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ABSTRACT

MEASUREMENT OF — ARGON ABSORPTION AND CHARGE EXCHANGE
INTERACTIONS USING PROTODUNE-SP

By
Jacob Calcutt

ProtoDUNE-SP is a prototype detector for the upcoming Deep Underground Neutrino Ex-
periment (DUNE). It is a Liquid Argon Time Projection Chamber (LArTPC) with a similar
configuration to DUNE’s detector, and is designed to provide a test-bed for the future ex-
periment. In addition to serving as a prototype, its 0.3 — 7 GeV/ charged particle beam line
provided the ability to perform physics measurements of pions, protons, kaons, muons, and
electrons. Importantly, the LArTPC allowed for the measurement of hadronic interactions
on argon nuclei.

Pions are often present in the final state of neutrino interactions in the energy range
of DUNE’s neutrino beam. These particles can undergo various types of interactions with
argon nuclei in the detector, and this can interfere with the characterization of neutrino
interactions in DUNE’s far detector. The rate of these so-called secondary interactions
will be accounted for using Monte Carlo simulation of neutrino interactions. Measurements
of secondary interaction rates provide necessary data which can be used to estimate and
propagate uncertainties or provide tunes of the secondary interaction model used within
DUNE’s experimental simulation.

This analysis provides a simultaneous measurement of the  —Ar absorption and charge
exchange cross sections using 1 GeV/ data taken by ProtoDUNE-SP during its initial
run period in Fall 2018. This is one of the first hadronic interaction measurements provided
by ProtoDUNE-SP. It is also the first ~ —Ar absorption measurement in 20 years and the

first ever  —Ar charge exchange measurement.
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CHAPTER 1

EXECUTIVE SUMMARY

The field of study of neutrino oscillation has entered the precision era. Next-generation
experiments — the Deep Underground Neutrino Experiment (DUNE) and Hyper-Kamiokande
(Hyper-K) — will collect a large rate of accelerator-based neutrino-interaction events. This
will provide researchers with the ability to answer remaining key questions within oscillation
physics. DUNE, the physics program on which this thesis will focus, will attempt to answer

the following questions:

1. What are the precise values of the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix

mixing angles ( , )7 Specifically, is lower than, greater than, or even
equal to (known as maximal mixing)?

2. Does neutrino oscillation violate Charge-Parity symmetry (is of the PMNS matrix
non-zero)?

3. What is the ordering of the neutrino masses (what is the sign of )?

Great effort must be taken to reduce systematic uncertainty to a suitable level to achieve
precise measurements related to the questions stated above. Necessary for this is the proto-
typing of DUNE’s far detector with ProtoDUNE-SP. ProtoDUNE-SP serves as a test-bed for
DUNE’s detector components and event reconstruction, a first attempt at calibration which
will be employed at DUNE, and a source of physics measurements using its charged particle
beam line which will serve as necessary inputs to DUNE’s simulation. One of the particles
provided by the beam line — — is important to study, as it is often found in the final state
of neutrino interactions. As such, it has the ability to interfere with the reconstruction of
the incident neutrino’s energy or its flavor. For example, if a is absorbed by an argon

nucleus nearby the primary neutrino interaction, the pion’s energy could be missed in recon-



struction of the neutrino’s energy. Additionally, if a is produced in a neutral current
interaction it could instead undergo a charge exchange interaction, where it is converted into
a , nearby. The will promptly decay into two photons, which will produce showers in
the detector. These showers could mimic an electron shower and could cause the  neutral
current interaction to be misidentified as a  charged current interaction. These errors will
be accounted for in DUNE’s oscillation analyses using Monte Carlo simulation of events in
DUNE’s far detector. However, if the rate of pion interactions are misestimated, DUNE’s
measurements could be biased. This thesis presents a measurement of  —Ar absorption
and charge exchange in order to reduce these systematic effects in DUNE’s analyses.

This thesis will be organized as follows. Chapter 2 will describe the Standard Model of
particle physics and how neutrinos fit (or rather do not fit) within this theory. It will also
provide an overview of interactions of both neutrinos and charged pions on nucleons and
nuclei. Chapter 3 will describe DUNE’s physics program and detector design and provide
motivation for this measurement. In Chapter 4, the ProtoDUNE-SP detector — the detector
used for this measurement — will be discussed. Specifically, this chapter will focus on the
design and components of the detector, the software used for reconstructing particle trajec-
tories and interactions, and calibration of the detector. Chapter 5 will discuss the beam
line which supplies the ProtoDUNE-SP detector with its test beam particles. Chapter 6 will
describe the event selection used to characterize Monte Carlo events and data sets. Chapter
7 will discuss the strategy used to conduct this measurement including the strategy used to
extract the cross section and the statistical fit used in the analysis. Chapter 8 will discuss
the systematic uncertainties within the analysis. Chapter 9 will discuss validations of the
statistical fit using fake data generated from Monte Carlo simulation. Finally, Chapter 10

will present the results of the measurement on real data.



CHAPTER 2

THEORY

As DUNE’s physics program centers around neutrinos, this chapter will provide a description
of our current understanding of these particles as part of the Standard Model of Particle
Physics. Within this, an overview of the theory of neutrino—nucleus interactions will be
given. The physics of charged pions will also be discussed, as these are often produced

within neutrino—nucleus interactions.

2.1 The Standard Model

The Standard Model of Particle Physics represents the most up-to-date understanding
of the universe at the subatomic level. It has provided immensely accurate descriptions of
particle interactions (manifested as the electromagnetic and strong and weak nuclear forces)
and successfully predicted the presence of multiple elementary particles. The Standard Model

is rooted in the local symmetry group
(2.1)

where the first term encompasses the strong interaction and the second and third terms
give rise to the electroweak interaction. Here, the subscript denotes this describes a “left-
handed” chiral theory.

From the symmetry groups denoted in Equation 2.1, the interactions between matter and
forces arise. In the development of the theory, a Lagrangian is constructed which describes
a free fermion field and invariance under some local gauge transformation is enforced. If
the fermion field is not invariant under that gauge transformation, an interaction with some
vector field is introduced. Depending on the field and the gauge under consideration, these
vector fields may also interact amongst themselves to ensure gauge invariance. The quanta of

these vector fields are known as gauge bosons, and are modeled as being exchanged between



interacting fermions. At this point, all gauge bosons and fermions have zero mass. However,
this is known to be wrong from experiment: three of the bosons and all fermions have mass.
With the possible exception of neutrinos, these particles all gain mass due to the presence of
the so-called Higgs field (the quantum of which is the scalar Higgs Boson, famously discovered
in 2012 [15, 16]). The bosons gain mass as the result of spontaneous symmetry breaking, and
the fermions gain mass through coupling to the Higgs fields via Yukawa interactions [17].
The following sections describe the gauge bosons and the elementary fermions (quarks and

leptons), as well as composite particles formed from quarks (hadrons).

2.1.1 Gauge Bosons

The most familiar of the gauge bosons is the photon, which is a massless, neutral particle
that couples to electric charge and thus mediates the electromagnetic force. Figure 2.1a
shows a Feynman diagram representing an elementary electromagnetic interaction vertex,

where is some charged fermion and the boson is the photon in the interaction.

(a) Electromagnetic and
weak neutral current in-
teractions.

(b) The weak charged
current interaction.

Figure 2.1: Elementary interaction vertices of the electroweak interactions.

The photon arises within the Standard Model as one of the vector fields necessary to
achieve gauge invariance (which describes the electroweak interaction). The
other fields introduced by requiring this invariance are the  and bosons which mediate
the neutral and charged current weak interactions respectively. Elementary weak interactions

are also shown in Figure 2.1, where the neutral current interaction is represented in Figure
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Figure 2.2: Electroweak self-interaction vertices.

2.1a with the as the boson in the interaction and is some fermion, and the charged
current interaction is in Figure 2.1b. Here, () represents a lepton (anti-lepton) and

() represents a neutrino (anti-neutrino) engaging in the interaction. The and
bosons are the three gauge bosons mentioned above which gain their mass through the
Higgs mechanism. Within electroweak theory, interactions between the , | and photon
also occur. These elementary interaction vertices are shown in Figure 2.2.

Finally, invariance introduces eight gluons to facilitate the strong nuclear force.
This force couples to a property known as color, which, like electric charge for the elec-
tromagnetic interaction, is common to all particles that experience the strong interaction
(quarks and gluons themselves). Color differs from electric charge in that there are 3 colors
(red, green, and blue) plus 3 anti-colors (anti-red, anti-green, and anti-blue) rather than just
positive or negative electric charge. The gluons themselves carry color, and thus, due to
color conservation, annihilate quarks of one color and create quarks of another color during
interactions. In Figure 2.3a, the quarks entering and exiting the vertex are implied to have
different colors. Similar to the electroweak bosons, interactions between the gluons arise as

part of invariance, giving rise to vertices such as Figures 2.3b and 2.3c.
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Figure 2.3: Interaction vertices of the strong force.

2.1.2 Quarks

The elementary components of matter are a group of 12 fermions (and their antiparticle
partners) separated into 6 quarks and 6 leptons. The quarks engage in all three forces
described previously, while the leptons feel only the electromagnetic and weak forces (and
within the leptons, the neutrinos only engage in the weak forces as they are neutral).

The quarks come in six flavors: up, down, charm, strange, top, and bottom, which are
separated into three generations as shown in Table 2.1. Each generation contains one quark
with electric charge equal to —e and the other with charge of -e (where e is the basic unit
of electric charge). The first group includes , , and quarks and are collectively known
as “up-type” quarks, while the second group includes , , and quarks and are known as
the “down-type” quarks. As mentioned earlier, the quarks carry a property known as color
which is similar to electric charge. In an analogy to primary colors of visible light, this
comes in the form of three charges — (anti-)red, (anti-)green, or (anti-)blue. The analogy to
the primary colors of light comes from the fact that the three color charges (or a color and
its anticolor) add together to a net-0 or “white” color charge. A special property of color —
color confinement — is that no isolated free particle can exist in a colored state. This leads
to quarks forming bound states known as hadrons. Most often, these come in the form of
mesons (bound states of a quark and an antiquark with one type of color and its anticolor)

and baryons (bound states of three quarks each with one of the colors). Baryons and mesons



Generation | Quark | Charge ( ) | Mass (MeV/c )
: 2/3 2.4
1/3 4.8
. 2/3 1270
1/3 104
2/3 1712 x
I 1/3 4200

Table 2.1: The quark generations along with the charge and mass of the individual quarks.

will be discussed further in the next section.

In addition to the strong interaction, the quarks also take part in the weak interaction.
In charged current weak interaction, the quarks transition between up-type and down-type
flavors. Within the Standard Model Lagrangian, the quarks are described as two-component
states, comprised of the up-type and down-type of each generation, as shown in Equation

2.2, which are operated upon in the weak interaction.

(2.2)

If these were eigenstates of the weak interaction, one would expect this process to transition
between quarks only within generations (i.e.  would only transition to , to ,and to ).
This is not the case, and cross-generation transitions are allowed. This can be represented by
a set of quark states ( 7, 7, ) that are linear combinations of the normal down-type quarks.
The Cabibbo-Kobayashi-Maskawa (CKM) matrix mixes the normal down-type quarks into

the special weak-eigenstate quarks as seen in Equation 2.3.

(2.3)



Generation | Lepton | Charge (e) | Mass (MeV/c )
I e -1 011
0 _
-1 105.7
il ) ;
-1 177
II ) 5

Table 2.2: The lepton generations along with the charge and mass of the individual leptons.
Note that the neutrinos are assumed to be massless within the Standard Model and so no
masses are stated for these particles here.

2.1.3 Hadrons

As stated above, quarks cannot be observed in isolated states!, and reside in composite parti-
cles known as hadrons. Most commonly, these are combinations of a quark and an antiquark
(mesons) or combinations of three quarks/antiquarks (baryons). More exotic combinations
such as tetraquarks (two quarks and two antiquarks) and pentaquarks (four quarks and one
antiquark) have recently been discovered at the Large Hadron Collider [19].

The baryons include familiar particles like protons and neutrons (made of quarks and

quarks respectively); higher energy resonances of the same sets of quarks such as

and ; and particles including second or third generation quarks such as , and
(uds, ude, udb respectively). Many other combinations of quark flavors exist, as do similar
combinations of quark flavors but with differing quantum numbers. For example, the
and proton have the same flavors of quarks, but have total angular momentum of 3/2 and
1/2 respectively.

The mesons are similarly characterized by properties of their constituent quarks (flavor,
angular momentum, etc.). The mesons include the charged and neutral pions (whose quark
content is ud, du, and vt dd = for , respectively), kaons (which include a

strange quark), and various other combinations of quark flavors and angular momenta.

IThat is, at energy scales relevant to this thesis. At high enough energies, a phase
transition to a state known the quark-gluon-plasma occurs wherein quarks and gluons are
not confined to hadrons [18]



The pions are of particular interest within neutrino physics. They play an important role
in nuclear dynamics, as they are the long-range mediator of the nuclear force according to

Yukawa theory 18], and are discussed further in Section 2.4.

2.1.4 Leptons

Similar to the quarks, the 6 leptons are separated into 3 generations, each containing 1
charged lepton and its neutral partner. The charged leptons are the electron ( ), muon ( ),
and tau ( ), which each have a charge of -1 and masses as seen in Table 2.2. In each
generation is also the neutral partner to the charged lepton: the electron neutrino ( ),
muon neutrino (), and tau neutrino (). The leptons are all colorless particles, and thus
do not feel the strong force. However, all left-handed leptons and right-handed antileptons
engage in the weak interaction. To represent this, the leptons are given Lepton numbers:

., ,and , which are equal to 1 (-1) for (anti-)leptons in the generation denoted by the

subscript. These lepton numbers are absolutely conserved in the weak interaction.

2.2 Neutrinos: Not-so-standard Particles

2.2.1 Neutrino Oscillations

This overview of the Standard Model particles seems tidy, but there are some subtle pecu-
liarities, especially with the neutrinos. This is hinted at in Table 2.2, where no masses are
stated for the neutrinos. Within the Standard Model, the neutrinos are predicted to have
no mass. However, it is now understood that at least two neutrinos in fact do have mass, as
indicated by the presence of the process known as neutrino oscillation. This process was first
theorized by Bruno Pontecorvo in an attempt to explain a deficit of observed electron neutri-
nos produced from nuclear reactions in the sun. In 1968, the Davis experiment [20] measured
only about 1/3 of expected solar electron neutrinos. Pontecorvo suggested this deficit could
be explained if electron neutrinos produced in the Sun transformed into muon or tau neutri-

nos (which the Davis experiment was unable to detect) before reaching Earth [21]. Takaaki



Kajita from Super Kamiokande and Arthur B. McDonald from the Sudbury Neutrino Obser-

vatory were awarded the 2015 Nobel Prize in Physics for the discovery of oscillations [22, 23].

2.2.2 Neutrino Mixing

Neutrino oscillations arise from the facts that a) neutrinos have nonzero mass and b) the
flavor eigenstates are not equivalent to the mass-energy eigenstates. Similar to quark mix-
ing and the CKM matrix, neutrino mixing is described by the unitary Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix as shown in Equation 2.4, where are the mass-energy

eigenstates.

(2.4)

When neutrinos are produced via the weak interaction, they are produced as definite
flavor states. However, the propagation of the neutrinos is described by the time-evolution
operator (equivalently the Hamiltonian operator). As such, the neutrinos travel as eigen-

states of the Hamiltonian: the mass-energy states.

2.2.3 Oscillation Probability

The derivation of the oscillation probability is shown in the following example. Consider

a neutrino that evolves in time, . Suppose it begins as a muon neutrino, such that
. In a vacuum, its evolution is described by the time-evolution operator ( )

as such:
(2.5)

10



Because is not an eigenstate of the Hamiltonian, this is expanded to the following:

Suppose an experiment is attempting to measure the rate at which oscillate to by

detecting the 2. The probability to detect the neutrino as at some point in time is

related to the following matrix element

(2.6)

where the sum over runs over the mass-energy states. The probability is then given by

(2.7)
For a general pair of states this probability is

(2.8)
Assuming the neutrino is ultrarelativistic, and using natural units such that , the energy
can be expanded as such:
Where the approximation was used in the final step. The difference in the exponential
term becomes

_— (2.9)

2This is commonly known as an electron neutrino appearance analysis.
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where . There are three mass splittings, , , and , two of
which are independent3. is known to be positive (this is discussed later), while the
sign of — also known as the neutrino mass hierarchy — is an open question in neutrino
physics. This is highlighted in Figure 2.4, which shows the two possible orderings of the

neutrino mass states.

normal hierarchy (NH) inverted hierarchy (IH)

m> m>

Am?

atm

V3

Figure 2.4: Representation of the two possible neutrino mass hierarchies. The left is the
normal hierarchy with . The right is the inverted hierarchy with

2].

The probability stated in 2.8 is often rewritten by splitting the real and imaginary com-
ponents of the unitary PMNS matrix and approximating where is the distance the

neutrino has traveled:

Re — (2.10)

Here, the third term is positive (negative) for (anti-)neutrinos.

The PMNS matrix is parameterized by 3 mixing angles — | , and — and a phase

3
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factor — — and is commonly factored into a product of three rotation matrices as such:

(2.11)

where and are and . is a phase factor that determines whether
neutrino oscillations violate charge-parity (CP) symmetry. This symmetry and its violation
are described in the next subsection, and the presence of CP symmetry violation within

oscillations is one of the most important unanswered questions in neutrino physics.

2.2.4 CP Symmetry Violation

The violation of parity symmetry in the weak interaction was discovered in observations of
cobalt 60 decays [21]. Under this symmetry, the weak interaction should behave the same
under the complete reversal of coordinate system used to describe the system (

. However, it was observed that, when the spins of cobalt atoms in a sample
were aligned in a particular direction, the electrons resulting from neutron decays within
the cobalt atoms (shown in Figure 2.5) came out opposite the cobalt spins. Under a parity
transformation, the spin would not flip, but the direction of emission would. The electrons
would then be emitted in the direction of the spins, thus violating the symmetry [21|. The
parity symmetry violation in weak interactions is in fact maximal [21], leading to it being
described by a left-handed chiral theory (hence the in the subscript of 2.1). A result
of the parity violation is that there are no interacting right-handed (left-handed) neutrinos
(antineutrinos).

In addition to violating parity symmetry, the weak interaction also violates charge sym-
metry. For example, a left-handed neutrino would be transformed into a left-handed an-
tineutrino under charge conjugation and undergo weak interactions under charge symmetry.

This is not the case, however, and thus the weak interaction violates charge symmetry as

13



well. The weak interaction in the lepton sector does not violate CP symmetry? under a
simultaneous charge conjugation and parity transformation, left-handed neutrinos turn into
right-handed antineutrinos which both undergo weak interactions.

Returning to the subject of neutrino oscillations, the CP-violating phase-factor in
the PMNS matrix (Equation 2.11) has the ability to introduce CP violation in the neutrino
sector by producing an asymmetry between neutrinos and antineutrinos in the oscillation
probability. If present (i.e. ), this oscillation asymmetry could be responsible
the matter-antimatter asymmetry we observe in the universe [24|. The presence of a CP-
violating value of is one of the key unanswered questions in neutrino physics and is one

focus of the upcoming oscillation experiments DUNE [25] and HyperK [26].

»
>

»
-

Figure 2.5: Feynman diagram of a neutron decaying to a proton.

2.2.5 MSW Effect

In matter, the oscillation probability is modified due to the presence of coherent forward
elastic scattering of neutrinos by the surrounding matter. Specifically, the charged current
process is available for |, but not for | since only electrons and not positrons are present in
normal matter (for example, the surrounding earth). A potential created by these processes is

added to the Hamiltonian in Equation 2.5. This modifies the time evolution of the neutrino

4The weak interaction in the quark sector, however, does violate CP symmetry [21].
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flavors, resulting in a modified oscillation probability and effective oscillation parameters
in matter. This results in what is known as the MSW effect, wherein resonant behavior
is exhibited in the effective mixing angles®. The resonance can only be present for either
neutrinos or antineutrinos, depending on the ordering of the neutrino masses [27|. Thus, by
measuring the asymmetry between neutrino and antineutrino oscillations, the MSW effect
can be exploited to determine the ordering of the neutrino masses. The sign of was
determined by analyzing solar neutrinos which are subject to the matter effect as they travel
through the Sun [28|. The same principle can be used to determine the mass hierarchy (the
sign of ) using accelerator-based neutrino experiments. Similar to the question of CP
violation, this is an important, unanswered question in neutrino physics and will be explored
by future experiments such as DUNE. A discussion of DUNE and its physics potential will
be given in Chapter 3. In order to give context to that chapter, the following two sections

discuss interactions of both neutrinos and pions with nucleons and nuclei.

