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INTRODUCTION

A great deal of interest, both theoretical and experimental, has been
devoted recently to the study of high-energy interactions. This interest has
been greatly stimulated by the valuable application of the results obtained
by Regge in potential scattering to high-energy elastic scattering. This
paper will discuss an approach to high-energy physics which is to some
extent complementary to the one based on Regge poles and has the following
features:

(1) It is based on a model for high-energy interactions obtained as the
natural generalization of the peripheral model which has been successful
in understanding many features of interactions between 1~ 3 GeV. This
model describes the high-energy collisions as the result of the combination
of a large number of low-energy interactions.

(2) The techniques used to evaluate the asymptotic limits are based
on the direct study of the linear integral equations of the model and do not
involve the use of analytic continuation in the angular momentum explicitly.

(3) The model allows an estimate of the main features both of elastic
diffraction scattering and of multiple production. The results concerning
elastic scattering are closely analogous to the ones obtained on the basis
of Regge poles,

In order to explain the mathematical techniques in the simplest possible
manner we have discussed in detail (Section 1) their application to potential
scattering which is a very useful "laboratory' for theoretical physicists.
Section 2 deals withthe prediction of the model for elastic diffraction scatter-
ing and with the relativistic two-body equation. Finally in section 3 the dif-
ferent predictions concerning multiple production are discussed.

The paper by Stroffolini* is complementary to the present one since
the mathematical techniques which can be used in order to evaluate the dif-
ferent "trajectories' both in potential scattering and in field theory are dis-
cussed there,

1. POTENTIAL SCATTERING
We shall consider the case of potential scattering first. Consider the

transition matrix element ®(K ,1?0) satisfying the Lippmann-Schwinger equa-
tion

* These proceedings.
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0 (k) = VK, k) + 1 f V(k, k)- O (K" Ky)d K (1.1)

(27r) K k% in

where V(§, Eo) represents the Fourier transform of the static potential, We
recall that

(K, Ko) = k[v[k >

where |k >is an eigenstate of the free Hamiltonian and [1_('0 Yan eigenstate
of the total Hamiltonian corresponding to momenta K and Ky respectively.
We shall define:

2 = o 2

2
u=k’, s=kg, t=-(k - k;)". (1,3)

On the mass shell, i.e. for |1?|2= IEO |2, we obtain the usual scattering ampli-
tude

2 - =
f(k cOSs 9) = q’l:lz:‘k'(')lz (ko, k). (1.4)

Assume now that the potential V is given by a superposition of Yukawa po-
tentials:

= v(t, )dt
V(k, k%) = —_— (1.5)
jz > o 2
# t, + (k -k

We insert in the right-hand side of Eq, (1.1) the following "Ansatz':

Voo g oIt | oS, ) |
ok, k )"—f—————-‘,,f — (1.6)
'+ (k- ko) -t

We insert Egs, (1.5) and (1.6) into Eq. (1.1). The integral on d®k’ can be
separated into a radial and an angular part giving

3, 2 2
j] dtov(t j)dt’du’e (u’, t°, S)\[ = d_’k :(k ~u)

[, + (B - B )¢+ ®-K)T

The integral on d®k” can be performed by standard techniques giving

f ks - ) =7er(t ¥, t,0,u", 8) 0
[ty + (& - KPIE + (- E,)7) et
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where
8t -Vt -J10)6 (4)
= 1.
K Ja (1.7)
and
tg+u+u’ Ct+s+u
v 2 2
A=- tg+;+u u t +25+u (1.8)
t+s+u t'+s’+u’ s
2 2

so that we finally get the following integral equation for the spectral function
P

e / s
o0 =v)+ [[ Qutw, vy QMR
where
Qu, tu,t) = 2= [K, (u,tutst ) vit )dt . (1.10)
872 1 o/ Vitg/dy
T

Let us now discuss the properties of Eq. (1,9)(which has been obtained
from (1.1) through the transformation (1.6)).

We see that the role of the kernel K is essentially to fix, (through the
8 functions) the boundaries of the phase space in which the integration vari-
ables t ,u can vary, for given values of t and u. In particular, the equation
A =0 is a quadratic equation in u, whose solutions are the minimum and
maximum value which u” can attain for fixed t,u and t’.

