LHCDb

C++ Coding Conventions

LHCb Computing Note
1

Issue:

Revision: 1

Reference: LHCb 98-049 COMP
Created: 17th April, 1998

Last modified: 13th May, 1998

Prepared By: Pavel Binko

C++ Coding Conventions [Title qualification] Ref: LHCb 98-XXX

LHCb Computing Note Issue: 1 Revision: [Revision]
Abstract Date: [Revision Date]
Abstract

The purpose of this document is to define one style of programming in C++. It contains LHCb
naming conventions for all C++ entities, such as classes, data members, functions etc. It also
contains practical and useful guidelines, including examples, which should be followed when
writing C++ code. This will help to ensure understandable and good quality code. Support for
training in the form of courses, recomended books and other documentation is also described.
This document will be updated regularly as more experience is gained using the C++
language.

Document Status Sheet

Table 1 Document Status Sheet

1. Document Title: [Title qualification]

2. Document Reference Number: LHCb 98-049 COMP

3. Issue 4. Revision 5. Date 6. Reason for change

1 1 15 May 1998 First version

page ii

[Title] [Title qualification]
LHCb Technical Note
Table of Contents

Ref: LHCb 98-XXX
Issue: [Issue] Revision: [Revision]
Date: [Revision Date]

Table of Contents

Abstract
1 Introduction
2 Organisation of the Software .

3 Naming Conventions

3.1 General Rules

3.2 Class Names

3.3 Data Member Names

3.4 Naming Accessor Functions .
3.5 Naming All Other Functions .

4 C++ Coding Guidelines .

4.1 Scope Considerations
4.2 Comments

4.3 Include Files .

4.4 Inline Functions

4.5 Multiple inclusion .

4.6 Enumerations

4.7 Implementation Files
4.8 Argument passing

4.9 Initialisation .

4.10 Constructors

4.11 Copy Constructors
4.12 Destructors . .
4.13 Memory Management .
4.14 User Defined Operators
4.15 Inheritance . .
4.16 Use of the Pre-processor
4.17 Pitfalls

5 Page Layout

6 Examples

6.1 Example of an Include File .
6.2 Example of an Implementation File .
6.3 Code templates

7 Training

o 0 0 ~N ~N N

10
10
11
13
13
14
14
15
16
16
17
18
18
18
19
19
19

22

23

23
24
25

26

page iii

[Title] [Title qualification]
LHCb Technical Note

Table of Contents

Ref: LHCb 98-XXX
Issue: [Issue] Revision: [Revision]
Date: [Revision Date]

7.1 Courses at CERN
7.2 Books

26
26

page iv

[Title] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
1 Introduction Date: [Revision Date]

1 Introduction

This document is under development. The rules and recommendations presented here are not
final, but should serve as a basis for continued work with C++. This collection of rules should
be seen as a dynamic document; suggestions for improvements are encouraged.

This draft has been compiled by studying the documents [1]-[8], and many useful examples
have been added. LHCb often follows the BaBar C++ rules and recommendations, in some
places in a slightly modified form.

The purpose of this document is to define one style of programming in C++. It contains
practical and useful rules and recommendations including examples, which should be
followed when writing C++ code. Good programming practices together with uniform
coding style can significantly reduce the debugging phase. None of these rules and
recommendations is absolute, but waiving of an important rule has to be agreed in advance
with the project architect or package coordinator, and documented in detail.

The rules and recommendations should be applied before too much work developing C++
code has been done. It should improve productivity of programmers. Such C++ code should
- have a clear and consistent style
- be easy to read and understand
- be portable to other architectures
- be free of common types of errors
- be easy maintainable and changeable by different developers during the lifetime of
the LHCb experiment
Special note should be taken of the following:

ANSI Standard

The ANSI C++ standard should be followed to help ensure portability between different
platforms. Language extensions to the standard should be avoided. However at present there
is only a draft standard [9]. Compiler options that force adherence to the ANSI standard
should be used, as and when they become available.

Code Checking Tool

We will shortly start to evaluate a tool (Code Wizard) which will allow the coding conventions
described in this document to be checked automatically. This document will be updated with
information on how to use this tool as soon as it has been configured to check the LHCb
conventions.

page v

[Title] [Title qualification] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
2 Organisation of the Software Date: [Revision Date]

2 Organisation of the Software

Some of the naming conventions follow from the way code is organised and managed. The
LHCb software will be divided into packages, each typically containing a set of classes which
can be logically grouped together. Each package can be released independently of each other.
Packages will be stored in the LHCb code repository, which is based on CVS [10]. The
following rules apply when naming packages and their associated directories, files and
libraries.

