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INTRODUCTION

A great deal o f in terest, both theoretica l and experim ental, has been 
devoted recen tly  to the study o f h igh -energy interactions. This interest has 
been greatly  stim ulated by the valuable application o f the resu lts obtained 
by R egge in potential scattering to h igh -energy e lastic scattering. This 
paper w ill d iscu ss  an approach to h igh -energy physics which is  to som e 
extent com plem entary to the one based  on Regge poles and has the foUowing 
features:

(1) It is  based  on a m odel fo r  h igh -energy interactions obtained as the 
natural generalization  o f the peripheral m odel which has been su ccessfu l 
in understanding many features o f in teractions between 1 ~  3 GeV. This 
m odel d escr ib e s  the h igh -energy co llis ion s  as the resu lt of the combination 
o f a la rg e  num ber o f  low -en ergy  in teractions.

(2) The techniques used to evaluate the asym ptotic lim its are based 
on the d irect study o f the lin ear integral equations of the m odel and do not 
involve the use o f analytic continuation in the angular momentum explicitly .

(3) The m odel allow s an estim ate of the main features both o f e lastic 
d iffraction  scattering and o f m ultiple production . The resu lts concerning 
e lastic  scattering  are c lo se ly  analogous to the ones obtained on the basis 
o f R egge p o le s .

In o rd er  to explain the m athem atical techniques in the sim plest possib le  
m anner we have d iscu ssed  in detail (Section 1) their application to potential 
scattering which is  a very  useful "la b ora tory " fo r  theoretica l physicists. 
Section 2 deals with the pred iction  o f the m odel fo r  e lastic  d iffraction  sca tter­
ing and with the re la tiv is t ic  tw o-body equation. Finally in section  3 the d if­
ferent p red iction s concern ing m ultiple production are d iscussed .

The paper by Stroffolin i* is  com plem entary to the present one since 
the m athem atical techniques which can be used in ord er  to evaluate the d if­
ferent " tr a je c to r ie s "  both in potential scattering and in fie ld  theory are d is ­
cu ssed  th ere .

1. POTEN TIAL SCATTERING

We shall con sid er the case  o f potential scattering firs t . C onsider the 
transition  m atrix  elem ent 0 (1 ? ,TcQ) satisfying the L ippm ann-Schwinger equa­
tion

*  These proceedings.
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$ (k ,k 0) = V(k, k „) + - i -3  f  V(k, k' ) — <&(k'  k0)d3k' (1.1)
(2 „ ) J k -k 2-irj

w here V(fc, Ic0) rep resen ts  the F ou rier  transform  of the static potential. We 
r e c a ll  that

$(k , iT0)=<k|v|50 >

w here |iT)>is an eigenstate of the fr e e  Hamiltonian and pc0 >̂an eigenstate 
o f the total Ham iltonian corresponding  to m om enta £  and ko respectively .
We shall define:

u = k 2, s = k 2, t = - (5  - 5 0)2. (1.3)

On the m ass shell, i. e. fo r  |iT|2= pc0 |2, we obtain the usual scattering am pli­
tude

f(k2c o s 0 )  = $£|2=|--|2 (iT0,ic). (1.4)

A ssum e now that the potential V is  given by a superposition  o f Yukawa p o­
tentials:
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v { K k l - J  (1.5)
t 0 + (k  - k ' )

We in sert in the right-hand side o f Eq. (1 .1) the follow ing "A nsatz":

_  _  , p <P(k2, k2 t ')d t ' r <p(u, s , t ') d t '
* f c k 0) “ 7 j  --------^ T = - J — ------------- • (1-6)

t ' + (k - k 0) t ' - t

W e in sert E qs. (1 .5) and (1 .6) into Eq. (1.1). The integral on d3k ' can be 
separated into a rad ia l and an angular part giving

JJJdt0v(t 0)dt'du'cp (u ', t' ,  s )J- d3k/ 6(k '2-u)

[ t 0 + ( f ? - K ') 2 ] [ t ' + (ic '-5o )2]

The in tegra l on d3k ' can be perform ed  by standard techniques giving
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w here

and

T,  e U t - s F t ' - s T t o ) e (A )
K =  7 a (1.7)

t0 + u + u ' t+  s + u

A = tfl + u + u ' u '
2

t + s + u t '  + s ' + u'

t + s + u
(1.8)

so  that we finally  get the fo llow ing integral equation fo r  the spectra l function 
cp:

<P (u ,t)»v(t )+Jf Q(u, t; u ', t ')  (1.9)
U U  U  - S  - 1 TJ

w here

Q (u ,t ;u ', t ')  = - —  MC (u, t ;u 't ' ; t  )v (t  )dt . (1.10)
87r2

Let us now d iscu ss  the p rop erties  o f Eq. (1.9)(which has been obtained 
from  (1 .1) through the transform ation  (1.6)).

