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The spectrum of hypernuclear trios composed of a A baryon and two nucleons is the subject of an
ongoing experimental campaign, aiming to study the interaction of the A particle with a neutron, and
the 3-body A-nucleon-nucleon force. In this manuscript we utilize baryonic effective field theory at
leading order, constrained to reproduce the available low energy light hypernuclear data, to study the
continuum spectrum of such hypernuclear trios. Using the complex scaling method and the inverse

analytic continuation in the coupling constant method we find the existence of a virtual state in the

Keywords: Anp J™ =3/2% channel, leading to cross-section enhancement near threshold. For the Ann J7 =1/2F

Hypernuclei channel we predict a resonance state. Depending, however, on the value of the AN scattering length, the

Effective field theory resonance pole moves from the physical to the unphysical complex energy sheet within the experimental

Hypertriton bounds.

Q”” © 2020 Published by Elsevier B.V. This is an open access article under the CC BY license
esonance

(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

Understanding the interaction between nucleons and a A hy-
peron is the subject of an ongoing experimental and theoretical
campaign [1]. In the last few years much effort is dedicated to the
study of hypernuclear trios (ANN) aiming to determine the un-
known A-neutron (An) interaction, and the ANN 3-body force.
The latter is known to have a crucial effect in the nuclear equa-
tion of state at high density, and therefore on our understanding
of neutron stars.

The A-nucleon interaction is not strong enough to bind a AN
pair, making the hypertriton -j’\H(I =0, J® =1/27) the lightest hy-
pernuclei. It is weakly bound with a A separation energy Bp =
0.13+£0.05 MeV [2]. The experimental search for other bound hy-
pernuclear trios has found no evidence for the hypertriton state
3H*, 3H(I =0, J™ =3/2%), indicating that the singlet s=0 AN
interaction is somewhat stronger than the triplet s =1 interaction.

Recently, the HypHI collaboration [3] has claimed evidence for a
bound Ann state, -;’\n(l =1, J¥ =1/2%). However, this observation
contradicts theoretical analyses demonstrating that such a bound
state cannot exist. Since the first calculation by Dalitz and Downs
[4], numerous theoretical studies of I = 0,1 and J = 1/2,3/2
ANN states have been performed, confirming the observation that
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no bound Ann and iH(I =0, J® =3/2%) exist within Faddeev
calculations for separable potentials [5,6], chiral constituent quark
model of YN interactions [7,8] or the Nijmegen hyperon-nucleon
potentials [9]. The same conclusion was drawn in [10] within vari-
ational calculations using YN model, simulating the realistic Ni-
jmegen interaction. The Ann system was also studied within a
baryonic (pionless) effective field theory (7 EFT) [11,12], however,
due to uncertainty in fixing the three-body Ann force no firm pre-
dictions of its stability could be made.

In spite of the theoretical consensus regarding a bound Ann,
the nature of hypernuclear ANN trios remains a subject of an on-
going discussion [13]. Specifically, the search for the Ann system
is a goal of the JLab E12-17-003 experiment [14], and the study of
the iH(I =0, J¥ =3/2%) state is part of the JLab proposal P12-
19-002 [15].

Regardless the apparent interest, the possible existence of Ann
and iH* hypernuclear continuum states has been directly ad-
dressed in only few theoretical works. Calculating zeros of the
three-body Jost function, Belyaev et al. found a very wide, near-
threshold, Ann resonance [16]. Afnan and Gibson [17] using Fad-
deev calculation and separable potentials, fitted to reproduce AN
and NN scattering length and effective range, concluded that the
Ann state exists as a sub-threshold resonance. They also found
that a small increase of the AN interaction strength shifts the
resonance position above threshold and thus yields an observable
resonance. We are not aware of any direct calculation of the iH*
continuum state, however, as Garcilazo et al. concluded, there is a

0370-2693/© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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hint of near-threshold pole which gives rise to large Ad scattering
length in J” =3/27" channel [7].

