+,+) denoted by ηab. Keep in mind that,
at every single point of the manifold the tetrad fields are orthonormal vectors, therefore they
follow the preceding relations

Eµme
n
µ = δnm, (2)

Eνme
m
µ = δνµ. (3)

The anti-symmetric part of the Weitzenböck connection gives us the torsion tensor as,

T aµν = W a
µ ν −W a

ν µ = ∂µe
a
ν − ∂νeaµ. (4)

The torsion scalar gives us the teleparallel action as

Sabc =
1

4

(
T abc − T cab − T bac

)
+

1

2

(
ηacT b − ηabT c

)
, (5)

with the torsion tensor T = S bc
a T abc. The contraction of torsion tensor Tµ = T ννµ gives us the

torsion vector.
Explicitly, the action reads

STEGR =
1

κ2

∫
eTd4x+ Sm, (6)

where κ2 = 8πG, and e stands for the determinant of the tetrad which is equal to
√
−g and

Sm represents the action for matter content. After discussing the above equation we are able to
manifest that the torsion scalar is connected with Ricci scalar by

R = −T +
2

e
∂µ (eTµ) = −T +B, (7)

The only difference between Einstein-Hilbert action and TEGR action is boundary term “B”.
Therefore, we got equivalence between the metric variations of the Einstein-Hilbert action and
tetrad variations of the action (6). So, field equations shall be alike for both the action (6) and
the Einstein-Hilbert action.

A significant generalization of the action (6) is made by replacing the T term with the function
of T . This generalization is given below

Sf(T ) =
1

κ2

∫
ef(T )d4x+ Sm, (8)

the replacement of T with f(T ) makes it much stronger than before, that is actually second order
theory. Now, this theory is alike f(R) gravity. Nevertheless, these theories are not equal. For
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the sake of the unification of both f(T ) and f(R) gravity, authors [26] suggested the following
action

Sf(T,B) =
1

κ2

∫
d4xef(t, B) + Sm, (9)

this is the most generalized teleparallel gravity, and f(T,B) has also dependence on boundary
term B. If, we aim to reach the well noted theories of gravity like f(R) we just simply need to
replace the arbitrary function as f = f(B−T ) = f(R) and for f(T ) gravity just replace it with
f = f(T ) as mentioned in [26]. The field equations of this generalized theory are found to be as
by varying the action with respect to tetrad

2eδλν2fB + eBfBδ
λ
ν − 2e∇λ∇νfB + 4eS µν

ν [(∂µfB) + (∂µfT )]

− 4efTT
σ
µνS

λµ
σ + 4eaν∂µ (eS µν

a ) fT − efδλν = 16πeT λν , (10)

here T λν = eaνT λa is the standard EMT, fT = ∂f
∂T , fB = ∂f

∂B and 2 = ∇µ∇µ. Purely, this theory
is tetrad formalism, and fourth-order.

3. Collisional Matter Model within f(T,B) gravity
The investigated outcomes showed that the production of electron-positron from supernova [66-
68] is less than the actual production in then universe. This conflict helps us to find the total
destruction of Weakly interacting massive particles which are the candidate for DM and this is
the collisional process as well [60]. The total matter content energy in our cosmos is less than
the present energy in the universe and this problem can be solved by considering the collisional
dark matter. Now, our discussion topic is the late time dynamics of the universe by considering
CM. In [69] they discover the cosmic dynamics exclusively by considering CM in the Einstein
gravity and realized that deceleration parameter q is not dependent of z and remains constant.
Eventually, we are not able to discuss the transition phase from decelerated phase to accelerated
one. The late time dynamics by taking into account CM is discussed by Oikonomou, V.K.
et al. [61,62] and it was found that the CM is not the only one that can not describe the late-
time acceleration but it can also amend the cosmic acceleration in f(R) gravity. This discovery
motivated us to the future evolution of cosmic parameters in f(R, T ) gravity [65]. Simply, DE
EoS parameter ωDE is able to cross the phantom divide line even in the presence of CM. We can
see [69,70] that firstly CM was introduced and studied in GR and f(R) gravity . Mostly, self
interacting CM model is discussed with perfect fluid in which total mass-energy density is basic
assumption, represented by εm which have the dependence on two terms that are given below