We see that the ro le  o f the kernel K is  essentia lly  to fix , (through the 
6 functions) the boundaries o f the phase space in which the integration v a r i­
ables t , u  can vary , fo r  given values o f t and u. In particu lar, the equation 
A = 0 is  a quadratic equation in u , w hose solutions are the minimum and 
m axim um  value which u ' can attain fo r  fixed  t, u and t '.

The lim itation  \ /t )« /t0 + s /t ' has a very  im portant effect on the structure 
o f the equation. If we so lve  Eq. (1. 9) by m eans o f an iteration procedure:

cp(u,t) = ^ t p n(u ,t), (1.11)
n

<P0 (t) = v(t), (1. 1 2 )

V i W =J J  Ö ,(u ,t ;u 't / )<pi(u ' , t / )du/ dt/ . (1 .12.a)



3 5 0 S. FUBINI

This lim itation  has the consequence that fo r  each finite value of t only a 
finite num ber <Pn w ill be different from  zero . So fo r  each finite t the p e r ­
turbation expansion fo r  <P(t) not only con verges but also stops after a finite 
num ber o f te rm s. This might at fir s t  look rather paradoxical, since we 
know that the perturbation se r ie s  fo r  the transition  m atrix element

is  indeed divergent in all ca ses  in which bound states are present. The re a ­
son of this paradox is  easy to understand: in the spectra l integral (1.13) 
the integration goes until infinity and the num ber o f <pn also becom es infinite. 
This m eans that fo r  fin ite values o f t the perturbation se r ie s  fo r  $ (t) con ­
tains an infinite num ber o f term s.

T hese argum ents suggest that the behaviour o f <p(t) when t-*» must be 
very  in teresting  and is  in som e way connected with the p resen ce  of bound 
states o r  reson an ces, since it is  the only p oss ib le  cause fo r  the divergence 
o f the perturbation  se r ie s  o f the S m atrix . We shall th erefore  concentrate 
our attention on the prob lem  o f finding the lim it o f

when t-» oo and the num ber o f te rm s o f the se r ie s  likew ise goes to infinity.
It w ill be seen in the next section  that the re la tiv istic  analogues of the 

<Pn(t) have a very  im portant physica l meaning. In ord er to obtain this asym p­
totic  lim it we con sid er the fo rm  taken from  E qs. (1.7), (1.8), (1.9) and (1 .10) 
fo r  la rg e  values of t. F irs t  o f all we note that, fo r  convergent form s of the 
potential (1.5), the integration on u ' is  dominated by values o f u ' o f the order 
o f ß2; this can be checked d irectly  on each term  o f the iteration se r ie s . So, 
fo r  very  la rg e  values o f t we can d isregard  u, u ' and s as com pared to t in 
the determ inant A. We thus get fo r  A the sim plified  form :

A =» -

u

tp + u + u ' 
2

t
2

to + u + u'

2

t
2

2

Note that we have not d isregarded  t' as com pared to t since the ratio x = t '/ t  
can indeed be o f the ord er  o f 1. M oreover, we have assum ed the spectral 
function v(t) to tend to z e ro  fo r  t (-* » ( in  ord er to give a convergent integral 
(1 .5)) so that fo r  la rge  t the contribution o f this term  to the r . h. s o f Eq. (1.9) 
w ill be neg lig ib le . Thus we are led  to the follow ing asym ptotic equation:
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(1.15)

w here

Q J x ,  u, u )  = ~ ~ f '
0 [u ' - u x - t 0x / ( l  - x ) ] r ( t 0)dt0

(1.16)
87r2 ( 1  - X ^ t u '  - u x - t 0x / ( l  - x )]1/2

and where x = t ' / t .  The asym ptotic equation [E q . (1.15)] sa tisfies  a very  
im portant p roperty ; it is  invariant under the dilatation

This p roperty  w ill be com m on to a ll the asym ptotic equations we shall be 
con siderin g  and enables us to obtain a solution o f (1. 15) in the form :

Equation (1.19) is  an hom ogeneous linear integral equation o f the 
Fredholm  kind giving r is e  to an eigenvalue problem . F or a fixed value’ of 
the total energy s,the equation is  satisfied  only in correspondence with well 
defined values of a . F or s > 0, i. e. in the scattering region , the presence of 
the u ' - s - irj denom inator w ill lead to com plex  values of a.  F or s < 0  the 
denom inator u - s cannot vanish and so  the eigenvalues w ill be rea l. The 
eigenvalue o f a having the la rgest rea l part is  o f particular interest since 
th is g ives r is e  to the dom inating term  as t -> oo.