The aforementioned continuum studies [7,8,16,17] were limited
to A = 3 systems. Therefore, the predictive power of their inter-
action models was not verified against the available experimental
B, data in e.g. 4-body or 5-body s-shell hypernuclei. In fact, ap-
plying a gaussian potential mimicking the low energy behavior of
the separable potential of [17] we find substantial overbinding in
these systems. Given the relatively poorly known AN scattering
parameters, and the precise B, data, such comprehensive study is
called for.

Motivated by the debate regarding the nature of the hypernu-
clear 3-body states, and the soon to be published JLab E12-17-003
Ann results [14], in the present work we report on precise few-
body calculations of the hypernuclear ANN bound and continuum
spectrum, using Hamiltonians constructed at leading order (LO)
in #EFT [18]. This #EFT is an extension, including A hyperons,
of the n,p nuclear 7#EFT Hamiltonian, first reported in [19,20]
and more recently used to study lattice-nuclei in [21-24]. At LO
7t EFT contains both 2-body and 3-body contact interactions. The
theory’s parameters, i.e. the 2- and 3-body low-energy constants
(LECs), were fitted to reproduce the AN, NN scattering lengths,
3H binding energy, and the available 3,4-body B, data [18]. The
predictive power of the theory was tested against the measured
iHe separation energy [18,49]. The 7#EFT breakup scale can be
associated with 2-pion exchange 2my, or the threshold value for
exciting XN pair. These two values are remarkably close. Assum-
ing a typical energy scale Ep of about 1 MeV, the momentum
scale Q ~ /2MpE » = 47 MeV/c, suggesting a 7 EFT expansion pa-
rameter (Q /2my) ~ 0.2. This implies a 7 EFT LO accuracy of order
(Q/2my)? ~ 4%.

The 3-body calculations were performed with the Stochastic
Variational Method (SVM) expanding the wave function on a cor-
related gaussian basis [25,26], the continuum states were located
using the Complex Scaling Method (CSM) [34], or the Inverse Ana-
lytic Continuation in the Coupling Constant (IACCC) Method [48].

Our main findings are: (a) The possible existence of a bound
Ann, or f\H* state is ruled out, confirming findings of previous
theoretical studies [4-10,16,17]. (b) The excited state of hypertri-
ton, il—l*(]” =3/2%), is a virtual state. (c) The Ann state is a
resonance pole near the three-body threshold in a complex en-
ergy plane. The position of this pole depends on the value of the
AN scattering length. Within the current bounds on the AN scat-
tering length it can either be a real resonance or a sub-threshold
resonance.

2. Calculational details
2.1. Hypernuclear 7t EFT at LO

At LO the #EFT of neutrons, protons and A-hyperons is given
by the Lagrangian density

2 2
L:NT(iao—F ZVTN)N—FAT(I'BO + ;TA)A + Lop+ L35 (1)
where N and A are nucleon and A-hyperon fields, respectively,
and Lyp, L3p are 2-body, and 3-body, s-wave contact interactions,
with no derivatives. These contact interactions are regularized by
introducing a local gaussian regulator with momentum cutoff A,
see e.g. [27],

2 \3 22
sur):(ﬁ> exp(—ZF) (2)

that smears the Dirac delta appearing in the contact terms over
distances ~ A~1. This procedure yields Hamiltonian containing
two-body V; and three-body V3 interactions

Table 1

Input spin-singlet a}N and spin-triplet aV scattering
lengths (in fm), used to fit the hypernuclear 2-body
LECs. Also shown is the spin-independent combination
of AN scattering lengths a*N = 3afN +afN)/4.