2.3 Neutrino Interactions

Neutrino oscillation experiments rely on detecting neutrinos through identifying the par-
ticles produced by interactions on target nuclei. Through reconstructing these products, the
flavor, sign (neutrino vs. antineutrino), and energy of the incident neutrino are inferred. This
section provides a description of neutrino—nucleus interactions. In most types of neutrino—
nucleus interactions®, the neutrino interacts primarily with a constituent nucleon. These
broadly fall into two categories: charged current (CC) and neutral current (NC). The CC
interaction occurs with the exchange of a as shown by the vertex in Figure 2.1b while

the NC interaction occurs with the exchange of a shown in Figure 2.1a.

5This is named after Mikheyev, Smirnov, and Wolfenstein. Wolfenstein first discovered
that neutrinos were affected by the potential created by the surrounding matter. Mikheyev
and Smirnov discovered the resonant behavior.

6Other than coherent neutrino-nucleus scattering, in which the nucleons contribute to
the scattering amplitude coherently, and deep inelastic scattering, in which the interaction
resolves an individual quark within a nucleon.

15



2.3.1 Quasielastic Scattering

The first major CC interaction is CC Quasielastic (CCQE). This interaction occurs in the
forms given in Equation 2.12, and is represented by the Feynman diagrams shown in Figures

2.6 and 2.7 for neutrinos and antineutrinos respectively.

(2.12)

Figure 2.6: Feynman diagram for the neutrino CCQE interaction.

Figure 2.7: Feynman diagram for the antineutrino CCQE interaction.

The cross section for these processes depend on the vector form factors (  and ) and
axial form factors ( and ) of the CC interaction, which themselves depend only on the
four-momentum transfer between the neutrino and nucleon in the interaction [29].
and are related to the electromagnetic form factors of the nucleons, which are extracted
from electron scattering data [27]. The pseudoscalar form factor can either be neglected

through approximation [27] or related to [29], such that is the only unknown portion

16



of the CCQE cross section. The exact shape of the axial form factor is not described by

theory, and a dipole approximation is generally used as shown in Equation 2.13.

(2.13)
Here, is the axial-vector coupling constant of the weak charged current, which is obtained
from neutron decay data, and is the axial mass, which can be obtained from fitting to

neutrino scattering data.

2.3.2 Resonant Pion Production

The next set of major neutrino—nucleon interactions are resonant pion production. These
interactions occur through both CC and NC channels, and result in a pion exiting the in-
teraction along with the nucleon and final state lepton. In these interactions, the neutrino
interacts inelastically with a nucleon and excites it into some resonance (i.e. a nucleon
resonance or  resonance). The forms of the CC interactions (without specifying the inter-
mediate resonance) are given in 2.14, while the NC interactions are given in 2.15. Multiple
resonances contribute to the amplitudes of these processes, but at lower energies, the

resonance dominates [30]. The most commonly used model to describe the  resonance in-
teraction is the Rein-Sehgal model [29, 30]. The NC interaction resulting in a  is important
as a background to CCQE  events, as the showers from the decay can be mistaken
as an shower during event reconstruction, and the rate of this background is important to

constrain in  appearance measurements.

(2.14)
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(2.15)

2.3.3 Deep Inelastic Scattering

Another important set of processes in oscillation experiments are the CC and NC Deep
Inelastic Scattering (DIS) processes. In these, the neutrino and the intermediary gauge
boson it exchanges with the nucleon are energetic enough to resolve the individual quark
constituents of the nucleon. The nucleon is broken apart and a hadron shower is produced
as a result of quark confinement. The form of these interactions is given in 2.16. Here, is

either nucleon and is a set of hadrons.

(2.16)

These processes dominate the total cross section at high energies (< GeV) [29].
The inclusive DIS cross section’ is described by functions representing the structure of the
nucleons known as parton distribution functions (PDFs) [27, 29, 30].

There exists a transition region between the resonance and DIS regimes called the Shallow
Inelastic Scattering (SIS) region [29, 31]. This region is not as well understood as the DIS-
dominated region [29, 31|, and different simulation frameworks take a variety of approach to

modeling this transition |29, 31|.

2.3.4 Neutrino—Nucleus Scattering

Neutrino oscillation experiments use nuclear targets for their detection medium. This compli-

cates the relatively simple picture of neutrino—nucleon scattering in a few key ways. Firstly,

TFull expressions found in [27, 29, 30]
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coherent scattering become possible, wherein each component of the nucleus contributes to
the interaction amplitude coherently and the nucleus is left in its ground state. An impor-
tant type of coherent scattering is coherent pion production as shown in 2.17 (top: CC,
bottom: NC). The NC process is an important background for  appearance channels as

the showers from the decay can mimic an shower.

(2.17)

Additionally, the presence of the nuclear medium complicates the behavior of both the
initial and final state. For CCQE interactions most models assume the Impulse Approxi-
mation, in which the neutrino scatters elastically off nucleons in the nuclear ground state,
followed by quasifree ejection of the nucleons from the nucleus. The nuclear state (i.e. the
kinematic distribution of nucleons within the nucleus) is commonly described by a Rela-
tivistic Fermi Gas model, where the nucleons are free particles subject to Fermi motion and
populate states according to the Pauli exclusion principle. Despite the fact it is commonly
used, it poorly describes electron scattering data. Other models and approximations for
the initial nuclear state have been utilized in recent years to overcome this limitation. An
important development toward improved modeling of the initial nuclear state comes in the
form of the inclusion of nucleon—nucleon correlations and meson exchange currents (MEC).
These contribute to multinucleon excitation, and raise the cross section of events that pro-
duce no final state pion. In addition to these initial state effects, DIS interactions are further
complicated through modifications of the nucleon PDFs by the nuclear medium [30, 31].

Finally, the presence of Final State Interactions (FSI) can modify the observable products
of the primary interaction as they attempt to exit the nucleus. The hadronic products of each
interaction (including pions in resonance interactions and hadron showers from DIS) may
reinteract as they travel through the nucleus. A common model for this is an intranuclear

cascade, wherein the interaction products step through the medium and can undergo an
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interaction with the surrounding nucleons. These resulting particles are then added into the
cascade process and can then go on to interact again. This goes on until all active particles
exit the nucleus or are absorbed back into the nucleus. This results in a modified set of ob-
servable particles (i.e. with missing or additional particles, and /or with smeared kinematics).
For resonance interactions, further complications arise from the fact that the surrounding
nuclear medium modifies the properties of the intermediate  resonance. Processes such as

those listed in 2.18 increase the width of the  within the nucleus [31].

(2.18)

2.4 Pions

The last section illustrated the complexities in neutrino scattering created by the nuclear
environment. The pion is often produced in neutrino interactions, and as will be seen in
Chapter 3, must be accounted for in neutrino oscillation analyses at DUNE. This section
serves to describe the pion’s role within the nucleus, and its interactions with nuclei®.

The pion is the lightest meson, and is a spin-0, isospin-1 boson. It has three charge
states (as evident by its isospin). These are described in Table 2.3. Yukawa predicted
that a point-particle similar to the pion mediated the force between point-like nucleons
within nuclei [18, 21]. In fact, at ranges greater than 0.7 fm, intranuclear interactions are
well described by this pion exchange picture [4]. At greater than 2 fm, one-pion exchange
dominates, while two-pion exchange contributions become equal or greater than one-pion

exchanges between 0.8 and 2 fm [3]. Below this, the point-like approximation of the pion

8The convention most-often used in neutrino scattering experiments is to refer to any
sort of scattering on any target (nucleon or nucleus) as an interaction. What I refer to as
interactions here is often referred to as elastic scattering and reactions (inelastic scattering).
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Pion | Quark Content | Charge (e) | Mass (MeV/c )

+1 139.57 +1
—_— 0 134.98 0
-1 139.57 -1

Table 2.3: The pion along with their quark coontent, charge, mass, and the third component
of its isospin.

and nucleons breaks down, and the quark-gluon degrees of freedom become important |3, 18].
In the point-like approximation, the nucleon acts as a source of the pion field, resulting in a
field of the form given by Equation 2.19. Here, and are Pauli isospin and spin operators
and is a coupling constant. This has a striking similarity to the potential from a magnetic

dipole, as shown in Equation 2.20 [3].

— - (2.19)

(2.20)

2.4.1 Pion—Nucleon Scattering

It is important to consider pion—nucleon scattering as a basis for pion—nucleus scattering.
This interaction is purely elastic up to the threshold for the process
at MeV [3]. When viewed in a partial wave analysis, the s- and p-wave (angular
momentum = 0, 1 respectively) contributions to the interaction dominate when compared
to the d- and f-waves ( = 2, 3) [3]. Furthermore, the s-wave interactions are small compared
to the p-wave interactions [32]. The dominant effect in the p-wave component, and thus the

overall interaction, is the resonance appearing around pion kinetic energy MeV.
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This is due to the coupling to the spin 3/2, isospin 3/2 resonance |3, 4, 32]. This

resonance can be seen in Figure 2.8.

nN TOTAL CROSS SECTIONS
amr[mb]
200 - .
150 7
wp
100 .
Tp
50 + .
b5 Ny N:
0 L 1 f 1 1 1 *1 1 113 1
06

08k, [GeV/c]

| L n I 1

Il | |
11 12 13 14 15 16 17
TOTAL ENERGY W [GeV)

Figure 2.8: cross sections as functions of pion lab momentum and center-of-mass
energy  |[3].

Two processes are of particular interest for this thesis: single charge exchange and ab-
sorption. For absorption, additional particles must be involved in the process in order to
conserve energy and momentum. As such, the absorption of pions by singular free nucleons
is forbidden”. This will be discussed in Sections 2.4.2 and 2.4.3. Single charge exchange is

free from this requirement and, for incident |, takes the forms in Equation 2.21. Tt too will

9This is approximately true for bound nucleons as well, as the interaction is suppressed
due to the momentum that must be supplied by the nucleon, which is much larger than the
Fermi momentum [32].
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be discussed in Section 2.4.3.

(2.21)

2.4.2 Pion—Deuteron Scattering

The scattering of pions by deuterons (a proton—neutron bound state) is the simplest extension
of pion—nucleon scattering to multiple-body systems. The total cross section is comprised
of contributions from elastic scattering, inelastic scattering (wherein the deuteron is broken
up), absorption, and pion production at higher energies. The interaction can be well approx-
imated by the sum of the and cross sections, as shown in Figure 2.9. However, the
observed cross section is lower in the resonance region due to a broadening of the resonance
caused by the motion of the nucleons within the deuteron as well as a shadowing effect of
one nucleon by the other [3]. These effects are indicative of the complications that arise in

the nuclear environment.
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Figure 2.9: The total cross section. Black points are data, the dashed line is the sum
of the and cross sections, and the solid line includes effects from nucleon motion

and shadowing as described in the text [3].

As mentioned before, pion absorption on singular nucleons is forbidden, and multiple

nucleons must contribute to the absorption process. As such, the absorption process

23



is prototypical of this interaction in nuclei. It has been determined experimentally that
two-nucleon absorption in nuclei is dominated by absorption on deuteron-like pairs in the

resonance region [4]. The “rescattering” model is an elementary model that gives a
qualitative understanding of the physics of absorption. In this, a scatter on one nucleon
is followed by absorption on the other. The leading terms in this theory are again the s-
and p-wave contributions. The so-called s-wave rescattering consists of the pion undergoing
an s-wave scatter by the first nucleon, followed by p-wave absorption on the second nucleon.
In p-wave rescattering, the pion strikes the first nucleon creating an intermediate  state.
This  then interacts with the second nucleon creating the final dual-nucleon state [3].
Quantitatively, however, this description falls short, and a full three-body framework that
treats absorption on equal footing with other scattering processes has been more

successful in predicting experimental results [3].

2.4.3 Pion—Nucleus Scattering

Similar to the extension of pion scattering from single-nucleon targets to the deuteron, the
extension to the nucleus is complicated by the influence of additional nucleons on the inter-
action. The same basic processes (elastic and quasielastic scattering, single charge exchange,
absorption on more than one nucleon) are present, and the resonance still plays an
important role. However, the dynamics are enriched by the nuclear environment. Recalling
the dipole-like interaction of the pion with the nucleon, the nuclear environment acts as a
polarizable and refractive medium for the pion, in analogy with the scattering of light by
electromagnetic dipoles [3]. The  resonance is also influenced by the medium; its peak

shifts lower and its width broadens as the nuclear mass increases |3, 4.

2.4.3.1 Elastic Scattering

The analogy to light propagation is evident in elastic scattering off nuclei, whereby the

nucleons diffract the incoming pion wave similar to light by atoms in an optically diffractive
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medium [3, 4. Within the resonance region, the imaginary part of the scattering
amplitude becomes large, producing deep minima in the angular distribution of the scatters.
These minima are still present, but become more shallow outside of the resonance region

where the real part of the scattering amplitude becomes larger [3]. This can be seen in

Figure 2.10.
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Figure 2.10: Elastic pion scattering cross sections. a) Diffractive patterns are present within
the resonance region. b) Diffractive patterns are suppressed outside of the resonance re-
gion |3].

2.4.3.2 Inelastic Scattering

As with elastic scattering, inelastic scattering is an extension of the interaction to the
nuclear environment. The difference lies in the transition of the nucleus to excited states.
Two broad regimes exist for this: 1) a low energy transfer region wherein the nucleus is

excited to discrete states 2) a high energy transfer region in which the quasifree

25



interaction dominates [3] and the struck nucleon is knocked out to continuum states [4].
This quasifree process is the leading contribution to the inelastic cross section [3], and is

subject to in-medium effects that shift the location of the quasifree peak as seen in Figure
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Figure 2.11: A collection of data representing spectra of pions relative to outgoing kinetic
energy and lab angles  for inclusive inelastic scattering on various nuclei. The arrows
represent quasifree peaks assuming no in-medium effects applied to the

scattering
amplitude [4].

2.4.3.3 Absorption

As previously stated, absorption is prototypical of absorption within nuclei, due to

the suppression of single nucleon absorption by energy and momentum conservation. For

nuclei with > 2, absorption by quasideuteron pairs ( 0,  pairs) remains the leading

contribution to 2-nucleon absorption [4]. However, the presence of more nucleons influences
the interaction in a few ways. Firstly, direct interactions on multi-nucleon (N > 2) groups
contribute to the cross section.

The absorption of by 3 nucleons becomes significant

even for He targets [4]. These direct absorption processes provide insight into correlations

26



between nucleons, and experiments such as LADS have detailed measurements of —nuclear
absorption relative to outgoing nucleon multiplicities and kinematics [14]. Additionally,
multiple nucleons become involved in the absorption via Initial State Interactions (ISI —
wherein the pion undergoes a quasifree scatter off a single nucleon and is absorbed later) and
Final State Interactions (FSI — wherein the pion is absorbed by a set of nucleons and these
nucleons go on to interact with other nucleons within the nucleus). Data has shown that the
average number of nucleons substantially involved in the absorption process appears to be
considerable and at least somewhat -dependent [4]. The contribution of ISI to multinucleon
absorption of pions in nuclei appears constant relative to  [4], while FSI contributes more
as increases [3]. Additionally, the energy spectra of exiting nucleons is similar to multistep,

cascade processes [3].

2.4.3.4 Single and Double Charge Exchange

—nuclear single charge exchange (the processes shown in Equation 2.21) is an extension of
the quasifree inelastic interaction discussed above, but with a transition of the
nuclear isospin [3]. Charge exchange makes up roughly 10  of the -—nuclear reaction! in the
resonance region [3]. Like the other interactions described so far, the process is complicated
by the nuclear medium. Mainly, double charge exchange ( ) can occur.
Here, two subsequent single charge exchange interactions occur. The outgoing  from the
initial interaction exchanges charge with another nucleon, resulting in a isospin
transition and a flip of the pion’s charge. Double charge exchange is a relatively rare process,

with a cross section roughly 10% of the single charge exchange cross section [3].

10 Absorption + Inelastic + Single Charge Exchange + Double Charge Exchange interac-
tions
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2.4.4 Outlook

As highlighted by this section, pion—nucleus interactions contain complex dynamics. Partic-
ularly in heavy nuclear environments, these interactions become quite complicated. DUNE’s
nuclear target, argon, is no exception to this, and so care must be taken to model these pro-
cesses within DUNE’s experimental simulation. Currently, limited data exists for pion—Ar
interactions, especially the exclusive interactions like absorption (a single measurement [14])
and charge exchange (no measurements). This thesis provides data for these interactions

that can be used to validate and improve the pion interaction model used by DUNE.

28



CHAPTER 3

THE DEEP UNDERGROUND NEUTRINO EXPERIMENT

As discussed in the previous chapter, there are a few questions in neutrino physics that
remain unanswered. The Deep Underground Neutrino Experiment (DUNE) seeks to an-
swer these questions once it begins to take data later this decade. Many experiments have
already made enormous progress in getting us to the point where the answers to these ques-
tions are in reach. These experiments focused on neutrinos produced from several sources:
neutrinos produced in nuclear reactors, neutrinos produced by cosmic ray interactions in
the atmosphere, neutrinos produced within the Sun, and neutrinos produced from particle
accelerators. A global fit to the data from these experiments has been performed to provide
current estimates of the oscillation parameters [1]. These are presented in Table 3.1. Note
that only the normal mass ordering is given here.

Though systematic uncertainties in previous-generation experiments have required great
effort to overcome, the experiments were limited primarily by statistical uncertainty. DUNE

is a next-generation long baseline accelerator-based neutrino oscillation experiment, and

Parameter Best-L'it Range

eV
eV

Table 3.1: Oscillation parameters as determined by the fit to global data in Reference [1].
Only the normal ordering of the mass hierarchy is shown here.

29



will collect enough neutrino events to become limited primarily by systematic uncertainties.
This chapter provides the motivation for the results of this thesis which will be used to meet

DUNE'’s stringent systematic uncertainty requirement.

3.1 DUNE’s Physics Program

The goals of DUNE’s accelerator-based oscillation analyses will be to determine whether
neutrino oscillations violate CP-symmetry, determine the neutrino mass hierarchy, and to
determine precise values of the oscillation parameters. The DUNE Far Detector Technical
Design Report [33] presents sensitivity studies which show DUNE’s ability to achieve these
goals. In these studies, simultaneous fits to , , , and

far detector samples were performed, with near detector samples included in order to
introduce flux and cross section constraints. , , and were all constrained
with uncertainties derived from those shown in Table 3.1, while , , and
were freely varied. More details on the fits can be found in [33].

The sensitivity studies show promise in DUNE’s physics program. For 50% of true

values, DUNE can determine the presence of CP violation at the 5 level after 10
years of its nominal run plan. If (which provides a maximal CP-violating
effect), CP violation can be discovered after only seven years. For any value of , the
mass hierarchy can be determined after only two to three years. This reduces to only
about one year if . After about fifteen years of the nominal run plan, the
resolution on the measurement of approaches for CP-conserving values and
for CP-violating values. After high exposure, the measurement of approaches the
precision of reactor experiments (which currently provide the main constraints on that angle),
and the simultaneous measurement of all oscillation parameters without external constraint

becomes possible.
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3.2 The DUNE Detectors

DUNE seeks to achieve these goals as a long-baseline oscillation experiment, and, as such,
is comprised of two sets of detectors: its far detector (FD) and near detector (ND) complexes.
This is shown in Figure 3.1, which gives an overview of DUNE’s facilities including the
neutrino beam facility and the near detector complex located at Fermilab (Batavia, IL) and

the far detector complex at Sanford Underground Research Facility (Lead, SD).

Sanford Underground

Research Facility Fermilab

goomiles ——  Jg . ESSSEUNE
(1300 \ilometers)

Figure 3.1: Overview of the future DUNE experiment. Toward the right is the neutrino
beam facility and the near detector complex at Fermilab in Batavia, IL. Toward the left

is far detector complex 1300km away at Sanfurd Underground Research Facility in Lead,
SD [5].

