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Abstract. This paper is a detailed report on a programme of direct numerical
simulations of incompressible nonhelical randomly forced magnetohydrody-
namic (MHD) turbulence that are used to settle a long-standing issue in the
turbulent dynamo theory and demonstrate that the fluctuation dynamo exists in
the limit of large magnetic Reynolds number Rm � 1 and small magnetic Prandtl
number Pm � 1. The dependence of the critical Rmc for dynamo versus the
hydrodynamic Reynolds number Re is obtained for 1 � Re � 6700. In the limit
Pm � 1, Rmc is at most three times larger than for the previously well established
dynamo at large and moderate Prandtl numbers: Rmc � 200 for Re � 6000 com-
pared to Rmc ∼ 60 for Pm � 1. The stability curve Rmc(Re) (and, it is argued,
the nature of the dynamo) is substantially different from the case of the simula-
tions and liquid-metal experiments with a mean flow. It is not as yet possible to
determine numerically whether the growth rate of the magnetic energy is ∝Rm1/2

in the limit Re � Rm � 1, as should be the case if the dynamo is driven by the
inertial-range motions at the resistive scale, or tends to an Rm-independent value
comparable to the turnover rate of the outer-scale motions. The magnetic-energy
spectrum in the low-Pm regime is qualitatively different from the Pm � 1 case
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and appears to develop a negative spectral slope, although current resolutions
are insufficient to determine its asymptotic form. At Rm ∈ (1, Rmc), the mag-
netic fluctuations induced via the tangling by turbulence of a weak mean field
are investigated and the possibility of a k−1 spectrum above the resistive scale
is examined. At low Rm < 1, the induced fluctuations are well described by the
quasistatic approximation; the k−11/3 spectrum is confirmed for the first time in
direct numerical simulations. Applications of the results on turbulent induction to
understanding the nonlocal energy transfer from the dynamo-generated magnetic
field to smaller-scale magnetic fluctuations are discussed. The results reported
here are of fundamental importance for understanding the genesis of small-scale
magnetic fields in cosmic plasmas.
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1. Introduction

The dynamo effect, or amplification of magnetic field by fluid motion, is a fundamental physical
mechanism most likely to be responsible for the ubiquitous presence of dynamically strong
magnetic fields in the Universe—from planets and stars to galaxies and galaxy clusters
(e.g. Childress and Gilbert 1995, Moffatt 1978, Ossendrijver 2003, Roberts and Glatzmaier 2000,
Widrow 2002). It is important to distinguish between two main types of dynamo. The first is the
large-scale, or mean-field dynamo defined as the growth of magnetic field at scales larger than
the scale of the fluid motion. If the fluid is turbulent, this refers to the outer (energy-containing)
scale, denoted here by L. In this paper, we shall not be concerned with this type of dynamo
and concentrate on the second kind, the small-scale, or fluctuation dynamo, which is defined as
the growth of magnetic-fluctuation energy at or below the outer scale of the motion. Note that
if a large-scale magnetic field, dynamo-generated or otherwise, is present, there will always be
some tangling of this field by the fluid, giving rise to small-scale magnetic fluctuations. This
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effect, known as the magnetic induction, should not be confused with the fluctuation dynamo,
although it can often be difficult to tell which of the two is primarily responsible for the presence
of magnetic energy at small scales.

Despite its very generic nature, the presence of dynamo action in any particular system is
usually impossible to prove analytically. This is especially true in the astrophysically relevant
limit of large hydrodynamic and magnetic Reynolds numbers, Re � 1 and Rm � 1, when
the fluid motion is turbulent. Numerical experiments have, therefore, played a crucial role in
building up the case for the turbulent dynamo (e.g. Brandenburg 2001, Cattaneo 1999, Galloway
and Proctor 1992, Meneguzzi et al 1981). These have recently been joined by a successful
laboratory demonstration of the dynamo action in a geometrically unconstrained turbulence of
liquid sodium (Berhanu et al 2007, Monchaux et al 2007). However, both in the laboratory and
in the computer, it has proven very hard to access the parameter regimes that are sufficiently
asymptotic in both Re and Rm to resemble real astrophysical situations.

The key parameter that makes the situation difficult is the magnetic Prandtl number,
Pm = RmRe = ν/η (viscosity/magnetic diffusivity). In most natural systems, Pm is either very
large or very small. The former limit is appropriate for hot diffuse plasmas such as the warm and
hot phases of the interstellar medium and the intracluster medium of galaxy clusters. The latter
limit is realized in denser environments, e.g. the liquid-metal cores of planets (Pm ∼ 10−5), the
stellar convective zones (Pm ∼ 10−7–10−4 for the Sun, depending on the depth), and protostellar
discs. In liquid-sodium experiments, where Pm ∼ 10−6, the main problem has been to access
the high-Rm regime: thus, to get Rm ∼ 102, it is necessary to drive fluid flows with Re ∼ 108.

The importance of Pm lies in that it determines the relative size of the viscous and resistive
scales in the system (denoted here lν and lη, respectively). When Pm � 1, lη/lν ∼ Pm−1/2 � 1
for a weak growing field (i.e. in the kinematic-dynamo regime; see Schekochihin et al 2004b,
and references therein). This means that the resistive scale lies outside the inertial range of the
turbulence, deep in the viscous range, where the velocity field is spatially smooth. In contrast,
when Pm � 1 (while both Re � 1 and Rm � 1), one expects lη/lν ∼ Pm−3/4 � 1 (Moffatt
1961). This estimate places the magnetic cutoff in the middle of the inertial range, asymptotically
far away both from the viscous and the outer scales. Thus, the computational challenge posed
by large or small values of Pm is to resolve two scale separations: L � lν � lη for Pm � 1 or
L � lη � lν for Pm � 1.

The fluctuation dynamo at large Pm is an easier case both to understand physically and
to handle numerically. In this limit, field amplification is due to the random stretching of
the magnetic field by the fluid motion (Batchelor 1950, Chertkov et al 1999, Childress and
Gilbert 1995, Moffatt and Saffman 1963, Ott 1998, Zeldovich et al 1984). Since the spatially
smooth viscous-scale motions have the largest turnover rate, they are primarily responsible
for the stretching. It is, therefore, not essential to have a large Re in order to capture the
field growth—all that is needed is a flow with chaotic trajectories, which can be spatially
smooth (laminar). This simplification can be exploited to model numerically the large-Pm limit
(Schekochihin et al 2004b).

The case of Pm = 1, although not encountered in nature, has historically been the
favourite choice of convenience in numerical simulations—it is, indeed, for this case that the
fluctuation dynamo was first obtained in the computer (Meneguzzi et al 1981). Examination of
the nature of the dynamo at Pm = 1 leads one to conclude that it belongs essentially to the same
class as the large-Pm limit (Schekochihin et al 2004b). This is because the bulk of the magnetic
energy in this case still resides below the viscous scale.
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The physical considerations based on the random stretching that provide a qualitative (if not
mathematically rigorous) explanation of how the fluctuation dynamo is possible (see references
cited above) depend on the assumption that the scale of the fluid motion that does the stretching
(the viscous scale lν) is larger than the scale of the field that is stretched (the resistive scale lη).
This cannot be valid in the case of low Pm, when lη � lν. Clearly, the latter limit is qualitatively
different because the magnetic fluctuations, heavily dissipated below lη, cannot feel the spatially
smooth viscous-scale motions. Can the inertial-range and/or the outer-scale motions still make
the field grow? No compelling a priori physical argument either for or against such a dynamo
has been proposed. As was pointed out by Vainshtein (1982), in the absence of a better physical
understanding, the problem is purely quantitative: the stretching and turbulent diffusion effects
being of the same order at each scale in the inertial range, one cannot predict which of them
wins.