model Reference  aN  afN gtV
Alexander B [28] -1.80 -1.60 -1.65
NSC97f [29] 260 -171  -193
X EFT(LO) (30] 191 -123  -140
YEFT(NLO)  [31] 291 -154 -188
1,S 1,S
Vo= ) G P
LS i<j
1,S 1,S
V3= D" > Qi D 8ipsiip), (3)
1S i<j<k cyc

where 7){]?5 and Q,ljks are the 2- and 3-body projection operators
into an s-wave isospin-spin (I, S) channels. The cutoff A dependent
parameters Ci’s, and Di‘s are the 2- and 3-body LECs, fixed for
each A by the appropriate renormalization condition. For A higher
than the breakup scale of the theory (A > 2my ), observables posses
residual cutoff dependence, at LO O(Q /A), suppressed with A ap-
proaching the renormalization group invariant limit A — oo [18].
In total there are 4 two-body (NN, AN), and 4 three-body
(NNN, ANN) LECs. The nuclear LECs C,~>°=' ¢[="*=° and
le=1/2,s=1/2 are fitted to the deuteron binding energy, NN spin-
singlet scattering length a{)\’N , and to the triton binding energy,

respectively. The hypernuclear two-body LECs Ciﬂ/ 2570 and

Cizm’S:] are fixed by the AN < spin-singlet a}"N and spin-
triplet a{‘” scattering lengths. The three-body hypernuclear LECs

pI=03=172 pI=1.5=1/2 " and DI=%5=3/2 gre fitted to the experi-
mental A separation energies BA(iH), BA(‘}\H), and the excitation
energy Eexc(‘}\H*)-

Since aé‘” and aﬁ\N are not well constrained by experiment, we
consider different values both as given by direct analysis of experi-
mental data [28], or as predicted by several AN interaction models
[29-31], see Table 1. For the particular values of the LECs see [18].

2.2. The stochastic variational method

The A-body Schrédinger equation is solved expanding the wave
function W in correlated gaussians basis [25]

~ 1 . .
U=y cvi=) A {exp (—ExTAix) xémssfm,} . @
i i

where A stands for the antisymmetrization operator over nucle-
ons, X = (Xq,...,X4_1) denotes a set of Jacobi vectors, and XéMs

(é,iM’) is the spin (isospin) part. The information about interparti-
cle correlations is contained in the (A — 1) dimensional positive-
definite symmetric matrix A;. Once we fix all basis functions ¥,
both energies and coefficients c; are obtained through diagonaliza-
tion of the Hamiltonian matrix. The A(A — 1)/2 nonlinear vari-
ational parameters contained in each A; matrix are determined
using the Stochastic Variational Method (SVM) [25,26].

Unlike bound states, continuum wave functions are not square-
integrable. Therefore, resonances or virtual states can not be di-
rectly described using an L? basis set of correlated gaussians. Tech-
niques such as CSM or IACCC have to be used to study such states
with a correlated gaussians. Below we discuss in some detail the
techniques we applied in our study.
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2.3. The complex scaling method

The CSM [34] is a reliable tool to study few-body resonances
[35]. The basic idea in the CSM is to locate resonances introducing
complex rotation of coordinates and momenta

U@ r=re?, U@ k=ke ", (5)

that transforms the continuum states into integrable L2 states. This
transformation rotate continuum state energies by 26 uncovering a
section of the second energy plane between the real axis and a ray
defined by |argE| = 26, exposing resonances with argument 6, =
arctan(I'/2E;)/2 smaller than 6. Here, E. = Re(E) is the resonance
energy and I' = —2Im(E) is the width. Using gaussian regulator (3)
the rotation angle is restricted to be 6 < Z, to prevent divergence
of the rotated gaussian, limiting the scope of the CSM.

The SVM method uses the variational principle as a tool to
optimize the nonlinear basis parameters A; (4), minimizing the
basis size. This does not apply to resonance states, making it a
highly non trivial problem to choose the appropriate basis. Here,
we present a new efficient procedure to determine the basis set
for an accurate description of resonance states. To optimize the
basis, we supplement the Hamiltonian H with an additional har-
monic oscillator (HO) trap

trap HO HO hz 2
H™P(b)y=H + Vi), v (b):zmb42rjk, (6)

