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The spectrum of hypernuclear trios composed of a � baryon and two nucleons is the subject of an 
ongoing experimental campaign, aiming to study the interaction of the � particle with a neutron, and 
the 3-body �-nucleon-nucleon force. In this manuscript we utilize baryonic effective field theory at 
leading order, constrained to reproduce the available low energy light hypernuclear data, to study the 
continuum spectrum of such hypernuclear trios. Using the complex scaling method and the inverse 
analytic continuation in the coupling constant method we find the existence of a virtual state in the 
�np Jπ = 3/2+ channel, leading to cross-section enhancement near threshold. For the �nn Jπ = 1/2+
channel we predict a resonance state. Depending, however, on the value of the �N scattering length, the 
resonance pole moves from the physical to the unphysical complex energy sheet within the experimental 
bounds.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Understanding the interaction between nucleons and a � hy-
peron is the subject of an ongoing experimental and theoretical 
campaign [1]. In the last few years much effort is dedicated to the 
study of hypernuclear trios (�N N) aiming to determine the un-
known �-neutron (�n) interaction, and the �N N 3-body force. 
The latter is known to have a crucial effect in the nuclear equa-
tion of state at high density, and therefore on our understanding 
of neutron stars.

The �-nucleon interaction is not strong enough to bind a �N
pair, making the hypertriton 3

�H(I = 0, Jπ = 1/2+) the lightest hy-
pernuclei. It is weakly bound with a � separation energy B� =
0.13 ± 0.05 MeV [2]. The experimental search for other bound hy-
pernuclear trios has found no evidence for the hypertriton state 
3
�H∗ , 3

�H(I = 0, Jπ = 3/2+), indicating that the singlet s = 0 �N
interaction is somewhat stronger than the triplet s = 1 interaction.

Recently, the HypHI collaboration [3] has claimed evidence for a 
bound �nn state, 3

�n(I = 1, Jπ = 1/2+). However, this observation 
contradicts theoretical analyses demonstrating that such a bound 
state cannot exist. Since the first calculation by Dalitz and Downs 
[4], numerous theoretical studies of I = 0, 1 and J = 1/2, 3/2
�N N states have been performed, confirming the observation that 
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no bound �nn and 3
�H(I = 0, Jπ = 3/2+) exist within Faddeev 

calculations for separable potentials [5,6], chiral constituent quark 
model of Y N interactions [7,8] or the Nijmegen hyperon-nucleon 
potentials [9]. The same conclusion was drawn in [10] within vari-
ational calculations using Y N model, simulating the realistic Ni-
jmegen interaction. The �nn system was also studied within a 
baryonic (pionless) effective field theory ( /πEFT) [11,12], however, 
due to uncertainty in fixing the three-body �nn force no firm pre-
dictions of its stability could be made.

In spite of the theoretical consensus regarding a bound �nn, 
the nature of hypernuclear �N N trios remains a subject of an on-
going discussion [13]. Specifically, the search for the �nn system 
is a goal of the JLab E12-17-003 experiment [14], and the study of 
the 3

�H(I = 0, Jπ = 3/2+) state is part of the JLab proposal P12-
19-002 [15].

Regardless the apparent interest, the possible existence of �nn
and 3

�H∗ hypernuclear continuum states has been directly ad-
dressed in only few theoretical works. Calculating zeros of the 
three-body Jost function, Belyaev et al. found a very wide, near-
threshold, �nn resonance [16]. Afnan and Gibson [17] using Fad-
deev calculation and separable potentials, fitted to reproduce �N
and N N scattering length and effective range, concluded that the 
�nn state exists as a sub-threshold resonance. They also found 
that a small increase of the �N interaction strength shifts the 
resonance position above threshold and thus yields an observable 
resonance. We are not aware of any direct calculation of the 3

�H∗
continuum state, however, as Garcilazo et al. concluded, there is a 
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hint of near-threshold pole which gives rise to large �d scattering 
length in Jπ = 3/2+ channel [7].

The aforementioned continuum studies [7,8,16,17] were limited 
to A = 3 systems. Therefore, the predictive power of their inter-
action models was not verified against the available experimental 
B� data in e.g. 4-body or 5-body s-shell hypernuclei. In fact, ap-
plying a gaussian potential mimicking the low energy behavior of 
the separable potential of [17] we find substantial overbinding in 
these systems. Given the relatively poorly known �N scattering 
parameters, and the precise B� data, such comprehensive study is 
called for.

