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The reconstruction of waveform is one of the most important issue of the parameter
estimation of source in the GW astronomy. In this paper, we investigate a method of the
waveform reconstruction of burst gravitational waves from a single detector’s data using
Hilbert-Huang Transform. Moreover, we demonstrate the wave reconstruction to confirm
the effectiveness of our proposed method using the simulated data. As the results, we
found that the reconstructed waveforms were obtained with good accuracy from only
one detector data.
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1. Introduction

The Hilbert-Huang transform (HHT), which consists of an empirical mode decom-
position (EMD) followed by the Hilbert spectral analysis (HSA), was developed
recently by Huang et al.'. The HHT can decompose any complicated date set via
EMD into some intrinsic mode functions (IMFs) that admit a well-behaved Hilbert
transform. Compared with the Fourier decomposition and wavelet decomposition,
the EMD approach is fitter for analyzing the non-stationary data since it decom-
poses the signal based on the time scale of the signal itself with adaptive nature.
Moreover, HHT is not limited by time-frequency uncertainty.

A waveform of burst gravitational waves (GWs) is difficult to predict from the-
oretical study. On the other hand, the physical parameters (e.g. the mass of
progenitor model, pre-collapse rotation and equation of state etc.) are strongly
reflected in the waveform? (See Fig.1). Therefore, the waveform reconstruction of
burst GWs from noisy data obtained by observation is one of the most important
issues to estimate parameters of supernovae etc. In this paper, we focus on the
waveform reconstruction from a single detector’s data by use of HHT.



The Fourteenth Marcel Grossmann Meeting Downloaded from www.worldscientific.com

by GERMAN ELECTRON SYNCHROTRON on 04/26/21. Re-use and distribution is strictly not permitted, except for Open Access articles.

3139

We assume that the observational data s(t) is given by sampling a continuous
signal at discrete time series, t; = jAt for j = 0,1,--- , N — 1, where N is the
number of data points and At is the sampling interval and the observational data
s(t;) is expressed by : s(t;) = h(t;) +n(t;), where h(t;) is the GW signal and n(t;)
is the noise.

2. Outline of HHT

The HHT consists of two components. The first one is the EMD, which decomposes
the time series data s(¢;) into some Intrinsic Mode Functions (IMFs); IMF ¢;(¢;)
(i = 1,2,---). The EMD involves (1) forming an envelope about the data max-
ima and minima with the use of a cubic spline, (2) taking the average of the two
envelopes, and then (3) subtracting it from the time series to obtain the residual.
When iteration of this procedure converges, the residual is treated as an IMF. Sub-
tracting it from the original time series, the procedure is carried out repeatedly to
obtain succeeding IMFs. The sum of all IMF components restores the time series
data to the original one : s(t;) = Zi\il c¢i(tj) + r(t;), where M is the number of
IMFs and r(t;) is the final residual, respectively.

In the second part of HHT, the Hilbert transform is applied to each IMF in
order to derive the instantaneous frequency (IF) and the instantaneous amplitude
(IA).

Detailed description of HHT used in this paper are found in Takahashi et al.2.

3. Method of waveform reconstruction

By means of the EMD, the noise will be dispersed to all IMF's with equal amplitudes.
On the other hand, the burst GW signal is expected to be decomposed to a few
specific IMFs. In this point of view, by using the burst GW signal h;(t;) and noise
n;(t;), IMFs ¢;(t) are given by :

ci(t) = hi(ty) + ni(t;), (1)

where h(t;) = 3%, hi(t;) and n(t;) = 500, na(t;).

We assume that the noise in each IMF is stationary and of normal distribution
with zero mean and standard deviation ;. If we use X; and Y;; are the random
variable of the noise and IMF, respectively, we can express :

: X; ~ N(0,07), (2)
: Yy ~ N(pij,07) = pij + N(0,07). (3)

n(t;)
ci(ty)
If IMF ¢;(t;) satisfies |¢;(t;)| > 40;, we consider this IMF ¢;(¢;) includes the com-
ponent of signal. Then, we sum up these IMF's to get the reconstructed waveform:

Zci(tj) = hrcconst(tj) : Wj ~ N(M;'70'/2) = /L; =+ N(Ov 0/2)7 (4)

i
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Fig. 1. Example of the waveforms at 10 kpc with changing initial rotation states, (other param-
eters are fixed). Note t; is time of core bounce.

where W; is its the random variable, p; = >, pi; and o’? =3, Cov(X;, Xj) is

covariance of summed up IMF. Therefore, we can obtain the reconstruct waveform
!/

M-

4. Setup for our data analysis simulation

To confirm the effectiveness of our proposed method, we demonstrate the wave
reconstruction using the simulated data.

In this section, we explain the setup for our data analysis simulation. We prepare
the simulated time-series data of Advanced LIGO by combining Gaussian noise with
the burst gravitational waves from core collapse and core bounce of rotating stars
obtained from Dimmelmeier’s catalog?.