Let us sum m arize the resu lts  obtained. We have started from  the usual 
Lippm an-Schw inger equation [E q . (1. 1)] and we have transform ed it into 
Eq. (1. 9) fo r  the spectra l function ? (t ) . We have then considered  the " r e ­
duced" [E q . (1. 15)] obtained by taking the la rge  t lim it on Eq. (1.9). Finally 
the solution  o f Eq. (1.15) leads to the asym ptotic form  (1 .18 ) where the 
fundamental exponent a  is  determ ined by the hom ogeneous equation ( 1 .2 0 ).

t -> Const, t, 

t'-> Const, t'. (1.17)

cp (u ,t)= fa(u)t
a

(1.18)

w here fa (u) sa tis fies  the equation

(1 .19)

w here

0 [u ' - u x - t Qx / ( l  -x ) ]
---------- ------------------------- (1 .20)
[u ' - u x - t 0x / ( l  -  x )]1/2
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We wish to em phasize the heuristic ch aracter o f the derivation of 
Eq. (1.18) s in ce  the p roced u re  o f taking the asym ptotic form  of an equation 
in o rd er  to obtain the asym ptotic solution., although frequently used by physi­
c is ts , is  not a r ig orou s  one. We shall, how ever, show that the use of this 
p roced u re  is  indeed justified  in our ca se  and that E qs. (1.18) and (1. 19) lead 
to the co r r e c t  asym ptotic lim it o f <P(t). We shall now turn to the problem  of 
determ ining the asym ptotic lim it of the scattering amplitude 4> itself, r e ­
lated to <P by the d isp ersion  integral (1. 6). F or  convergence reasons this 
d isp ers ion  relation  has actually to be written down with m subtractions, 
w here m  is  the m inim um  integer greater than Re o (s )

ra 1 ir j 2,m, ,  .
iiH (t - t )

(1.21)

where Pm-l (t) is a polynomial in t with maximum power (t-1).
F rom  Eq. (1. 21) we obtain the asym ptotic form  fo r  i>(t) by making the 

fo llow ing  approxim ations: f ir s t  o f all we substitute fo r  <p(t) its asym ptotic 
fo rm  (1.18) arguing that term s whose asym ptotic form  is  sm aller than (1.18) 
cannot contribute to the asym ptotic form  of $ (t). We then extend the inte­
gration range betw een 0 and °o since the contribution between 0 and n is 
neglig ib le . F inally we neglect in Eq. (1.21) the subtraction polynom ial (whose 
m axim um  pow er is  m -1) and get:

fl-./n m-a a> • ,/o m-ct
^ ( t ' )  ( t ' - t )  J (Z) ( z - 1 )

The in tegra l in z is  a w ell-know n one (see the theory of the T function) and 
we finally  obtain:

i i r o (s )

4>as( M , u )  = f a(u) — - . ^ t “ « -  (1.22)

The asym ptotic fo rm  (1.22) co in cides com pletely  with resu lt of Regge, based 
on theory  o f continuation in the angular mom entum variable.

Equation (1.22) now c lea r ly  shows the relation  between the asym ptotic 
behaviour o f <p(t) and the bound state prob lem . Indeed we see that the am pli­
tude $as has p o les  in s in correspon dence  to values o f s fo r  which

o (s )  = S,

i  being any p ositive  integer. Those p o les  correspon d  to bound states or 
reson an ces (depending on whether they corresp on d  to rea l or com plex s) 
in states o f angular mom entum  £ . (this is  because the coefficien t t* r e ­
presen ts the asym ptotic lim it o f Pj (co s  0)). This m eans that Eq. (1 .19), 
which determ ines a , a lso  leads through Eq. (1.23) to a determ ination of the
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bound states and reson an ces of the problem . Stroffolin i has shown that fo r  
en tire values o f a, Eq. (1.19) is  just a different fo rm  o f the Schroedinger equation 
fo r  bound states and particu larly  suited fo r  continuation in the com plex angu­
la r  m om entum .