R1 Each package has a unique name, which should be written such that each word starts
with an initial capital letter

Exanmpl e : VertexTracking

R2 The name of the directory containing the files corresponding to a package should be
identical to the package name. It will appear in all statements referencing its files.

Example : #include “PackageName/FileName.Extension”

R3 Each pacakge must have an associated abbreviation, which will be subsequently used
in naming classes belonging to the package. It is recomended to use 3 (maximum 4)
letters for the abbreviation. The abbreviation should start with a capital letter and
follow with lower case letters.

Example : Vtr (for VertexTracking package)
R4 C++ include files should have the extension “.h”
R5 C++ implementation files and programs have the extension “.cpp”
R6 Use aseperate “.h” file and corresponding “.cpp” file for each C++ class.
R7 The file name should correspond to the class name (see R18), including the case.
Example : VtrTrackFitter.h

R8 On UNIX library names should have the prefix “lib” followed by the package name.
Archive libraries have the extension “.a” and shared libraries the extension “.sl”

Example : libVertexTracking.a (for archive library)

R9 On Windows NT the extensions are different. Archive libraries have the extension
“lib” . Shared libraries consist of two files; libraries themselves have the extension
“dir” and export files the extension “.lib”

page vi

[Title] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
3 Naming Conventions Date: [Revision Date]

3 Naming Conventions

3.1 General Rules

R10

R11

R12

R13

R14

R15

R16

R17

R18

R19

Names of C++ entities should be chosen with care, and should be meaningful. This is
very important to make the code easy to read. The checking cannot be automated but
relies upon the reviewer.

Use multiple word names to describe the entity more precisely. The words are written
together, don’t separate them with underscores.

Exanpl e : next Hi ghVol t age

Avoid the use of special characters within names as these are sometimes interpreted in a
special way by compilers.

Exanple : #,%$, & @...

Do not create names that differ only by case

Exampl e : track, Track and TRACK
Acronyms that are part of names should be all capitals
Exanpl e : anECALC uster

Avoid non-standard acronyms and abbreviations.

Exanmpl e : use "nanelLength" instead of "nLn".

Using the occasional article (" aBMesonCandi dat e") or additional information
(" next BMesonCandi dat e") can help where an identifier looks a bit odd
("bMesonCandi dat e").

Avoid single and simple character names (e.g."j ",
array indices.

"iii")exceptforlocal loop and

It is not mandatory to use implicit prefixes for built-in types, such as"i " for integers,
"p" for pointers, " s" for strings, etc.

Global variables should be avoided at all costs.

page vii

[Title] [Title qualification] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
3 Naming Conventions Date: [Revision Date]

3.2 Class Names

R20 Class names should be nouns or noun phrases . The class name should start with the
prefix corresponding to the abbreviation of the name of the package the class belongs
to.

Exanmpl e : "VtrPhi Cluster" corresponds to the Phi Cluster O ass and
is found in the Vertex Tracking package (Vtr)

3.3 Data Member Names
R21 We recommend that data members within a class should be decalared private. Public
data members should be avoided. Protected data members can be used when necessary.
R22 Names of private and protected variables should start with a small letter.
Example : trackHits
R23 Names of constants should be written in capital letters.

Exanmple : PI

3.4 Naming Accessor Functions

Accessor functions provide access to private data members and are used to either get or set
the value.

R24 The “get” accessor function returns the current value(s) of the private data member(s)
Exanple : getTrackHits (NBthe T in trackH ts is now capitalised)
R25 The “set” accessor function sets the private data member(s) to the new current value(s)

Exampl e : setTrackHits

3.5 Naming All Other Functions

R26 Function names should be verb or verb phrases. They should have initial lower case
letters.

Exanpl e : drawTrack

R27 Functions that create a new object, but which are not responsible for deleting it, should
start with “create”

page viii

[Title] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
4 C++ Coding Guidelines Date: [Revision Date]

4 C++ Coding Guidelines

This chapter contains some general guidelines which, if followed, can be helpful in producing
high quality code that can be easily understood by others. As a general rule, code for clarity
rather than efficiency. Some general guidelines follow. More specific issues are treated in the
sections that follow.

R28

R29

R30

R31

R32

R33

R34

R35

R36

R37

R38

R39

Routines that do not have a void return type should always return a reasonable return
code. Always check the return code, don’t assume that the call succeeded. The
exception mechanism should be used to deal with "unusual” circumstances rather than
exploiting error codes. Check the input parameters, if your function operates only on a
limited range of input values.

