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ABSTRACT: Accounting for selection effects in supernova type Ia (SN Ia) cosmology is crucial
for unbiased cosmological parameter inference — even more so for the next generation of
large, mostly photometric-only surveys. The conventional “bias correction” procedure has a
built-in systematic bias towards the fiducial model used to derive it and fails to account for
the additional Eddington bias that arises in the presence of significant redshift uncertainty.
On the other hand, likelihood-based analyses within a Bayesian hierarchical model, e.g. using
MCMC, scale poorly with the data set size and require explicit assumptions for the selection
function that may be inaccurate or contrived.

To address these limitations, we introduce STAR NRE, a simulation-based approach that
makes use of a conditioned deep set neural network and combines efficient high-dimensional
global inference with subsampling-based truncation in order to scale to very large survey
sizes while training on sets with varying cardinality. Applying it to a simplified SN Ia
model consisting of standardised brightnesses and redshifts with Gaussian uncertainties and
a selection procedure based on the expected LSST sensitivity, we demonstrate precise and
unbiased inference of cosmological parameters and the redshift evolution of the volumetric
SN Ia rate from a2 100 000 mock SNe Ia. Our inference procedure can incorporate arbitrarily
complex selection criteria, including transient classification, in the forward simulator and
be applied to complex data like light curves. We outline these and other steps aimed at
integrating STAR NRE into an end-to-end simulation-based pipeline for the analysis of
future photometric-only SN Ia data.
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1 Introduction

Type la supernovae are extremely bright stellar explosions that can be used to study the
expansion history of the Universe. In SN Ia cosmology, information about the cosmological
model and its parameters is extracted from the relation between apparent brightness, a
proxy for distance, and redshift of the supernovee. However, SNz Ia are not perfect standard
candles and exhibit an intrinsic scatter of absolute magnitudes on the order of 0.1 mag even
after standardisation through empirical correlations [1-3]. Therefore, SNz Ia are subject to
Malmquist bias [4, 5], whereby, at a given redshift, less bright members of the population
remain undetected in noisy telescope observations (or their properties cannot be reliably



determined). This effect increases with redshift, i.e. luminosity distance to the supernova
(for a given cosmology), until no dimmer / more distant objects are detected past a certain
redshift. Malmquist bias thus results in a difference between the distribution of brightnesses
of detected objects with respect to those of the underlying population. Crucially, the size of
the bias changes with redshift in a way that can be mistaken for an alternative cosmological
model: i.e. it biases the cosmological inference if unaccounted for.

Malmquist bias is but one of numerous selection effects impacting SN Ia cosmology,
which also include the preference for detecting bluer SNe Ia or those that remain bright
for longer (and thus have a larger chance of being observed). Since these properties are
correlated with the supernova’s intrinsic brightness, they too have an effect on the inferred
cosmology. Furthermore, the data releases of modern observational campaigns and subsequent
cosmological analyses employ increasingly sophisticated criteria for detecting, selecting, and
classifying SNee Ia, taking into account the availability and quality of spectroscopic follow-up
of the supernova and/or its host galaxy, the fidelity of laborious light-curve model fits [e.g.
SALT; 6-9], and the outputs of black-box neural network classifiers [e.g. 10]. This makes an
exact treatment of selection effects from first principles practically impossible, necessitating
the development of approximate schemes for mitigating the biases induced by selection,
which fall into two major categories.

On the one hand, methods for bias correction [11] introduce an offset to the observed
SN Ia magnitudes that negates the selection bias on average,' given a fiducial model that fixes
e.g. the correlation coefficients between brightness and stretch/colour, the SN Ia rate with
redshift, and, most importantly, the cosmological model. The size of this magnitude correction
as a function of redshift? is fixed and determined from a large preliminary simulation of the
SN Ia population to which the full selection procedure is applied.

However, the correction does depend on the chosen parameters and, more importantly, is
completely degenerate with the sought-after signature of the cosmological model, namely the
variation of brightness with redshift. While the adoption of constraints from external data,
e.g. the cosmic microwave background (CMB), may break the degeneracy, in general, bias
corrections with incorrect fiducial parameters lead to incorrect cosmological inference (see e.g.
figure 4 in [11] and appendix C.3 below). The consistency of analyses with bias correction
was recently investigated by [13] in the frequentist context with a Neyman construction
(similar in spirit to the one we introduced in SICRET, figure 8). However, they do not
consider the possibility of significant redshift uncertainties (whose importance we demonstrate
throughout this work). Their suggested amendment to the bias correction would fail if the
assumed fiducial cosmology is inconsistent with the true one. The required degree of closeness
between the sought-after true cosmology and the fiducial cosmology used for bias correction
simulations depends on the statistical constraining power of the data and thus, ultimately,

! Alongside correcting the mean brightness-redshift trend, the assumed uncertainty around it can also
be modified to take into account the reduction in the variety of observed SNee la with respect to the total
population: see [11, subsection 5.3].

2Since [11], the framework for bias corrections has been altered and augmented, notably by [12], and
currently encompasses several variants with different “independent” and “response” (i.e. corrected) variables
beyond redshift and magnitude: namely, the SN stretch and colour and properties of the host galaxy: see
figure 1 in [12].



on the number of detected SNe Ia, which is set to increase drastically in coming years. The
importance of a principled, transparent and easily reproducible framework is demonstrated by
the recent arguments in the literature about an apparent inconsistency of ~0.04 mag between
the common SNe Ia in the Dark Energy Survey (DES) 5-year sample and in the Pantheon+
compilation, as pointed out by [15]. A rebuttal [16] reproduces the offset but argues that
it is due to improved intrinsic scatter modelling and different selection functions between
the two samples, which result in different bias corrections.

Usually, the magnitude offset for each SN needs to be calculated for a single redshift
value, typically the maximum likelihood estimate (MLE), thus ignoring any associated
uncertainty. However, only a small fraction of the detected transients in future surveys
will have precise spectroscopic redshift estimates (with uncertainty ~107°), relying instead
solely on photometry (of the transient itself and/or of the host), which is known to produce
highly uncertain and non-Gaussian estimates [17, see also 18, figure 1]. As we show in
appendix C, significant redshift uncertainties, in combination with a varying rate of SN Ia
explosions with redshift, lead to an Eddington bias [19] in the magnitudes of selected SNee Ia
even in the absence of brightness-related selection/detection criteria, which traditional bias
corrections are not designed to handle.? Even though the systematic bias is small in absolute
terms, it will become dominant when compared to the vanishing statistical uncertainties
of future large SN surveys.

While bias correction is an ad hoc procedure, more principled — Bayesian — frameworks
for SN Ia cosmology have also been developed to properly account for uncertainties on
multiple levels: population, individual objects, and instrumental noise in a so-called Bayesian
hierarchical model (BHM). Initially introduced to SN Ia cosmology by [21], this approach was
extended by [22-26] to include a variety of physical and observational effects like correlations
with the host galaxy, non-Ia contamination, and probabilistic sample selection.

Inference within a BHM is traditionally performed through Markov chain Monte Carlo
(MCMC) sampling of the joint posterior, which requires either explicit evaluation of the
full hierarchical likelihood or analytical marginalization over latent variables, which is only
possible under simplifying assumptions of Gaussianity of the distributions and linearity. The
full likelihood requires specifying the selection probabilities for each SN as a function of
all model parameters: object-specific (stretch, colour, redshift, etc.) and global (cosmology,
standardisation coefficients, rates, calibration, etc.), and evaluating them at every step in
the chain. But since the selection function is unavailable from first principle, current BHM
implementations [24-27] resort to fast analytic approximations and/or potentially inaccurate
simplifying assumptions for its analytic marginalisation over unobserved objects.

Furthermore, the scalability of likelihood-based analyses is hindered by the necessity (in
general) to sample/infer the full parameter space, which grows with the data set size, as each
new SN introduces a set of latent parameters which are tractable only for very specific —
typically Gaussian and linear — models. State-of-the-art Bayesian light-curve models like
BayeSN [28-30] feature tens of parameters per SN, and while some of the computational

3Ref. [20] suggested to correct for this additional bias as part of the selection effects treatment. However,
this requires knowledge of the true cosmological model to correct towards; in other words, it leads to imprinting
the fiducial parameters onto the data even more firmly than usual.



burden in sampling them can be alleviated through the use of modern Bayesian inference
techniques [31, 32] or direct numerical marginalisation [e.g. 33|, designing an appropriate
high-dimensional approzimation to the selection probability and tuning/training it remains a
significant challenge. On the other hand, scientific conclusions are usually drawn from the
marginal posteriors for a handful of global parameters — e.g. the subset related to cosmology
or to the connection between SNz and their hosts.

To overcome these challenges, particularly in view of future large-scale surveys like the
Legacy Survey of Space and Time (LSST) from the Rubin Observatory and the Roman Space
Telescope’s Wide-Field Infrared Survey, which are forecast to observe hundreds of thousands
of transients, we propose simulation-based inference (SBI): a framework that abstracts the
BHM into a stochastic forward simulator used to generate realistic mock data while randomly
sampling all model parameters from their hierarchical priors. During inference, the simulator
is treated as a black box, which has two important consequences. First, SBI can easily incorpo-
rate any probabilistic effects (e.g. selection, contamination) as long as they can be represented
through forward sampling — rather than the explicit evaluation of a likelihood/probability;
hence, SBI is uniquely poised to solve realistic selection effects exactly. Secondly, SBI naturally
produces marginal results for the parameters of interest, implicitly integrating out all other
stochastic variables in the simulator; typically, this requires much fewer simulations than
likelihood evaluations [see e.g. 34, figure 8] and does not explicitly scale with the size of the
latent space (i.e. the data size) beyond the linear need to simulate and process all objects.

The recent rise in popularity of SBI in the physical sciences? is largely attributable to the
adoption of neural networks (NNs) as either likelihood, posterior, or likelihood-to-evidence
ratio estimators in the different flavours of neural SBI: NLE, NPE, NRE; see [35, 36] for
overviews and an extended comparison. Previous applications in the field of SN Ia analysis
include non-neural SBI using approximate Bayesian computation (ABC) [37-39], NPE for
cosmological inference from summary statistics [40-44] and for inferring the properties of
individual SNe Ia from interpolated light curves [45, 46], and hierarchical inference (i.e.
of both object-specific and population-level parameters simultaneously) using NRE from
large fixed-size collections of summary statistics [14, hereafter SICRET] and from raw light
curves [47, hereafter SIDE-real]. Transcending inference, [48] adapted marginal NRE for use
in Bayesian model comparison applied to an array of hierarchical SN Ia population models.

All previously mentioned works found the capabilities of simple fully-connected NNs
(so-called multi-layer perceptrons (MLPs)) sufficient. Meanwhile, a large variety of NN
architectures are being developed to extract and exploit the information contained in var-
iously structured real-world and industrial data: e.g. images, point clouds, graphs, word
sequences (i.e. natural language), and mixtures thereof (i.e. multi-modal data). Particularly
relevant to SNee — and other transients — are recurrent and attention-based (transformer)
architectures, which have been applied to classification [10, 49] and deriving informative
fixed-size representations [50-52] from light-curve data, i.e. varying-length ordered sequences
of observations of a single transient.’

“Compilations of references can be found on https://simulation-based-inference.org/ and https://github.c
om/smsharma/awesome-neural-sbi.

