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Abstract

Holomorphic functions play a crucial role in operator theory and the Cauchy formula
is a very important tool to define the functions of operators. The Fueter—Sce—Qian
extension theorem is a two-step procedure to extend holomorphic functions to the
hyperholomorphic setting. The first step gives the class of slice hyperholomorphic
functions; their Cauchy formula allows to define the so-called S-functional calculus
for noncommuting operators based on the S-spectrum. In the second step this extension
procedure generates monogenic functions; the related monogenic functional calculus,
based on the monogenic spectrum, contains the Weyl functional calculus as a particular
case. In this paper we show that the extension operator from slice hyperholomorphic
functions to monogenic functions admits various possible factorizations that induce
different function spaces. The integral representations in such spaces allow to define
the associated functional calculi based on the S-spectrum. The function spaces and the
associated functional calculi define the so-called fine structure of the spectral theories
on the S-spectrum. Among the possible fine structures there are the harmonic and
polyharmonic functions and the associated harmonic and polyharmonic functional
calculi. The study of the fine structures depends on the dimension considered and in
this paper we study in detail the case of dimension five, and we describe all of them.
The five-dimensional case is of crucial importance because it allows to determine
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almost all the function spaces will also appear in dimension greater than five, but with
different orders.

Keywords Spectral theory on the S-spectrum - Harmonic fine structure - Harmonic
functional calculi - Dirac fine structure - Fueter—Sce—Qian extension theorem
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1 Introduction

The spectral theory on the S-spectrum for quaternionic operators has been widely
developed in the last 15 years motivated by the precise formulation of quaternionic
quantum mechanics (see [8, 33]), and other applications have been found more
recently, among which we mention the fractional powers of vector operators that
are useful in fractional diffusion problems, see [15, 16, 18]. The main references on
quaternionic spectral theory on the S-spectrum are the books [3, 4, 19, 20, 34] and
the references therein. The spectral theory on the S-spectrum in the Clifford algebra
setting, see [25], started in parallel with the quaternionic one, but in the last few years
there have been new and unexpected developments. In fact, even if a precise version
of the quaternionic spectral theorem on the S-spectrum was expected and proved in
[2] (for perturbation results see also [11]), it was only in recent times that the spectral
theorem for fully Clifford operators was proved, see [22]. Moreover, the validity of
the S-functional calculus was extended beyond the Clifford algebra setting, see [21],
and it was used to the define slice monogenic functions of a Clifford variable in [23].

This paper belongs to a new research direction that is related to the Fueter—Sce—
Qian mapping theorem. To illustrate our results we briefly recall this theorem. Roughly
speaking, it is a two-step procedure that extends holomorphic functions of one complex
variable to the hypercomplex setting. In the first step it generates slice hyperholomor-
phic functions and in the second step it generates monogenic functions, i.e., functions
in the kernel of the Dirac operator. More precisely, let O(D) be the set of holomorphic
functions on D C C and let Qp < R"*! be the set induced by D (see Sect.2). The
first Fueter—Sce—Qian map Trg; applied to O(D) generates the set SH(2p) of slice
monogenic functions on 2p (which turn out to be intrinsic) and the second Fueter—
Sce—Qian map Trys, applied to SH(2p) generates axially monogenic functions on
Qp. We denote this second class of functions by AM (£2p). The extension procedure
is illustrated in the diagram:

TFSZZA(nfl)/2

OD) 5% sHQp) —2227 7L AMQp),

where Trgy = A”~D/2 and A is the Laplace operator in dimension 7 + 1 (sometimes
we shall write Ag.+1 to specify the dimension). The Fueter—Sce—Qian mapping the-
orem induces two spectral theories according to the two classes of hyperholomorphic
functions it generates: using the Cauchy formula of slice hyperholomorphic functions
one defines the S-functional calculus, which is based on the S-spectrum, while using
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the Cauchy formula of monogenic functions one obtains the monogenic functional
calculus, based on the monogenic spectrum. This last calculus was introduced by A.
Mclntosh and his collaborators, see [37], to define the functions of noncommuting
operators on Banach spaces; it has several applications, as discussed in the books [36,
41].

The Fueter—Sce mapping theorem (when » is odd) provides an alternative way to
define the monogenic functional calculus. The main idea is to apply the Fueter—Sce
operator Trg» to the slice hyperholomorphic Cauchy kernel and to write the Fueter—
Sce mapping theorem in integral form. Using this integral formulation, we can define
the so-called F-functional calculus, which is a monogenic functional calculus, but it
is based on the S-spectrum. In diagram form, we have

SH(R2p) AM(Qp)

. T _ A(n—l) /2 L
Slice Cauchy Formula 5 Fueter — Sce theorem in integral form

l l

S — functional calculus F — functional calculus

Observe that in the above diagram the arrow from the space of axially monogenic
function A M (2p) is missing because the F-functional calculus is deduced from the
slice hyperholomorphic Cauchy formula.

We are now in the position to define the fine structure of the spectral theories
on the S-spectrum taking advantage of the following observation. Let i := %
be the so-called Sce exponent, and A be the Laplace operator in dimension n + 1:
the operator Trsy = A" maps the slice hyperholomorphic function f(x) to the

monogenic function f (x) given by
f=Aa"f), xeQp.

If we denote by ey, ¢ = 1, ..., nthe units of the Clifford algebra R,,, the Dirac operator
D and its conjugate D are defined by

n n
D=0y + » eidy, D=0y~ Y ey
i=1 i=1

The powers of the Laplace operator A can be factorized in terms of the Dirac operator
D and its conjugate D because

DD =DD = A.
So it is possible to repeatedly apply to a slice hyperholomorphic function f(x) the

Dirac operator and its conjugate, until we reach the maximum power of the Laplacian,
i.e., the Sce exponent. This implies the possibility to build different sets of functions
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which lie between the set of slice hyperholomorphic functions and the set of axially
monogenic functions.

We will call fine structure of the spectral theory on the S-spectrum the set of the
functions spaces and the associated functional calculi induced by a factorization of
the operator Trg; in the Fueter—Sce extension theorem.

One of the most important factorizations leads to the so-called Dirac fine structure
that corresponds to an alternating sequence of D and D, h times, for example

Trs2 = Al,,, =DD...DD.

The fine structure is also defined for the Fueter—Sce—Qian extension theorem,
namely when #n is even, but it involves the fractional powers of the Laplace oper-
ator and will be treated in a future publication.

The fine structure of the spectral theory on the S-spectrum generates, in a unified
way, several classes of functions, some of which have already been studied in the
literature. We can summarize them by defining polyanalytic holomorphic Cliffordian
functions of order (k, £) which are defined as follows.

Let U be an open set in R"T!. A function f : U ¢ R"*! — R, of class C***+¢(U)
is said to be (left) polyanalytic holomorphic Cliffordian of order (k, £) if

ADEF(x) =0 VxeU,
where 0 < k < % and £ > 0.
Clearly, polyharmonic functions of degree k are a particular case of polyanalytic
holomorphic Cliffordian functions. In fact, a function f : U C Rt R,, of class
C?(U) is called polyharmonic of degree k in the open set U C R*+! if

AFfF(x) =0, VxeU.
Analogously, polyanalytic functions of order m are contained in the class of polyan-

alytic holomorphic Cliffordian functions, since they are those functions f defined on
an open set U C R"*! with values in R, of class C" (U) such that

D" f(x) =0, Vx e U.

In [12] we studied the Dirac fine structure when n = 3, i.e., the quaternionic case.
In particular we have studied the fine structure associated with the factorization:

TFs)

OD) B SHp) B> AHSQD) 2> AMSD). (1.1)

where AH(S2p) is the set of axially harmonic functions and their integral representa-
tion gives rise to the harmonic functional calculus on the S-spectrum. This structure
also allows to obtain a product formula for the F-functional calculus, see [12, Thm.
9.3].
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ngever, since A = DD = DD, we can interchange the order of the operators D
and D in (1.1). This gives rise to the factorization:

OD) T SHQp) -2 AP(Qp) -2 AMQp). (1.2)

where AP (2p) is a space of polyanalytic functions. This structure is investigated in
[29] and [30] together with its functional calculus.

Clearly, as the dimension of the Clifford algebra increases there are more possi-
bilities and we denote by FS(2p), the set of function spaces associated with the
fine structures. These functions spaces lie between the set of slice hyperholomorphic
functions and axially monogenic functions and in dimension five there are seven such
spaces, precisely: ABH(Q2p) the axially bi-harmonic functions, ACH(22p) the axi-
ally Cliffordian holomorphic functions of order 1, (which is a short cut for order (1, 1)),
AH(2p) the axially harmonic functions, AP>(€2p) the axially polyanalytic of order
2, ACH(S2p) the axially anti-Cliffordian of order 1, ACP1,2)(22p) the axially poly-
analytic Cliffordian of order (1, 2), AP3(S2p) the axially polyanalytic of order 3, and
they will be defined precisely in the sequel.

It is very important to point out that these function spaces appear in different
contexts in the literature and they seem to be unrelated. In this paper we show that
they all appear as fine structures in the Fueter—Sce construction. In dimension greater
than five there will be one more function space, that is not indicated in the list above,
and with this addition, all the fines structures can be described using those function
spaces of different orders.

In dimension five there are different fine structures of Dirac type and to indicate the
type of fine structure we put into an array the Dirac D and conjugate Dirac D operator
that define the specific fine structure. For example, the Dirac fine structure of the type
(D, D, D, D) is given by

OD) I SHp) B ABH(SD) -2 AHC1(Qp)
L an©@p) B AM©p). (13)

where the spaces are precisely specified in the sequel. The Dirac fine structure of type
(D, D, D, D) is of crucial importance to prove the product rule for the F-functional
calculus (see Theorem 10.3). However, by rearranging the sequence of D and D it is
possible to obtain other structures, in which other sets of functions are involved.

Another interesting fine structure is the harmonic one, in which only the harmonic
AH(S2p) and bi-harmonic ABH(2p) sets of functions appear:

SHSp) B> ABH(Qp) -2 AH D) - AM(Qp).

The integral representation of the functions in AH(2p) and ABH(2p) is obtained
by applying the operators in the above sequence to the Cauchy kernels of slice hyper-
holomorphic functions. From these integral formulas we define the related functional
calculus on the S-spectrum that can be visualized by the following diagram:
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SHU) ABH(U) AHU) AM(U)

|

Cauchy Formula SCAIN ABH Int. Foom —> A Int. Form P, AM Int. Form

| | l l

S — Func. Cal. ABH — Func. Cal. AH — Func. Cal. F — Func. Cal.

where the functional calculi of this fine structure are the bi-harmonic ABH-functional
calculus and the harmonic AH-functional calculus, both based on the S-spectrum.
Note that the integral representation of the axially monogenic functions .AM is already
known from the Fueter—Sce mapping theorem in integral form and its functional cal-
culus is the F-functional calculus, see [27].

To be more precise, let us consider S, the sphere of purely imaginary paravectors
with modulus 1. Observe that given an element x = xo + x € R"*! we can put
Jy = x/|x| if x # 0, and given an element x € R"*!, the set

[x] :={y e R""! y =xo+ J|x|, J €S}
is an (n — 1)-dimensional sphere in R"*!. In order to give a glimpse on the integral
representation of the harmonic and bi-harmonic functions we recall, for s, x € RrHl
with x ¢ [s], the definition of the function Qc,s(x)’l
Qes(0) ™! = (57 = 2Re(w)s + x[H) 7!,
and the definition of left slice hyperholomorphic Cauchy kernel S;l (s, x)
ST s x) = (5 — %) Qe s (1)L
Let n = 5 and consider, for s, x € RO such that x ¢ [s], the functions

Spi (s, %) = —4Q, ()7, (1.4)

and

Sap. (5. %) = AD (Sil(s, x)) = 16Q.s(x) %, (1.5)

called the left slice D-kernel and the left slice AD-kernel, respectively. Let W C RS
be an open set and U be a slice Cauchy domain such that U ¢ W. Then for J € S and
ds; =ds(—=J), for f € SHy (W), the function fr(x) :== A {Df(x),0 <€ <1,is
£ + 1-harmonic and the following integral representation

8 1 .
= — S 3 d k]
fex) = — /a(mcj) ar-ep, (8, X)dsy f(s)
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holds, where the integrals depend neither on U nor on the imaginary unit J. If f €
SHg(W) a similar integral representation holds.

We now illustrate the functional calculi of the harmonic fine structure from the
operator theory point of view. Let V be a real Banach space over R. We denote by
B(V) the space of all bounded R-linear operators and by B(V,,) the space of all bounded
R, -linear operators on V,, = R, ® V. The S-spectrum is defined as

os(T) = {s € R""' T? — 25T + |s|>Z is not invertible in B(V,)}.
This definition of the spectrum is used for operators in B(V,) with noncommuting
components. For the fine structure of the spectral theories on the S-spectrum in B(V},)
we will consider bounded paravector operators T = egTp + e1T1 + --- + ey Ty,
with commuting components Ty € B(V) for £ = 0, 1, ..., n and we denote this set
by BC%!(V,). In this case the most appropriate definition of the S-spectrum is its
commutative version (also called F-spectrum), i.e.,
or(T) ={s e R"!' 2T — (T +T)s+TT is not invertible in B(V,,)}
where the operator 7 is defined by
T = To—Tey —--- — Tuey.
Note that it has been be proved that
or(T) = o5(T) forall T € BCY'(V,,).
Let T € BC*'(V,) and recall that the S-resolvent set is defined as
ps(T) :=R"™* '\ os(T).
Then, the commutative pseudo SC-resolvent operator is
Qe (M) V= (*T—s(T+T)+TT)™"! for s e ps(T)
while the left SC-resolvent operator is
S; s, T) = I —T)*T —s(T+T)+TT)"" for s € ps(T),

and similarly we have the right SC-resolvent operator.

In the case of dimension n = 5 we take T € BC%!(Vs) and set ds; = ds(—J) for
J € S.Let f be afunction in SHy (05(T)) (and similarly for f € SHg(os(T))). Let
U be a bounded slice Cauchy domain with o5(7) C U and U C dom(f). We have

the following deﬁnitions of the ¢ + 1-harmonic functional calculus for £ = 0, 1: for
every function fy = A'=¢D f with f € SHy(05(T)) we set

P L 1
fu =5 /a o Sk 62 T 1), (1.6)

@ Springer



300 Page8of73 F. Colombo et al.

where

(D the left D-resolvent operator SBl (s, T) is defined as
Spip (s, T) i= —4Qc (T)™" for s € ps(T), (1.7)
(II) the left AD-resolvent operator Sg%)’ (s, T) is defined as

Sap (8. T) :==16Q,(T)2, for s € ps(T). (1.8)

We point out that similar formulas hold for the right case.

Plan of the paper. The paper consists of 10 sections, besides this introduction.

In Sect.2 we introduce some functions spaces that naturally arise from the factor-
ization of the second Fueter—Sce operator Trsy. These definitions are valid for any
dimension n.

Section 3 contains the factorization of the Fueter—Sce operator TFrs> in dimension
n = 5 and, in particular, we define the function spaces of axial type.

In Sect.4 we introduce the concept of fine structure of the spectral theory on the
S-spectrum, that is associated with the functions spaces, and the related functional
calculi. For n = 5 we can fully describe the fine structures and in the appendix we
provide a description with diagrams.

In Sect. 5 we study the systems of differential equations for the fine structure spaces
of axial type, i.e., in analogy with the Vekua-type system of differential equations for
axially monogenic functions we explicitly give all the systems of differential equations
for the fine structure spaces in dimension n = 5.