Re-use existing and third party classes where possible,. The Standard Template Library
(STL) is the primary source for simple classes for manipulation of strings, arrays and
containers.

Exanmple : use the STL string class rather than "const char*"

Do not use built-in arrays "[]". They do not offer any protection from going outside
array bounds, and they are rarely the most suitable container. Choose one of the STL
container classes instead.

Classes can be used when passing arguments and return values rather than built-in
arrays.

Exampl e : use the CLHEP obj ect "Hep3Vector" rather than passing
the array "double v[3]".

Avoid overloading functions and operators unless there is a clear improvement in the
clarity of the resulting code.

Avoid implicit data-type conversions and mixed mode arithmetic. Use cast operators.
Example : x = (float)i + 0.5
Avoid complicated implicit precedence rules (use parentheses).

Use "const " for read-only arguements. In particular, it should be always used with
input arguments to functions that are passed as pointers or via references. This allows
the compiler to optimise, and clues the user that there will be no side effects.

For true/false data items, use the "bool " type of C++ for booleans (C programmers
may tend to use "i nt " instead of "bool).

Do not use "st ruct " types. The "cl ass" is identical to the "st r uct " except that by
default its contents are private rather than public.

Do not use "uni on" types.

Use the "i ost r eam h" functions rather then those defined in "st di 0. h".

page ix

[Title] [Title qualification] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
4 C++ Coding Guidelines Date: [Revision Date]

4.1 Scope Considerations

R40 All C++ entities should be defined only in the smallest scope, where they will be used.

R41

R42

R43

Avoid public data members in your class definitions.
Avoid global variables, encapsulate them in a class.

Exanpl e :
class Myd obal s {
public:
static void myFunc();
static int getMData();
static void setMyData(int value);
private:
static int nyData;
virtual dummy() = 0; // Trick to make the class abstract
1

For read and write access to data members, use:

int get MyData() const;
voi d set MyData(const int value);

Avoid global functions and operators as much as possible. They may be used, for
example, for symmetric binary operators and mathematical functions (where a global
function seems more appropriate than using an object).

4.2 Comments

R44

R45

R46

R47

R48

Every include file should have its own comment that contains the author’s name, the
modification history, and describes the purpose of contained class in detail. It is not
necessary to repeat the whole history in the corresponding implementation files. See the
examples in Chapter 6.

Before every function declaration, there must be a short description of its functionality,
the input and output arguments and its side-effects.

Don’t bother to comment individual source lines

Use "//" for comments. If the comment extends over multiple lines, each line must
begin with "//".

Use the C-like syntax "/ * Comment inside a conmand |ine */" onlyifyou
need more code on the same source line (beyond the comment).

page X

[Title] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
4 C++ Coding Guidelines Date: [Revision Date]

R49

All "#else" and "#endif" directives should carry a comment that tells what the
corresponding "#if" was about if the conditional section is longer than five lines.

#i f ndef PO NT_H

#define PO NT_H

/'l Two-di nensi onal point definition
class Point {

public:
Poi nt (Nunmber x, Nunber y); /1l Create from(x,Yy)
Nunber di stance(Point point) const; /1 Distance to a
poi nt
Nunber distance(const Line & |ine) const; // Distance fromline
void transl ate(const Vector & vector); /] Shift a point
private:
Nurber x; /'l X-coordinate
Nunber vy; /1 Y-coordinate
1

#endif // PO NT_H

4.3 Include Files

R50

R51

R52

R53

R54

Include files should hold the definition of a single class. It is possible to define more
classes in one include file, if these classes are embedded or if they are very tightly
coupled.

All data members of a class should be declared "pri vat e" (or "pr ot ect ed"). This
increases the data security and ensures that data members are only accessed from the
member functions of that class. Hiding data makes it easier to change implementation
and provides a more uniform interface to the object.

Classes should be declared with "publ i c" first, then "pr ot ect ed" and "pri vat e"
sections. This is the order one wants to understand the definition - first the public
interface, and then the protected and private entities. Within each section embedded
types (e.g. "enuni' or "cl ass") should appear at the top of that section.

Exanple : see exanple in section 6.1

Class definition starts by default with a "pr i vat e" section. As "f ri end" declarations

are not affected by the "pri vat e", "pr ot ect ed" and "publ i ¢c" keywords, placing
them at the beginning of the class definition seems most natural (use friend declarations

sparingly).