This resu lt fu lly  con firm s the validity of the whole p rocedure which has 
led  to the asym ptotic lim it (1.22). Indeed a scattering amplitude has the 
sam e p o les  in s independently on the value o f t and hence also in the lim it 
t -» oo. So the fact that fo r  or en tire ,E q .(l. 19) co in cides  with the exact Schroedinger 
equation fo r  bound states con firm s that Eq. (1.22) gives the co rre c t  asym p­
totic  lim it o f <£>(s, t, u).

2. RELATIVISTIC TW O-BOD Y PROBLEM

The sim plest re la tiv istic  generalization  o f the potential m odel d iscussed 
in the p rev iou s section  is  the Bethe-Salpeter equation :in the ladder approxi­
m ation. This equation is  sum m ing the se r ie s  o f graphs shown in F ig. 1 which 
rep resen ts  e lastic  scattering

w here 2 A is  the total m om entum o f the system  and Q and N are the r e ­
lative m om enta in the in itial and final states resp ective ly . The Bethe-Salpeter 
equation has the form

(2. 1)

w here qj, q2, nx, n2 are the in itial and final m om enta. 
We define

(q j+  q2) / 2 = (nj + n2)/2 = A 

(Qj - %)/2 = Q •

(nx -n 2 )/2  = N.

(2. 2)

( 2tt) [(A+<p)2-#i2][ (A - q»')2 - /i2!

w here the "potentia l" V is  the propagator o f the system s exchanged between 
A i and A 2. If what is  exchanged is  a single particle :

V = 'g 2/ [ ( Q - Q ') 2 + m 2].

If a system  of p a rtic les  is  exchanged, then V is  represented by a weighted 
sum of propagators.
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Finally ;u rep resen ts  the m asses  of A x A 2 (which fo r  sim plicity  are assumed 
equal). The analogy between the re la tiv istic  four-d im ensional scattering 
equation, [E q . (2. 3)], and the non re la tiv istic  one d iscussed  in the previous 
section  is  quite evident. So the method we shall use to treat both equations 
w ill be c lo se ly  analogous.

T here is , how ever, a very  im portant d ifferen ce  because of the field  
th eoretica l nature o f Eq. (2. 3). The sam e amplitude 4 d escr ib es  at the same 
tim e the reactions

(D; A ^ A - A j + A , ,

and

(II); Ai + Ä ^ A 2 + Ä 2.

The in itial m om enta fo r  this second reaction  are q2, - n2 and the final m o ­
m enta - q^ n2 so  that in th is new channel 2 A now represents the momentum 
tran sfer  and Q +  N = qx+ n2 = q 2+ n2the total m om entum .

If we define

4 A2 = - t  and (Q +  N )2 = s (2. 5)

we have:
In channel I: t is  the square of the CM energy, s the momentum transfer; 
In channel II: s is  the square o f the CM energy, t the momentum transfer. 

(The notation h ere is  adapted to channel II). The existence of the substitution 
ru le  is  o f the utm ost im portance fo r  the physica l interpretation of the asym p­
totic  lim it o f the B. S. equation. Indeed scattering in channel I has a strong 
analogy with potential scattering so that we shall find the asym ptotic lim it 
fo r  sm all energy t and fo r  mom entum tran sfer s oo. On the other hand, 
s p lays the r o le  of energy in channel II and th ere fore  the asym ptotic result 
can be in terpreted  as lim it o f the A i+  A j -» A 2 + A 2 amplitude fo r  large values 
o f energy s and sm all mom entum transfer t.

Let us now d iscu ss  the asym ptotic solution o f Eq. (2. 3). We shall only 
sketch the m ain points, sin ce  it is  very  analogous to potential scattering.
We define the virtual "m a s s e s "  of qj, q 2 as:

q\ = (Q+  A)2 = - u lt

(2. 5a)

q2 = ( Q - A )2 = -u 2 

and we introduce fo r  4> the ansatz:

r.cp(s',u  u t)
4>(s . u ^ . t ^ - J -------- 7̂ 7 ^------ d s '. (2 . 6 )

The in tegra l equation obtained by substituting Eq. (2. 6) into Eq. (2. 3) is:
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cp(s, ur  i^ , t) = v (s ) + J Q(s, ur  u2; s ',  u ', t)cp(s', u ', û , t)ds 'du 'du ', 

