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Abstract
We report on a study of direct C'P violation in the decay B~ — D(iOK* with a Dalitz
analysis of the DY — Kgn~ 7T decay using a sample of 227 million BB pairs collected by
the BABAR detector. Reference to the charge-conjugate state is implied here. We constrain
- =0 ,._
the amplitude ratio rg= % to be < 0.19 at the 90% confidence level and rj=

—  =x0
% = 0.15575:070 4 0.040 4 0.020 and we measure the relative strong phase 65 =

(114441 +8+10)° and 6% = (3034 34+ 14+ 10)° between the amplitudes A(B~ — DK )
and A(B~ — D™YK~). From these samples we measure v = (70 + 26 + 10 + 10)°. The first
error is statistical, the second error accounts for experimental uncertainties and the third error
reflects the Dalitz model uncertainty. For this preliminary result we have quoted confidence
intervals obtained with a Bayesian technique assuming a uniform prior in rg, v and dp.
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1 INTRODUCTION

In the past years C'P violation in the B meson system has been clearly established [1] and although
there is good agreement with the expectations of the Standard Model, further measurements of
CP violation in B decays are needed to over-constrain the unitarity triangle and look for New
Physics effects. A crucial test will be represented by the measurement of «, which is the complex
phase of the Cabibbo-Kobayashi-Maskawa [2] quark mixing matrix element V,; in the Wolfenstein
parameterization [3].

Various methods using B~ — DYK~ decays [4] have been proposed to measure the unitarity
triangle angle v, all exploiting the fact that a B~ can decay into a D°K~ final state via a b — c
transition or into a DK~ final state via a b — u transition. C'P violation can be detected if the
D° and D’ decay into the same final state. The measurement of direct C'P violation is sensitive
to the phase difference between V,; and V,, and thus to the angle v. Most of the experimental
methods to extract v can be grouped in two categories: the D® and D’ decay into a C'P eigenstate
[5]; or the D° decays to a common flavor state, either through a Cabibbo-allowed or a doubly
Cabibbo-suppressed mode [6]. The measurement of 7 in both methods also requires the knowledge
of rp, the magnitude of the ratio of the amplitudes A(B~ — EOK_) and A(B~ — D°K~) and of
their relative strong phase dp, which can be obtained from data.

In this paper we report on a measurement of direct C'P violation in B~ — D®9K~ based on the
analysis of the Dalitz distribution of the three-body decay D — Kgm~ 7t [7]. The advantage of this
method is that it involves the entire resonant substructure of the three-body decay, with Cabibbo-
allowed and doubly Cabibbo-suppressed amplitudes interfering directly. It is therefore expected to
have a higher statistical precision than the methods outlined above. Results of an analysis based
on this procedure were reported by the Belle Collaboration in [8]. From the combination of the
B~ — DK~ and B~ — D*OK~ mode they obtain the value y = 77‘@%2 +13°+11° where the first
error is statistical, the second is experimental systematics and the third is model uncertainty. They
also obtain a value of rg= 0.267019 +0.0340.04 for B~ — DK~ and r% = 0.207919 +0.02+0.04
for B~ — DK ~.

1.1 Analysis outline

The B~ and Bt decay amplitudes for the B~ — D®OK~ and DY — Kg¢r~nt decays can be
written assuming no CP asymmetry in D decays as :

M_(m,m3) = JABT = DK [f(m? m) +rae® ) fomi )], (1)
Mi(m?,m3) = |AB* —D'Kh| [fm%,m?)+rpe®*) f(m2 m2)], (2)

where m? and mi are the squared invariant masses of the Kgm~ and Kgm™ combinations respec-
tively and f(m?,m?) is the amplitude of the DY — Kgn~ T decay.

Given a known f, the bi-dimensional Dalitz (m?%,m?2) distributions for B~ and BT can be
simultaneously fitted to |[M_(m?%,m?2)|? and |My(m?%,m?)|? respectively. A maximum likelihood
technique may be used to estimate rp, dg, and 7. Since the measurement of 7 arises from the
interference in Eq. 1 and Eq. 2, the uncertainty in the knowledge of the complex form of f(m?, mi)
can lead to a systematic uncertainty. A model describing the D° — Kgn~nT decay in terms of
two-body amplitudes has been assumed in this analysis. This model has been characterized using
a high statistics flavor tagged D° sample (D** — D%z} ), obtained from ete™ — c¢ events as
described in Section 4.