In Sect. 6 we give the integral representation of the functions of the fine structure
spaces. Precisely, we recall the slice hyperholomorphic Cauchy formulas and applying
the operators associated with the fine structure to the slice hyperholomorphic Cauchy
kernels we deduce the integral representations.

In Sect.7 we prove some technical lemmas to write the explicit series expansion
of the kernels of the fine structures spaces. These results are of crucial importance
for operator theory because they allow to define the series expansions of the resolvent
operators of the fine structures.

Then, after some preliminary results on the SC-functional calculus and the F-
functional calculus collected in Sect.8, in Sect.9 we define the functional calculi
of the fine structure. To this end, we define the series expansions of the resolvent
operators of the functional calculi using the results in Sect.7. Observe that all the
resolvent operators associated with fine structures involve the S-spectrum.

We conclude the paper with an application to the F-functional calculus, indeed in
Sect. 10 we prove the product rule for the F-functional calculus using the Dirac fine
structure of the kind (D, D, D, D).
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2 Function Spaces Generated by the Fueter-Sce Mapping Theorem

This section contains some function spaces of Clifford algebra valued functions and
some notions of the spectral theory on the S-spectrum. We start by fixing some nota-
tions. Let R,, be the real Clifford algebra over n imaginary units ey, . . ., e, satisfying
the relations ege;,;, + emer = 0, £ # m, e% = —1. An element in the Clifford algebra
willbedenotedby ) 4 eaxa, where A ={€;... 6.} € P{1,2,...,n}, {1 <...< ¥,
isamulti-index and e4 = ey, ey, ... eq,, ey = 1. A point (xg, X1, ..., Xx,) € R+ will
be identified with the element x = xg + x = xo + Z;'.:l xjej € R, called paravector
and the real part xq of x will also be denoted by Re(x). The vector part of x is defined
by x = x1e1 + - -+ + x,e,. The conjugate of x is denoted by ¥ = xo — x and the
Euclidean modulus of x is given by |x| = (xg + -+ x,f)‘/ 2. The sphere of purely
imaginary paravectors with modulus 1 is defined by

Si={x=ewxi+ o+ enty |3} -+ 2 =1},

Notice that if J € S, then J?> = —1. Therefore J is an imaginary unit, and we denote
by

Cyj={u+Jv|u,veR}

an isomorphic copy of the complex numbers.
In order to give the definition of slice hyperholomorphic functions we need to define
the natural domains on which these functions are defined.

Definition 2.1 Let U C R"t!,

e We say that U is axially symmetric if, for every u + Iv € U, all the elements
u + Jv for J € S are contained in U.

e We say that U is a slice domain if U NR # @ and if U N C; is a domain in C,
for every J € S.

Definition 2.2 An axially symmetric openset U C R**! is called slice Cauchy domain
if U N Cy is a Cauchy domain in C; for every J € S. More precisely, U is a slice
Cauchy domain if for every J € S the boundary of U N C; is the union of a finite
number of nonintersecting piecewise continuously differentiable Jordan curves in C;.

On axially symmetric open sets we define the class of slice hyperholomorphic func-
tions, in the case of Clifford algebra valued functions they are often called slice
monogenic functions.

Definition 2.3 (Slice hyperholomorphic (or slice monogenic) functions) Let U C

R"*+! be an axially symmetric open set and let i := {(u,v) € R> : u + Jv €
U VJ € S}. We say that a function f : U — R, of the form

fx) =a(u,v) + JB(u, v), 2.1
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where x = u + Jv for any J € S is left slice hyperholomorphic if & and 8 are
R,,-valued differentiable functions such that

a(,v) =a,—v), Bu,v)=—pFw,—v) forall (u,v) e U, 2.2)
and if « and B satisfy the Cauchy—Riemann system
oya(u,v) —yBu,v) =0, dya(u,v)+ 9,6u,v)=0.
We recall that right slice hyperholomorphic functions are of the form

fx) =a(u,v)+ Bu,v)J,
where o, § satisfy the above conditions.

Definition 2.4 The set of left (resp. right) slice hyperholomorphic functions on U is
denoted with the symbol SH (U) (resp. SHg(U)). The subset of intrinsic functions
consists of those slice hyperholomorphic functions such that «, g are real-valued
function and it is denoted by N'(U).

We introduce the monogenic functions.

Definition 2.5 (monogenic functions) Let U C R"*! be an open set. A real differen-
tiable function f : U — R, is called left monogenic if

Df(x) = (0 + Y €idy) f(x) = 0.

i=1

In a similar way we define right monogenic functions.

There are several possible definitions of slice hyperholomorphicity, that are not
fully equivalent, but Definition 2.3 of slice hyperholomorphic functions is the most
appropriate for the operator theory; it comes from the extension of the Fueter mapping
theorem from the quaternionic setting to the Clifford and real alternative algebra setting
(see [32, 35, 39, 40]; for an English translation of paper [40] see [26]). In this paper
we need Sce theorem for our considerations and we recall it below.

Theorem 2.6 (Sce theorem, see [40]) Let n > 3 be an odd number. Let f(z) =
o (u, v)+iB(u, v) be a holomorphic function defined in a domain (open and connected)
D in the upper half-complex plane and let

Qp :={x =x0+x | (x0,|x]) € D},

be the open set induced by D in R"T'. The operator Trs; defined by

Trs1(f) = a(xo, |x]) + %ﬂ(m, 1) 2.3)
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maps the holomorphic function f(z) in the set of intrinsic slice hyperholomorphic
function. Then the function

f) =A"T (a(xo, X)) + %ﬂ(xo, |)_c|>)

|x

is in the kernel of the Dirac operator, i.e.,
Df(x)=0, on Sp.

Remark 2.7 The assumption that the function f(z) = a(u, v) + i B8(u, v) is holomor-
phic function in a domain D in the upper half-complex plane can be removed if we
assume the even-odd conditions in (2.2).

Remark 2.8 Because of the factorization
DPD=DD=A

of the Laplace operator we define some classes of functions that are strictly related
to the Fueter—Sce theorem. We will see in the next sections that these function spaces
are of crucial importance for our theory.

Definition 2.9 (holomorphic Cliffordian of order k) Let U be an open set. A function
f:U c R = R, of class C*¥*1(U) is said to be (left) holomorphic Cliffordian
of order k if

A*Df(x)=0 Vx e U,

where 0 < k < %

Remark 2.10 For k := % in Definition 2.9 we get the class of functions studied in
[31].

Remark 2.11 Every holomorphic Cliffordian function of order k is holomorphic Clif-
fordian of order k 4 1. If k = 0 in Definition 2.9 we get the set of (left) monogenic
functions.

Definition 2.12 (anti-holomorphic Cliffordian of order k) Let U be an open set. A
function f : U ¢ R*™t! — R, of class C***1(U) is said to be (left) anti-holomorphic
Cliffordian of order k if

ADf(x)=0 VxeU,
where 0 < k < %

Definition 2.13 (polyharmonic of degree k) Let k > 1. A function f : U ¢ R"*! —
R, of class C*(U) is called polyharmonic of degree k in the open set U C R™**1 if

AFfF(x) =0, VxeU.
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For k = 1 the function is called harmonic and for k = 2 the function is called
bi-harmonic. The polyharmonic functions are studied in [6].

Definition 2.14 (polyanalytic of order m) Let m > 1. Let U C R"*! be an open set
andlet f : U — R, be a function of class C" (U). We say that f is (left) polyanalytic
of order m on U if

D" f(x) =0, Vx e U.

The following result is a characterization to be a polyanalytic function of order m,
see [9].

Proposition 2.15 (Polyanalytic decomposition) Let U C R™*! be an open set. A
function [ : U — R, is polyanalytic of order m if and only if it can be decomposed
in terms of some unique monogenic functions go, . .., &m—1

m—1
g(x) =) xpe(x).
k=0

See [9, 10, 42] for more information about polyanalytic functions.

Definition 2.16 (polyanalytic holomorphic Cliffordian of order (k, £)) Let U be an
open set. A function f : U C R 5 R, of class C**HE(U) is said to be (left)
polyanalytic holomorphic Cliffordian of order (k, £) if

AD F(x) =0 VxeU,

where 0 < k < % and ¢ > 0. We denote the set of these functions as PCH ¢y (U).

Remark 2.17 Similarly it is possible to define the sets of right functions for the
holomorphic Cliffordian of order k, anti-holomorphic Cliffordian of order k, and poly-
analytic of order m.

Remark 2.18 If in Definition 2.16 we set £ = 1 we get Definition 2.9, if £ = 0 we
obtain Definition 2.13 and if we consider k = 0 we obtain Definition 2.14.

Remark 2.19 In Theorem 2.6, the case of n odd is due to M. Sce and the operator T s>
is a differential operator; the case of n even is due to T. Qian and, in this case, the
operator Trg; is a fractional operator.

Remark 2.20 Even though the above classes of functions are defined for suitable regu-
lar functions f such that we can apply operators of the form A¥D¢ or A 56 according
to the Fueter—Sce mapping theorem we have to assume that the function f is a slice
functions of the form (2.1).

The investigation of the fine structures is a quite involved matter and depends on
the dimension #n. In the next sections we will concentrate on the dimension n = 5. In
a paper in preparation we aim to study the fine structures for any n odd.
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3 Function Spaces of Axial Type in Dimension Five

Working in the Clifford algebra with five imaginary units, i.e., n = 5 the second
Fueter—Sce map is A% where the Laplace operator A is in dimension 6.

We recall that there exist different possible factorizations of A2 in terms of the
Dirac operator D and its conjugate D choosing different configurations of products of
D and D.

The case of dimension five is different from what happens in the quaternionic case
(see [12, 29, 30]), in which the Fueter map can be factorized only as DD and DD:
here we obtain a reacher structure.

In the setting of slice hyperholomorphic functions, functions of the form (2.1)
together with the even-odd conditions are called slice functions. In the monogenic set-
ting such functions, often considered only in the upper half-space, are called function
of axial type. We will use both terminology according to the setting. Now, we assume
that the axial functions (or slice functions) of the form

f(x) = alxo, |)€|)+| |/3(XO |x[)

are of class C°(Q2p) where Qp is as in the Fueter-Sce mapping theorem. We will
consider functions f : Qp C R*t! . R, with values in the Clifford algebra R,
where we consider the case n = 5.

Definition 3.1 (ABH(2p) axially bi-harmonic functions) Let f : Qp € R® — Rs
be of axial type and of class C°(Q2p). Then, the function

fikx) :=Df(x) on Qp

is called an axially bi-harmonic function, since by the Fueter—Sce mapping theorem,
it satisfies

A’fix)=0 on Qp.

We denote this set of functions by ABH(Q2p).

Definition 3.2 (ACH;(2p) axially Cliffordian functions of order one) Consider the
function f] (x) :=Df(x) € ABH(Qp) and apply the conjugate Dirac operator D to
f1 (x). Then we get

) :=Dfi(x) =Af(x) on Qp, (3.1)

which is an axially Cliffordian functions of order one (which is the short cut for order
(1, 1)) by the Fueter—Sce mapping theorem, i.e.,

ADf°(x)=0 on Qp.

We denote this set of functions by ACH(2p).
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Definition 33 (ACH(2p) axially anti-Cliffordian functions of order one) Consider
the function f1(x) := Df(x) € ABH(2p) and apply the Dirac operator D to fi(x)
we obtain

fo(x) =Dfi(x) =D?f(x), on Qp,

which is axially anti-Cliffordian functions of order one by the Fueter—Sce mapping
theorem, i.e.,

AD(fo(x)) =0 on Sp.

We denote this set of functions by ACH(2p).

Befjnition 3.4 (AH(Q2p) axially harmonic functions) Consider the function f°(x) :=
Dfi(x) = Af(x) € ACH(2p) and apply the Dirac operator D to f°(x). We get,

fox) =Df°(x) = ADf (v),
which is an axially harmonic functions, by the Fueter—Sce mapping theorem, i.e.,
Afo(x)=0 on Qp.

We denote this set of functions as AH(2p).

Definition 3.5 (AP, (£2p) axially polyanalytic functions of order two) If we apply the
operator D to f°(x) :=Df1(x) = Af(x) € ACH1(2p) we obtain

ff(x) =Df°(x) = ADf(x),

which is an axially polyanalytic functions of order two, by the Fueter—Sce mapping
theorem, i.e.,

D’ff(x)=0 on Qp.

We denote this set of functions by AP»(2p).

Definition 3.6 (APC(1,2)(22p) axially Cliffordian polyanalytic functions of order
(1,2)) Let f : Qp € R® — Rs be of axial type and of class C°(Q2p). Apply to
(2.3) the conjugate of the Dirac operator. In this case we obtain

fex)=Df(x) on Qp, (3.2)

which s an axially Cliffordian polyanalytic functions of order (1, 2), by the Fueter—Sce
mapping theorem, i.e.,

AD*f°(x)=0 on Qp.
We denote this class of functions as APC1,2)(2p).
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Definition 3.7 (AP3(2p) axially polyanalytic function of order three) Let f x) =
Df(x) e APC (1,2)(2p). Applying the conjugate Dirac operator Dto f (x), we get

f@)=D'fx) on Qp.
which an axially polyanalytic function of order three, i.e.,
D fe(x)=0 on Qp.
We denote this class of functions as AP3(2p).

Remark 3.8 Keeping in mind the above notations we have
f)=ADfox) = Dff ) =D fo(x) = Af°(x) = DA ),
where f is axially monogenic and also
f)=D*fg(x) = ADf°(x) on Qp.

Remark 3.9 In the general case appears the same classes of functions but with different
orders.

Taking advantage of the function spaces of axial functions defined in this section
we can now define the fine structure associated with this spaces that appear in the
Clifford algebra Rs.

4 The Fine Structures in Dimension Five

By applying the Fueter—Sce map Trs> := A” ., where h := % is the Sce exponent,

Rnr+12
to a slice hyperholomorphic function f(x) we get the monogenic function fx) =
A%”_H f (-x ) .

Due to the factorization of the Laplace operator in terms of D and D it is possible
to apply these two operators to a slice hyperholomorphic function f(x) a number of
times, until we reach the maximum power of the Laplacian, i.e., the Sce exponent.

This implies the possibility to build different sets of functions between the set of
slice hyperholomorphic functions and the set of axially monogenic functions, (see the
previous section). This fact leads to the definition of fine structure of slice hyperholo-
morphic spectral theory.

Definition 4.1 (Fine structure of slice hyperholomorphic spectral theory) A fine struc-
ture of slice hyperholomorphic spectral theory is the set of functions spaces and the
associated functional calculi induced by a factorization of the operator Trgs>, in the
Fueter—Sce extension theorem.

The factorization Trgy = Aﬁ‘v .1 = DD...DD is of particular interest.
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Definition 4.2 (Dirac fine structure) The Dirac fine structure corresponds to an alter-
nating sequence of products of the Dirac operator D and of its conjugate D until we

n—1

AT
obtain Ap, ;.

In [12] we studied the Dirac fine structure when n = 3, that is the quaternionic
case. In particular we studied the sequence represented by the following diagram:

OD) T SHp) B AHSQp) -2 AMSp). 4.1

The fine structure in (4.1) allows to obtain a product rule for the F'-functional calculus,
see [12, Thm. 9.3].

