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Abstract Understanding the values and origin of fundamental physical constants, one of the grandest
challenges in modern science, has been discussed in particle physics, astronomy and cosmology. More
recently, it was realized that fundamental constants have a biofriendly window set by life processes involving
motion and flow. This window is related to intrinsic fluid properties such as energy and length scales in
condensed matter set by fundamental constants. Here, we discuss important extrinsic factors governing the
viscosity of complex fluids operating in life processes due to collective effects. We show that both extrinsic
and intrinsic factors affecting viscosity need to be taken into account when estimating the biofriendly range
of fundamental constants from life processes, and our discussion provides a straightforward recipe for doing
this. Remarkably, the viscosity of a complex fluid such as blood with significant extrinsic effects is not far
from the intrinsic viscosity calculated using the fundamental constants only, and we discuss the reason for
this in terms of dynamics of contact points between cells.

1 Introduction

Fundamental physical theories of matter and fields have
about 20 fundamental physical constants such as the
Planck constant �, the electron mass me and charge
e and other parameters (see, e.g., Refs. [1–4]). These
constants are consistent with the observed properties
of the Universe [1,2,5–13]. Understanding fundamental
constants, their values and origin is considered as one
of the grandest questions in science [14]. As observed
some time ago, we do not know what sort of theories
we need to explain the values and origin of fundamental
constants [15]. The values of fundamental constants are
currently considered arbitrary [11].

The role of fundamental constants was discussed in
high-energy processes, including inflation and cosmol-
ogy, particle physics, nuclear reactions and nuclear syn-
thesis in stars, including, for example, the Hoyle reso-
nance. This nuclear synthesis produces carbon, oxygen
and other elements which can form molecular structures
essential to life at later stages of cosmic evolution. It
was observed that small relative changes of some fun-
damental constants would disable the essential high-
energy processes above. In other words, fundamental
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constants are thought to be finely tuned to result in
observed phenomena [5,7,8].

More recently, it was proposed that condensed mat-
ter physics and liquid physics in particular give a new
insight into the fundamental constants based on life
processes [16]. We observe these life processes and can
therefore discuss factors that enable them. Life pro-
cesses need motion and flow, and dynamic viscosity
η is the central property setting this flow. The mini-
mal viscosity was previously shown to be set by fun-
damental physical constants [17,18]. If this minimum
is increased, liquid viscosity becomes larger at all con-
ditions of pressure and temperature. Its value corre-
sponding to disabling a life process, ηd, then puts a
limit on biofriendly values of fundamental constants. A
detailed consideration of this process implies that there
is a biofriendly window where fundamental constants
can vary to enable life processes in and between living
cells [16].

There are several viscosity effects involved in affect-
ing and potentially disabling a life process. For exam-
ple, large viscosity corresponding to the critical Péclet
number results in transitions related to the explosive
increase in the coagulation rate in protein solutions,
blood and other biological fluids [19]. Another exam-
ple is chemical reactions: chemical reaction rates k of
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important biological processes involving proteins and
enzymes depend on η as k ∝ 1

ηn , where n can vary
between 2.4 and 0.3 [20] for different reactions [21].
Hence, larger η has different effects on different chem-
ical reactions, changing the balance between reaction
products and operation of those products. Depending
on how important this change is, a new functioning bal-
ance may or may not be found.

The large increase in the coagulation rate and chem-
ical reactions are two specific examples of extrinsic
effects related to fluid flow. More generally, both equi-
librium and transport phenomena in soft condensed
matter are governed by effective equations of state and
transport coefficients, reflecting collective interactions
with the environment. This comes in addition to intrin-
sic molecular values and involves strong nonlinearities
[22–24]. An important question is then how intrinsic
and extrinsic effects compare under different conditions
and how they can be combined to understand (a) vis-
cosity at the fundamental level and (b) implications for
fundamental constants.

In this paper, we discuss these extrinsic effects and
find that both extrinsic and intrinsic factors affect-
ing viscosity need to be considered when estimating
the biofriendly range of fundamental constants from
life processes. We also discuss how the relative role of
extrinsic and intrinsic factors depends on the range in
which these factors vary. We find that viscosity of a
complex fluid such as blood with significant extrinsic
effects is interestingly close to the intrinsic viscosity
calculated using the fundamental constants only. We
propose that the cause of this closeness is related to
the dynamics of contact points between cells.

2 Intrinsic effects

We briefly recall the intrinsic effects involved in setting
the minimal viscosity of fluids [16–18]. The basis for
discussing this minimal viscosity has been theoretical.
This is a recent result, which may come across as sur-
prising in view of long history of research into viscosity
and, more generally, theory of liquids. For this reason,
we briefly expand on this point and recall the funda-
mental nature of problems involved in liquid theory.