5A notable alternative approach to handling the cadence variety of SN light curves is to interpolate them
onto a fixed grid in time and wavelength: see e.g. [46, 53].
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On the other hand, survey catalogues are inherently unordered data sets, whose sizes are
still a priori unknown: i.e. the number of mock SNa detected is not fixed in the simulator
(see subsection 2.2 for further discussion) and may carry useful information for the parameters
of interest (see subsection 3.1). Previous applications of SBI [54-57] have considered only
modestly sized sets (up to a few hundreds of objects) and regarded their cardinality as
uninformative, simply amortising the learning over different-sized data via one of two set-
based NN architectures: deep sets [58] and the set transformer [59].5 While the latter is
more expressive and more tailored towards capturing correlations between object pairs (and
triples, etc. as the depth is increased), the underlying attention mechanism has quadratic
scaling in both memory and compute,” and even though this can be somewhat mitigated,
the simpler deep set architecture has been shown to better aggregate global information
from large sets [57, figure 2]. Combined with a favourable linear scaling of memory and
computational requirements, deep sets are our choice for SN Ia cosmology from future-sized
data containing on the order of 10° SNz (see subsection 3.1).

Lastly, we survey the few existing efforts in tackling selection effects with SBI. Ref. [63]
noted a similarity between detection/selection and truncation (a method that boosts the
performance and simulation-efficiency of neural SBI), although their problem was not catalogue
based; instead, selection/detection of point sources in input gamma-ray images was introduced
for the benefit of truncation and solved using four separate ratio estimators. In the field of
standard siren inference — of the Hubble constant from binary mergers detected through
gravitational waves — ref. [64] used rejection sampling in the simulator to produce mock
selected catalogues of a size fixed to that of the real data set, which they then compressed
into a few automatically optimised global summary statistics with which to perform (global)
NLE. Ref. [65] followed a similar approach but used an intricate hand-derived summarisation
procedure and NRE. Finally, [66] recently demonstrated an application of a neural density
estimator as a very flexible emulator for the selection-affected distribution of summary
statistics for an individual object in a simplified BHM for SN Ia cosmology. This approach,
however, requires a high level of precision to allow for combining the NN results over a
large collection of SNee and disregards the information contained in unobserved objects
(see subsection 2.1).

In contrast to previous works, our method directly delivers marginal results, imposing no
restrictions on the simulator’s internal structure when it comes to the latent parameters of
individual objects or the output size. It can thus handle an arbitrarily complicated selection

SHere we must note the alternative approach of applying traditional SBI to individual objects and combining

the results with some trivial aggregation like summation of log-probabilities over a data set with inherently
unknown size [e.g. 60-62]. Crucially, this strategy is only applicable when the observations are independent
and identically distributed (i.i.d.), conditionally on the inferred parameters, which is often not the case with
marginal inference and may thus force one to learn a much higher-dimensional likelihood than needed. Even
though we do learn the full global parameter space for the sake of truncation, our method does not require
conditional independence because of the flexible deep set aggregation.
Moreover, combining individual likelihoods is prone to accumulation of the inevitable approximation errors
from approximate per-object inference: e.g. [60, figure 8] observed a bias when combining inference from 1000
objects, while [62] were able to scale to (ezactly) 10* only by training an additional fixed-input-size network to
aggregate the likelihood estimates, correcting the inaccuracy.

"Indeed, only recently have the context windows of large language models extended beyond 100000 tokens.



procedure. Furthermore, it extracts the information contained in the data set cardinality, at
the expense of learning a more complicated function from a varying-size set input. It thus
represents the definitive solution for handling selection effects in simulation-based inference
from object catalogues.

This paper is organised as follows. In section 2, we introduce the problem in generality,
the caveats of restricted SBI approaches (illustrated in appendix A), and our strategy for
overcoming them, optimising training, and boosting inference fidelity dubbed STAR NRE (we
provide implementation details in appendix B). Then, in section 3, we develop a simplified
model for SN Ia cosmology that captures the essence of relevant selection effects: Malmquist
and Eddington bias, elucidating the latter and demonstrating the failure of traditional bias
correction in appendix C. We present results from STAR NRE using mock data in section 4
before concluding and discussing outlook for future applications in section 5.

2 Inference framework

In this work, we address a problem in hierarchical Bayesian inference common across many
fields: deriving posteriors for the parameters of a population of objects from measurements
of a non-random subset of them, determined by a given selection/detection procedure. In
this section, we introduce the problem and our solution in generality, whereas in section 3 we
detail a simplified model for SN Ia cosmology that we use for demonstration.

2.1 Probabilistic description of sample selection

We assume a complete population (before selection) consisting of an unknown number Ny of
objects, out of which Nyps (known) have been measured to produce the data set {di}, with
i€ {l,..., Nops}. We assign to each of the Niy objects a random variable S that indicates
whether the object has been observed (= S,) or missed (= Sy,). For clarity, we will label
missed objects with j € {Nops + 1, ..., Niot} and simply write S¢ to mean “object i has been
observed /selected /detected” (S? = S,) and similarly with S/, for missed/undetected objects.

In this discussion, “missed” are such objects that could have been detected but were
not, owing to the particular realisation of their latent properties and observational noise.
This scenario is relevant to SN Ia cosmology for two reasons. Firstly, data is extracted from
telescope images which in principle include all SNz Ia in the field of view; while dim ones go
unnoticed, data is recorded, through forced photometry, for all detected events. Secondly,
even among detected SN Ia, a majority are discarded (forcefully “missed”) for cosmological
analyses owing to a deemed “poor quality” of the data, e.g. low signal-to-noise ratio (SNR). In
this context, the “total population” are all SNz Ia within the survey sky area® that explode
during the survey duration, and the “selection procedure” is the full process that determines
which objects get included in the final analysis.

Assuming a hierarchical model with parameters collectively labelled ¥, the likelihood

\11);

8And up to infinite redshift; in practice, assumptions for the population beyond the detection limit do

is a product of the following terms: the probability densities of recorded data, p(di

not influence the analysis, so we can set an arbitrary redshift limit, as long as it is well beyond the furthest
detectable object for any population parameters allowed by the priors.



the probabilities of detecting each of the Ny objects, p(Si

d’ lIl) the probabilities of
missing the remaining Nioy — Nops objects, p(SZ, | ¥); and the binomial coefficient (N“:)
which accounts for permutation invariance of the labels:

() T ot ofe ) | T 9

J

Inserting []; Nobs (Sé | W¥) both in the numerator and in the denominator lets us identify
two distinct contributions:

d’ d | v tot—Nobs
p(Sé?‘I’g ) (Nt0t> Hp(s% >XHP( S| ¥).

Hivobs p(dl | Sé,‘I’) p(Nobs I NtOtv‘I’)

Nobs (S’

i

corresponding to the usual data likelihood of the individual objects given that they have been
selected (first term) and to the probability of collecting a data set consisting of exactly Nops
objects from a population of Ny (second term). Naturally, the latter describes the probability
of Nyps selection “successes” out of Ny trials, based on the success/fail probabilities of
the individual “events” (which can be different, depending on the observing conditions
and/or noise).

Since Nyt is a priori unknown, it needs to be marginalised over after being assigned
a prior? p(Niot | ¥), which leads to:

o

P(Nobs | ®) = > p(Nobs | Neot, ¥) x p(Neot | ). (2.1)
Ntot:()

Two simplifying circumstances are often present in scientific applications: first, the prior
model for the population size, p(Niot | ¥), is a Poisson distribution with rate (Niot)(®)
calculated from the global parameters; and second, the objects are a priori indistinguishable,
so all selection probabilities p(S | ¥) are equal (in the absence of data). In this case, the
marginalisation (which corresponds to a thinning of the counts by a factor p(S, | ¥); see
Prekopa’s theorem [67]) results in another Poisson distribution with rate scaled by the
success probability:

P(Nobs | ¥) — Pois[Nobs | P(So [ ¥) X (Niot) (¥)]. (2.2)

We emphasise that, while p(Nio | %) may seem like a modelling choice, it represents the
assumed size of the SN ITa population, given e.g. the cosmological parameters that enter into
W. In subsection 3.1, we describe a physically motivated model based on the volumetric rate
of SNe Ia, in contrast to previous expressions from the literature, which have been arbitrarily
designed to enable analytic evaluation of eq. (2.1) for a particular selection probability [24, 25].

9Defined over the non-negative integers (as the sum in eq. (2.1)); the requirement that Niox must not be
smaller than Nops is encoded in the likelihood: Niot < Nobs = P(Nobs | Niot, ) = 0 by the definition of
the binomial coefficients.



Thus, we can finally write the likelihood of the model parameters using only the recorded
data on the selected objects and their count:

p({d'} Now | ) =

Of course, the observed data set already carries information about its size, so we will simply
write p(D = {dl} ‘ \Il)

Nobs p (Sci)

d, \11) p(di
p(S: | )

‘I’) X p(Nobs ‘ ‘I’) (2'3)

i

The difficulties of performing a likelihood-based analysis with selection effects are
many. Firstly, in eq. (2.3) only the term p(di ) \Il) is usually (but not always, if one is
interested in marginal analyses) known. It may also be the case that the selection procedure
depends only on the observed data, i.e. p(Sci, ‘ d’, \Il) — p(Sé

di) and it does not influence
inference. However, in general (and e.g. in the SN detection model described in subsection 3.2
in particular), this probability will depend on latent object properties that are either measured
with noise or not at all (or at least not included in a data release). An example from SN Ia
cosmology is that brightness is standardised in the band of the rest-frame maximum (B)
whereas detectability is based on whichever band the maximum gets redshifted to, which
depends on the true redshift z, rather than the noisy measurement 2: see subsection 3.2
for more details.

On the other hand, p(S? | ¥) and p(Nobs | ¥) result from marginalisation, which is often
intractable analytically and performed instead via simulations. Crucially, the likelihood
formulation requires these expensive estimates to be performed for every proposed value of W
in e.g. a Monte Carlo chain. Instead, such simulations can be more directly and flexibly used
in a likelihood-free simulation-based inference framework like the one presented in this work.

2.2 Caveats

SBI is a suite of estimation techniques that target different components of a Bayesian inference
task. There are multiple approaches to a simulation-based “solution” for the selection-effects
model in eq. (2.3). This subsection discusses the caveats that arise when tackling large sets
and provides justification for our preferred global varying-cardinality-set-based method.
One obvious idea is to learn the likelihood!? from a single selected object (i.e. the term
p(di
advantages: it requires a simpler network, less training, and O(Ngps) times less memory, while

S, \I’>), then evaluate and combine it across the full data set. This has numerous

allowing inference from future additions to the data (newly observed objects) without re-
training. However, the neural estimate needs to be extremely precise since any approximation
errors will compound O(Nyps) times. Moreover, learning per-object likelihoods requires
joint inference of all global parameters needed to ensure conditional independence between
individual objects, which is more difficult than marginal inference.

Inference (and training) should then be performed from entire sets, whose size may not
be known a priori, especially in the presence of selection. One may still consider conditioning
the simulator to output exactly the correct number of selected objects so that all training

10 Alternatively, one can learn the posterior via e.g. NPE but must then take care to divide out the prior
since it is still the individual likelihoods that compose: see [60, eq. (10)].



examples have the same cardinality and a fixed-input-size network can be used. However, the
only option to implement this conditioning is usually rejection sampling, whose efficiency
reduces as 1/v/Nyps (the spread of plausible data set sizes) and becomes prohibitively low
for large populations. The problem can be mitigated by allowing a range in acceptable Ngps,
especially if p(Nops | ) is not extremely informative, and re-sampling to exactly Ngpg for
input into the network — but this carries all the caveats of ABC.