The FD complex seeks to measure the number and flavor of neutrinos after they have had
a chance to oscillate after traveling some distance. By measuring the rates at the FD, the
oscillation probabilities (and more specifically, the parameters describing these probabilities)
are probed directly. The ND, on the other hand, provides constraints on flux and neutrino
cross section uncertainties within the models used for the oscillation analyses.

The planned DUNE FD will be comprised of four modules. Two of the modules (including
the first to be installed) will be 10kt active volume single-phase (SP) Liquid Argon Time
Projection Chambers (LArTPCs). This detector technology is the same as ProtoDUNE-SP
and will be explained in detail in Chapter 4. One other module will be a dual-phase LArTPC

(which is slightly different to the SP technology, but will not be explored here), while the
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final module’s design is still to be determined. One common trait between all four modules
is that their sensitive volumes will be 10kt of liquid argon. This argon will serve as both the
target and detection medium for DUNE’s neutrino beam.

The DUNE ND complex will be comprised of multiple detector subsystems. Included in
these subsystems is a set of small, modular LArTPCs known as ArgonCube. It is necessary to
have a portion of the near detector’s target be argon in order to cancel neutrino interaction
model uncertainties between the near and far detectors. This part of the detector will
also be allowed to move lateral to the incident neutrino beam. Because the far detector
is located at an angle of 0 with respect to the beam direction (it is “on-axis”), gathering
data “off-axis” provides independent measurements of the neutrino beam. This off-axis data
reduces systematic uncertainties surrounding the neutrino beam model. Other subsystems
in the ND complex include a gaseous argon TPC downstream of the LArTPC portion (to
help measure muons which punch through the back of the LArTPC), a fine-grained plastic
scintillator detector (which remains on-axis to monitor the stability of the beam), and an
electromagnetic calorimeter surrounding the previous two subsystems (which will assist in

measuring all of the final state energy within the neutrino interactions).

3.3 The Role of Pion Interaction Systematic Uncertainties

To precisely measure the oscillation parameters, DUNE will attempt to discern the flavor
and energy of the neutrinos interacting within the detector. Equation 2.10 (repeated here),
shows the importance of successfully determining these quantities. Misidentification of the
flavor will of course change the overall interaction rates of the various neutrino flavors, thus
the extracted oscillation probability. Misestimation of the energy will change where in the

energy distribution of interactions an event lies, thus distorting the energy spectrum of
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events, and further distorting the apparent oscillation probability.

Re — (2.10)

Both of these quantities are inferred from the final state particles resulting from the inter-
action. Figure 3.2 shows an example  interaction with multiple hadrons in the final state

highlighting how complicated the final state of the interaction can be.

Figure 3.2: Cartoon of a  interaction with multiple hadrons in the final state [6].

For determining the flavor, reconstruction software attempts to identify the outgoing
leptons from CC interactions (  and  from muon and electron neutrinos respectively).
Specifically for  CC events, the  will produce an electromagnetic shower at the interaction
vertex. A background to this interaction is a ~ NC interaction with a in the final state.
This can potentially strike a nearby Ar nucleus and create a in a charge exchange
interaction. This  will promptly decay into two photons which will shower similarly to the

. This could cause this event to be wrongly selected as a ~ CC event. Corrections for

this type of background is taken from simulation, and any uncertainty on the rate of  -Ar
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charge exchange interactions will translate to an uncertainty on the true number of  events
(and thus limit the precision of the oscillation measurements).

Similarly, smearing between true and reconstructed neutrino energy will be influenced on
the modeling of interactions. In DUNE, the neutrino energy is estimated by the energy
of the final state particles using a calorimetric energy reconstruction given in Equation 3.1.

Nucleon

Here, is the energy of the outgoing lepton, is the kinetic energy of any final
state protons or neutrons, and is the total energy of pions in the final state!. The rest
mass of any pion must be included since some of the incident neutrino energy must be used
to produce the pion. A in the final state could undergo an absorption interaction on a
nearby nucleus and produce a proton. The reconstruction software could fail to identify that
there was a pion in the final state and the rest mass of the pion could be lost in Equation 3.1.

Again, simulation is used to account for this type of effect (and similar other effects), and any

uncertainty in the rate of  -Ar absorption limits the resolution of oscillation measurements.

Reco Nucleon ( 3. 1)

These two examples are not an exhaustive list of regions where uncertainty on the rates
of these interactions will add to DUNE’s total systematic uncertainty. Rather, they are
illustrative of the goal of the analysis presented in this thesis. Measurements of these inter-
action cross sections will provide constraints within DUNE’s oscillation analyses, and will
reduce DUNE’s systematic uncertainty. This is an important task, as DUNE’s systematic
uncertainty budget is limited to 2% in order to achieve the physics goals laid out in this
chapter [33]. An example of how pion scattering data can be used for the benefit of neutrino
experiments is given by T2K’s use of world scattering data to constrain the nuclear model

used within their neutrino interaction simulation [34].

1Other particles such as kaons have been ignored for this example, but, in general, could
be present in the final state.
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CHAPTER 4

THE PROTODUNE-SP DETECTOR

Currently, the single-phase ProtoDUNE detector (ProtoDUNE-SP) is the world’s largest
active Liquid Argon Time Projection Chamber (LAYTPC). This detector, located in CERN’s
North Area, is designed to be a prototype of DUNE’s single phase far detector. Detector
installation and integration began in 2017 and finished Summer 2018. This was followed by
a commissioning phase (including its charged particle beam line commissioning) in the late
Summer & early Fall of 2018. After commissioning, cosmic ray data and beam line data
was taken up to the CERN long shut down!. Since then, cosmic ray data-taking has been
ongoing.

Section 4.1 describes the general operation principles of LArTPCs. Section 4.2 describes
the specific design of ProtoDUNE-SP. Section 4.3 provides a description of the characteri-
zation of data taken by the TPC. Section 4.4 describes the reconstruction of events in the
TPC. Section 4.5 highlights the calibration of the detector. Finally, Section 4.6 describes
the Monte Carlo simulation of events within the detector. The beam line will be described

separately in Chapter 5.

4.1 LArTPC Principles

The detection principles of LArTPCs are based on the detection of ionization electrons
and scintillation light produced by charged particles passing through the liquid argon (LAr).
The argon sits between a set of anode wires and a cathode, which create a (nominally)
uniform electric field. The ionization electrons drift along the electric field toward the anode
wires. These wires are instrumented with electronics and detect signals produced by the

drifting ionization. A configuration can be achieved such that several planes of wires can

1During this time, the Super Proton Synchrotron, from which the ProtoDUNE-SP beam
line originates, was shut down to allow for upgrades.
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measure the ionization. In such a configuration, two wire planes sit in front of a third. The
electric field lines terminate on the third plane, meaning the drifting electrons ultimately
deposit onto this wire. Thus this plane is called the “collection plane.” Before collection,
the electrons drift past the two other “induction planes.” Bipolar signals are induced on
these planes as the electrons drift first toward and then away from these wires on their way
toward the collection plane. If these are oriented in different directions to the collection
plane, the combination of signals provide a 2D projection of the charged particle’s position
as it traversed the LAr. The third dimension is given by the time which the ionization took
to finish drifting. As the drift velocity is constant and known from the electric field, one can

measure the initial position as:

drift  drift drift (4.1)

where is the lateral position of the track, is the readout time, is the time at the
start of charge drift, and g, 1s the known drift velocity. These principles are shown in
Figure 4.1. This shows a neutrino interaction producing two charged particles. These go on
to ionize the LAr, and the ionization electrons drift against the electric field created by the
anode wires and cathode plane. Signals are produced on the wires: the plane labeled ‘V’
shows bipolar signals created by induction; the plane labeled ‘Y’ shows unipolar collection
signals.

By ionizing the LAr as it travels through the TPC, the charged particle loses energy.
Thus, by measuring the amount of ionization (the size of the signals produced on the wires),
one can measure the energy lost by the particle during its traversal of the LAr. This allows
LArTPCs to provide calorimetric energy measurements of the particles it detects. The
ProtoDUNE-SP event display shown in Figure 4.2 highlights this capability. In this, a beam
particle enters the TPC from the left of the figure. It travels through the LAr until it
undergoes an interaction with an Ar nucleus, producing two visible particle tracks. The

strength of the signals is shown by the color of the tracks. The incident beam particle
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Figure 4.1: Design and operating principles of a LArTPC|7].
is a beam candidate, and deposits considerably less energy per unit distance than the

products of its interaction.
Detecting the deposited energy provides Particle Identification (PID) of the charged
particles because the mean rate of energy loss is well described by the Bethe formula[35]

shown in Equation 4.2.

- —— _In — (4.2)

Here, is the charge number of the incident particle, and are the atomic number and
mass of the material through which the particle is traveling, and is the mean excitation
of the material. where is Avogadro’s number, and and  are

the mass and classical radius of the electron. is the maximum energy transfer to an
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Figure 4.2: ProtoDUNE-SP event display showing a candidate beam entering from the
left and undergoing an interaction with an Ar nucleus.

atomic electron for a single collision by a particle of mass  and is given by Equation 4.3.

(4.3)

In Equation 4.2, the main dependence on the incident particles comes from the factor
[35]. For particles at the same energy, heavier particles will have a smaller —and thus
will deposit a larger amount of energy per unit length. PID can be performed on particles
by observing how much energy they deposited along their travel through the LAr. Thus, the
products of the interaction in Figure 4.2 appear to be protons, making this event a candidate
for absorption. The exact technique used in this analysis to separate from protons
will be described in Chapter 7.
In addition to ionization, the charged particles create scintillation light by the excitation
and subsequent radiative decay of argon excimers. Scintillation light from LAr is produced

isotropically in a narrow band around 128 nm and has a large yield of 24,000 photons per
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MeV deposited at a drift field of 500 V/cm (ProtoDUNE-SP’s operating drift field value)[10].
It is produced in both a fast ( 5ns) and slow ( 1.3 - 1.4 s) component at a ratio of 1:3[10].
The LAr is transparent to its own scintillation light|7], allowing photon detectors within the
LAr to collect the light produced by the charged particles. This provides important timing
and triggering capabilities for neutrino experiments.

This section provided an overview of LArTPC detection principles. However, certain com-
plications arise in normal operating situations. The next subsections will provide overviews
of the following effects in LArTPCs which modify this simple interpretation of tracking:
recombination of ionization electrons(4.1.1); attenuation of ionization electrons due to LAr
impurities (4.1.2); the Space Charge Effect created by the accumulation of positive Ar in the
bulk of the LAr(4.1.3).

4.1.1 Recombination

Recombination is the effect by which ionized electrons thermalize with the Ar and then
quickly attach to the positive Ar  ions created by the charged particle. This modifies the
charge observed by the wires and must be accounted for in calibration in order to accurately
measure the energy deposited by charged particles. There has been limited progress in
theoretical treatments of recombination to provide a global description of data [36]. The
preferred models for LArTPCs with similar electric fields to ProtoDUNE-SP are the Birks
and Box models. Both models are based off of the principal recombination effect arising from
ionization electrons attaching to other Ar  ions created by the charged particle (as opposed
to reattaching to its original atom) and both depend on the electric field. These models differ
in that the Box model neglects electron diffusion and ion mobility during recombination and
uses “Box model” boundary conditions rather than Birks’ cylindrical assumptions of the
initial ionization volume [36]. The ICARUS experiment found good agreement to fits of the
Birks model [37], while ArgoNeuT achieved good agreement with a “modified Box model” [36]

which enabled another empirical parameter to vary in order to achieve agreement to the Birks
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model at low [36]. ProtoDUNE-SP also adopted this modified Box model.

4.1.2 Ionization Attenuation

Impurities in the LAr, such as water and O , can capture ionization electrons as they drift
toward the anode plane. This reduces the final amount of collected charge, and is simply
modeled as an exponential decay as in Equation 4.4. Here, is the collected charge, is
the initial charge deposited, is the drift time, and is the “drift electron lifetime.” This

lifetime is lowered by the presence of impurities.

(4.4)

4.1.3 Space Charge Effect

The Ar  ions created by the charged particles drift toward the cathode, but at a much
slower velocity. As such, if enough positive ions are created, positive charge can build up
in the bulk of the LArTPC. This accumulated charge can distort the electric fields, causing
the so-called Space Charge Effect (SCE). This is especially the case for LArTPCs on Earth’s
surface such as ProtoDUNE-SP. These surface detectors are subject to a large cosmic ray
flux, which constantly replenishes the positive charge. This large accumulation of charge
causes the field lines to bend toward the center of the TPC, resulting in distorted particle
tracks. Through modifying the electric field, the SCE also changes recombination. The
specifics of SCE in ProtoDUNE-SP will be discussed in Section 4.5.1.

4.2 The ProtoDUNE-SP Detector

With a total of 770 tons of LAr (420 tons are within the instrumented volume), ProtoDUNE-
SP is the largest LArTPC ever constructed [10]. It provided a test bed for many components
and engineering challenges of the single phase technology that will comprise the first DUNE

far detector. It was designed to satisfy stringent requirements and achieve improved levels
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of LArTPC performance required by DUNE, and it surpassed these in many cases [10]. This
section describes the design of the ProtoDUNE-SP components including the following: the
cryostat surrounding the TPC and the LAr purification system (4.2.1); the TPC compo-
nents (4.2.2); the Cold Electronics (CE) used to readout the TPC signals (4.2.3); the photon
detector system used to readout scintillation light (4.2.4); the cosmic ray tagger (4.2.5); the
Data Acquisition (DAQ), timing, and triggering systems (4.2.6). The detector will be de-
scribed in terms of a right-handed coordinate system with y as the vertical axis pointing up,
z horizontal and pointing approximately along the beam axis, and z horizontal and pointing

along the electric field.

4.2.1 Cryostat and Purification

The cryostat, cryogenics, and purification system serve the role of keeping the argon in
a liquid state with as few impurities as possible in order to avoid signal attenuation as
described in Section 4.1.2. The TPC is encased in a membrane cryostat, which is formed of a
corrugated membrane that holds the liquid and gaseous (from boil-off) argon with insulation,
fireproofing, and supports outside of this [38]. The internal dimensions are 8.5m x 7.9m x
8.5m, making this the largest LAr cryostat ever constructed [10]. The membrane contains
several openings to allow installation of detector elements, electrical /signal feedthroughs, the
support structure for the TPC (which is suspended within the membrane), and cryogenic
systems |[8].

Due to ProtoDUNE-SP’s large drift distance (3.6m), a high purity of LAr had to be
achieved in order to limit the attenuation of ionization during drift. The purification sys-
tems used for ProtoDUNE-SP were inspired by those developed for ICARUS, MicroBooNE
(another LArTPC neutrino experiment at Fermilab), and a LAr purity demonstrator based
at Fermilab [10]. This purification system is the largest to date, and, along with the rate of
recirculation and avoidance of leaks in the cryostat, reached an equivalent oxygen contam-

ination of a few parts per trillion (ppt) [10]. This is in line with DUNE’s requirement for
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<100 ppt contamination in its single phase far detector [39].

4.2.2 TPC

The TPC of ProtoDUNE-SP is an active volume of 7.2m x 6.0m x 6.9m separated by a
cathode at into two drift volumes each of drift distance 3.6m and a drift field of
500 V/cm. The cathode is formed of six Cathode Plane Assemblies (CPAs) biased at -180
kV. Each side contains three Anode Plane Assemblies (APAs) opposite the cathode which
contain the instrumentation wires and CE used to readout the wires. Surrounding the top
and bottom and sides parallel to the drift field is the Field Cage (FC) that provides (in
addition to the APAs and CPAs) electrostatic boundary conditions to achieve the intended
drift field. Penetrating into the drift volume (henceforth called the “beam side”) is the
Beam Plug which minimizes the energy loss and interactions of beam particles with inactive

material. This layout is shown in Figure 4.3.
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Figure 4.3: Diagram of the ProtoDUNE-SP TPC components [8].

The CPAs are 1.15m wide and 6.1m and consist of three vertically stacked cathode panels.
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In order to avoid an electrical breakdown of the TPC which could destroy the CE, the CPAs
are constructed of heavily resistive materials which give them a very long discharge time. The
panels are constructed from a fire-retardant fiberglass-epoxy composite and are laminated
on both sides with a Kapton film [10].

The APAs are formed of a rectangular stainless steel frame 6.1m high, 2.3m wide, and
76mm thick. Bonded directly over each side of the frame is a bronze wire mesh with 85%
optical transparency that provides a grounded shield plane for four sets of wires on each side
of the frame. Each successive wire plane is 4.75mm above the previous, with the innermost
plane also 4.75mm above the mesh. The innermost plane is the X plane and is oriented
vertically. Above the X plane is the V layer oriented at -35.7 from vertical, proceeded
by the U plane oriented at +35.7 from vertical. Finally, the Grid (G) plane lies above
the U plane and is oriented vertically. The G plane serves as a protective shield against
electrostatic discharge and is not read out. The rest of the wires are connected to front-end
CE and serve as the main instrumentation wires. The voltages of the wire planes ( g
V, v V, v V, x V) are chosen such that the field lines terminate
on the X plane, thus designating the X plane as the collection plane. The V and U planes
are thus the induction planes. The X and G planes both have a wire pitch of 4.79mm, but
are staggered from each other by half a wire pitch (meaning the G plane wires sit above
and between two X plane wires). The V and U planes both have a wire pitch of 4.67mm.
Each side has separate X and G planes, while the V and U planes are wrapped once around
the APA. The angle of the V and U planes is such that 1) each wire crosses only a given
collection wire on each side only once and 2) an integral number of CE boards reads out
one APA. The first point serves to reduce ambiguities in track reconstruction. A diagram
of an APA with a limited number of wires displayed is shown in Figure 4.4. Additionally,
electron diverters were installed between the APAs on the beam. These were formed of two
vertical electrode strips mounted on insulating board that, with voltages applied between

the electrodes, modified the local drift field such that electrons drifted away from the gaps
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and toward the active area. During operation, high currents were drawn from the diverters’
power supplies due to electrical shorts in the cold volume. They were therefore left unpowered
during operation, and, due to a resistive path to ground, the outer electrode was grounded.
This was not the intended voltage, as it then collected charge near the gaps between APAs

and distorted tracks crossing between APAs [10].

6.324 m

2.316 m

Figure 4.4: Diagram of an APA with its wire planes labeled. The bronze wire mesh is not
shown. As it is shown, it is oriented on its side. The right side of the figure is the top of the
APA when it is oriented vertically. The connections to the front-end CE boxes can be seen
on the right side [8].

The Field Cage covers the remaining four sides of the drift volumes not covered by the
APAs or cathode plane. It provides the remaining electrostatic boundary conditions to
create uniform electric fields in the drift volumes. The top and bottom are comprised of six
FC assemblies each, while four end wall panels each consisting of four assemblies oriented
parallel to the direction (the nominal drift direction). The assemblies are made of parallel
metal profiles connected to each other by a resistive divider chain to provide the voltage
gradient, I-beams that form an insulating support structure, and ground planes for the top
and bottom assemblies. The ground planes prevent (at the top) a high electric field entering
the gaseous argon and (at the bottom) a high electric field reaching the cryostat floor and
cryogenic services [8].

On the beam side FC wall closest to the beam ( ), a beam plug is installed. This
plug displaces the LAr and reduces the mass through which the beam particles must travel
before reaching the TPC. This then reduces the energy loss and interactions upstream of

the active volume. It is formed of a series of alternating fiberglass and stainless steel rings,
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forming a cylinder capped by low mass fiberglass plates. It extends about 5 cm inside the
field cage boundary. A printed circuit board acting as a mini field cage covers the inside face
of the plug in order to reduce drift field distortions. It is filled with nitrogen at a pressure of
1.3 bar to balance against the hydrostatic pressure of LAr at its positioned height. The beam
plug can be seen on the right side of Figure 4.3. In addition to the beam plug, the cryostat

warm structure and insulation are modified to further reduce upstream interactions [10].

4.2.3 Cold Electronics

Each APA has a total of 2560 sense wires, resulting in a total of 15,360 channels to be
read out. 20 Front End Mother Boards (FEMBs) are located directly on top of each APA
and within the LAr to read out the sense wires. By being placed close to the wires, the
capacitance of each channel is reduced, thus reducing the noise recorded by the electronics.
The CE collect the signals from the APA wires, then amplify, shape, and digitize them
before transmitting them to Warm Interface Boards (WIBs). These interface electronics
then handle transmitting these signals to the DAQ.