In gases, interactions are weak. In solids, particle dis-
placements are assumed to be small. In liquids, neither
of these properties apply. Due to this absence of simpli-
fying features of liquid theory (the absence of a small
parameter), it was considered that a general theory of
basic liquid thermodynamic properties such as energy
is not feasible [25–27]. This is in contrast with gases and
solids where calculated thermodynamic properties and
their temperature dependence are generally applicable
and form the basis of solid state and gas theories.

In an interacting systems, excitations or quasi-
particles govern important system properties [25,28].
In solids, these excitations are commonly considered
phonons. In liquids, phonons and their properties
remained unknown for a long time. Interestingly, Som-

merfeld [29] and Brillouin [30–34] proposed that energy
and other thermodynamic properties of liquids are gov-
erned by phonons as they are in solids and sought to
apply a Debye theory to liquids. This was around the
same time when the basis for the modern solid state
theory was set [35,36]. The nature and operation of
phonons in liquids were not clear at the time and turned
out to be a formidable problem that continues to be
actively researched today [37].

Understanding phonons in liquids involved inputs
from experiments, theory and modelling. An impor-
tant insight from this research is that the phase space
taken by these phonons is not fixed as in solids but is
variable [37–41]. In particular, the phase space reduces
with temperature, and this has a general implication
for most important liquid properties. For example, the
calculated specific heat of classical liquids universally
decreases with temperature, in quantitative parameter-
free agreement with a wide range of experimental data
[37–40].

This recent new understanding of liquids has brought
about the concept of the minimal quantum viscosity
and its relation to fundamental physical constants [16–
18]. The minimal kinematic viscosity, νmin, is set by two
parameters characterizing a condensed matter phase:
the interatomic separation a and the Debye vibration
frequency ωD as:

νmin =
1
2π

ωDa2 (1)

Relating a to the Bohr radius

aB =
4πε0�

2

mee2
(2)

where e and me are electron charge and mass and ωD to
the characteristic cohesive energy set by the Rydberg
energy

ER =
mee

4

32π2ε20�
2

(3)

gives

νmin =
1
4π

�√
mem

(4)

where m is the molecule mass [17].
Noting that the scale of m is set by the proton mass

mp; Eq. (4) gives rise to fundamental kinematic viscos-
ity νf :

νf =
1
4π

�√
memp

(5)

of about 10−7 m2/s [17]. It is easy to show that νmin

corresponds to the dynamic viscosity derived from non-
affine displacements [42].

ν and its minimal value in Eq. (4) govern the
time-dependent non-equilibrium flow. ν also sets the
Reynolds number and Kolmogorov scale of turbulence.
The steady flow is set by the dynamic viscosity η. The
minimum of η, ηm, can be evaluated as ηm = νmρ,
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where ρ is density ρ ≈ m
a3
B
. Assuming m = Amp, where

A is atomic number and setting A = 1 for the purpose
of the following discussion, this gives

ηmin ∝ e6

�5

√
mpm5

e (6)

Another useful property is the diffusion constant D.
Using Eq. (6) and the Stokes–Einstein relation D =
kBT
6πrη , where r is the radius of a moving particle, gives

Dmax ∝ 1
ηm

∝ �
5

e6
1√

mpm5
e

(7)

We see that the intrinsic effects affecting liquid flow,
the minimal values of kinematic and dynamic viscosity
and the maximal diffusion constant are related to the
length and energy scales involved in chemical bonds in
the liquid. These scales are relatable to fundamental
constants, and so are νmin, ηmin and Dmax.

3 Extrinsic effects: blood flow as a case
study

The extrinsic effects affecting liquid flow include those
operating in complex fluids such as blood. Blood
flow delivers nutrients and is therefore related to the
metabolism, the essence of life [43], along with genet-
ics. Blood is not a simple fluid with a given viscosity,
but a dense suspension of red cells, platelets and plasma
particles [44–47] whose effective viscosity is affected by
collective many-body effects. As a result, blood is a non-
newtonian fluid, which does not deform in linear pro-
portion to the stress acting upon it. Stated differently,
the effective viscosity is a property of the flow process,
not of the fluid substance.