εm = ρm + ρmΠ, (11)

where

Π = Π0 + ω ln

(
ρm
ρm0

)
(12)

with ρm0 and Π0 are constants. Although fluid is not dust like, but it has positive pressure and
satisfies the EoS:

Pm = ωρm, (13)

where ω represents the collisional nature of matter and range of ω is between 0 < ω < 1.
By putting the Equ.(12) into Equ.(11) we will get the relation for the total energy density of

the cosmos as follows:

εm = ρm

(
1 + Π0 + ω ln

(
ρm
ρm0

))
(14)
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In the continuous medium the continuity equation for the motion of volume element is stated
as:

∇νTµν = 0 (15)

And the energy momentum tensor takes the following form

Tµν = (εm + Pm)uµuν − Pmgµν , (16)

where uµ =
dxµ
ds is the four velocity and satisfies the equation uµuν = 1. It is noted that Pm = pm

because of the negligence of the pressure of the ordinary matter. Using flat FLRW line element,
Conservation equation given in (16) becomes

ε̇m + 3
ȧ

a
(εm + Pm) = 0. (17)

Combining (13) and(14), gives the following result

ρm = ρm0

(a0

a

)3
(18)

with a0 the current scale factor.
Finally, collisional matter can be describe completely by Equ.(14) and Equ.(18). where Π0

has the following relation

Π0 =

(
1

ΩM
− 1

)
, (19)

and its current numerical value is Π0 = 2.14169.
There is an important case need to be discussed that our universe is filled with both CM and

relativistic matter which is commonly known as radiations. To discus this significant case ρmatt
is defined as following

ρmatt = εm + ρr0a
−4, (20)

where ρr0 represent the present energy density for radiation. The pressure for this case is given
by

Pmatt = pm + pr, (21)

where pm is the pressure for CM and pr represents the pressure by radiations. By using the
Equ.(14) and Equ.(18) we could get Equ.(20) as

ρmatt = ρm0a
−3 (1 + Π0 − 3ω ln(a)) + ρr0a

−4. (22)

We can also rewrite above equation (22) as

ρmatt = ρm0

(
g(a) + χa−4

)
, (23)

where χ has a relation of the form

χ =
ρr0
ρm0

, (24)

its numerical value is χ = 3.1 · 10−4 and g(a) represent the nature of CM and it is defined as
following

g(a) = a−3 (1 + Π0 − 3ω ln(a)) . (25)

Keep in mind that, if we will take ω = 0, Π0 = 0 in this formalism then we will get g(a) = a−3

and its represent the NCM which is considered to be dust. As χ represents the radiations
component so, if we take χ = 0 then radiations will ignore and vice versa.
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4. Late time cosmological evolution in f(T,B) gravity
4.1. Deceleration parameter
In the following section, we will discus the flat FLRW metric with this signature (−,+,+,+, )
given as

ds2 = −dt2 + a(t)2(dx2 + dy2 + dz2), (26)

where a(t) is for scale factor. In these coordinates, the tetrad field can be studied as

eaµ = diag(1, a(t), a(t), a(t)). (27)

if we take a look on above equation and consider that FLRW universe is filled with perfect fluid
then the field equation (10) for f(T,B) gravity will be

−3H2(3fB + 2fT ) + 3HḟB − 3ḢfB +
1

2
f(T,B) = κ2ρm, (28)

−3H2(3fB + 2fT )− Ḣ(3fB + 2fT )− 2HḟT + f̈B +
1

2
f(T,B) = −κ2pm. (29)

Here, Hubble parameter represented by H = ȧ/a and dots refers the time derivative.
Furthermore, pm and ρm are for pressure and energy density of the matter content respectively.
One can simply found the values of T and B by using FLRW metric as, T = 6H2 and
B = 6(Ḣ + 3H2). In the same way, we can justify R = −T + B = 6(2H2 + Ḣ). Now,
Eqs. (28) and (29) can also be represented in a fluid form,

3H2 = κ2
effρeff , (30)

−3H2 − 2Ḣ = κ2
effPeff . (31)