Q (s, Uj, u2; s ',  Ul', t) = j - 4f  d s0v (s 0)K(s, u2; s ',  u ', u ,̂ t, sQ )

3 5 5

(2 .7 )

K = /  d4Q 6 [ (Q - Q ')2 - s 0 ]6 [ (Q '+ A )2+ u '] 6 [ ( Q '-  A)2+ u ' ]

(2 . 8 )

• 6 [(Q + N )2- s ' ]  = ( l /8 )  (A )A /Ä . (2 .9 )

u r u 2

V U2

'  4- '
V u2 + 2

u - u1 2

1 2  1 2  1 2 ,  
~ 2------------2--- “  + So

0  s '- ju2 +
W

ui+u2 + ui+u'2 + t
- + s„ s - ß  +

2 V U2 +  t

u  Is -n  + •
“1 2

u  +  U  + 1 t 2 1 2
U + U + —  S - U +  --------
1 2  2 2

u, + u„+t
2m2 - -  
M 2

(2 . 10)

The analogy with the correspon din g  potential E qs. (2.8), (2.9) and (2.10) 
is  quite strik ing. The grea ter  com plication  o f the new equations is  naturally 
as result o f the fou r-d im en sion a l nature of the rela tiv istic  problem .

The kernel K vanishes fo r  ./"£ «C/’S' +N/~s0 , ensuring that fo r  a finite value 
o f s the se r ie s  obtained by iterating Eq. (2.7) stops after a finite number 
o f te rm s . The term s of the iteration  se r ie s  can be represented by the graphs 
of F ig . 1 in which each exchanged particle  propagators l/[($  -$ ')2 - s0] are 
substituted by 2ff6[ ($ -$ ')2 - so] . In other w ords, in the iteration ser ies  of 
cp a ll exchanged p a rtic les  are taken on the m ass shell. The physical meaning 
of this im portant fact w ill be d iscu ssed  in the next section.

F ig.l

W e turn now to the problem  of obtaining the asym ptotic lim it of cp(s, t, ux, u 2). 
H ere there w ill a lso be nothing new, as com pared  with the preceding section.
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W e can d isregard , in the determinant A,  up  u2, u£, t, s0 as com pared to
s . W e then get:

t_ 
' 2

1 2

Ul+U2+ |

1 2  1 2  1 2
- + S„

U -  U1 2

U + U  + U  +  U + t  1 2  1 2
+  S„

V u2+ 2

(2 .11)

w here x  = s'/s . M oreov er  we can neglect the contribution of v(t0) fo r  large s 
so  that we get the asym ptotic fo rm  o f the equation

<pas(s ,U l, u 2) - -  Q J x , u v u2;u'1u'2) •
(u ' + ju2 )(u' +^2)

(2 . 12)

w here

w here

i P 0 [ H(z, z , z )]
Qas= -------- J  v (s0)d s fl ---------------- (2.13)

2(2?t)J [H (z , z j , z 2)]

H (z ,z  , z  ) = - ( l / 4 ) [ z  + z  + z  - 2zz - 2zz - 2z z 1 (2.14)1 2 ' 1 1 2  1 2 1 V  '

and z = - t ( l  - x ) ,

\  = u' - u i x - s 0x / ( 1 - x ) ,  (2.15)

Z2 = U2 - U2X - S0X/< 1 - X)V

W e re ca ll fro m  elem entary geom etry that ( l/2)Jtt  represents the area of 
the plane triangle  w hose sides arejz, Jzlt>fz2- A lso here we find the r e ­
m arkable invariance o f the equation under the transform ation :
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s -> e s and s '- »  e s ' ,  (2.16)

which a llow s to fa c to r iz e  in the form

'Pas(s ' u i ’ u2 ' t > = sa (0 fa^u i ' u2 ' t ^

w here f  sa tis fies  the hom ogeneous equation

f  (u7, u ' ) du7 du' 
f> J *  U 2> = / R J U l' u 2* U i> U 2> 1 ~  • <2 ' 1 8 )

J (u ;+ n 2)(u; - M 2 )

1  r  r 1 e[ H( z . v z 2 >J
Ra(u i / u 2,u 1Ju,2) = --------4 / v ( s 0)d s 0 /  dx

O/Ô  j  JO
(2.19)

The eigenvalue Eq. (2 .13 ) determ ines the exponent a as a function of t. F or  
fixed  values o f t such equations have a d iscre te  spectrum  o f eigenvalues.
Eq. (2 .1 3 ) is  identical with the correspon din g  result in potential scattering 
and co in c id es  with that obtained by extending the R egge results in relativistic 
th eory . The use o f the optica l theorem  gives fo r  the total c ro ss -s e c t io n :

a = f ( -M 2 -M2 )S a(0)' 1. (2 .20 )

The experim ental evidence fo r  the high energy total c ro s s -s e c t io n  indicates 
that the actual value o f a (0 ) is  not very  different from  1 .