We briefly recall some of the basic extrinsic proper-
ties. A Newtonian fluid under the Couette flow (flow
between two oppositely moving flat plates) obeys the
following relation:

Fx = μ0A
∂ux

∂y
(8)

where Fx is the force along the mainstream direction x,
A is the area, ux is the flow speed, μ0 = ρν0 is the bare
dynamic viscosity and ρ is density. For a simple fluid,
μ0 is a numerical coefficient (at a given temperature),
whose value can be traced to the quantum diffusivity
Dq ≡ �/m.

The volume fraction of red cells in the blood (haemat-
ocrit) is about φ ∼ 0.45, which qualifies blood as a dense
suspension in which the average gap between two cells
is much smaller than their diameter. Consider a sphere
of diameter 2R located in the centre of a cubic box of
side L. The volume fraction of the sphere in this simple
cubic configuration is φ = π

6
(2R)3

L3 . The gap between two

Fig. 1 Best fit to blood viscosity using expression (9), with
η0 = 75 cP, S0 = 0.1 and α = 0.35

spheres is h = L−2R; hence, h
2R = L

2R −1 =
(

π
6φ

) 1
3 −1.

With φ ∼ 0.45, this gives h
2R ∼ 0.05, implying that

cells are constantly in near touch so that their motion
is strongly affected by many-body effects.

In particular, at low shear rate say S = 0.1 1/s, red
cells tend to aggregate, forming clusters which with-
stand fluidity. Upon increasing the shear rate, clusters
break up and blood flows more easily: blood is a so-
called shear thinning fluid. This means that viscosity
no longer depends on intrinsic effects and fundamen-
tal constants only, but acquires an additional nonlin-
ear dependence on shear S = ∂yux. This nonlinearity is
typically expressed by a power-law relation of the form:

η(S) =
η0

(1 + S/S0)α
(9)

where S0 is the threshold above which the nonlinear
behaviour is exposed and α is a characteristic exponent
(typically around 1/3) and η0 is related to the intrinsic
viscosity corresponding to no shear effects. Refs [48–
50] discuss effects related to shear-induced aggregation
breakup and its effects on shear thinning.

As an example of the magnitude of this effect, an
excursion of three decades in the value of S leads a
factor of ten change in the effective viscosity. The same
liquid showing a viscosity of 60 cP at S = 0.1 (1/s)
can lower its viscosity down to 6 cP at S = 200 (1/s).
In Fig. 1, we show the best fit of actual physiological
data from reference [44] using expression (9) with the
following numerical values: η0 = 75 cP, S0 = 0.1 and
α = 0.35. The fit reproduces the experimental data
quite accurately.

In addition to the above example, collective effects in
dense suspensions can lead to a host of complex rheo-
logical behaviours, including yield stress (no flow below
a minimum stress threshold), nonlocal effects in space
and time, hysteresis, jamming and many others. For
example, local accumulation of red blood cells due to
physiological imperfections can drive an untamed rise
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of viscosity, a situation known as clogging or jamming
as mentioned in Introduction. In this case, the effective
viscosity obeys a similar law:

η =
η0

(1 − ρ/ρc)β
(10)

where ρc is the critical density at which the viscosity
formally diverges, β is the corresponding critical expo-
nent and η0 is related to the intrinsic viscosity in the
absence of jamming effects.

4 Intra-cellular and anomalous diffusion

Similar effects operate for the diffusion involving cellu-
lar diffusion. Here, the direct analogue of the Newtonian
fluid is the Fick’s law, which is a statement of linear-
ity between the density gradient and the resulting mass
flux Jx:

Jx = −D0
∂ρ

∂x
(11)

Fick’s law holds as long as the gradients are suffi-
ciently small to silence nonlinear effects and density is
sufficiently below the jamming transition.

The cell is a complex and crowded environment, in
which molecular motion can hardly abide by the sim-
plicity of Fick’s law [51]. Molecules crawl in the cyto-
plasm, collide with obstacles and get eventually trapped
in metastable states until they are released again. Mech-
anisms of diffusion and transport in cells include molec-
ular motors [52]. In these diffusive processes, the bare
diffusivity D0 is replaced by a density-dependent effec-
tive diffusivity D = D(ρ), typically a strongly nonlin-
ear function, eventually vanishing at a critical value,
D(ρ → ρc) → 0 (jamming), consistent with the Stokes
law:

D =
kBT

6πRη
(12)

where R is the radius of the sphere floating in a solvent
of viscosity η.

Collective effects can also extend beyond density
dependence of the diffusion coefficient and alter the
nature of the diffusion process itself, turning into so-
called anomalous diffusion. The distinctive trait of
standard diffusion is a square root dependence on
time of the mean displacement in space, < δx2 >=
Dδt. Anomalous diffusion generalizes this relation to a
generic exponent p, namely < δx2 >= Dpδt

p. Standard
diffusion is recovered for p = 1, while 1 < p < 2 corre-
sponds to superdiffusion and 0 < p < 1 to subdiffusion,
respectively.