Finally, one might attempt to learn from non-selected simulated data (i.e. as if the data
were randomly sampled from the complete population) and subsequently correct the inference
using a learnt detection probability, i.e. estimate separately va"bs p(di

\Il) (representing
inference without accounting for selection effects) and [ s p(Sg ‘ d’, \Il) /p(S¢|¥). While
easy to simulate training data for, this approach has the disadvantage that the two models (for
the data and the selection labels) do not individually represent the observed data set: indeed,
{di} is very different from a typical sample of Ny objects from the complete population,
and so it will fall outside of the region in data space in which the inference network has been
trained, leading to undefined, and often very biased, results. Similarly, the real collection
of detection labels {8}, representing Nops detected objects, is very different from random

{Sk} °**. And even if training data were made representative through e.g. a truncation
procedure, combining the two terms requires extreme precision in the tails, since if selection
effects are important, the results from an analysis that does not account for them — i.e.
only the [Vevs p(di

illustrations with a toy model and in our SN Ia case are presented in appendices A.1 and A.2.

\Il) term — will be strongly biased and need to be corrected: concrete

In practice, this approach is only applicable if the likelihoods are analytically known — or
extremely well estimated — in the whole parameter space.
2.3 Set-based truncated auto-regressive neural ratio estimation (STAR NRE)

We are interested in inferring only a small subset © of the model parameters, with the rest,
v, integrated out; i.e. with ¥ = ® U v, we seek the marginal posterior

p(©|D) = [p(©.v|D)dv = [p(D|©.1)p(®,v)dv. (24)
Neural ratio estimation (NRE). Ref. [68] approaches the problem by approximating
the joint-to-marginal (likelihood-to-evidence; posterior-to-prior) ratio

p(®,D) _p(D|©) p(®|D) o)
b©)pD) ~ pD)  p(©) |

with a neural network (NN) that classifies parameter-data set pairs (@, D) as either jointly

r(®; D)

or marginally sampled: i.e. either coming from p(®,D) or from p(®)p(D). The network
is trained on mock data from a simulator that incorporates all modelled effects, including
the selection procedure: thus, naturally, example data sets shown during training consist
only of selected simulated objects.

Truncated marginal neural ratio estimation (TMNRE). Ref. [69], a variant of se-
quential SBI, improves on both simulator efficiency and the required network complexity
and training time by steering the simulator to produce data increasingly more similar to



the real observations. Concretely, it works in stages to restrict/constrain the prior from
which ©® are drawn based on the neural ratio estimate from the previous stage, evaluated
on the target data. At each stage, incompatible regions of parameter space are excluded
(“truncated”) from the priors, whose density is otherwise unmodified within the remaining
space, save for re-normalisation.

When truncating, it is usually beneficial to also constrain the prior of nuisance parameters
that are not of particular scientific interest, which allows further targeting the training data.
To achieve this, the vanilla truncation scheme considers an array of parameter groups {6}
(which usually contain just one parameter each) and estimates several independent ratios,
replacing ©® — 6, in eq. (2.5). The prior for each group is then truncated to a rectangular
box (or a simple 1D interval) so that only an insignificant fraction of the estimated posterior
mass is excluded.

When the parameter groups are a posteriori correlated and the product of marginals is
much less constrained than the joint posterior, however, this scheme is inefficient and may fail
to reduce the training-data variability significantly and thus lead to little improvement between
stages. Unfortunately, high-dimensional ratio estimation — required for joint inference and
non-rectangular truncation of many parameters — usually suffers from significant inaccuracies
and approximation noise when trained with a limited training set.

Auto-regressive neural ratio estimation (ARNRE). Ref. [70] overcomes this curse of
dimensionality by approximating the necessary high-dimensional ratio using a series of low-
dimensional estimators. The set of all inferred parameters ®@— which may include nuisances
for the purposes of truncation — is first partitioned into disjoint groups: © = U,60, with
0,4, N0y, =0, which are then ordered. While the ordering may be arbitrary, [70, see figure 3]
found that it does affect the estimation accuracy in realistic scenarios and recommended
putting the most difficult to infer parameters last in the auto-regressive chain, so that their
ratio estimators receive more information. For each group a conditional ratio estimator is
defined: 14 =1(0y; ©.4,D), in which “preceding” parameters ., are considered given when
inferring 6,. Their product gives the joint posterior:

(6, - _ 17 _P(64,0:,D) _ p(©|D)
l;[ (ag,@;g,D)_lg[p(eg)p(@:g’D) 0,56, (2.6)

Note that this is not the same posterior-to-prior ratio as in eq. (2.5); instead, it is the
ratio of the posterior to the product of marginal priors for each of the parameter groups:
p(0y) = [p(®)dO,, (where O, = @ \ 0, are the parameters not contained in a given
group). While the initial priors are usually uncorrelated,'’ making the integral trivial, the
high-dimensional non-rectangular truncation scheme we use (described fully in appendix B)
modifies the region of integration in a parameter-dependent way, leading to complicated
marginal priors, and in general [], p(6y) # p(©®).

Still, the procedure for inference with ARNRE is very similar to marginal NRE. First,
each of the ratio estimators is trained with the usual binary cross-entropy (BCE) loss but

1 Although the contrary is not uncommon: in fact, we will be using a 2-dimensional correlated Gaussian
prior for SN Ia rates (subsection 3.1) but will be grouping the two parameters into a single group 8.
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with ® — 6, and D — ©,.,,D:

Tg

Ep(eg’@:g,D) [_ In 1 + fg

1
+ Ep(gg) p(©.4,D) l— In T lA“g‘| . (2.7)
Then their product, which approximates eq. (2.6), is multiplied by [], p(6y), which can be
estimated from the training samples via low-dimensional kernel density estimation (KDE)
or using a modified NN as described by [70], and used for MCMC sampling, since even for
relatively low-dimensional ® (e.g. our 7D example) the alternative of sampling from the
marginal priors and using eq. (2.6) as weights is prone to very large sampling noise.

2.3.1 Conditioned deep set for NRE

Sets have two properties that distinguish them from other data like lists (of observations),
images, etc.: they are unordered collections, and their size is a variable feature rather than
a given constant. Therefore, the neural network used for set-based SBI should not only
accommodate but also utilise these properties.

A breakthrough in this area was Zaheer et al’s representation theorem [58] stating that
any function f : {:U € Rd} — R™ that takes a set as input (and is thus invariant to the order
of the set’s elements) can be represented via: an element-wise transformation ¢ : R? — R™
of the set’s elements, a summation of the resulting “features” {¢(z)}, and a post-processing
function p : R™ — R"; that is

f(X)=p (Z ¢(x))- (2.8)

zeX

A deep set then consists of deep — but conventional, i.e. fixed size/order-input — NN
components that approximate/learn p and ¢.

The simplest implementation of set-based NRE derives a fixed-size data-set summary
S = ﬁ(ZdeD qAS(d)) and passes it to a simple ratio estimator Inf(<#, ®), as in previous NRE
applications. However, we found this architecture extremely inefficient and slow to train
since the deep set is forced to learn/encode the whole posterior (at all ® values), only to
be queried at a single point by the ratio estimator.'?

Instead, we propose a minimal modification that streamlines learning by conditioning
the deep-set summaries on the particular value of @, i.e. providing it to the featuriser | ¢

(as well as to the post-processor):

i(@; D)= (e, 3 4(e.d)). (29)

deD
This form is inspired by the exact expression for the log-likelihood in the case of conditionally
independent data given © (cf. eq. (2.3)), in which the featuriser learns the per-object likelihood
while the post-processor accounts for information in the set cardinality and for the evidence.
Importantly, the conditioned deep set remains applicable in the more general case when the

2Deriving a global summary is indispensable for neural posterior estimation (NPE), which relies on
producing, from data, a conditioning context for a neural density estimator, e.g. a normalising flow.
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Figure 1. Schematic representation of an auto-regressive conditioned deep set-based neural ratio
estimator implementing eq. (2.10) with multi-layer perceptrons (MLPs). The architectural details
(numbers of layers and their widths) we use in this study are given in section 4.

objects are exchangeable but not necessarily conditionally independent: e.g. if ©® represents
only a subset of the population parameters.'? In reality, it is also free to take any “shortcuts”
that allow it to fulfill the ratio-estimation task as efficiently and accurately as possible. Finally,
we write the ratio estimator for auto-regressive parameter group 6, as

Infy(8y; ©.4,{d'}) = py(8, 0., %y, Nots)

1 Nabs ' (2.10)
with yg = ﬂ Z ¢g(0g7@:gadl)a
obs ;1

where in the interest of numerical performance, instead of summing, we average the featurised
set elements and append the cardinality to the output.'® Importantly, .% ¢ are, owing to the
conditioned deep set architecture, bespoke summaries for each parameter group 68, instead
of the usual single . shared by multiple ratio estimators.

2.3.2 Truncation and inference from (sub)sets

Simulation-based inference with “big data” requires large amounts of time and memory
both for simulating training examples and for processing them with a neural network. To
alleviate the strain, we propose a truncation scheme particularly suited to data represented
as a set and analysed using the deep set architecture. We justify and illustrate it more
thoroughly in appendix B; here, we briefly outline the procedure, which relies on the intuition
that inference from one small subset of the data is, in general, less constraining than a
full analysis, yet unbiased if the subsampling is random — much like intermediate results
from early truncation stages.

31n fact, [58] elucidate this connection between the deep set architecture and hierarchical inference through
de Finetti’s theorem [71], providing a closed-form expression for the marginal likelihood in the special but widely-
applicable case of nuisance parameters with a likelihood from the exponential family and a conjugate prior.

11t is good practice to keep inputs to fully connected NN layers close to zero with order-unity scatter,
which is the typical range of nonlinearities. However, the output of the summation operator trivially scales
with the cardinality of the input set, so we artificially extract this source of variations.
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To analyse a given data set of size Ngg, we initially train using much smaller exam-
ple/mock sets of size & Ngps/k (nominally, because each example still has different size),
where the “reduction factor” k is arbitrarily set to begin with and iteratively reduced to 1
as we describe below. To simulate such examples, we can either randomly subsample!® the
outputs of a simulator tuned appropriately to represent the full data, or tune it to generate
smaller sets if a relevant setting'® is available. In the latter case, it is important that the
setting controls only the total number of objects and not (the distribution of) their properties.

We then train a ratio estimator for the population parameters and evaluate it on k
subsets forming a partition of the original data, resulting in & “sub-posteriors” (in fact,
posterior-to-prior ratio estimates). Under certain conditions (see appendix B), multiplying
them should give the full posterior(-to-prior ratio) — if the estimates are exact; however,
even small inaccuracies might accumulate when combining a large number & of estimates,
leading to biased results. Therefore, we adopt a conservative strategy, using an equal-weighted
mixture of the sub-posteriors, which we call a “fuzzy” approximate posterior, to truncate
the prior: that is, we retain parameters that are consistent with the analysis of any of the
subsets. We draw constrained samples using MCMC within a volume bounded by multiple
7D ellipsoids, as we describe in detail in appendix B.