Our first numerical investigation of the problem of low-Pm dynamo (Schekochihin
et al 2004b) revealed that at fixed Rm, wherever there was dynamo at Pm = 1, it weakened or
disappeared if Re was increased7. Our conclusion was that, as far as we could tell at the resolutions
available to us then, the critical magnetic Reynolds number Rmc for dynamo increased with Re.
This was confirmed by Haugen et al (2004), who used a different (grid, rather than spectral) code.
Our and their results, enhanced somewhat by using hyperviscosity, were assembled together by
Schekochihin et al (2005) to produce the first stability curve Rmc(Re) for the fluctuation dynamo.
While we were able to show that Rmc increased with Re, it remained unknown if this increase
was to be eventually saturated with Rmc reaching some finite limit as Re → ∞. In this paper, we
give a detailed report on the new results that show that it does, i.e. we demonstrate that fluctuation
dynamo at low Pm exists (a preliminary report appeared in Iskakov et al (2007)). These results
are described in section 2. We also report that the form of the magnetic-energy spectrum changes
qualitatively in the low-Pm limit (section 2.4). We further discuss the comparison of our results
with simulations by Ponty et al (2006), Mininni (2007) and others of the fluctuation dynamo in
turbulence with a mean flow (section 2.5) and discuss the remaining theoretical uncertainties and
unsolved questions (section 2.6). The most important of these is whether the dynamo we have
found is driven by the inertial-range motions at the resistive scale—if it is, its growth rate should
be proportional to Rm1/2, which would make it a dominant (and universal) field-amplification
effect. Finally, we proceed in section 3 to report a numerical study of small-scale magnetic
induction, an effect that is related rather closely to the dynamo problem. Section 4 summarizes
our findings.

2. Fluctuation dynamo

2.1. Problem set-up

We use the standard pseudospectral method to solve in a periodic cube the equations of
incompressible MHD:

∂u

∂t
+ u · ∇u = −∇p − νn|∇|nu + B · ∇B + f , (1)

7 Previous attempts to simulate turbulent dynamo in various other, mostly convective, contexts had also found
achieving a sustained field amplification problematic at Pm < 1 (e.g. Brandenburg et al 1996, Christensen et al
1999, Nordlund et al 1992).
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∂B

∂t
+ u · ∇B = B · ∇u + η∇2B. (2)

Here u is the velocity field, B is the magnetic field (in velocity units) and the density of
the fluid is taken to be constant and equal to 1. In order to study the field growth or decay
in the kinematic regime, we initialize our simulations with random magnetic fluctuations at
very small energy—usually between 10−10 and 10−6 of the dynamically significant level—so
the Lorentz force, while retained, is never important. The velocity is forced by a nonhelical
homogeneous body force, which consists in randomly injecting energy in a δ-correlated (white-
noise) fashion into the Fourier harmonics with wavenumbers |k| �

√
2 k0, where k0 = 2π is the

box wavenumber (the box size is 1). The white-noise character of the forcing allows us to fix
the average injected power per unit volume: ε = 〈u.f 〉 = 1, where the angle brackets stand for
volume and time averaging.

In order to increase the range of Reynolds numbers amenable to computation at a finite
resolution, we make use of both the Laplacian viscosity (n = 2 in (1)) and the 8th-order
hyperviscosity (n = 8). For the hyperviscous runs, we define the effective viscosity

νeff = ε

〈|∇u|2〉 . (3)

Using the hyperviscosity appears to be a sensible way of treating the Pm � 1 limit because in
this limit, the magnetic cutoff scale is much larger than the (hyper)viscous scale, lη � lν, and
the magnetic properties of the system should not depend on the particular form of the viscous
cutoff. In our earlier work (Schekochihin et al 2005), it was confirmed that, as far as the values
of Rmc are concerned, this is approximately true for a number of different choices of the viscous
regularization, including the 4th-, 6th-, and 8th-order hyperviscosity and the Smagorinsky large-
eddy (LES) viscosity (see further discussion in section 2.3). It is the effective viscosity given by
(3) that is used for calculating Re and Pm in the hyperviscous runs. Thus, we define

Rm =
√

〈|u|2〉
ηk0

, Pm = ν

η
, Re =

√
〈|u|2〉
νk0

, Reλ = 1

ν

√
5

3

〈|u|2〉2

〈|∇u|2〉 , (4)

where ν = ν2 for the Laplacian runs and ν = νeff for the hyperviscous ones. We follow an
established convention by using the box wavenumber k0 = 2π in the definitions of Rm and Re.
A characteristic of turbulence independent of this choice is Reλ, the Reynolds number based on
the Taylor microscale (also defined above).

The maximum resolution that we could afford was 5123. All our runs are summarized in
tables 1 and 2, where we give for each run its resolution, the values of the (hyper)viscosity
νn, Rm, Pm, Re, Reλ, the growth/decay rate γ , the rms velocity urms =

√
〈|u|2〉, and a list of

figures in which this run appears. The runs marked with a star were done using a new code
written by A Iskakov. All other runs were done using another code, written by J Maron, which
was the code used in our earlier papers (Schekochihin et al 2004a, 2004b, 2005). Both codes
are pseudospectral, solve the same equations (1) and (2) and use the same units of length and
time, but different time-stepping, fast Fourier transforms and parallelisation algorithms, as well
as slightly different implementations of the random forcing. We have checked conclusively that
A Iskakov’s code correctly reproduces the older results obtained with J Maron’s code.
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Table 1. Index of runs—part I.

Run Res. n νn Rm Pm Re Reλ γ urms Figure

η = 4 × 10−3

a0 643 2 4 × 10−3 51 1.0 51 34 −0.20 1.29 1
H01 1283 8 10−12 57 0.43 133 64 −0.145 1.43 1, 6(a)
H02 1283 8 10−14 57 0.180 320 98 −0.89 1.43 1, 6(b)
H03 1283 8 10−16 57 0.080 710 148 −1.13 1.43 1, 6(d)
H04 1283 8 10−17 57 0.52 1100 184 −1.04 1.43 1, 6(e)
H05 2563 8 10−18 57 0.034 1680 230 −1.02 1.44 1, 6(f)
H07 2563 8 10−20 57 0.0148 3800 342 −0.99 1.43 1, 8(a)

η = 2 × 10−3

A1 1283 2 2 × 10−3 107 1.0 107 53 0.30 1.35 1
A2 1283 2 10−3 110 0.5 220 80 0.139 1.39 1
A3 2563 2 5 × 10−4 110 2.25 440 111 −0.22 1.38 1
A4∗ 2563 2 2.5 × 10−4 104 0.125 830 148 −0.52 1.31 1
A5∗ 2563 2 1.25 × 10−4 106 0.0625 1700 230 −0.74 1.33 1
A6∗ 5123 2 6.25 × 10−5 105 0.03125 3400 322 −0.41 1.32 1, 4
HA1 1283 8 10−14 112 0.36 310 95 0.0106 1.41 1, 6(a)
HA2 1283 8 10−16 112 0.157 710 144 −0.64 1.40 1, 6(b)
HA3 1283 8 10−17 109 0.109 1000 165 −0.60 1.38 1, 6(d)
HA4 2563 8 10−18 114 0.069 1660 220 −0.54 1.43 1, 6(e)
HA6 2563 8 10−20 117 0.030 3900 360 −0.46 1.47 1, 4, 6(f), 8(a)
HA8∗ 5123 8 10−22 109 0.0173 6300 420 −0.45 1.38 1