3. THE M U LTIPERIPHERAL MODEL

We shall d iscu ss  in m ore  detail the physica l meaning of the ladder graphs 
treated  in the last section . This w ill enable us to gain a deeper understanding 
o f the s ign ifican ce o f the form ulae fo r  e lastic  scattering obtained and at the 
sam e tim e to d erive  a general m odel fo r  the inelastic p ro ce sse s  taking place 
at high energy.

W e shall con sid er the ladder graphs o f F ig . 1 and we explicitly  re fe r  to 
channel II appropriate to high energy low momentum tran sfer scattering. 
C onsider the am plitude cp in the forw ard  d irection  whose structure is  shown
in F ig . 2. In channel II, the am plitude cp is  just the absorptive part o f the full
amplitude $ so that the forw ard  elastic  amplitude

<p(s, 0, u, u) = A (s ,u ) (3.1)

is  related  to the total c r o s s -s e c t io n  by the w ell known optical relation:

A ( s 1 - v 2) = o T/ 2 q J s =  aT/s (3 .2 )

w here q= (1 /2 )^ /T -um2 is  the CM mom entum  of the incom ing p article .
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E q. (3.2) shows that if one m akes a m odel fo r  high-energy elastic scattering, 
one a lso  im p licitly  con stru cts  a m odel fo r  the different production p rocesses  
w hose usm  g ives r is e  to the total c r o s s -s e c t io n  appearing in Eq. (3.2). This 
is  quite c le a r  physica lly , sin ce we know that at high en ergy,elastic scattering 
is  essentia lly  shadow scattering so that the form  o f the d iffraction  peak 
depends essentia lly  on the m ultiple production p ro ce sse s  responsible fo r  the 
absorption . If one look s at the graph in F ig . 2 one sees that the production 
graphs giving r is e  to the d iffraction  pattern d iscu ssed  in the last section 
a re  the ones shown in F ig . 3. W e are th ere fore  led to a m odel fo r  multiple 
production  which is  the generalization  to very  high-energy of the peripheral 
m odel of C hew -Low , D re ll and Saltzm an. The external outgoing lines r e ­
present groups of p a rtic les  w hose m ass distribution is  given by the spectral 
function v (s 0) which can be related to low energy c ro s s -s e c t io n s .

The absorptive am plitude A (s , u) is  obtained from  (s, u x, u 2, t) by making 
Ui = u2 and t = 0. So that in the high-energy lim it the energy fo r  A (s, u) is 
particu larly  sim ple (see F ig . 4):

Fig. 3

A (s ,u ) = —
16tt s

du' A & ü 1
l ' a .  z v  (U + H )

(3.3)

P'

Fig. 4
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So, by applying the usual factorization :

A (s , u) = s “ (0)f  (u) (3.4)

one obtains:

i p  pi poo ) dU
fa(u) = ------7 / v (s o ) dsO / x“ dx / du/---------2 ~ 2  * (3 .4 a )

16 ir3 J  Jo (u + h )
U* 1-x

E stim ates o f the exponent a using Eq. (3 .4 ) with a "potentia l" suggested by 
low -energy c r o s s -s e c t io n s  lead to values which are not inconsistent with 
the experim ental value a s  1.

Let us now d iscu ss  som e of the main trends o f high-energy co llis ion s  
which can be p red icted  on the basis  of the m ultiperipheral m odel. F irst of 
a ll, let us con sid er  the m ultiplicity of secon d aries . This w ill be proportional 
to the average num ber o f "b lu bs" in the graph o f F ig . 3 since the number 
o f p a rtic le s  com ing from  each blub is , in our m odel, constant. The evaluation 
o f the behaviour of such "blub m ultip licity" is  very easy. We w rite the "p o ­
tentia l" in the fo rm

v (s 0)= X u (s 0) (3.5)

whfere u (s 0) is  norm alized  to + /u ( s 0) d s 0 = l.T h e n  we w rite the m ultipe­
riph era l s e r ie s  exhibiting exp licitly  the X dependence