Use the directive #i ncl ude <Fi | eNane. Ext ensi on> in order to include from
standard directories, such as "/ usr/i ncl ude/ CC". To include user defined include
files, use names enclosed in double quotes e.g. #i ncl ude " Fi | eNanme. Ext ensi on".

page xi

[Title] [Title qualification] Ref: LHCb 98-XXX

LHCb Technical Note Issue: [Issue] Revision: [Revision]
4 C++ Coding Guidelines Date: [Revision Date]
R55 AIll LHCb include directives should specify a path, which identifies the package name.

R56

R57

R58

R59

Exampl e : #incl ude "PackageNane/ Fil eNanme. Ext ensi on"

Note that external software may use more complicated package hierarchies. The
following example comes from the external package " HepCDBMS" , which has a
sub-package "t agdb", and the include file name itself is " HepEvent . h".

Exanmpl e : #incl ude "HepODBMS/t agdb/ HepEvent . h"

There will be a package LHCb, which will contain definitions common for the whole
LHCDb software. The first line of code in each include file should include the main LHCb
collaboration wide definition file:

Exampl e : #incl ude "LHCb/LHCb. h"

The number of files included should be minimised. If afile is included in an include file,
then every implementation file that includes the second include file must be
re-compiled whenever the first file is modified. A simple modification in one include
file can make it necessary to re-compile a large number of files.

When only referring to pointers or references to types defined in a file, it is often not
necessary to include that file. It may be sufficient to use a forward declaration to inform
the compiler that the class exists

cl ass Line; /! Forward decl aration
class Point {
public:

Nunber distance(const Line & line) const; // Distance fromline

}s

Here it is sufficient to say that Line is a class, without giving all the details of the class,
which are inside its header. This saves time in compilation and avoids an apparent
dependency upon the Line header file.

Avoid relative search paths when including files. Your code should be portable and
independent of the underlying operating system. Instead, search paths should be
provided in "make" files as options for the compiler.

page xii

[Title]

Ref: LHCb 98-XXX

LHCb Technical Note Issue: [Issue] Revision: [Revision]
4 C++ Coding Guidelines Date: [Revision Date]

4.4 Inline Functions

R60

R61

Header files should not have any method bodies inside the class definitions. Any
bodies of "i nl i ne" functions should go at the end of the header file after the class
definition. Any bodies of other functions should go to the implementation file. This
improves the readability of the interface. We recommend use of "i nl i ne" functions to
return values stored as "pri vat e" (or "pr ot ect ed") member data.

class Point {
public:
Nunber get X() const; // Return the x coordinate
private
Nurber x;
1

i nl ine Nunber Point::getX() const { return x; }

Normally it is advisable to avoid long, complex "i nl i ne" member functions. They
reduce clarity, make it take longer to compile and harder to debug, and the performance
gain from making them "i nl i ne" is small for large routines. To avoid problems, do not
inline :

functions calling member functions of other classes

functions call virtual member functions of this class

functions calling templated functions

In effect, do not inline anything that calls something else, or involves significant control
structures.

4.5 Multiple inclusion

R62

Every header file has to contain a mechanism to prevent multiple inclusion of it.
Assuming the header file "Package/File.h", the LHCb convention is:

#i f ndef PACKAGE_FI LE_H
#defi ne PACKAGE_FI LE_H

#endif // PACKAGE_FILE_H

page Xxiii

[Title] [Title qualification] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
4 C++ Coding Guidelines Date: [Revision Date]

4.6 Enumerations

R63

R64

Use "enunt' for small named integer constants within classes rather than "const ".
Unfortunately, you could meet some problems defining "const " within classes

Exanmple : use of "const int HALTED=15;" inside a class is not
supported by sone conpilers).

The "enunt' construct allows a new type to be defined and hides the numerical values of
the enumeration constants.

enum St ate {HALTED, STARTING RUNNI NG HALTI NG} ;
enum St ate {HALTED=15, STARTI NG=1, RUNNI NG=2, HALTI NG=3};

Do not use " #def i ne" to define constants, because it can result in name collisions in
other people’s code.

4.7 Implementation Files

R65

R66

R67

Implementation files should hold the member function definitions for a single class (or
embedded or very tightly coupled classes) as defined in the corresponding header file.

Exanple : See the exanple in section 6.2

It is always a good practice to design functions without any side effects (no-one would
expect si n(x) to modify x). Systematic use of the "const " qualifier can help a lot.
Declare as "const " all those member functions that are not meant to alter member data.
It makes the code safer, and is useful in understanding what a class is supposed to do.

class Point {

public:
Nunber distance(const Line & |ine) const; // Distance fromline
void transl ate(const Vector & vector); /1 Shift a point

1

The first function is "const ", it calculates the distance of "Poi nt " from "Li ne".
Translate must not be "const ", because it changes "Poi nt " (but is not allowed to
change "Vect or").