η = 10−3

B1 1283 2 10−3 210 1.0 210 80 0.77 1.34 1, 3(a)
B2 2563 2 5 × 10−4 220 0.5 440 110 0.49 1.38 1, 3(a)
B3 2563 2 2.5 × 10−4 230 0.25 900 160 0.161 1.42 1, 3(a)
B4 2563 2 1.25 × 10−4 220 0.125 1760 230 −0.141 1.38 1, 3(a)
B5∗ 5123 2 6.25 × 10−5 220 0.0625 3600 330 −0.021 1.41 1, 3(a), 4, 5
HB1 1283 8 10−16 220 0.32 700 143 0.20 1.41 1, 3(b), 6(a)
HB2 1283 8 10−17 230 0.21 1100 183 −0.158 1.43 1, 6(b)
HB3∗ 2563 8 10−18 220 0.146 1490 200 −0.31 1.37 1, 3(b), 6(a)
HB4 2563 8 10−19 230 0.090 2500 280 −0.129 1.44 1, 6(d)
HB5 2563 8 10−20 230 0.057 4000 360 −0.098 1.45 1, 3(b), 4, 5, 6(e), 8(a)
HB7∗ 5123 8 10−22 220 0.033 6700 450 0.089 1.40 1, 3(b), 6(f)

2.2. Results: existence of the dynamo

In figure 1(a), we show the growth/decay rates of the magnetic energy 〈B|2〉 versus Pm for five
sequences of runs. The runs in each sequence have the same fixed value of η and, consequently,
approximately the same value of Rm. Thus, decreasing Pm in each of these sequences is achieved
by increasing Re while keeping Rm fixed. This is the same strategy as was employed by
Schekochihin et al (2004a). Figure 1(a) extends their figure 1(b), which showed runs A1–A3 and
B1–B4.

The growth rates are calculated via a least-squares fit to the evolution of ln(〈|B|2〉) versus
time. The run times were chosen so that a converged value of the growth/decay rate could be
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Table 2. Index of runs—part II.

Run Res. n νn Rm Pm Re Reλ γ urms Figure

η = 7.5 × 10−4

HX1 2563 8 10−17 300 0.28 1050 175 0.178 1.41 1(b), 6(a)
HX2 2563 8 10−18 310 0.176 1760 240 −0.033 1.46 1(b), 6(b)
HX4 2563 8 10−20 310 0.087 3600 340 −0.054 1.46 1(b), 6(d)

η = 5 × 10−4

C1 2563 2 5 × 10−4 440 1.0 440 111 1.40 1.39 1, 2, 3(c)
C2 2563 2 2.5 × 10−4 430 0.5 870 159 0.89 1.36 1, 3(c)
C3 2563 2 1.25 × 10−4 440 0.25 1760 230 0.49 1.38 1, 3(c)
C4∗ 5123 2 6.25 × 10−5 450 0.125 3600 360 0.21 1.42 1, 3(c), 4
HC1 2563 8 10−18 450 0.28 1620 220 0.43 1.41 1, 3(d), 6(a)
HC2 2563 8 10−19 450 0.183 2500 270 0.20 1.42 1, 6(b)
HC3 2563 8 10−20 470 0.110 4300 380 0.120 1.48 1, 3(d), 4, 6(c)
HC4∗ 5123 8 10−21 460 0.090 5100 400 0.27 1.44 1, 6(d)
HC5∗ 5123 8 10−22 430 0.070 6200 410 0.26 1.36 1, 2, 3(d), 6(e)

η = 2.5 × 10−4

D1∗ 5123 2 2.5 × 10−4 810 1.0 810 141 1.85 1.27 1
D2∗ 5123 2 1.25 × 10−4 830 0.5 1660 210 1.41 1.31 1
D3∗ 5123 2 6.25 × 10−5 830 0.25 3300 320 0.91 1.31 1, 4
HD1∗ 5123 8 10−20 900 0.24 3800 340 0.80 1.42 1, 4, 6(a)
HD3∗ 5123 8 10−22 850 0.145 5900 390 0.59 1.34 1, 6(c)

obtained. In most cases, this requires no more than 10–20 box-crossing times, although for near-
marginal cases (|γ| � 0.1; see tables 1 and 2), the convergence is quite poor. This is because
close to criticality, the evolution of the total magnetic energy has very long time correlations,
with long periods of virtually zero change punctuated by periods of growth or decay. Fitting such
a time evolution to a single growth/decay rate is not a particularly precise operation.

The trend manifested in figure 1(a) is clear: as Pm is decreased, the growth rate decreases,
passes through a minimum and then saturates at a constant value, i.e.

γ(Rm, Re) → γ∞(Rm) = const. as Re → ∞ and Rm is fixed. (5)

That such a limit should exist is natural because as Re → ∞ at fixed Rm, we have lη � lν ∼
LRe−3/4 → 0 and one cannot expect the magnetic field to ‘know’ exactly how small the viscous
cutoff scale is. A much more significant result is that as Rm increases, the entire curve γ(Re, Rm)

is lifted upwards, so both the minimum and the asymptotic value of γ are positive for Rm ∼ 450
and above. For Rm ∼ 230, γ becomes negative approximately at Pm ∼ 0.2 but the curve crosses
zero again at Pm ∼ 0.03 and emerges on the positive side, so the asymptotic value is expected
to be positive. While we are unable at current resolutions to obtain the asymptotic values of γ

for the growing cases, we consider the evidence presented in figure 1(a) sufficient to claim that
such values exist and are positive.

Thus, the fluctuation dynamo does exist in the nonhelical turbulence of conducting fluid with
low Pm. It is perhaps interesting to have a glimpse of what this turbulence ‘looks like’. Snapshots
of the velocity and the growing magnetic field for a run (HC5) with Pm 
 0.07 and Rm 
 430
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http://www.njp.org/


8 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

(a) (b)

Figure 1. (a) Growth/decay rate of 〈|B|2〉 versus Pm for five values of Rm

(Rm ∼ 60: run a0 and series H0; Rm ∼ 110: series A and HA; Rm ∼ 230: series
B and HB; Rm ∼ 450: series C and HC; Rm ∼ 830: series D and HD). The round
points were obtained using the code written by J Maron, the square points using the
code written byA Iskakov. The unit of the growth rate is approximately one inverse
turnover time at the outer scale (the precise units of time are set by ε = 1 and
the box size = 1). (b) Growth/decay rates in the parameter space (Re, Rm). The
filled points correspond to runs with Laplacian viscosity, the empty ones to runs
with 8th-order hyperviscosity. The interpolated stability curves Rmc(Re) based
on the Laplacian and hyperviscous runs are shown separately. For comparison,
we also plot the Rmc(Re) curve obtained by Ponty et al (2006) for the turbulence
with a mean flow (see section 2.5 for discussion).

are shown in figure 2 and contrasted with similar snapshots for a run (C1) that has approximately
the same value of Rm 
 440 but Pm = 1 and in which the magnetic field exhibits a folded
structure characteristic of the fluctuation dynamo at Pm � 1 (Brandenburg and Subramanian
2005, Schekochihin et al 2004b, Wilkin et al 2007).

Figure 1(b) presents the magnetic-energy growth/decay rates in the two-dimensional
parameter space (Re, Rm). We also include the growth/decay rates for the Pm � 1 runs published
in Schekochihin et al (2004a) and (2004b) to give a complete picture of what is known about
the dependence γ(Re, Rm) (these runs are not shown in tables 1 and 2). We are now able to
reconstruct the stability curve Rmc(Re): each point on the curve is a linear interpolation between
a decaying and a growing case (this is done separately for the Laplacian and hyperviscous runs).
We see that Rmc increases with Re, reaches a maximum around Rm(max)

c ∼ 350 and Re ∼ 3000,
and then decreases (rather sharply). We expect that

Rmc(Re) → Rm(∞)
c = const. as Re → ∞, (6)

again on the grounds that exactly where the viscous cutoff is cannot matter in this limit, but
we cannot as yet obtain the asymptotic value Rm(∞)

c . Discounting the unlikely possibility that
the stability curve has multiple extrema at larger Re, we expect the asymptotic value to be
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Figure 2. Cross-sections of the absolute values of the velocity (left) and
the (growing) magnetic field (right) for two runs with similar Rm: run C1,
Rm = Re 
 440 (top) and run HC5, Rm 
 430, Re 
 6200 (bottom). The
lighter/darker regions correspond to stronger/weaker fields.