However, since A = DD = DD, we can exchange the roles of the operators D
and D in (4.1). This gives rise to the sequence represented by the following diagram:

OD) T SHQp) -2 AP QD) -2 AMSp). (4.2)

which is investigated in [29] and [30]. Even if the diagrams (4.1) and (4.2) come from
the Fueter mapping theorem and the factorization of the Fueter operator Tr2 = A, we
get two different fine structures.

In each fine structure above and in all the fine structures we consider in the sequel
the final set of function spaces is always the set of axially monogenic functions.

In the Clifford setting the splitting of the second Fueter—Sce mapping is more
complicated, due to the fact that we are dealing with integer powers of the Laplacian.
Moreover, when 7 is even the Laplace operator has a fractional power and so we have
to work in the space of distributions using the Fourier multipliers, see [39].

Due to the fact that for n = 5 we deal with the operator A2, we get more Dirac fine
structures, which are all different and important at the same time. In order to label all
the fine structures, we will denote every fine structures, with an ordered sequence of
the applied operators. For example, in the quaternionic case, we call (4.1) the Dirac
fine structure of the kind (D, D) and (4.2) the Dirac fine structure of the kind (D, D).
Also in the case n = 5 we have a structure in which we apply alternately the operators
D and D until we reach the second Fueter—Sce mapping.

OD) L sHp) B ABHSD) -2 AHC1(Qp)
L, an@p) B Am@p). (4.3)

We call (4.3) the Dirac fine structure of the kind (D, D, D, D).

Remark 4.3 Even when n = 5 the Dirac fine structure (4.3) is of fundamental impor-
tance to obtain a product formula for the F-functional calculus (see Theorem 10.3).

Remark 4.4 Inorder to avoid, at the end of the sequence of spaces, the set of axially anti
monogenic function, we impose the condition that the composition of all the operators,
between the spaces of Clifford valued functions, must be equal to the operator Trgy =
A®=D/2 that appears in the Fueter—Sce mapping theorem.
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However, by rearranging the sequence of D and D it is possible to obtain other fine
structures, in which other sets of functions are involved. Thus, we have the Dirac fine
structure (D, D, D, D)

TFs)

OD) B SH©p) B ABHSQD) -2 AHC1 ()

D APy (2p) B AMSD).

and the Dirac fine structure (D, D, Z_), 5)

o) I sH@p) -2 ABH(QD) -2 AHC ()
L an@p) B AM©D).

All the previous Dirac fine structures are obtained by applying first the Dirac operator.
Nevertheless, it is possible to apply the operator D as first operator. In this case
other three Dirac fine structures arise. We have the Dirac fine structure of the kind
(D, D, D, D)

OD) 8 SH(Qp) 2> APC2(Qp) 2> AHCI(Qp)

Dy APy QD) -2 AMSD),

the Dirac fine structure (5, D, D, 5)

OD) % SH(Qp) 2> APC 2 (R2p) —> AHCI(Qp)

D D
— AH(Qp) — AM(QD),
and the Dirac fine structure (D, D, D, D)

TFs)

OD) B SH(@p) B> APC(2(QD) 2> AP3(Qp)
L AH©@D) B AM@D).

The following diagram summarizes all the Dirac fine structures with their function
spaces:
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AP3(2p)

Y

a

APC(12) (2p) AP (Qp)
/ D /
O(D) SH(Qp)
5 ACH1(S2p) AM(Qp)
\ N b /
ABH(Sp) AH(Q2p)

N
ACH1 (2p)

Remark 4.5 In all the previous Dirac fine structures it is possible to combine the Dirac
operator and its conjugate. In this way we get a fine structure which is “weaker” then
the previous ones; in the sense that we are skipping some classes of functions. We
call these kind of fine structures coarser. Up to now we have mentioned just some of
them and in the Appendix we show the complete landscape of the fine structures in
dimension five.

"

The Laplace fine structure is of the kind (A, A), which is a coarser fine structure
with respect to the Dirac one, and it can be represented by the following diagram:

o) I sH@Qp) 55 ACH (Qp) 25 AM(Q)).

Other interesting coarser fine structures are the harmonic ones, in which appear only
the harmonic and bi-harmonic sets of functions

TFs)

O(D) — SH(2p) 2, ABH(2p) N AH(22p) 2, AM(Qp),

and the polyanalytic one, in which there appear only the polyanalytic functions of
order three and two

=2

OD) 73 SHQp) 2> AP3(Qp) -2 AP2(Qp) -2 AM(Q)).

We observe that it is not possible to have coarser fine structure in the quaternionic
case. This is due to the fact that we are dealing with the Laplacian at power 1.

5 Systems of Differential Equations for Fine Structure Spaces of Axial
Type

In analogy with the Vekua-type system of differential equations for axially monogenic
functions in this section we give all the systems of differential equations for the fine
structure spaces in dimension five. Let D be a domain in the upper half-complex plane.
Let Qp be an axially symmetric open set in R® and let x = xo +x = xo +rw € Qp.
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A function f : Qp — Rs is of axial type if there exist two functions A = A(xp, r)
and B = B(xo, r), independent of w € S and with values in Rs, such that

f(x) = A(xg,r) + wB(xg,r), where r > 0.

So we characterize the class of functions that lies between the set of slice hyperholo-
morphic and the set of axially monogenic functions, that we have denoted as axially
functions. We recall by [38], that if f(x) = A(xg, ) + @B(xo, r) then

4
Df = (%A(XO, r) — 9, B(xo,r) — ;B(xo, r)) + @ (03 B(x0, 1) + 3 A(x0, 7)) ,
5.1
— 4
Df = <3on(XO, r)+ 0, B(xp,7) + ;B(XO, r)) + @ (0x B(x0, 1) — 9 A(x0,7)).
(5.2)
Theorem 5.1 Let D C C. Let Qp be an axially symmetric open set in R® and let

fo(x) = A(x0, 1) + wB(xg, 1) be an axially anti cliffordian holomorphic function of
order 1. Then A(xq, r) and B(xq, r) satisfy the following system:

2
03 A+ 0502 A + 20,0, A + 8,02 B+ 97 B + 858 +8%F g8 1 452 p—0

r r X0

03 B + 0,02 B — 49, (3*33

) 0024 - A — 4, (24) =0

Proof Let us consider f,(x) = A + wB. By similar computations done in [12, Thm.
3.5] we have

2 2, 4 2 2 B
A(fo(x)) = BXOA+8rA+;8,A + o0y, B+ 0B+ 49, —) (5.3)
Now, we set
A= A+ 02A+ 204 and B =02 B+02B+425- 25
'_x0+r +;r an '_x0+r +7—r—2
Then by formula (5.2) we have

— — 4
AD(fo(x)) = D(A"+ wB') = (35,A" + 8, B' + ;B’) + w3, A" — 9, B")

3 2 4 3 4 2 4
= 93, A+ 007 A + 00 A+ 9B+ —07B — 0, B

+3B — 0B+ 0,00 B+ ~07B+ 50,8~ B+ 03B

r

2 4 4 3 2 3
+ (D07 B + ~ o9 B — 0B+ 03, B — 8,93, A — A
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4 4
+—0,A— =07 A) (5.4
r r
so we finally have
D, 3 2 4 3 8 2 8 8
AD(fo(x)) = 03, A + 9x, 0, A + ;axoa,A +90;B + ;3,3 + r—ZB,B - ﬁB
2 4.0 2 4 4
+8r3xOB + ;BXOB +g(8xO8rB + ;aanrB — V—ZBXOB
3 2 3 4 4 2
—|—8xoB—8,3X0A—8,A+r—28,A— ;BrA). (5.5)

Since (° f (x)) is anti-Cliffordian holomorphic of order one we have that AD( f, (x)) =
0. O

Theorem 5.2 Let D € C. Let Qp be an axially symmetric open set in R® and let
f1(x) = A(xp, r) +wB(xg, r) be an axially bi-harmonic function. Then A(xo, r) and
B(xo, r) satisfy the following system:

o A+2022A+ A - 50,4+ 524+ 334+ 29,02A=0

X0 r

FB+207B—3r70,B+ 2B +20702 B — 02 B+ 202 0,B+ 9} B =0.

r 7Xxo r X0

Proof By formula (5.5) we have

3 2 4 3 8 2
C =05 A+ 90y A+ 20u A+ 9B+ 20/ B
8 8 5 4,
+50r B — B+ 003, B+ ~03B
and
2 4 4 3 2 3 4 4 2
D =007 B + 040 B — —0x B + 03B — 0,03, A — 0] A + 0,4 — —97A.

Therefore, by formula (5.1) we have

A*(f(x)) = DDA (x)) = (35,C — 9, D — ;D) + @@y D + 8,C)

4 8
= %A+ 00,07 A+ ~ 03,0, A+ 010 B + ~ 07 B
8 8 3 4.3
+ r_zaxoarB - ﬁaXOB + araxoB + ;3XOB
3 4 2 8 8
— 0y, 0; B — ;8xO8,B + r—zaanrB — r_38mB

8 4
— 0,00 B+ 005 A+ 3 A+ —0,A 9%A
r

r Yx - 2%
0 r2
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44 4, 4, 16
+ 0P A = ST~ 0B — 01D B

16 4 4 4 5 4 4 16

+ 300 B = ~03 B+ 003 A+ 07 A - —0.A
16 4

+ r—zafA + 0393 A+ 097 A + ;axanA +0'B

8 , 8., 16 8 , 24
~ 5B+ 0B~ 0B+ 7B+ B

4 8 4
— =0y, A — —0,B+ 0970, B— =0, B

r r r

f 2 2 92 f 2 _i 2 4
+ — 0,00, B + 03,07 B + ~ 03,0, B — — 03 B + 0, B

3 3 4 4 2
— 893 A = 3]0y A+ g dr A — ~ 373 A)

8 8 8
_ a4 292 4 2 3
= 3on + 28x08,A +0,A— r—38rA + r—zarA + ;8FA
+ ia,a2 A+ wd*B+ 893p — %r3a,3
ro =T r’ 4
24 242 8 2 8.2 4
+ r—43 + 207 9y, B — r—zaxoB + ;onarB + 9y, B).
Since the function fl (x) is bi-harmonic, i.e., A2 fl (x) = 0, we have the thesis. O

Tpeorem 53 Let D C C. Let Qp be an axially symmetric open set in R and let
fo(x) = A(xo,r) + @B(xo,r) be an axially polyanalytic function of order three.
Then A := A(xg, r) and B := B(xo, r) satisfy the following system:

a2
3 A+ 0B —3020,B —30,02A — 202 B 125, 9.4+ 8% 1 g%E g8 —

X0 r “xo r 2 Pl

03B — 03 A +302,0,A — 30,028 — 122078 4 1p20B _qBA L 4y 4,
Proof First of all we start by computing D> f(;’ (x).
D*f5(x) = D(Df§ (x) = D(A' + wB),
where
!/ 4 /!
A :=0,A—9B——-B and B :=0,B+0A.
r

By formula (5.1) we get

2 Ffo ’ ’ 4 /

D fo (x) = | 0xyA"(x0,7) — 9, B'(x0, 1) — ~ B (x0.7)

+ (85 B (x0, ) 4 8, A’ (x0, 1))
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2 8 2 4
= (92,4 — 20,8, B — ~8,,B — 874 — ~5,A
r r

+g<a§03 +208,,0A — 32B +

»B B
—43,—— +4—
"

p
= A"+ wB’, (5.6)
where
A" =09} A — 2050, B — ?axoB —97A — éa,A
and
B" =3} B +20,,0A — 3B — 49, 8”FB + 4:%.

Finally by applying another time formula (5.1) we get
D*fg(x) = D(D* f§ () = D(A" + wB")

4
— (aon// — 9, B’ — _B//> + Q(axo B’ + arA//)
r

= (afoA + 9B — 3079, B — 30,97 A

12 12 2B 9, B B
— =02 B — 0,0, A+ 8-~ +8r—2—8—3>
r r r r

3200, B

+g(a§03 — 07 A+ 3020, A — 30,0y B — 12
p

+12

9. B ZA 4
N -4+ —28,A>.
r r r

We get the statement from the fact that the function fv(;’ (x) is polyanalytic of order
three, i.e., D £ (x) = 0. o
Theorem 5.4 Let D C C. Let Qp be an axially symmetric open set in R®. Then
e f°(x) = A(xp,r) + wB(xg,r) is axially Cliffordian of order one if and only if
A := A(xq, r) and B := B(xg, r) satisfy the following system:

92 B
OugA + 03y 02 A + 20,,0,A — 0,02 B — 7B — 8% 185 — 40— =0

03, B + 002 B + 40, (227 + 0,03, A+ 074 + 407 (4) = 0.
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° fo(x) = A(xg,r) + wB(xq, r) is axially harmonic if and only if A := A(xo, 1)
and B := B(xo, r) satisfy the following system:

ZA+PA+20,A=0
2 B+32B+49, () =0.

° ff (x) = A(xp, r) + @B (xg, r) is axially polyanalytic of order two if and only if
A := A(xp,r) and B := B(xg, r) satisfy the following system:

92 A —20:3,B—20,,B—9’A—29,A=0

0
32 B +20,,0,A — 02B — 493, (£) = 0.

° f"(x) = A(xo0, 1) + wB(xo, ) is axially Cliffordian polyanalytic of order (1, 2)
if and only if A := A(xq, r) and B := B(xq, r) satisfy the following system:

BB paq g
r

r

83A
r

3 B

O} A —20,0 B —20,,0; B — 82— —8
92A Oxo0r B

—8%A _4%E g4 1620 - =0

820:, A 30 A
O B 420,03 A + 20,07 A + 8--0= — 1270~

.
Qo y 2
4B gdp y gleA g B | a8
r r r-
B 82 B
—24—4 +4 02 =0.
r

r

Proof We do not give all the details of the proof because they are tedious computations.
We just mentions that the first system follows by applying the Dirac operator D to (5.3).
The computations are similar to that ones done in Theorem 5.1. The second system
follows by formula (5.3). The third system follows by formula (5.6). The fourth system
follows by applying the operator D to AD f°(x), which formula is possible to get by
the first point of this theorem. O

In the next section we will give the integral representation of the functions belonging
to the function spaces associated with the fine structure. These spaces are called, for
short, fine structure spaces.

6 Integral Representation of the Functions of the Fine Structure
Spaces

We now recall the slice hyperholomorphic Cauchy formulas that are fundamental for
the hyperholomorphic spectral theories.
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Theorem 6.1 Let s, x € R with |x| < |s|, then
+00
Zxks_k_l = —(x2 = 2Re(s)x + |s|) " '(x —5)
k=0

and
—+00
D s = —(r = D = 2Re()x + s
k=0
Moreover, for any s, x € R" with x ¢ [s], we have
—(x?=2Re(s)x + s x =35 = (s = %) (s*> = 2Re(x)s + |x|») !
and
—(x =52 = 2Re(s)x + s[) 7 = (52 = 2Re(x)s + [x[) (s — X).
In view of Theorem 6.1 there are two possible representations of the Cauchy kernels

for left slice hyperholomorphic functions and two for right slice hyperholomorphic
functions.

Definition 6.2 Let s, x € R**! with x ¢ [s] then we define the two functions
Q)= (¢ = 2Re(®)x + Is|H 7!, Qo) 7! i= (57 — 2Re(x)s + |x|P) 7],

that are called pseudo Cauchy kernel and commutative pseudo Cauchy kernel, respec-
tively.