Re-declare virtual functions as "vi r t ual " also in derived classes. This is just for clarity
of code. The compiler will know itis "vi rt ual ", but the human reader may not.

page xiv

[Title] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
4 C++ Coding Guidelines Date: [Revision Date]

4.8 Argument passing

R68

R69

R70

R71

R72

Pass small objects by value and large objects by constant reference. Passing an object by
value creates a new copy of the object, which is fine if the object is small. Passing by
constant reference passes the address of the object. The compiler will not allow the
arguments to be modified.

class Point {

public:
Nunber di stance(Point point) const; /1 Distance to point
Nunber distance(const Line & |ine) const; // Distance fromline

1
Here a "Li ne" may be large so it is passed by constant reference.
If the previous example had been written:

class Point {

public:
Nunber di stance(Point point) const; /1 Distance to point
Nunber distance(Line & |ine) const; /1 Distance fromline
1

the member function, Nunber di stance (Line & line) const,would be
allowed to modify the Line passed to it. This fact should be apparent from the function
name (which is not the case here).

Use references rather than pointers as arguments whenever possible.

Avoid use of default arguments. It reduces the risk that you miss off one argument by
mistake (it will be detected at compile time).

Do not declare functions with unspecified arguments (i.e. avoid using " . .. "). The
compiler cannot check them.

Pre-conditions and post-conditions should be checked with " assert (condi ti on)".
These should be at the beginning and end of a routine (and commented).

#i ncl ude <assert. h>
[....]
voi d
MyCl ass: : nyFunction(char* nanme) {
assert (O !'=nanme); // Check that the name is not NULL

}

The assertion can be removed from the code, once it has been tested, by compiling with
the symbol NDEBUG defined. If checks for internal logic errors are outside an assert,
they should call abort(), not assert(0) when they fail. This way the action and check will
have the same behaviour in test and production versions.

page xv

[Title] [Title qualification] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
4 C++ Coding Guidelines Date: [Revision Date]

4.9 Initialisation

R73 Variables and objects should always be created in a valid, ready-to-use state. Don’t

expect the user to call an "open" function, nor a "cl ose" (use the destructor).
Initialise objects at the time of declaration.

Nurmber n(0); /[l initialises nto O
Poi nt p(20, 10); /1 initialises the two values of p to 20, 10

4.10 Constructors

R75 Single argument non-converting constructors should use the keyword "expl i cit".

This is to avoid possible confusing behaviour with implicit conversions during
assignments. A non-converting constructor constructs objects just as converting
constructors, but does so only where a constructor call is explicitly indicated by the
syntax.

Example : For the definition of constructors for Z
class Z {

public:

explicit Z(int);

1

the following assignment would be illegal (implicit conversion is forbidden):
Z al = 1,

however

Z al(1l);

would work, as would:

Z al
Z*p

Z(1);
new Z(1);

4.11 Copy Constructors

R76 A copy constructor is recommended when an object is initialised using an object of the

same type.

page xvi

[Title] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
4 C++ Coding Guidelines Date: [Revision Date]

R77

R78

A class that has built-in pointer member data should have a copy constructor and an
assignment operator.

class Line {

public:
Line (const Line &); /1 Copy constructor
Line & operator= (const Line &) ; [/ Assignment operator

b

Without these the default copy constructor and assignment operator would perform
shallow copies and so produce two references to the same object. This is one of the
easier ways to make a program crash. If you do not think it likely that anyone will want
to copy an object of the class you are working on, then just provide private declarations
of the copy constructor and assignment operator and the object will be uncopyable.

The argument to a copy constructor and to an assignment operator should be a const
r ef er ence. This ensures that the copying or assigning didn’t alter the object.

4.12 Destructors

R79

Declare a "virtual" destructor in every virtual base class (i.e. one having at least one
virtual function). This ensures that objects can be properly deleted when referenced by
base class pointers.

A virtual base class should always have a virtual destructor.

class Line {
public:
virtual ~Line(); /1 virtual destructor

b

If a class, having virtual functions but without virtual destructors, is used as a base
class, there may be a surprise if pointers to the class are used. If such a pointer is
assigned to an instance of a derived class and if delete is then used on this pointer, only
the base class’ destructor will be invoked. If the program depends on the derived class’
destructor being invoked, the program will fail.

4.13 Memory Management

R80 Match every invocation of "new" with exactly one invocation of "del et e". Thisis a

R81

minimum requirement to keep control of memory.