The FEMBs consist of an analog motherboard containing eight 16-channel analog Front-
End (FE) ASICs that provide the amplification and shaping of the signals, and eight 16-
channel Analog to Digital Converter (ADC) ASICs. These ASICs are both custom circuits
designed by Brookhaven National Laboratory (BNL) [9]. In addition to the analog mother-
board is a mezzanine card containing a commercial Altera Cyclone IV FPGA which provides
clock and control signals to the two sets of ASICs. The FEMB layout can be seen in Figure
4.5.

The FE ASICs provided amplification with a programmable gain of 4.7, 7.8, 14, and 25
mV /fC and a 5th-order anti-aliasing shaper with programmable peaking time of 0.5, 1, 2, and
3 s. It also included options for enabling AC coupling, selectable baseline adjustment for
operating at 200 mV for unipolar pulses on the collection plane or 900mV for bipolar pulses on

the induction planes, and a selectable pre-amplified leakage current of either 100, 500, 1000,
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Figure 4.5: Diagram of the Cold Electronics in ProtoDUNE-SP [9].

or 5000 pA [9]. These ASICs also contained an internal, programmable pulse generator for
electronics calibration. At normal running conditions, the FE ASIC gain is set to 14 mV /fC
and the peaking time is set to 2 s for all channels [10]. At cryogenic temperature, the
FE ASIC packaging puts stress on the ASIC chip causing a channel dependent non-uniform
lowering by up to 150 mV of the 200 mV collection mode baseline [9]. In addition to this,
large input charge caused the FE ASICs to saturate. Due to this, the baselines for both
collection and induction plane channels were set to 900 mV [10].

The ADC ASICs have 16 12-bit digitizers operating at speeds up to 2 MHz and an 8:1
multiplexing stage resulting in a pair of parallel serial readout lines that send output signals
to the FPGA. At cryogenic temperature, the ADC ASIC suffered from an issue caused by
failures in transistor matching. This effect is hard to simulate at LAr temperatures and is
not present at room temperature. The mismatch between transistors affected the transition
between the six most significant bits and six least significant bits in the ADC’s “domino”
architecture, causing the ADC output to prefer 0 and multiples of 63 in the dynamic range
of the ADC [9]. This issue, referred to as “sticky codes,” was corrected for after data-taking
and will be further discussed in Section 4.3.

The signals from the ADC ASICs are collected by the FEMB’s FPGA, which further
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serializes the 16 pairs of data streams into four 1.25 Gbps links to the WIBs. The FPGA also
provides a calibration pulse to the FE ASICs as a cross-check for electronics calibration [9].

The WIBs serve as the interface between the CE and DAQ, and are each controlled by
an Altera Arria V GT FPGA. Data cables from all FEMBs on a given APA feed through
a signal flange to a Warm Interface Electronics Crate (WIEC). The WIECs each contain
one Power and Timing Card (PTC) which is connected to both a 48 V power supply and
the detector timing system via a bidirectional fiber optical link. The PTC is connected
to a Power and Timing Backplane (PTB) also housed in the WIEC. The PTB steps down
the power and then fans out the power and clock signals from the PTC to five WIBs also
contained in the WIEC. Each WIB distributes power to and controls up to 4 FEMBs. The
WIB FPGA reorganizes and transmits FEMB data over fiber optical links to the DAQ. It
also includes a real-time digital diagnostic readout on a Gb Ethernet link and an on-board
component that can provide independent clocking to the FEMBs. These two components
allowed for installation and checkout tests to be performed on the FEMBs before they were

connected to the timing system and DAQ [9].

4.2.4 Photon Detectors

To collect scintillation light produced by charged particles in the LAr, 10 bar-shaped photon
detectors 8.6 cm in height, 2.2 m in length, and 0.6 cm thick were embedded in each APA
frame. Three different designs of photon detection technology were used in order to test
options for use in DUNE’s far detector modules. In each, the 128 nm scintillation photons
were converted into visible light using wavelength shifters. This visible light is trapped within

the photon detectors and eventually collected by an array of silicon photomultipliers [10].

4.2.5 Cosmic Ray Tagger

Located upstream and downstream (relative to /beam direction) of the ProtoDUNE-SP

cryostat is a cosmic ray tagger (CRT) used to provide triggers from cosmogenic muons. The
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CRT is formed of scintillation counters recycled from the outer veto of the Double Chooz
experiment that coarsely measure the and position of cosmic muons which pass through
it. Coincidence hits registered upstream and downstream of the detector can be used to
form tracks that can then be matched to reconstructed tracks in the TPC and provide

calibration [10].

4.2.6 Data Acquisition, Timing, Triggering

The DAQ reads in data from the TPC, photon detectors, and CRT. Two readout solutions
were employed for the TPC as tests for the DUNE far detector readout: RCE [40] and
FELIX [41]. During the beam run, one APA (located on the side) used FELIX, while
the other 5 APAs used RCE. artDAQ [42] was used as the software framework that controlled
the data-flow including event building, configuration, and writing of data to disk [10].

The timing system provides a 50 MHz clock to all subsystems of the detector. It also
serves to distribute triggers created by the Central Trigger Board (CTB). The CTB is a hard-
ware triggering system that forms trigger words based on the status of individual subsystems
(CRT, photon detectors, beam instrumentation). These words are sent to the timing system
which ultimately makes the readout decisions. Various trigger conditions can be created by
creating requirements of subsystem statuses (active vs. inactive). When these requirements
are met, the CTB sends off its trigger words to the timing system, which then determines if
an event should be formed. If so, it issues the trigger to the DAQ and the various readout
systems [10]. Importantly, the CTB can create beam-on and beam-off triggers based on
whether the beam instrumentation recorded a particle passing through the beam line. This
way, TPC events containing a beam particle can be easily identified and used for analysis.

Each triggered readout of the detector, also known as an “event,” consists of 3ms of data
taking: 6000 consecutive samples taken at a rate of 2MHz from each ADC. The event is built
from data taken in by the DAQ starting 250 s before the trigger time. This collects signals

from charge deposited in the detector before the trigger, but that arrive within the time
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of the event. Coinciding data from the photon detectors and CRT are saved in the output
stream as well, and matching in time to beam instrumentation (which will be described in

Chapter 5) is done after data taking.

4.3 TPC Characterization

Before performing analysis, several data preparation steps are required to convert the
waveforms in units of ADC to units of charge, as well as to mitigate readout issues. The first
step is to determine the pedestal of each channel, as voltage offsets are introduced at the
input of the front end amplifiers and these vary on a channel-by-channel basis. Additionally,
for a given channel, the pedestal varies from one TPC event to the next. As such, the
pedestal is evaluated separately for each channel and each event [10]. The pedestals are
determined by finding the mean of all (typically) 6000 samples in an event for each channel.

For each channel in the event, its pedestal is subtracted from all ADC samples in the
waveform. This difference is then multiplied by the channel’s gain. This gain is determined
by using the 6-bit Digital to Analog Converter(DAC) included in the FE ASIC to inject a
known amount of charge . For the collection plane, the integral of the ADC signal over the
pulse is related to the input charge as 2 Special runs were taken where the DAC
injected known amounts of charge. For each charge setting, the mean of the ADC integral
of the resulting waveforms were determined. A line constrained to pass through 0 was fit to
a set of these mean values near charge inputs typical to operation (up to several overlapping
Minimum Ionizing Particles). The slope of this line is proportional to for that channel [10].
Figure 4.6 shows an example of this.

In addition to the gain calibration, readout issues are identified and mitigated. The
first readout issue is the aforementioned sticky codes issue. ADC values subject to sticking

as well as the channels which exhibit the issue were initially identified by scanning a few

2The relationship between the drifting charge and the signal created on the wires is more
complicated for the induction planes, but is also proportional to the gain as defined in this
section[10].
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Figure 4.6: Example of gain determination for one channel in PDSP. The slope of the line
divided by the charge level of each DAC step (Qs = 3.43fC = .4 ke) gives the gain of the
channel [10].

waveforms and the pedestal histograms for every channel. The channels with particularly
prevalent sticky codes are identified, and the list of known sticky codes is used to mitigate the
issue in less problematic channels. The mitigation works on these channels known to exhibit
sticky code issues by replacing any ADC sample at a sticky code with a value taken from
interpolation between the nearest non-sticky neighbors [10]. An example of this is shown in

Figure 4.7.
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Figure 4.7: Example of ADC waveform before (top) and after (bottom) pedestal subtraction
and sticky code mitigation. The spikes are samples which have stuck to the code represented
by the upper horizontal dashed line. They are removed and replaced by interpolating to the
nearest non-sticky neighbors [10].

In addition to the sticky code mitigation, preparations to remove tails resulting from AC

coupling in the CE and correlated noise are also performed [10]. A final characterization
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step is also performed to determine the amount of charge arriving on (for collection wires) or
passing by (for induction wires) at specific times. This signal processing step is described in
detail in Reference |10] and is crucial to creating charge (rather than raw signal) waveforms

that can be used within event reconstruction

4.4 Event Reconstruction

After events are recorded, and an amount of data preparation is performed (described
previously in Section 4.3), reconstruction software builds up a description of what happened
during the event. This is done in a two step process: 1) hit finding, which identifies local-
ized charge deposits on wires and 2) pattern recognition, which separates collections of hits
into objects representing particle tracks and showers, and which also attempts to associate
particles together in a hierarchy representing a series of interactions.

Ideally, charge depositions on the wires should form (possibly overlapping) Gaussian-
shaped signals when read out by the electronics. Thus, a hit-finding algorithm attempts to
identify these separate depositions of charge by fitting Gaussian peaks to the waveform in
a given wire. Each Gaussian peak thus represents one reconstructed hit or, in other terms,
a localized deposition of charge in the detector. An example of this is given in Figure 4.8,
where three hits have been reconstructed to the shown waveform.

Because induction wires are wrapped around the APA, charge on either side of the APA
can create a signal on a given wire. Thus, a disambiguation must be performed to determine
which side of the APA the signal came from. Collections of wires from each plane are formed
by identifying signals that arrived within a narrow time window. Sometimes, multiple pairs
of induction wires can be matched to the collection plane. To determine which ones were
truly paired, the algorithm attempts to minimize the difference in charge between that on the
collection plane wire and on the induction plane wires. Simulation shows that this assigns
>99% of hits to correct wire segments [10].

The second part of reconstruction is pattern recognition, which is performed by the Pan-
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Figure 4.8: Example of three hits reconstructed to a single wire’s waveform [10].

dora framework |43]. This software has been successfully used in other LArTPC experiments
such as MicroBooNE [44]. The first step in the pattern recognition is to preform two dimen-
sional clustering of the reconstructed hits in each view. It then attempts to match sets of
2D clusters between the views, with care taken to resolve ambiguities. Afterwards, 3D hits
are created. Then, in order to provide a detailed description of events, particle interaction
hierarchies are created. Pandora then attempts to pick out particles originating from the
beam line. All clusters are reconstructed first under a cosmic ray hypothesis. Clear cosmic
ray candidates are then identified and removed. After these cosmic particles are removed,
Pandora attempts to divide the detector into 3D regions containing all hits produced by a
given particle interaction. These regions could contain cosmic rays that were not previously
identified as such or particles that originated from the beam. Parallel reconstruction chains
(one for cosmic rays and the other for test-beam particles) are then performed on these
detector regions. The reconstruction for the beam particles is intended to resolve intricate
hierarchies of particles such as from hadronic interactions or decays. After the dual recon-
struction is performed, a boosted-decision-tree algorithm tries to identify which region (if
any) originated from the incoming beam [10]. The full reconstructed hierarchy (links between

parent and child particles) in the beam region is made available for analysis. Further pat-
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tern recognition tries to identify whether the reconstructed particles were track-like (such as
pions, protons, muons) or shower-like (electromagnetic showers from electrons or photons).
Reconstructed track and shower objects are created for the corresponding particles. These
provide information such as track length or shower direction (depending on the object) to

users.

4.4.1 Hit Classification Using Machine Learning

In addition to the track/shower discrimination from Pandora, a machine learning-based clas-
sification was developed. A convolutional neural network (CNN) was trained to classify hits
into track-like, shower-like, empty, or Michel-like categories. The track-like category repre-
sents hits coming from particles like pions and muons, the shower-like category represents
hits from electron or photon showers, and the empty category represents hits resulting from
noise. The Michel-like category is used to identify electrons which originate from the decay
of muons in the LAr, and which do not have enough energy to create showers. The output of
the network is a set of scores representing how similar to each category the hit appears. The
Michel-like category can overlap with the track-like and shower-like categories, and was not
used for this analysis. The other three category scores are constrained to sum to one such
that the hit can be classified as only one of these categories (that with the highest score).
The network uses as input 48x48 pixel images created from wire readout data with the
hit in question at the center. Each pixel is filled with the ADC value from the readout
data. One axis of the image represents the wire which recorded the hit, while the other
axis is the time coordinate (which has been downsampled by taking an average over time
samples). The readout data used as input has been prepared according to the procedure
described in 4.3. MC simulation was used to train the network by identifying whether the
hit was due to charge deposited by a particle (or was created by noise) and what type
of particle created the hit. Further information on network architecture and training can

be found in Reference [45]. The analysis presented in this thesis utilized the CNN scores
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as an alternate track/shower discrimination technique. Scores for the full reconstructed
particle were calculated by averaging over all hits in the particle. Cuts can be placed on
these average scores to categorize full particles as tracks or showers. The use of this hit

categorization within this analysis is described further in Chapter 6

4.5 Detector Calibration

In order to conduct useful physics analyses such as the measurement presented here, the
relationship between deposited energy in the detector and the response of the detector must
be determined. Several effects that must be taken into account have already been described
in Sections 4.1.3, 4.1.1, and 4.1.2. This section serves to describe the procedures taken to

calibrate for these effects.

4.5.1 Space Charge Effect in ProtoDUNE-SP

As previously described, the steady flux of cosmic rays produces a buildup of charge from the
slowly drifting Ar  ions produced by ionization. This so-called Space Charge Effect leads
to persistent distortions of the drift field. These alter the drift paths of ionization electrons
and also affect the amount of prompt charge recombination, resulting in spacial distortions
of reconstructed tracks and modified reconstructed of tracks. The spatial distortions
of reconstructed tracks is evident in Figure 4.9, where the end points of cathode-crossing
cosmic rays are pulled inward from the edges of the detector (the dashed lines).

Figure 4.10 shows the distortions normal to four of the detector faces for events piercing
the respective face within data events. The color axis of the plots represents the shift
in position perpendicular to respective face of the detector (i.e. the top-left plot shows
the change in  in bins of reconstructed and ). These provide the magnitude of spatial
distortions at these points of the detector in data events. A simulation of SCE was developed
for ProtoDUNE-SP. This is shown in Figure 4.11, which is analogous to Figure 4.10. Data-

MC discrepancies can be seen here that possibly stem from incorrect values of the Ar  drift
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Figure 4.9: Projection of reconstructed track end points from cathode-crossing cosmic ray
muons. Cathode-crossing tracks will have one end point at the cathode (z = 0) and one at
the wall through which it entered. The presence of SCE causes the end points to deviate
from the boundaries of the TPC volumes represented by the dashed lines [10].

velocity (amounting to a different amount of accumulated charge) and/or unsimulated flow
of the liquid argon.

In order to overcome the inability of the simulation to reproduce the SCE seen in data, a
data-driven simulation of space charge was implemented. This consisted of creating a set of
both spatial and electric field distortion maps to modify the nominal simulated distortions.
These maps can also be used to correct for SCE in both data and MC by recovering the
original positions and also accounting for the modified electric field. These are created as

follows:

1. The ratio of the data to the simulated map is taken for each of the relevant faces of

the detector. This produces a 2D map of scale factors at each of these faces.

2. Spatial distortions in the y-direction are calculated by linearly interpolating the scale
factor maps between the top and bottom faces. The same is done for z-direction dis-
tortions by interpolating the scale factor maps between the upstream and downstream

faces. The x-direction distortions are then taken as the average between the distortions
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Data: Top Face * Y [cm] Data: Bottom Face * Y [cm]
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Figure 4.10: Spatial distortions normal to four detector faces from data events. Top: up-
stream & downstream relative to the z-direction. Bottom: Upper & lower faces relative to
the y-direction. The reconstructed location of the end points of cathode-crossing tracks that
pierce through the respective face show the distortions perpendicular to that face at the
reconstructed 2D location [10].

in y and z. This creates a 3D map with scale factors in all three directions. These are

used to rescale the magnitudes of the spatial distortions maps.

3. The resulting distortions in each 3D map are then reversed in order to form maps that
can be used to correct for the spatial distortions in both data and MC. The correction

repositions the reconstructed ionization charge depositions to their original locations.

4. The gradient of the spatial distortion along the local drift direction (determined from
the reversed maps) and the known drift velocity are used to form 3D electric field

distortion maps.

These data-driven maps are used to modify the reconstructed position of ionization charge

in simulation as well as to improve the prediction of prompt recombination effects [10].
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Figure 4.11: Spatial distortions normal to four detector faces from MC events. Top: upstream
& downstream relative to the z-direction. Bottom: Upper & lower faces relative to the y-
direction. The reconstructed location of the end points of cathode-crossing tracks that
pierce through the respective face show the distortions perpendicular to that face at the
reconstructed 2D location [10].

4.5.2 Electron Lifetime

As discussed in Section 4.1.2, impurities in the liquid argon can capture drifting electrons
before they reach the instrumentation wires. This reduces the amount of charge reaching
the collection plane wires and is measured as an exponential decay as a function of drift time
as in Equation 4.4, where 7 is the drift electron lifetime. A larger 7 corresponds to a higher
liquid argon purity.

The electron lifetime can be measured by fitting the d@/dx of cosmic ray collection plane
hits as a function of drift time. To do this, cosmic rays that pass through the CRT and the
front and back faces of the TPC were selected. The CRT was used to measure the initial

time ¢ at which the track traveled through the TPC. The difference between the time the
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hit collected on the wire and ¢y was used as the drift time. The most probable value of
dQ/dzx for hits in slices of 100 us drift times was fit according to Equation 4.5 to extract the
lifetime. Two example fits, taken at the beginning and end of the beam data run are shown
in Figure 4.12. The later data shows a higher lifetime resulting from higher purity resulting

from continuous purification of the argon [10].

dQ(t)mpy _ dQomPY

dr g exp(=(thit — t0)/7) (4.5)
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Figure 4.12: Fits to the drift electron lifetime 7 for data collected at two different periods
of time. Left is an earlier period with a lower purity and shows a lower lifetime (10.39 +
0.2586 ms) compared to the right (88.95 4+ 14.32 ms) |10]

4.5.3 Energy Calibration

Reconstructed d@/dx is affected by electronics gain variations, SCE, and attenuation. Previ-
ous sections describe the calibrations for these. Additional effects have also been calibrated
out via a two-step process laid out here: first to equalize the detector response (using a
sample of throughgoing cosmic rays), then with a determination of the absolute energy scale
(using a sample of stopping cosmic rays).

The equalization step accounts for nonuniformities from various effects that depend sep-
arately on = and y — z positions of the hit. Effects that depend on y — z position include

non-uniform wire response from nearby dead channels, detector features such as the electron
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diverters, and transverse diffusion. This portion of the equalization step is done separately
for each half of the detector on either side of the central cathode and as a function of and

. The median value of hits in a given bin is determined and compared to the
median value of the half of the detector wherein the hit lies ( or ) to

obtain a correction factor defined as such:

Sz
—" (4.6)

YZ
where the numerator is the global median (denoted in the equation by G) value on
that side of the detector and the denominator is the median value on that local bin

(denoted by L).

Following this, effects that depend on  position such as longitudinal diffusion are equal-
ized. Similar to the corrections in the plane, the median value of hits in an
bin are compared to the median value of all hits in the detector. This produces a correction

factor that depends on  position as such defined in Equation 4.7.

X
X
Finally the two halves of the detector are equalized. The values are normalized

to the average value at the two anodes using the following factor:

A

. (4.8)

where the numerator is the average of the mean values at either anode, and the denominator
is the mean value over the whole TPC. Thus, the of every hit in an event is equalized

according to Equation 4.9.