The anomalous diffusion coefficient p encapsulates
complex transport phenomena, resulting in both faster
(super) and slower (sub) dynamics than standard dif-
fusion. Generally speaking, this is the result of cross-
correlations between the moving molecules and their
environment; constructive/destructive correlations pro-
mote hyper/hypo-diffusion, respectively. On the one

hand, cytoskeleton density hinders the free displace-
ment of the particle, leading to subdiffusion. On the
other hand, the cytoskeleton elasticity combined with
thermal bending contributes superdiffusion.

We note that in this case the diffusion coefficient as
we know it from the random walk theory, the limit
of the ratio δx2/δt as δt → 0 is no longer a well-
posed physical quantity. Indeed, this limit returns zero
and infinity for hyper and hypo-diffusion, respectively.
The correct limit is instead Dp = δx2/δtp, which has
no longer the dimensions of a diffusion coefficient, the
length squared over time. We see that the anomalous
transport, a hallmark of (intra)cellular transport, repre-
sents another type of extrinsic effects setting transport
properties in life processes.

5 Sensitivity and fine-tuning

Fine-tuning of fundamental constants refers to relative
little variation in constants above which an essential
physical process (e.g. stability of protons and neutrons,
stellar processes needed for synthesis of heavy elements,
carbon production as a result of the Hoyle resonance
and so on) is disabled [1,2,5–13]. For some processes
and relevant fundamental constants, these variations
are often between a few per cent to fractions of per
cent. This fine-tuning originates from our physical mod-
els where a property is a fast-varying function of fun-
damental constants or their combinations so that small
changes of fundamental constants imply large property
changes [5].

We can now compare how sensitive viscosity is to
variations in intrinsic and extrinsic effects. The minimal
viscosity in Eq. (6) and the intrinsic effects are set by

ηmin ∝ e6�−5m1/2
p m5/2

e (13)

and
η(S) ∝ η0(S/S0)−1/3 (14)

By way of illustration, a factor of 10 change in the
minimal viscosity requires a 103 change in the shear
rate and 101/6 ∼ 1.5 in the electron charge, 10−1/5 ∼
of the Planck constant, 102 in the proton mass and
102/5 ∼ 3 in the electron mass (note that a variation
in fundamental constants which changes the minimal
viscosity also affects viscosity at other external condi-
tions of pressure and temperature [17]). Conversely, a
small change of say 0.01 of the electron charge would
cause a small (1 + 0.01)6 − 1 = 0.06, change of vis-
cosity. The same change corresponds to a change x of
the shear rate given by (1 + x)−1/3 = 1.06, x ∼ −0.18.
This is 18 times higher but still a comparatively small
change and is within the physiological range of varia-
tion in the shear rate. The condition for extrinsic and
intrinsic effects to be comparable is

(1 + εf )αf = (1 + εe)αe (15)
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where εf,e is the relative change of the intrinsic fun-
damental and effective couplings, respectively, and αf,e

are the corresponding exponents.
If both ε’s are well below 1, the above relation sim-

plifies to:

εe ∼ εf
αf

αe
(16)

showing that the ratio of the changes is dictated by the
ratio of the exponents. This implies that even a large
ratio such as 18 still keeps εe sufficiently small to be
easily realizable via environmental changes.

As an interim summary, we saw that both extrinsic
and intrinsic factors affecting viscosity need to be taken
into account when estimating the biofriendly range of
fundamental constants from life processes. We also saw
how the relative role of extrinsic and intrinsic fac-
tors depends on the range in which these intrinsic and
extrinsic factors vary. This range can be different in dif-
ferent life processes involving flow and hence need to be
addressed separately.

6 Viscosity of complex fluids and
fundamental constants

Blood is particularly significant in our discussion
because, as compared with water, a complex but still
a molecular fluid, and involves a much higher level
of physiological organization: red blood cells (RBC)
are not molecules but highly organized microscale bio-
logical structures. In this respect, blood might be
expected to be largely governed by extrinsic effects.
In this regard, it is instructive to consider the value
of blood viscosity at rest, which we take of the order
of 10−3 − 10−2 Pa·s [44], giving kinematic viscosity
of 10−6 − 10−5 m2/s. This is 13-14 orders of magni-
tude above what might be expected from evaluating
kinematic viscosity using the molecular mass [17] as
�/MRBC ∼ 10−19 m2/s, where MRBC is the mass of
the cell, but is close to the fundamental kinematic vis-
cosity νf in Eq. (5). We note that the fundamental kine-
matic viscosity corresponds to the viscosity minimum,
whereas the observed viscosity can be higher depend-
ing on temperature and pressure [17]. This is consistent
with the observed blood viscosity being higher than the
fundamental viscosity.