The limitation J/t >»ft0 +Jt" has a very important effect on the structure
of the equation, If we solve Eq. (l.9) by means of an iteration procedure:

Q)(u,t)=Zcpn(u,t), (1.11)

n

P, (t) = v(t), (1.12)

Py 1) i[[Qs(“’ t;u’t) tpn(u’, t')du’dt’, (1.12.a)
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This limitation has the consequence that for each finite value of t only a
finite number ®, will be different from zero. So for each finite t the per-
turbation expansion for 9(t) not only converges but also stops after a finite
number of terms, This might at first look rather paradoxical, since we
know that the perturbation series for the transition matrix element

o (t) =fu22$.t_)_‘it_ (1.13)

is indeed divergent in all cases in which bound states are present. The rea-
son of this paradox is easy to understand: in the spectral integral (1.13)

the integration goes until infinity and the number of @  also becomes infinite.
This means that for finite values of t the perturbation series for ¢ (t) con-
tains an infinite number of terms.

These arguments suggest that the behaviour of ¢(t) when t-»w must be
very interesting and is in some way connected with the presence of bound
states or resonances, since it is the only possible cause for the divergence
of the perturbation series of the S matrix. We shall therefore concentrate
our attention on the problem of finding the limit of

o(t) =zq3n(t) (1.14)
m /

when t- o and the number of terms of the series likewise goes to infinity.

It will be seen in the next section that the relativistic analogues of the
®,(t) have a very important physical meaning, In order to obtain this asymp-
totic limit we consider the form taken from Egs. (1.7), (1.8), (1.9) and (1. 10)
for large values of t. First of all we note that, for convergent forms of the
potential (1.5), the integration on u’ is dominated by values of u” of the order
of u2; this can be checked directly on each term of the iteration series. So,
for very large values of t we can disregard u,u’ and s as compared to t in
the determinant A, We thus get for A the simplified form:

u tgtu+u t
2 2
A fpfu+tu " t7 1.
2 2
t t’
2 . 2 0

Note that we have not disregarded t' as compared to t since the ratio x=t’/t
can indeed be of the order of 1. Moreover, we have assumed the spectral
function v{t) to tend to zero for t» ®(in order to give a convergent integral
(1.5)) so that for large t the contribution of this term to the r.h, s of Eq, (1.9)
will be negligible, Thus we are led to the following asymptotic equation:
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1 q)as (w',t)
q’as (u, t)=t—f Qas(x, u, u') _——dt’ (1.15)

u -s-in

where

6[u’ -ux -t x/(1 - x)Ir(ty)dt,

1 .
Qi w ) < (1.16)
{ 8r° f(l -x2 -ux-tyx/(1 - x)]/2

and where x=t"/t. The asymptotic equation [Eq. (1.15)] satisfies a very
important property; it is invariant under the dilatation
t - Const. t,

1,17
t’- Const. t*, ( )

This property will be common to all the asymptotic equations we shall be
considering and enables us to obtain a solution of (1. 15) in the form:

Pu, t)=f (u)t" (1.18)
where f,(u) satisfies the equation
fa(u')du’
- e T o (1.19
£, (u) fRa(u,u) 5 in ( )
where

olu -ux-tox/(l -x)]

1 lax x®
R (u, u’)= — [ v{t,)dt f -(1.20)
872 0o (1 -x)l/2 [u'—ux-tox/(l-x)]l/2

Equation (1.19) is an homogeneous linear integral equation of the
Fredholm kind giving rise to an eigenvalue problem. For a fixed value of
the total energy s,the equation is satisfied only in correspondence with well
defined values of @. For s >0, i.e. in the scattering region, the presence of
the u’ - s - in denominator will lead to complex values of a. For s<0 the
denominator u - s cannot vanish and so the eigenvalues will be real. The
eigenvalue of @ having the largest real part is of particular interest since
this gives rise to the dominating term as t - o,