C (4.9)
Next the measured must be translated to the energy loss of the particle per unit
length using a sample of cosmic muons that stop in the detector. values in

the minimum ionizing region (120 to 200 cm from the end of the track) are converted to
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using Equation 4.10 from the modified Box model [36] and fit to values predicted by
Landau-Vavilov theory [46] as a function of residual range (the distance along the track from

the hit to the end of the track).

— exp C__ ion £ (4.10)
cal g

In Equation 4.10, o, is the amount of energy required to ionize an Argon atom (equal
to 23.6 x MeV /electron), is the density of liquid argon at ProtoDUNE-SP operating
temperature (equal to 1.38 g/cm ), £ is the local electric field at the location of the hit,
and  are modified Box model parameters and were measured by ArgoNeuT with values of
0.93 and 0.212 (kV/cm)(g/cm )/MeV respectively [36]. Finally, ., is a calibration constant
that accounts for electronics gain and ADC conversion, and corrects for any residual effects
not explicitly calibrated previously and is the parameter of interest in the fit [10].

The normalization factor , equalization maps and , and calibration con-
stant ., are measured separately for MC and each run of data, and are applied during

analysis when extracting the values of for each hit considered.

4.6 Monte Carlo Simulation

The simulation of test beam events in the TPC begins with the simulation of test beam
particles generated within the beam line. A dedicated Geant4 [47] simulation of the beam line
transports particles from their production point toward the face of the ProtoDUNE-SP TPC.
More details can be found in Reference [13]. The rest of the ProtoDUNE-SP simulation chain
is based in the analysis framework LArSoft [48]. The beam line simulation results are passed
to an event generator module that creates particles to be simulated by Geant4. The events
are created when a “primary” particle (such as a ) travels through two triggering planes
and reaches the outside of the ProtoDUNE-SP cryostat structure. Additionally, checks are
performed when particles interact or decay (if applicable) in the beam line such that events

are also created if some downstream particle (for example a from a decay) reaches
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the cryostat. Without this check, the rate of test beam muons was severely underpredicted
by the event generator in early simulation productions. The set of simulations used in this
analysis included this hierarchy check. Each event created by this event generator is assigned
a primary particle: either the original particle or the last-extant particle which reached the
cryostat structure (i.e. the described above). These primary particles serve as the main
particles considered in the analysis. Other particles originating from the beam line which are
“in time” with the beam are passed on to the next stage of the simulation. These additional
particles are added if they are within 4.5ms of the primary particle, similar to what can
occur in events in data. Cosmic-ray particles as simulated by CORSIKA [49] are overlaid on
the event as well.

All particles generated by the beam-based event generator and the overlaid cosmic ray
particles are then given to Geant4 to simulate their transport through the detector. It also
simulates the interaction of hadrons with the detector material. It first determines the rate
of interactions at this energy range using calculations from Barashenkov [50] tuned to global
hadron-nucleon scattering data, and then uses the the Bertini Cascade model [51] to simulate
the dynamics of these interaction [52]. The combination of these two models thus serves as
the signal interaction model of the analysis. The full geometry of the detector is considered,
allowing for particles to interact and lose energy within the uninstrumented portion of the
detector geometry (i.e. the steel cryostat structure, insulation, etc.). As charged particles
travel through the LAr portion of the detector, ionization is created which is then passed on
to the drift simulation step of the simulation.

The drift simulation transports the ionization electrons produced during the Geant4
simulation stage along field lines toward the wire planes. The nominal electric field map
used within the simulation is distorted according to the data-driven SCE maps discussed
earlier in Section 4.5.1. The full electronics response to the ionization drift and collection
onto the wires is simulated, creating waveforms which are then passed to the reconstruction

chain described earlier.
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CHAPTER 5

PROTODUNE-SP BEAM LINE

Test beam particles are delivered to ProtoDUNE-SP from an extension of the existing H4
beam line in the CERN North Area. This beam line is known as the H4-VLE (very low
energy) beam line as it supplies particles (  , , , and ) in the momentum range
0.3 - 7 GeV/ . Within the North Area Secondary Beam facility, protons from the CERN
Super Proton Synchrotron impinge on a beryllium target to create a beam of secondary
particles. These particles are transported through the H4 beam line before impinging on a
secondary target to create the test beam for ProtoDUNE-SP. These test beam particles are
momentum-selected! and transported through the H4-VLE beam line toward ProtoDUNE-

SP.

5.1 Beam Line Instrumentation

The H4-VLE beam line is instrumented with a set of various devices to aid in particle
identification (PID), momentum reconstruction, and tracking the beam. The layout of the
beam line is shown in Figure 5.1. The instrumentation consists of scintillating planes (XBTF)
for triggering and time of flight (TOF) measurements; scintillating fiber monitors (XBPF) for
profiling, tracking, and momentum reconstruction; and Cherenkov detectors (XCET) as part
of the PID process. Throughout the beam line are bending magnets which direct the beam

toward ProtoDUNE-SP — with one also being used as part of a momentum spectrometer.

5.1.1 Fiber Monitors

The XBPF profile monitors [11] are comprised of a set of 192 square scintillating fibers of
width 1 mm set side-by-side to provide a measurement of a beam particle’s position in one

direction. Two can be placed in perpendicular orientations to provide a 2D measurement of

INominal momentum settings consist of 0.3, 0.5, 1, 2, 3, 6, and 7 GeV/
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Figure 5.1: Diagram of the H4-VLE beam line instrumentation layout. XBTF (orange lines)
are scintillating planes used for triggering and TOF measurement; XBPF (blue lines) are
scintillating fiber monitors used for tracking and momentum reconstruction; XCET (orange
circles) are Cherenkov detectors used for PID (sometimes in conjunction with the TOF); the
green triangles are bending magnets throughout the beam line.

the particle’s position. Each fiber is connected to an individual Hammamatsu S13360-130
silicon photomultiplier (SiPM) on one end?. Figure 5.2 shows a photograph of a prototype
XBPF module taken from [11]. Further discussions of these devices and their readout are
found there as well as in Reference [13|. The XBPF data was packaged such that, for each
trigger in the beam line, the statuses (on/off) of the 192 fibers were separated into six 32-bit

words. Two examples of this decoding is given in Figure 5.3.

Figure 5.2: XBPF module. Taken from Reference [11].

20n the other end of the set of fibers is an aluminized mylar mirror.
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MSB LSB MSB LSB

[0] [O] [1]1[0] [0] [O] [0] [0] [O] [161f612736] [0] [O]
20 230 + 229
Fiber 96 activated Fibers 94 & 93 activated
(a) (b)

Figure 5.3: Two examples of XBPF data decoding. The most significant bit (MSB) and
least significant bit (LSB) are labeled at the top of each example. a) The Oth fiber in the

fourth 32-bit word is active. Thus the active fiber is . b) Two fibers are
active: the 30th and 29th fibers in the third 32-bit word. Thus fibers and
are active.

The last two sets of XBPF devices (shown immediately before the XCET devices and
after the last XBTF plane in Figure 5.1) were used for tracking the particle as it entered
into the TPC. 2D positions were reconstructed in both sets of XBPFs and used to create
a trajectory between these points along the beam direction. This trajectory was further
projected to the face of the active TPC to give the reconstructed position at the beam
window.

These projected trajectories were used within analysis to cut out events considered as
background to our pion sample. The difference in position between this reconstructed beam
point and the start of the reconstructed TPC track, as well as the angle between the recon-
structed beam trajectory and the starting angle of the reconstructed TPC track, were used
to exclude various backgrounds (i.e. cosmic rays or particles from “upstream” interactions

before the start of the active TPC volume).
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5.1.1.1 Issues with XBPFs

In Winter 2019, two issues were identified within the data obtained by the XBPF during the
initial beam run. In the first, the rate of fiber activations for the upper half of the fibers in
the first XBPF was higher than the lower half. This can be seen in Figure 5.4 where the
number of activations for each fiber for each selected event in the first XBPF are plotted. In
talks with the device experts, this was determined to be caused by a configuration issue in
the ASICs controlling the readout of this XBPF. This amounted to a higher efficiency in the
upper half of fibers in this device. However, this was not an issue in ProtoDUNE-SP data
analysis as this effect was suppressed by the lower trigger rate of the ProtoDUNE-SP detector
compared to the trigger rate of the beam line (a subset of beam line particles triggered the
detector).

All Events —- Monitor 697
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o e L L L b b Ly 17
GG 20 40 60 80 100 120 140 160 180
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Figure 5.4: Active fibers in the first XBPF device from every event from a 1 GeV/ run.
Note, multiple fibers can be active in any one event. The jump in rate at fiber 96 is due to
a configuration problem in the readout electronics.

The second issue identified was due to a bug in the software controlling the data acquisi-
tion for the XBPFs, and occurred in all XBPF devices. In this issue, systematically repeated
hits were being recorded in the last 64 fibers of each XBPF. This can be seen in Figure
5.5, where a bump is present starting near fiber 128 of the second XBPF device. Figure 5.6

highlights this issue, as it shows the number of times a fiber was activated in two subsequent
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events. A large spike in this rate can be seen starting at fiber 128. In discussions with the
device expert, this was determined to be due to a software bug, in which the data in the
last two words was not being cleared between events in the XBPF devices. This caused a
“hangover” in the apparent activation of fibers in these two words. This resulted in extra
reconstructed hits seen during analysis, which led to ambiguity in the reconstructed momen-
tum and incident tracks. An attempt to mitigate this was implemented by simply scanning
the last two words of each event for repeated fibers, and then masking the repeated fibers
(in the second event). The results for this are shown in Figure 5.7
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Figure 5.5: Active fibers in the second XBPF device from every event from a 1 GeV/ run.
Note, multiple fibers can be active in any one event. A small bump can be seen starting
around fiber 128.
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Figure 5.6: Rate of repeated fiber activations in the second XBPF device from every event
from a 1 GeV/ run. The large jump at fiber 128 highlights the issue.
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Figure 5.7: Active fibers in the second XBPF device from every event from a 1 GeV/ run
before (black) and after (blue) the mitigation procedure.
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5.1.2 Momentum Reconstruction Using XBPFs

Within Figure 5.1, three XBPFs are labeled as “Momentum Spectrometer.” Coincident sig-
nals in these three monitors were used to measure the deflection of the test beam particle by
the bending magnet which the monitors surround. The angle of deflection is then used, along
with the known magnetic field, to reconstruct the particle’s momentum. This momentum
reconstruction technique was developed and successfully used by the H4-VLE beam experts
in the past [12]. A diagram of this measurement technique is shown in Figure 5.8. The
lateral position within each monitor ( , , ) of the particle — given by the activated fiber
in each of the three XBPFs — is used with the known distances between each monitor (

, ) in Equations 5.1 and 5.2 to reconstruct the momentum.

(5.1)

mag

(5.2)

In Equation 5.1, , _ , , and . s
the nominal bending angle of the beam and is equal to 120.003 mrad [13]. mag in Equation
5.2 is the length of the bending magnet. This measurement has a nominal 2 resolution
according to Monte Carlo studies [13].

Shortly after commissioning, a offset in the reconstructed momentum was observed,
and this was determined to originate from a bulk shift of the fibers in the third profiler of
the spectrometer. Monte Carlo studies determined the fiber shift to be 1.45 0.18mm in the

plane perpendicular to the beam. This was used as a systematic uncertainty within this

analysis and will be discussed further in Chapter 8.
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To validate the performance of the spectrometer, we used the high statistics simulation,
which includes all the material in the line, the gas in the Cherenkov detectors at the right pressures
per momentum, as well as the expected special resolution of the profile monitors. For each
particle, we compute its momentum from the above equation, and therefore the measured Ap/p
of the line. Assuming no material in the beam line for a central momentum of 12 GeV/c and
position resolutions of 0.2 mm, 0.5 mm and 0.8 mm we obtain a Ap/p of 1.1%, 2.5% and 3.9%
accordingly, as shown on Figure 19. When the material along the beam is included, the
reconstructed momentum resolution Ap/p deteriorates, because of the multiple scattering, with
the effect becoming more significant in lower energies, as shown on Figures 20, 21 and 22. For
the 2 GeV beam, the reconstructed momentum resolution with all material included and with
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5.1.3 Scintillating Planes

The XBTF scintillating planes are of similar design to the XBPF — sets of 192 fibers arranged
side-by-side and set perpendicular to the beam direction — but without individual readout
of the fibers. Instead, the fibers are bundled into two groups, which are read out by two
separate Hammamatsu H11934-200 photomultiplier tubes (PMTs). Figure 5.9 shows the

bundled nature of the XBTF fibers.

Figure 5.9: XBTF module. The bundling of the two sets of fibers can bee seen on the
left [11].

The first and third (last) XBTFs — as shown in Figure 5.1 — are used for measure the TOF
of the test beam particle over a distance of 28.575 m. The second (middle) and last XBTFs
are used as a trigger for the rest of the beam line instrumentation as well as a prerequisite

for triggering beam-type events within the ProtoDUNE-SP detector.

5.1.3.1 Issue with XBTFs

A ns “jitter” can be seen in Figure 5.11b where a second peak in the TOF distribution
exists around 100 ns. The cause for the issue was never identified. However, it has little

effect on the analysis, due to the cuts used for PID (see below).
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5.1.4 Cherenkov Devices

The two Cherenkov devices each consist of a 1.9 m long tube filled with the radiator gas
(CO ) followed by a stainless steel enclosure. This enclosure houses a PMT at the bottom to
collect the Cherenkov light and a curved mirror to guide Cherenkov light toward the PMT.
The fill-pressures of the two devices were set to two different values to allow for discrimination
between certain particle types. Figure 5.10 [13] shows the Cherenkov threshold pressure of
CO at various momenta for different particle types, as well as the maximum possible pressure
value for the two XCET devices. Consider an example setup at 3 GeV,/ momentum. One
device can be set above the electron threshold but below the / thresholds, while the other
can be set above the / threshold but below the threshold in order to distinguish
positrons, muons/pions, and kaons/protons. The use of the Cherenkov devices within the

beam line PID algorithm will be described in the following section.

,:10* 1 o
8 5 -
‘% — M
£ 7T
a K
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Figure 5.10: CO2 Cherenkov threshold pressures across ProtoDUNE’s beam momentum
range for the various particles present in the beam line. The dashed red lines show the
maximum pressures for the two Cherenkov devices present in the beam line. Taken from
Reference [13].

5.2 Beam Line PID

As mentioned above, the Cherenkov devices and TOF as measured by the XBTFs were
used for PID of the beam line particles. Table 5.1 shows the conditions of the Cherenkov

devices and TOF value used for the PID algorithm across the various nominal momentum
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settings. As shown in this table, for nominal momenta below 3 GeV/ | one Cherenkov device

from the other particles, and the TOF is then used to distinguish

/ ,and /.

Finally, at 6 - 7 GeV/ , the two Cherenkov devices are used to separate / / |

is used to distinguish
/ from . At 3 GeV/ , both Cherenkov devices are used to separate
, and

Figure 5.11 demonstrates this for the various beam momentum settings.

Momentum (GeV/ )
1 2 3 6-7
TOF (ns) 0, 105 0, 105 - -
Low-p Status 1 1 1 1
High-p Status - - 1 1
TOF (ns) 0, 110 0, 103 - -
Low-p Status 0 0 0 1
High-p Status - - 1 1
TOF (ns) - - - -
Low-p Status - - 0 0
High-p Status - - 0 1
TOF (ns) 110, 160 | 103, 160 - -
Low-p Status 0 0 0 0
High-p Status - - 0 0

Table 5.1: A summary of beam line instrumentation logic used in the identification of particle
types. Each cell reflects how a particular type of instrumentation is used at a given reference
momentum. When time of flight is used, the values of the lower and upper cuts are given
in nanoseconds. In the case of the high-pressure Cherenkov (“High-p Status”) and the low-
pressure Cherenkov (“Low-p Status”), zero and one represent the absence and presence of a
signal respectively. When a given piece of instrumentation is not involved in a logic decision
at a particular momentum, a dash is used.
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DUNE:ProtoDUNE-SP Beam Line Data (1 GeV/c)
T T L A B
10 [ | .
- [ 1 —e ]
508 I I — /e -
s I | | P ]
o
zosr | E
£29%°r ]
2 [ [ ]
T 04— | ]
€ f || ]
02 [ -
C [ ]
0.0 L A, | 1 \f\’\ﬁk‘\V\; 1
80 100 140 160

120
Time of Flight [ns]

(a) Nominal beam momentum = 1 GeV/ec.
Vertical lines represent the time of flight cuts
used for electrons (blue), and muons/pions
(red).
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(c) Nominal beam momentum = 3 GeV/c.
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(b) Nominal beam momentum = 2 GeV/ec.
Vertical lines represent the time of flight cuts
used for electrons (blue), and muons/pions
(red).
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(d) Nominal beam momentum = 6 GeV/c.

Figure 5.11: Time of flight distributions for different reference momenta, separated by parti-
cle using the PID techniques listed in table 5.1. The distributions are normalized such that
the maximum height is equal to 1. Taken from Reference [10].
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CHAPTER 6

EVENT SELECTION

This section describes the characterization of reconstructed data and MC events. Included
is a set of data-MC comparisons detailing the cuts used in the selection. The data shown
here is from Run 5387 of the initial ProtoDUNE-SP running period in the Fall of 2018.

For data, an event is included in the set if it passes the following criteria:
1. It is an event that was triggered by the beam line.
2. It follows the / beam line selection.

3. Tt has singular hits in each beam profile monitor. This is to eliminate ambiguity in the

beam line momentum and tracking reconstruction.

For MC, due to the lack of fully simulated beam line instrumentation, the only require-

ment is that the simulated event was generated from a (primary) or in the beam
line simulation. Only ~ and  are considered because at 1 GeV/ (the beam momentum
used for this analysis), the beam line PID can distinguish and from and , but

not from each other. The criteria for the beam line PID can seen in Table 5.1. Figure 5.11a
shows that the protons are well separated by the TOF cut used to select /. The MC
events have been normalized to the number of data events that pass the aforementioned data

criteria.

6.1 Truth Definitions

The MC events which pass the above criteria are separated into seven categories based
on truth information of the primary beam particle. The signal categories (absorption and
charge exchange) have been defined to occur within the fiducial volume (FV — defined as

primary particles ending in the active liquid argon volume before = 222 cm). This is due
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to the fact that the grounded electron diverters created electric field distortions (as described
in Section 4.2.2) which caused reconstructed tracks to break in their vicinity. A data-driven
simulation of the electric field distortions was implemented, which attempted to reproduce
this effect in MC. The track-breaking effect can be seen in Figure 6.1, which shows the
reconstructed endpoint of beam tracks in the TPC in the direction. The legend shows the

truth categories described in the previous section. Note that the exact effect is not perfectly
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Figure 6.1: Reconstructed endpoint of beam tracks within the TPC. The vertical line repre-
sents the F'V cut at 222 cm. The spike immediately after the F'V cut is the track-breaking
effect from the grounded electron diverters.

modeled by the simulation, and a systematic uncertainty on the strength of this effect in
MC was implemented. This will be discussed further in Section 8.3.
Additionally, the signal definitions are required to have no charged pions above a mo-

mentum threshold of 150 MeV/ | but any number of charged pions below this momentum
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is allowed. This is due to the inefficiency to reconstruct charged pions exiting the primary
interactions which are below this threshold, and is intended to reduce model dependence on
the measurement.

The truth categories and criteria are as follows:

1. Muons: The primary beam particle was a

2. Upstream Interaction: The primary beam did not reach the TPC FV.
3. Past FV: The primary beam extended past the FV in the -directionl.

4. Absorption: The primary beam interacted within the F'V in an Absorption inter-
action. This is the first type of signal event and is defined as a which interacted

with an Ar nucleus and resulted in no outgoing above-threshold or

5. Charge Exchange: The primary beam interacted within the F'V in a Charge Ex-
change interaction. This is the second type of signal event and is defined similarly to

Absorption, but with any number of  present.

6. Background Interaction: The primary beam interacted within the F'V, and that in-
teraction was a background (not Absorption or Charge Exchange) inelastic interaction.
This includes any inelastic interaction between the primary and an Ar nucleus with

an outgoing above the momentum threshold of 150 MeV/ .

7. Other: The primary beam ended within the FV, but did not interact inelastically

(i.e. it decayed in flight or came to a stop and then decayed at rest).