Motivated by the debate regarding the nature of the hypernu-
clear 3-body states, and the soon to be published JLab E12-17-003 
�nn results [14], in the present work we report on precise few-
body calculations of the hypernuclear �N N bound and continuum 
spectrum, using Hamiltonians constructed at leading order (LO) 
in /πEFT [18]. This /πEFT is an extension, including � hyperons, 
of the n, p nuclear /πEFT Hamiltonian, first reported in [19,20]
and more recently used to study lattice-nuclei in [21–24]. At LO 
/πEFT contains both 2-body and 3-body contact interactions. The 
theory’s parameters, i.e. the 2- and 3-body low-energy constants 
(LECs), were fitted to reproduce the �N, N N scattering lengths, 
3H binding energy, and the available 3,4-body B� data [18]. The 
predictive power of the theory was tested against the measured 
5
�He separation energy [18,49]. The /πEFT breakup scale can be 
associated with 2-pion exchange 2mπ , or the threshold value for 
exciting �N pair. These two values are remarkably close. Assum-
ing a typical energy scale E� of about 1 MeV, the momentum 
scale Q ≈ √

2M�E� = 47 MeV/c, suggesting a /πEFT expansion pa-
rameter (Q /2mπ ) ≈ 0.2. This implies a /πEFT LO accuracy of order 
(Q /2mπ )2 ≈ 4%.

The 3-body calculations were performed with the Stochastic 
Variational Method (SVM) expanding the wave function on a cor-
related gaussian basis [25,26], the continuum states were located 
using the Complex Scaling Method (CSM) [34], or the Inverse Ana-
lytic Continuation in the Coupling Constant (IACCC) Method [48].

Our main findings are: (a) The possible existence of a bound 
�nn, or 3

�H∗ state is ruled out, confirming findings of previous 
theoretical studies [4–10,16,17]. (b) The excited state of hypertri-
ton, 3

�H∗( Jπ = 3/2+), is a virtual state. (c) The �nn state is a 
resonance pole near the three-body threshold in a complex en-
ergy plane. The position of this pole depends on the value of the 
�N scattering length. Within the current bounds on the �N scat-
tering length it can either be a real resonance or a sub-threshold 
resonance.

2. Calculational details

2.1. Hypernuclear /πEFT at LO

At LO the /πEFT of neutrons, protons and �-hyperons is given 
by the Lagrangian density

L= N†
(

i∂0 + ∇2

2MN

)
N + �†

(
i∂0 + ∇2

2M�

)
� +L2B +L3B (1)

where N and � are nucleon and �-hyperon fields, respectively, 
and L2B , L3B are 2-body, and 3-body, s-wave contact interactions, 
with no derivatives. These contact interactions are regularized by 
introducing a local gaussian regulator with momentum cutoff λ, 
see e.g. [27],

δλ(r) =
(

λ

2
√

π

)3

exp

(
−λ2

4
r2

)
(2)

that smears the Dirac delta appearing in the contact terms over 
distances ∼ λ−1. This procedure yields Hamiltonian containing 
two-body V 2 and three-body V 3 interactions
Table 1
Input spin-singlet a�N

0 and spin-triplet a�N
1 scattering 

lengths (in fm), used to fit the hypernuclear 2-body 
LECs. Also shown is the spin-independent combination 
of �N scattering lengths ā�N = (3a�N

1 + a�N
0 )/4.

model Reference a�N
0 a�N

1 ā�N

Alexander B [28] -1.80 -1.60 -1.65
NSC97f [29] -2.60 -1.71 -1.93
χEFT(LO) [30] -1.91 -1.23 -1.40
χEFT(NLO) [31] -2.91 -1.54 -1.88

V 2 =
∑
I,S

C I,S
λ

∑
i< j

PI,S
i j δλ(ri j)

V 3 =
∑
I,S

D I,S
λ

∑
i< j<k

QI,S
i jk

∑
cyc

δλ(ri j)δλ(r jk), (3)

where PI,S
i j and QI,S

i jk are the 2- and 3-body projection operators 
into an s-wave isospin-spin (I, S) channels. The cutoff λ dependent 
parameters C I,S

λ , and D I,S
λ are the 2- and 3-body LECs, fixed for 

each λ by the appropriate renormalization condition. For λ higher 
than the breakup scale of the theory (λ > 2mπ ), observables posses 
residual cutoff dependence, at LO O(Q /λ), suppressed with λ ap-
proaching the renormalization group invariant limit λ → ∞ [18].

