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ABSTRACT

Many-body quantum effects play a crucial role in many domains of
physics, from condensed matter to black-hole evaporation. The funda-
mental interest and difficulty in studying this class of systems is the
fact that their effective coupling constant become rescaled by the num-
ber of particles involved ¢ = aN, and thus we observe a breakdown
of perturbation theory even for small values of the 2 — 2 coupling
constant. We will study three very different systems which share the
property that their behaviour is dominated by non-perturbative effects.
The strong CP problem - the problem of why the 6 angle of QCD is
so small - can be solved by the Peccei-Quinn mechanism, which pro-
motes the 0 angle to a physical particle, the axion. The essence of the
PQ mechanism is that the coupling will generate a mass gap, and thus
the expectation value of the axion will vanish at the vacuum. It has
been suggested that topological effects in gravity can spoil the axion
solution. By using the dual formulation of the Peccei-Quinn mecha-
nism, we are able to show that even in the presence of such dangerous
contributions from gravity, the presence of light neutrinos can stabi-
lize the axion potential. This effect also puts an upper bound on the
lightest neutrino mass.

We know that at high energies, gravitational scattering is dominated
by black-hole formation. The typical size of black-holes is a growing
function of the total center-of-mass energy involved in the scattering
process. In the asymptotic future, these black-holes will decay into
Hawking radiation, which has a typical wave-length of the size of the
black-hole. Thus high energy gravitational scattering is dominated
by low energy out states. It has been suggested that gravity is self-
complete due to this effect, and that furthermore, there is a class of
bosonic theories which can also be self-complete due to the formation
of large classical field configurations: UV completion by Classicaliza-
tion.

We explore the idea of Classicalization versus Wilsonian UV comple-
tion in derivatively coupled scalars. We seek to answer the following
question: how does the theory decide which road to take at high en-
ergies? We find out that the information about the high energy be-
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haviour of the theory is encoded in the sign of the quartic derivative
coupling. There is one sign that allows for a consistent Wilsonian UV-
completion, and another sign that contains continuous classical field
configurations for localized sources.

In the third part of the thesis we explore non-perturbative properties
of black holes. We consider the model proposed by Dvali and Gomez
where black holes are described as Bose-Einstein condensates of N
gravitons. These gravitons are weakly interacting, however their col-
lective coupling constant puts them exactly at the critical point of a
quantum phase transition «aN = 1. We focus on a toy model which
captures some of the features of information storage and processing
of black holes. The carriers of information and entropy are the Bogoli-
ubov modes, which we are able to map to pseuo-Goldstone bosons
of a broken SU(2) symmetry. At the quantum phase transition this
gap becomes 1/N, which implies that the cost of information storage
disappears in the N — oo limit. Furthermore, the storage capacity
and lifetime of the modes increases with N, becoming infinite in the
N — oo limit.

The attractive Bose gas which we considered is integrable in 1+1d. All
the eigenstates of the system can be constructed using the Bethe ansatz,
which transforms the Hamiltonian eigenvalue problem into a set of al-
gebraic equations - the Bethe equations - for N parameters which play
the role of generalize momenta. While the ground state and excitation
spectrum are known in the repulsive regime, in the attractive case the
system becomes more complicated due to the appearance of bound
states. In order to solve the Bethe equations, we restrict ourselves to
the N — oo limit and transform the algebraic equations into a con-
strained integral equation. By solving this integral equation, we are
able to study the phase transition from the point of view of the Bethe
ansatz. We observe that the phase transition happens precisely when
the constraint is saturated, and manifests itself as a change in the func-
tional form of the density of momenta. Furthermore, we are able to
show that the ground state of this system can be mapped to the saddle-
point equation of 2-dimensional Yang—-Mills on a sphere, with a gauge
group U(N).



ZUSAMMENFASSUNG

Kollektive Quanteneffekte spielen eine entscheidende Rolle in vielen
Bereichen der Physik, von Festkrperphysik bis hin zur Verdampfung
von schwarzen Lchern. Das grundlegende Interesse und auch die
Schwierigkeit beim Untersuchen von solchen Systemen liegt darin be-
grndet, dass ihre effektive Kopplungskonstante mit der Anzahl der
beteiligten Teilchen reskaliert wird ¢ = aN. Daher beobachten wir
den Zusammenbruch von Strungstheorie, selbst fr kleine Werte der
2 — 2 Kopplungskonstante.

In dieser Doktorarbeit erforschen wir drei verschiedene Systeme, die
von kollektiven, nicht-strungstheoretischen Effekten dominiert sind.
Wir untersuchen die Axion-Lsung des starken CP-Problems und zeigen,
dass mgliche gravitative Korrekturen zum Axion-Potential dank nicht-
perturbativer Effekte aus dem Neutrinosektor unterdrckt werden kn-
nen. Wir erkunden die Idee der Klassikalisierung als Gegenstck zu
Wilsonscher UV-Vervollstndigung in Ableitungs-gekoppelten skalaren
Theorien und zeigen, dass das Hochenergieverhalten dieser Theorien
im Vorzeichen der quartischen Kopplung verschlsselt ist. Wir zeigen,
dass viele Eigenschaften von Informationsverarbeitung und -speicherung
in schwarzen Lchern mit einem Bose-Einstein Kondensat in einem
Quantenphasenbergang erklrt werden knnen. Des Weiteren unter-
suchen wir die Eigenschaften desselben Systems am kritischen Punkt
mithilfe seiner Integrabilittseigenschaften und zeigen, dass sein Grundzu-
stand auf Yang-Mills Theorie auf der Sphre abgebildet werden kann.
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INTRODUCTION

It has been over one hundred years since Einstein discovered the the-
ory of General Relativity. As I write this, we witness the announce-
ment of one of the most awaited experimental discoveries since the
discovery of GR: gravitational waves [m]. The importance of this dis-
covery cannot be overstated, since it confirms one of the last remaining
untested predictions of GR. Besides being the first detection of gravi-
tational waves, it was also the first observation of a binary black-hole
merger! The source of the observed gravitational waves was a system
of two merging black-holes, initially with 36 and 29 solar masses, and
the total energy radiated in this process was 3 solar masses.