Rm(∞)
c � 200. Above this value of Rm, there is always dynamo action at small enough Pm.

Note that this represents an increase of only about a factor of 3 compared to the well-known
critical value Rmc 
 60 for the fluctuation dynamo at Pm � 1 (established first by Meneguzzi
et al (1981) and confirmed in many subsequent numerical studies, e.g. Schekochihin et al (2004b),
Haugen et al (2004)).

Figure 1(b) extends figure 2 of Schekochihin et al (2005), who could only see the increasing
part of the curve. They also reported the Rmc(Re) dependence obtained from the Laplacian,
6th-order hyperviscous and Smagorinski–LES simulations using the grid-based PENCIL code.
While the low-Pm fluctuation dynamo has yet to be found using this code, a comparison with
figure 1(b) shows that the (presumed) maximum of the stability curve for the PENCIL-code
dynamo should lie significantly above the value we have found in our simulations: apparently
at Rm(max)

c � 500 and Re � 3000. This raises the question of how universal the results we are
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reporting are. Another piece of numerical evidence that leads to the same question is the (small
but measurable) difference between the stability curves reconstructed using the Laplacian and
the hyperviscous runs.

2.3. Laplacian versus hyperviscous simulations

As we argued in the introduction, it is reasonable to assume that whether or not the dynamo
action is present in the limit of Rm � Re → ∞ does not depend on the nature of the viscous
cutoff. If this is true, demonstrating that it is present in the hyperviscous case should be sufficient
to claim that it is present generally. It is also likely that the asymptotic value Rm(∞)

c will prove
to be robust. However, the shape of the stability curve Rmc(Re) is certainly not universal.
Indeed, let us consider what determines this shape in the transition region between Rmc 
 60 for
Pm � 1 and the yet undetermined asymptotic value Rm(∞)

c � 200 for Pm � 1. When Re � Rm

(Pm � 1), the viscous scale is larger than the resistive one, lν > lη. As Re is increased compared
to Rm, the viscous scale decreases and eventually becomes smaller than the resistive scale. At
the intermediate values of Re, the resistive scale finds itself transiting the spectral bottleneck
associated with the viscous cutoff until it eventually emerges into the inertial range. This transition
is illustrated by figure 3, which shows the spectra of the kinetic and magnetic energies for two
of the fixed-Rm sequences of runs whose growth rates were shown in figure 1(a). It is obvious
that the properties of the velocity field around the viscous scale do depend on the type of viscous
dissipation employed. Therefore, the curves γ(Re, Rm) and Rmc(Re) cannot be universal around
the transitional values of Re and Rm. In particular, since the bottleneck region is narrower in the
wavenumber space for the hyperviscous runs (see figure 3), we expect that so is the transition
region in the parameter space8.

The degree to which the properties of the magnetic field in the Laplacian and hyperviscous
runs become similar in the limit Re � Rm � 1 can be judged from figure 4, where we show
the magnetic-energy spectra corresponding to the same value of Re ∼ 4000 and four different
values of Pm. For each value of Pm, the spectra obtained in a Laplacian and a hyperviscous run
are given. As Pm decreases, the bulk of the magnetic energy is separated in the wavenumber
space from the nonuniversal viscous cutoff and the magnetic-energy spectra in the Laplacian and
hyperviscous runs resemble each other more.

Figure 5 gives a visual illustration of the Laplacian versus hyperviscous simulations at low
Pm. We show snapshots of the velocity and magnetic field in two such runs (C4 and HC3) with
similar values of Rm ∼ 200 and Re ∼ 4000. While some differences in the velocity structure
are visible, the magnetic fields look very similar.

The growth/decay rates for the Laplacian and hyperviscous runs with similar Rm and Re

are also quite close. The entire curves γ(Pm) can only be meaningfully compared for two of the
run sequences shown in figure 1(a): Rm ∼ 110 (seriesA versus series HA) and Rm ∼ 230 (series
B versus series HB). Away from the transition region, they appear to agree quite well. Further
evidence in favour of the equivalence of the Laplacian and hyperviscous runs at Re � Rm � 1
is provided by the agreement between saturated energies of the induced magnetic fluctuations in
such runs (see section 3.2).

8 For the PENCIL-code runs in Schekochihin et al (2005), the relatively higher values of Rm and Re at which the
transition seems likely to occur may also be due to the generally more dissipative character of a grid code compared
to the pseudospectral ones. Another possible source of nonuniversality might be the difference between the forcing
schemes—if the dynamo is controlled by the outer-scale motions, a possibility discussed at the end of section 2.6.
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Figure 3. Spectra of the kinetic energy (normalized by 〈|u|2〉/2, time-averaged
and compensated by k5/3) and of the magnetic energy (normalized at each time
by the instantaneous value of 〈|B|2〉/2 and time-averaged) for the kinematic
decaying/growing cases with fixed Rm and increasing Re: (a) B series (Laplacian,
Rm ∼ 230), (b) HB series (hyperviscous, Rm ∼ 230), (c) C series (Laplacian,
Rm ∼ 450), (d) HC series (hyperviscous, Rm ∼ 450). In all of these cases,
〈|B|2〉 � 〈|u|2〉. The k−1 slope is given for reference and discussed in section 3.2.

2.4. Results: magnetic-energy spectra

In examining figure 3, it is hard not to notice that the shape of the magnetic-energy spectrum
changes as Re is increased. At Pm above and just below unity, the spectrum has a positive slope
and its peak is at the resistive scale. This is a typical situation for the fluctuation dynamo at
Pm � 1—in the limit Pm � 1, a k+3/2 spectrum is expected, known as the Kazantsev (1968), or
Kulsrud and Anderson (1992), spectrum. As the system enters the low-Pm regime, the spectral
slope flattens and then becomes negative. Since this is a qualitative change and since, as far as
we know, such spectra have not been seen before, it is worth documenting them in more detail.

The series of plots presented in figure 6 illustrates how the magnetic-energy spectrum
depends on Pm. In each of these plots, we have assembled together the spectra for runs
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Figure 4. Spectra of the kinetic and magnetic energies (normalized as in figure 3)
for the kinematic decaying/growing cases with fixed Re 
 4000 and different
Pm. For each value of Rm, we plot the spectra for a Laplacian (solid lines) and
a hyperviscous (dashed lines) run. The kinetic-energy spectra are independent
of Rm.

with different Rm and Re whose ratio was approximately equal to a chosen fixed value of
Pm—approximately because for the hyperviscous case, one cannot fix Pm exactly before
performing the simulation (see (3) and (4)). Making allowances for this imprecision, it is still
possible to conclude tentatively from figure 6 that the slope of the magnetic-energy spectrum
depends on Pm but not on individually on Re or Rm. As Pm decreases, the slope turns
from positive to negative. The data appears more consistent with the peak of the spectrum
shifted towards the outer scale than with it moving with the resistive scale (lη ∼ LRm−3/4; see
section 2.6), but again, this is only a tentative conclusion.

Unfortunately, here as everywhere else, an attempt to establish numerically a solid
asymptotic result is frustrated by the resolution constraints: in order to determine the spectral
slope or the position of the spectral peak, we need to resolve the limit Re � Rm � 1 (i.e. both
Pm � 1 and Rm � 1), but we cannot currently achieve sufficiently large values of Rm for
Pm � 1. We shall, therefore, not make any final statements here about the asymptotic form of
the magnetic spectrum, although in figures 6(e) and (f) we did provide the reference slope of k−1

and will discuss it as a theoretical possibility in section 3.2.
Note finally that the form of the spectrum does not change qualitatively between the growing

and decaying runs: for example, in figure 6(c), the magnetic energy in run HB3 decays while in
runs HC3 and HD3 it grows, but the spectral slope appears to be the same.