The equations (30) and (31) are identical to standard FLRW equations as in GR. The ρeff and
peff in f(T,B) gravity are found as:

ρeff = εm +
1

κ2

[
−3HḟB + (3Ḣ + 9H2)fB −

1

2
f(T,B)

]
, (32)

Peff = Pm +
1

κ2

[
1

2
f(T,B) + Ḣ(2fT − 3fB)− 2HḟT − 9H2fB + f̈B

]
, (33)

With the energy density ρDE = ρeff − εm and the pressure PDE = Peff − Pm. Conservation law
with the effective energy density will be in the form

d
(
k2

effρeff

)
dt

+ 3Hk2
eff(ρeff + Peff) = 0 (34)

where, we have k2
eff = − κ2

2fT
.

We get the following equation by solving the equation (34) and using equation (17)

f − 2εm − 6fBḢ + 6H2(−3fB − 2fT + 12(3fBB + fTB)Ḣ) + 36HfBBḦ = 0 (35)

using redshift relation a = 1
1+z , we will get equation (35) as

d2H

dz2
=

5

1 + z

dH

dz
− 1

H

(
dH

dz

)2

(36)

−
f − 2εm + 6(1 + z)H dH

dz (fB − 12H2fTB)− 6H2(3fB + 2fT )

36(1 + z)2H3fBB

Now, we have all the required components to study the different models in the presence of
CM and radiations in f(T,B) gravity.
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Figure 1. The LHS graph represent the evolution of deceleration parameter whereas graph
on RHS represent the evolution of H[z]. Herein, we choose H0 = 68.3, Ω = 0.3183, α = 5,
β = 5, n = −0.5, ω = 0 for NCM includes radiations, ω = 0.6 for CM except radiation and
CM+radiation.

Figure 2. The LHS graph represent the evolution of effective EoS whereas graph on RHS
represent the evolution of EoS for dark energy. Herein, we choose H0 = 68.3, Ω = 0.3183, α = 5,
β = 5, n = −0.5, ω = 0 for NCM includes radiations, ω = 0.6 for CM except radiation and
CM+radiation.

4.2. f(T,B) = αT + βBmTn

We choose H0 = 68.3, Ω = 0.3183, α = 5, β = 5, n = −0.5, ω = 0 for NCM with radiations,
ω = 0.6 for CM except radiations, and ω = 0.6 CM includes radiations. We will numerically
discuss this f(T,B) model by using equation of motion (36). In Figure 1, LHS represent the
evolution of deceleration parameter for all considered cases in term of redshift. Blue curve
represent the standard ΛCDM model, green curve is for NCM includes radiations, black curve is
for CM except radiation, red curve is for combine CM and radiations. We can clearly see from
LHS of Figure 1 that each curve shows the different behavior for different cases, Green curve
shows the transition phase for larger value almost at zt = 6.1, black curve shows the transition
phase earlier as compare to green curve which is equal to zt = 3.1 and red curve shows the most
closer value to observed value for redshift transition phase which is equal to zt = 1.1. We can
also conclude that as we increase the value of m (model parameter) then the value for redshift
transition phase is more closer to observed value. In the LHS of the Figure 2, we represent the
evolution of effective EoS for NCM with radiation, CM without radiation, and for radiations



XXI International Meeting of Physical Interpretations of Relativity Theory

Journal of Physics: Conference Series 1557 (2020) 012007

IOP Publishing

doi:10.1088/1742-6596/1557/1/012007

8

Figure 3. The LHS graph represent the evolution of deceleration parameter whereas graph on
RHS represent the evolution of H[z]. Herein, we choose H0 = 68.3, Ω = 0.3183, m = 2, ω = 0
for NCM includes radiations, ω = 0.6 for CM except radiation and CM+radiation.