We then re-train the ratio estimator on the constrained samples, initialising it with the
trained network parameters from the previous stage. If the constraints using the current
k do not improve significantly, we switch to a smaller k, i.e. to generating bigger training
sets. In this case, again, we re-use the previous NN parameters. As a result of this iteration
between restricting the parameter space from which examples are simulated (i.e. the usual
truncation scheme) and increasing the size of example data sets used for training, the two
components of the deep set network — the featuriser and post-processor — are quickly
and inexpensively pre-trained on small simulations and only fine-tuned on bigger more
computationally and memory-intensive ones.

Note that while this procedure serves to determine a suitable truncated prior and
initialisation for the network’s parameters, the final results are still derived after training
on full-size examples and evaluation on the full observed data.

3 A simplified model for SN Ia selection effects

This section presents a simplified model for cosmological inference using type Ia supernovae
(SNe Ia): standardisable candles whose observed properties like light curve shape and colour
can be used to infer their absolute brightness (up to a certain standardisation uncertainty).
Combined with estimates of their redshift and observed brightness, this allows one to study
the expansion history of the Universe through the distance modulus pu(z,C), which depends
on the cosmological model parametrised by C. We consider woCDM with parameters the
present-day dark matter (DM) and dark energy (DE) densities and the DE equation of
state (EOS): C = [Qmo, Qdeo, wo. In practice, we will make the common further assumption

'5In fact; partition, taking the big set and assigning each element to a random subset with equal probability,
which effectively transforms a small number of large simulations into a larger number of smaller examples.

16For astronomical transient surveys, good candidates are the sky area covered and survey duration; in fact,
in the setup described in subsection 3.1, these are entirely degenerate.
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of spatial flatness (Qgep = 1 — Qo) and fix the Hubble constant, whose value is perfectly
degenerate with the mean absolute brightness M of SNz Ia.!7

In order to highlight selection effects and our procedure for handling them, we adopt an
intentionally streamlined SN Ia model, considering only the standardised apparent brightnesses
m?, traditionally reported in the rest-frame B band at peak, and cosmological redshifts z® of
Nops observed SNee Ia, indexed by s. They are related to My and the distance modulus as:

m® = My + p(z%,C). (3.1)

The data consists of noisy measurements m® and 2° of, respectively, m® and z°®. For the
magnitudes, we assume constant Gaussian uncertainty that combines intrinsic scatter in the
SN population and standardisation and measurement uncertainties:

|2 ~ N (m*,02,). (3.2)
For the redshift we assume constant relative uncertainty o, so that
2~ N (2 (14 29)%02). (3.3)

Current cosmological analyses rely on precise spectroscopic redshifts (derived from host spec-
troscopy even when the SNa Ia themselves are identified and classified only photometrically)
with o, ~ 107° and so can assume 2° =~ z°. However, properly accounting for the redshift
uncertainties will be indispensable when analysing future surveys, as already discussed.

Together, d* = [2°,7°] form the data vector for a single observed SN Ia. Their sampling
distributions, egs. (3.2) and (3.3), are controlled by the global/population parameters M,
Om, 0z, and the cosmological model. To complete the hierarchical model, which we depict
graphically in figure 2, we introduce next the models for the rate of SN Ia occurrence (which
determines the population size and redshift distribution) and the selection probability. Finally,
we list all involved quantities and their (hierarchical) priors in table 1.

3.1 SN Ia rates

The expected redshift distribution!® of all (including undetected) transients of a given type
within the surveyed volume, QT, where (2 is the survey sky area (in steradian or deg?), and
T is the survey duration (in Earth years), is:

W) _ ., R AVeleC) )
dz 1+z dz

with dV;/dz the differential comoving volume [72, eq. (28)], which depends on the cosmological
model, and the factor (1 + z) accounting for time dilation [73]. For SNz Ia, we use a comoving
volumetric rate R(z) as in the Photometric LSST Astronomical Time-series Classification
Challenge (PLAsTiCC) [74, table 2]:

(1 =+ Z)B z < Zbreak;

R(Z) = Rg X ’ .
(1 + 2)7(1 + Zbreak) 'y, Z > Zbreak;

(3.5)

"In fact, in our model, Mo represents the combination My — 5log,,(Ho), which is the only way to define a
system of units in the absence of distance-ladder rungs calibrated on the nearby Universe.
18Technically, the rate function of an inhomogeneous Poisson process.
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parameter (hyper) prior mock value / range

DM density (z=0) Qmo  U(0,1) 0.3

DE density (z = 0) Qa0 U(0,1) 0.7

DE EOS wo U2, —0.5) 1

rate at z =0 Ry N( [2.5] [ 0.52 0.24D 25  x10~°h3, Mpc 3 yr—?
low-z rate exponent (3 1.5 |—0.24 0.62 1.5

high-z rate exponent -~y fixed -0.5

rate “break” Zbreak  Hxed 1

true redshift 25 Pois(d({Niot)/dz) € [0; 00) &Nt
redshift estimate 2° N(zs, (1+ zs)zaf) € [0; 00) &Nt
redshift uncertainty o, 4(0,0.06) 0.04
observed magnitude  h® N (Mo + p*,02,) € (—o0; 00)@Nrer
mean abs. mag. My U(—20,-19) —19.5

mag. scatter / noise o 4(0,0.2) 0.1

detection indicator S* p(S?| 2%, ™) € {Sm, So} ENeer

Table 1. Quantities in the simplified SN Ta cosmology model. See also figure 2 for a graphical
depiction.

T
M EoRG
v

9 [N (5, (14 2%02) | [N (Mo a*, o) tg|om

@ 5_>Ntot

Figure 2. Graphical depiction of the simplified SN Ia cosmology model. Shaded squares represent
model parameters, sampled according to distributions shown within dashed boxes (some (fixed)
parameters and the global (hyper)priors are not shown), while shaded circles are the observed data,

and empty circles are deterministic variables.
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with slope v = —0.5 above zheak = 1 [75, after 76, 77], which we keep fixed since LSST is
not expected to detect SNee Ia above zpeqr for any plausible cosmological model, and so
the high-redshift rate model does not influence our analysis. At low redshifts we use the
estimates from [73]' as a 2-dimensional correlated Gaussian prior:

Ry = (2.5+0.5) x 1075 h3; Mpc 3 yr1
B =15+0.6, (3.6)
with corr(Ryg, ) = —0.8.

The rate parameters will be much better constrained with future large samples, as we show in
section 4 — assuming the general functional form of eq. (3.5) is correct. However, in upcoming
work, we will demonstrate inference with a physically motivated rate of SN Ia occurrence
related to the properties of their hosts, which can also inform the progenitor model.
Given particular values for Ry, 8, and cosmology, one can sample from the SN Ia

20 resulting in Nyo; redshift samples, from which observations can be simulated

population,
using the sampling distributions egs. (3.2) and (3.3) described above. Lastly, the collection

of selected objects is constructed as described next.

3.2 Selection probability

In practice, a SN Ia is detected using difference imaging and selected for inclusion in
cosmological analyses based on the quality of its light curve (number of observations in
different bands pre/post peak and quality of a fit with e.g. SALT). Since we are building a toy
model that only includes the SN’s redshift and apparent brightness at peak, our detection
criterion will be correspondingly simplified. For the probability of detection & selection
(which we call selection for short), we adopt a simple criterion based on the expected LSST
fiveSigmaDepth for the band in which the SN peaks based on its redshift: at z = 0, the peak
of SNz Ia is generally in the blue part of the spectrum; we assume at 4385 A: the effective
wavelength of the B band. The fiveSigmaDepth depends on a variety of factors [78, 79]
and in simulations shows significant variations; therefore, for each supernova, we compare
m?® (which includes both scatter around My and observational noise) to a random simulated
fiveSigmaDepth,?! and if m* is lower (brighter), the SN is selected. We thus assume, for
the purposes of this toy model, that while the wavelength/band of the peak changes, its

YRef. 73, subsection 6.4.1] give 2.670'S but we use 2.5 as [74] and a symmetric uncertainty for simplicity.
Notice the scaling by hro = Ho/70km s~! Mpc™!, which makes predictions (inference) about total number
counts, which depend on the surveyed volume, independent of the particular value of Hy used in simulations
(analyses).
20T sample from the inhomogeneous Poisson process, we approximate it as piece-wise constant within bins
of size Az = 0.01 in the interval z € [0;2]; i.e. we tabulate eq. (3.4) in that range. Within each bin, we then
calculate the “integrated” expectation (% <Nmt>)Az, sample the number of SNe Ia from a Poisson distribution,
then sample that many redshifts uniformly inside the bin. This results in, approximately, p(z) ((%(Ntot))

and Niot ~ Pois ( f 02 (% (Ntot)) dz). Note that the upper bound for the complete population does not influence

inference results as long as it is much larger than the redshift of any object detectable given any of the a priori
allowed global parameters.

2'We use the baseline_v2 run of the LSST operations simulator [0pSim; 80], but the survey details do not
affect this simplified model.
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Figure 3. Bottom: the detection/selection probability of a SN Ia adopted in this work p(S, | z, 1),
as a function of the SN’s true redshift and measured magnitude (colour axis) with some threshold
contours as labelled. A white line indicates the relationship between the two variables under the
fiducial cosmological model, with up to 30, uncertainty/scatter around it. Top: number (density
per unit redshift) of SNa Ia under the fiducial cosmological and rate models as a function of their
true redshift: expected total number in orange and expected detected count in green. The backdrop
depicts their ratio p(S, |z, @aa) = [ p(S, | 2, M) p(1ir| 2, Orq) drin, i.e. the average along all m of the
bottom plot weighted by the white shaded region.

magnitude does not; i.e. we omit the so-called K-corrections. It is, of course, straightforward
to include them in a fuller model in the future.

Due to the stochasticity of the depth simulator, it defines a complicated selection
probability, p(S, | z,7) that depends on 7 and z— notice, the true redshift rather than the
noisy estimate 2. We illustrate it, in comparison with the fiducial distribution of SNe Ia,
in figure 3. Thus, in general, p(SS|2° m°) # 1, even for data on objects that ended
up being selected; instead, calculating it requires averaging p(SS | z°, m®) over the posterior
p(z | {2%,7m°}), which makes it practically intractable even in this extremely simplified scenario
because of the significant redshift uncertainty assumed. However, the selection procedure can
be easily realised in a forward simulator: given a collection of (true) redshifts and magnitudes
generated as described above, each object is stochastically detected/selected with probability
p(S: | 2%, m?®); after all, the simulator always has access to the necessary latent variables.