' Let us summarize the results obtained. We have started from the usual
Lippman-Schwinger equation [ Eq. (1. 1)] and we have transformed it into
Eq.(1.9) for the spectral function ¢(t). We have then considered the '"re-
duced" [Eq. (1. 15)) obtained by taking the large t limit on Eq. (1.9). Finally
the solution of Eq. (1.15) leads to the asymptotic form (1. 18) where the
fundamental exponent « is determined by the homogeneous equation (1.20),
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We wish to emphasize the heuristic character of the derivation of
Eq. (1.18) since the procedure of taking the asymptotic form of an equation
in order to obtain the asymptotic solution, although frequently used by physi-
cists, is not a rigorous one, We shall, however, show that the use of this
procedure is indeed justified in our case and that Egs. (1.18) and (1. 19) lead
to the correct asymptotic limit of 9(t). We shall now turn to the problem of
determining the asymptotic limit of the scattering amplitude ¢ itself, re-
lated to @ by the dispersion integral (1.6). For convergence reasons this
dispersion relation has actually to be written down with m subtractions,
where m is the minimum integer greater than Re ofs)

m < ’
ot)=P_  + L—f—cp(t—)—dt' (1.21)
TR (¢ - 1)

where Pp.;(t) is a polynomial in t with maximum power (t-1). ’
From Eq. (1. 21) we obtain the asymptotic form for ¢(t) by making the
following approximations: first of all we substitute for ®(t) its asymptotic
form (1.18) arguing that terms whose asymptotic form is smaller than (1.18)
cannot contribute to the asymptotic form of ®(t), We then extend the inte-
gration range between 0 and « since the contribution between 0 and u is
negligible. Finally we neglect in Eq. (1.21) the subtraction polynomial (whose
maximum power is m-1) and get:

™ 7 at 7 dz
CDaS(t)=fa(u) - —m_:&_——=fa(u)t “ma
"ﬂ(t') (t"-t) ﬁ(z) (z-1)

The integral in z is a well-known one (see the theory of the I function) and
we finally obtain:

e ino(s)

e, 1,22
) sin1rar(s)t ( )

%, (s, t,u) =1 (u)

The asymptotic form (1.22) coincides completely with result of Regge, based
on theory of continuation in the angular momentum variable,

Equation (1.22) now clearly shows the relation between the asymptotic
behaviour of @ (t) and the bound state problem. Indeed we see that the ampli-
tude $a5 has poles in s in correspondence to values of s for which

a(s)= 4

£ being any positive integer. . Those poles correspond to bound states or
resonances (depending on whether they correspond to real or complex s)
in states of angular momentum £. (this is because the coefficient t¢ re-
presents the asymptotic limit of Py (cos 8)). This means that Eq. (1. 19),
which determines o, also leads through'Eq. (1,23) to a determination of the
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bound states and resonances of the problem, Stroffolini has shown that for
entire values of o, Eq.(1.19) is just a different form of the Schroedinger equation
for bound states and particularly suited for continuation in the complex angu-
lar momentum,

This result fully confirms the validity of the whole procedure which has
led to the asymptotic limit (1.22). Indeed a scattering amplitude has the
same poles in s independently on the value of t and hence also in the limit
t = o, So the fact that for @ entire,Eq.(1.19) coincides withthe exact Schroedinger
equation for bound states confirms that Eq. (1.22) gives the correct asymp-
totic limit of &(s, t, u).

2. RELATIVISTIC TWO-BODY PROBLEM

The simplest relativistic generalization of the potential model discussed
in the previous section is the Bethe-Salpeter equation in the ladder approxi-
mation. This equation is summing the series of graphs shown in Fig. 1 which
represents elastic scattering

Aj+ApA+A, (2.1)

where 4, 9y, 1, N, are the initial and final momenta,
We define
(q1+ QQ)/Z = (n1+ n2)/2 = 4,
(q,-4,)/2 = Q, (2.2)
(n;-ny/2 =N.
where 2 A is the total momentum of the system and @ and N are the re-

lative momenta in the initial and final states respectively. The Bethe-Salpeter
equation has the form

. . 4 _,
S(Q A, N) = V(QN) + _2_4/ k-V(Q, 9)0(?,A,N)d Q (2. 3)

en)Y [a+9)’ - Lhla-0)-u]

where the ''potential” V is the propagator of the systems exchanged between
Aj; and Aj;. If what is exchanged is a single particle:

V= g?/l(Q- Q)+ m?].
If a system of particles is exchanged, then V is represented by a weighted

sum of propagators.
A (s 0)ds0
V(Q,Q')=f————. (2.4)

.2
(Q-Q) -SO
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Finally 4 represents the masses of A; A, (which for simplicity are assumed
equal), The analogy between the relativistic four-dimensional scattering
equation, [Eq.(2.3)], and the non relativistic one discussed in the previous
section is quite evident. So the method we shall use to treat both equations
will be closely analogous.