Any pointers to automatic objects must have the same, or a smaller scope than the
object they point to. This makes sure that when the object goes out of scope and is
destroyed, the pointer is not still trying to point to it.

page Xxvii

[Title] [Title qualification] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
4 C++ Coding Guidelines Date: [Revision Date]

R82

R83

A function must not use the "delete" operator on any pointer passed to it as an
argument. This is also to avoid dangling pointers, i.e. pointers to memory, which has
been given back. Such code will often continue to work until the memory is re-allocated
for another object.

Use "new'and "del et e" instead of "mal | oc()" and"free()".

4.14 User Defined Operators

R84

R85

R86

R87

To behave as expected, the assignment operator functions should return a reference to
their left operand.

Example : a = b = c;
will assign ¢ to b and then b to a as is the case with built in objects.

Give operators conventional definitions. For example if you define the operator "+",
then it should do something like an addition.

Declare symmetric binary operators as global functions.

Define asymmetric binary operators and unary operators that modify their operand as
member functions.

4.15 Use of the Pre-processor

R88

R89

R90

Do not use "#define" to define constants. Use rather "enuni' to define integer constants
or sets of constants, or "const " for non-integer constants.

Use templates for parameterised types rather than the pre-processor.

Use functions (maybe inline) rather than pre-processor macros.

page xviii

[Title] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
4 C++ Coding Guidelines Date: [Revision Date]

4.16 Common Pitfalls

R91

In a comparison specify the const item first, since this will give rise to a compile-time
error if an assignment is specified by mistake

Example: if(0 == value)

The following will not be trapped by the compiler
i f(value = 0)

when what you meant was

if(value == 0)

R92 Take care when testing floating point values for equality. It is better to use:

R93

R94

R95

#i ncl ude <math. h>
if (fabs(valuel - value2) < 0.001)

than
if (valuel == value2)

In "switch" statements each choice must have a closing "break", or there should be a
comment to indicate that the fall-through is the desired action.

switch(expression) {
case constant:
st at enent s;
br eak;
def aul t:
st at enent s;
br eak;

}

Avoid declarations of variables inside statements. Rather use

int i;
while(i =...) {...}

than
while(int i =...) {...}

Use the integer constant 0 (zero) for the null pointer. Never implicitly compare pointers
to non-zero (i.e. do not treat them as having a boolean value). Use

if (0!=nptr)

page Xix

[Title] [Title qualification] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
4 C++ Coding Guidelines Date: [Revision Date]

R96 If you are doing an assignment in a comparison expression, make the comparison
explicit:

while (0 !'= (ptr=iterator()))

page xx

[Title]

Ref: LHCb 98-XXX

LHCb Technical Note Issue: [Issue] Revision: [Revision]

5 Page Layout

Date: [Revision Date]

5 Page Layout

The rules in this chapter exist in order to improve readability of the C++ code.

R97

R98

R99

Use short lines (maximum 80 characters long). Long lines can always be arranged on
multiple lines. Use spaces and parenthesis in expressions.

Indent (2 spaces are recommended) each nested block in order to highlight the start and
end of each of them. Avoid here the tab character (other people are unlikely to use
"your" tab definition).

Avoid complicated "if" constructs, rather use several simpler nested "if" constructs. The
same logic can be applied to a switch statement

R100 Use braces even if the body of a control statement contains only one statement

if(1>x) {
cout << "single statenment" << endl;

}

or

if(1 >x) { cout << "single statenent" << endl; }

R101 We recommended the following style for a function declaration, since it allows space

for a comment describing each argument:

i nt nyFunction(int intValue,
char* char Poi nt er Vaue,
int* intPointerVal ue,
MyCl ass* nyC assPoi nterVal ue);

page Xxxi

[Title] [Title qualification] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
6 Examples Date: [Revision Date]

6 Examples

The following examples can be obtained from the directory: /Zafs/cern.ch/...
or from the WWW: http://wwwcn.cern.ch/~binko/ ...

Sample programs illustrating recommended coding styles are also located in: Zafs/cern.ch/..

6.1 Example of an Include File

#i f ndef XYZPATH_H

#defi ne XYZPATH_H

PEOTTELPEEr bbb r bbb bbb
/1

/'l XyzPath. h

/1

/'l Project: LHCb Detector System Xyz

/1l Description: The class XyzPath defines ...