In total there are 4 two-body (N N , �N), and 4 three-body 
(N N N , �N N) LECs. The nuclear LECs C I=0,S=1

λ , C I=1,S=0
λ , and 

D I=1/2,S=1/2
λ are fitted to the deuteron binding energy, N N spin-

singlet scattering length aN N
0 , and to the triton binding energy, 

respectively. The hypernuclear two-body LECs C I=1/2,S=0
λ and 

C I=1/2,S=1
λ are fixed by the �N < spin-singlet a�N

0 and spin-
triplet a�N

1 scattering lengths. The three-body hypernuclear LECs 
D I=0,S=1/2

λ , D I=1,S=1/2
λ , and D I=0,S=3/2

λ are fitted to the experi-
mental � separation energies B�(3

�H), B�(4
�H), and the excitation 

energy Eexc(
4
�H∗).

Since a�N
0 and a�N

1 are not well constrained by experiment, we 
consider different values both as given by direct analysis of experi-
mental data [28], or as predicted by several �N interaction models 
[29–31], see Table 1. For the particular values of the LECs see [18].

2.2. The stochastic variational method

The A-body Schrödinger equation is solved expanding the wave 
function 	 in correlated gaussians basis [25]

	 =
∑

i

ci ψi =
∑

i

ci Â
{

exp

(
−1

2
xT Aix

)
χ i

S MS
ξ i

I MI

}
, (4)

where Â stands for the antisymmetrization operator over nucle-
ons, x = (x1, ..., xA−1) denotes a set of Jacobi vectors, and χ i

S MS

(ξ i
I MI

) is the spin (isospin) part. The information about interparti-
cle correlations is contained in the (A − 1) dimensional positive-
definite symmetric matrix Ai . Once we fix all basis functions ψi , 
both energies and coefficients ci are obtained through diagonaliza-
tion of the Hamiltonian matrix. The A(A − 1)/2 nonlinear vari-
ational parameters contained in each Ai matrix are determined 
using the Stochastic Variational Method (SVM) [25,26].

Unlike bound states, continuum wave functions are not square-
integrable. Therefore, resonances or virtual states can not be di-
rectly described using an L2 basis set of correlated gaussians. Tech-
niques such as CSM or IACCC have to be used to study such states 
with a correlated gaussians. Below we discuss in some detail the 
techniques we applied in our study.
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2.3. The complex scaling method

The CSM [34] is a reliable tool to study few-body resonances 
[35]. The basic idea in the CSM is to locate resonances introducing 
complex rotation of coordinates and momenta

U (θ)r = reiθ , U (θ)k = ke−iθ , (5)

that transforms the continuum states into integrable L2 states. This 
transformation rotate continuum state energies by 2θ uncovering a 
section of the second energy plane between the real axis and a ray 
defined by |argE| = 2θ , exposing resonances with argument θr =
arctan(
/2Er)/2 smaller than θ . Here, Er = Re(E) is the resonance 
energy and 
 = −2Im(E) is the width. Using gaussian regulator (3)
the rotation angle is restricted to be θ < π

4 , to prevent divergence 
of the rotated gaussian, limiting the scope of the CSM.

The SVM method uses the variational principle as a tool to 
optimize the nonlinear basis parameters Ai (4), minimizing the 
basis size. This does not apply to resonance states, making it a 
highly non trivial problem to choose the appropriate basis. Here, 
we present a new efficient procedure to determine the basis set 
for an accurate description of resonance states. To optimize the 
basis, we supplement the Hamiltonian H with an additional har-
monic oscillator (HO) trap