2.5. Discussion: relation to results for turbulence with a mean flow

Since we have claimed above that the low-Pm fluctuation dynamo had not previously been seen
in numerical simulations, it is important to explain how our results should be compared with the
Rmc(Re) dependences obtained in the recent numerical studies by Nore et al (1997), Ponty et al
(2005), Mininni et al (2005), Ponty et al (2006), Laval et al (2006), Mininni and Montgomery
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Figure 5. Cross-sections of the absolute values of the velocity (left) and the
magnetic field (right) for a Laplacian run (B5, top) and a hyperviscous run (HB5,
bottom), both with Rm ∼ 200 and Re ∼ 4000. Note that these runs are near-
marginal with respect to the field growth (see table 1 and figure 1(a)).

(2005), Mininni (2006) and (2007). In their simulations, turbulence was forced not by a random
large-scale white noise, but by an imposed body force constant in time (a Taylor–Green forcing
in the first five references, an ABC forcing in the other three). This produces a mean flow, i.e. a
constant (mostly large-scale) spatially inhomogeneous velocity field that persists under averaging
over times far exceeding its own turnover time. There is also a fluctuating multiscale velocity
field (turbulence), which coexists with the mean flow and is energetically a few times weaker
than it. Together, the mean flow plus the turbulence are a nonlinear solution of the Navier–Stokes
equation 1 with constant forcing. The primary motivation for studying the dynamo properties
of such a field is its close resemblance to the velocity field in liquid-metal dynamo experiments
(e.g. Peffley et al (2000), Spence et al (2006), Monchaux et al (2007); the dynamo properties
of the flows specific to these experiments have also been studied numerically: see, e.g. Ravelet
et al (2005), Bayliss et al (2007)).
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Figure 6. Spectra of the kinetic and magnetic energies (normalized as in
figure 3) for the kinematic decaying/growing cases with (approximately) fixed
Pm: (a) Pm 
 0.3–0.4, (b) Pm 
 0.2, (c) Pm 
 1.4, (d) Pm 
 0.1, (e) Pm 

0.05–0.07, (f) Pm 
 0.03. The k−1 slope is given for reference and discussed in
section 3.
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The mean flows that develop in such systems are usually dynamos by themselves—mean-
field dynamos, to be precise (both in the case of helical mean flows like the ABC and in
the nonhelical case of the Taylor–Green forcing). They give rise to growing magnetic fields
at scales larger than the scale of the flow (or comparable to it, when the scale of the mean
flow is comparable to the size of the simulation box). For Pm � 1, the threshold for the field
amplification is very low in these systems: Rmc ∼ 10, which is a typical situation for the mean-
field dynamos (Brandenburg 2001, cf Galanti et al 1992). The presence of a large amount of
the small-scale magnetic energy in these simulations should most probably be attributed to the
magnetic induction, rather than to the fluctuation dynamo, because the growth is happening at
values of Rm that are well below the fluctuation-dynamo threshold (Rmc ∼ 60 for Pm � 1; see
figure 1(b)).

As Pm is decreased, Rmc increases and eventually saturates at some larger value,
giving rise to a stability curve Rmc(Re) that looks similar to the stability curve we have
obtained in our simulations. This similarity (enhanced sometimes by the ambiguity in the
definitions of the Reynolds numbers) ought not to lead to any confusion between the two
curves. In order to illustrate the difference between them, we have plotted in figure 1(b)
the stability curve reported by Ponty et al (2006) for their simulations with a Taylor–Green
forcing. The data are taken from their table 1 and calibrated according to our definitions
of Re and Rm: they define Re =

√
〈|u|2〉 Ldyn/ν, where Ldyn is the dynamical integral scale

computed from the kinetic-energy spectrum and given in their table 1, while we define Re

according to (4). The box wavenumber k0 = 1 in their calculations. We see that the two
curves are very different: the dynamo threshold for the simulations with a mean flow is much
lower than for our homogeneous simulations. The difference is not merely quantitative: the
ordered large-scale structure of the growing magnetic field in the Pm ∼ 1 runs of Ponty
et al (2005) (the lower part of their stability curve) confirms that it is a mean-field dynamo.

The increase of Rmc with increasing Re in these simulations has been attributed to the
interference by the turbulence with the dynamo properties of the mean flow—a manifestation
of a tendency for higher dynamo thresholds in the presence a large-scale noise (Laval et al
2006, Pétrélis and Fauve 2006). It would be interesting to check whether the turbulence in
these simulations might itself act as a dynamo if the mean flow is ‘manually’ removed from
the induction equation (2). Comparison of the two stability curves in figure 1(b) suggests that
in order for this to be the case, Rm must be increased very substantially—above the threshold
found by us.

Let us conclude this discussion on a speculative note. while simulations with a mean flow
undoubtedly exhibit a mean-field dynamo at Pm � 1, it is not clear whether that is also the case
when Pm � 1. It may or may not be a coincidence that the low-Pm threshold for the simulations
with a mean flow appears to be very close to the large-Pm fluctuation-dynamo threshold. Since
the mean flow most probably has chaotic Lagrangian trajectories (although this has not been
explicitly checked), it should be a fluctuation dynamo—it belongs to the same class as the large-
Pm dynamos because the flow is spatially smooth. Could the turbulence, while suppressing
the mean-field dynamo in the low-Pm regime, somehow fail to interfere with the fluctuation
dynamo of the mean flow? There is not enough evidence or physical insight available to us to
judge the merits of this possibility—or of another, equally speculative one that we float at the
end of section 2.6. Two aspects of the published numerical results that seem to support it are
the evidence of direct nonlocal transfer of energy from the outer scale (the mean flow) to the
small-scale magnetic field (Mininni et al 2005) and the fact that the magnetic-energy spectra
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reported by Ponty et al (2005) do not exhibit the tendency towards a negative slope discussed
in section 2.4, but rather bear a strong resemblance to the typical k+3/2 spectra of the fluctuation
dynamo at Pm � 1 see, e.g. Haugen et al 2004, Schekochihin et al 2004b).

2.6. Discussion: relation to theory and outstanding questions

Given the numerical certainty that the low-Pm fluctuation dynamo exists, there remain a number
of theoretical uncertainties about the nature of this dynamo. The key question is whether or not
it is the inertial-range motions that amplify the magnetic energy.

Suppose Re � Rm � 1. Let us examine what can be achieved by assuming that the transfer
of the kinetic into magnetic energy is local in scale space9. For Kolmogorov turbulence, the
characteristic velocity fluctuation at scale l is δul ∼ (εl)1/3, where ε is the total power injected
into the turbulence (the turbulent energy flux). The characteristic rate of stretching of the magnetic
field by the velocity field at scale l is then δul/ l ∼ ε1/3l−2/3. The characteristic rate of turbulent
diffusion at scale l is of the same order. Comparing the stretching rate with the rate of the Ohmic
diffusion of the magnetic field, η/l2, one finds the resistive scale, i.e. the scale at which the
stretching rate is maximal and below which it is overcome by diffusion (Moffatt 1961):

lη ∼
(

η3

ε

)1/4

∼ L

Rm3/4
(7)

(this resistive scale does, indeed, lie inside the inertial range, L � lη � lν, where the viscous
scale lν is estimated using (7) with η replaced by ν). Thus, if the local interaction of the inertial-
range motions with the magnetic field is capable of amplifying the field in a sustained way, the
growth rate of the magnetic energy should scale with Rm as