For real observations, the selection procedure will be far more complex [see e.g. 81,
subsection 11.2.1], based on criteria like number of detections in a variety of bands, efficiency
of obtaining reliable redshift estimates, correctly classifying transients using machine-learning
models, etc., and will be only representable through simulations: the essential impediment
to likelihood-based techniques, which our simplified model already exhibits and which we
naturally overcome through SBI.
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Figure 4. The mock data set (selected SNz Ia and the complete population shown in green and orange,
respectively), demonstrating selection bias of the average observed brightness (solid lines) above z = 0.6.
The left panel uses the true redshifts (equivalent to spectroscopic estimates: 0, & 0 = 2 & z), while
the “measured” redshifts used in the right panel are scattered by 0.04 x (1 + z), as a simple model of
photo-z uncertainties. The ordinate in both cases is the observed magnitude 1 shifted by the fiducial
model and normalised by the magnitude scatter, o,,, augmented by linearly propagated redshift
uncertainty in the right panel (see eq. (C.4)). Note the additional offset in the average brightness of
the complete sample (orange line) in the presence of redshift scatter, which is due to a varying SN Ia
rate with redshift (we demonstrate this Eddington bias-like effect in appendix C). This can lead to
biased inference even in the absence of Malmquist bias, as we already showed in SICRET: the best-fit
model resulting from a linearised analysis (appendix C.2) of the complete data is plotted as a red
dashed line. To prevent this, traditional bias correction (indicated by black arrows) shifts observed
data, on average, directly onto the fiducial cosmological model, so that the green and black lines are
forced to match under the chosen fiducial model.

3.3 Mock data

To demonstrate our inference procedure, we generate a mock data set from the aforementioned
model with parameter values (listed in table 1) representing realistic magnitude scatter+noise
and redshift uncertainty as expected from a purely photometric measurement. Since LSST is
estimated to detect on the order of 10° SNzeIa/yr?? [81, figure 11.2], we adjust the survey
size?® so that a similar number (105287) of mock SNz Ia are detected under the fiducial
rate model and cosmology.

The mock data (apparent magnitudes), for both selected and missed SN Ia, are plotted
in figure 4 against their true and estimated redshift. In both cases, the selected sample
demonstrates the expected bias in favour of brighter objects. However, whereas the complete
sample is unbiased when binned according to true redshift z, redshift uncertainty (o, > 0)

22This is also the size of the mock data we previously analysed in SICRET using TMNRE and a more
sophisticated forward model but without selection effects. It is straightforward to include in the present
analysis other light-curve summary statistics like SALT’s 1 and ¢, noisy measurements &1 and ¢, and selection
criteria based on them, in parallel with 7.

BOT ~ 1600 deg® - yr, although the correspondence QT <+ Nyps from this toy example will not hold for
more complicated selection procedures; for comparison, the LSST will cover roughly 20 000 deg?, a smaller
fraction of the SN population will pass the selection criteria employed in practice.
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introduces an additional Eddington-like?* bias [19], whereby SNz with different true z are
measured to have the same 2 (corresponding to a spread in the “posterior” distribution
p(z|2)). This additional shift is present even in the complete population (orange line) and
has a detrimental effect on non-hierarchical inference of bias-corrected data (i.e. offset by the
Arn in figure 4), as discussed in appendix C. There we demonstrate that such analyses can only
recover cosmological parameters without significant systematic bias if the assumed fiducial
model is consistent with the (unknown) true cosmology to within the statistical uncertainty
of the analysed data. If this is not the case, the inferred cosmology is systematically biased
towards the assumed one. This conclusion is in line with the results obtained by [13], who
investigated the shift in cosmological parameters inference induced by an incorrect assumption
for the fiducial cosmology used for the bias correction. Our findings show however a much
stronger impact, due to our considering redshift uncertainty (ignored by [13]), larger data
set size and more discrepant fiducial cosmologies.

4 Results and discussion

For the purposes of set-based truncated auto-regressive (STAR) NRE, we split the global
parameters into five groups, ordered by increasing level of “difficulty” to infer:*® 6, €
[Mo, [2mo, wo), [Ro, 5], 02, 0m], for which we train conditional ratio estimators using the loss
functional in eq. (2.7). For all featurisers (Abg and post-processors p, in the conditioned deep set
we use simple MLPs with three layers of, respectively, 128 or 256 neurons and rectified linear
unit (ReLU) non-linearities preceded by layer normalisation [82].2° For added expressivity,
parameters passed to p, are first embedded in 32 dimensions by a small MLP with two hidden
layers of 64 neurons. These choices are inspired by our previous applications in SICRET
and SIDE-real and can be automatically optimised by standard pipelines for hyperparameter
tuning based e.g. on the validation loss in the last truncation stage.

As explained in subsection 2.3.2, we start with examples from 1/50 of the survey (i.e.
(Nobs | Oa) ~ 2000), then truncate the parameter space, preserving only values consistent
with a “fuzzy” posterior formed from analysing 50 disjoint subsets of the original mock data,
and fine-tune the network on new, targeted examples. Then we increase the survey size
tenfold and repeat, starting with the previously trained network. Finally, we repeat using the
full survey size, this time doing one extra step of truncation to ensure properly converged
results. For each of these (7) stages, we generate 64 000 training examples (with 6400 more
used for validation), which takes <30min, and train on 4 (8 for the last stages) NVIDIA
A100 graphics processing units (GPUs) using the Adam optimiser [83] until convergence,
usually achieved withing 3h (per stage).

24Eddington’s original argument concerned object counts, but it is easy to extend to the average value of a
response variable, as we elaborate in appendix C.

25From most to least constrained with respect to the prior range after an initial non-autoregressive marginal
NRE run.

26The use of layer- instead of batch normalisation is beneficial for two reasons: first, it is slightly faster since
it does not need to track running statistics, and second, because it does not depend on the input data, we
can reuse network components across training tasks, i.e. truncation and cardinality stages. Still, we perform
one-off data-set “whitening” by shifting and re-scaling all NN inputs (parameters and data) by their respective
means and standard deviations from the training set.
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Figure 5. Corner plot depicting two-dimensional projections (1- and 2-sigma contours with, re-
spectively, 39 % and 86 % credibility) of the full 7D STAR NRE “fuzzy” approximate posterior (see
appendix B). Different colours show the results from successive sub-set-based truncation stages, as
described in subsection 2.3.2: the approximate size of analysed sub-sets is indicated by “~ (Nops | Oga)”
in the legend. A star and dashed line denote the parameters used to generate the mock data. We
assume a redshift uncertainty representative of purely photometric estimates. Inset: comparison
of the final STAR NRE cosmological posterior with likelihood-based analyses of the complete (i.e.
volume limited) sample up to z = 0.6 and 0.8 and of the mock selected data de-biased as described in
appendix C. Note that inference from the latter is highly dependent on the fiducial parameters used
for de-biasing and produces an unbiased posterior only if they match the “true” ones.
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Figure 6. One-dimensional marginals of the STAR NRE posteriors in figure 5 for (Nops | @ga) = 2000
(blue), , 100000 (green). The shaded areas represent the mean + 1standard deviation,
while dashed vertical lines denote the values used to generate the mock data.

The results from the final stage for each survey size (cardinality stage) are shown in
figures 5 and 6. As expected, they are progressively more concentrated around the parameters
from which the mock data were generated. To appraise the amount of information extracted
by our inference procedure (i.e. the strength of the constraints it produces), in the inset of
figure 5, we compare the marginal posterior for the cosmological parameters from STAR
NRE to alternative approaches.

On one hand, we perform fully hierarchical Bayesian analysis (with latent redshifts
marginalised numerically via integration on a grid) of complete data, i.e. that has no magnitude-
based selection and all SNz Ia up to a given cutoff true redshift are included.?” While complete
data is naturally more constraining due to the additional presence of high-redshift objects
and correspondingly higher statistics, such an analysis would in practice be limited to a low
redshift of about z ~ 0.6 (in our setup: see figure 3) with the infeasible requirement of selecting
the objects based on true redshift (so that the analysis is computationally tractable). STAR
NRE manages to extract information beyond the completeness limit, effectively correcting
the selection bias and delivering constraints comparable to those from the similarly sized
complete data (up to z ~ 0.8, where the selection probability drops to 50 %).

We also compare our result with a traditional x? fit to selected data that has been
“de-biased” as described in appendix C — importantly, with the fiducial model used for
calculating bias corrections matching the one from which the mock data were simulated —
and analysed with redshift uncertainties propagated linearly to magnitudes, again assuming
the fiducial model and disregarding the intrinsic SN Ia rate. Even if the resulting constraints
appear more stringent that ours, this is largely due to the optimal choice (made before
analysing the data) of a fiducial cosmology close to the true model, which, as we demonstrate
in appendix C.3, is indispensable for obtaining systematically unbiased posteriors even for
the simplest SN model such as ours. In reality, the selection procedures and bias corrections
are far more complicated, making bias-corrected fits prone to systematic bias.

2"This true-redshift cutoff is still a kind of selection criterion, but — as opposed to a cutoff in measured
redshift — the correction associated with it is a simple re-normalisation of the redshift prior, which we account
for by calculating the size of the population below the cutoff and including it in the hierarchical likelihood.
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5 Conclusions

We have presented a simulation-based analysis framework to handle large data sets affected
by selection biases. The cornerstone of our approach is the use of a conditioned deep set
neural network as a likelihood-to-evidence estimator, which allows training data to have
varying cardinality as a result of stochastic simulation of the underlying population and
selection procedure. This enables full freedom in the simulator and straightforward inference
contrary to non-set-based methods that condition the simulator on the number of selected
objects in the real data (usually achieved through rejection sampling whose acceptance rate
vanishes with increasing sample size) or train on unselected mock data and subsequently
correct the inference results (very difficult to realise accurately in practice due to a large
cancellation between the initial analysis and the selection correction: see appendix A) or
analyse individual objects and combine the results post-factum (requiring extreme accuracy
when aggregating large samples and an assumption of independence of the set elements
conditional on the inferred parameters).

Beyond the network architecture, the method we have developed, dubbed STAR NRE:
set-based truncated auto-regressive neural ratio estimation, includes two enhancements over
plain NRE intended to facilitate its application. Firstly, we have introduced a procedure that
drastically reduces the training time required for inference from large sets by pre-training on
random sub-samples, whose size is gradually increased in “sub-sampling stages”. This benefits
the deep-set featuriser, which learns an object-by-object transformation of the individual data
and can thus be trained on small sets. The final result, however, is derived after fine-tuning
the network — importantly, the post-processor that aggregates all observed objects — on
full-size simulations. Thus our methodology imposes no condition of statistical independence
on the set elements: i.e. allows even marginal inference.

Moreover, we have employed high-dimensional prior truncation to tailor training examples
to the observed data and thus increase simulator efficiency and accuracy of the final posteriors.
To this end, we have used an auto-regressive ratio estimator [70] that can learn a relatively
large global parameter space (in our case, seven-dimensional) efficiently and precisely. When
combining truncation with subset-based inference, we have used (and coined) the notion
of a “fuzzy” posterior being an equal-weighted mixture of posteriors derived from disjoint
subsets of the data forming a partition. This prevents the accumulation of approximation
errors but leads to weaker constraints than properly combining the sub-posteriors (which,
however, requires accounting for the dependencies introduced by partitioning the data).
Therefore, we use such “fuzzy” constraints only to truncate the prior and draw parameters
for generating new training data.

As a demonstration, we have applied STAR NRE to mock data from a simplified SN Ia
cosmology setup based on expectations of the LSST. Even though it considers only redshifts
and standardised apparent magnitudes (with Gaussian uncertainties on both and in the
absence of K-corrections) and a selection criterion based purely on brightness at peak —
thus setting aside (for the future) numerous complications related to measuring redshift
from photometry, detecting and fitting light curves, and light-curve standardisation — our
model exhibits the salient features of both Malmquist (brightness preference) and Eddington
(abundance preference) biases. While the two have similar influence on the Hubble diagram:
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namely, offsetting the average observed magnitudes/distance moduli in redshift bins from
the underlying cosmological relation, the latter is rarely explicitly considered in the SN Ia
literature, since it arises from the combination of significant noise in the redshift estimates, as
expected from future photometric-only surveys, and a non-constant rate of SN Ia occurrence
with redshift — and most cosmological analyses to date have relied on spectroscopic samples
with negligible redshift estimation uncertainty even if selected only based on photometry.