j<k

where m is an arbitrary mass scale, and b is the HO trap length.
The potential VHO(b) gives rise to a HO spectrum of the ground
and excited states which is affected by the presence of a resonance
in the Hamiltonian H [42]. For a given trap length b we select basis
states v; (4) using the SVM, optimizing the variational parame-
ters for the ground state energy and then subsequently for excited
states energies up to Emax > E; + I'/2. The SVM procedure prefers
basis states which promote interparticle distances rj, in a specific
region given by the trap length b. Increasing b we enlarge the typ-
ical radius of the correlated gaussians ;. For large enough b, the
CSM resonance solution for the Hamiltonian H starts to stabilize
and both the short range and the suppressed long range asymp-
totic parts of a resonance wave function are described sufficiently
well. In order to further enhance the accuracy of our CSM solu-
tion, we use a grid {by}, of a HO trap lengths, and for each grid
point we independently select correlated gaussians basis. Then we
merge basis states determined for each by into a larger basis while
ensuring linear independence and numerical stability of the over-
lap matrix. We have found that this procedure works well for both
narrow, and broad resonances.

2.4. Inverse analytic continuation in the coupling constant method

The Analytic Continuation in the Coupling Constant (ACCC)
method [43] has been successfully applied in various calculations
of few-body resonances and virtual states [44,45]. Moreover, it was
pointed out that the ACCC method provides rather convenient way
how to extend applicability of the SVM into the continuum re-
gion [44,46]. We consider a few-body Hamiltonian consisting of
the physical part H and an auxiliary attractive potential Va"*

HIACCC — H +a Vaux’ (7)

which introduces a bound state for a certain value of «, but
ensures that the physical dissociation thresholds for the various
subsystems remain unaffected. By decreasing the strength « the
bound state moves closer to the threshold and for a certain « it
turns into a resonance or virtual state. It has been demonstrated

for a two-body system that in the vicinity of the branching point
oo the square root of an energy k = /E behaves as k ~ (o — o) for
s-wave (I =0) and k ~ /o — g for | > 0 [43]. Defining new vari-
able x = ,/a — o one obtains two branches k(x) and k(—x) where
the former one describes motion of the S-matrix pole assigned to
a bound state on a positive imaginary k-axis to the third quadrant
of a k-plane. Using analyticity of the function k(x) one can con-
tinue from a bound region o > g to a resonance region o < op.
In practice this is done by constructing a Padé approximant

M .
> j—oCjx!
1+ Zj'v:] djxf

for the function k(x) using M + N + 1 bound state solutions
{(xj,kj); j=1,...,M + N + 1} for different values of a > ap.
The evaluation of the Padé approximant (8) at x = \/—aq yields
complex k which is assigned to the physical resonance solution
k? = E, —iI'/2 corresponding to the Hamiltonian H. For more de-
tails regarding the ACCC method see [47].

The ACCC method suffers from two drawbacks which are pre-
dominantly of numerical nature. The first issue is high sensitivity
of the numerical solution to precise determination of the branching
point value g [43]. The second obstacle appears with increasing
orders M and N of the Padé approximant (8) when the numerical
solution starts to deteriorate.

Rather recently Horacek et al. [48] have introduced a modified
version of the ACCC method called the Inverse Analytic Contin-
uation in the Coupling Constant (IACCC) method which provides
more robust numerical stability. Starting in the same manner as
in the ACCC case, we consider the Hamiltonian (7) and calculate
series of bound states for different values of o > «g. Next, we
construct a Padé approximant of a function «(x), where k¥ = —ik,
using a relevant set of bound state solutions

k(x) ~ i (8)

- Pu) > ilocikd
Qvle) 14+ Y0 djicd

a (k) 9)

The parameters of the physical resonance or virtual state pole are
then readily obtained by setting o = 0 as the physical root of a
simple polynomial equation Pp;(x) =0.