H trap(b) = H + V HO(b), V HO(b) = h̄2

2mb4

∑
j<k

r2
jk, (6)

where m is an arbitrary mass scale, and b is the HO trap length. 
The potential V HO(b) gives rise to a HO spectrum of the ground 
and excited states which is affected by the presence of a resonance 
in the Hamiltonian H [42]. For a given trap length b we select basis 
states ψi (4) using the SVM, optimizing the variational parame-
ters for the ground state energy and then subsequently for excited 
states energies up to Emax > Er + 
/2. The SVM procedure prefers 
basis states which promote interparticle distances r jk in a specific 
region given by the trap length b. Increasing b we enlarge the typ-
ical radius of the correlated gaussians ψi . For large enough b, the 
CSM resonance solution for the Hamiltonian H starts to stabilize 
and both the short range and the suppressed long range asymp-
totic parts of a resonance wave function are described sufficiently 
well. In order to further enhance the accuracy of our CSM solu-
tion, we use a grid {bk}, of a HO trap lengths, and for each grid 
point we independently select correlated gaussians basis. Then we 
merge basis states determined for each bk into a larger basis while 
ensuring linear independence and numerical stability of the over-
lap matrix. We have found that this procedure works well for both 
narrow, and broad resonances.

2.4. Inverse analytic continuation in the coupling constant method

The Analytic Continuation in the Coupling Constant (ACCC) 
method [43] has been successfully applied in various calculations 
of few-body resonances and virtual states [44,45]. Moreover, it was 
pointed out that the ACCC method provides rather convenient way 
how to extend applicability of the SVM into the continuum re-
gion [44,46]. We consider a few-body Hamiltonian consisting of 
the physical part H and an auxiliary attractive potential V aux

H IACCC = H + α V aux, (7)

which introduces a bound state for a certain value of α, but 
ensures that the physical dissociation thresholds for the various 
subsystems remain unaffected. By decreasing the strength α the 
bound state moves closer to the threshold and for a certain α0 it 
turns into a resonance or virtual state. It has been demonstrated 
for a two-body system that in the vicinity of the branching point 
α0 the square root of an energy k = √

E behaves as k ≈ (α−α0) for 
s-wave (l = 0) and k ≈ √

α − α0 for l > 0 [43]. Defining new vari-
able x = √

α − α0 one obtains two branches k(x) and k(−x) where 
the former one describes motion of the S-matrix pole assigned to 
a bound state on a positive imaginary k-axis to the third quadrant 
of a k-plane. Using analyticity of the function k(x) one can con-
tinue from a bound region α > α0 to a resonance region α < α0. 
In practice this is done by constructing a Padé approximant

k(x) ≈ i

∑M
j=0 c jx j

1 + ∑N
j=1 d jx j

(8)

for the function k(x) using M + N + 1 bound state solutions 
{(x j, k j); j = 1, . . . , M + N + 1} for different values of α > α0. 
The evaluation of the Padé approximant (8) at x = √−α0 yields 
complex k which is assigned to the physical resonance solution 
k2 = Er − i
/2 corresponding to the Hamiltonian H . For more de-
tails regarding the ACCC method see [47].

The ACCC method suffers from two drawbacks which are pre-
dominantly of numerical nature. The first issue is high sensitivity 
of the numerical solution to precise determination of the branching 
point value α0 [43]. The second obstacle appears with increasing 
orders M and N of the Padé approximant (8) when the numerical 
solution starts to deteriorate.

Rather recently Horáček et al. [48] have introduced a modified 
version of the ACCC method called the Inverse Analytic Contin-
uation in the Coupling Constant (IACCC) method which provides 
more robust numerical stability. Starting in the same manner as 
in the ACCC case, we consider the Hamiltonian (7) and calculate 
series of bound states for different values of α > α0. Next, we 
construct a Padé approximant of a function α(κ), where κ = −ik, 
using a relevant set of bound state solutions

α(κ) ≈ P M(κ)

Q N(κ)
=

∑M
j=0 c jκ

j

1 + ∑N
j=1 d jκ j

. (9)

The parameters of the physical resonance or virtual state pole are 
then readily obtained by setting α = 0 as the physical root of a 
simple polynomial equation P M(κ) = 0.

To ensure that the properties of the 2-body part of the Hamilto-
nian, such as scattering lengths or deuteron binding energy, remain 
unaffected, we choose the auxiliary potential to be an attractive 3-
body force. The natural choice is to select it to have the same form 
as the /πEFT 3-body potential (3),

V IACCC
3 = dI,S

λ

∑
i< j<k

QI,S
i jk

∑
cyc

e
− λ2

4

(
r2

i j+r2
jk

)
, (10)

where the amplitude dI,S
λ defines its strength, corresponding to the 

parameter α in Eq. (7), and is negative for an attractive auxiliary 
potential.