γ ∼ δulη

lη
∼ ε1/3

l
2/3
η

∼
(

ε

η

)1/2

∼ urms

L
Rm1/2 (8)

in the limit Re → ∞. This dynamo, if it exists, is purely a property of the inertial range and is
independent of any system-dependent outer-scale circumstances such as, e.g. the presence of a
mean flow. Given a large enough Rm, the growth rate (8) will always be larger than a mean-field
or any other kind of dynamo associated with the outer-scale motions, because the latter cannot
amplify the field faster than at the rate

γ ∼ U

L
∼ urms

L
, (9)

where U is the characteristic velocity at the outer scale.
While our numerical results allowed us to make what we consider a compelling case for the

existence of a positive asymptotic value of the growth rate (section 2.2), we cannot at this stage

9 Whether it really is local should be the subject of a thorough future investigation, possibly along the lines of the
recent study by Mininni et al (2005) of a mean-flow-driven dynamo. Note that the shell-model simulations recently
carried out by Stepanov and Plunian (2007), which enforce the locality of interactions, return a picture that seems
to be broadly in agreement with the inertial-range dynamo scenario discussed below. On the other hand, EDQNM
closure simulations do not find any increase in Rmc for Pm � 1 compared with Pm � 1 (Léorat et al 1981).
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check whether it scales with Rm according to (8) or reaches an Rm-independent limit as in (9).
Neither of these possibilities can be ruled out a priori.

Should the scaling (8) be confirmed, the case for an inertial-range dynamo would be
complete. This case is strengthened somewhat by the theoretical predictions based on the only
available model of the turbulent dynamo that is solvable exactly—the Kazantsev (1968) model.
This model considers a Gaussian random velocity field that is a white noise in time. The salient
property of the inertial-range velocities is their spatial roughness: δul ∼ l1/3 for L � l � lν
compared with a smooth velocity δul ∼ l for l � lν. This is mimicked by prescribing a spatially
rough power-law correlation function for the Kazantsev model field. For a certain range of
exponents of this power law, it is then possible to show analytically that the Kazantsev field
is a dynamo (Arponen and Horvai 2006, Boldyrev and Cattaneo 2004, Celani et al 2006,
Rogachevskii and Kleeorin 1997,Vincenzi 2002). The difficulty lies in establishing a quantitative
connection between this result and the real turbulence, in which the decorrelation time of the
inertial-range motions is certainly not small but comparable to their turnover time and scale-
dependent ∼ l2/3. It is not known whether setting it to zero changes the dynamo properties of the
velocity field enough to render the white-noise model irrelevant. If the white-noise velocity is on
some level acceptable, it is not known what choice of its roughness exponent (which determines
whether it is a dynamo!) makes it a good model of the inertial-range turbulent velocity field. The
authors cited above used a plausible argument (first suggested by Vainshtein 1982), which led
them to predict dynamo action. However, this prediction is purely a quantitative mathematical
outcome of analysing a synthetic velocity field that is at best a passable qualitative representation
of real turbulence. In the absence of a physical model of the inertial-range dynamo, the validity
of this prediction remains in doubt.

It is natural to ask whether any of the quantitative predictions based on the Kazantsev model
are borne out by our numerical results. One such prediction is the scaling (8) of the growth rate,
which cannot as yet be verified numerically. Another, due to Rogachevskii and Kleeorin (1997)
and to Boldyrev and Cattaneo (2004), is the expectation that the asymptotic dynamo threshold
Rm(∞)

c for Pm � 1 should be approximately 7 times higher than a similar threshold Rmc ∼ 60
for the Pm � 1 case (see figure 1(b); in the Kazantsev model, the latter threshold is computed by
using a velocity field with a smooth spatial correlator, see Novikov et al (1983)). This would imply
Rm(∞)

c ∼ 400, which is an overestimate by at least a factor of 2 (see section 2.2)—certainly not
a damning contradiction, but somewhat short of a confirmation of the theory. Finally, Boldyrev
and Cattaneo (2004) predict a (stretched) exponential fall off of the magnetic-field correlation
function at l > lη, so the magnetic energy is concentrated sharply at the resistive scale. This
appears to be at odds with the trend for the magnetic-energy spectrum to develop a negative
slope above the resistive scale, reported in section 2.4 (for example, a k−1 spectrum would imply
that δBl ∼ constant, i.e. the correlation function is flat rather than falling off exponentially). We
reiterate, however, that at resolutions currently available to us, we are unable to claim definitively
that the spectral peak is not, in fact, at the resistive scale.

Is there an alternative to the inertial-range dynamo? It might be worth asking whether
the randomly forced outer-scale motions could act as a dynamo despite (or in concert with)
the turbulence in the inertial range. Indeed, how essential is the physical difference between
the outer-scale motion, whose decorrelation time (∼L/U) is long compared with the inertial-
range motions, and a mean flow, whose correlation time in infinite? Can both the mean-flow-
driven dynamo found by Ponty et al (2005) and the fluctuation dynamo reported here by us be
manifestations of some universal basic mechanism—for example, of the field amplification by
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a combined action of a persistent (slowly changing) large-scale (outer-scale) shear and small-
scale (inertial-range) turbulent fluctuations (a nonhelical mean-field dynamo of this type has
been proposed theoretically by Rogachevskii and Kleeorin (2003))?

An unambiguous signature of this or any other type of outer-scale-driven dynamo would
be the convergence of the growth rate to an Rm-independent limit (9). One way to investigate
numerically whether there is a smooth connection between the mean-flow dynamo and the
randomly forced one would be to construct stability curves Rmc(Re) for a series of numerical
experiments with an inhomogeneous body force (similar to Ponty et al 2005), which however, is
artificially decorrelated with a prescribed correlation time τcorr. The limit τcorr = ∞ corresponds
to the turbulence with a mean flow. As τcorr is reduced, the mean flow should develop a slow time
dependence and at τcorr ∼ L/U, the situation would become equivalent to the randomly forced
case discussed here.

3. Turbulent induction

The turbulent magnetic induction is the tangling of a uniform (or large-scale) mean magnetic
field by turbulence, which produces magnetic energy at small scales. The mean field may be
due to some external imposition or to a mean-field dynamo. Broadly speaking, whatever is the
mechanism that generates and/or maintains a magnetic field, the turbulent induction is a nonlocal
energy transfer process whereby this field couples to motions at smaller scales to give rise to
magnetic fluctuations at those scales. In any real system, it is only a part of a bigger picture of how
the magnetic field is generated and shaped. Given a multiscale observed or simulated magnetic
field, one does not generally have enough information (or understanding), to tell whether it has
originated from the fluctuation dynamo, from the mean-field dynamo plus the turbulent induction
or from some combination of the two. However, in the computer, the turbulent-induction effect
can be isolated by measuring the response to an imposed uniform field in the subcritical cases,
in which the magnetic field would otherwise decay (this approach has been popular in liquid-
metal experiments; see, e.g. Bourgoin et al (2002), Odier et al (1998), Spence et al (2006)).
Table 3 details a number of such runs, done using the same numerical set-up as that detailed in
section 2.1. We shall see that examining their properties is both instructive in itself and may be
revealing about the nature of the fluctuation dynamo.

Mathematically, if the magnetic field is represented as a sum of a uniform mean field and a
fluctuating part, B = B0 + δB, the fluctuating field satisfies

∂δB

∂t
+ u · ∇δB = δB · ∇u + η∇2δB + B0 · ∇u. (10)

This is simply the induction equation (2) with a source term, which, in the absence of dynamo
action, will give rise to a saturated level of the magnetic-fluctuation energy. Equation (10) is
linear in δB. Therefore, for dynamically weak mean fields, the saturated magnetic energy should
be proportional to the mean-field energy:

〈|δB|2〉 = f(Rm)B2
0. (11)

The coefficient of proportionality f(Rm) in this relation is expected to be an increasing function
of Rm. At large Rm, this coefficient can be large, f(Rm) � 1 and the relation equation (11)
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Table 3. Index of runs—part III (runs with a mean field).