There is, however, a very important difference because of the field
theoretical nature of Eq. (2. 3). The same amplitude ® describes at the same
time the reactions

1); A1+ A,l—> A1+ A2
and

(11); A1 + A1—> A2 + A2.

The initial momenta for this second reaction are q,, - n; and the final mo-
menta - qq Ny so that in this new channel 2 A now represents the momentum
transfer and Q+ N = q,+ n; =g+ n, the total momentum,

If we define

4 --tand (Q+NY =s (2.5)

we have:

In channel I: t is the square of the CM energy, s the momentum transfer;

In channel II: s is the square of the CM energy, t the momentum transfer.
(The notation here is adapted to channel II). The existence of the substitution
rule is of the utmost importance for the physical interpretation of the asymp-
totic limit of the B. S, equation, Indeed scattering in channel I has a strong
analogy with potential scattering so that we shall find the asymptotic limit
for small energy t and for momentum transfer s - ©. On the other hand,
s plays the role of energy in channel II and therefore the asymptotic result
can be interpreted as limit of the A+ A} » Ag + A; amplitude for large values
of energy s and small momentum transfer t.

Let us now discuss the asymptotic solution of Eq. (2, 3). We shall only
sketch the main points, since it is very analogous to potential scattering.
We define the virtual "'masses" of q;, g, as:

@ =(Q+ A =-u,

(2.5a)
2 _ 2 _
q,=(Q-4)" =-u,
and we introduce for & the ansatz:
. Q(s’,u,u,t)
1 1Y ,
o(s,uy, uz,t)=;f—-————s, 5 ds. (2.6)

The integral equation obtained by substituting Eq. (2. 6) into Eq. (2. 3) is:
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(s, u, u2,t)=v(s)+fQ(s, u,, uy; s’ ul,u t)o(s’, uj, ug, t)ds’ du dug,(2 )

Q(s,u, u,; 8%, ul,ust) = (227,)4fds0v(s0-)K(s, u, Uy st ulult, 50)22 "
=fd“Q 81(Q- QY - 5,160(Q"+ &)+ uflsl (- &)+ uj]

S N -s71=(1/8) (A)NB,  (2.9)

u - -
t 1 Ve Uy
"2 2 2 0
’ ’ ,
u;-u ot u +u2+u1+u +1 , u, u, tt
5 ul+u2+§ ——————————2 +SO s'-u +——2 .
A=
- +u +tu'tu’+ +u, +
u1 u2 u1 u2 u1 u2 t+ . 2+u1 u, t
D) 3 , S, utu, S -u 5
‘tul+ +u, +
0 S’_M2+,_uz_t s p2+E:_l.._uz_t 2u° t
2 2 -3

(2.10)

The analogy with the corresponding potential Egs. (2.8), (2.9) and (2.10)
is quite striking. The greater complication of the new equations is naturally
as result of the four-dimensional nature of the relativistic problem.

The kernel K vanishes forJs<Js’+/sy, ensuring that for a finite value
of s the series obtained by iterating Eq.(2.7) stops after a finite number
of terms. The terms of the iteration series can be represented by the graphs
of Fig.1 in which each exchanged particle propagators 1/[ (@ -®")2- sy] are
substituted by 2756[ @ -8)2-s9] . In other words, in the iteration series of
¢ all exchanged particles are taken on the mass shell, The physical meanmg
of this important fact will be discussed in the next section.