Definition 6.3 Let s, x € R"*! with x ¢ [s] then

e We say that the left slice hyperholomorphic Cauchy kernel S;l (s, x) is written in
the form I if

SN, x) = Q07 — x).

e We say that the right slice hyperholomorphic Cauchy kernel SEI (s, x) is written
in the form I if

Spl(s,x) == G —x)Qsx)"".

e We say that the left slice hyperholomorphic Cauchy kernel SL_1 (s, x) is written in
the form II if

S0 = (5 =) Qs ()7
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e We say that the right slice hyperholomorphic Cauchy kernel S;l (s, x) is written
in the form II if

Spl(s,x) == Qe s ()15 — ).

In this article, otherwise specified, we refer to SL_1 (s, x) and SEI (s, x) as written in
the form II.

We have the following regularity for the (left and right) slice hyperholomorphic
Cauchy kernels.

Lemma 6.4 Lets ¢ [x]. The left slice hyperholomorphic Cauchy kernel SL_l(s, X) is
left slice hyperholomorphic in x and right slice hyperholomorphic in s. The right slice
hyperholomorphic Cauchy kernel S;l (s, x) is left slice hyperholomorphic in s and
right slice hyperholomorphic in x.

Theorem 6.5 (The Cauchy formulas for slice hyperholomorphic functions) Let U C
R"*! be a bounded slice Cauchy domain, let J € S and set dsj=ds(=J).If fisa
(left) slice hyperholomorphic function on a set that contains U then

1

fx) = —/ S;l(s,x) dsy f(s), forany x € U. (6.1)
27 Jawncy)

If f is a right slice hyperholomorphic function on a set that contains U, then

1

fx) = —/ f(s)dsy SEl(s, x), forany x e U. (6.2)
27 Jywncey)

These integrals depend neither on U nor on the imaginary unit J € S.

Now, we recall what happens when we apply the operator Tspy = A%, to the
slice hyperholomorphic Cauchy kernel (see [27]).

Proposition 6.6 Let x, s € R"! and x ¢ [s]. Then

e The function A%SZ] (s, x) is a left monogenic function in the variable x and
right slice hyperholomorphic in s.

e The function A%Sgl(s, X) is a right monogenic function in the variable x and
left slice hyperholomorphic in s.

Definition 6.7 (F,-kernels) Let n be an odd number and let x, s € R"t1 We define,
for s ¢ [x], the FL-kernel and the FX-kernel as

FL( Ao R Aol
(s, x) i =AT 8 (s, x), F(s,x):=A7 8, (s,x),
respectively.
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It is possible to compute explicitly the F,-kernels, in particular, for s ¢ [x] we
have

FE(5.2) = puls — $) Qes (1) ™7, 6.3)
and
FR(s, %) = yp Qes ()T (s — ), (6.4)

where
2l on—tp ] 2
Yo i=(=1) 72" [(E(n — -

Remark 6.8 Formula (6.3) and (6.4) hold also when  is even, see [13].

Moreover, for s ¢ [x], the F;-kernels satisfy the following equations:

n—1

FE(s,x)s —xEF (s, x) = 0 Qe (%) (6.5)

and

n—1

SER(s, x) — FR(s, x)x = 4 Qs 7 (). (6.6)

The following result plays a key role (see [27]).

Theorem 6.9 (The Fueter—Sce mapping theorem in integral form) Let n be an odd
number. Let U C R"t! be a slice Cauchy domain, let J € S and set dsj = ds(—J).

o If f isa(left) slice hyperholomorphic function on a set W, such that U C W, then
the left monogenic function f x)=A = f (x) admits the integral representation

1

fx) = 2_/ FE(s, x)dsy f(s). 6.7)
T JyWwuncCy)

e If f is a right slice hyperholomorphic function on a set W, such that U C W, then
the right monogenic function f (x) = AT f(x) admits the integral representa-

tion

o 1
fo) = / f(s)ds;FR(s, x). (6.8)
T JyWUnCy)

The integrals depend neither on U and nor on the imaginary unit J € S.
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6.1 The Structure of the Kernels of the Fine Structure Spaces and Their Regularity

In this subsection we construct the kernels associated with the spaces of the fine
structures. The strategy follows the construction of the Fueter—Sce mapping theorem
in integral form. Precisely, we proceed by applying to the left (and to the right) slice
hyperholomorphic Cauchy kernels some suitable operators that define the required
kernels. These new kernels will be used to give these functions the appropriate integral
representations. In the proofs of the following theorems we consider just the left
hyperholomorphic Cauchy kernel since for the right hyperholomorphic Cauchy kernel
computations are similar.

Theorem 6.10 (Structure of the slice D-kernels SZ_)I ;, and S{)] ) Lets, x € R be such
that x ¢ [s), then

Spl (s, =D (575,10 = ~4Qus(0) 7, 6.9)
and

SZ_),IR(S’ )C) = (SI;I(S’ x)) D= _4Qc,s (x)_l~ (610)

We denote by 551 , and 551 g the left and the right slice D-kernels.

Proof We compute the following derivatives:

0
a—xosgl(s, X) = Qe s (X) 14 2(s = ) Qes ()72 (s — x0), (6.11)

and, for 1 <i <5, we get

aisgl(s, X) = € Qs (1) = 2xi(s — £)Qurs (X)2. 6.12)
X

Finally, we have

d

5
0
-1 -1
8x0SL (s, x)+ E eia_)ciSL (s, x)

i=l1

== Qs ()7 = 2x0(s — F) Qe s (1) 2+ 2(s — B)s Qe s (x) 2+
—5Q.s ()1 = 2x(s — ) Q¢ s (x) 2

= —6Q0 ()7 = 2x(s = %) Qe s () 2+ 2(s — D)5 Qe (x) 2

= —6Qcs(x) 7N +2(s% — X5 — x5 + |x[}) Qs (x) 2

=—4Q.,(x)" L

D (57,0 =

O
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Now, we apply the Laplacian of RS, i.e.,

A=
2 K
= 0x;
to the slice hyperholomorphic Cauchy kernel

Theorem 6.11 (Structure of the slice A-kernels SZ}L and S, 1R) Let s, x € RO be such
that x ¢ [s], then

Sal (5,30 = AST (5, %) = =88 (5, 1) Qes (1), 6.13)
and
Salp(s.x) == ASR (s, x) = —8Q, s (x) ™' Sg ' (5, x). (6.14)

We denote by S;}L and S;}R the left and the right slice A-kernels.
Proof By formula (6.11) we get

82
QS;‘ (5. %) = (=25 + 2x0) Qe.s (1) % + (2x0 — 25) Qs (x) 2
0

—2(5 — %) Qs ()72 +8(s — F)(x0 — §)2 Qe 5 ().
By formula (6.12), for 1 <i <5, we get

J _ _
QSLl(s,x) = —2x;€; Qe s (x) 72 — 2x;€; Qe 5 (x) 2
i

—2(s — %) Qe.s ()72 + 8(s — B)x? Qs (x) .

Finally, we get
1 | N
AS; (s, x) = —2SZ (s,x)+ E —252 (s, x)
axg = 0x;

= 4(x0 — ) Qe s ()2 = 2(s — ©) Qe s (x) 2
+8(s — X)(x0 — )% Qe s (x) >
—4x Qe 5 ()72 — 10(s — %) Qe s ()7 + 8lx[*(s — £) Qe s ()
= —4(s — x0 + 2) Qe s ()2 = 12(s — ) Qe s (x) 2 +
+8(s — H)[(x0 — )% + [x[*]Qc s (x) 3
= —16(s — X)Qes(x) 72 + 8(s — X)(x§ + 57 — 2x05 + |x|3) Q.5 ()
= —8(s — 1) Qe (x) 2 = =85, (5, %) Qe (x) .
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Theorem 6.12 (Structure of the slice AD-kernels S;lp , and SZID r) Letx, s € RO
be such that x ¢ [s], then

Sab,p(5:%) 1= AD (S71(5,0)) = 16Qcs (1) 2, (6.15)
and

Sxb el ) = (S5 6.0) DA = 16Q0, (1) 2. (6.16)

We denote by S;%)’ , and S;%)’ g the left and the right slice AD-kernels.

Proof In order to show formula (6.15) it is enough to apply the Dirac operator to
(6.13). Thus, we have

8ixo (ASZ] (s, x)) = —8[—QC’S(;¢)—2 —2(s — )E)Qc,x(x)_?’(ZX() —29)].

For1 <i <5, we have

0
(A7 (5.)) = ~8le1 Qe (1) = (s = Qe () il

Finally by formula (6.5), with n = 5, we have

5

b B
-1 _ -1 L9 -1
DAS; (5.0 = 5 (ASL (s,x)) n l;e, " (ASL (s,x))
2, 4 s 4 s
= —8[-6Q,s(x)" "+ —F7 (s, x)(s — x0) — —xFj (s, x)]
Vs Vs
4
= -8 [—6QC,S(x)_2 4+ — (Ff(s, X)s — xFLS(s, x)>:|
Vs
= —8(—6Q0s (1) 2 +4Qcs(07?)
= 16Q.,(x) .
Formula (6.16) follows with similar reasoning. O

Theorem 6.13 (Structure of the slice D-kernels S%IL and S%IR) Letx, s € R® be such
that x ¢ [s), then ’ ’

So, (5,2 :=D(S ' (5,3)) = (s — D) Qs (1) 72 (s — x0) +2Qc,; (1)~ (6.17)
and

S5 o (53 1= (S5 (5, 0)D = 4(s = x0) Qs (1) (s = ) +2Qc,s(1) ™'+ (6.18)
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We denote by S%IL and S%IR the left and the right slice D-kernels.

Proof By the relations (6.11) and (6.12) and using the fact that 2xg = x + x, we have
that

— 0 5 9
D(S; (s, x)) = 8_xo(s;‘(s,x)) - eia(szl(s,x))
i=1 !

== Qs ()X) N +5Q0()xX) T +2(s — %)
Qs (¥) 2 (s — x0) + 2x(s — ¥) Q5 (x)
=4Q. ()7 +2((s — ¥)s — X(s — 1)) Qs (x) 7
=4Q. () Qe s () +2((s — X)s — X(s — 1)) Qe s (x) 2
= (65> — 8sx + 4|x|* — 4ks +2%2) Q. (x) 2
= (65> — 45 — 4xs + 4|x|> — 4%s + 25 Qs (x) 72
= [4(s% — Xs) — 2(%s + x5 — |x|> — %?)
+2(s* — &5 + |x|* — x8)] Qs (1) 2
= 4(s — X)5 Qe ()72 — dxg(s — X) Qe s (x) 2
+2((s — X)s + x(¥ — 5)) Qe s (x) 7
=4(s — 1) Qe.s(x) (s — x0) +2Qc ().

]

Theorem 6.14 (Structure of the slice 52-kernels S%; ; and S%; R) Let x, s € RO be
such that x ¢ [s], then ’ ’

S; LX) = DS (s, 00) = 3205 = Qe (0 3 (s —x0)°  (6.19)
and

S%; L5 = (Sp' (s, ND” = 32(s — %02 Qs () 3(s —B).  (6.20)

We denote by S%;’L and S%;,R the left and the right slice 52—kernels.
Proof 1t is useful to compute D((s — %) 9., s, By the relations

aixo((s — Qe (1)) = =Qes (1) = 2(s — 1) Qe,s (1) (=25 + 2x0)
and

0
T (6= Qes ()7 =€ Qe s(x) 72— 4(s — ) Qe s () > (x1),
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we have

D((s — ¥)Qes ()~ 2)——((s ) Qs (x)” 2)—Ze,—<(s %)Qes (X))

i=1 O
=4Q. (1) +4((s — X)s — (s — ) Qe s (x) >
=4Q (%) Qs (X) 7 +4((s — X)s — X(s — £)) Qs (x) 2
= (852 — 8sxp + 4|x|? — 8%s + 451 Qe (x) 3
= (857 — 8%5) Qe s (x) > — (8x0s — 8x0%) Q.5 (x)
= 8(s — 1) Qc,s (x) (s — x0), (6.21)

where in the fourth equality we used |x|> + ¥? = 2x%. Now, using formula (6.17)
and Leibnitz formula for D, we can compute 52(521 (s, x)):

D(S; (5, %)) = DI4(s — £) Qe (x)"2(s — x0) + 205 (x) ']
= 4D[(s — ¥) Qe.s () 21(s — x0) — 4(s — ¥) Qs (x) > + 2D[ Qe s (x) 1]
= 4(8(s — %) Qes(¥) s — 8(s — ¥) Q.5 (x) " x0) (s — x0)
—A(s = F) Qe s (1) 2+ 4(s — X) Qe 5 (x) 72
=32(s — %) Qe,s (x) (s — x0)*.

O

Theorem 6.15 (Structure of the slice D?-kernels S and S ) Let x, s € R be
such that x ¢ [s], then

Spt , (5.3) = DXS, (5. 2)) = 88,1 (5. ) Qs (1) ! (6.22)
and

Spa g(s: %) 1= (Sg' (5, 0)D* = 8Qc s (1) ' Sg ' (s, %) (6.23)
We denote by SDz , and SD;  the left and the right slice D2-kernels.

Proof By (6.9) and relations (6.11), (6.12), we have that
5

DX(S. (5, %)) = = 4D(Qes (1)) = —4(2s — 2x0 =2 ) €ixi) Qe 5 (x) 7
i=1

=8(x — §)Qe.s(x) 2.

O
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Theorem 6.16 (Structure of the slice AD-kernels SL and STL ) Let x, s € R®
AD,L AD,R
be such that x ¢ [s], then

(s X) = AD(SL (s,x)) = —64(s —x) Q¢ s(x)° 3(s —x0)  (6.24)
and

Sop g5+ 1) 1= (53 (5. 1)AD = —64(s —x0) Qs (1) (s = X).  (6.25)

—1 —1 . . =~
We denote by SAf,L and SAf,R the left and the right slice AD-kernels.

Proof We show only formula (6.24) because it is possible to prove formula (6.25) with
similar arguments. By formulas (6.13) and (6.21), we have that

AD(S; (5, %)) = —8D((s — £) Qe 5 (x)72) = —64(s — ) Qe 5 (x) (s — x0).

Now, we study the regularity of the previous kernels.
Proposition 6.17 Let x, s € R® be such that x ¢ [s]. We have that

(1) Sl op 1620 (resp. 3oy
ins and it is € + 1-harmonic in x for0 < € < 1;

2) S;}L (s, x) (resp. S;}R (s, x)) is slice right (resp. left) hyperholomorphic in s and
it is left (resp. right) holomorphic Cliffordian of order 1 in x;

3) S ! (s x) (resp. S ! (s x)) is slice right (resp. left) hyperholomorphic in s and

(s, x)) is slice right (resp. left) hyperholomorphic

lt lS left (resp. rlght) polyanalytlc Cliffordian of order (1,2) in x;
“4) S_ Pt (s x) (resp. S 72 ¢ (s x))is slice right (resp. left) hyperholomorphic

ln s and ll is left (resp rlght) polyanalytlc oforder3 —Cinx for0 < <1;
(5) Sy, (s,x) (resp. Sy (s, x)) is slice right (resp. left) hyperholomorphic in s
and lt is left (resp. rlght) anti-holomorphic Cliffordian of order 1 in x.

Proof We prove the regularity for the left kernels since for the right kernels the argu-
ments are similar. The right slice hyperholomorphicity in s of the left kernels is due to
the fact that each kernel can be written as a left combination of intrinsic slice hyper-
holomorphic functions in s: Q. s(x) ™", s Q¢ s (x) ™", 52 Qc.s(x)™™, and s3 Qe s(x)™"
for 1 <m < 3 (see Theorems from 6.10 to 6.16).