The accuracy of our IACCC resonance solutions in the fourth 
quadrant of the complex energy plane, Re(E) > 0, Im(E) < 0, are 
better than ≈ 10−3 MeV. These results compare very well with 
the CSM calculations in their region of applicability θ < π/4.

3. Results

Using /πEFT at LO with the LECs fitted to the available data 
as described earlier [18], we find no bound �nn or 3

�H∗ states. 
Further examining the hypothetical existence of these states, we 
found that they are incompatible with the well measured A = 4, 5
hypernuclear spectrum.
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Fig. 1. Trajectories of the �nn resonance pole in the complex energy plane de-
termined by a decreasing attractive strength of the auxiliary three-body force 
dI=1,S=1/2

λ for several cutoffs λ and the NSC97f set of �N scattering lengths. Small 
dots mark IACCC solutions for different dI=1,S=1/2

λ , larger symbols stand for the 
physical position of the �nn pole (dI=1,S=1/2

λ = 0). Notice the almost overlapping 
trajectories for λ = 2.50 fm−1 and λ = 4.00 fm−1.

As we have already pointed out, the possible existence of bound 
�nn and 3

�H∗ states has been quite convincingly ruled out in sev-
eral theoretical studies [4–10]. Our /πEFT findings support their 
conclusions.

3.1. A �nn resonance?

We start our study of three-body hypernuclear continuum 
states with the �nn system. To understand the cutoff dependence 
of our theory we present, in Fig. 1, the trajectories E�nn(d

I=1,S=1/2
λ ,

λ) of the �nn resonance pole, calculated using the IACCC method 
for different values of cutoff λ, and for a representative set of 
a�N

s - NSC97f. With decreasing attraction of V IACCC
3 , the reso-

nance poles move along a circular trajectory in the complex energy 
plane starting from the � + n + n threshold to the physical end 
point where dI=1,S=1/2

λ = 0. The figure suggests that the trajecto-

ries E�nn(dI=1,S=1/2
λ , λ) and the physical end points converge with 

increasing cutoff, and already at λ = 2.5 fm−1 we approach stabi-
lized results.

Repeating the same calculations for all sets of scattering lengths 
given in Table 1, we find that regardless the cutoff value, the imag-
inary part of the physical solution Im(Eλ

�nn) lies in the interval 
−1.32 ≤ Im(Eλ

�nn) ≤ −0.58 MeV for all a�N
s sets. In contrast, the 

real part Re(Eλ
�nn) exhibit large cutoff dependence. As shown in 

Fig. 1 for the NSC97f case, the pole moves with increasing λ from 
the unphysical part of the Riemann sheet (Re(E) < 0, Im(E) < 0; 
third quadrant) towards the physical one (Re(E) > 0, Im(E) < 0; 
fourth quadrant).

In Fig. 2 we compare the trajectories E�nn(dI=1,S=1/2
λ , λ) for 

the different values of �N scattering lengths, Table 1, at cutoff 
λ = 4 fm−1. From the figure, we can deduce that the existence 
of a physically observable �nn resonance is very sensitive to the 
�N interaction. The latter must be strong enough to ensure the 
pole’s location in the fourth quadrant of a complex energy plane. 
The figure and Table 1 show that with increasing size of the spin-
averaged scattering length ā�N = 3/4a�N

1 + 1/4a�N
0 the �nn pole 

trajectories move closer to the � + n + n threshold. Moreover, by 
increasing the cutoff λ the physical �nn pole is shifted closer to 
or into the fourth quadrant. In this sense the pole position in 
Fig. 2. Trajectories of the �nn resonance pole in the complex energy plane de-
termined by a decreasing attractive strength dI=1,S=1/2

λ for selected sets of �N

scattering length, calculated at λ = 4.00 fm−1. Larger symbols stand for the physical 
position of the �nn pole (dI=1,S=1/2

λ = 0).

the renormalization group invariant limit λ → ∞ could be con-
sidered as the most favorable to the existence of an observable 
resonance. Nevertheless, in the λ → ∞ limit only two sets of a�N

s -
NSC97f and χEFT(NLO) undoubtedly predict a physical resonance. 
From the results shown in Fig. 2 we can roughly estimate that 
ā�N ≈ 1.7 fm−1 is the minimal value for the �nn pole to enter the 
fourth quadrant, becoming a physical resonance. It should be noted 
that though the size of ā�N plays a dominant role, one should take 
into account also the effect of the three-body force which might 
introduce more complicated dependence on a�N

0 and a�N
1 .