A similar analysis is also performed using B~ — D*K~ decays, and ~ is extracted along with
the amplitude ratio r; and strong phase difference 0% taking into account the effective strong
phase shift of 7 radians between the D** — D70 and D** — D%y channels [9]. By convention &%
is the strong phase of D** — D70 decay mode.

2 THE BABAR DETECTOR AND DATASET

The analysis is based on a sample of 227 million BB pairs collected by the BABAR detector at
the SLAC PEP-II eTe™ asymmetric-energy storage ring. BABAR is a solenoidal detector optimized
for the asymmetric-energy beams at PEP-II and is described in [10]. We summarize briefly the
components that are crucial to this analysis. Charged-particle tracking is provided by a five-layer
silicon vertex tracker (SVT) and a 40-layer drift chamber (DCH). In addition to providing precise
spatial hits for tracking, the SVT and DCH also measure the ionization energy loss (dE/dx), which
is used for particle identification of low-momentum charged particles. At higher momenta (p > 0.7
GeV/c) pions and kaons are identified by Cherenkov radiation detected in a ring-imaging device
(DIRC). The typical separation between pions and kaons varies from 80 at 2 GeV/c to 2.50 at
4 GeV/c. Neutral cluster (photon) positions and energies are measured with an electromagnetic
calorimeter (EMC) consisting of 6580 thallium-doped CsI crystals. Candidate 7° mesons are re-
constructed as pairs of photons, spatially separated in the EMC, with an invariant mass within 3o
of the 7° mass. These systems are mounted inside a 1.5-T solenoidal super-conducting magnet.

3 EVENT SELECTION

We reconstruct the decays B~ — DK~ and B~ — D*YK~ with D' — D%Y%, D%. A larger
sample of B~ — D®07~ ig also reconstructed and is used as a control sample to determine the
Probability Density Function (PDF) of the discriminating variables used in the likelihood fit for .
DV candidates are reconstructed in the Kgntn~ final state with the Kg reconstructed from pairs
of oppositely charged pions with an invariant mass within 9 MeV /c? of the nominal Kg mass [11].
The two pions are constrained to originate from the same point. The angle axg between the Kg
line of flight and its momentum is required to satisfy the condition cos axg >0.99. DY candidates
are selected by making all possible combinations of the Kg candidate and two oppositely charged
pions with an invariant mass within 12 MeV/c? of the nominal D mass.

The photon candidates for D*® — D%y are reconstructed from clusters in the electromagnetic
calorimeter with energy greater than 30 MeV and consistent with a photon shower profile. We
select ¥ candidates from pairs of photon candidates and require 115 < m(yy) < 150 MeV/c? and
with total energy greater than 70 MeV. To improve the momentum resolution, the 7° candidates
are kinematically fitted with their mass constrained to the nominal 7° mass. The D° candidates
are combined with a low energy 70 or 7. The D*?-D9 mass difference Am is required to be within
2.5 (10) MeV/c? of the nominal Am for D** — D%70(y).

A B~ candidate is obtained by combining a D*)° candidate with a track (“bachelor” track)
identified as a kaon as described in [10]. We improve the momentum resolution for the D daughters
by applying a kinematic mass constraint. For every B candidate two standard variables are defined,



the beam-energy-substituted mass mgs = \/ (%s + Po - PB)?/E2 — p% and the energy difference

AE = Ef — % s, where the asterisk denotes the CM frame, s is the square of the total energy
in the CM frame, p and F are, respectively, momentum and energy, and the subscripts 0 and B
refer to 7°(4S5) and B*, respectively. The resolutions, evaluated on simulated signal events, are
2.6 MeV/c? and 17 MeV for mpgs and AE, respectively.
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Figure 1: B~ — DYK~ (top left), B~ — D**(D°7%)K~ (top right) and B~ — D**(D%)K~
(bottom) mgg distribution in the AE region [—30,30] MeV in the sample of 211 million BB pairs.
The signal contribution is shown in red, B~ — D*7~ in blue, generic BB in green, and continuum
in magenta.