?1 n1

>

- >Ny

Fig.1

Weturnnow to the problem of obtaining the asymptotic limit of ¢(s, t, u; , us).
Here there will also be nothing new, as compared with the preceding section.
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We can disregard, in the determinant 4, u;, u,,u;,u4,t, s, as compared to
s. We then get:

t ul-ug u-u, .
"2 2 2
u -u’ ¢ u tu tutu +t
‘fult = - - T o+ x
A 2 uru, Ty 2 S
2 (2.11)
u-u u +u +tu'+u’+t
1 e 12 12 +u + L 1
2 2 59 u; iy
0 X 1 0

where x=s/s. Moreover we can neglect the contribution of v{ty) for large s
so that we get the asymptotic form of the equation

¢ (u,u’)du’du’
. as 1 2

st uyup) g [[[Q 6 0y 55070 1 @)
(ug + " )l +u)

where
1 Q[H(Z, Zl"z2 )]
Q= 4fv(so)ds0 — (2.13)
2(2r} [H(z,2,,2,)] -
where
2, 2., 2
= - -+ + - - -
H(z,zl,ZQ) (1/4) z z tz, 2221 2zz2 22122] (2.14)
and z =-t(1-x),
z, = ul' -ux- sox/(l -x), (2.15)
z, = u; Su,X - sox/(l -x).v

We recall from elementary geometry that (1/2)JH represents the area of
the plane triangle whose sides areJz,/z;,Jz,. Also here we find the re-
‘markable invariance of the equation under the transformation:
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s—es and s'—es’, (2.16)
which allows to factorize ¢ in the form
cpas(s,ul,uz,t)=sa([)fa(ul,uZ,t) (2.17)
where f satisfies the homogeneous equation
£ (ul', u;) du; du;

fu,u,)= Ra(ul'u*z'ui'“lz)l—'z_,_ S (2.18)
(W + 1), -47)

6[H(z,z,z2,)]

, ’ 1
Ry (uy,u,, u,uf) = 1 4fv(so)dsof;&x“

2(21) [H(z 2,2 )07

(2.19)

The eigenvalue Eq. (2.13) determines the exponent o as a function of t. For
fixed values of t such equations have a discrete spectrum of eigenvalues.
Eq.(2.13) is identical with the corresponding result in potential scattering
and coincides with that obtained by extending the Regge results in relativistic
theory. The use of the optical theorem gives for the total cross-section:

o=f(-u?-p2)s* 7 (2.20)

The experimental evidence for the high energy total cross-section indicates
that the actual value of @(0) is not very different from 1.

3. THE MULTIPERIPHERAL MODEL

We shall discuss inmore detail the physical meaning of the ladder graphs
treated in the last section. This will enable us to gain a deeper understanding
of the significance of the formulae for elastic scattering obtained and at the
same time to derive a general model for the inelastic processes taking place
at high energy.

We shall consider the ladder graphs of Fig.1 and we explicitly refer to
channel II appropriate to high energy low momentum transfer scattering.
Consider the amplitude ¢ in the forward direction whose structure is shown
in Fig. 2, In channel II, the amplitude ¢ is just the absorptive part of the full
amplitude & so that the forward elastic amplitude

®(s, 0, u, u)=A(s, u) (3.1)
is related to the total cross-section by the well known optical relation:
2y =
A(s, -u )-oT/ZqJ_- o./s (3.2)

where q=(1/2)Js -uu? is the CM momentum of the incoming particle.
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P P
8
)
)
3
8
n n
Fig.2

Eq. (3.2} shows that if one makes amodelfor high-energy elastic scattering,
one also implicitly constructs a model for the different production processes
whose usm gives rise to the total cross-section appearing in Eq. (3.2). This
is quite clear physically, since we know that at high energy,elastic scattering
is essentially shadow scattering so that the form of the diffraction peak
depends essentially on the multiple production processes responsible for the
absorption. If one looks at the graph in Fig. 2 one sees that the production
graphs giving rise to the diffraction pattern discussed in the last section
are the ones shown in Fig.3. We are therefore led to a model for multiple
production which is the generalization to very high-energy of the peripheral
model of Chew-Low, Drell and Saltzman, The external outgoing lines re-
present groups of particles whose mass distribution is given by the spectral
function v(sy) which can be related to low energy cross-sections.