A (s )= ^ X nan(s) (3.6)

w here X"an/A  is  the probability  fo r  production o f n blubs. Thus the m ulti­
p licity  can be w ritten as

z £  nXna (s)

< N > -X( ^ ) /A ' 7 ^ 7 r- Mx '  £ a  a (s)n' '

But now the forw ard  on -m a ss  shell amplitude is  (see E q.(3„4))

A (S lV ) =  C (X )saW (3.8)

w here the param eter X enters through the functions C (A ),a(X ), so that using 
Eq. (3.7) we get:

We have obtained the im portant result that the m ultiplicity o f secondaries 
grow s with the logarithm  o f the incom ing energy. This is  not inconsistent 
with experim ent, though the present data are  still too rough to distinguish 
betw een a logarith m ic o r  a slow  pow er ( ~  s1//4)behaviour.
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Let us now con sid er the average spectra  o f the produced p a rtic les . Let 
us fir s t  look  at the spectrum  o f that final line which is  d irectly  connected 
with the incident p a rtic le  (first line in the m ultiperipheral chain). The la b o ­
ratory energy o f this system  (see  F ig . 1) is  given (in the high-energy lim it.) 
by:

E'= ( s  -  s')/2ß ■ (3.10)

The energy distribution o f th is particle  is  sim ply obtained by adding 
in the integrand on the r , u, s o f Eq. (3, 3) an extra 6 (E '-  (s -  s')/2n):

d a  d A (s -/u 2) — t  m s — - —dt' dE

m— 3 f y (  so ) dso1 Rir w167T

du 6 (E '- f  s - s ' ]  / 2 iu )A (s /,u ')

2 . s0* 
T*x

/ / 2 \2 (U +H )

(3.11)

and using the asym ptotic fo rm  (3.4) fo r  A:

^  y  /v (s  ) d s 0 / V d x  f  d~ f i ( e - l - x )  (3.12)
de 1 6 /  J +

w here

E
€ E

is  the ratio betw een the secondary energy E and the prim ary energy E= s/2n. 
So we have the very  sim ple resu lt:

( d 7 - ) /CTT= F <€ )- (3 -13)

The shape o f the energy specturm  o f the firs t  secondary is  com pletely in­
dependent o f the value o f the prim ary energy. In particular the inelasticity,
i . e .  the fraction  o f energy taken by the firs t  secondary, is  independent on 
the prim ary  energy. The spectrum  we are studying is  particularly  easy to 
m easu re  when the incident partic le  is  distinguishable from  the secondary 
p ions. This is  the ca se  fo r  nucleon co llis io n s , which have been extensively 
studied either with a cce le ra to rs  o r  co sm ic  rays . The analysis of high-energy 
je ts  y ie ld s  that the average energy ca rr ied  away by the nucleon in the lab 
system  is  nearly  a constant fra ction  o f the incident energy, which is  just 
the p red iction  o f our m odel.



ASYMPTOTIC LIMITS 3 6 1

It is  a lso  easy to  study the spectrum  o f secon daries , regard less  of their 
p osition  in the m ultiperipheral chain. We shall not report here the ca lcu ­
lation  which does not o ffe r  any new difficu lty and only give the resu lts.

Let us ca ll k  L and k L the longitudinal and tran sverse  mom enta o f the 
secondary . If k  l «  E,the spectrum  can be written in 'the form

F(k2)dkL/ k L (3.14)

w here F(k|) is  a u n iversa l function independent both o f E a n d o fk L and strongly 
peaked fo r  sm all values o f k T. T hese  resu lts , especia lly  the separability of 
the tra n sverse  and longitudinal spectra , are  not inconsistent with present ex ­
perim ental data.

4. CONCLUSIONS

W e w ish now to sum m arize brie fly  the different resu lts and their physi­
ca l m eaning. We have d iscu ssed  the p red ictions fo r  the different high-energy 
p r o c e s s e s  obtained on the basis  o f the m ultiperpheral m odel. It has been 
p oss ib le  to sum the whole se r ie s  o f m ultiperipheral graphs by m eans of a 
lin ear integral equation fo r  the o ff-m a ss  shell absorptive amplitude cp(s, Uj, u2, t). 
The kernel o f this integral equation depends on the low -energy  amplitude 
v (so ) . The knowledge of this amplitude is  sufficient to allow the computation 
both o f the elastic  scattering and of m ultiple production. The on -m ass shell 
am plitude <p(s, - m 2, -M2, t) leads to the e lastic  d iffraction  c ro ss -s e c t io n s , 
w hile we can evaluate the average distributions o f particles  in m ultiple p ro ­
duction on the basis  o f the forw ard  o ff -m a ss  shell amplitude cp(s, up u2, 0).