The closeness between the observed blood viscos-
ity and theoretical fundamental viscosity is remark-
able because it shows that even in a highly complex
mesoscale structure such as a red blood cell, which
contains about one trillion protons organized across
many layers of biological and physiological complexity
far above the quantum level, the bare kinematic viscos-
ity still carries a memory of fundamental physical con-
stants, regardless of the large mass of the red blood cell
which is clearly a classical macroscopic body from the
standpoint of quantum mechanics. A tentative expla-
nation can be discussed as follows.

The kinematic viscosity is a collective property
emerging from underlying molecular interactions, as
reflected by the relation:

ν = λvth (17)

where vth =
√

kBT/m is the thermal speed, λ = vthτ
is the mean free path (scattering length) and τ is the
mean collision time.

The scattering length λ = ν
vth

corresponding to kine-
matic viscosity 10−6 m2/s is on the order of nanometres,
where vth ∼ 103 m/s at standard temperature. This is
comparable to the mean scattering distance (mean free
path) in water. The flow of cells in blood involves inter-
actions operating at cell contacts, whose frequency is
governed by the intracellular gap h discussed earlier in
this paper. Let us rewrite the intracellular gap in gen-
eral terms as

h

2R
=

(
φpack

φ

) 1
3

− 1 = (1 + ξ)
1
3 − 1 ∼ ξ

3
(18)

where ξ ≡ (φpack − φ)/φ, 2R is the cell diameter as
before and φpack is the packing fraction of the blood
configurations.

As discussed earlier, φ ∼ 0.45 on average, while φpack

may change depending on the local configuration, as
well as on the shape of the RBC’s (ellipsoids, discoids).
We observe that φ and φpack are close enough to develop
fluctuating intracellular gaps of the order of nanometres
and comparable to λ. These “near-contact” interactions
are well known to play a crucial role in shaping up the
mechanical and rheological properties of a large variety
of soft materials [53,54], including the ones relevant to
human body.

The fact that the mesoscale objects, like cells, inter-
act on nanometric scales acting as an effective mean
free path in a statistical mechanics description of
their transport properties, offers a plausible reason
why their kinematic viscosity is affected by intrinsic
effects and quantum mechanics in particular: the inter-
actions between contact points are affected by chem-
ical bonding as is the case in simple liquids. As dis-
cussed in Sect. 2: this gives rise to the intrinsic vis-
cosity set by fundamental condensed matter proper-
ties, the length scale aB in Eq. (2) and the energy
scale ER in Eq. (3) (these two properties are essen-
tially quantum–mechanical and do not have a sensible
limit � → 0). Hence, viscosity of a complex fluid with
significant extrinsic effects such as blood is nevertheless
affected by intrinsic effects and fundamental constants
acting at the contact points. We expect this effect to
apply to biological fluids other that human blood con-
sidered here as a case study.
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7 Summary

We discussed both intrinsic and extrinsic contributions
to viscosity which are at operation in life processes. A
direct inspection of the physiological values of blood
viscosity at rest reveals a remarkable near-match with
the fundamental kinematic viscosity. This implies that,
notwithstanding the four decades separation in space
and the many layers of biological and physiological com-
plexity of red blood cells, the kinematic viscosity of
blood still keeps clear memory of the values of fun-
damental physical constants. A possible explanation
for this remarkable property is that the near-contact
interactions between RBC’s occurs at scales compara-
ble with the fundamental De Broglie wavelength.

Our results give the following recipe to calculate the
constraints on fundamental constants from life pro-
cesses. We can identify several most important life pro-
cesses where viscosity sets the motion central to each
process. Let ηd be the upper value of viscosity above
which a life process is disabled. Mechanisms for such a
disabling can vary and include, for example, a transition
corresponding to the explosive increase in the coagula-
tion rate in biological fluids such as protein solutions
and blood. We can then use the equations discussed
here, such as Eq. (9), to account for the extrinsic effects.
This will result in constraints on the intrinsic (bare)
viscosity η0 in Eq. (9). The constraints on fundamen-
tal constants follow from Eqs. (4) and (6) and, more
specifically, from accompanying inequalities setting the
biofriendly window for fundamental constants [16].
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