To ensure that the properties of the 2-body part of the Hamilto-
nian, such as scattering lengths or deuteron binding energy, remain
unaffected, we choose the auxiliary potential to be an attractive 3-
body force. The natural choice is to select it to have the same form
as the £ EFT 3-body potential (3),

2
ylAccc _ 418 ) Qs e—%(r?j+r§k)
3 =0 ijk ’
i<j<k cyc

(10)

where the amplitude di’s defines its strength, corresponding to the
parameter « in Eq. (7), and is negative for an attractive auxiliary
potential.

The accuracy of our IACCC resonance solutions in the fourth
quadrant of the complex energy plane, Re(E) > 0, Im(E) < O, are
better than ~ 10~3 MeV. These results compare very well with
the CSM calculations in their region of applicability 6 < 7 /4.

3. Results

Using 7#EFT at LO with the LECs fitted to the available data
as described earlier [18], we find no bound Ann or iH* states.
Further examining the hypothetical existence of these states, we
found that they are incompatible with the well measured A =4,5
hypernuclear spectrum.
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Fig. 1. Trajectories of the Ann resonance pole in the complex energy plane de-
termined by a decreasing attractive strength of the auxiliary three-body force
di:m:l/z for several cutoffs A and the NSC97f set of AN scattering lengths. Small
dots mark IACCC solutions for different df\zl’szl/z
physical position of the Ann pole (di:]'szl/2 = 0). Notice the almost overlapping

trajectories for A =2.50 fm~! and A =4.00 fm~'.

, larger symbols stand for the

As we have already pointed out, the possible existence of bound
Ann and iH* states has been quite convincingly ruled out in sev-
eral theoretical studies [4-10]. Our gEFT findings support their
conclusions.

3.1. A Ann resonance?

We start our study of three-body hypernuclear continuum
states with the Ann system. To understand the cutoff dependence
of our theory we present, in Fig. 1, the trajectories E zpp (df\:m:]/z,
A) of the Ann resonance pole, calculated using the IACCC method
for different values of cutoff A, and for a representative set of
a’N - NSC97f. With decreasing attraction of VIA®CC, the reso-
nance poles move along a circular trajectory in the complex energy
plane starting from the A + n + n threshold to the physical end

point where dlfl’s:l/z = 0. The figure suggests that the trajecto-

. 1=1,5=1/2
ries Eann(d;

increasing cutoff, and already at A = 2.5 fm~! we approach stabi-
lized results.

Repeating the same calculations for all sets of scattering lengths
given in Table 1, we find that regardless the cutoff value, the imag-
inary part of the physical solution Im(E}\nn) lies in the interval
-132< lm(E}mn) < —0.58 MeV for all a?” sets. In contrast, the
real part Re(E% ) exhibit large cutoff dependence. As shown in
Fig. 1 for the NSC97f case, the pole moves with increasing A from
the unphysical part of the Riemann sheet (Re(E) < 0, Im(E) < 0;
third quadrant) towards the physical one (Re(E) > 0, Im(E) < 0;
fourth quadrant).

In Fig. 2 we compare the trajectories EAnn(di:l’S:l/z,)L) for
the different values of AN scattering lengths, Table 1, at cutoff
A =4 fm~'. From the figure, we can deduce that the existence
of a physically observable Ann resonance is very sensitive to the
AN interaction. The latter must be strong enough to ensure the
pole’s location in the fourth quadrant of a complex energy plane.
The figure and Table 1 show that with increasing size of the spin-
averaged scattering length a*N =3/4aN + 1/4a)N the Ann pole
trajectories move closer to the A + n + n threshold. Moreover, by
increasing the cutoff A the physical Ann pole is shifted closer to
or into the fourth quadrant. In this sense the pole position in

,A) and the physical end points converge with

Re(E) [MeV]

Fig. 2. Trajectories of the Ann resonance pole in the complex energy plane de-
termined by a decreasing attractive strength dizl‘szl/ 2 for selected sets of AN
scattering length, calculated at A =4.00 fm~1. Larger symbols stand for the physical
position of the Ann pole (di:]'szl/2 =0).

the renormalization group invariant limit A — co could be con-
sidered as the most favorable to the existence of an observable
resonance. Nevertheless, in the A — oo limit only two sets of a®N -
NSC97f and x EFT(NLO) undoubtedly predict a physical resonance.
From the results shown in Fig. 2 we can roughly estimate that
a*N ~ 1.7 fm~! is the minimal value for the Ann pole to enter the
fourth quadrant, becoming a physical resonance. It should be noted
that though the size of @*"N plays a dominant role, one should take
into account also the effect of the three-body force which might
introduce more complicated dependence on a}N and a{*N.