Furthermore, our model is fully hierarchical and thus easily incorporates (and can be used
to extract information about) the volumetric rate of SNz Ia and its evolution with redshift.?8
This aspect of SN Ia cosmology has remained largely unexplored to date since, while there has
been a recent trend towards adopting BHMs, including with selection effects [24-26, 66], most
current studies still rely on y?-based cosmological fits that — due to linear error propagation

— allow no room for modelling a nontrivial redshift distribution and its dependence of
cosmological parameters. However, in our study, the evolution of the volumetric rate plays
an important role in the simulator, which starts exactly by sampling a redshift population,
and is a major driver of the Eddington bias. Finally, joint physics-motivated modelling of
the rate of occurrence of SNz Ia and the stellar populations within their hosts through the
so-called delay-time distribution (DTD) has the potential to shed light on the nature of the
progenitor systems: a highly debated subject [see e.g. 84, and references therein], but this
again requires taking selection effects properly into account.

Another instance in which joint modelling of selection effects in SNee Ia and their hosts is
important was studied by [85]: namely, the complex interplay between the SN Ia stretch and
colour parameters used for standardisation (which are affected by a preference for selecting
longer lasting and/or bluer SNa), the corresponding magnitude bias, and the so-called mass
step (the difference in absolute magnitude between SN Ia hosted in low- and high-mass
galaxies). Working in the non-hierarchical framework of bias corrections, they found that an
intrinsic correlation between host stellar mass and stretch/colour (indicative of a dependence
of the explosion mechanism on the stellar population from which a SN has formed) may
manifest instead as a selection-like magnitude offset, thus biasing cosmological inference.

In both examples, the object of scientific interest: intrinsic correlations/trends that hint
at the physical model behind SN Ia explosions, was obfuscated by a convoluted inference
methodology. In contrast, SBI provides a clear framework for physically meaningful and
interpretable analyses by incorporating a priori all considered effects into the simulator
and performing marginal inference on parameters of interest: e.g. the strength of various
host-SN correlations, parameters of the DTD, and, of course, cosmology. Through the use of
a set-based methodology like STAR NRE, one can transparently, robustly, and rigorously
account for the selection effects affecting such studies.

5.1 Outlook

This work represents the final piece of the statistical framework for principled and scalable
simulation-based SN Ia inference. What remains is to build a simulator that faithfully
represents real transient surveys. We already initiated this with slicsim, presented in SIDE-

28Provided a general functional form for it: we use a power law with 1 4 z, but this can easily made more
sophisticated.
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real, that simulates realistic multi-band SN Ia light curves from a hierarchical model including
intrinsic chromatic variations, host dust (easily adjustable to include correlations with other
host properties), Milky Way (MW) extinction, and a flexible instrument model. Simulated
light curves, even if irregularly sampled to match the expected cadence of future observatories,
can be input into an inference network after a pre-processing step that uses existing methods
like Gaussian process regression onto a fixed grid [e.g. 46, 53], recurrent or attention-based
NNs [10, 49-52], or even another layer of deep sets. This circumvents the expensive light-curve
fitting stage present in all current analyses and does away with the caveats surrounding the
use and interpretation of so-derived summary statistics like stretch, colour, standardised
brightness at peak, etc.: e.g. questions of their optimality, assumptions of analytic population
distributions, and the difference between latent and measured values. Instead, in the SBI
approach, the NN learns to process and summarise the raw data in a way that is optimal for
the task at hand, while also allowing inference of the underlying latent parameters, as we
demonstrated in SICRET and SIDE-real. Moreover, this end-to-end approach allows inclusion
of “low-quality” observations that are currently being rejected based on fit (im)probability
and/or anomalous extracted parameter values; the NN can learn to ignore them or else
robustly extract the information they carry, however little.

Simulating full light curves, however, takes much more time than drawing summary
parameters from analytic distributions, an issue exacerbated by the need to simulate full data
even for objects that end up rejected by the selection procedure.?? In this respect, hierarchical
prior truncation, whereby the priors of object-specific model parameters (like individual-SN
brightness and stretch) are constrained, can be used to reduce the computational burden.

To complement the SN Ia model, one also needs to include models for various contami-
nants: non-SN Ia transients expected to be detected by non-targeted all-sky surveys. Such
are already available due to an ongoing effort in the community: see e.g. SNANA [86] and
sncosmo [87]. We intentionally omitted contaminants from this study for the sole reason that
classification (which needs to be simulated when creating training data) is usually performed
with full light curves, while we used a simplified model of peak brightnesses only. Beyond
realistically simulating them according to physically motivated prior rates — which, in parallel
to those of SN Ia, may have inferrable/free parameters — and subsequently including in the
“selection” procedure a “classification” step, contaminants require no modifications to the
inference procedure: those that fail to be rejected by the classifier will form a small fraction
of the training data sets, and the neural network will learn to better classify and ignore them,
or — given that current purpose-made classifiers are already near optimal — learn to derive
calibrated posteriors corrected for the bias that contamination causes [see e.g. 88].

Lastly, the simulator needs to consistently model “adjacent” data, the majority of which
is photometric observations of SN hosts.? In the usual approach, these are used to explicitly
derive parameters that affect the SN analysis: redshifts and host stellar mass (which has
been found to correlate with SN brightness, stretch, and colour, as discussed). Moreover,

298BI is not free lunch, and it still needs to represent all aspects of the hierarchical model, including the
two marginal quantities from eq. (2.3) highlighted in the paragraphs below it, through simulations.

30 Adjacent to host measurements is the issue of host (mis-)identification: a complicated procedure that is
known to also cause incorrect inference if left unmodelled [88]. Naturally, this step must also be included in
the simulator.
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host observations can be used to constrain the interstellar dust extinction that the SN is also
subjected to. Finally, a small fraction of future detected transients will have spectroscopic
follow-up (and some fraction of hosts will, too, e.g. in areas where the LSST overlaps with
all-sky spectroscopic surveys like Dark Energy Spectroscopic Instrument (DESI)) and hence,
spectroscopic redshifts (and more precisely inferred host properties). These subsets trade
off quantity for quality and may prove useful as e.g. low-redshift anchors (similarly to the
external surveys included in the DES analysis [89]). However, full utilisation of these data
will hinge on accounting properly for the severe selection effects present in them.

In a SBI setting, inference from adjacent data is implicit; instead, all relevant processes are
simulated simultaneously, and the network is presented with the totality of (mock) observations
and asked to provide marginal (e.g. cosmological) results. In principle, it can thus extract all
relevant information from the data (provided it is faithfully modelled in the simulator) in the
most efficient way (provided an appropriate network structure). A downside of this black-box
approach is interpretability, for which efforts towards NN introspection may prove valuable.
Finally, to take advantage of heterogeneous data — i.e. a fraction of SN with additional spec-
troscopic constraints, — one can resort to multi-modal architectures [90] that enjoy popularity
in AT assistants and have recently been brought to SN science by [52]: they include components
designed to process different forms of input (e.g. a light curve, a spectroscopic redshift measure-
ment, host broadband photometry, an image of the host) and then combine the information
from any and all available sources via a flexible (usually attention-based) mechanism.

With the above elements falling into place to complement STAR NRE within the broader,
flexible framework of simulation-based inference, we believe a robust and principled end-to-end
pipeline for cosmological inference from very large photometric data sets will soon be ready
to reap the full benefits of upcoming transient surveys.

Acknowledgments

We are grateful to Christoph Weniger and Anais Méller for fruitful discussions and to the
anonymous referee for an in-depth read and useful suggestions. Computations were performed
on Cineca’s Leonardo cluster, using: Clipppy>' for defining the probabilistic model, the

conditioned deep set, and the learning objective; phytorch??

for cosmographic calculations;
netCDF for storing varying-size data sets; PyTorch [91] with PyTorch Lightning [92] for
training the neural network; emcee [93], SciPy [94], and dynesty [95] in various steps of
the truncation procedure.

RT acknowledges co-funding from Next Generation EU, in the context of the National
Recovery and Resilience Plan, Investment PE1 — “Project FAIR Future Artificial Intelligence
Research”. This resource was co-financed by the Next Generation EU [DM 1555 del 11.10.22].
RT is partially supported by the Fondazione ICSC, Spoke 3 “Astrophysics and Cosmos
Observations”, Piano Nazionale di Ripresa e Resilienza Project ID CN00000013 “Italian
Research Center on High-Performance Computing, Big Data and Quantum Computing”
funded by MUR Missione 4 Componente 2 Investimento 1.4: Potenziamento strutture di ricerca

e creazione di “campioni nazionali di R&S (M4C2-19)” — Next Generation EU (NGEU).

3https://github.com/kosiokarchev/clipppy.
32https://github.com/kosiokarchev/phytorch.

,25,


https://github.com/kosiokarchev/clipppy
https://github.com/kosiokarchev/phytorch

A On a large cancellation in the likelihood-based treatment of selection
effects

In this appendix, we demonstrate the large cancellation in the selection-affected likelihood,

Nobs Nobs (SZ (;1Z ) Nobs

Hp(di 55,\1:)—]:[ SEAED pr(dz

) (A1)

that renders impracticable the piecewise SBI approach of learning a model unaffected by
selection effects and subsequently correcting it. We illustrate it in two cases: a Gaussian toy
model specifically designed to highlight our argument, and an even more simplified model
for SN Ia cosmology as in section 3 but with perfect knowledge of redshifts.

Our argument concerns, on one hand, the usual data likelihood: p({d’} ‘ \Il>, and

on the other, the selection correction: p({Sf)} ’ {di}, \Il) /p({Sf)} | ®). As the data set
grows and the distribution of observed objects becomes markedly different from that of the
complete population, constraints on ¥ derived from just the former will be increasingly
biased. Meanwhile, the strength of the correction (compounded Nyps times) will also increase
to counteract the bias and shift the maximum likelihood region towards the true parameters.
Moreover, the range of log-values that each of these terms exhibits across the parameter
space naturally scales linearly with the number of observed objects, whereas the region of
high combined likelihood only shrinks with its square root, which means that the problem
is only exacerbated for large data sets.

Consequently, if the two terms are to be approximated separately, e.g. by training an
inference network with mock data representing the complete population and then correcting
its result with an approximation of the selection probability, the two estimates must be
extremely precise in the tails of both, where the high-combined-likelihood region lies, which is
extremely hard to achieve with SBI which learns from examples and hence is most accurate
in high-density regions.

A.1 Gaussian toy model

The setup in this appendix is simple. Data is drawn from a normal distribution d* ~
N (s, o+ 52) and subjected to the selection criterion d* > 0. We wish to infer the pa-
rameters W = [u, o] after setting priors p(u) = U(—1,1) and p(o) = U(0,1) and fixing the
“measurement” noise to ¢ = 0.2.