Figure 6.2 shows the various pion interactions separated into signal and background

categories. Note that the visible charged pions shown in the background categories are

IReminder: using a right-handed coordinate system, the -direction is horizontal and
follows the beam direction, the -direction is horizontal and points away from the wires on
the beam side TPCs, and the -direction is vertical and points up.
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implied to be above 150 MeV,/ momentum, and nucleons and sub-threshold charged pions

are not shown in any interaction.

a Absorption \

Charge Exchange

o

(a) Signal

-Ar interactions.
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/
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Figure 6.2: Diagrams of pion interactions with argon nuclei separated into signal (6.2a)
and background (6.2b) categories. Note that the visible charged pions in the background
interactions are implied to have at least 150 MeV/ momentum, and nucleons and sub-
threshold charged pions are not shown in either category.
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6.2 Event Selection

For analysis, the events are categorized according to the results of the TPC reconstruc-
tion. Ultimately, attempts are made to distinguish from and then to distinguish
absorption and charge exchange interactions from other interactions and stopping

Every event is accounted for and characterized into one of the following categories:

1. The event contained no Pandora-reconstructed beam track or it did not leave at least
two hits on the collection plane wires. If, after the Pandora reconstruction described
in Section 4.4 is performed, either no beam object was found or the beam object was
reconstructed as a shower, the event is placed in this category. Also, events are placed
here if there are not enough hits on the collection plane wires, as these are used in later

cuts and in binning the events.

2. The event contained a reconstructed beam track, but it was not considered consistent
with coming from the beam. This is done in order to pick out events in which the pion
interacted upstream of the TPC FV or if Pandora erroneously reconstructed a cosmic

particle as the beam track. This is described in Section 6.3.

3. The event was consistent with the incident track, but it extended past the FV cut in

the -dimension (222 c¢m).

4. The event remained in the FV, but it was rejected by the combined absorption and
charge exchange selection. The selection criteria for this and the following two cate-

gories is presented in Section 6.4.

5. The event passed the combined absorption/charge exchange selection, and was distin-

guished as an absorption interaction.

6. The event passed the combined absorption/charge exchange selection, and was distin-

guished as a charge exchange interaction.
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6.3 Beam Cuts

Sometimes, the wrong particle is identified as the beam particle by the Pandora recon-
struction. As mentioned above, these could come from a cosmic muon or particle resulting
from an interaction before the active volume of the detector. Information about the starting
position and direction of the reconstructed track identified as beam is used to separate these
out and place them in their own category. For the cuts on position, the mean ( ) and RMS
() of the beam track distribution in , , and is found (using SCE-corrected information).
Any track that is at least away from the mean in any single direction is categorized as
inconsistent with the beam. Additionally, the direction of the track is taken from the vector
connecting the SCE-corrected start and end points of the track, and the cosine of the angle
( ) between the track direction and the mean angle of all beam tracks is found. Any
track which has is considered inconsistent with the beam. Figure 6.3 shows
the distributions of the position (relative to the and ) of the beam in each direction, as
well as two views of the distribution. The cuts on position and the
cut in direction are shown as the vertical black lines. As can be seen in these plots, the

cosmic particles and upstream interactions tend to have extreme angles and positions.

6.4 Absorption and Charge Exchange Selection

By analyzing reconstructed particles that have been associated to the TPC beam track
as daughter particles, the tracks ending within the F'V are separated into two categories:
1) absorption or charge exchange, or 2) other events. Because both absorption and charge
exchange events contain no charged pion (above threshold) in the final state, the selection
strategy is to identify events with a charged pion daughter.

The daughter particles are separated between track-like (ideally from , , | etc.) and
shower-like (ideally from , ) objects using the results of the CNN described in Section
4.4.1. For daughter particles of beam tracks, the CNN-based track/shower discrimination

performed better than Pandora’s native track /shower discrimination, and so was used for this
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analysis. Each hit in an event receives a set of scores produced by the CNN that encodes the
degree to which it appears to be produced by a track-like particle or a shower-like particle. For
each associated daughter, the scores from all of its hits are averaged to produce aggregated
scores for the reconstructed particle. The Pandora reconstruction software was configured to
reconstruct both a track-like and shower-like object for each reconstructed particle cluster
in an event, so that analyzers could use alternate track/shower discrimination (such as the
CNN method described here) and access the information accordingly.

At the time of writing, only the calibration for collection plane hits was in a suitable
state, and so only these hits were used to calculate the aggregated scores. A cut on the
track-like score of the daughter particle at 0.3 (shown in Figure 6.4) was used to separate the
daughters into shower-like and track-like. Here, the track score of every reconstructed particle
associated as a daughter particle to the primary reconstructed TPC particle is shown, and
the MC has been categorized by the true particle corresponding to the reconstructed particle.
The fields “Daughter+” and “Daughter+-+" represent particles that are downstream products
of reinteractions of final state particles and so on. The field “Self” refers to segments of the
true primary particle that were associated as a daughter (i.e. the track ended early). Finally,
the field “ 7 represents photons emitted by the nucleus following a primary interaction (i.e.
from nuclear de-excitation), while “ " represents photons truly originating from the decay
of a  created within a primary interaction.

If the daughter is considered track-like, an attempt is made to tag charged pions by
identifying particles that appear to be a Minimum Ionizing Particle (MIP). This MIP-like
determination is done first by looking at the energy deposited per unit length by the recon-
structed track. For this, the truncated-mean (defined to be the total energy deposited
by a reconstructed hit divided by the track pitch of that hit) is used in order to exclude the
large energy deposits from stopping particles. In its calculation, the lowest 16 and highest
16  of hits in a track are ignored. The distribution of the truncated mean for all

daughter tracks is shown in Figure 6.5a. Particles are immediately considered MIP-like if

81



800

1400 — B Seif
L [ Cosmic
~ I -
1200 — s -
.
I
1000; I Nucleus

600

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
CNN Track Score

Figure 6.4: CNN Track scores of all reconstructed particles associated as daughters to the
primary beam. The vertical line is the cut used to distringuish tracks and showers.

they fall between 0.5 and 2.8 MeV /cm, and are considered not MIP-like if they are above
3.4 MeV /em. For other particles (those that fall below 0.5 MeV /cm or between 2.8 and 3.4
MeV /em), another step is done in the selection. This step consists of comparing the dE/dz
of each hit in the track to the expectation value for protons and producing a X2 value. This
X2 value represents how similar the track’s energy loss is to the expected proton dE/dx val-
ues. Ideally, protons should have a low y2 and pions should have a high 2. This is shown
in Figure 6.5b. These particles are considered MIP-like if they have a x2 above 70.

If any of the daughter particles appears MIP-like, it is considered to be a charged pion
originating from the primary interaction, and the event is rejected from the absorption and
charge exchange selection.

Following the combined absorption and charge exchange selection, these interactions are
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separated by attempting to identify showers originating from the decay of 7V daughters which
indicate the charge exchange interaction. A daughter shower is considered as coming from
a 0 decay if it is at least 5 cm away from the end of the primary track and has at least 80
MeV of energy. These cuts are chosen to exclude any activity around the interaction vertex
which originated from lower-energy pions and protons or nuclear de-excitation photons from

either the primary or downstream interactions. This can be seen in Figure 6.6.
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Figure 6.6: Distributions used to separate absorption from charge exchange. The black
vertical lines represent the cuts used.
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Channel Efficiency | Purity
Absorption 0.53 0.52
Charge Exchange | 0.23 0.80

Table 6.1: Effiency and purity of the signal categories.

6.5 Binning

The events are binned according to the event selection categories described in the previous
sections are as follows. Events that fall in the first two categories (no beam track and events
that fail the beam cuts) are each placed in single, unitless bins. Events that end past the
FV cut are binned according to their SCE-uncorrected ending position in . Finally, the
three “interaction” categories (absorption, charge exchange, and other) are binned according
to their ending kinetic energy. This is determined by first calculating their reconstructed
kinetic energy using the reconstructed beam line momentum, assuming they are pions, and
then subtracting the energy of each collection plane hit up to but not including the last.
Occasionally, large hits from large amounts of vertex activity or from crossing cosmic tracks
saturate the cold electronics, resulting in seemingly enormous reconstructed energy deposits
on the order of a few hundred to a thousand MeV. Thus, any hit above 80 MeV is ignored in
the calculation. This value was chosen such that the saturated electronics hits are skipped,
but truly large energy deposits like from overlapping hits are kept.

This binning is shown in Figure 6.7, where the reconstructed distributions from the
nominal (default) MC are shown. In the plots, these distributions are broken down by
their true category including the true energy bin for signal events. The bin edges for the
interaction distributions were chosen based on the smearing between true and reconstructed
kinetic energy, visible in the spread in the different colored portions of the stacks. The purity

and efficiency for the absorption and charge exchange selections is also shown in Table 6.1.
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Figure 6.7: Reconstructed distributions of events from the nominal MC. The distributions
are broken down by true categories, shown in 6.7g.
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6.6 Selected MC Event Displays

This section provides some examples of successes and failures in the event selection within
the MC sample used in the analysis. Shown in the following figures are reconstructed event
displays in the view of the collection plane near the beam entrance. The horizontal axis is
the wire number, which is equivalent to the position in z. The vertical axis is the time (or
tick) at which the drifting charge reached the wire plane. This is equivalent to the horizontal
position away from the wire plane.

The first example, shown in Figure 6.8, is a true absorption interaction correctly selected
as absorption. The pion is shown as the greenish-brown track entering from the left, and it
interacts with a nucleus. The interaction produces two protons. These are correctly identified
as proton-like tracks by the event selection and are shown as the light blue and pink tracks
in the display.

There are some extraneous features present in the display as well, which also show up in
later displays. For the purposes of this discussion, these are irrelevant, but are detailed here
to reduce confusion. First, the black line running nearly horizontal on the display represents
the projection of a reconstructed cosmic ray track that has been “ "-corrected. This means
it crossed either an anode or cathode, and so the time it entered the TPC (its ) is known.
The is then subtracted from the value of the time the track’s hits reached the wires. When
this value is nonzero, the projection is displaced from the drawn reconstructed track, leaving

an isolated black line such as the one shown here?

. Second, there is a gray vertical line
which represents the location of a “dead” wire (i.e. it was physically disconnected from the
cold electronics and does not collect a signal). Third, there are numbers which are used to
identify the tracks.

Next, Figure 6.9 shows a true charge exchange event incorrectly identified as an absorp-

tion event. Again, the beam enters from the left shown as the tan track, and interacts with

a nucleus. A very energetic proton exits the interaction and travels toward the lower right

2Further information detailing this is found in Reference [10].
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Figure 6.8: MC absorption event correctly identified as absorption.

of the display shown as the green track. This proton is correctly identified as a proton.
However, a also exits the interaction. Near the vertex, one of the ’s produced by the
decay of the  is identified as a small shower (represented by the black rectangles near the
vertex). Its reconstructed energy is too low to be identified as resulting from a . The other

is not identified. The pink track extending from the top to bottom of the plot is a cosmic

muorin.
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Figure 6.9: MC charge exchange event incorrectly identified as absorption.

The third example in Figure 6.10 is a background inelastic event (a charged pion is in
the final state) selected as absorption. The beam pion enters from the left (shown as the
red track), and strikes a nucleus. Both a and  exit the interaction. The  promptly
decays, and the resulting showers (which are overlapping and shown in yellow in the figure)
are not associated to the primary particle as daughters. The is reconstructed as the tan

track exiting the interaction, but it does not appear to be a pion according to the event
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selection criteria described earlier. The light blue track extending from the top right to the

bottom left is a cosmic muon.
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Figure 6.10: MC background inelastic event incorrectly identified as absorption.

The next example in Figure 6.11 shows the pion as a tan track entering from the top left
before interacting with a nucleus. A resulting proton is reconstructed as the light blue track
heading toward the bottom of the figure. A exits the interaction and promptly decays.
The resulting photons are reconstructed as the red and yellow showers, and identified as

such. This results in this event being correctly identified as a charge exchange interaction.
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Figure 6.11: MC charge exchange event correctly identified as charge exchange.

Figure 6.12 shows an absorption event misidentified as charge exchange. The beam pion is
reconstructed as the pink track and interacts with a nucleus. A neutron exits the interaction
before itself interacting and resulting in a proton track (the tan track toward the right),

though it is not associated as a daughter to the primary particle. A proton also exits the
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interaction, but was reconstructed as a shower (represented by the black boxes at the end

of the track). This proton appears as a shower and so the event is selected as charge

exchange.
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Figure 6.12: MC absorption event incorrectly identified as charge exchange.

Figure 6.13 shows a background inelastic interaction misidentified as charge exchange.
The pion, reconstructed as the tan track, enters from the left and ends in an inelastic inter-
action. A high energy exits the interaction and promptly reinteracts nearby the primary
interaction, resulting in a charge exchange event. The  from the secondary interaction de-
cays, and a shower (visible as the blue points) is reconstructed and associated to the primary

interaction.
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Figure 6.13: MC background inelastic event incorrectly identified as charge exchange.

Finally, Figure 6.14 shows a muon that is misidentified as a background inelastic inter-
action. The muon, reconstructed as the greenish-brown track, enters from the top left of the

plot and its reconstructed ended point is far from its true end point. The remainder of the
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muon is reconstructed as a MIP-like track (the red track) and associated as a daughter to

the primary track. The blue and yellow tracks toward the left of the figure extending from

top to bottom are cosmic muons.

K 3

Figure 6.14: MC muon incorrectly identified as a background inelastic interaction.

6.7 Selected Data Event Displays

This section provides example events in 4 of the 6 selection categories (all but the “no-
track” and “beam-cut” categories) used in the fit to data. The dataset containing these
events, Run 5809, is different from the one used to display the event selection cuts.

The first example in Figure 6.15 is a selected absorption event. The pion candidate enters
from the left, and appears to interact with a nucleus. The reconstruction does not associate
any tracks as daughters to this primary particle. Despite this, there appear to be a pair of
heavily-ionizing protons exiting the interaction. A cosmic muon crosses the primary track
in a nearly-vertical trajectory, and a pair of cosmic muons appear toward the right.

The second example shown in Figure 6.16 is a selected charge exchange event. The
pion candidate enters from the left, and appears to interact with a nucleus. Seen after the
interaction is an apparent shower structure resulting from the decay of a

The third example in Figure 6.17 is a selected background inelastic interaction. The pion
candidate enters from the left, and results in an interaction with multiple particles exiting.

A daughter pion candidate (as identified by the beam line PID) travels from the interaction
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Figure 6.15: Selected absorption event.
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Figure 6.16: Selected charge exchange event.

toward the top right of the plot.
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Figure 6.17: Selected background inelastic interaction event.

The fourth example in Figure 6.18 is a candidate extending past the fiducial

volume. The primary particle appears to come to a stop near wire number 700. A break in
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the particle’s ionization track is seen near wire number 500. This is the dead region caused
by the grounded electron diverters. Additionally, a cosmic ray muon is seen crossing the
primary track. Though it appears heavily ionizing (such as a proton does), this is due to it
traveling nearly vertically. This means it deposits much more energy per each wire than a
particle traveling nearly horizontally.
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Figure 6.18: Event selected as extending past the fiducial volume.

Finally, in Figure 6.19 is another candidate that extends past the fiducial volume.
This time, however, the reconstruction (not shown) ends near the grounded electron diverters.
The remainder of the primary particle’s ionization to the right of the grounded electron
diverters is reconstructed as a separate track, and is associated as a daughter to the primary

track.
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Figure 6.19: Event selected as extending past the fiducial volume, and specifically ending
near the electron diverter region.
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CHAPTER 7

CROSS SECTION MEASUREMENT TECHNIQUE

This analysis measures - Ar absorption and charge exchange cross sections using beam-
triggered events in ProtoDUNE-SP. The measurement employs a fit which extracts the
number of signal (absorption and charge exchange) interactions as well as the number of
background events (incident muons, non-signal interactions, stopping pions) from this data.
Truth-level information (information representing the exact results of the simulation, rather
than reconstructed information taken from a simulated detector response) is then used to
extract the cross section according to a technique derived from the Liquid Argon in A Test
Beam experiment (LArIAT) [53]. That technique, known as the "Thin Slice Method" (de-
scribed in Section 7.2) was used to measure hadron cross sections using a LArTPC wherein
the detection medium (LAr) also serves as the target. This method is distinct from mea-
surements using thin targets. This chapter first describes these thin target cross section
measurements, as well as the Thin Slice Method. It then specifies how the Thin Slice
Method is used on truth information to extract the cross section from simulation. It then

describes the statistical fit used to interpret the data.

7.1 Thin Target Cross Section Experiment

Historically, hadron scattering experiments have been performed by firing a beam of
particles onto a thin piece of material as a target. By counting the number of interactions,
the cross section for an interaction can be measured as a function of the incident energy
(since the target is thin, a negligible amount of energy is lost before an interaction, and the
cross section is measured at the incident beam energy). A simple cartoon of the experimental
setup can be seen in Figure 7.1. Here, a beam of pions of width and flux  impinges on a
target of thickness . After passing through the target, pions have interacted, while

have passed through without interacting. The cross section can be extracted from
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Equation 7.1.

(7.1)

Here, is the cross section for the relevant interaction, is the number density of atoms
in the target material, and is the number of incident pions as given by . This

can be slightly simplified by expanding the exponential term around  as:

(@) (7.2)

® L N
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Figure 7.1: Cartoon of a thin target scattering experiment.

7.2 The Thin Slice Method

By virtue of being a LArTPC, ProtoDUNE-SP is not thin, and thus cannot be used for
the simple thin target experiment as described above. However, LATTAT |33] used a method
they called the Thin Slice Method to mock-up a series of multiple thin target experiments in
an extended volume of LAr in order to measure hadronic cross sections in an extended LAr
volume. The segmentation created by the collection plane wires allows analyzers to treat an

extended volume of LAr as if it were multiple thin targets stacked in front of one another.
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This can be seen in Figure 7.2, where a cartoon of a pion track in a LArTPC is shown. The
vertical dashed lines represent the collection wires of the TPC, and the red dot represents the
point at which the pion interacts. One can treat every slice the pion passes through (up to
and including the slice which contains the interaction) as a separate thin target experiment.
In each of these, the pion enters the slice and either interacts, or decays. From this, one can
count the number of incident pions ( as described above) by counting the number of
times a pion enters a slice (it passes by a new wire) and the number of interactions ( )

to extract the cross section.

Figure 7.2: Cartoon of the thin slice method applied to a pion track within a LATTPC. The
red point represents a hadronic interaction.

If the energy of the pion is known as it enters each slice, then energy-dependence is added
to Equation 7.2, as reflected in Equation 7.3. Here, the thickness is the width of the wire

spacings.

(7.3)

Mechanically, this calculation is achieved by using two histograms thus called “Incident”

and “Interacting” which respectively represent the denominator and numerator of Equation
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7.3. As the pion enters into a new slice, the Incident histogram is filled at the corresponding
energy. This is done for the entire pion track up to the end, meaning a track can contribute
multiple entries in the histogram. For example, in Figure 7.2, the pion track will contribute
an entry for every section of Ar up to and including that which contains the interaction point
(represented by the red dot). If the pion undergoes an interaction of interest, the Interacting
histogram is filled according to the energy of the pion as it entered the final slice (this will

be the same energy for the final entry into the Incident histogram). A demonstration of this

is shown in Figure 7.3.

Interacting

Count

Cross Section

= e
Energy $+
+ > Y

Incident +

Count

Energy

Figure 7.3: Demonstration of the cross section calculation using Equation 7.3.
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7.3 Thin Slice Method on Truth Information

The previous section described how the Thin Slice Method could be used on reconstructed
information to determine hadronic cross sections. The measurement presented in this thesis
is slightly different, but is generally based on this method. Rather than using reconstructed
information to determine the Incident histogram, it is taken directly from truth information
from ProtoDUNE-SP Monte Carlo simulation. This simulation will be modified by perform-
ing a fit to collected data. This fit, known as a “template fit” and described in Section 7.4,
will vary the rates of signal and background interactions (binned in true ending kinetic en-
ergy) within the MC. This will of course change any true Interacting histogram created from
this information. It will, in turn, also change the true Incident histogram, as the number of
slices entered (equivalently, the distance traveled by the pion) depend on the pion’s starting
and ending energy. In this way, the varied MC which best describes the data can be used
to extract a cross section. This section describes the procedure used to extract the cross
section from truth information.