Run Res. B0 η Rm Pm Re Reλ urms δBrms Figure

η = 7.5 × 10−4

C1-sat 2563 0 5 × 10−4 390 1.0 390 149 1.22 0.49 7(b)
B2-sat 2563 0 10−3 200 0.5 410 149 1.28 0.42 7(b)
m0 1283 1 2 × 10−3 103 0.25 410 169 1.29 0.74 7(a)
m1 1283 10−1 2 × 10−3 103 0.25 390 161 1.24 0.54 7(a)
m2 1283 10−2 2 × 10−3 109 0.25 440 118 1.37 0.136 7(a)
m3/M1.1 1283 10−3 2 × 10−3 109 0.25 440 111 1.37 0.021 7(a,b)
m4 1283 10−4 2 × 10−3 112 0.25 450 114 1.41 0.0025 7(a)
m5 1283 10−5 2 × 10−3 112 0.25 450 114 1.41 0.000165 7(a)
M1.2 1283 10−3 4 × 10−3 57 0.125 460 113 1.43 0.0066 7(b)
M1.3 1283 10−3 10−2 23 0.05 450 115 1.42 0.0030 7(b)
M1.4 1283 10−3 2 × 10−2 11.6 0.025 470 110 1.39 0.00132 7(b)
M1.5 1283 10−3 4 × 10−2 5.5 0.0125 440 110 1.39 0.00132 7(b)
M1.6 1283 10−3 10−1 2.2 0.005 440 115 1.39 0.00074 7(b)
M1.7 1283 10−3 2 × 10−1 1.08 0.0025 430 113 1.36 0.00037 7(b)
M1.8 1283 10−3 4 × 10−1 0.54 0.00125 430 112 1.35 0.00020 7(b)
M1.9 1283 10−3 1 0.22 0.0005 440 115 1.39 0.000069 7(b)

ν2 = 2.5 × 10−4

D1-sat∗ 5123 0 2.5 × 10−4 710 1.0 710 185 1.11 0.53 7(b)
C2-sat∗ 2563 0 5 × 10−4 380 0.5 760 210 1.20 0.45 7(b)
B3-sat 2563 0 10−3 210 0.25 840 230 1.30 0.35 7(b)
M2.1 2563 10−3 2 × 10−3 105 0.125 840 157 1.21 0.0088 7(b)
M2.2 2563 10−3 4 × 10−3 53 0.0625 840 155 1.33 0.0053 7(b)
M2.3 2563 10−3 10−3 21 0.025 830 156 1.31 0.0030 7(b)
ν2 = 1.25 × 10−4

C3-sat∗ 2563 0 5 × 10−4 380 0.25 1530 350 1.20 0.47 7(b)
M3.1 2563 10−3 10−3 210 0.125 1690 230 1.33 0.023 7(b)
M3.2 2563 10−3 2 × 10−3 111 0.0625 1770 230 1.39 0.0132 7(b)

ν8 = 10−20

HM1 2563 10−3 10−3 230 0.062 3700 340 1.45 0.027 7(b), 8
HM2 2563 10−3 2 × 10−3 114 0.031 3600 330 1.43 0.0109 7(b), 8
HM3 2563 10−3 4 × 10−3 56 0.0160 3500 320 1.41 0.0071 7(b), 8
HM4 2563 10−3 10−2 22 0.0065 3400 310 1.39 0.0034 7(b), 8
HM7 2563 10−3 10−1 2.3 0.00063 3600 330 1.43 0.00067 7(b), 8

will hold only as long as not only the mean field but also the fluctuating field is dynamically
weak, 〈|δB|2〉 � 〈|u|2〉. If it is not, the back reaction will take over as the controlling agent in the
saturation mechanism, resulting in a dynamical state with 〈|δB|2〉 ∼ 〈|u|2〉. This simple picture
is, unsurprisingly, bourne out by the numerical experiment: figure 7(a) illustrates this point.

3.1. Turbulent induction at low Rm

It is rather straightforward to make a theoretical prediction about the form of f(Rm) in the limit
of small Rm. The diffusion term in (10) dominates the nonlinear terms and the saturated state is
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(a) (b)

Figure 7. (a) The mean square induced field 〈|δB|2〉 versus the mean field squared
B2

0 in the subcritical regime (no dynamo). These runs correspond to the decaying
run A3 (table 1) with an imposed mean field. Error bars show the mean square
deviation from the average value in the set of snapshots over which the time
average was done. The dotted line shows the slope corresponding to a linear
dependence. (b) The mean square induced field 〈|δB|2〉 versus Rm for runs with
B0 = 10−3 in the subcritical regime, Rm < Rmc. For Rm > Rmc, the saturated
energies for B0 = 0 runs are shown (the saturated states of runs B2, B3, C1, C2,
C3 are denoted B2-sat, etc. in table 3). The reference slope corresponding to Rm2

is shown for comparison with the quasistatic theory (section 3.1).

governed by the ‘quasistatic’ balance

η∇2δB = −B0 · ∇u, (12)

which immediately implies 〈|δB|2〉 ∼ Rm2B2
0.

In the wavenumber space, the quasistatic approximation (12) returns an explicit form of
the angle-integrated, one-dimensional magnetic-energy spectrum M(k) in terms of the kinetic-
energy spectrum E(k):

ηk2δBk = i(k · B0)uk ⇒ M(k) = B2
0

3η2

E(k)

k2
. (13)

If the kinetic energy spectrum is Kolmogorov, one obtains M(k) ∼ B2
0η

−2ε2/3k−11/3 (Golitsyn
1960). Note that we limit ourselves to the case of weak magnetic field (for some numerical
experiments with a dynamically strong field, see, e.g. Knaepen et al (2004), Zikanov and Thess
(1998) and references therein).

The predictions of the quasistatic theory are rigorous and, of course, confirmed by the
numerical simulations. Figure 7(b) shows that the Rm2 scaling of the induced magnetic energy
holds, under our definition of Rm, up to Rm ∼ 2, which is also approximately the point at
which 〈|δB|2〉 becomes larger than B2

0. The Golitsyn (1960) spectrum is also there—as shown

New Journal of Physics 9 (2007) 300 (http://www.njp.org/)

http://www.njp.org/


21 DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

Figure 8. (a) The magnetic-energy spectra, normalized by 〈|δB|2〉/2 and time-
averaged, for the runs with the 8th-order hyperviscosity (effective Re ∼ 3500) and
B0 = 10−3 (series HM). For comparison, normalized magnetic-energy spectra for
the analogous decaying runs with B0 = 0 are shown. The decaying spectra (runs
HB5, HA6, H07) coincide with the steady-state spectra of induced fluctuations
(runs HM1, HM2, HM3) almost exactly. The slopes corresponding to the Golitsyn
(1960) k−11/3 and Ruzmaikin and Shukurov (1982) k−1 spectra are given for
reference. The kinetic-energy spectrum, normalized by 〈|u|2〉/2, time-averaged
and compensated by k5/3, is also plotted (it is the same for all runs). (b) The
same spectra as in (a) for the HM series (bold lines) compared with the linear
quasistatic-theory prediction (13) (thin lines). For all runs except HM7, B0 in (13)
has been replaced with 〈|B|2〉1/2.

in figure 8(a) for the run HM7. While this spectrum is solidly established in the laboratory (e.g.
Bourgoin et al 2002, Odier et al 1998) and was successfully simulated by Ponty et al (2004)
using LES, our result appears to be the first time that it has been obtained in a direct numerical
simulation of the low-Rm MHD turbulence. Although no element of surprise was present here,
we consider it reassuring to have dotted this particular i.