3.2. The hypertriton excited state 3�H∗( Jπ = 3/2+)

The excited state of the hypertriton 3
�H∗( Jπ = 3/2+) might 

be considered as a good candidate for a near-threshold reso-
nance. Indeed, several works demonstrated an emergence of a 
bound state by increasing rather moderately the �N interaction 
strength. Applying the IACCC method we follow the pole trajec-
tory given by the amplitude of auxiliary 3-body force dI=0,S=3/2

λ

from a bound region to its physical position in a �+deuteron 
(� + d) continuum. In Fig. 3 we show the 3

�H∗ pole momen-

tum k =
√

2μ�d[E(3
�H∗) − E B(2H)], μ�d = mdm�/(md + m�), as a 

function of dI=0,S=3/2
λ for Alexander B �N scattering lengths and 

λ = 6 fm−1. We observe that with a decreasing auxiliary attrac-
tion the imaginary part of the momentum Im(k) decreases from 
positive value (bound state) to a negative value (unbound state) 
whereas the real part Re(k) remains equal to zero. This behavior is 
regarded as definition of a virtual state [50].

Repeating the calculations for various cutoffs and different �N
scattering lengths, Table 1, we find 3

�H∗ to be a virtual state in 
all considered cases. As we have seen in the �nn calculations, the 
energy of the virtual state E v is stabilized at cutoffs λ ≥ 4 fm−1.

The existence of the 3
�H∗ virtual state is further confirmed by 

the CSM. We do not see any sign of resonance for all sets of 
�N scattering lengths, cutoffs, or auxiliary 3-body force values 
dI=0,S=3/2

λ . Odsuren et al. [51] have showed that the rotated dis-
cretized CSM continuum spectra reflect phenomena such as near-
threshold virtual states, although one would naively assume that 
virtual states having |argE| = π/2 are beyond the reach of the 
CSM. From continuum level density they have extracted the scat-
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Fig. 3. Imaginary (blue) and real (red) parts of the 3�H∗ pole momentum k as a func-

tion of dI=0,S=3/2
λ , normalized to the physical three-body LEC D I=0,S=3/2

λ . Unbound 
region is determined through the IACCC method. Dots mark the physical solution 
with for dI=0,S=3/2

λ = 0.

Fig. 4. S-wave �d phase shifts in the Jπ = 3/2+ channel δ�d
3/2 as a function of 

energy E above the � + d threshold, extracted from the continuum level density of 
the rotated CSM spectra. The phase-shifts are calculated for cut-off λ = 6 fm−1 and 
several �N interaction strengths. Shaded areas mark uncertainty introduced by the 
rotation angle θ within interval 15◦ < θ < 20◦ .

tering phase shifts which revealed enhancement due to the vicinity 
of a the pole [51,52]. Following this approach we calculated the 
�d s-wave phase shifts δ�d

3/2 for the Jπ = 3/2+ channel. The calcu-
lated phase shifts, presented in Fig. 4, exhibit clear enhancement 
close to threshold implying proximity of a pole. The shaded areas 
in the figure reflect the phase shift dependence on rotation angle 
θ , which we checked for a rather broad interval 15◦ < θ < 20◦ .

The scattering length a�d
3/2 and effective range r�d

3/2 extracted 
from the �d phase shifts reveal through their sign, negative a�d

3/2

and positive r�d
3/2, the existence of a virtual state [53]. Using 

a�d
3/2, r

�d
3/2 the virtual state binding momentum kv = √

2μ�d E v can 
be approximated by

kv = i

r�d
3/2

⎛
⎝1 −

√√√√1 − 2 r�d
3/2

a�d
3/2

⎞
⎠ . (11)
Table 2
Calculated �d scattering lengths a�d

3/2, effective ranges r�d
3/2, 

and virtual state energies E v in Jπ = 3/2+ channel for sev-
eral �N interaction strengths and cutoff λ = 6 fm−1. Results 
of two different methods are presented - the continuum level 
density of rotated CSM spectra and the IACCC method. For 
the CSM we obtain E v using relation (11), for the IACCC us-
ing the relation a�d

3/2 = −i/
√

2μ�d E v . The scattering length 
and effective range are given in fm, E v in MeV.