As the operators D, D and A can be commuted, we have

(1) AFIS (s, %) = AM(AI*@D(S;l(s,x))) = DAXS,'(s.x) =
DFS(S x) = 0, which implies S

0<e<1;
(2) AD(S}!, (5.x)) = AD(A(S; ' (s.x))) = DAX(S; (s, x)) = DF;(s.x) = 0,

which implies S;] 1 (s, x) is holomorphic Cliffordian of order 1 in x;

Al- [DL(S’X) is £ + l-harmonic in x for
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3) AD?(S:1 (s,x)) = AD*(D(S; ' (s, x))) = DA(S] (s, x)) = DF} (s, x) = 0,
which 1mphes Sf (s x) is polyanalytic Cliffordian of order (1, 2) in x;

4) D> E(S;eﬁz_,’L(s,x)) — DI ADT (SL (s,x)) = DAXS;'(5,x) =
DF LS (s, x) = 0, which implies S;Klﬁz’l,L(s’ x) is polyanalytic of order 3 — ¢

inxfor0 <t <1;
(5) AD(S DzL(s x)) = AD(D?(S; (s, x))) = DAX(S; ' (s, x)) = DF} (s,x) = 0,

which implies S -

2. L(s, x) is anti-holomorphic Cliffordian of order 1 in x.

O

Remark 6.18 We can write the formulas of left and right slice kernels in Theorem 6.10
up to Theorem 6.16 in terms of the F;-kernels. By using formula (6.3) and (6.4) we
have

Sp', (5. %) = 116 [Fs (5. )5% = (x + 2x0) FE (s, x)52

+Q2xox + [x[HFE (s, x)s — x|xPFE(s, x)] ,
116 [s FR(s.x) = s2FR (s, x)(x + 2x0)

+sFR(s, x)2xox + [x[?) — FR(s, x)x|x|2] ,

Spig(s,x) =

1
SZ}L(S, xX)=-—3 [FsL(S, x)s% = 2x0FL (s, x)s + |x P FE s, x)] )

8
_ 1
Sxlp(s,x) = -3 [s2F5R(s, x) — 25 FR (s, x)xo + FR (s, x)|x|2] ,
1 L L
AD (s, x) = I [F5 (s, x)s — xFj (s,x)] ,
! FR FR
AD r(s,x) = 1 [s 5 (s,x) — Fj5 (s,x)X],

1
SgL(s, x) = > [3F5L (s, %)s> — (8x0 + x) FL (s, x)s% + (4x3 + 2x0x
+3|x|2>F5L(s, x)s — (x|x|? + 2x0|x|?) F& s, x)] :
S%?R(s,x) ) [3s F5 (s,x) — s2F5 (s, x)(8xg + x) +sF5 (s, x)
(4x5 + 2x0x + 3[x%) — Ff (s, x) (x|x|* + 2x0|X|2)] :

Sa;L(s,x) [FS (s, x)s% — 2xF5 (s, x)s +x2F5 (s, x)]

OOI»—‘OOI»—t

SB%’R(s,x) [s F5 (s,x) — 2SF5R(S,X))C + FsR(s,x)xz],
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S_% L(s,x) —[F5 (s, x)s — 2on5 (s, x)s +x0F5 (s, x)],

S; LX) = 5[s2F5R<s, x) — 25 FR (s, x)x0 + FR(s, x)x31,

-1 L L
SAﬁ,L(s’x) = _FS (sﬂx)s +x0F5 (S7‘x)7

—1 R R
SAﬁR(s,x) = —sF5 (s, x) + F5 (s, x)x0.

1 1
The kernels S = (s x) and SA DL

terms of their polyanalytlc decomposition, see Proposition 2.15.

(s, x), and the right counterparts, are written in

6.2 The Integral Representation for the Fine Structure Functions Spaces

Now, we can give the integral representation for the functions of the fine structure
spaces.

Theorem 6.19 Let W C R® be an open set. Let U be a slice Cauchy domain such
that U C W. Then for J € S and ds; = ds(—J) we have the following integral
representation:

o (Integral repfesentation of ¢-harmonic functions,0 < ¢ < 1) If f € SHL (W),
the function fo(x) := AV =tD f(x) is £ + 1-harmonic for 0 < € < 1 and it admits
the following integral representation:

1
fiw = 5 /d o, Sab 520481 £6)

If f € SHr(W), the function fo(x) = f(x)A'""tD is £ + 1-harmonic for
0 < £ < 1 and it admits the following integral representation:

- 1 _
fon) = o~ fa e F$)ss Syt ip g5, %).

o (Integral representation of holomorphic Cliffordian functions of order 1) If
f € SHL(W), the function f°(x) := A f(x) is left holomorphic Cliffordian of
order 1 and it admits the following integral representation:

1 -1
Fw =5 fa o S £ 0.

If f € SHRr(W), the function f°(x) := A f(x) is right holomorphic Cliffordian
of order 1 and it admits the following integral representation:

1 -1
fox) = 7 /MUOC]) F($)dsySy g(s, x).
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o (Integral representation of polyanalytic Cliffordian functions of order (1, 2))
If f € SHL(W), the function f°(x) := D f(x) is left polyanalytic Cliffordian of
order (1, 2) and it admits the following integral representation:

1

Fo _ —1
Fw=s [ sge oo,

If f € SHr(W), the function f" (x) := A f(x) is right polyanalytic Cliffordian
of order (1, 2) and it admits the following integral representation:

<o _ L _1
=g [ pedssgl e

o (Integral representation of polyanalytic functions of order 3 — ¢, 0 < ¢ <1)
If f € SHL (W), the function f((x) = A€52_€f(x) is left polyanalytic of order
3 — L for 0 < £ < 1 and it admits the following integral representation:

o 1
oo = — /8 ST Gdss )

2m Jywney) AP

If f € SHr(W), the function fy(x) = f()c)AeZ_?z_lZ is right polyanalytic of
order 3 — £ for 0 < £ < 1 and it admits the following integral representation:

1

fo(x) = — ds;S~! ,X).
fiw =5 [ e TSI (5.

e (Integral representation of anti-holomorphic Cliffordian functions of order
1) If f € SHL(W), the function fo(x) = D?f(x) is left anti-holomorphic
Cliffordian of order 1 and it admits the following integral representation:

_ 1 -
fow) = 5 /d o, SPhLG0MsF0)

If f € SHr(W), the function fo(x) = f(x)D? is right anti-holomorphic Clif-
fordian of order 1 and it admits the following integral representation:

_ |
fo®) = — /awm(c,) F($)dsjSp p(s,x).

Moreover, the integrals do not depend on U nor on the imaginary unit J € S.
Proof We prove the integral representation for the £ 4+ 1-harmonic functions starting

from a left slice hyperholomorphic functions since the other cases can be proved with
similar arguments. We start by using the Cauchy formula. By Theorems 6.10 and 6.12,
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we have for0 < ¢ < 1

fex) = ATIDf(x) = i/ A'EDS (s, x)dsy £(s)
aUNCy)

2
: Sat-ip, 1 (5 X)dsp f(s)
= — s, x)dsy f(s).
27 Jawne, ATDE !
By Proposition 6.6 the function fy(x) is £ 4+ I-harmonic. O

7 Series Expansion of the Kernels of the Fine Structures Spaces

In this section our aim is to write the kernel of the previous integral theorems in terms
of convergent series of x and x. In order to do this we need to investigate the application

of the operators D, A, AD, 5, 52, D?, and AD to the monomial x™, with m € N.
We already know that

Lemma?7.1 [7, Lemma 1] For m > 1 we have

m—1 m
D(xm) — (xm)D — _4 Z Ym_k_lxk — _4Z‘xm—kfk—l. (71)
k=0 k=1

We will use the following well-known equality
Axf(x)) =xAf(x)+ 2D f(x), (71.2)
for any x € R and for any C? function f.

Proposition 7.2 Let x € R® and m > 2. Then we have

m—1 m—1
Ax™ = =8 " (m —kx"FIE T = g Y kA (7.3)
k=1 k=1

Proof The proof is by induction on m. For m = 2 and x = x¢ + Zf: 1€iXi =Xx0+Xx
we have

Ax? = A(xd + 2x0x — x5 = 8.
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Let us suppose that the statement is true for m, we want to prove it for m + 1. Then,
we have

Ax"™ = A(x™x) = 2D(x™) 4+ x Ax™

m m—1
— _8 me—kfk—l _ 8 Z(m _ k)xm_kfk_l
k=1 k=1

m m
— —8 Z‘xm*kfkfl _ SZ(m _ k)xmfkfkfl
k=1 k=1

m
=—8) (m—k+ x"*xk,
k=1

where the first equality is an application of formula (7.2) and the second equality
is consequence of the inductive hypothesis and formula (7.1). The second equality
follows by rearranging the indexes. O

Proposition7.3 Ler x € RS, form > 2 we have
m—1
D2(xm) — (xm)DZ — —8 Z kxm_k_lfk_l.
k=1

Proof We show the result by induction on m. For m = 2, we have by formula (7.1)
that

D*(x?) = D* (x5 + 2x0x — x|*) = —8D(x0) = —8.

We suppose the statement is true for m and we prove it for m + 1. First we observe
that

merl — xm(f‘i‘x) _ xm71|x|2.

Thus, by the Leibniz formula for the Dirac operator and the fact that D|x|*> = 2x we
get

D™ = D™ (X + x)) — D" Hx %)
=DU™X 4 x) 4+ 2x" = D" H|x)? = 2x™
=DE™E +x) — D™ Hx.

@ Springer



300 Page380f73 F. Colombo et al.

By using another time the Leibniz formula and the inductive hypothesis we get

DX ) = D (D™ +x) - D" D)
= (D’x"™)(x + X) 4+ 2Dx" — D*(x" " H|x|> = 2xD(x" 1)

m—1

m—1
= -8 Yk hghol g 3 kol
k=1 k=1

m m—2 m—1

-8 mefkfkfl +8 Z kx™ k1R 48 Z xM k=l
k=1 k=1 k=1
m—1

=—8Y kx" ¥ —8(m — D"t — 87"
k=1

m
— —8 Z kxm_kfk_l
k=1

Finally since D(x™) = (x™)D we get

x™D? = (x™)D) D = D(x™)D = D*(x™).

Now, we need some preliminaries results to get a formula for ADx™.

Lemma7.4 Let f : R"! — R, be a C? function then
Af(x) = Af(x).

Proof We know that we can write f(x) = ) Acll
function, thus we have

n} €A fa where f4 are real-valued

yenes

Af)= Y eabfa)= Y eaAfalx)

Ac({l,...,n} Ac{l,...,n}

=al Y @afa | =470

Ac{l,...,n}
O
Corollary 7.5 Let m > 2. Then for x € R® we have
Ax™ = AX™. (7.4)

Proof If we consider n = 5 and f(x) = x™ in Lemma 7.4, we get the statement. 0O
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Corollary 7.6 Let m > 2. Then for any x € R® we have
m—1
AF" = =8 " fxm Kkl
k=1

Proof 1t follows by Corollary 7.5 and Proposition 7.2. O

Lemma 7.7 Let m > 3, for any x € R® we have

m m—2
Z A" Ry = —4 Z(m —k — Dkx™k=25k=1
k=1 k=1

Proof We shall prove this formula by induction on m. For m = 3 we have
AG? 4+ XX +3%) = AGx5 — x]P) = —4.

Let us suppose the statement is true for m, we want to prove it for m + 1. Now, formula
(7.2) and Corollary 7.6 imply that

m+1 m
Z A(xm'H_kfk_]) — ZA(xm+l—kfk—l) 4+ AX™
k=1 k=1

m—1

m m
— ZZD(xm_kfk_l) +x Z A(xm_k}k_l) _ 8 Z kxm_k_lfk_l.
k=1 k=1 k=1

Finally, by formula (7.1), the inductive hypothesis and Lemma 7.3 we get

m+1

1 m m—1
Z A(xm+l—k)7k—l) — _E,DZXm + x Z A(Xm_kfk_]) _ 8 Z kxm_k_lfk_l
k=1 k=1 k=1

1 m—2
= —Eszm —4 I;(m —k — D)kx™kIxk—]

m—1
—8 Z kxm_k_lfk_l
k=1

m—1 m—2
=4 k"I 4y " m — k= Dk !
k=1 k=1
m—1
_8 Z k= 15pk—1
k=1
m—1

=—4 Z(m — k)kxm R Ixgk=
k=1

]
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Proposition 7.8 Let m > 3, for any x € RS we have

m—2
ADx™ =16y (m —k — Dkx™* 251,
k=1
Proof 1t follows by formula (7.1) and Lemma 7.7. O

Let us recall the following fact:

m—1

—mx m even
D (x™) = - ’ 7.5
x (") {—(m + 4))_cm’1 m odd, (7.5)
5 d
where Dy = > €
Proposition 7.9 Let m > 1. For any x € R®, if x # 0 we have
m
Dx™ =2 |:mxm_1 +2 me—kxk—l} . (1.6)
k=1

On the other hand if x = 0 we have

Dx™ = 6mx™ !
Moreover,

D(x™) = (x™)D.

Proof We will perform a direct computations. By the Binomial theorem and formula
(7.5) we get

pu = () oo = (o -2) (35 (1)
k=0

m—1 m
=5 (") om =t =3 (T ) De )
k k
k=0 k=0
—1
I o S G VL St +mi m=D' i ke
Klm—k—1)1"0 = k—DWm—k)! % =
k=0 k=1
< m\ m—k k-1
+4 Z <k>x0 x5
k=1,k odd
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By rearranging the indices of the sum and by using another time the binomial theorem
we get

m
D™ = 2mx™ ! + 4 Z (’Z)xg"—")_ck—l. (1.7)
k=1,k odd
If x =0 we get
Dx™ = 6mx™ L.

On the other side, if x # 0 by the Binomial theorem we have
m m m m m m
2 3 <k>x(’)"k)_ck] => ( k)x(’)”kikl +y ( P Ei
k=1,k odd k=1
m m m m
=" L; <k>x6"_k)_€k "L (k)x(')"_k(—z)k}

m m
2y ('Z);cg’kik—l =2 amhEkl (7.8)

k=1 k=1

By putting formula (7.8) in (7.7) we obtain formula (7.6).
Finally, since Dy (x™) = (x™)Dy, we can repeat the previous computations, thus we
get

D(x™) = (x™)D.

To compute D™ we need the following result.