Figure 4. The LHS graph represent the evolution of effective EoS whereas graph on RHS
represent the evolution of dark energy. Herein, we choose H0 = 68.3, Ω = 0.3183, m = 2, ω = 0
for NCM includes radiations, ω = 0.6 for CM except radiation and CM+radiation.

plus CM case. Keep in mind that the color scheme is same as for deceleration parameter. The
graphs show that in all cases ωeff approaches to −1 and all curves are crossing the phantom
line [71-73] without showing any oscillation. The RHS of Figure 1 represents the evolution of
H(z) which is numerically calculated for this model and we found the numerical value of H(z)
which have the good correspondence with latest planck’s data. For this model the present value
(z = 0) is found to be 68.4 for all cases of NCM, CM. Green curve for H(z) shows the almost
constant behavior and black curve has variance for higher values of redshift as compare to the
red curve. The RHS of Figure 2 represents the evolution of EoS for DE, it approaches to −1
for NCM, CM and CM plus radiation. One can clearly see the oscillation for higher values of
redshift in the CM plus radiation case.

4.3. f(T,B) = Tm +Bnlog[T ]
In Figure 3, the LHS represent the evolution of deceleration parameter for all considered cases
in term of redshift.The Color scheme is same as for previous model. In LHS of Figure 3, we can
clearly see that the deceleration parameter shows the same behavior for all considered cases.
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There is a slight difference for transition phase and this model shows the opposite behavior as
compare to power law model. The red curve has a largest value as compare to other curves but
for all cases value for the redshift transition is less than the observed value. We can also conclude
that if we increase the value of n (model parameter) then the value for the redshift transition
phase is more closer to observed value. In the LHS of the Figure 4, we represent the evolution
of effective EoS for all considered NCM and CM cases. The graphs show that in all cases
ωeff approaches to −1 and all curves are crossing the phantom line [71-73] without showing any
oscillation. The RHS of Figure 3 represents the evolution of H(z) which is numerically calculated
for this model and we found the current value of H(z) for this model at z = 0 is equal to 68.4
for all cases NCM, CM, and CM plus radiation. All curves for H(z) shows a different variance
and none of any graph is constant here as previous model. The RHS of Figure 4 represents the
evolution of EoS for DE, it is approaches to −1 for NCM, CM and CM plus radiation. One
can clearly see the oscillation in DE graphs and if we increase the value of n then number of
oscillation also increases across the phantom divide line. For n = 4, we can see the huge number
of oscillation as compare to n = 3.

5. Conclusion
In this paper, we took three significant models of f(T,B) theory of gravity. First model is
known as power law model and second is logarithmic model. We mainly focused on cosmic
evolution of Hubble parameter H(z), deceleration parameter q(z), effective EoS, EoS for DE
in the presence of self interacting CM and radiations. Special thing in this paper is that, we
discussed the new form of matter with positive pressure which satisfy the EoS for the relation
0 < ω < 1 other than the usual or ordinary matter (pressure less matter p = 0) and DE. If
we increase the value of ω from 0 to 1 then the collisional nature of matter is also increases.
Commonly know that ordinary matter and DE has interaction with each other but actually
they are selfinteracting as well. Therefore, we focused on this self-interacting property of the
matter besides interaction with matter and DE. We expressed the dynamical equation in terms
of Hubble parameter and convert all equations in the function of redshift for the sake of detailed
numerical discussion. We found the interesting results while discussing the EoS for DE ωDE ,
we found the oscillatory behavior of DE in the presence of CM rather then NCM. Although, we
found large number of oscillations across phantom divide line for DE in the presence of CM, DE
approaches to −1 for all cases which represents the observationally consistent ΛCDM model.
The crossing of phantom divide line is viable from observational data [74-78] and significant
aspect to be studied in modified theories of gravity. We also numerically solved the Hubble
parameter and its numerical value approaches to 68.4, which is according to latest Planck’s
data [46]. We found transition phase in deceleration parameter q(z) for all considered cases
NCM, CM without radiation and CM with radiation and successfully compare the deceleration
parameter with ΛCDM model for all considered models (Power law and logarithmic). Effective
EoS crossed the phantom divide line in all cases NCM, CM, CM with radiation. We also found
that our study is totally model dependent. When we changed our model, then results are totally
changed just like make a comparison of power law and logarithmic model. The power law model
shows a considerable variance when we change the parameters of model but logarithmic model
does not shows a such variance in its graphs. There is minor difference in graphs for NCM, CM
and CM plus radiation when we choose logarithmal model as compare to power law. Although,
we have good results but model dependent so its not easy to say that the effects of CM on cosmic
evolution makes a better results or worse. We need a more discussion in this direction to reach
a final conclusion but to discuss the CM and radiations in the MTG is really worthy and able
to make a novel contribution in further research.