To distinguish between BB and continuum events the following topological variables are used:
cos 0, where 0% is the polar angle of the B candidate with respect to the beam axis in the CM
frame; Lo = >, p; and Ly = Y, p; cos? 6; calculated in the CM frame, where p; and 6; are the mo-
menta and the angles of tracks and neutral clusters not used to reconstruct the B candidate with
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respect to its thrust axis; cos 07, where 67 is the angle in the CM frame between the thrust axes of
the B candidate and of the rest of the event. B candidates are selected by requiring | cos f7|< 0.8.
Under this condition a Fisher discriminant F is constructed from the variables discussed above.
This Fisher discriminant is used in the likelihood fit to help distinguish between signal and con-
tinuum ete” — qq (¢ = u,d,s,c) events. The PDF of F is obtained for continuum events using
mgs sideband data. The B~ — D®07~ events are used to obtain the F PDF for BB and signal
events.

Finally, the B~ — D®OK~ sample events are required to satisfy mgg > 5.2 GeV/c?, |AE| < 30
MeV. The B~ — D®97~ candidates are selected using criteria similar to those applied for
B~ — D®WOK~ but requiring that the bachelor pion not be consistent with the kaon hypothe-
sis. The overall reconstruction efficiencies are 18%, 4.3%, 8.1% for the DK ~, D**(D%z%)K~, and
D*0(D%) K~ decay modes, respectively. Fig. 1 shows the mpg distributions after all the selection
criteria are applied.

4 DETERMINATION OF D’ — K¢r— ™ DECAY MODEL

The amplitude f(m2, m?F) has been constructed from a Dalitz analysis of a 97% pure flavor tagged
DY sample obtained from 81496 D** — D%rt events corresponding to a luminosity of 91.5 fb~!
(Fig. 2). The Dalitz (m%,m3%) distribution (Fig. 3) is fitted in the context of the isobar formalism
described in [12]. In this formalism the amplitude f can be written as a sum of two-body decay
matrix elements and a non-resonant term according to the expression

f = ape®r + Zrarei‘z’"As(Kgﬂ_ﬂﬂr). (3)

Each term of the sum is parameterized with an amplitude and a phase. The factor As(Kgm ™7 t|r)
gives the Lorentz invariant expression for the matrix element of a D° meson decaying into Kgm 7™
through an intermediate resonance r as a function of the position in the Dalitz plot. It is, in general,
parameterized by a relativistic Breit-Wigner with a functional form dependent on the spin of the
resonance. For the p a more complex parametrization is used as suggested in [13]. We fit the Dalitz
distribution with a model consisting of 13 resonances leading to 17 two-body decay amplitudes and
phases (Table 1). Of the 13 resonances eight involve a Kg plus a m7 resonance and the remain-
ing five are made of a (Kgm™) resonance plus a 7. We also include the corresponding doubly
Cabibbo-suppressed amplitudes for most of the (Kgm~) 7t decays. All the resonances considered
in this model are well established except for the two scalar 77 resonances, o1 and oy, whose masses
and widths are obtained from our sample. Those are introduced in order to obtain an acceptable
fit to the data, but their existence as true, scalar particles is a matter outside the scope of the paper.

An unbinned maximum likelihood fit is performed to measure the amplitudes a,,, a, and the
phases ¢, ¢. The fit fraction for each decay channel is defined as the integral of a single com-
ponent divided by the coherent sum of all components. The results of the fit are shown in Fig. 3.
Amplitudes, phases and fit fractions as obtained by the likelihood fit are reported in Table 1.

We estimate the goodness of the fit for our model with a x? fit using adaptive binning of the
Dalitz plot. We obtain x?/d.o.f. = 3824/(3054-32) = 1.27.