The ProtoDUNE-SP MC simulation contains a set of and created by the beam
impinging on the detector. Pions that interact before the start of the LAr are ignored and
do not contribute to the Incident distribution. For all other pions (those that enter into
the TPC), their energy at the initial TPC point () is used as an entry in the Incident
distribution. Using a uniform Spacingl, the energy deposited by the pion as it was simulated
by Geant4 is divided into slices. The energy at each slice boundary crossed by the pion is
calculated by summing the energy deposited in the previous slice and subtracting that from
the previous incident energy. Thus, the energy as the pion crosses slice boundary is equal
to where is the energy deposited between slice boundaries and

. This is demonstrated in Figure 7.4, where the labels represent the energy of the pion

as it crosses each slice boundary. All of the energies after are then given an entry in the

INote, the width of the spacing to extract the cross section from truth info is arbitrary.
For this analysis, the wire spacing (.47974cm) was used.
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Incident distribution as well. This occurs for every pion that reaches the TPC, and along
each pion up to the fiducial volume edge. Then, for each pion ending in a signal interaction
within the fiducial volume, the energy of the pion at its interaction point is used as an entry
in the Interacting histogram. The resulting Interacting and Incident histograms are used as

in Equation 7.3 and Figure 7.3 to compute the cross section.

Figure 7.4: Cartoon diagram showing a pion track split up into multiple slices and the energy
denoted at each slice boundary.

It is instructive to consider this measurement technique under a varied cross section
model. If the cross section is higher over the momentum range of the simulated pions, more
interactions will occur ( will be higher). The pions will (on average) travel through
fewer slices before they interact, and thus contribute fewer entries to the Incident histogram.
For an overall lower cross section, the inverse is true: fewer interactions occur, and the
pions travel further on average (creating more entries in the Incident histogram). This line
of thought can be extended to more complicated variations in shape as well. The number
of interactions at a given energy will change, and so too will the entries in the Incident
distribution. This serves as the guiding principle used in this measurement: if one is able

to measure the number of interacting pions at a given energy (and equally importantly, the
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number of pions that do not interact), the Thin Slice Method can extract cross sections using
truth information from a varied Monte Carlo simulation that best describes the data. The
following section describes the fit strategy used to interpret the data in terms of a varied
Monte Carlo sample in order to extract the absorption and charge exchange cross sections

in this manner.

7.4 Fit Strategy

This analysis uses a binned maximum likelihood fit to 1 GeV /¢ momentum ProtoDUNE-
SP beam line events to estimate the number of signal and background interactions in the
data set. The fit results in a set of varied MC which best matches this data and from which
the signal cross sections are extracted. A set of signal parameters ( ) and nuisance (also
called systematic) parameters () controlled by the fit vary simulated and events.
The fit attempts to find the set of parameters that best describe the data by maximizing
the likelihood to observe a set of events given the model parameters and
Additionally, we include constraints to the nuisance parameters represented by predictions
of their central values and the prior uncertainties on these predictions represented by a
covariance matrix (gy. As such, the likelihood is made of two components: a statistical

term and a systematic term:

Stat Cov (7~4)

For compatibility with the fitting routines (discussed later) in finding the best fit param-
eters and their uncertainties, the minimum of twice the negative log-likelihood ( ) is
found instead of the maximum likelihood?. Additionally, minimizing this value is equivalent

to minimizing twice the negative of the natural logarithm of the likelihood ratio  [35]. The

2The fitting routines implemented in ROOT work by minimizing rather than maximizing
some value.
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likelihood ratio is defined as

(7.5)
where represents the true, unknown underlying model. Plugging Equation 7.4 into
this results in

Stat Syst Cov  Stat (7.6)

where there is no true value of gy shown in the denominator, as it is trivially equal to

one. is thus defined as

Stat Stat Syst Cov (7.7)

In this fit, we are seeking to categorize a fixed number of events (a set of beam line-
triggered events) based on the results of ProtoDUNE-SP reconstruction described in Sec-

tion 4.4. As such, the likelihood g, is the multinomial likelihood as defined in Equation

7.8.
Stat (7.8)
Here, and  are the number of predicted and measured events in reconstructed bin
, and is the total number of beam line events. As stated before,
Stat depends on some true underlying model denoted by . This model is
unknown, but g¢a¢ is estimated using the measured events as shown in Equation
7.9.
Stat (7.9)
From this, the statistical portion of is defined as follows.
Stat — (7.10)
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The systematic term Syst 1s a constraint term that assumes the systematic param-
eters are Gaussian distributed around their central values and whose uncertainties are

described by a covariance gyt

Syst Cov (7.11)

With this, the full statistic minimized by the fit is given by Equation 7.12.

— (7.12)

Cov

A crucial step in the analysis is the extraction of true information (the set of true events
from which the number of signal interactions and slices which form the cross section calcula-
tion as in Section 7.3) from reconstructed quantities. In general, this is known as “unfolding”
and is a common problem within High Energy Physics [54]. Several unfolding techniques ex-
ist, each with their own benefits and drawbacks (typically, a balance is made between biased
results, bin-to-bin correlations, uncertainty, and smoothness) [55]. The fit done within this
analysis, known as a template fit, performs the role of unfolding. The signal parameters are
a set of “template weights” assigned to the MC signal events which vary the normalization
of signal events in a given true energy bin, and which also have a subsequent effect on the
predicted reconstructed distributions. The fit simultaneously varies the template weights
and the other parameters, then compares the resulting predicted reconstructed distributions
to the measured distributions until it converges at a minimum value.

The role of the template parameters is highlighted in Equation 7.13, which shows the
relationship between the true and reconstructed events as predicted by MC.  represents the
number of events in true bin for the indicated true category (absorption, charge exchange,
muon background, or pion backgrounds). The events have a chance  to be selected as
some selection category  when the reconstructed information is passed through the event

selection (described in Section 6). Reconstruction effects smear the events from some true
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bin to some reconstructed bin in selection category . This is represented by which
can be thought of as a “smearing matrix.” In general, and depend on the true category
they act on. , and all depend on some subset of the fit parameters and can be
modified at each step in the fit. A parameter is used to vary the normalization of muons
in the sample, as this is uncertain. Lastly, Abs, Cex are the template parameters that
control the normalization of absorption and charge exchange events in true bin . The sums
extend over the number of true bins for the different true categories. Since the number

of impinging /  is known and static, the fit is constrained as in Equation 7.14.

BG
Abs Abs Cex Cex (7' 13)

(7.14)

In addition to the constraint on the overall number of incident particles, the number of
incident particles in bins of true initial momentum (where it was generated by the beam
event generator module), is also held constant. This has been omitted from Equation 7.14
for clarity.

Thus, the fit changes and until the measured and predicted reconstruction distribu-
tions best match. The result of the fit is a set of best-fit parameters  and and their
covariance which will be used for error propagation as described in the Section 7.5. The
best-fit parameter values produce a set of modified MC events that can be used as in Section
7.3 to extract cross sections.

The fit uses the MIGRAD [56] routine of the Minuit2 [57] minimizer library within
ROOT [58] to find the maximum likelihood ratio. The MIGRAD routine estimates the
gradient of the likelihood ratio surface at each fit point and follows the gradient until it
reaches the best-fit point. After finding the best-fit point, the HESSE routine within Minuit2

is called. This computes the Hessian matrix: the second derivative of the surface
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around the best fit point. The Hessian matrix is inverted to create the covariance matrix

which describes the post-fit uncertainties and correlations of the fit parameters.

7.5 Error Propagation

The output of the fit — the best-fit parameters 3 and their associated covariance matrix

— can be used to propagate the post-fit errors to the extracted cross sections. First, the
Cholesky decomposition [59] of the post-fit covariance matrix is computed. This representa-
tion of the covariance matrix (shown in Equation 7.15) is the product of an upper triangular

matrix  with positive diagonal elements and its transpose

(7.15)

A random set of fit parameters  (also known as a “throw”) can be generated by multiplying
a random unit Gaussian vector by and adding this to the best-fit parameter values
as shown in Equation 7.16.  will be randomly distributed with the same covariances of the

post-fit covariance matrix [59].

(7.16)

This procedure is repeated on the order of 1000 times to generate an ensemble of throws.

Each set of thrown parameters is used to calculate the cross section as described in Section

7.3. The cross section covariance matrix  is computed as in Equation 7.17, where is
the covariance between bins and is the cross section in bin for throw and is
the best-fit cross section in bin . Note: the bins include both absorption and charge

exchange to account for the covariances between these channels.

— (7.17)

3The set of parameters includes both the signal parameters and systematic parameters
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If any parameter is thrown into an unphysical region (i.e. for the template parameters,
below zero), the throw is repeated until all parameters are within their allowed regions. This
may results in truncated Gaussian distributions for any parameters that experience this
issue. If this truncated area is small, the distribution is considered valid and has a negligible
effect on the cross section covariance.

This throwing procedure makes an assumption that the likelihood surface around the best
fit point is distributed according to a multivariate Gaussian. If this assumption holds, the
covariance matrix from the fit describes a multidimensional contour with constant  around
the best-fit point which represents the probable spread of fit parameters. Additionally,
the cross section covariance created by this propagation procedure describes a constant-

contour centered around the best-fit cross section point [60, 61].
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CHAPTER 8

SYSTEMATIC UNCERTAINTIES

This chapter describes the systematic uncertainties and their implementation within the
analysis. The uncertainties discussed stem from the calibration, the reconstructed
beam line momentum,the modeling (via Geant4) of the hadrons as they pass through the
detector, the effect of the electron diverters on reconstructed track, and differences in the
rate of both events without a reconstructed track and those failing the beam cuts. These
uncertainties are parameterized within the fit and are constrained by a covariance within the

systematic term given in Equation 7.11.

8.1 dE/dX Calibration

Section 4.5.3 describes how the measured charge per unit distance is translated
into the energy deposited per unit distance (which is used for the energy measure-
ments of particles in this analysis). Part of this extraction is the determination of a

calibration constant .51, which sets the overall charge scale of the detector, by analyzing
stopping muons. There is some uncertainty in what this calibration constant is, and as such,
it has been implemented as a systematic parameter in the fit.

As (1 is varied within the fit, it has two large effects. The first is to change the MIP-
like separation of daughter tracks during the event selection as described in Section 6.4, and
the second is to migrate events between bins since more apparent energy will be accounted
for in the energy reconstruction. This parameter was first implemented within the fit by
rescaling the in each step of the fit where the prediction histograms are refilled before
comparing to data. This caused instability within the fit, as events would fail to migrate bins
until the parameter was turned enough. This “threshold” behavior caused discontinuities in
the surface, and so a different approach was opted for. Instead of implementing

this effect directly on the events, a weighting scheme was implemented, where varied MC
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samples were created for various values of ;). In each bin of the prediction histograms,
the ratio to nominal was taken to form a weight for that bin and ;. These weights were
then interpolated between in order to form a smoothly-varying surface that could be used
within the fit. Each step of the fit, the events are given a weight which depends on the bin

the event falls into and the value of ., for that fit step.

8.2 Beam Momentum

Section 5.1.2 describes how the beam line instrumentation reconstructs momentum using
sets of fiber monitors surrounding a bending magnet in the beam line. This section also
mentions a bulk shift to the fibers in one of the monitors that affected the reconstructed
momentum. This shift was found to be 1.45 0.18mm. In addition to the uncertainty in the
shift is an estimated uncertainty on the magnetic field. Recalling Equation 5.2 (repeated
here), these systematic uncertainties affect the reconstructed momentum as such: the fiber
shift varies , which can then cancel out a variation in

e (5.2)
These parameters would then be degenerate within the fit, and so these effects were combined
into a single momentum rescaling parameter . The prior uncertainty on  is given by the
shifts to  due to variations in both parameters added in quadrature. The effect of the
variation to is trivially . For the effect of the fiber shift, the nominal beam line
MC simulation was ran with the fibers in the third monitor shifted by its uncertainty
(0.18mm). This results in an average 0.7  shift in the reconstructed momentum. The

uncertainty on  is thus given in Equation 8.1.

(8.1)

Within the analysis, the effect of this scaling parameter is to change the difference between
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true and reconstructed momentum (defined in Equation 8.2).

Reco True (8 2)

True
The beam simulation show this is Gaussian distributed with mean and width . Some
variation to will then result in a distribution with varied and . An event can then

be given a weight according to its value of and the and  resulting from the value of
within one step of the fit. This weight is given in Equation 8.3, which is the ratio of two

Gaussian distributions.

— (8.3)

The dependences of and on  were found from studies of the beam line MC simulation
and used within the fit to form the weights as defined in 8.3.

During fit validation, it was found that this beam momentum parameter created insta-
bility in the fit due to its tendency to create extremely large weights for certain events at
large parameter variations. This made it difficult to properly assess the post-fit error of the
other parameters. As such, this parameter was chosen to be fixed during fits. Its pre-fit
uncertainty was propagated to the cross section uncertainties by adding it in quadrature to

post-fit parameter covariance matrix.

8.3 Electron Diverter Effect

As shown in Figures 6.1 and 8.1, the simulation of the grounded electron diverters (which
causes tracks to prematurely break) differs from data. To account for the uncertainty in the
strength of the track-breaking effect, a simple weighting scheme was developed to artificially
vary the track-breaking strength. The weighting scheme varies the fraction of tracks ending
above 222 cm, which end in the “track-breaking” region of 222-234 cm. This fraction, , is

defined as

Break Break (8 4)
Break
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where  Break 1S the number of broken tracks (ending between 222 and 234 c¢m), and
and are the number of tracks above 222 and 234 c¢m respectively. The probability
for a track ending above 222 cm to break is thus , while the probability for a track to not

break is
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Figure 8.1: Enhanced view of the reconstructed endpoint of beam tracks within the TPC.

Consider some variation as such: . BEach track ending above 222cm is thus

given a weight as follows, depending on if was or was not broken.

Break - - (8~5)

>234 (8.6)

The nominal value of , the fraction of events ending in the electron diverter region, in MC
is 0.6133. The central value of the scale factor was set to 0.50 as taken from comparisons

between MC and data shown here. The uncertainty on this was set naively to 20%.
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8.4 Beam Efficiencies

It was found that the Pandora had an apparent difference between data and MC in
the efficiency for identifying beam particles in the TPC. Additionally, shape differences in
the position and direction of reconstructed beam tracks (possibly due to inaccuracies in
mapping SCE as described in Section 4.5.1) created a difference in the fraction of events
passing the beam cuts. These two uncertainties were parameterized as efficiency-like effects
by varying the numbers of events in the following categories: 1) no reconstructed beam
track, 2) reconstructed beam track that fails the beam cuts, 3) reconstructed beam track
that passes the beam cuts. Let the fraction of events categorized as such be represented by

., ,and  respectively. These fractions sum to one ( ) and can be varied
as follows.

Consider some variation to these fractions (these are, in effect, variations to the two

efficiency-like effects):

(8.7)

Similar to the previous section, the events are given weights according to how they are

categorized:

— (8.8)

The nominal values for the fraction of events with no track () or failing the beam cuts
() in MC are 0.164 and 0.2305 respectively. The central value of the no-track parameter

was set to 1.62 taken from comparisons to data and MC, and its uncertainty was naively set
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to 20%. The central value and uncertainty for the beam cut parameter were naively set to

1.00 and 10% respectively.

8.5 Hadronic Interaction Modelling

In addition to uncertainties in the modeling of the detector systems described in the
previous few sections, there are uncertainties in the hadronic interaction model. While
the absorption and charge exchange interactions are measured by this analysis, the
rate of background interactions (quasielastic, double charge exchange, production) can differ
between data and MC as well. This can lead to wrongly estimated rates of categorization
errors within the fit, and cause biased results of the signal interactions. The same is true
of the rate of proton interactions as well. Protons are often emitted into the detector as
a result of the primary  -Ar interactions, and can go on to interact in the nearby argon,
producing their own interaction products. These products can influence the event selection
and produce categorization errors. Thus, differing rates of proton-argon interactions within
data and MC can also bias the cross section results.

To facilitate the propagation of hadronic modeling uncertainties related to the Geant4
stage of the MC simulation (as discussed in Section 4.6), the Geant4Reweight [62] framework
was used. This framework is able to create weights for events based on some variation
applied to a cross section model in Geant4. The weights created from this framework work
by determining how likely the event was to occur given the nominal cross sections and the
set of steps taken by a particle, and then comparing this to how likely the same event was to
occur under some variation. The weights are generated under some flat scale factor applied
over a user-defined region of momentum. The momentum regions and prior uncertainties
for each variation were determined by a crude examination of the spread of models studied
within Reference [34]. The description of the systematic parameters are given in Table 8.1.

Geant4Reweight creates a weight for each parameter by running over each and proton

created within the event and calculating a weight for that particle. These are all multiplied
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Channel Momentum Range | Prior Uncertainty
Quasielastic 0-500 MeV /¢
Quasielastic 500-2000 MeV /c
Pion Production 0-2000 MeV/c
Double Charge Exchange |  0-2000 MeV /c
Proton Reaction 0-2000 MeV/c

Table 8.1: Description of the Geant4Reweight parameters used within the fit.

together to create full event weights. For each parameter, a weight is created at intervals
of 10% from -90% to +100%. In order to create a smoothly varying effect within the fit,
the variations must be interpolated between. Prior to the fit, sets of MC are produced
at each variation for each parameter (note: only one parameter is varied at a time). For
each truth category and reconstructed bin, the ratio between the varied and nominal MC
are calculated and interpolated between using a spline. Then, when running the fit, each
parameter contributes a weight to the event corresponding to the value of the spline at the
parameter’s value. All weights from all Geant4Reweight parameters are multiplied together

when creating the predicted distributions for each step of the fit.

8.6 Systematic Covariance Matrix

Table 8.2 summarizes the pre-fit central value and the size of the prior uncertainties that
comprise the systematic covariance matrix. Note that all uncertainties described in this

section are treated as uncorrelated before the fit.

112



Parameter Nominal Value | Prior Uncertainty
Beam Momentum 1.00
Electron Diverter Fraction 0.5
No Track Fraction 1.62
Failed Beam Cuts Fraction 1.00
Quasielastic Low 1.00
Quasielastic High 1.00
Pion Production 1.00
Double Charge Exchange 1.00
Proton Reaction 1.00

Table 8.2: Description of the Geant4Reweight parameters used within the fit.
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CHAPTER 9

FIT VALIDATION

This chapter demonstrates validation of the fit framework described in Section 7.4. It in-
cludes the systematic uncertainties detailed in Chapter 8. In all tests, a set of MC simulation
produced according to the 1 GeV/c beam setting is fit to various fake data inputs also pro-
duced from MC simulation. These inputs could be the nominal MC or a set of varied MC.
The specifics of the fake data will be described in each section.

To evaluate how the fit performed, several quantities will be examined including the
post-fit values of the parameters, the extracted cross sections, and a goodness of fit metric.
Particular attention will be paid toward the post-fit values of the systematic parameters
as they compare to their prior uncertainties. The goodness of fit will be investigated by
comparing the minimum (defined in Section 7.4) found by the fit in question to the
distribution of minimum found in a set of fits to systematically and statistically varied
fake data. This comparison will take the form of a p-value, defined to be the probability
of a fit resulting in a Min at least as large as the one in question. This is defined
in Equation 9.1 where pj; represents the Min Of the fit in question, and is the
distribution of Min found from the set of systematically and statistically varied fake
data.

(9.1)
Fit

Figure 9.1a shows the distribution of Min from 1000 toy fits to systematically and
statistically varied fake data. The systematic variations were created with the systematic
parameters chosen according to the input covariance matrix (in a manner similar to the
post-fit throws described in Section 7.5). Then, each set of systematically-varied fake data
was statistically fluctuated. This distribution will be used throughout the following sections
to determine p-values for each fit.

Finally, the cross sections extracted from the post-fit MC will be compared to the cross
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sections as produced by the fake data input using the x?2 defined in Equation 9.2.

Xo =Y (0i=3)(V7); (0 —5}) (9.2)

Y]

Here, o; represents the measured cross section in bin ¢, ; represents the cross section from
either the nominal MC or fake data input (this will be specified), and (VU)Z._,J.1 is the value
of bin 4,5 of the inverted cross section covariance matrix as computed in the error prop-
agation procedure described in Section 7.5. This will be used similar to the minimum fit
statistic distribution discussed above to determine a p-value for the cross section results.