CSM IACCC

a�d
3/2 r�d

3/2 E v a�d
3/2 E v

Alexander B -17.3 3.6 -0.08 -25.7 -0.042
NSC97f -10.8 3.8 -0.18 -16.1 -0.108
χEFT(LO) -8.5 3.5 -0.28 -12.8 -0.169
χEFT(NLO) -7.6 3.6 -0.34 -11.7 -0.205

In Table 2 we present the IACCC results for E v , and an estimate 
a�d

3/2 = −i/
√

2μ�d E v for the scattering length, together with the 
scattering parameters a�d

3/2 and r�d
3/2 extracted from the CSM calcu-

lations and the resulting estimate for E v , Eq. (11). Inspecting the 
table, one might naively expect clear monotonic dependence of E v
on the spin-triplet scattering length a�N

1 . However, the dominance 
of a�N

1 is undermined by the 3-body force in the (I, S) = (0, 3/2)

channel, fixed by B�(4
�H∗). Comparing the IACCC and CSM results, 

one clearly see that both approaches are in mutual agreement, 
they exhibit the same dependence on the �N interaction strength, 
though, the CSM yields larger estimates for |E v |. It is a well known 
drawback of the CSM that eigenvalues in a vicinity of the threshold 
start to be affected by inaccuracies caused by complex arithmetic.

Concluding this section, we see that at LO /πEFT firmly predicts 
the excited state of hypertriton 3

�H∗( Jπ = 3/2+) to be a virtual 
state in the vicinity of the � − d threshold. This result has impor-
tant implications for prospective experimental search of this state. 
Experimental observation of 3

�H∗ as a resonance state seems to 
be highly unlikely. Instead, there is a near-threshold virtual state 
which should be seen through the enhancement of s-wave �d
phase shifts in the Jπ = 3/2+ channel as demonstrated in Fig. 4.

4. Conclusions

In this work we have presented the first comprehensive /πEFT
study of continuum hypernuclear �N N trios. The underlying nu-
cleon and hyperon interactions were described within a /πEFT at 
LO, with the LECs fixed by 2-body low energy observables and 
experimental input from 3- and 4-body s-shell systems. The �nn
and 3

�H∗ energies were then obtained as predictions of the the-
ory. In view of poor low energy �N scattering data we considered 
several sets of �N scattering lengths, whereas the N N interaction 
remained constrained by experiment [18].

Few-body wave functions were described within a correlated 
gaussians basis. Bound state solutions were obtained using the 
SVM. The continuum region was studied employing two indepen-
dent methods - the IACCC method and CSM.

The /πEFT predicts that both �nn and 3
�H∗ are unbound. Tun-

ing the 3-body LECs to put the �nn or 3
�H∗ binding energy on 

threshold, yielded considerable discrepancy between the calculated 
and measured B� in the A = 4, 5 hypernuclei. Our findings further 
strengthen the conclusions of previous theoretical studies that both 
states are unbound [4–10,16,17].

Our LO /πEFT calculations predict �nn and 3
�H∗ to be near-

threshold continuum states. We thus anticipate that the EFT trun-
cation error is small due to low characteristic momenta and thus 
higher order corrections would not change our results qualitatively. 
We conclude that position of the �nn pole depends strongly on 
the spin independent scattering length ā�N . For ā�N ≥ 1.7 fm−1

the �nn pole becomes a physical resonance close to threshold 
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with Er ≤ 0.3 MeV, and a large width most likely in the range 
1.16 ≤ 
 ≤ 2.00 MeV. If observed, the position of the �nn reso-
nance can yield tight constraints on the �N scattering length. We 
note, however, that the exact position of the �nn depends both on 
a�N

0 and a�N
1 , and also on subleading /πEFT terms neglected here. 

The excited state of hypertriton 3
�H∗ was firmly predicted to be 

a near-threshold virtual state regardless of the value of a�N
s . We 

have demonstrated that this virtual state has a strong effect on the 
�d s-wave phase shifts in Jπ = 3/2+ channel.
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