To illustrate the region of the Dalitz plot most sensitive to v measurement, we show in Fig. 4
the distribution of simulated B~ — D°K ~ events based on our Dalitz model, where each event is

given a weight of %1% where L is the likelihood function described in the following section. The

11



Resonance Amplitude Phase Fraction Mass Width | Functional
(degrees) (%) MeV/c? | MeV/c? form
K*(892) 1.777 £ 0.018 131.0 £0.81 58.51 891.66 50.8 BW
p°(770) 1 (fixed) 0(fixed) 22.33 775.8 146.4 GS
K*(892) DCS | 0.1789 +0.0080 | —44.0+24 0.59 891.66 50.8 BW
w(782) 0.0391 +0.0016 | 114.8 +2.5 0.56 782.6 8.5 BW
f0(980) 0.469 +0.011 213.4 +£2.2 5.81 975 44 BW
fo(1370) 2.324+0.31 114.14+44 3.39 1434 173 BW
f2(1270) 0.915 £ 0.041 —22.0£29 2.95 1275.4 185.1 BW
KS(1430) 2.454 +0.074 -7.94+20 8.37 1412 294 BW
K3 (1430) DCS | 0.350 £ 0.069 —344. + 10. 0.60 1412 294 BW
K3(1430) 1.045 £ 0.045 —53.1+2.6 2.70 1425.6 98.5 BW
K3(1430) DCS | 0.074 £+ 0.038 —98 £ 30 0.01 1425.6 98.5 BW
K*(1410) 0.524 £ 0.073 —157+10 0.39 1414 232 BW
K*(1680) 0.99 +0.31 —144 + 18 0.35 1717 322 BW
p(1450) 0.554 + 0.097 35+ 12. 0.28 1406 455 GS
o1 1.346 4+ 0.044 —177.54+ 2.5 9.11 484 +9 | 383 £ 14 BW
o9 0.292 +0.025 | —206.8 +4.3 0.98 1014+ 7| 88413 BW
Non resonant 3.41 +0.48 —233.94+5.0 6.82 - - -

Table 1: Amplitudes, phases and fit fractions of the different components obtained from the like-
lihood fit of the D° — Kgr~nt Dalitz distribution in D** — D%rF data. Masses and widths
of all resonances except o1 and o9 are taken from [11]. The abbreviations BW and GS stand for
relativistic Breit-Wigner and Gounaris-Sakurai [13] respectively. The total fit fraction is 1.24.
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Figure 2: The Kgm~ 7" invariant mass distribution in the flavor tagged D* sample.

regions of interference between doubly Cabibbo suppressed and Cabibbo allowed decays and C'P
eigenstate decays exhibit the highest sensitivity to .

5 CP FIT TO B — D¥YK SAMPLES

A maximum likelihood fit (CP fit) is performed on the B~ — D®™OK~ samples to extract si-
multaneously the C' P violation parameters +, 5?, and rg) and the signal and background yields.
The likelihood for each candidate j is obtained by summing the product of the event yield N; and
the probability P; over the signal and the three background hypotheses. The extended likelihood

function is
L= exp (— ZNZ> H lz NZPZ(:EJ)PPal(m%F,m%) . (4)
i j L

The probabilities P; are evaluated as the product of the PDFs for each of the independent variables
#; = {mgs, AE, F}. PP (m%,m?2) is the PDF for the Dalitz distribution for the it" category. The
categories in the fit are signal B~ — D™O9K~ the continuum background, BB background, and
B~ — D*7~ and are shown in Fig. 1. The mgg and AE distributions for signal events are
described by a Gaussian. The Fisher PDF is parametrized with a double Gaussian function. The
signal PDF parameters are determined from the B~ — D®0%7~ control sample.

5.1 Background Composition

The numbers of events for the various background components in the B~ — D®OK~ samples are
summarized in Table 2. The dominant background contribution is from the random combination
of a real or fake D™ meson with a charged track in continuum events or other BB decays.
The combinatorial background in the mpgg distribution is described by a threshold function [14]
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Figure 3: (a) The D° — Kgr+r~ Dalitz distribution from the D** — D7+ events. Projections

on (b) m%, (c) m?, and (d) m?(r"n~) are shown. The result of the fit is superimposed as a solid
line.

whose free parameter £ is determined from the B~ — D®07~ data sample. The shape of the
combinatorial background mgg distribution in generic BB decays is taken from simulated events.
The AFE distribution is described by a straight line whose slope is extracted from a fit to the
B~ — D™~ sample. The PDF of the Fisher distribution for continuum events is determined
from the mpg sideband in the same data sample. The Fisher PDF for BB events is assumed to be
the same as that for the signal.