XXI International Meeting of Physical Interpretations of Relativity Theory

Journal of Physics: Conference Series 1557 (2020) 012007

IOP Publishing

doi:10.1088/1742-6596/1557/1/012007

10

References
[1] Bahamonde S, Zubair M and Abbas G 2018 Physics of Dark Universe 19 pp 78-90
[2] Perlmutter S et al 1999 Astrophys. J. 517 565
[3] Riess A G et al 1998 Astron. J. 116 1009
[4] Spergel D N et al 2007 Astrophys. J. Suppl. 170 377
[5] Eisenstein D J et al 2005 Astrophys. J. 633 560
[6] Bennett C L et al 2003 Astrophys. J. Suppl. Ser. 148 1
[7] Perlmutter S et al 1997 Astrophys. J. 483 565
[8] Perlmutter S et al 1998 Nature 391 51
[9] Riess A G et al 2004 Astrophys. J. 607 665

[10] Riess A G et al 2007 Astrophys. J. 659 98
[11] Hawkins E et al 2003 Mon. Not. R. Astron. Soc. 346 78
[12] Tegmark M et al 2004 Phys. Rev. D 69 103501
[13] Cole S et al 2005 Mon. Not. R. Astron. Soc. 362 505
[14] Jain B and Taylor A 2003 Phys. Rev. Lett. 91 141302
[15] Buchdahl H A 1970 Mon. Not. R. Astron. Soc. 150 1
[16] Ferraro R and Fiorini F 2007 Phys. Rev. D 75 084031
[17] Harko T et al 2011 Phys. Rev. D 84 024020
[18] Moraes P H R S and Sahoo P K 2017 Eur. Phys. J. C 77 480
[19] Moraes P H R S, Correa R A C and Lobato R V 2017 JCAP 07 029
[20] Moraes P H R S and Sahoo P K 2017 Phys. Rev. D 96 044038
[21] Sharif M and Zubair M 2012 JCAP 03 028
[22] Baffou E H, Salako I G and Houndjo M J S 2017 Int. J. Geom. Meth. Mod. Phys. 14 1750051
[23] Barrientos E, Lobo F S N, Mendoza S, Olmo G J and Rubiera-Garcia D 2018 Phys. Rev. D 97 104041
[24] Pradhan A and Jaiswal R 2018 Int. J. Geom. Meth. Mod. Phys. 15 1850076
[25] Shabani H and Ziaie A H 2018 Eur. Phys. J. C 78 397
[26] Bahamonde S, Bohmer C G and Wright M 2015 Phys. Rev. D 92 104042
[27] Bahamonde S and Capozziello S 2017 Eur. Phys. J. C 77 107
[28] Odintsov S D and Saez-Gomez D 2013 Phys. Lett. B 725 437
[29] Haghani Z, Harko T, Lobo F S N, Sepangi H R and Shahidi S 2013 Phys. Rev. D 88 044023
[30] Zubair M and Zeeshan M 2018 Astrophys. Space. Sci. 363 248
[31] Nojiri S, Odintsov S D and Sasaki M 2005 Phys. Rev. D 71 123509
[32] Koivisto T and Mota D F 2007 Phys. Lett. B 644 104
[33] Koivisto T and Mota D F 2007 Phys. Rev. D 75 023518
[34] Kawai S, Sakagami M A and Soda J 1998 Phys. Lett. B 437 284
[35] Nojiri S and Odintsov S D 2005 Phys. Lett. B 631 1
[36] De Felice A and Tsujikawa S 2009 Phys. Lett. B 675 1
[37] Uddin K, Lidsey J E and Tavakol R 2009 Gen. Relativ. Gravit. 41 2725
[38] Cognola G, Elizalde E, Nojiri S, Odintsov S D and Zerbini S 2006 Phys. Rev. D 73 084007
[39] De Felice A, Mota D F and Tsujikawa S 2010 Phys. Rev. D 81 023532
[40] Mukhanov V 2005 Physical Foundations of Cosmology (Cambridge University Press, Cambridge)
[41] Gorbunov D S and Rubakov V A 2011 Introduction to the Theory of the Early Universe: Cosmological