3.2. The hypertriton excited state iH*(]” =3/2%)

The excited state of the hypertriton i}—l*(]” = 3/2%) might
be considered as a good candidate for a near-threshold reso-
nance. Indeed, several works demonstrated an emergence of a
bound state by increasing rather moderately the AN interaction
strength. Applying the IACCC method we follow the pole trajec-
tory given by the amplitude of auxiliary 3-body force di=0’5=3/ 2
from a bound region to its physical position in a A+deuteron
(A + d) continuum. In Fig. 3 we show the iH* pole momen-

tum k= /20 Al EG HY) — EpCH)], 1£ad = maimy /(mg +1m,), as a

function of di:o,s:a/ % for Alexander B AN scattering lengths and

A =6 fm~!. We observe that with a decreasing auxiliary attrac-
tion the imaginary part of the momentum Im(k) decreases from
positive value (bound state) to a negative value (unbound state)
whereas the real part Re(k) remains equal to zero. This behavior is
regarded as definition of a virtual state [50].

Repeating the calculations for various cutoffs and different AN
scattering lengths, Table 1, we find iH* to be a virtual state in
all considered cases. As we have seen in the Ann calculations, the
energy of the virtual state E, is stabilized at cutoffs A > 4 fm~1.

The existence of the 3 H* virtual state is further confirmed by
the CSM. We do not see any sign of resonance for all sets of
AN scattering lengths, cutoffs, or auxiliary 3-body force values
di:o,s:3/z‘ Odsuren et al. [51] have showed that the rotated dis-
cretized CSM continuum spectra reflect phenomena such as near-
threshold virtual states, although one would naively assume that
virtual states having |argE| = /2 are beyond the reach of the
CSM. From continuum level density they have extracted the scat-
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Fig. 3. Imaginary (blue) and real (red) parts of the f\H* pole momentum k as a func-

tion of d;»:o,s:a/z' normalized to the physical three-body LEC Df\zo’s:3/2. Unbound

region is determined through the IACCC method. Dots mark the physical solution
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Fig. 4. S-wave Ad phase shifts in the |7 =3/2% channel Sé\/‘ﬁ as a function of

energy E above the A + d threshold, extracted from the continuum level density of
the rotated CSM spectra. The phase-shifts are calculated for cut-off A =6 fm~! and
several AN interaction strengths. Shaded areas mark uncertainty introduced by the
rotation angle 6 within interval 15° <6 < 20°.

tering phase shifts which revealed enhancement due to the vicinity
of a the pole [51,52]. Following this approach we calculated the
Ad s-wave phase shifts 8§‘/‘12 for the J™ =3/2% channel. The calcu-
lated phase shifts, presented in Fig. 4, exhibit clear enhancement
close to threshold implying proximity of a pole. The shaded areas
in the figure reflect the phase shift dependence on rotation angle
6, which we checked for a rather broad interval 15° <6 < 20°.
The scattering length aé‘/"z and effective range ré‘/dz extracted

from the Ad phase shifts reveal through their sign, negative aﬁ‘/dz
and positive r?fé, the existence of a virtual state [53]. Using

ag‘/dz, ré‘/dz the virtual state binding momentum k, = \/2ftpgEy can
be approximated by

(11)

Table 2

Calculated Ad scattering lengths a4 A

3/2° 3/2
and virtual state energies E, in J* =3/2% channel for sev-
eral AN interaction strengths and cutoff 1 =6 fm~'. Results
of two different methods are presented - the continuum level
density of rotated CSM spectra and the IACCC method. For
the CSM we obtain E, using relation (11), for the IACCC us-
ing the relation ag‘/dz = —i/s/2itaqEy. The scattering length
and effective range are given in fm, E, in MeV.