Given a data set, for which we use a mock realisation with ;. = 0, ¢ = 0.5, and Nyps = 100
selected objects, we can easily evaluate all terms in eq. (A.1). The data likelihood is the
above-mentioned Gaussian:

(')’
eXp< 2(02+€?) > (AQ)
‘Il> - 2m(0? 4 €2)

p (di

On the other hand, the per-object selection probability p(S? | d*, ®) — p(S? | d') is indepen-
dent of the parameters (and unity for any selected objects since the criterion is deterministic).
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Figure 7. Illustration of likelihood cancellation for the Gaussian toy model. The data comprise
100 selected objects (d' > 0) drawn from a Gaussian with y, o indicated by a star and with added
“measurement” noise ¢ = 0.2. Depicted as blue and red gradients and iso-log-likelihood contours
are the two competing terms from eq. (A.1) (normalised to their respective maximum values within
the prior range). The setup is engineered so that the two nearly cancel, leading to a combined
likelihood p({d'} | ®)/p({Si} | ®) (illustrated as green filled 1- and 2-o contours) that peaks in the
tail of both. Notice the magnitude of the cancellation: across the 2-o region, where the combined
likelihood is within e~2 of the maximum, both terms individually change by a factor ~ €'%°. Therefore,
approximating each separately and then combining them could lead to large numerical inaccuracies.

Finally, integrating the data likelihood within d* > 0 gives the marginal probability of
selecting an object:

p(s

1
\Il) =35 [1 + erf(@)] . (A.3)

The two terms, combined over the 100 objects, are depicted in figure 7. When the two
are taken separately, the true values p = 0, o = 0.5 lie in low-likelihood regions (the tails)
with respect to the peak values within the prior range. Combining them, however, leads
to an almost perfect cancellation leading to the green contours that represent the posterior
of an analysis that takes selection effects into account.

Note that in this example we did not include a model for the size of the total population.
If we had, we would have been able to put additional constraints on p and o through
P(Nobs | 1, 0), even if the total population size did not explicitly depend on them: e.g. if it
were fixed to Nyt = 200. In that case, values u ~ 0, for which a fraction ~ Nops/Niot of the
population lies within the selection region, would have been preferred by p(Nops | i, o).

A.2 SN Ia cosmology with selection effects and known redshifts

For the case of SN Ia cosmology, we need to make a further simplification to the model from
section 3 in order to evaluate and display the exact likelihood and its two constituents: we
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Figure 8. Analysis of ~2000 mock SNz Ia with the simplified model with negligible redshift uncer-
tainty and selection effects, demonstrating cancellation between the uncorrected data likelihood and
the correction for selection effects (red and blue shadings and iso-log-likelihood contours, respectively).
The total likelihood, formed by combining these two terms as in eq. (A.1), is depicted as green 1- and
2-sigma filled contours, which lie in the tails of both individual terms. The orange filled contours —
systematically biased away from the true parameters (depicted as a black star) — are the result of a
naive analysis which only considers magnitudes (but not the expected distributions of redshifts) and
does not account for selection.

assume perfect estimates of the cosmological redshifts, which entail negligible measurement
uncertainty (o, — 0), e.g. spectroscopy, and perfect subtraction of peculiar velocities, so that
d® = [2°,m®] — [2%,7°]. Therefore, for the data likelihood we have

p(zsvms ’ ‘II) = p(ms | ZS,C, M07 O'm) p(zs | ROaBac)

M —(Mo+p(2°,C) 8
eXp = S # ,
[ 202, }XRo(l—i—z) dVe(z,0) ' (AA)

V2mo2, 1+ 2z* dz | _

To aid with presentation, we will also fix the nuisance global parameters (My, 0., Ry, )

X

to their true values used for simulating the mock data, so that the likelihood only depends
on the cosmological parameters of interest: ¥ — C.

The per-object selection probability p(SS | 2%, 7°) is again independent of the parameters
since we assume knowledge of the otherwise-latent z°. However, it still has to be calculated
(using the model from subsection 3.2) and multiplied by eq. (A.4) to calculate the marginal
probability of selecting a SN Ia:

p(S31C) = [[ b3 | z7m) plein | €) dz i (45)

we perform the integral numerically on a grid of z and 7.
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In figure 8, we plot the two terms evaluated for a data set of ~2000SNeIa (1/50 of
the mock data from the main text) as gradients and iso-log-likelihood contours, this time
normalised to their respective values at the location of the maximum combined likelihood
(near Q0 =~ 0.3, wy ~ —1). Here again we see the large range in both the pure-data likelihood
and the selection correction and their almost perfect cancellation across the region of high
combined likelihood (green contours). For comparison, we also show a naive analysis that takes
into account only the observed magnitudes at fixed redshifts and does not correct for selection
effects, i.e. only the term ]_[i,VObS p(m?®| z*,C), which is, naturally, biased. Importantly, it also
differs from the full data likelihood Hév °bs p(z% 1m° | C), highlighting that useful cosmological
information is contained also in the distribution of observed redshifts, owing to the volume-
related term dV;(z,C)/dz in the observed SN Ia rate. Lastly, we have again ignored the
information contained in the number of detected SNae, which gives much weaker constraints
on cosmology than inference from standardised brightnesses with spectroscopic redshifts.

B Truncation for joint inference from sets

In this appendix, we explain our implementation of high-dimensional prior truncation, which
reduces the diversity of training examples and focuses the learning on the data to be analysed.
We also explain our strategy of using inference from random subsets while truncating, in order
to optimise simulation and training time and memory requirements by training the inference
network on smaller example sets. Nevertheless, for our final result, we want to consider the
data set as a whole, and combining inference from subsets is straightforward only under two
specific conditions, which we detail below, and prone to the accumulation of approximation
errors.®> Instead, we adopt a conservative approach to subset-based inference applicable
regardless of the specifics of the model and use it only for constraining the parameter priors
— our final ratio estimator is trained (fine-tuned) on full-size mocks.

B.1 Combining inference from subsets

Suppose we have a data set D = {dz} with cardinality #D = Nyps and a simulator S : D | ¥
by which the data may have realistically been produced (including the cardinality). We
can partition D— or any simulated data set — randomly into k& subsets {®;} by assigning
each element to one of the subsets with equal probability. Could one arrive at the combined
likelihood from eq. (2.3) via separate S-based analyses of the {®;}? Yes, but only if one is
only interested in global parameters and the model satisfies two conditions.

Firstly, the selected sample size must not depend on the global parameters, and so must
the size of the complete population and the selection probability, i.e.

P(Niot | ®) — p(Ntot)}

P(So | ) — p(So) = P(Nobs [ ¥) = p(Nobs)- (B.1)

Otherwise, since the cardinalities of subsets forming a partition are correlated: p({#9;} | ¥) #
Hé“ p(#9, | ¥), combining the information contained in them marginally leads to a weaker
constraint than using them jointly.

33For methods that attempt to do this — under different assumptions and in a likelihood-based framework
— consult e.g. [96-99)].
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In our case, the size of the complete set is influenced by the cosmological model through
the total cosmic volume being surveyed — and, of course, by the rate parameters — and so
is the selection probability through the distance modulus. Therefore, Ngps is informative of
the global parameters,®! and this first condition does not hold, meaning that independent
analyses of data subsets cannot extract the full cosmological information of the combined set.

Secondly, even ignoring the information contained in counts one must infer jointly all
global parameters that ensure conditional independence of the individual objects so that the
likelihoods related to each of them (the term p(di ‘Sé, \Il) in eq. (A.1)) compose trivially
through multiplication. In other words, while it is common to have i.i.d. observations
conditioned on some large set of global/population parameters, the integral from eq. (2.4):
p(D|®)=[TI; p(di ’Sg, v, (-3) p(v | ®) dv, may introduce correlations between the objects,
and so p(D|®) may not factorise. In marginal SBI, this integral is performed implicitly
when inferring a small number of parameters of interest. In contrast, ARNRE facilitates
inference of (or at least placing constraints on) the whole global parameter space, so that v
only contains object-specific parameters and conditional independence is ensured.

In any case, combined inference from subsets — even though theoretically possible with
ARNRE and ignoring the data set size as a source of information — remains a technical
challenge since any small inaccuracies in the (neural ratio) estimator employed, possibly
insignificant on the level of individual objects/subsets, would compound over the many (k)
sub-analyses and lead to a biased result.

Therefore, we only use inference from subsets as part of the truncation procedure leading
up to an analysis of the complete data set, aiming to be conservative when constraining the
parameter space. Thus, instead of the usual product of likelihoods (or likelihood-to-evidence
ratio estimates), we use the equal-weighted mixture of posteriors derived from each subset.
This results in wide and rough (due to sub-sampling variance), hence “fuzzy”, contours,
which we use when truncating. The concept is illustrated in figure 9, where samples from
the truncated prior (black points) envelop all of the sub-posteriors (instead of just their
overlap), and while this approach results in truncating less aggressively, it ensures that no

parameter regions are incorrectly truncated away.

B.2 Set-based truncated auto-regressive neural ratio estimation

Finally, we describe the technical implementation of (sub)set-based truncation with “fuzzy”
posteriors from ARNRE.

B.2.1 Simulating subsets

To begin, we need to simulate subsets, for which there are two options. On one hand, we can
just simulate complete data sets and partition each into k subsets, resulting in a distribution
for the cardinalities of training examples:

(4D | W) = / Binom(Nype, 1/ ) p(Nope | ¥) dNope » (B.2)

341n fact, inference purely from the counts of detected transients of different kinds, i.e. with different redshift
evolution of their volumetric rate, is a promising avenue — if the selection procedure is properly modelled —
which we plan to explore in future SBI work.
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Figure 9. An illustration of high-dimensional truncation using a “fuzzy” posterior. Here, the
“(Nobs | Osa) = 20000” contours from figure 5 are decomposed into five sub-posteriors (only 2-sigma
contours shown) resulting from separate analyses of the subsets forming a k = 5 partition of the mock
data. The black points are drawn from the seven-dimensional prior constrained by a multi-ellipsoid
bound encompassing all sub-posteriors. In the subsequent stage, these samples are used to train the
final kK =1 ARNRE, whose results, after additional truncation, are also reproduced from figure 5.

very similar to the distribution of observed counts from eq. (2.3). As mentioned, if the
variable being marginalised — Ngps here and Nyt in eq. (2.3) — is Poisson distributed, i.e.
P(Nobs | ¥) = Pois({(Nops | ¥)), the result is again a Poisson distribution with an appropriately
scaled rate, (Nobs | ¥) /k. Since the same holds for the full observed data set as a subset
of the total population, subsets © can alternatively be directly generated by scaling the
total population size in the simulator, i.e. (Niot) (¥) — (Niot) (¥)/k. We achieve this by
tuning the survey sky coverage and/or duration, which are entirely degenerate and enter
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into the model only via the product Q7T, so that the simulator directly produces example
“sub”-sets, on which we train the ARNRE.
B.2.2 Sampling from the “fuzzy” posterior

Once the ratio estimator is trained, we partition the “real” data®® and calculate a collection
of sub-ratios, which we sum?®® to form the “fuzzy” posterior-to-prior ratio:

k+O:D; k t4(0,; ©.5,9;
0 (9, =) 192y 1Tl ©0:8)) B3
=1

j=1 K
As in eq. (2.6), multiplying this “fuzzy” ratio estimate by [[, p(8,), for which we use low-
dimensional kernel density estimation (KDE) implemented in SciPy [94], gives the full
“fuzzy” posterior:

k .
{0 (2, [[p(0,) ~ > X020 (B.4)

g j=1

We sample from eq. (B.4) using seven-dimensional affine-invariant MCMC implemented in
emcee [93] for all ARNRE contours shown in this paper: of the “fuzzy” and final posteriors
in figure 5 and for the individual sub-posteriors p(® |®;) depicted in figure 9.