The distribution of X?, from the set of 1000 toy fits is shown in Figure 9.1b.
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Figure 9.1: Result distributions of the 1000 toy fits used for validation.
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9.1 Asimov Fit

The first validation test is a simple “Asimov” fit. In this fit, the input fake data is the
same as the nominal MC within the fit. This tests the base functionality of the fit and
whether or not the fit can correctly identify the minimum (the starting point of the fit). It
also shows the level of sensitivity the fit has for the signal and nuisance parameters. The
results are shown in Figures 9.2, 9.3, and 9.4. The first shows that the best-fit parameters
are at the starting point, as expected. The parameters in these plots are enumerated as in

Table 9.1. This will be the same for the rest of the chapter.

0 Absorption factor 400-500 MeV/ 10 Beam cut efficiency

1 Absorption factor 500-600 MeV / 11 Beam momentum resolution
2 Absorption factor 600-700 MeV/ 12 calibration constant

3 Absorption factor 700-800 MeV/ 13 Electron diverter effect strength

4 Absorption factor 800-1000 MeV / 14 | Geant4Reweight Double Charge Exchange

5 | Charge Exchange factor 500-600 MeV/ | 15 Geant4Reweight Pion Production

6 | Charge Exchange factor 600-700 MeV/ | 16 Geant4Reweight Quasielastic Low

7 | Charge Exchange factor 700-800 MeV/ | 17 Geant4Reweight Quasielastic High

8 | Charge Exchange factor 800-900 MeV/ | 18 Geant4Reweight Proton

9 Muon factor 19 No-track efficiency

Table 9.1: The parameters used within the fit. The numbers correspond to the bins shown
in the figures throughout the chapter.
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The post-fit and nominal MC reconstructed distributions in Figure 9.3 are identical to
the Asimov fake data, and both distributions have a —21In A of 0 with respect to the fake

data as expected from this closure test.

Parameter

Parameter Value

e e b e b b e b b 1 vl
0 2 4 6 8 10 12 14 16 18 20 14 16 18 20

Parameter Parameter

(a) Pre-fit and post-fit parameters. (b) Post-fit correlation matrix of the fit
parameters.

Figure 9.2: Asimov fit results.

Pre-fit —21n )‘Stat 0.00
Post-fit —21n Agtat 0.00
Post-fit —2In Agyst | 0.00

Fit p-value 1.00
Nominal x2 0.00
Fake Data y2 0.00
Nominal o p-value 1.00

Fake Data o p-value | 1.00

Table 9.2: Numerical results of the fit to Asimov fake data.
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Figure 9.3: Reconstructed distributions of events in data (black points), Nominal MC (blue
histogram), and post-fit results (red histogram) for the Asimov fit. The post-fit results
cannot be seen as they are exactly equal to the pre-fit and fake data distributions in this
case.
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Figure 9.4: Cross sections extracted from truth information taken from the post-fit MC
("Measured", black points), Nominal (blue points), and Asimov Fake Data (red points).
The nominal cross sections cannot be see seen, as they are exactly equal to the fake data
and post-fit MC. 9.4c is the correlation between the cross sections. The first five rows are the
absorption, and the last four rows are charge exchange. Note that the correlations between
the two cross section types are included.
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9.2 Statistically Independent Nominal MC

This test is similar to the previous Asimov fit where the input fake data is the nominal
MC. However, half of the nominal MC was used as the input fake data, and the other half was
used as the input MC. This is to test the performance of the fit to a statistically-independent
set of nominal MC. The input fake data is expected to deviate from the input MC by a normal
statistical fluctuation. This can be seen in Figure 9.6, where the fake data points no longer
lay directly on top of the input MC. As can also be seen in Table 9.3, the post-fit —21In A
between the post-fit and fake data reconstructed distributions is less than that between the
pre-fit and fake data distributions, as expected. In Figure 9.5a, the systematic parameters
can be seen to vary from nominal, but within the set of prior uncertainties presented within
the plot (as the blue bands). Finally, the y2 between the measured and fake data cross
sections as shown in Figure 9.7 shows the measured cross section is statistically consistent

with the cross section extracted from the fake data set.
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(a) Pre-fit and post-fit parameters. (b) Post-fit correlation matrix of the fit
parameters.

Figure 9.5: Fit results for the statistically independent nominal MC fit.
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Figure 9.6: Reconstructed distributions of events in data (black points), Nominal MC (blue
histogram), and post-fit results (red histogram) for the statistically independent nominal
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Figure 9.7: Cross sections extracted from truth information taken from the post-fit MC
("Measured", black points), Nominal (blue points), and Fake Data produced from statisti-
cally independent nominal MC (red points). 9.7c is the correlation between the cross sections.
The first five rows are absorption, and the last four rows are charge exchange. Note that the

correlations between the two cross section types are included.

Pre-fit —21n Ag¢4¢ 14.72
Post-fit —2In Agt,t | 7.94
Post-fit —21In Agyg | 0.21
Fit p-value 0.98
Nominal y2 2.22
Fake Data X?; 2.20
Nominal o p-value | 0.99
Fake Dataoc p-value | 0.99

Table 9.3: Numerical results of the fit to statistically independent fake data.
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9.3 Systematic Variation

In this test, the fake data has been generated by using a statistically independent set
of MC produced with varied systematic parameters. This is generated by first creating a
random set of systematic parameter values. To create these values, a vector of random, unit-
Gaussian distributed values is produced and then multiplied by the lower triangle of the
Cholesky decomposition of the prior covariance matrix of the systematic parameters. This
produces a set of values for the parameters with all correlations encoded. These systematic
parameter values are then applied to half of the MC sample. Both the fake data reconstructed
distributions and the cross sections are extracted from this varied MC sample. The other
half of the MC is used as the input MC to be varied within the fit. The results are shown in
Figures 9.8, 9.9, and 9.10. Figure 9.8a now includes the input systematic parameters used
to create the variation (labeled "Toy Values"). As can be seen in this figure, the post-fit
systematic parameters approach the input values. Shown in Table 9.4, the —21In A between
MC and fake data show a large reduction as a result of the fit. Finally, in Figure 9.10 one
can see that the y2 between the measured and fake data cross sections shows a consistent

fit result.
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(a) Pre-fit and post-fit parameters. (b) Post-fit correlation matrix of the fit
parameters.

Figure 9.8: Fit results for the systematically varied fit.
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3

(red points). 9.10c is the correlation between the cross sections. The first five rows are
absorption, and the last four rows are charge exchange. Note that the correlations between

the two cross section types are included.

6 7 8 9
Cross Section Bin

Pre-fit —21n Ag¢4¢ 71.82
Post-fit —21n Agt.t 10.34
Post-fit —21In Agygt | 1.42
Fit p-value 0.82
Nominal y2 3.04
Fake Data X?, 3.64
Nominal o p-value 0.96
Fake Data o p-value | 0.94

Table 9.4: Numerical results of the fit to systematically and statistically varied fake data.
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9.4 Geant4Reweight Fake Data

For this test, fake data is produced by reweighting! half of the nominal MC according
to some set of  -Ar and -Ar cross section variations using Geant4Reweight. Three sets of
fake data were created. The first set was created varying the signal cross sections by some
“reasonable” amount (i.e. similar to the level of the prior uncertainties of the Geant4Reweight
parameters). The second set was created by varying the signal cross sections by an amount
larger than the prior uncertainties on the Geant4Reweight parameters. The final set was
created by varying both the signal and background cross sections. The background cross
sections were varied in a different parameterization than those used in the fit: the bins of the

Geant4Reweight variations in the fake data did not align with the bins in the fit parameters.

9.4.1 Reasonable Variations

The first set of fake data was created with the absorption cross section increased by 30%
and the charge exchange cross section reduced by 10% across the full MC momentum range.
Shown in Figure 9.11a, the systematic parameters are kept within their prior uncertainties.
The reconstructed distributions in Figure 9.12 shows the fit ends in good agreement with
the fake data distributions as can be seen in the post-fit . Finally, the cross section
extracted from the fit agree quite well with the cross sections extracted from the fake data

"

set as can be seen in the "Fake Data in Figure 9.13.

LA process to produce varied Monte Carlo samples assuming alternate cross section mod-
els, described in Section 8.5.
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(a) Pre-fit and post-fit parameters. (b) Post-fit correlation matrix of the fit
parameters.

Figure 9.11: Fit results for the reasonable-variation Geant4Reweight fake data fit.

Pre-fit —21n )\Stat 30.34
Post-fit —21n Agtat 7.65
Post-fit —2In Agyst | 0.54

Fit p-value 0.95
Nominal X% 4.09
Fake Data X?f 1.90

Nominal o p-value 0.91
Fake Data o p-value | 0.99

Table 9.5: Numerical results of the fit to reasonable-variation Geant4Reweight fake data.
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Figure 9.12: Reconstructed distributions of events in data (black points), Nominal MC (blue
histogram), and post-fit results (red histogram) for the reasonable Geant4Reweight fake data
fit.
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Figure 9.13: Cross sections extracted from truth information taken from the post-fit MC
("Measured", black points), Nominal (blue points), and less extreme Geant4dReweight Fake
Data (red points). 9.13c is the correlation between the cross sections. The first five rows are
absorption, and the last four rows are charge exchange. Note that the correlations between
the two cross section types are included.
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9.4.2 Plausible Variations

The second set of fake data created with Geant4dReweight contained an increase to the
absorption cross section by 80% and a reduction of the charge exchange cross section across
the full momentum range by 60%. Shown in Table 9.6, the fit ends with a consistent —21In A
the post-fit nuisance parameters are within their prior uncertainties showing a successful fit

to the fake data. In Figure 9.16, a drastic reduction in X<2; is shown, indicating the fit can

successfully pick out a variation to the signal cross sections at this level.
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Figure 9.14: Fit results for the plausible-variation Geant4Reweight fake data fit.

Pre-fit —21n gyt

151.75

Post-fit —21n Agt.t
Post-fit —21n Agyst
Fit p-value

8.01
1.33
0.92

Nominal y2
Fake Data X%
Nominal o p-value

Fake Data o p-value

41.31
2.93
0.12
0.97

Table 9.6: Numerical results

of the fit to plausible-variation Geant4Reweight fake data.
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Figure 9.16: Cross sections extracted from truth information taken from the post-fit MC
("Measured", black points), Nominal (blue points), and plausible-variation Geant4Reweight
Fake Data (red points). 9.16c is the correlation between the cross sections. The first five
rows are absorption, and the last four rows are charge exchange. Note that the correlations
between the two cross section types are included.
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9.4.3 Extreme Variations

The final set of fake data created with Geant4Reweight weights was intended to represent
“extreme” variations. The variations applied to the MC are to increase the total inelastic
cross section by 80% up to 800 MeV/c momentum and to reduce the total inelastic cross
section by 60% above 800 MeV /c. As can be seen in the Figures 9.17 - 9.19, the fit finds a
minimum, but the results indicate a poor result. A few of the systematic parameters shown
in Figure 9.17a are pulled outside of their prior uncertainties. The post-fit —21In A in Table
9.7 is large, indicating a bad goodness-of-fit. This suggests that the parameterization used
within the fit is not suitable for this fake data. As described in Section 8.5, the systematic
parameter for pion production is a single bin from 0 to 2 GeV /¢, whereas the variation used
to create the fake data has a more complicated shape to it. This is an example of where
the fit on data could fail to find a useful result. If this was seen in a fit to data, we would
reconsider the parameterization of the Geant4Reweight parameters (i.e. the coarseness of

the variation bins).
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(a) Pre-fit and post-fit parameters. (b) Post-fit correlation matrix of the fit
parameters.

Figure 9.17: Fit results for the extreme Geant4Reweight fake data fit.
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Figure 9.18: Reconstructed distributions of events in data (black points), Nominal MC (blue
histogram), and post-fit results (red histogram) for the extreme Geant4Reweight fake data
fit.
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Figure 9.19: Cross sections extracted from truth information taken from the post-fit MC
("Measured", black points), Nominal (blue points), and extreme Geant4dReweight Fake Data
(red points). 9.19¢ is the correlation between the cross sections. The first five rows are
absorption, and the last four rows are charge exchange. Note that the correlations between
the two cross section types are included.

Pre-fit —21n Ag¢at 358.02
Post-fit —21n Agt,¢ | 31.62
Post-fit —21In Agygt | 5.87

Fit p-value 0.01
Nominal y2 78.76
Fake Data X?, 15.90
Nominal o p-value .08

Fake Data o p-value | 0.41

Table 9.7: Numerical results of the fit to unreasonable-variation Geant4Reweight fake data.
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9.5 Pion Angle Variation

The next set of fake data used to validate the fit considers a variation to the outgoing
direction of pions produced in quasielastic (QE) events. Note that this is defined according
to the signal definition, and the outgoing pion is required to have above 150 MeV /c for the
event to be considered QE. This is done to test whether the fit is resilient to mismodeling of
outgoing pion kinematics in the Geant4 model used. The angular distribution of outgoing
pions in QE events was modified by-hand to create a varied MC sample. This is done in bins
of true momentum at interaction in order to prevent some variation to be imparted on the
distribution of pion momentum at interaction. The bin edges for these are (0, 400, 600, 800,
1000, 2000) MeV /c. In each final momentum bin, the ratio of the varied distribution to the
nominal distribution is used as an event weight to create a set of fake data. Cross sections
from the set of varied MC used to create the fake data are extracted and compared to the

post-fit MC.

9.5.1 Flat Distribution

In this set of fake data, the angular distribution of final state pions is flattened. The nominal
distribution, varied distribution, and ratio used for weighting from the 600-800 MeV /¢ bin

are shown in Figure 9.20.
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Figure 9.20: Inputs for this fake data test.

As can be seen in Figure 9.22, small variations occur throughout the distributions. The
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most interesting bin is the lowest bin in Figure 9.22d, as it can be explained from the
variation applied. This bin contains QE events with a forward-going pion. Since these
forward-going events have been suppressed in the fake data, this bin has been lowered. Still,
the results of this fit are promising. The post-fit —2In A in Table 9.8 shows that the fit is
insensitive to variation, indicating a robustness against data-MC disagreements of this type.
The small variations in the bins mentioned previously show low sensitivity to this type of
physical variation. Furthermore, the y2 between the Measured and Nominal & Fake Data

cross sections in Figure 9.23 show a consistent measurement.
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parameters.

Figure 9.21: Fit results for the flat pion fit.

Pre-fit —21n )\Stat 18.56
Post-fit —21n Agtat 6.61
Post-fit —2In Agyst 0.33

Fit p-value 0.98
Nominal X% 2.21
Fake Data X(27 2.15

Nominal o p-value 0.99
Fake Data o p-value | 0.99

Table 9.8: Numerical results of the fit to varied pion angular distribution fake data.
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CHAPTER 10

RESULTS

This chapter shows the results of the fit to ProtoDUNE-SP beam data from Run 5809 taken
during its initial running period in the Fall of 2018. The data is comprised of beam-triggered
events with a PID corresponding to (as defined in Section 5.2). The pre-fit and post-fit
parameters and their corresponding uncertainties are shown in Figure 10.1a along with their
post-fit correlation matrix. The pre-fit (referred to as “Nominal”) MC, post-fit MC, and data
event distributions are shown in Figure 10.2. Lastly, the cross sections extracted from the
fit to data are shown in Figure 10.3. This figure contains the correlation matrix and 1-D
error bars (taken from the diagonal of the covariance matrix) as computed from the error
propagation procedure described in Section 7.5.
Figure 10.1a shows the effect on the systematic parameters as a result of the fit. The
calibration and beam cut efficiency parameters are tightly constrained within the
fit, but remain within their prior uncertainties. The Geant4Reweight parameters remain
unconstrained by the fit.

The event distributions shown in Figure 10.2 show good agreement between the post-fit
MC and data distributions. The resulting p-value of the fit is 0.998, pointing to a successful
parameterization of the fit. However, it suggests that the fit could be “too good”. This could
be due to the choice of parameterization of the fit (perhaps the effects of the efficiency-
like systematic parameters are too strong), or it could be due to the size of the post-fit
uncertainties being too large.

Finally, the extracted cross sections shown in Figure 10.3 remain consistent with the
nominal-MC cross section, as indicated by the of 14.93 shown in these plots. The p-value
of this is 0.43, indicating the post-fit cross sections remain consistent with the nominal cross

sections at this level of uncertainty.
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Figure 10.1: Fit results for the fit to ProtoDUNE-SP data.

Pre-fit —21n Ag¢at

874.37

Post-fit —21n )\Stat
Post-fit —21In Agygy
Fit p-value

4.14
0.31
0.998

Nominal Xg

Nominal o p-value

14.93
0.43

Table 10.1: Numerical results of the fit to ProtoDUNE-SP run 5809 data.
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10.1 Future Work

Some shortcomings within the analysis are worth addressing here. The cross sections
shown in this chapter have relatively large error bars, and remain compatible with the nomi-
nal MC at this level of uncertainty. Though this compatibility is not an issue, a reduction in
the measurement’s uncertainty would allow us to determine if there is a significant difference
to the cross section models used in DUNE’s simulation. A larger data set (such as more
runs taken during Fall 2018) would of course reduce the statistical uncertainties, while a
better understanding of the underlying cause of the Pandora reconstruction efficiency would
improve the systematic uncertainties. The improved understanding of what is causing the
data-MC discrepancies regarding the reconstruction efficiency could provide a more suitable
uncertainty parameterization than the ad-hoc efficiency factors currently used in the fits.
We also chose to neglect SCE uncertainties in this analysis, though these are in development
and will be added in the future. Following the implementation of the SCE uncertainties, the
other runs taken in Fall 2018 will be added. This will increase the size of the data set in
the fit by a factor of 9. These issues will all be iterated upon in future work as this analysis
moves toward publication by the DUNE collaboration. Additionally, a planned second run

of ProtoDUNE-SP will provide even more data for this and future measurements.

10.2 Conclusion

Presented in this thesis is one of the first measurements of  interactions on Argon using
ProtoDUNE-SP data. This measurement would have been impossible without the large
amount of work undertaken within the DUNE collaboration to construct and commission
this detector, currently the largest single-phase LArTPC to have operated. The rapid data-
taking in the Fall of 2018 was followed by an immense effort to carefully categorize and
calibrate the data and also to produce an accurate simulation of the detector. An exciting
future awaits ProtoDUNE-SP, as additional configurations of the detector and more beam

data are planned in the coming years.
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This analysis shows the first ever measurement of 7T-Ar charge exchange and the
first measurement of 7T—-Ar absorption in this energy range. The LADS collaboration
measured[14] 7T—Ar absorption at an energy range below that shown in this thesis. The
LADS measurement is compared to the measurement from this analysis as well as to the
prediction from Geant4! in Figure 10.4a, while the this measurement of charge exchange is
compared to Geant4 in Figure 10.4b. Of interest is the disagreement between the Geant4
model and the LADS data in the resonance region. A similar analysis using data from
ProtoDUNE-SP at lower momentum will provide a chance to explore this region further. At
higher momentum, the results of this analysis show close agreement with the Geant4 model

for both channels?.
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Figure 10.4: The measured 7 Ar absorption (left) and charge exchange (right) cross sec-
tions compared to the nominal Geant4 model. Additionally, the left plot contains an earlier
measurement of absorption from the LADS experiment |14].

The fit used to perform this analysis is based on analyses from the T2K experiment to
measure v, and 7, interactions in their near detector ND280 [63][64][65][66][67]. It includes
systematic uncertainties due to the detector and signal model. The benefit of doing such

an analysis is that it produces robust estimates of the uncertainties and correlations on the

IThese curves were generated by an application within the Geant4Reweight framework.
A 150 MeV /c pion momentum threshold was applied in order to match the signal definition
for these measurements. The LADS data does not include this threshold.

2Though the lowest bin of the charge exchange channel appears quite high compared to
the Geant4 model, the measured cross section is statistically consistent with the model as
discussed previously.
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extracted cross sections. This allows the data to be properly compared to interaction models
used within detector simulations for upcoming experiments including the Short-Baseline
Neutrino Program at Fermilab and, ultimately, DUNE. By doing this, important systematic
uncertainties regarding the rate of secondary interactions of neutrino interaction products
can be constrained, and will help allow DUNE to achieve the experimental precision required

for its physics goals.
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