Lemma7.10 Letm > 2. Forany x € R® we have
m m—1
D, (Z xm"x“) =Y @k —mx"F
k=1 k=1
Proof By Proposition 7.3 and formula (7.1) we have
m—1 m
=8> kx"*E N = D(Dx™) = —4D (mek;zk‘)
k=1 k=1
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]

(7.9
Now, since Y o x"~ kgk=1 = (2x)7'(x™ — X") we get
i ixm—kik—l — i [(2£)_I(Xm _ )z.}’n)]
dxg P d0xo
— (2£)—lm(xm—1 _Ym—l)
m—1
=m Y xmIREL (7.10)
Therefore by formula (7.9) and formula (7.10) we get
m m—1 9 m
,D)L (Z xm—kik—l> -2 Z kxm_k_lfk_l v (me—kik—l)
k=1 k=1 %0 \; 5
m—1 m—1
— 2 Z kxm—k—l)zk—l —-m Z xm—l—kxk—l
k=1 k=1
m—
= Z(Zk — m)x" k1 gk=T
k=1
O

Proposition 7.11 Let m > 2. Then for any x € R® we have
) ) m—1
D™ =x"D =4 |:m(m — D" 242 Z(Zm - k)xm—k—lxk—l] . (7.11)
k=1

Proof By applying two times Proposition 7.9 and the fact that D = 3370 — D, we have
D (x™) = D(Dx™)

m
=2mD"Y) + 4D (Z x’"—"x"—l)

k=1

m—1
=2m (2(m —Dx" 244 Z xm_l_kik_1>

k=1

8 m L m L
+4 |:8_x0 (me kg 1) — D, (me k sk ]):|
k=1 k=1
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By formula (7.10) and Lemma 7.10 we get

m—1

52)/” = 4[m(m —Dx™ 2 4+ 2m Z Ik k=l
k=1
m—1 m—1
+m Z xm—l—kik—l _ Z(Zk _ m)xm—k—lik—l]
k=1 k=1

m—1
=4 |:m(m —Dx" 242 ) @2m— k)xm_k_lik_l] )

k=1
Finally, since D(x™) = (x™)D we get

D (") = (™D,

O
Proposition 7.12 Let m > 3. For any x € R® we have
m—2
ADGE™) = (x")AD = —16 » (m —k — )(m + k)x"* 251 (7.12)
k=1
Proof By applying the operator A to formula (7.10) we get
m
ADx" =2mAG""") +4) " A",
k=1
Therefore, by Proposition 7.2 and Lemma 7.7 we obtain
m—2
AD(™) = —16m Y (m — 1 — kx> Fxt1 4
k=1
m—2
—16 Z(m —k — Dkx™ K25kl
k=1
m—2
=—16 Z(m —k = D(m + k)x" 27 kg1,
k=1
Finally, since the laplacian is a real operator and D(x) = (x)D we get
ADG™) = (x™)AD.
O
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Remark 7.13 The polynomials found in (7.11) and (7.12) are polyanalytic of order
2 and 3, respectively. However, these polynomials do not coincide to which ones
found in [28], in which the authors obtained polyanalytic polynomials by applying the
Fueter-polyanalytic maps, see [5].

Definition 7.14 [left and right kernel series] Let s, x € RO, then we define

o the left D-kernel series as

m=1k

m_kfk_ls_l_m (713)

Pjs

Il
—-

and the right D-kernel series as

o0 m

_4ZZS 1—m XM= k—k 1
m=1 k=1
o the left A-kernel series as
oo m—1
—8> > (m —kyxm Ik g, (7.14)

m=2 k=1

the right A-kernel series as

oo m—1

-8 Z Z(m — Jo)s~1mm ym—k=lk—1

m=2 k=2
o the left AD-kernel series as

oo m—2
162 Z(m —k — Dkxm K2k lg—1-m (7.15)
m=3 k=1

the right AD-kernel series as

0o m—2

Z Z —k— 1)kS_l_mxm_k_2)_Ck_l,
m=3 k=3

o the left D?-kernel series as

oo m—1
=8 Y kxR g, (7.16)
m=2 k=1
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the right D?-kernel series as
oo m—1
_8 Z Z ks—]—mxm—k—l)zk—l ,
m=2 k=1
o the left D-kernel series as
o m
2 |:Z (mx’"_1 +22xm_kik_l>j| sTimm (7.17)
m=1 k=1
the right D-kernel series as

00 m
2 |:Z S—l—m (mxm—l _I_zzxm—kik—l>i| ,

m=1 k=1

e the left ﬁz—kernel series as

00 m—1
4 [Z <m(m — D" 242 Z(2m - k)xm_k_lfk_l) s—l—’"} , (7.18)

m=2 k=1

the right 52-kernel series as
e8] m—1
4 [Z sTIom (m(m —Dx"2 42 @2m— k)xm"l)z“ﬂ ,
m=2 k=1

o the left AD-kernel series as

oo m—2
—16 Z Z(m —k — 1)(m + k)™ K2kl g—1-m 719
m=3 k=1
the right AD-kernel series as
oo m—2
T ——

m=3 k=1

Remark 7.15 The left and the right D-kernel series are equal, where they converge, as
well as the left and the right AD-kernel series.

We collect some technical lemmas that we have used in the proofs of some of the
following results.
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Lemma7.16 For m > 3 we have

’”i:z(m_k_l)k: m(m — 1)(m —2)
- :
k=1

Proof We know that '~ 7 k = == ang 302 g2 = =D D@m= g
we have

m—

m—2 m—2 2
Z(m—k—l)k:(m—l)Zk— Zkz
k=1

k=1 k=1
_ (m— 1)2(m —2) _ (m—-2)(m—1)2m — 3)
B 2 6
_ (m—1)(m—2) ((m— - (2m—3)>
2 3
_ m(m — 1)(m — 2)
= 5 )
O
Lemma 7.17 For m > 3 we have
m—2
Y~k 1m 4y = =D,
k=1
Proof Since Y 0" k = =m=2) ye get
m—2
mk;(m—l—k) = 2 —2) — m(m — 2) — "= 12)('"_2)
_ m(m—l)(m—2). (7.20)
2
Finally, by formula (7.20) and Lemma 7.16 we get
m—2 m—2 m—2
Y m—k—Dm+k) = (m—k—Dk+mY (m—k—1)
k=1 k=1 k=1
mm—1)(m—2) m@m—1)(m —2)
= +
6 2
_ 2m(m — 1)(m — 2)
= 3 .
O

Proposition 7.18 Fors,x € RO with |x| < |s|, all the left kernel series are convergent.
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Proof In order to show the convergence of the series it is enough to show the conver-
gence of the series of the moduli.

e In order to prove that the left D-kernel series is convergent it is sufficient to show
that the following series is convergent.

o
> mlx s (7.21)
m=1

This series converges by the ratio test. Indeed, since |x| < |s|, we have

(m + D|x|™|s|72™
= lim

— = Ix|ls)~! < 1.
m—oo  m|x|"1|s|T ™ m— 00

m+1
m

e To prove the convergence of the A-kernel series, we have to show the following
series convergences:

[e%) m—1
Z (Z(m — k)) x| 25|~ (7.22)
m=2 \k=1

Since kaz_ll (m—k) = w, we have

(m + Dym|x|"=ts|=2—m

m=00 m(m — 1)|x|"=2|s|~1=m

= |x|Is|”' < 1. (7.23)

Therefore, by the ratio test the series is convergent.
e In order to prove the convergence of the AD-kernel series, we have to show the
convergence of the following series:

00 m—2
Z (Z(m —k— 1)k> x| 35|71, (7.24)
m=1 \k=1

Now, since kaz_lz(m —k— 1Dk = w (see Lemma 7.16), by applying
the ratio test we get

m(m + 1)(m — 1)|x|"=2|s| 72"

m=00 m(m — 1)(m — 2)|x|"=3|s|~1=m

= |x|Is|7! < 1.

Therefore the series is convergent.
e To show the convergence of the D?- kernel series we need to show the convergence
of the following series:

i (mz_:] k) |2

m=2 \k=1

@ Springer



300 Page48of73 F. Colombo et al.

Since Zz;_ll k= M, by applying the ratio test we obtain the same limit of
(7.23), and so the series is convergent

e In order to prove the convergence of the D-kernel series we put the modulus to the
series in (7.17) and after some manipulations we get that

00 m
Z (mxm—l + 2me—kik—l>

m=1 k=1

o0
Is| =17 < Y 3mlx s T

m=1

The convergence of the series anozl 3mlx|" s~ follows by similar argu-
ments for the convergence of the series in (7.21).

e As done in the previous point, we insert the modulus in the series (7.18) and after
some computations we get

>

m

|S|717m

m—1
<m(m —Dx" 2 42) @m— k)xm“xk‘>

k=1

[|
S}

m—1

< <m(m —D+) @m —k)) e[ 21
k=1

Sm(m — 1)

2

Mz M2

|x|m_2|sl_l_m.

||
IS}

m

The convergence of the series 2310:2 w lx|"=2|s| =1 follows similarly as
the series in (7.22).

e Finally, in order to show the convergence of the left AD it is enough to show the
convergence of the following series:

o] m—2
> (Z(m —k—D(m+ k)) x| 357,

m=3 \k=1

Since Zfz_lz (m—k—1(m+k) = w (see Lemma 7.17), the conver-
gence follows similarly as done for the series in (7.24).

O
Remark 7.19 Similarly, all the right kernel series are convergent.

Now, we can expand in series the left and the right kernels, computed in the previous
section.

Lemma7.20 Fors, x € RO such that |x| < |s| we can expand

o the left slice D-kernel as

o0 m
-1 —k=k—1 —1—
SD,L(S’X)=_4Z E xR g

m=1 k=1
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and the right slice D-kernel as

oo m

m=1 k=1
o the left slice A-kernel as
oo m—1
Syl x)==8)" % "(m —kxm K Igk o
m=2 k=1
and the right slice A-kernel as
m—

1
(m _ k)s—l—mxm—k—lxk—l’

o0
SylgGsx)=-8>"

m=2 k=1
o the left slice AD-kernel as
oo m—2
Sip (. X0)=16Y " Y " (m —k — Dkx™* 25171,
m=3 k=1

and the right slice AD-kernel as
oo m—2

ADR(S x)—lézZ(m k — Dks™Immym—k=2zk=1

m=3 k=1

e we can expand the left slice D>-kernel as
oo m—1

DZL(S )C) _82 kam—k—lxk—ls—l—m’
m=2 k=1

and the right slice D*-kernel as

m—1
ks_l_mxm_k_l)?k_l,

D2 R(s x) = —SZ

m=2 k=1
o the left slice D-kernel as
o m
-1 _ m—1 m—k zk—1 —1-m
SD’L(s,x)—2|:Z (mx +2kz:x X >:|s ,
m=1 =1
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and the right slice D-kernel as

S%}R(s,x) =2 |:i s—I-m (mxm_1 + Zixm_kik_])] ,
m=1 k=1
o the left slice D*-kernel as
1 - 2 = k—12k—1 1
— = m— m—k—1-k— —1-m
SDZ,L(S’X)_4|:H12::2 <m(m—l)x +2]§(2m—k)x X )s :|,
and the right slice 52-kernel as
) m—1
S;’R(s, x)=4 [mgs—l—m (m(m —Dx"242 ,;(2;11 - k)xm_k_l)fk_1>:| ,

o the left slice AD-kernel as

oo m—2
S;%,L(s, x)=—16 23 ;(m —k — D)(m + k)xm k2 gk=tg=1=m
m= =

and the right slice AD-kernel as

oo m—2

S;%’R(s, x)=—16 23 ,;(m —k = 1) (m + k)s~Immymk=2 k=1
m= =

Proof We know that we can expand the left Cauchy kernel in the following way:
o
S (s, x) = Z XMl (7.25)
m=0

In order to obtain all the expansions it is enough to apply to formula (7.25) the operators

D, A, AD, D2, D, 52, and AD. Due to Proposition 7.18 we can exchange the roles
of the operators with the sum. Finally, in order to get the expansions written in terms
of x and x we apply formula (7.1), Propositions 7.2,7.8,7.3,7.9, 7.11, and 7.12. By
similar arguments we have the result for the right kernels. O

Remark 7.21 By Lemma 7.20 together with Theorems 6.10, 6.11, 6.12, and 6.15, we
deduce the following equalities:

0o m—2

Qc,s(x)fz = Z Z(m — k= 1)kxm*k*2fkflsflfm

m=3 k=1
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oo m—2
— Z Z(m k- 1)ks—l—mxm—k—2fk—l’
m=3 k=1
oo m—1
SL_I(S,X)QC,S()C)_I — Z Z(m _ k)xm—k—lfk—ls—l—m’
m=2 k=1
m o m
Qc,s(x)il ZZ m—ksck—1c—1—m _ Zzs 1—m  m—k=zk— 1,
m=1 k=1 m=1 k=1
oo m—1
Szl(s,i)Qc,s(x)fl _ Z Z foM k=1 gk=1g=1=m
m=2 k=1

It is possible to obtain similar equalities with the right kernels.

8 Preliminaries on the SC-Functional Calculus and the F-Functional
Calculus

We now recall some basic facts of the SC-functional calculus, see [24]. This functional
calculus is the commutative version of the S-functional calculus (see [20]). By V we
denote a real Banach space over R with norm || - ||. It is possible to endow V with
an operation of multiplication by elements of R, that gives a two-sided module over
R,. We denote by V), the two-sided Banach module V ® R,,. An element of V,, is
of the form ZAC{L._”H} eavs with vy € V, where ey = 1 and e4 = ¢;, ---¢; for
A ={iy,...,i;} withi; < --- < i,. The multiplication (right and left) of an element
v € V,, with a scalar a € R,, are defined as

va = ZUA ® (eqa) and av = ZvA ® (aen).
A A

For short, we shall write ) 4 vaey instead of > 4 VA ® eq. Moreover, we define
lvllv, = lvally.
A

Let B(V) be the space of bounded R-homomorphism of the Banach space V into itself
endowed with the natural norm denoted by || - | 5(v)-
If T4 € B(V), we can define the operator T = ) _ 4 Taey4 and its action on

V= ZUBeB
B

as

T() =) Ta(vs)eacs.

A,B
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The set of all such bounded operators is denoted by B(V,,). The norm is defined by

1715y, = Z 1TallBev)-

In the following, we shall only consider operators of the form 7" = Ty + Z?:l e;jTj,
where T; € B(V) for j =0, 1, ..., n, and we recall that the conjugate is defined by

n
T=To—) e
j=1

The set of such operators in B(V,) will be denoted by B%1(V,). In this section we
shall always consider n-tuples of bounded commuting operators, in paravector form,
and we shall denote the set of such operators as BCO! V).

Definition 8.1 (the S-spectrum and the S-resolvent sets) Let T € BCY1(v,). We
define the S-spectrum og(T) of T as

os(T) = {s e R"!: s*T — s(T +T)+ TT isnotinvertible}.
The S-resolvent set ps(T) is defined by
ps(T) =R\ ag(T).
For s € ps(T), the operator
Qes(T) =T —s(T+T)+TT)"" (8.1)

is called the commutative pseudo SC-resolvent operator of T at s.

Theorem 8.2 Let T € BC*'(V,) and s € R"T! with | T|| < |s|. Then we have
o0
D TR = (T = T)Qe ()",

and

e¢]

YT =0 (DT - T,

k=0

According to the left or right slice hyperholomorphicity, there exist two different
resolvent operators.
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Definition 8.3 (SC-resolvent operators)LetT € BCY!(V,)ands € ps(T). We define
the left SC-resolvent operator as

S N, T) = T —T)G* T —s(T+T)+TT)™",
and the right SC-resolvent operator as
Spl(s, T) i= ($*T —s(T +T) + TT) "' (sT — T).

An equation that involves both SC-resolvent operators is the so-called SC-resolvent
equation (see [1]). In order to give a definition of SC-functional calculus we need the
following classes of functions.

Definition8.4 Let T € BC®!(X). We denote by SH (65(T)), SH(cos(T)), and
N (os5(T)) the sets of all left, right, and intrinsic slice hyperholomorphic functions f
with o5(T) C dom(f).

Definition 8.5 (SC-functional calculus) Let T € BC%'(V,)). Let U be a slice Cauchy

domain that contains o5(7') and U is contained in the domain of f.Setds; = —dsJ.
We define
1
f(T):=— S;l(s, T)dsy f(s), forevery f e SHr(os(T)). (8.2)
2 Jywne,)
We define
1
f(T):=— f(s)dsy S;l(s, T), forevery f € SHg(os(T)). (8.3)
27 Jywncey)

It is possible to prove that the SC-functional calculus is well posed since the integrals
in (8.2) and (8.3) depend neither on U and nor on the imaginary unit J € S.