An important class of background events arises from continuum where a real D is produced
back-to-back with a kaon. Depending on the flavor-charge correlation this background can mimic
either the b — ¢ or the b — w signal component. In the likelihood function we take this effect
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Figure 4: D° — Kgntn~ Dalitz distribution of simulated (B* — D"K*) events. Each event is

given a weight dzhf . The black points represent the same events with weight equal to unity.

into account with two parameters, the fraction fpo of background events with a real D° and the
parameter R, the fraction of background events with a real DY associated with an oppositely
flavored kaon (same charge correlation as the b — wu signal component).

The fraction of real D? from continuum events has been evaluated in events satisfying mpgg
< 5.272 GeV/c? after removing the requirement on the DY mass. The fraction R of background
events with a genuine D° associated with a negatively charged kaon is obtained from simulated
events. The values of fpo and R for continuum ¢g are summarized in Table 3. The fraction of
events with a real DY in generic BB events is found to be few percent.

A small background originates from B~ — D®0%7~ where the bachelor pion is misidentified
as a kaon. These events have the same mpgg distribution as signal but can be distinguished using
their AFE information.

5.2 Likelihood fit on control samples

We test our C'P fit procedure on two high statistics control samples: D*t — D%t from cé
continuum events and B~ — D®07r~ The D*t — D%* sample mimics a B~ — DK~ sample
with 7= 0. The B~ — D%~ sample is similar to B~ — DK™, but its rp is expected to be
approximately 0.007 [15]. In the CP fit to D** — D%zt we obtain rp = (—5.2 £5.2) x 1073,
In the B~ — D%~ we obtain rp= (1.8 £ 1.5) x 1072, v = (18 4 45)°, dp = (246 £ 43)° and in
B~ — D*7~ we find 7= (4.6 £2.1) x 1072, v = (90 + 35)°, & = (117 & 35)°. The results
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| Background components | D°K~ | (D"7%) K~ | (D%y)K~ |

Continuum q¢q 125+ 6 9+2 38+3
BB 28 +7 442 1445
Dr 9+8 0+5 6+ 4

Table 2: Estimates of the numbers of background events in the mgs > 5.272 GeV/c? region
from the fit to data in the full mpgg region for the B~ — D°K~, B~ — D**(D°7%)K~, and
B~ — D*9(D%) K~ samples.

| q7 background parameters | D°K~ [ (Dz°)K— | (D"y)K~ |
fpo 0.27£0.06 | 0.27 £0.13 | 0.13 £0.02
R 0.21+0.03 | 0.23 £0.11 | 0.16 = 0.06

Table 3: ¢ background parameters for the B~ — D'K~, B~ — D**(D°7%)K~, and B~ —
D*0(D%) K~ samples.

obtained are consistent with the expectations of Monte Carlo experiments.

5.3 Likelihood fit on B~ — D™YK~ sample
In the sample of 227 million BB events we obtain the following signal yields

N(B™ — D'K™) = 28220, (5)
N(B~ — DD’ 7"K~) = 89+11,
N(B~ — DD )K~) = 4448,

in agreement with our expectation from simulation and measured branching ratios. We obtain the
following C'P parameters from the fit for B~ — DK~ rp=0.117 £ 0.053, 5 = (109 + 28)°, and
v = (66 + 28)° and for B~ — D**K~, r= 0.167 4 0.065, % = (294 + 28)°, and v = (68 & 29)°.
These errors are estimated with a Gaussian assumption for the likelihood. However, for this small
sample, these low rp and rj; fitted values lead to a non-Gaussian behavior of the likelihood
function as shown in Fig. 5, necessitating a different approach, described next, in the computation
of the confidence intervals for rp, v and dp. Fig. 6 shows for rp values generated in the [0.0,0.3]
range the rp values obtained in fits to Monte Carlo experiments of the same size as data. While
the C'P fit is linear for large values of rp, it is not sensitive to rg values below 0.1. This problem
did not exist for the larger D** — D%t and B~ — D™~ samples as we have verified using
Monte Carlo simulation.