11

/'l Author : Pavel Binko, 07/05/98

/'l Changes: Pavel Binko, 12/05/98

11 New functionality "abc" added, bug "klm' renmoved
11

PELLTELPEEI b bbb bbb bbb

#i ncl ude " LHCb/ LHCb. h"

class XyzPath {
public:

XyzPat h() ;

virtual ~XyzPath();

prot ect ed:
void draw();
private:
class Internal {
/I XyzPath::Internal declarations O

h

#endif // XYZPATH_H

page Xxxii

[Title]

Ref: LHCb 98-XXX

LHCb Technical Note Issue: [Issue] Revision: [Revision]

6 Examples

Date: [Revision Date]

6.2 Example of an Implementation File

/11

/'l XyzPat h. cpp

/1

/'l Package: Package Nane / Package Abbreviation
/1

/'l Author : Pavel Binko, 07/05/98

/1

/1

#i ncl ude "Xyz/ XyzPath. h"

/1

/1l Function definitions of the class Internal
11

XyzPath::Internal::Internal Fuction() {

}

11
/'l Function definitions of the class XyzPath
11

A

/'l Description of the function draw

page xxiii

[Title] [Title qualification] Ref: LHCb 98-XXX

LHCb Technical Note

7 Training

Issue: [Issue] Revision: [Revision]
Date: [Revision Date]

7 Training

7.1 Courses at CERN

CERN offers many courses on object-oriented analysis and design, and on object-oriented
programming languages. The list of courses (in the recomended order in which they should
be followed) is as follows:

Introduction to Software Engineering

Object Oriented Analysis and Design

C++ for Particle Physicists (This is the very popular course given by Paul Kunz)
Hands-on Object Oriented Design and Programming for Software Developers
C++ Programming for Software Developers

Obijectivity/DB for C++ Developers

Overview of the ESA Software Engineering Standards

There are numerous other courses on particular technologies, such as CORBA, on the Java
programming language etc. The complete list can be found via the web :

htt p://ww. cern. ch/ Trai ni ng/ ENSTEC/ P9798/ Sof t war e/ cont ent. ht m

C++ for Particle Physicists is the very popular course by Paul Kunz. Copy of his
transparencies can be obtained from :

| af s/ sl ac. st anford. edu/ publ i c/ users/ pf keb/ c++cl ass/ sessi onOn. ps. Z
where "n" ranges from 1-6.

7.2 Books

Some books on the C++ language and object-oriented analysis and design are listed in this
section. Many of them are available in UCO. Some of them are available in our LHCb
computing library in Bat. 2, R-008.

7.2.1 Introductory Books on C++

S.B. Lippman, C++ Primer, Addison Wesley
J.J. Barton, L.R. Nackman, Scientific and Engineering C++, Addison Wesley

I. Pohl, Object-Oriented Programming Using C++, Benjamin Cummings

page Xxxiv

[Title] Ref: LHCb 98-XXX
LHCb Technical Note Issue: [Issue] Revision: [Revision]
7 Training Date: [Revision Date]

7.2.2 Intermediate Books on C++

- R.B.Murray, C++ Strategies and Tactics, Addison Wesley
- Scott Meyers, Effective C++, Addison Wesley
- Scott Meyers, More Effective C++, Addison Wesley

7.2.3 Books on Object Oriented Programming

- G.Booch, Object-Oriented Analysis and Design, Addison Wesley
- Bjarne Stroustrup, The C++ Programming Language, Addison Wesley
- D.R. Musser, A. Saini, STL Tutorial and Reference Guide, Addison Wesley

- E. Gamma, et al., Design Patterns, Elements of reuseable object-oriented software,
Addison Wesley

- Taligent, Taligent's Guide to Designing Programs, Prentice Hall

- J.0.Coplien, Advanced C++ Programming Style and Idioms, Addison Wesley

7.2.4 Software Engineering Books

- G.Booch, Object Solutions, Addison Wesley
- R. Martin, Designing OO C++ Applications using the Booch Method, Prentice Hall
- I. White, Using the Booch method: a Rational approach, Benjamin Cummings

- C.Mazza, J.Fairclough et al., Software Engineering Standards, Prentice Hall

page xxv

[Title] [Title qualification] Ref: LHCb 98-XXX

LHCb Technical Note

Issue: [Issue] Revision: [Revision]

Appendix A:Terminology Date: [Revision Date]

Appendix A: Terminology

10.

11.
12.

13.

14.

15.

16.
17.

18.

19.

20.

Identifier is a name, which is used to refer to a variable, constant, function or type in
C++.

Class is a user-defined data type, which consists of data elements and functions,
which operate on that data. Data defined in a class are called member data and
functions defined in a class are called member functions.

Abstract class is a class, which does not have any public or protected member data.