With a sensitivity curve of Advanced LIGO (the zero-detuned, high-power sensi-
tivity curve?), we produce the simulated Gaussian noise in frequency domain. The
sampling frequency is set to fs = 1/At = 8192 Hz and the frequency range of the
detector noise is set to be from 20Hz to 4096 Hz. Time-series noise data, n(t;),
is produced by the inverse Fourier transform of the simulated noise in frequency
domain. We set the duration to be 0.5 s.

We use 136 gravitational waveforms from Dimmelmeier’s catalog® and assign a
serial number to each of them in the alphabetical order. For example, Fig. 1 shows
the waveforms of different initial rotation states with other parameters fixed. We
can find that the waveforms are very different and the physical parameters such as
the mass of progenitor model, pre-collapse rotation, equation of state, and so on
are strongly reflected in the waveform.

The observational data s(¢;) is produced by injecting the GW signal hcasaltog ()
into simulated time-series noise data of Advanced LIGO n(t;); s(t;) = hcatalog(t;) +
n(t;). In this paper, we consider gravitational waves entering from the optimal
direction to the detector.

In the second column of the left of Fig.2(a), we show the example of s(t;). For
each waveform, we created 1000 samples of s(¢;), each of which is generated by
adding a Gaussian random variate with a different seed.
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Fig. 2. Example of results. (a) Injected signal (S20a2013_shen) at 10 kpc, simulated Advanced
LIGO noise plus signal and IMF1-IMF6. (b) Reconstructed and injected waveform.

5. Result

Figure 2(a) shows one of our results, where the signal of S20a2013 shen in Dim-
melmeier’s catalog® at 10 kpc is injected in simulated time-series noise data of
Advanced LIGO. The signal+noise data s(t) was decomposed into 8 IMFs through
Ensemble EMD?®. We plot the IMF1-6 (blue) as well as injected signal (red) in
Fig. 2(a). You can find that IMF2-4 contain the components of injected signal,
while IMF1 has only noise.

Fig. 2(b) represents the injected signal (S20a2013 shen and S11a30121s) as blue
lines, the reconstructed waveform as red lines and the 90% confidence level region as
the red shaded regions. We found that the waveform reconstruction is possible with
sufficient accuracy. For most of other injected signals in Dimmelmeier’s catalog, we
obtain the similar results.

To evaluate the degree of coincidence between injected signal hcatalog(t;) and
reconstructed waveform hyeconst (t;), we calculate the value of reduced X?cd :

1 i [hcatalog(tj) - hreconst(tj)] (5)

N! o2 ’

Xfcd =
j=1
with the time duration of summation in Eq.(5) : t —t, = —20 ~ 50 ms (N’ = 572).

If each time point is independent, then this reduced x2 ; obey the x? distribution
with the mean 1 and variance 2/v/N'.

In order to calculate x2 ,, we perform again the wave reconstruction for 1000
samples, each of which is generated by adding a Gaussian random variate. However,
in this case, we use the injected signal at 25 kpc.

Fig. 3(a) shows the x%, as the function of the serial number of waveform, in
the case that the reconstructed waveform is s20a2009 shen at 25 kpc. The serial
number 78 is the position of injected signal. The error bars show the 1 o errors.
The value of Xfed of injected signal is smallest. This means the degree of coincidence
between the reconstructed waveform and injected waveform is good. However, you
can find that there are the positions (serial number 16, 44 and 78) of almost same
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Fig. 3. (a) x%4 as the function of the serial number of waveform, in the case that the reconstructed
waveform is s20a2009_shen (serial number 78) at 25 kpc. The error bars show the 1 o errors. (b)
The injected waveforms of three serial numbers which have almost same value of Xfc 4-The red,
green and blue curves show the waveform of s20a2009_shen (serial number 78), slla2013_shen
(serial number 16) and s15a2007_shen (serial number 44) , respectively.

value of xfe 4- We plot the injected waveforms of three corresponding serial numbers
in Fig. 3(b) . We can find that the injected waveform is almost same waveform,
which has different vale of parameters. This is reason why we have almost same
value of x2_;.

For most of other injected signals in Dimmelmeier’s catalog, we obtain the sim-
ilar results. Thus, we conclude that the waveform reconstruction is possible with
sufficient accuracy.

6. Summary

We presented a method of waveform reconstruction with the HHT. We used the 136
burst GW waveforms from Dimmelmeier’s catalog® and the simulated time-series
noise data of Advanced LIGO*. From the results of the wave reconstruction with
HHT, the reconstructed waveforms with good accuracy were obtained from only one
detector data. The physical parameters of rotating stars are likely to be determined
with sufficient accuracy.

In this paper, we used simulated Gaussian noise of Advanced LIGO. How-
ever, the noise of real laser interferometer detectors show non-Gaussianity and
non-stationarity. Therefore, we are planning to apply our method to real laser
interferometer data in the near future.
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