B.2.3 Constrained prior sampling

Vanilla TMNRE considers low-dimensional marginal inference and usually truncates to a
coordinate-aligned box (in one dimension, this is a simple interval). When introducing
ARNRE for high-dimensional joint inference, [70] noted the inefficiency of this method
for correlated high-dimensional inference and proposed an alternative constrained prior
sampler3” based on slice sampling. In the present work, we adopt a similar approach but
make two modifications. Firstly, instead of an iso-(approximate-)likelihood contour, we
use the locus of our “fuzzy” posterior samples,?® approximated using multiple bounding
ellipsoids by dynesty [95, see also references therein]. And secondly, we sample from the joint
prior subject to the multi-ellipsoid constraint B again using emcee with probability density
proportional to p(®) inside B and 0 outside. We found that affine-invariant MCMC was
faster than slice sampling, especially when using a large number of chains that benefit from
GPU parallelisation of the ARNRE evaluation,* even though we need very long chains to
accumulate enough independent MCMC samples for the next stage’s training and validation

35In general, each different partition might lead to a different “fuzzy” posterior. However, since we only use
it as an intermediate stage in the truncation scheme, we only use one random partition at each k-stage.

36For numerical stability, and because the network approximates the log-ratio, we use the log-sum-exp
operation.

3Thttps://github.com/undark-lab/torchns.

381f the effective MCMC sample size is nes, this approximates an iso-likelihood contour below/outside which
a fraction 1/neg of the (approximate “fuzzy”) posterior mass lies.

39While torchns’s slice sampler also boasts GPU parallelisation, it requires multiple likelihood evaluations
per single sample in order to achieve a lower auto-correlation. Crucially, the number of intermediate steps
may be different for each chain, which drastically reduces the efficiency of parallelisation. emcee, on the other
hand, produces a valid — albeit auto-correlated — sample from every chain with every likelihood evaluation.
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Figure 10. Ilustration of Eddington bias (A(Z) = (| £) — y(2)) in the response variable (§ = y(x) +
noise) caused by scatter in the independent variable (& = z + noise) combined with a trend in its
density. For simplicity, here the distribution of the latent = has only two discrete values (z_ and =)
with higher probability at z. Noisy measurements (here Gaussian with constant variance) are made
at a range of z, and due to the prevalence of objects with true x, the response variable exhibits
Eddington bias towards y(zy) and away from the underlying y(#). Such a bias arises in qualitatively
the same way for any continuous distribution of = that varies significantly on the scale of measurement
uncertainty and independently of the noise in ¢, as long as it does not depend on x.

sets: to ensure this, we thin the chains by a factor given by the auto-correlation time reported
by emcee. Once we have the pre-defined number of global-parameter samples, we run the
simulator for each of them to produce corresponding data sets of selected supernovee.

C Bias correction and redshift uncertainties

C.1 De-biasing SN brightnesses

The main aim of bias correction in SN Ia cosmology is to counteract Malmquist bias, whereby
brighter objects have a higher probability of being detected and selected. As a simple
consequence, the average brightness of selected SNz Ia in bins of redshift*® is shifted with
respect to the total population, as illustrated in the left panel of figure 4. Therefore, a

correction
Am(z) = (M| z,Oqq) — (M| So, 2z, Ofq) (C.1)

meant to undo the shift on average?! is applied to the observed 7.

40For more complicated models, the bias can (and does) depend on all other SN-specific parameters like
stretch and colour. Since the state-of-the-art correction procedure resorts to histogramming, however, it is
difficult to extend beyond a few latent parameters per SN Ia.

“In addition, some analyses correct the assumed scatter at redshifts where selection effects are important:
this results in a reduction of the uncertainty in a x? fit (since the SN Ia population is restricted to the range
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Since calculating the expectation values requires a large number of realistic simulations,
Am cannot be calculated for every ® sampled in a MCMC chain and is instead pre-computed
for a fixed fiducial choice of global and cosmological parameters ®gq. One can then only
hope that the strength of the selection bias depends weakly on the cosmological model, i.e.
that one can already constrain ® well enough with data unaffected by selection effects (or
with non-SN Ia data altogether, e.g. by including a prior from the CMB).

A further Eddington bias [19] arises — even in the absence of magnitude-based selection
— when only noisy redshift estimates are available and the distribution of SNee is not constant
with redshift: we illustrate this effect, which favours more common objects, in figure 10
with an idealised setup. Since the SN Ia rate eq. (3.4) increases with redshift and so does
the apparent magnitude, more SNz with a measured Z have true redshift larger than that,
rather than smaller, and so (1| 2, @gq) > m(Z, Ogq) as seen in the right panel of figure 4.
An additional, trivial, source of non-constancy in the redshift distribution is the “lack” of
SNea with z < 0, which, as we demonstrated in SICRET, leads to an unavoidable offset at
low redshift (seen also in the right panel of figure 4) and incorrect inference even without
selection effects and with known redshift distribution.

Eddington bias means that a definition for “photo-z bias correction” equivalent to
eq. (C.1):

°

Am(g) . <m|2’®ﬁd> - <m|8052)®ﬁd> ’ (02)

may still not lead to correct cosmological inference, as we show in the right panel of figure 4.
Instead, previous instances of cosmological inference from SN Ia samples with photometric
redshift estimates [20, 100] have corrected for this Eddington-like shift together with the
usual Malmquist bias by defining the bias correction not with respect to the average of the
complete population but to the true brightness-redshift relation under the fiducial model:

Am(2) = m(2,Oqq) — (M| So, 2, Ofa) - (C.3)

This is also the definition that we employ for figures 4 and 5 and below in this appendix
to calculate Am® = Arm(z%).

C.2 Linearisation of redshift uncertainties

While proper — Bayesian hierarchical — modelling of significantly uncertain redshift estimates
(e.g. coming from photometry) in SN Ia cosmology is computationally expensive, in the absence
of selection effects, modern high-dimensional inference techniques can be used to derive a
full posterior over the O(Nyps)+globals variables. In fact, for our simple model, the latent
layer, comprising only the true redshifts, can be numerically marginalised on a grid to
evaluate the globals-only marginal likelihood for the purposes of Markov chain Monte Carlo
sampling. We used this procedure to derive the cosmological contours from complete samples
in the inset of figure 5.

In the presence of selection effects, however, one either needs to run a full BHM analysis
like UNITY [24, 25], or subject the data to bias corrections: a non-hierarchical non-Bayesian

of selected objects). This may then magnify the systematic bias of inferred parameters resulting from an
incorrect bias correction.
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procedure, which modifies the observed magnitudes to track the fiducial model without regard
for each SN’s latent parameters (i.e. the “true” values of noisily measured quantities like
redshift, stretch, colour). After bias corrections, inference is performed through a x? fit,
which corresponds to assuming Gaussianity for all SN-specific variables, propagating their
uncertainties linearly to magnitudes, and combining them in quadrature. For our model,
comprising only redshifts and apparent magnitudes, linearisation implies simply

02 — o2+ AuZ(3,0) (C4)
with
Ap(,C) = (14 590 m(@zZ,C) . (C.5)

In SICRET, we demonstrated that this model delivers biased cosmological results even
without selection effects owing to the significant non-linearity in the distance modulus at
low redshift and the Eddington bias discussed above, with the discrepancy between true
and inferred parameters increasing in significance for larger SN Ia samples. Lastly, we note
that this model cannot account for the SN Ia rate R (nor infer its unknown parameters Ry,
B), which has been replaced by a (improper) uniform prior on z due to the requirement
of analytic marginalisability.

C.3 Systematic bias from bias correction

Finally, the x? for the “de-biased” model which we use for comparison with STAR NRE
in the inset of figure 5 is

& o 3 L0+ o) = (Mo + (2, C))° (C.6)
s=1 0-7277, + Aﬂg(fs, Cﬁd)

Note that the redshift-related contribution to the magnitude uncertainty (Apu,), similarly
to the correction Am, is evaluated at the fiducial cosmology and fixed: we found that
calculating different Ay, for every sample of C in a MCMC chain (and adding the usual
fo:"‘is In[o2, + Ap?(2°,C)] to eq. (C.6)) leads to a significant bias since the fit favours
cosmologies with more slowly varying distance modulus, which translates into smaller total
uncertainty. This effect may be mitigated by the uncertainty rescaling applied by more involved
bias correction and error propagation pipelines [see e.g. 101, subsection 3.5], although we
have not tested this.

Regardless, while this linearised bias-corrected model works — i.e. gives consistent
contours — when applied to data generated from the fiducial parameters with which is
has been constructed (see the inset of figure 5), it fails when the “true” parameters are
sufficiently different. As we illustrate in figure 11, for the realistic redshift evolution of
the SN Ia rate that we assume (see subsection 3.1) — which dictates that a significant
fraction of the total constraining power of the sample is contributed by the high-redshift
objects affected by selection effects — the bias correction procedure ends up “imprinting” the
fiducial cosmological model, and so inference from any data is compelled to return results in
accordance with the fiducial cosmology: this was also noted by [11, figure 4].
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Figure 11. Illustration of the systematic bias introduced by bias correction, whereby posteriors
(from a likelihood-based analysis using eq. (C.6)) trace the region in C space most consistent with
the fiducial cosmology, Caq = [0.3, —1], instead of recovering the true parameters. This characteristic
“banana”-shaped region is illustrated in pale grey through the 1- and 2-sigma credible intervals from a
bias-corrected analysis of 1000 mock SNe Ia generated from the fiducial model. Left: posteriors (1-
and 2-sigma credible regions) from 10% mock SNz Ia generated with different cosmological parameters
Cirue indicated by crosses (and all other global parameters as in table 1). Right: magnitude of the
systematic bias in the posterior mean in units of the statistical uncertainty (calculated from the
posterior covariance matrix) as a function of the true underlying cosmology. For each point, a different
mock data set of 10> SNz Ia was generated and bias-corrected assuming the same Cgqq. The black
contours replicate the case Cirye = Crq from the left panel. The systematic bias severely increases as
one moves away from the locus of degeneracy.

This systematic effect is independent of the data, and thus its significance increases with
the size and constraining power of the analysed sample. As a demonstration, in figure 11, we
test data sets of ~10° SNz Ia generated with €, offset by up to 0.05 and wq by up to £0.2
from the fiducial Ciq = [0.3, —1] and find that all constraints resulting from “de-biased” x? fits,
instead of recovering the underlying true values, lie within the characteristic banana-shaped
region of parameters most consistent with Cgq, as revealed by an analysis of a smaller mock
data set generated with Cgq. Since the constraints from the latter — and similarly from real
past and present surveys — are not particularly strong, the systematic bias in the cosmological
inference introduced by bias correction is not particularly pronounced for these “small” data
sets. But as the SN Ia sample size grows in the future, so will the similarity requirements
between the fiducial and true cosmological parameters become more stringent, which means
that the validity of bias corrections will rely, paradoxically, on sufficiently precise knowledge
of the very parameters whose inference they are supposed to de-bias.
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