In Fig. 7 and Fig. 8 we show the Dalitz distribution and the m%r and m? projections for
events with mpgs > 5.272 GeV/c? for B~ — DK~ and B~ — D**K~ respectively. B* and B~
candidates distributions are separately shown with the total PDF superimposed.

5.4 Confidence intervals of the C'P parameters

We evaluate the likelihood function £ (rp, 7, 0p) after fixing all parameters except (rg, 7, 05)
which are varied in their range of definition, [0,1], [-7,7], and [0,27], respectively. We then estimate

16



0.2 0.25

O
°
o
a
=)
—
ol
—

o
‘\\\\‘\\\\‘\\\\‘\I\\\‘\\\\‘\\\\‘\\

0 0.05 0.1 045 0.2 0.25

Figure 5: In £ contour plots in v versus rg in B~ — DK~ (top) and B~ — D**K~ (bottom).
0p is fixed to the value obtained from the fit. Each contour represent a In £ variation of 0.5.

17



o
2
O

<
)
O

T
()
S
@
@ 03
(]
S
m
)

0.2

I A e = SR

BABAR

ry sensitivity, preliminary

0 005 01 015 02 025
rg truth

=]

3

Figure 6: rp values obtained in the likelihood fit versus generated rp values in Monte Carlo
B~ — DYK~ experiments. The error bars represent the RMS of the rp values returned by the
fit. The dashed horizontal line indicates the rp value (0.106) found in data.

the confidence region for the C'P parameters using a Bayesian technique. This implies a choice of a
priori distribution. For this preliminary result we arbitrarily assume a uniform a priori distribution
for each of the C'P parameters rp,v and §p.

In v-rp space we define a two-dimensional confidence region D(C) corresponding to a given
confidence level C

Joe, drsdy [} dopLrs708)
Jo dre [T v [JT donLirn.on)

We uniquely define D(C) by requiring that the likelihood value at any point on the boundary of D
be the same and integrating over all likelihood values larger than the value at the boundary.

Similarly we define one dimensional confidence intervals I(C) corresponding to a confidence level
C. For example, the interval for rp is defined as

Jueydrs [T v [T dopLesds)
Jo drs [T dv [T dpLirsdn) drs

The two dimensional confidence regions D(C) in v versus rg and < versus rj are shown in
Fig. 9. The red (dark) and yellow (light) regions correspond to the 68% and 95% confidence levels
respectively. The likelihood distributions for rp, v, and ép obtained by integrating L(rp,~,dp)
over the other two variables are shown in Figs. 10, 11 and 12 respectively. The 68% and 95%
confidence intervals are shown in red (dark) and yellow (light) respectively. The intervals for v and
dp are disjoint as a consequence of the v — v+ 7 and g — dp + 7 ambiguities.

5.5 Constraints on rg, g and ~

From the procedure above we obtain Bayesian 68% confidence intervals. We quote as the central
values for v and dp the average values weighted by the likelihood distribution. The errors associated
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with the central values are defined by the boundaries of the 68% confidence interval. We obtain
rp=0.087+ 1000 05 = 114° + 41°(294° 4 41°), y = 70° + 44°(—110° £ 44°) for B~ — DK~ and
= 0.155T0-070 6% = 303° & 34°(123° 4 34°), v = 73° + 35°(—107° + 35°) for B~ — D*'K~. We
constrain rg to be < 0.16 at 90% confidence level.

As illustrated in Figs. 5 and 13, the data have no sensitivity to v and dp for small values of r5.
Those values are not excluded by our data.

We construct a combined likelihood function from the product of the individual likelihoods for
B~ — DK~ and B~ — D*9K~ and we repeat the procedure outlined above. From this we obtain
v =T0° £ 26° (—110° + 26°). Fig. 14 shows the  likelihood distribution.
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Figure 13: Statistical uncertainty in Gaussian hypothesis for « as a function of the value of rg ob-
tained by the likelihood fit in Monte Carlo experiments.