Fig.3

The absorptive amplitude A(s, u) is obtainedfrom (s, u,, u,,t) by making
u; =ug and t=0, So that in the high-energy limit the energy for A(s,u) is
particularly simple (see Fig. 4):

s ot
Als, u) = — fv(so)dsofds'f e dur 2R (3.3)
0 ux+ﬁ‘

;. 2.2
167°s fu+tu”)

’

p
W) k

Fig.4
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So, by applying the usual factorization:

Als, ) =s*V1 (u) _ (3.4)
one obtains:
f (u du’
f{u) = v(s,)ds dx . (3.4a)
167 f ° Of '/u‘x 1x (u+/.42)2

Estimates of the exponent o using Eq. (3.4} with a "'potential" suggested by
low-energy cross-sections lead to values which are not inconsistent with
the experimental value o = 1.

Let us now discuss some of the main trends of high~energy collisions
which can be predicted on the basis of the multiperipheral model. First of
all, let us consider the multiplicity of secondaries. This will be proportional
to the average number of ""blubs" in the graph of Fig. 3 since the number
of particles coming from each blub is, in our model, constant. The evaluation
of the behaviour of such '"blub multiplicity" is very easy. We write the ''po-
tential" in the form

v(so)=7\u(s0) (3.5)

where u(s,) is normalized to + [u(s;)ds, = 1. Then we write the multipe-
ripheral series exhibiting explicitly the A dependence

A(s) =Zh" a(s) (3.6)

where An an/ A is the probability for production of n blubs. Thus the multi-
plicity can be written as

Zn\'a (s)

<N>=>\<ié jAs ———— (3.7)
L)X a(s)

But now the forward on-mass shell amplitude is (see Eq. (3.4))

a(ny

Als,-1")= C)s (3.8)

where the parameter A enters through the functions C(A),a(}), so that using
Eq.(3.7) we get:

(3.9)

wnhn

d A/dC do
= —_ + = — = —_——
SN> = A logs ¢ d)\> A(dk log

We have obtained the important result that the multiplicity of secondaries
grows with the logarithm of the incoming energy. This is not inconsistent
with experiment, though the present data are still too rough to distinguish
between a logarithmic or a slow power { ~ s!/4)behaviour.
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Let us now consider the average spectra of the produced particles. Let
us first look at the spectrum of that final line which is directly connected
with the incident particle (first line in the multiperipheral chain). The labo-
ratory energy of this system (see Fig. 1) is given (in the high-energy limit)
by: :

E= (s-5)/2u. (3.10)
The energy distribution of this particle is simply obtained by adding

in the integrand on the r, u, s of Eq.(3.3) an extra §(E’- (s- s")/2u):

do dA(s -uz) ‘
—_— = § ————
dat’ dE

1 3fv<s°)ds0£dsff2 soxdu S(E’-[s -5 /2 ) A8, )
-

167 (w+ )’
(3.11)

and using the asymptotic form (3.4) for A:

do duf(u)
- = v(s )ds x%dx —)——6&(e-1-x) (3.12)
¢ 161° f of f B2 (w+p)

where

= Z
E

is the ratio between the secondary energy E and the primary energy E=s/2u.
So we have the very simple result:

(g—: Jog= Fle). (3.13)

The shape of the energy specturm of the first secondary is completely in-
dependent of the value of the primary energy. In particular the inelasticity,
i.e. the fraction of energy taken by the first secondary, is independent on
the primary energy. The spectrum we are studying is particularly easy to
measure when the incident particle is distinguishable from the secondary
pions. This is the case for nucleon collisions, which have been extensively
studied either with accelerators or cosmic rays. The analysis of high-energy
jets yields that the average energy carried away by the nucleon in the lab
system is nearly a constant fraction of the incident energy, which is just

the prediction of our model.
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It is also easy to study the spectrum of secondaries, regardless of their
position in the multiperipheral chain. We shall not report here the calcu-
lation which does not offer any new difficulty and only give the results.

Let us call k| and k; the longitudinal and transverse momenta of the
secondary. If ki « E,the spectrum can be written in'the form

F(k%) dk [k (3.14)

where F(k%) is a universal function independent both of E and of k, and strongly
peaked for small values of kr. These results, especially the separability of
the transverse and longitudinal spectra, are not inconsistent with present ex-
perimental data.