The asym ptotic behaviour o f the amplitude is  obtained by considering 
the h igh -en ergy  lim it of the in tegral equation. In this lim it, the integral 
equation shows a very  rem arkable  feature which is  independent of the sp e ­
c if ic  fo rm  o f the am plitude A R. The kernel depends only on the ratio s '/s ,  
so that the equation is  invariant under the transform ation  s -» cs , s'-> c s '
T h is allow s us to fa cto r ize  the s dependence of the amplitude in the sim ple 
fo rm :

<p(s, u1, u 2,t )= s  u 2,t ) .  (4.1)

The p rob lem  is  then reduced to the solution o f an hom ogeneous integral 
equation fo r  f(u j, u2,t ) ,  w hose solution determ ines both the exponent a(t) 
and the eigenfunction f(u x, u2, t ) .  As already pointed out, both eigenvalues 
and eigenfunctions have a physica l meaning: the eigenvalue gives the w ell- 
known shrinking o f the d iffraction  peak, w hereas the eigenfunction is con ­
nected with the average p rop erties  of m ultiple production. A  form  of the 
scatterin g  am plitude analogous to E q. (4.1) has been obtained by many people 
by adapting the resu lts  o f R egge in potential theory to h igh-energy scattering. 
This analogy can be understood by con siderin g  that the m ultiperipheral graphs 
observed  in the c ro sse d  channel are the re la tiv istic  analogues of the different 
iterations of the potential m odel used by R egge.
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The pred iction s obtained by m eans o f the m odel can be divided into two 
ca tegories :

(a) Many general trends of h igh-energy co llis ion s  depend only on the 
transform ation  property o f the integral equation which is  a consequence of 
the topology o f the m ultiperipheral graphs. T hese general trends do not 
in fact depend on any sp ecia l ch o ice  of the low -en ergy  amplitude v (s 0):

(b) The sp ecific  n um erica l answ ers (as, fo r  exam ple, the value of the 
total c r o s s -s e c t io n s )  do, o f  cou rse , depend on the ch oice  of v(so) and on 
the m anner in which v (s 0) is  continued off the m ass shell.

W e shall now sum m arize the different conclusions obtained on the basis 
o f the m ultiperipheral m odel including those which have not been discussed in 
th is paper.

(1) E lastic  amplitude

The h igh -energy behaviour of the scattering amplitude $(s, t) is

« j (s ,t )  = s ‘ i(0 C j(t) [ - cotg  (7r0j (t)/2 ) +i] (4.2)

fo r  sym m etric am plitudes under cross in g  s « S ,  as, fo r  instance, absolute 
e lastic  scattering, and

“j (')
®. ( s , t )= s  C.(t) [ tg (net. (t )/2 ) + i] (4.3)

fo r  antisym m etric am plitudes under the cross in g . We obtain d a /d t > 0. The 
exponent fo r  the charge exchange amplitude is  always sm aller than the one 
fo r  the purely  e lastic  one; E qs. (4.2) and (4.3) turn out to be independent 
of the scatterin g  p a rtic les , apart from  the value o f C (t). The C(t) can be 
fa cto r ize d  in such a m anner that the relation between different amplitudes 
(dom inated by the sam e pole) is  the follow ing:

* xy (s , t ) / * 2y(s . t) = ®xw (s . t ) / « zw(s . t)

w here x, y , z and w represent any kind o f p a rtic les .

(2) Inelastic scattering

The average p rop erties  o f inelastic scattering are a lso  very  sim ple and 
depend only on the general fo rm  of Eq. (4.4) The m ultiplicity grow s with 
the logarithm  o f the energy, and the inelasticity is energy independent. The 
sp ectra  o f the secondary p a rtic les  are given by

N(k) d4k= F (k2, k*5 d £ Tdk2(dkL/ k L)

fo r  kL «  the in itial energy. k L (kT and k L being the tran sverse  and longitudinal 
m om enta), w here F (k 2, k2T ) is  a universal function independent both of s and 
k[_, and strongly peaked fo r  k 2T 4  p 2.

T hese resu lts , esp ecia lly  the separability of the tran sverse  and longi­
tudinal spectra , a re  not inconsistent with present experim ental data.
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