Public members of a class are member data and member functions, which are
everywhere accessible by specifying an instance of the class and their name.

Protected members of a class are member data and member functions, which are
accessible by specifying their name within member functions of derived classes.

Private members of a class are member data and member functions, which are
accessible by specifying their name only within the classes they are defined in.

Enumeration type is an explicitly declared set of symbolic integral constants. In C++
itis declared as an "enum".

Typedef is another name for a data type, specified in C++ using a "typedef"
declaration.

Reference is another name (alias) for a given variable. In C++, the "address of" ("&")
operator is used immediately after the data type to indicate that the declared
variable, constant, or function argument is a reference.

Macro is a name for a text string, which is defined in a "#define" statement. When this
name appears in source code, the compiler replaces it with the defined text string.

Constructor is a function which initialises an object.

Copy constructor is a constructor in which the first argument is a reference to an
object that has the same type as the object to be initialised.

Default constructor is a constructor, which needs no arguments.

Overloaded function name is a name, which is used for two or more functions or
member functions having different types. (The type of a function is given by its
return type and the type of its arguments.)

Overridden member function is a member function in a base class, which is
re-defined in a derived class. Such a member function is declared virtual.

Pre-defined data type is a type, which is defined in the language itself, such as int.

User-defined data type is a type, which is defined by a programmer in a class, enum,
or typedef definition or as an instantiation of a class template.

Pure virtual function is a member function, for which no definition is provided. Pure
virtual functions are specified in abstract base classes and must be defined
(overridden) in derived classes.

Accessor is a function, which either returns the value of a data member, or sets its
value.

Forwarding function is a function, which does nothing more than call another

page XxXxvi

[Title]

LHCb Technical Note

Ref: LHCb 98-XXX
Issue: [Issue] Revision: [Revision]

Appendix A:Terminology Date: [Revision Date]
function.

21. Constant member function is a function, which may not modify any data members.

22. Exception is a run-time program anomaly that is detected in a function or member
function. Exception handling provides for the uniform management of exceptions.
When an exception is detected, it is thrown (using a throw expression) to the
exception handler.

23. Catch clause is code that is executed when an exception of a given type is raised. The
definition of an exception handler begins with the keyword "catch".

24. Abstract base class is a class from which no objects may be created; it is only used as
a base class for the derivation of other classes. A base class is abstract either if it
includes at least one member function that is declared as pure virtual, or its default
constructor is private or protected.

25. Iterator is an object which, when invoked, returns the next object from a collection of
objects.

26. Scope of a name refers to the context in which it is visible. (Context, here, means the
functions or blocks in which a given name can be used.)

27. Compilation unit is the source code (after pre-processing) that is submitted to a
compiler for compilation (including syntax checking).

28. An Include file contains declarations of the class and, when appropriate, the
declarations of in-line functions.

29. An implementation file contains the implementation of a class. This includes the

implementation of all non in-line functions.

page Xxxvii

[Title] [Title qualification] Ref: LHCb 98-XXX

LHCb Technical Note

Issue: [Issue] Revision: [Revision]

Appendix A:Terminology Date: [Revision Date]

References

(1]

(2]

(3]

(4]

(5]

(6]
(7]
(8]
(9]

[10]

David R. Quarrie, Guidelines for Writing or Modifying BaBar Software, 1996
http://www.slac.stanford.edu/BFROOT/doc/Programming/Guidelines/Guideline
s.html

Neil Geddes, The BaBar User Guide, 1998
http://www.slac.stanford.edu/BFROOT/doc/Computing/NewUser/htmlbug/

S.M.Fisher, C++ Coding standards for ATLAS,
http://atlasinfo.cern.ch/Atlas/ GROUPS/SOFTWARE/NOTES/note29/cxx-rules.ht
ml

CMS : A suggested "training path" in C++ and Object-Orientation,
http://hpl3sn02.cern.ch/homepages/innocent/cmsoo/training.html

Erik Nyquist, Mats Henricson, Programming in C++ Rules and Recommendations,
Ellemtel, 1990-92

Barton and Nackman, Scientific and Engineering C++, Addison-Wesley, 1994
Gamma et al., Design Patterns, Addison-Wesley, 1995

Taligent, Well-mannered object-oriented design in C++,
http://hpsalo.cern.ch/TaligentDocs/TaligentOnline/DocumentRoot/1.0/Docs/inde
x.html

C++ ANSI(draft) standard public review document :
http://www.maths.warwick.ac.uk/cpp/pub/wp/htmli/cd2/index.html

LHCb Configuration Management Plan (in preparation)

page xxviii