Now we want to introduce the F-functional calculus (for a more complete presen-
tation of this topic see [17]). The definition of the F,-resolvent operators is suggested
by the Fueter—Sce mapping theorem in integral form.

Definition 8.6 (F),-resolvent operators) Let n be an odd number and let T €
BC%1(V,). For s € pr(T) we define the left F-resolvent operator as

= _ntl
Fr(s,T)=yaT =T)Qes (1™ 7, s €ps(T),
and the right F-resolvent operator as
_ntl -
Ef6.T) =y Qes(D)™ 2 I —T), s € ps(T).

With the above definitions and Theorem 6.9 at hand, we can recall the F'-functional
calculus.
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Theorem 8.7 (The F-functional calculus for bounded operators) Let n be an odd
number, let T € BC*' (V) and set ds; = ds/J. Then, forany f € SHy(os(T)), we
define

1

f0w=5—/ Fl(s, T)ds; f(s), (8.4)
T JyWUNCy)

and, for any f € SHr(os(T)), we define

1

Fryi= oo [ s FRs . 8.5)
T Jawncy)

The previous integrals depend neither on the imaginary unit J € S nor on the set U.

9 The Functional Calculi of the Fine Structures

Using the expressions of the kernels written in terms of x and x and the fine Fueter—Sce
integral theorems, we can define the fine Fueter—Sce functional calculi.

Definition 9.1 Let T = Ty + Z?:l e;T; € BCO(Vs), s € R6. We formally define

o the left and the right D-kernel operator series as

m=1k

Tm—kfk—ls—l—m

NWE

I
_

and
oo m
_4 Z Z g lmmpm—k k=1,
m=1 k=1
o the left and the right A-kernel operator series as

oo m—1

-8 Z Z(m _ k)Tm—k—lTk—ls—l—m’

m=2 k=1
and

oo m—1

-8 Z Z(m _ k)s_l_me_k_lfk_l;

m=2 k=1
e the left and the right AD-kernel operator series as

oo m—2

163> m — k — DT K2R g,

m=3 k=1
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and
oo m—2
16 Z Z(m —k — Dks~1mmpm—k=27k-1.
m=3 k=1
e the left and the right D?-kernel operator series as
= k—15k—1 _—1
_ m—k—17k—1_—1-m
8,,;2 ]; kT Thtg=tom,
and
0o m—1

—1l—mpm—k—1pk—1.
4305 kg

m=2 k=1

o the left and the right D-kernel operator series as

00 m
2 |:Z (mel +22ka7'~kl) slm:| ,
m=1 k=1
and

00 m B
2 |:Zs—l—m (me—l +22Tm—ka—l>i| :

m=1 k=1

e the left and the right D’ kernel operator series as

[el) m—1
4 [Z (m(m — DT 4+2) @2m - k)T’"‘k_ITk_1> s—l—m}

m=2 k=1
and

m—1
|:Zs_1 m(m(m—l)Tm 242) @m—lTm TR ‘)]

m=2 k=1

o the left and the right AD-kernel operator series as
oo m—2
—16 > > (m—k —1)(m + k)T K2R g

m=3 k=1
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and

oo m—2

—16 Z Z(m —k— 1)(m + k)s~ '\ —mpm—k=2pk=1

m=3 k=1

Proposition 9.2 Let us consider T € BC*'(Vs), s € RO and ||T|| < |s| then the series
previously defined are convergent and, in particular, we can expand

e the left and right D-resolvent operator as

oo m
Sp)L (5. T) = Sple(s. T) = —4 3 3 kit iom

m=1 k=1
oo m
] Z Zs—l—me—ka—l;
m=1 k=1
o the left and right A-resolvent operator as
oo m—1
STy ==8>"> (m— kT TR g,
m=2 k=1
and
oo m—1
SARG.T)==8Y" > (m— ks~ RITE
m=2 k=1

e the left and right A'D-resolvent operator as

oo m—2
Sxp (8. T)=Sip pl(s. T) =16 D> m—k— DkTmER TR g
m=3 k=1
oo m—2
=16 Y (m—k— Dks™'-mrm k2751
m=3 k=1

e the left and right D2-resolvent operator as

oo m—1

Spa (s, T)==8) Y k" ATkl

m=2 k=1
and

oo m—1

S;,R(s, T)=-8) > ks '7mrmkiThl
m=2 k=1
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o the left and right D-resolvent operator as
o m
S%’]L(S, T)=2 |:Z (me—l + 22 Tm—ka—l) S—l—mj| ,
m=1 k=1
and

o m
—1 _ —1- —1 —k prk—1 .

m=1 k=1

o the left and right 52-resolvent operator as
) m—1
s T) = 4 D124 o — kL k=1 g—1-m
5,67 LZ_:Z (m(m )T ;( m— k) s

and

00 m—1
S%%’R(s, T)=4 |:Z g-1-m (m(m —DT" 242 Z(Zm _ k)Tm—k—ITk—l>:| ;

m=2 k=1

o the left and right AD-resolvent operator as

oo m—2

-1 _ m—k—17k—1_—1—-m
smL(s,T)_—mZZ(m—k—1)(m+k)T Tkl ,
m=3 k=1

and

oo m—2

Sop g6 1) ==16 3 (m—k = D)(m + ks~ 77"+
m=3 k=1

Proof The convergences of the series for ||T|| < |s| can be proved considering the
series of the operator norms and reasoning as in Proposition 7.18. We prove only the

first equality between the kernels and the series because the other equalities follow by
similar arguments. Since

SpiL (s, T) = Sp'(s, T) = —4Q, «(T) ™",
it is sufficient to prove
> < k—1
Qe (T) (Z > s‘”‘)
m=1 k=1
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- (Z 3 T’""T’”slm) Q.4(T) =T. ©.1)

m=1 k=1

The first equality in (9.1) is a consequence of the following facts: for any positive
integer m the sum Y ;. 7"+ s an operator of the components of 7" with
real coefficients which then commute with any power of s, the components of 7 are
commuting among each other and the operator Q. (T") can be written in the following

form: s2Z — 25Ty + 21'5:0 Tiz. Now we want to prove the second equality in (9.1).
First we observe that

(Z i Tm—ka_ls—l—m) Qc,s(T)

m=1 k=1

o0 m
(Z Z Tm—kTr ls—l—m) (s> =s(T+T)+TT)
m=1 k=1
o0 m oo m
— Z Z pm—kpk=l lem _ Z Z A=Kkl —m
m=1 k=1 m=1 k=1

Tm—k+1 Tks—l—m

|
WK
S
7
3
[
$
+
M2
Ms

m=1 k=1 m=1k

Il
-

Making the change of index m’ = 1 4+ m in the second and fourth series, we have

(i i T'"—ka‘ls—l—m) Qe (T)

m=1 k=1
0o m co m'—1
ZZZkaTkllm ZZTm kallm
m=1 k=1 m'=2 k=1
_ i i Tmfkasfm
m=1 k=1
oo m'—1
+ Z ' —kk —m’
m'=2 k=1
0o m oo m'—1
=T+ ZZTmfka 1S17m _ Z Z Tm’fka 1 ]7m’+
m=2 k=1 m'=2 k=1
00 m
Ts™! ZZTmfkasfm
m=2 k=1
oo m'—1
+ Z Z Tm’—ka —m
m'=2 k=1
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Simplifying the opposite terms in the first and second series and in the third and fourth
series, in the end we get

(Z S kTt 1) Qi) =T+ T st - i
m=1 k=1 m=2 m=2

m}

We can now define the resolvent operators of the fine structure and study their
regularity. Based on the previous series expansions and the structure of the kernels of
the function spaces we can now define the resolvent operators associated to the fine
structure spaces. Using these resolvent operators associated with the S-spectrum we
will define the functional calculi associated with the respective functions spaces.

Definition 9.3 (The resolvent operators associated with the fine structure) Let T €
BC%'(Vs) and s € ps(T), we recall that

Qes(T) M= (T —s(T+T)+TT) .

e The left and the right D-resolvent operators 551L (s, T) and SBIR (s, T) are
defined as

Sp (5. T) 1= —4Qc(T) ", 9.2)
and
SpiR(s, T) = —4Qc (). 9.3)

e The left and the right A-resolvent operators S;}L (s, T) and S;] r(s, T) are
defined as

SR T) = =887 (s, T) Qe (1), 9.4)
and
SR, T) i= —8Qc (1) 'S5 (s, ). ©9.5)

e The left and the right AD-resolvent operators Sﬁ) (s, T)and Sﬁ) r(s, T)are
defined as

Sap,1 (5 T) 1= 16Qc,s(T) 72, 9.6)
and

Sip.r(s. T) = 16Qc (). 9.7)
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e The left and the right D-resolvent operators S%IL (s, T) and S%IR (s, T) are
defined as ’ ’

S2! (5.T) = 46T = T)Qes(T) 6T — T) +2Qes (1) 98)
and
S5 (5, T) = 46T = 1) Qe (1) 6T = Tp) +2Qes ()™, 99)
e The left and the right D’-resolvent operators S%% L(s, T) and S%% R(s, T) are
defined as ’ ’

S%i L0 T) =327 - T)Qes(T) (5T — Tp)? (9.10)

and
s%; o6 1) 1=32(T — T0)? Qe (T) (s — T) 9.11)
e The left and the right D?-resolvent operators S{j; (s, T) and S{D; r(s, T) are
defined as
Spp (5. T) =85, (s, T) Qe (1) 9.12)
and

Spr g8, T) i=8Q. ()" Sg' (s, T). (9.13)

. - -1 -1
e The left and the right AD-resolvent operators SAf,L(S’ T) and SAf,R(S’ T) are
defined as

—1 L - _3
SA@,L(S’ T) = —64(sT — T)Qc,s(T) (sZ — Top) 9.14)

and
S;%’R(s, x) 1= —64(sZ — T)Qe.s(T) (s — T) (9.15)

Now, we study the regularity of the previous kernels.

Proposition9.4 Let T € BC% ' (Vs). Then the resolvent operators associated with the
fine structure in Definition 9.3 are slice hyperholomorphic operators valued functions

forany s € ps(T).

Proof 1t follows by a direct computations as in the case of the S-resolvent operators
or the F-resolvent operators. O
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Now, we can define the functional calculi associated with the fine structure.

Definition 9.5 (The functional calculi of the fine structure in dimension five) Let T €
BC%'(Vs) and set ds; = ds(—J) for J € S. Let f be a function that belongs to
SHp(os(T)) or belongs to SHg(os(T)). Let U be a bounded slice Cauchy domain
with o5(T) C U and U C dom(f).

Keeping in mind the resolvent operators associated with the fine structure in Defi-
nition 9.3 we define functional calculi associated of the fine structure as follows:

° (The £ + 1-harmonic functional calculus for 0 < ¢ < 1) For every function
fo = A""'Df with f € SH(05(T)) and 0 < £ < 1, we set

1
T T)d 9.16
fe(T) = 7 ./3(U0<C) Al- ZDL(S Ydsy f(s), (9.16)
and, for every function f; = fA'~¢D with f € SHz(os(T)), we set

fu(T) = F$)dssSii_ip g5, T). 9.17)

2 IUNCy)
e (The holomorphic Cliffordian functional calculus of order 1) For every function

f°=Af with f € SHy(o5(T)), we set

[T = SxlL(s. Tds; £(s), (9.18)

2 3UNC,)
and, for every function f° = A f with f € SHg(os(T)), we set

1
£T) = F5)dsy S5 (s, T, 9.19)
a(UNCy)

e (The polxanaly_tic Cliffordian functional calculus of order (1, 2)) For every
function f° =D f with f € SH(os(T)), we set

1

2 IUNCy)

o) = S5 (5. T)dsy [ (s), (9.20)

and, for every function f" = fD with f € SHr(os(T)), we set

1
o) = 7 f f(S)dSJS_ 2T 9.21)
T JywncCy)

e (The polyanalytic functional calculus of order 3 — ¢ for 0 < £ < 1) For every
function f; = A‘D> " £ with f € SH(05(T)), we set

1 -
T) = — S ,T)d , 9.22
fe(T) := 27 Jywnes, A@z_e’L(s Ydsy f(s) (9.22)
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and, for every function ﬁ = fD with f € SH(os(T)), we set

v

1 -1
°T):=— ds;S ,T). 9.23
1o(T) 27 Jawne,) f($)ds;y A@z_ng(S ) (9.23)

e (The anti-holomorphic Cliffordian functional calculus of order 1) For every
function fy = D? f with f € SH (o5(T)), we set

_ -1
folT) = 5 /a o, S2AL6 TSI T, 9.24)

and, for every function fy = f D? with f € SHr(os(T)), we set

b -1
STy i= o | TOsISE (6 T). (9.25)

Theorem 9.6 The previous functional calculi are well defined, in the sense that the
integrals in Definition 9.5 depend neither on the imaginary unit J € S and nor on the
slice Cauchy domain U.

Proof We prove the result for the functional calculi defined using the left slice
hyperholomorphic functions since the right counterpart can be proved with similar
computations. The only property of the kernels that we shall use to prove the theorem
is that they are all right slice hyperholomorphic in the variable s (see Proposition 6.17).
For this reason, in what follows, we can refer to an arbitrary left kernel described in
Proposition 9.2 with the symbol K7 (s, T).

Since K (s, T) is a right slice hyperholomorphic function in s and f is left slice
hyperholomorphic, the independence from the set U follows by the Cauchy integral
formula (see Theorem 6.5).

Now, we want to show the independence from the imaginary unit, let us consider
two imaginary units J, I € S with J # [ and two bounded slice Cauchy domains
Uy, Us with og(T) C Uy, Uy C Us,and Uy C dom(f). Thenevery s € 3(Us NCy)
belongs to the unbounded slice Cauchy domain R® \ U,.

Since limy_, o K1 (x,T) = 0, the slice hyperholomorphic Cauchy formula
implies

1

27 Jyro\(.nC))
1

- — Ki(x, T)dx;S; ' (s, x). (9.26)
2w Jyw,.nc))

Ki(s, T) Kp(x, T)dxSg' (x,5)

The last equality is due to the facts that d(R®\(U, N C;)) = —a(U, N C;) and
SEI (x,5) = —SL_1 (s, x). Thus, by formula (9.26) we get

F(T) = / Ki(s, T)dsy f(s)
I(U;NCy)
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1
=/ <—f KL(x,T)deSLl(s,x)> dsyf(s).
awyncy) \27 Jyw.nc))

Due to Fubini’s theorem we can exchange the order of integration and by the Cauchy
formula we obtain

- 1
(1) =/ Ki(x, T)dx; (2—/ S;l(s,x)ds,f(s)>
3(U,NCy) T J3yU;NCy)

= / Kp(x, T)ydxy f(x).
a(UxNCy)

This proves the statement. O

In what follows we denote by P one of the operators: A!~¢D, A, D, AD* " and
D2 for€ =0, 1.

Problem 9.7 Let Q2 be a slice Cauchy domain. It might happen that f, g € SHL(2)
(resp. f,g € SHRr(R2)) and Pf = Pg (resp. fP = gP). Is it possible to show
that for any T € BCY'(Vs), with o5(T) C , we have (Pf)(T) = (Pg)(T) (resp.
(fP)(T) = (gP)(T))?