4, CONCLUSIONS

We wish now to summarize briefly the different results and their physi-
" cal meaning. We have discussed the predictions for the different high-energy
processes obtained on the basis of the multiperpheral model. It has been
possible to sum the whole series of multiperipheral graphs by means of a
linear integral equationfor the off -mass shell absorptive amplitude g(s, u;, u,, t).
The kernel of this integral equation depends on the low-energy amplitude
v(so). The knowledge of this amplitude is sufficient to allow the computation
both of the elastic scattering and of multiple production, The on-mass shell
amplitude o(s, -u2, -4 2,t) leads to the elastic diffraction cross-sections,
while we can evaluate the average distributions of particles in multiple pro-
duction on the basis of the forward off-mass shell amplitude ¢(s, uy, u,, 0).
The asymptotic behaviour of the amplitude is obtained by considering
the high-energy limit of the integral equation. In this limit, the integral
equation shows a very remarkable feature which is independent of the spe-
cific form of the amplitude AR, The kernel depends only on the ratio s/s,
so that the equation is invariant under the transformation s —»cs, s'- cs’
This allows us to factorize the s dependence of the amplitude in the simple
form:

_a(@
qJ(S, u11u21 t)_s f(ul.v ug:t)- . (4.1)

The problem is then reduced to the solution of an homogeneous integral
equation for f(u,, u,,t), whose solution determines both the exponent «af(t)
and the eigenfunction f(u,, uy, t). As already pointed out, both eigenvalues
and eigenfunctions have a physical meaning: the eigenvalue gives the well-
known shrinking of the diffraction peak, whereas the eigenfunction is con-
nected with the average properties of multiple production. A form of the
scattering amplitude analogous to Eq. (4.1) has been obtained by many people
by adapting the results of Regge in potential theory to high-energy scattering.
This analogy canbe understood by considering that the multiperipheral graphs
observed in the crossed channel are the relativistic analogues of the different
iterations of the potential model used by Regge.
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The predictions obtained by means of the model can be divided into two
categories:

(a) Many general trends of high-energy collisions depend only on the
_ transformation property of the integral equation which is a consequence of
the topology of the multiperipheral graphs. These general trends do not
in fact depend on any special choice of the low-energy amplitude v(s):

(b) The specific numerical answers (as, for example, the value of the
total cross-sections) do, of course, depend on the choice of v(sg) and on
the manner in which v(s;) is continued off the mass shell,

We shall now summarize the different conclusions obtained on the basis
of the multiperipheral model including those which have not been discussed in
this paper.

(1) Elastic amplitude
The high-energy behaviour of the scattering amplitude &(s, t) is
8,(s,1)=s"" ;1) - cotg (e (£)/2) +i] (4.2)

for symmetric amplitudes under crossing s « 3, as, for instance, absolute
elastic scattering, and
aj(v .

2 (s,t)=s  C(t) [tg (na;(t)/2) +i] (4.3)
for antisymmetric amplitudes under the crossing. We obtain de/dt > 0. The
exponent for the charge exchange amplitude is always smaller than the one
for the purely elastic one:. Egs. (4.2) and (4.3) turn out to be independent
of the scattering particles, apart from the value of C(t). The C(t) can be
factorized in such a manner that the relation between different amplitudes
(dominated by the same pole) is the following:

2, (s,1)/ 2, (5,) = 8, (s, t}/e, (s, t)

where x,y,z and w represent any kind of particles.

(2) Inelastic scattering

The average properties of inelastic scattering are also very simple and
depend only on the general form of Eq. (4.4) The multiplicity grows with
the logarithm of the energy, and the inelasticity is energy independent. The
spectra of the secondary particles are given by

4 2 = 2
N(k) d’k = F(k®, K d jdk*(dk, /k,)

for k| « the initial energy. k| (k; and k| being the transverse and longitudinal
momenta), where F(k?, k% ) is a universal function independent both of s and
k., and strongly peaked for k% < u2.

These results, especially the separability of the transverse and longi-
tudinal spectra, are not inconsistent with present experimental data.
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