6 SYSTEMATIC UNCERTAINTIES

The principal systematic uncertainty on the measurement of v comes from the choice of the model
used to describe D? — Kgr~ 7t decay. We evaluate this uncertainty by considering alternative
models. For each model we generate events and fit both the alternative model and the nominal
model (defined in Section 4) to these events. We quantify this uncertainty using the differences in
the fitted values for rp, dp and 7. For models where the p(1450), the K*(1680) and/or the doubly
Cabibbo suppressed K§(1430) and K5(1430) are removed or a different description of resonances
is used, the x? of the fit is not significantly different from that of the nominal model. For these
models the biases on v and rp are negligible and the RMS of the distribution of the differences is
at most 1° and 0.002 for v and rp respectively. As an extreme we consider a model without the
o1 and/or oy scalar, or the CLEO Model [12]. Fits to these models result in a significantly larger
x? than that of the nominal model. To illustrate the magnitude of this variation Fig. 15 shows the
result of a fit with the CLEO model. For these extreme models the biases for C P parameters are
still small. The RMS of the differences for v and rp are approximately 10° and 0.02 respectively.
We conservatively assign o.,,05, = 10° and o,, = 0.02 as systematic uncertainties associated with
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the Dalitz model.

The summary of the estimates of other systematic uncertainties is given in Table 4. The
most important effect is due to the uncertainties on the knowledge of the Dalitz distribution of
background events and of the mgg, AE, and F PDF parameters for both background and signal.
Uncertainties in the efficiency variation across the Dalitz distribution are estimated. The statistical
uncertainty on the amplitude and phases of the nominal Dalitz model also contributes significantly
to the systematic uncertainties on the C'P parameters.

B~ — DK~— B~ — DK~
Source rp ~y op rh vy 05
Combinatorial background Dalitz shape | 0.008 | 6.7° | 3.3° | 0.010 | 2.9° | 5.1°
mgs, AE, F PDF shapes 0.007 | 5.4° | 4.2° | 0.025 | 1.8° | 8.2°
R 0.018 | 3.1° | 3.0° | 0.018 | 3.1° | 3.0°
Efficiency 0.004 | 3.0° | 2.7° | 0.005 | 3.0° | 2.8°
Dalitz amplitude and phase uncertainties | 0.004 | 1.6° | 4.7° | 0.014 | 6.1° | 8.8°
| Total [ 0.022 [ 9.8° [ 8.3° [ 0.036 | 8.2° | 13.8° |

Table 4: Summary of the contributions to the systematic errors on rg, v and dp.

7 RESULTS AND SUMMARY

We report preliminary results of the measurement of rg and of the angle v using the B~ meson
decays into DK~ and D** K~ with a technique based on the Dalitz analysis of the D° — Kqr~ 7t
three-body decay. From 227 million BB pairs collected by the BABAR detector, we reconstruct
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Figure 15: CLEO model fit: a) the D’ - Kgntn~ Dalitz distribution from the D*~ — D'r.
Projection on (b) m2, (c) m% and (d) m*(n"n~) are shown. The result of the fit is superimposed
and it is used to estimate the uncertainty due to the Dalitz model.

282+20 B~ — DYK~,89+11 B~ — DK~ D*0 — D% and 4448 B~ — D*'K—, D*¥ — D%
signal events.

Values of the ratio of b — u and b — ¢ amplitudes for the processes B~ — D°K~ and B~ —
D*9K~ at the small end of our measurements allow no determination of v at this statistical level.
Accounting for systematic uncertainties, we constrain these ratios to be rg < 0.19 at 90% confidence
level and r; = 0.155'_F8:8$(; 4 0.040 4+ 0.020. The relative phases between these two amplitudes are
dp = 114°+41°4+8°+10°(294°+41°£8°+10°) and 65 = 303°£34°+£14°4+10°(123°£34°+£14°£10°).
The first error is statistical, the second error accounts for experimental uncertainties and the third
error reflects the Dalitz model uncertainty. By combining the information from the two samples
we obtain v = 70° £26° +10° +10° (—110° = 26° £+ 10° & 10°). For this preliminary result we have
quoted confidence intervals obtained with a Bayesian technique assuming a uniform prior in rg,
and dp.
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