3.2. Turbulent induction at high Rm

As Rm increases, the quasistatic approximation (12) ceases to be valid, the nonlinear terms in
(10) are no longer negligible and the dependence f(Rm) becomes nontrivial. Figure 7(b) shows
how at Rm > 2 it flattens until, around Rm ∼ 200, the fluctuation dynamo sets in, overwhelms
the turbulent induction and brings the magnetic energy into a saturated state determined not by
Rm but by the nonlinear back reaction (〈|δB|2〉 ∼ 〈|u|2〉)10. The close agreement between the
magnetic energies for the Laplacian and hyperviscous runs with different Re suggests that these
results are converged in Re.

10Note that while the scaling of 〈|δB|2〉 with Rm − Rmc just above the transition to dynamo is an interesting
theoretical question (Pétrélis and Fauve 2001), determining this scaling numerically is not currently possible because
of the extreme long-time fluctuations close to criticality and the consequent need for unaffordably long runs.
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While one might dwell on the question of what the asymptotic form of f(Rm) for large
Rm should be (e.g. Cattaneo et al 1995, Low 1972, Moffatt 1961, Parker 1969, Saffman 1964,
Vainshtein and Cattaneo 1992), it is perhaps reasonable to ask first whether, in view of our claim
that the fluctuation dynamo is unavoidable at sufficiently large Rm, the problem is meaningfully
posed. The short answer is, obviously, no. However, there is a useful way, already intimated at
the beginning of section 3, in which the turbulent induction problem can be posed at high Rm.

Firstly, if B0 is interpreted as the dynamo-generated field at the resistive scale and above,
we may inquire into the behaviour of the magnetic fluctuations below the resistive scale, l � lη.
Since the inertial-range motions at these scales have a shorter correlation time than at l ∼ lη, we
can, indeed, treat this as a problem with a constant mean field and use (10). The quasistatic theory
is still valid because the diffusion term is dominant. Thus, the Golitsyn (1960) spectrum is now
recovered as the subresistive tail of the magnetic-energy spectrum (Moffatt 1961). In numerical
simulations, this is hard to check at current resolutions, but we can compare the magnetic spectra
in our simulations with the quasistatic prediction (13) using the full numerically obtained form
of E(k) and replacing B0 → 〈|B|2〉1/2. There is, indeed, a fit below some sufficiently small
(resistive) scale, which predictably decreases with increasing Rm.

Secondly, if the dynamo amplifies the magnetic field at the outer scale or above (this is
now our mean field B0), one might ask how much magnetic energy this will generate via the
turbulent induction in the part of the inertial range that lies above the resistive scale, L � l � lη.
In (10), the diffusive term can now be ignored. It seems then to be a plausible argument that,
if the nonlocal energy transfer from the outer-scale field is important at all, its effect on the
inertial-range magnetic fluctuations can be found by balancing the ‘source’ term containing B0

with the nonlinear terms, which represent the local interactions between u and δB. This gives
(Ruzmaikin and Shukurov 1982)

δBl ∼ B0 ⇒ M(k) ∼ B2
0k

−1. (14)

The same spectrum and the consequent scaling 〈|δB|2〉 ∼ (ln Rm)B2
0 were obtained in several

closure calculations assuming a weak mean field and no dynamo (Kleeorin and Rogachevskii
1994, Kleeorin et al 1990, 1996) (see, however, an argument by Moffatt (1961), based on the
mathematical analogy between the magnetic field and vorticity and leading to a k1/3 spectrum).
Note that all this only applies in the limit 〈|δB|2〉 � 〈|u|2〉 (which is where our simulations are;
see figure 7(b)). Otherwise, dynamical effects, such as the Alfvénization of the turbulence, will
be important and determine the shape of the saturated state.

The scaling (14) can only be realized if an outer-scale magnetic field really exists and if the
tangling of this field by turbulence is not superseded by an inertial-range dynamo, as discussed
in section 2.6. Thus, it is only a possibility and, indeed, a signature property, if the fluctuation
dynamo found by us is, in fact, an outer-scale dynamo. As we explained in section 2.4, our
numerical simulations are not sufficiently asymptotic to determine the spectrum of magnetic
fluctuations. The apparent tendency towards a negative spectral slope reported in section 2.4
may be a telling sign in view of the theoretical result (14). We have plotted the reference k−1

slopes in figures 3, 6(e) and (f). We leave it to the reader’s judgement to decide if this scaling
might, indeed, be emerging there.

An important observation must be made in this context. The saturated magnetic-energy
spectra in the subcritical runs with an imposed weak mean field turn out, after normalization,
to be exactly the same as the normalized spectra of the corresponding decaying runs without
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the mean field (see figure 8(a)). Furthermore, as reported in section 2.4, no qualitative change
occurs in the magnetic-energy spectrum as the dynamo threshold is crossed. This seems to tell
us that the same mechanism is responsible for setting the shape of the spectrum of the magnetic
fluctuations induced by a mean field and of the decaying or growing such fluctuations in the
absence of a mean field.

4. Conclusions

Let us reiterate the main numerical results and theoretical points presented above.

1. A fluctuation dynamo exists in the nonhelical randomly forced homogeneous turbulence of
a conducting fluid with low magnetic Prandtl number (section 2.2). The critical magnetic
Reynolds number for this dynamo is at most three times larger than for Pm � 1: defined
by (4), it is Rmc � 200 for Re � 6000, although there is a larger peak value at a somewhat
smaller Re.

2. The nature of the dynamo and its stability curve Rmc(Re) are different from the dynamo
obtained in simulations and liquid-metal experiments with a mean flow (section 2.5).

3. The physical mechanism that enables the sustained growth of magnetic fluctuations in the
low-Pm regime is unknown. It is not as yet possible to determine numerically whether
the fluctuation dynamo is driven by the inertial-range motions at the resistive scale and
consequently has a growth rate ∝ Rm1/2 in the limit Rm → ∞, or rather a constant growth
rate comparable to the turnover rate of the outer-scale motions (section 2.6).

4. The magnetic-energy spectra in the low-Pm regime are qualitatively different from the
Pm � 1 case and appear to develop a negative spectral slope, which may be consistent with
k−1, but cannot be definitively resolved (section 2.4). The spectra of the growing field are
similar to those for the decaying field at lower Rm and to the saturated spectra of the induced
magnetic energy in the presence of a weak mean field (section 3.2).

5. At very low Rm, the magnetic fluctuations induced via the tangling by turbulence of a
weak mean field are well described by the quasistatic approximation. The k−11/3 spectrum
is confirmed (section 3.1).

While these results leave a frustrating number of questions unanswered and do not entirely
clear up the confusion over the exact nature of the low-Pm dynamo, they do at least confirm that
the object of this confusion exists. It is important to check in independent numerical experiments
both that our conclusions hold and whether the value of the dynamo threshold obtained by us is
universal. Some promising numerical experiments aimed at elucidating the nature of the dynamo
and the role of the mean flow are proposed in sections 2.5 and 2.6.

The main conclusion of this work is the confirmation that nature will always find a way
to make a magnetic field where turbulence of a conducting fluid is present. In the astrophysical
context, the low-Pm fluctuation dynamo is particularly (although by no means solely) important
in the context of solar magnetism. While there is ample observational evidence that small-scale
magnetic fluctuations pervade the solar photosphere (e.g. Domı́nguez Cerdeña et al 2003, Socas-
Navarro and Lites 2004, Solanki et al 2006, Trujillo Bueno et al 2004), the numerical evidence
used to argue that the turbulent fluctuation dynamo is responsible has thus far been based
on numerical simulations with Pm � 1 (Bushby 2007, Cattaneo 1999, Cattaneo et al 2003).
The existence of the low-Pm fluctuation dynamo that we have established for an idealized
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homogeneous MHD turbulence gives us confidence that attempts to demonstrate self-consistent
magnetic-field amplification in more realistic simulations of solar convection with Pm � 1 will
eventually prove successful.
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