CSM IACCC
aé\/dz ré\/‘; Ey aé\/dz Ey
Alexander B -17.3 3.6 -0.08 -25.7
NSC97f -10.8 3.8 -0.18 -16.1
X EFT(LO) -8.5 3.5 -0.28 -12.8
X EFT(NLO) -76 3.6 -0.34 -11.7

effective ranges r:

-0.042
-0.108
-0.169
-0.205

In Table 2 we present the IACCC results for E,, and an estimate
ag‘/dz = —i/s/2upqgE, for the scattering length, together with the

scattering parameters aﬁ‘/dz and ré‘/’iz extracted from the CSM calcu-
lations and the resulting estimate for E,, Eq. (11). Inspecting the
table, one might naively expect clear monotonic dependence of E,
on the spin-triplet scattering length a{\N . However, the dominance
of a®N is undermined by the 3-body force in the (I, S) = (0,3/2)
channel, fixed by B A(‘}\H*). Comparing the IACCC and CSM results,
one clearly see that both approaches are in mutual agreement,
they exhibit the same dependence on the AN interaction strength,
though, the CSM yields larger estimates for |E,|. It is a well known
drawback of the CSM that eigenvalues in a vicinity of the threshold
start to be affected by inaccuracies caused by complex arithmetic.
Concluding this section, we see that at LO 7 EFT firmly predicts
the excited state of hypertriton iH*( J* =3/2%) to be a virtual
state in the vicinity of the A — d threshold. This result has impor-
tant implications for prospective experimental search of this state.
Experimental observation of f\H* as a resonance state seems to
be highly unlikely. Instead, there is a near-threshold virtual state
which should be seen through the enhancement of s-wave Ad
phase shifts in the J7 =3/2% channel as demonstrated in Fig. 4.

4. Conclusions

In this work we have presented the first comprehensive 7t EFT
study of continuum hypernuclear ANN trios. The underlying nu-
cleon and hyperon interactions were described within a 7 EFT at
LO, with the LECs fixed by 2-body low energy observables and
experimental input from 3- and 4-body s-shell systems. The Ann
and il—[* energies were then obtained as predictions of the the-
ory. In view of poor low energy AN scattering data we considered
several sets of AN scattering lengths, whereas the NN interaction
remained constrained by experiment [18].

Few-body wave functions were described within a correlated
gaussians basis. Bound state solutions were obtained using the
SVM. The continuum region was studied employing two indepen-
dent methods - the JACCC method and CSM.

The #EFT predicts that both Ann and iH* are unbound. Tun-
ing the 3-body LECs to put the Ann or iH* binding energy on
threshold, yielded considerable discrepancy between the calculated
and measured B, in the A =4, 5 hypernuclei. Our findings further
strengthen the conclusions of previous theoretical studies that both
states are unbound [4-10,16,17].

Our LO gEFT calculations predict Ann and iH* to be near-
threshold continuum states. We thus anticipate that the EFT trun-
cation error is small due to low characteristic momenta and thus
higher order corrections would not change our results qualitatively.
We conclude that position of the Ann pole depends strongly on
the spin independent scattering length a®N. For a*N > 1.7 fm™!
the Ann pole becomes a physical resonance close to threshold
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with E; < 0.3 MeV, and a large width most likely in the range
1.16 < T <2.00 MeV. If observed, the position of the Ann reso-
nance can yield tight constraints on the AN scattering length. We
note, however, that the exact position of the Ann depends both on

a}N and a*N, and also on subleading 7 EFT terms neglected here.

The excited state of hypertriton iH* was firmly predicted to be
a near-threshold virtual state regardless of the value of al*N. We
have demonstrated that this virtual state has a strong effect on the
Ad s-wave phase shifts in J* =3/2" channel.
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