In order to address the problem we need an auxiliary result. We start by observing
that by hypothesis we have P(f — g) = 0 (resp. (f — g)P = 0). Therefore it is
necessary to study the set

(ker P)sw, @) = {f € SHL(R) : P(f) =0} resp.
(ker P)st () = {f € SHr(Q) : ()P =0}.

Theorem 9.8 Let Q be a connected slice Cauchy domain of R®, then

(kerP) s, ={f € SHL(Q) : f=ap+ - +x'oy forsomeap,...,qr € Ry}
={feSHRQ) : f=ayg+---+ax" forsomeay,...  acR,} = (ker P) sz ()

where t is equal to the degree of P minus 1.

Proof We prove the result in the case f € SH () since the case f € SHR(RQ)
follows by similar arguments. We proceed by double inclusion. The fact that

(kerP)sr, ) 2{f € SHL(Q): f =g+ -+ x'a forsome ap, ..., 0 € Ry}
is obvious. The other inclusion can be proved observing that if f € (ker P)sy, ().

after a change of variable if needed, there exists » > 0 such that the function f can
be expanded in a convergent series at the origin

o
fx) = Zxkak for (o )ken, C R, and for any x € B, (0),
k=0
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where B, (0) is the ball centered at O and of radius ». We have

0=Pfx)= Y P Vxe B (0).
k=deg(P)

ByLemma?7.1, Propositions 7.2,7.3, 7.8,7.9,7.11,and 7.12 we can compute explicitly
the expressions P(x¥) and, when they are restricted to a neighborhood of zero of
the real axis, they coincide up to a constant to x¥~9€®)_Since the power series is
identically zero, its coefficients o s must be zero for any £k > deg(P). This yields
f(x) = ag + -+ + x'a; in B,(0) and, since 2 is connected, we also have f(x) =
ag+ -+ -+ x'a, forany x € Q.

ol

We solve the problem 9.7 in the case in which €2 is connected.

Proposition 9.9 Ler T € BCY'(Vs) and let U be a connected slice Cauchy domain
with os(T) C U. If f,g € SHL(U) (resp. f,g € SHr(U)) satisfy the property
Pf = Pg (resp. fP = gP)then (Pf)(T) = (Pg)(T) (resp. (fP)(T) = (gP)(T)).

Proof We prove the theorem in the case f,g € SH(2) since the case f,g €
SHg(2) follows by similar arguments. By Definition 9.5, we have

1
(P)(T) = (Pe)(T) = 5~ /d e, S5 TSI (S = )
J

Since Sp. ]L(s, T) is slice hyperholomorphic in the variable s by Proposition 9.4, we
can change the domain of integration to B,(0) N C; for some r > 0 with ||T'|| < r.
Moreover, by hypothesis we have that f(s) — g(s) € (ker P)s7¢, (@), thus by Theorem
9.8 and Proposition 9.2 we get

1
CHT) = P =5 [ S5 L (5, Tdsy (£(5) — g(6))
(B, (0)NCy)

2
1
= — Sp (5, T)dsy(ag + - + s aty)
2 Ja.oncy)
1 o
=— > (gem(T, T))/ s ds (g + -+ s"ar) = 0,
2 e®) 3(B,(O)NC,)

where gp ,,, (T, T)is apolynomialin 7 and T (see Proposition9.2) and ¢ := deg(P)—1.
O

Now, we write the resolvent operators associated with the fine structures in terms of
the F;,-resolvent operators.

Proposition 9.10 Let T € BC*'(Vs) and s € ps(T). Then, we have

_ 1
Sp', (5. T) = T [FSL (s, T)s® — (T +2To) FL (s, T)s?
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+QTox + XD FEs, Ts = TITPFEG, 7]

B 1
Spip(s: T) = =72 [s FR(s, T) — s*FR(s, T)(T +2Tp)
+sFR(s, TYQTyT +|T1%) — FR (s, T)T|T|2] ,

1
Sxl(s.T) = -5 [FSL(S, T)s® — 2Ty FL (s, T)s + |T*FL s, x)] ,

1
SR, T) = -3 [F5R(S, T)T? — 2sFR(s, T)Ty + FR s, x)|T|2] ,

(s, T) = [FSI‘(S, T)s — TFk(s, T)] ,

ADL

4>|~4>|~

(s.T) = [sFSR(s, T) — FR(s, T)T],

ADR

1
—1 L 3 L 2 2
Sp . T) = > [31:5 (s, T)s> — 8Ty + T)FE(s, T)s> + (4T3 + 2ToT
+3|T|2)F5L(s, T)s — (T|T > 4+ 2To|T|?) FL (s, T)] ,

S5l 6. T) = [3s F3'(s, T) = s*F3'(s, TYBTo + T) + s Fs' (5, T)(4T§)

32
H2IT +3ITP) = F 5, (TITE + 275/ TP)]

1
Sph (8. T) = =2 [FSL(S, T)s? — 2T FE(s, T)s + T2 FE (s, T)] ,

1
Spt g5, T) = —g[stg*(s,T)—stsR(s, T + Ff . T2,

1
S; L6 T) = E[FSL(s, T)s? —2ToFE (s, T)s + x5 FE(s, T)],

1
S; L6 T) = SIS F G, T) = 25 5. DT + B 5. 1T,

S5, T) = —FE(s, T)s + ToFE(s, T),
S5 T) = —sF&(s, T) + FR(s, T)To.

Proof it follows by formally replacing the variable x of Remark 6.18 by the paravector
operator 7. O

In order to solve Problem 9.7, in the case €2 not connected, we need the following
lemma, which is based on the monogenic functional calculus developed in [36, 37].
We chose to annihilate the last component of the operator 7', namely 74 = 0. In
the monogenic functional calculus McIntosh and collaborators consider zero the first
component 7o = 0. However, in our case this is a drawback due to the structure of the
polyanalytic resolvent operators, see Proposition 9.10.
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Lemma9.11 Let T € BC*'(Vs) be such that T = Toeg + Tiei + Tres + Tzes, and
assume that the operators Ty, £ = 0, 1, 2, 3, have real spectrum. Let G be a bounded
slice Cauchy domain such that (0G) Nos(T) = . For every J € S we have

/ Sp Y (s, Tdsy(ag + - -+ s'ar) = 0, (9.27)
aGnCy
and
/ (@o+---+ StOl[)dS]S;}e(S, T)=0, (9.28)
3(GNCy) ;

wheret = deg(P) — land aj € R, forany0 < j <1t.

Proof Since A%(1) = 0, A?(x) = 0, A%(x?) = 0, and A%(x3) = 0 by Theorem 6.9
we also have

/ Fl(s,x)ds; = A*(1) = 0, (9.29)
3(GNCy)
and
/ FE(s, x)dsys = A*(x) =0, (9.30)
a(GNCy)
and
/ FE(s, x)dsys* = A*(x*) =0, (9.31)
9(GNCy)
and
/ FE(s,x)dsys? = A*(x*) =0 (9.32)
3(GNCy)

forall x ¢ 0G and J € S. By the monogenic functional calculus [36, 37] we have
L _ L
Fs(s,T) = / G(w, T)DwF5 (s, ),
a0

where Dw is a suitable differential form, the open set 2 contains the left spectrum of
T and G(w, T) is the Fueter resolvent operator. By Proposition 9.10 we can write

4—deg(P)
Sen(s.Ty= Y gpu(T. T)F¥ (s, T)s",

=0
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and thus we have

3

SprL (6 Do+ +s'ar) = gp (T, T)FE (s, T)s" By
=0

for appropriate polynomials in T, T denoted by gp (T, T), and B¢ € R,. We can
conclude the proof of the theorem observing that for any £ = 0, 1, 2, 3 we have

gpo(T, T) FE(s, T)ds s Be
3(GNCy)

— - (gp,ﬂ, [ [ Genpers.es dw) B
aGnc,) Jag

= (gp’((T, T)f G(w, T)Dw <f Fi (s, w)dsjs‘3>> Be =0
Q2 a(GNCy)

where the second equality is a consequence of the Fubini’s Theorem and the last
equality is a consequence of formulas (9.29)—(9.32). Therefore, we get

/ Sp b (s, T)dsy(ao +---+s'ar) = 0.
a(GNCy) ’

By similar computations it is possible to show (9.28). O
Finally in the following result we give an answer to the question in Problem 9.7.

Proposition9.12 Let T € BC%1(Vs) be such that T = Tyeq + Tiei + Tres + Tze,
and assume that the operators Ty, £ = 0, 1, 2, 3, have real spectrum. Let U be a slice
Cauchy domain with os(T) C U. If f,g € SHL(U) (resp. f, g € SHr(U)) satisfy
the property Pf = Pg (resp fP = gP) then (Pf)(T) = (Pg)(T) (resp. (fP)(T) =
(gP)(T)).

Proof If U is connected we can use Proposition 9.9. If U is not connected then
U = UZ’ZI U, where the U, are the connected components of U. Hence, there exist
constants ay,; € R,,‘for £=1,....mandi = 0,1,2,3 such that f(s) — g(s) =
S S o xu,(8)s e i, where t = deg(P) — 1. Thus we can write

m
1 _
(PUT) = (PIT) =) — / Sp (5. T)dsy(cte.0+ - + s'ates).
= 27 Jawnc)
The last summation is zero by Lemma 9.11. O

Remark 9.13 1tis possible to prove some other important properties for these functional
calculi, this will be investigated in a forthcoming work.
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10 The Product Rule for the F-Functional Calculus

In order to obtain a product rule for the F-functional calculus in dimension five, it is
crucial the Dirac fine structure of the kind (D, D, D, D), see (4.3).

Lemma 10.1 Let B € B%!(V,)). Let G be a bounded slice Cauchy domain and let f
be an intrinsic slice monogenic function whose domain contains G. Then for p € G,
and for any J € S we have

" f(s)ds; (5B — Bp)(p> —2s0p + Is1) ™" = Bf (p).
T J3(G1NCy)

In order to show a product rule for the F-functional calculus we need the following
result, see [14, Lemma 4.1].

Lemma 10.2 (the F-resolvent equation for n = 5) Let T € BC%(Vs). Then for p,
s € ps(T) the following equation holds

SR TS s T+ Sg' (s, TVFE(p, T) +2°Qe (1) ™' Sg ' (5, T)S,  (p, T)
Qe p(T) ™'+ +2°1Qc (1) 2Q p(T) ™!
+Qes(T) ' Qe p(T) 21 = {[FR (s, T) — FE(p. T)1p +
—5[Fs(s, T)® — F£(p, D1} Qs (p) ",

where Qs (p) = p2 —2s0p + Is|2.

Theorem 10.3 (Product rule for the F-functional calculus forn = 5) Let T € BC(Vs).
We assume f € N(os(T)) and g € SH (o5(T)), then we have

A (fo)(T) = A*()(T)g(T) + f(T)A*(g)(T) + A(f)(T)A(g)(T)
— DAF)T)D()N(T) — D(f)(T)AD(g)(T).

Proof Let G and G, be two bounded slice Cauchy domain such that contain og(T)
and G| C G, with G2 C dom(f) N dom(g). We choose p € (G N Cy) and
s € 0(GoNCy).

For every J € S, from the definitions of F-functional calculus, SC-functional
calculus, holomorphic Cliffordian functional calculus of order 1 and £ + 1-harmonic
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functional calculus (0 < £ < 1) we get

AX(FUT)g(T) + F(TYA*(g)(T) + A(F)I(T)A(g)(T)
— DA(f)N(T)D(gN(T) — D(f)(T)AD(g)(T)

1 _
=— / f()dsy FR(s,T) S (p, TYdprg(p)
2m)= Jaganey) 3(G1NCy)

1
T eny
16
=
3(GoNCy)

/ 7' (p. T)Qpr (T) " dpsg(p)
3(G,NCy)

/ F(s)dsy 7' (s, T) FE(p, TYdpsg(p)
3(G,NCy) 3(G1NCy)

F($)dsyQes(T)'Sp'(s, T)

16 _
+ = f($)dsy Qe o(T) 2
T 3(G2NCy)

/ Qe p(T) " 'dp,g(p)
3(G,NCy)

16 _ _

- 7651 Qui™ [ 0,0 Rdpig(r)
T J3(G2NCy) 3(G2NCy)

1

—2m)2 Jyoney)

/ F)ds (FRGs, T)S; (5, T) + Sp' (s, TYFE(p, T)
3(G1NCy)

+ 25000 (1) 'SR 5, TS (P TV Qe p(T) ™! + Qe s (T) T2 Qe p(T) ™!
+ Qe s (T) ' Qe p(T) *1¥dpsg(p)

By Lemma 10.2 we get

A ()TE(T) + F(T)A*(@)(T) + A )NT)A()(T)
— DA IT)D(@)T) — D(g)(T)ADg(T)

1

=—— ds/{[FR@, T
(2m)? /B(sztc,)/a«;m(c,) FENdsiilFs (s, T)
— F¥(p, T)p = 5[FX(s, T) — F¥£(p, D)1}

x Qs(p) '}dprg(p).

Now, since the functions p > pQ; (p)~', p = Q(p)~! are intrinsic slice hyper-
holomorphic on G by the Cauchy integral formula we have
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f f(s)dSI/ FR(s, T)pQs(p) 'dp1g(p) =0,

3(G>NCy) a(G1NCy)

/ f(s)dSI/ SFR(s, T)Os(p)~'dp1g(p) = 0.
3(G2NCy) (G 1NCy)

Therefore we obtain

A ()T)E(T) + fF(T)A*(@)(T) + A )NT)A()(T)
— DA NT)D(@(T) = D(f)(T)AD(g)(T)
1

= / f(s)ds; / [5F5(p. TH*
2m)* Jagane)) 3(G1NCy)

— FE(p, T)p19s(p)dprg(p).

From Lemma 10.1 with B := FSL(p, T) we get

AX(F)T)H(T) + f(TYA*(g)(T) + A(f)(T)A(g)(T)
— DA(NT)D(@)(T) — D(f)(T)AD(g)(T)

1
=— Fr(p,T)d
@0 bycinen (p, T)dpr f(p)g(p)

1
B m a(G1NCy)
= A (fo)(T).

FE(p, T)dpi(fg)(p)

11 Appendix: Visualization of All Possible Fine Structures in
Dimension Five

In this appendix we show all the possible fine structures in dimension five. Firstly, we
recall the symbols of the classes of functions involved

ABH(2p): axially bi-harmonic functions,

ACH | (2): axially Cliffordian holomorphic functions of order 1,

AH(2p): axially harmonic functions,

AP2(22p): axially polyanalytic of order 2,

ACH(R2p): axially anti Cliffordian of order 1,

ACP 1,2): axially polyanalytic Cliffordian of order (1, 2),

AP3(R2p): axially polyanalytic of order 3.
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If we apply first the Dirac operator we have the following diagram:

AP2(82p)
D

ACH1(S2p) .D ~ AH(Qp) D

S

Trs1 D
O(D) SH(Qp) ABH(2p)

- D
ACH1(22p) —> AH(Qp)

If we apply fist the conjugate of the Dirac operator we get

AP>(Qp)
D
D
ACH(Qp) ———— AH(Qp) D
D
A
D AP2(2p)
A K
Trsi Eo) AD

OD) — s SHQD) 5 APC12 () AM(Sp)

N/

AP3(Qp) — 5 AP2(Qp)

Finally, all the other possible fine structures are given by the diagram:
AP> (2p)

AD >
/ \
Trs1 A A

O(D) — SH(Qp) —> ACH1(22p) AM(Qp)

D
AD D
AH(R2p)
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