Perturbations and Inflationary Theory (World Scientific, Hackensack)
[42] Ade P A R et al 2014 Phys. Rev. Lett. 112 241101
[43] Cheung Y K E and Vergados J D 2016 Preprint 1410.5710
[44] Oikonomou V K, Vergados J D and Moistakidis Ch C 2007 Nucl. Phys. B 773 19
[45] Weinberg S 1989 Rev. Mod. Phys. 61 1
[46] Ade P A R et al 2014 Astronomy and Astrophysics 571 A16
[47] Einstein A 1930 Sitzungsber Preuss, Akad, Wiss, Phys. Math. K1 24 p 401
[48] Hayashi K and Shirafuji T 1979 Phys. Rev. D 19 3524
[49] Arcos H I and Pereira J G 2004 Int. J. Mod. Phys. D 13 2193
[50] Maluf J W 2013 Ann. Phys. 525 339
[51] Harko T, Lobo F S N, Otalora G and Saridakis E N 2014 Phys. Rev. D 89 124036
[52] Zubair M and Waheed S 2014 Astrophys. Space Sci. 355 361
[53] Zubair M and Waheed S 2014 Astrophys. Space Sci. 360 68
[54] Kofinas G and Saridakis E N 2014 Phys. Rev. D 90 084044
[55] Kofinas G and Saridakis E N 2014 Phys. Rev. D 90 084045
[56] Kofinas G, Leon G and Saridakis E N 2014 Class. Quantum Grav. 31 175011
[57] Zubair M and Waheed S 2014 Astrophys. Space Sci. 359 47



XXI International Meeting of Physical Interpretations of Relativity Theory

Journal of Physics: Conference Series 1557 (2020) 012007

IOP Publishing

doi:10.1088/1742-6596/1557/1/012007

11

[58] Zubair M and Waheed S 2015 Astrophys. Space Sci. 360 11
[59] Perivolaropoulos L 2007 in The Invisible Universe: Dark Matter and Dark Energy ed E Papantonopoulos

Lecture Notes in Physics 720 (Springer-Verlag, New York) p 257
[60] Spergel D N and Steinhardt P J 2000 Phys. Rev. Lett. 84 3760
[61] Oikonomou V K and Karagiannakis N 2015 Class. Quantum. Grav. 32 085001
[62] Oikonomou V K, Karagiannakis N and Park M 2015 Phys. Rev. D 91 064029
[63] Zubair M 2016 Int. J. Mod. Phys. D 25 1650057
[64] Baffou E H et al 2015 Phys. Rev. D 92 084043
[65] Zubair M, Zeeshan M, Hasan S S and Oikonomou V K 2018 Symmetry 10 463
[66] Chang J and et al ATIC Collaboration 2008 Nature 456 362
[67] Adriani O and et al PAMELA Collaboration 2009 Nature 458 607
[68] Hooper D et al 2007 Phys. Rev. D 76 083012
[69] Kleidis K and Spyrou N K 2011 Astron. Astrophys. 529 A26
[70] Fock V 1959 The Theory of Space, Time and Gravitation (Pergamon Press, London) pp 81 and 91
[71] Bamba K, Geng C-Q, Nojiri S and Odintsov S D 2009 Phys. Rev. D 79 083014
[72] Du Y, Zhang H and Li X-Z 2011 Eur. phys. J. C 71 1660
[73] Bamba K, Geng C-Q and Lee C-C 2011 Int. J. Mod. Phys. D 20 pp 1339-45
[74] Alam U, Sahni V and Starobinsky A A 2004 J. Cosmol. Astropart. Phys. 0406 008
[75] Nesseris S and Perivolaropoulos L 2007 J. Cosmol. Astropart. Phys. 0701 018
[76] Wu P and Yu H 2006 Phys. Lett. B 643 315
[77] Alam U, Sahni V and Starobinsky A A 2007 J. Cosmol. Astropart. Phys. 0702 011
[78] Jassal H K, Bagla J S and Padmanabhan T 2010 Mon. Not. R. Astron. Soc. 405 2639