Hopefully this discovery will be just the first step in a century where
observation of gravitational waves will become standard practice. De-
spite the fact that it took an extraordinary event to allow for this ob-
servation, there are many unanswered questions which can be solved
by the direct detection of gravitational waves but require a higher de-
gree of sensitivity. As a matter of fact, there is a whole background
of gravitational waves from the early universe that are just waiting to
be probed, and the consequences of this observation will be just as
revolutionary as the discovery of the CMB.

Besides the cosmological implications, the discovery of primordial
gravitational waves will have also a rather direct impact on high en-
ergy physics. As of now, the reasons why it is believed that GR should
be treated as a Quantum Field Theory all rely on consistency argu-
ments. While it is true that there is very little chance that Quantum
Mechanics is ignored by GR, a direct observation of primordial grav-
itational waves would mean an indirect detection of gravitons - the
fundamental degrees of freedom in a quantum theory of gravity.

While many opponents of this idea cite issues such as breakdown of
(perturbative) unitary and non-renormalizability as objections to a con-
sistent theory of quantum gravity, we will take these as features of the
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theory, rather than problems. In a modern perspective, renormalizabil-
ity is no longer a sacred requirement in order to construct consistent
theories. Theories can be well-defined up to some energy scale, which
corresponds to the length scale at which we expect new degrees of
freedom to become important. Until that scale is reached, we can en-
capsulate our ignorance about microscopic degrees of freedom using
a few parameters: this is the Effective Field Theory approach.

When an Effective Field Theory reaches the limit of its domain of
validity, we need to incorporate these new degrees of freedom in the
theory. This is called a UV completion: completing the theory by
introducing new physics that will be responsible for making it predic-
tive again. According to the Wilsonian paradigm of physics, when-
ever we observe the breakdown of predictability in a theory, we will
uncover new degrees of freedom which will appear before the prob-
lematic scale and will be responsible for making the theory sensible
again. In the Wilsonian view, less fundamental theories are embed-
ded in more fundamental ones, and we can always uncover new mi-
croscopic degrees of freedom by increasing the energy at which we
measure physical process.

Gravity indeed behaves differently from the known Quantum Field
Theories, but its difference precisely due to the enhancement of quan-
tum mechanical effects, rather than the lack of it. We will also see that
the breakdown of unitarity is indeed just a perturbative problem, and
in the center of all this discussion we will encounter the very objects
which dominate gravity at high energies: black-holes.

It is impossible to talk about the interplay between General Rela-
tivity and Quantum Mechanics without discussing black-holes. For
the past 40 years, black-holes became the theoretical laboratory where
thought experiments about quantum gravity are tested. Today, before
a theory of Quantum Gravity is even required to actually reproduce
GR at low energies, it is supposed to predict the correct Bekenstein—
Hawking entropy of a black-hole. Understanding what are the correct
micro-states of a black-hole is indeed a very interesting and rather com-
plex puzzle. Solving this puzzle requires going beyond the view that
GR is a theory of a purely geometric background over which quan-
tum fields propagate. A quantum description of space-time itself is
necessary.

It is embedded in the folklore that a quantum description of space—
time requires a fundamental theory of gravity - one that is valid for
every energy. As we stated previously, GR works perfectly as an Ef-
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fective Field Theory, so it is natural to ask whether it is possible to
explain the puzzling features of black-holes with only low-energy de-
grees of freedom. As we will see, recent research seems to indicate
that this is in fact the case, and large black-holes are insensitive to the
short-distance features of the theory. Whichever UV-completes gravity
does leave an imprint on large black-holes, they are purely dominated
by infrared physics.

The underlying theme throughout this thesis is the following: how
can we understand many-body states in gravity and other Bosonic
theories, and what are their phenomenological effects? With the aid of
both perturbative and non-perturbative methods, we will study black-
holes, topological objects, bound states and solitons.

1.1 HOW NEUTRINO PROTECTS THE AXION

Non-perturbative collective effects play a major role in gauge theo-
ries. The most obvious example is QCD, where the vacuum is dom-
inated by a condensate of quarks. Perhaps the most interesting as-
pect of the QCD vacuum is the existence of instantons: these are time-
dependendent field configurations that interpolate between different
vacua in different times. The existence of these boundary effects allow
for QCD to break CP symmetry, and the magnitude of this process can
be measured experimentally and can be parametrized by one number:
the 0 angle. Explaining why this angle is so small is a puzzle known
as the strong CP problem.

The most embraced solution to the strong CP problem is known as
the Peccei-Quinn mechanism, which predicts the existence of a new
particle - the axion - whose expectation value plays the role of the
0 angle. By minimizing its potential, it is possible to predict that 6
should be very small. This solution, however, is not without its issues.
Nothing stops extra couplings to destabilize its potential and thus ruin
the solution to the strong CP problem. More specifically, it has been
suggested that gravity might be the source of these contributions, and
that non-perturbative gravitational effects - akin to instantons - will
ressurrect the strong CP problem.

It is nevertheless possible to parametrize the possible dangerous con-
tributions from gravity if one uses a dual formulation of the theory, in
which the axion is in fact a 2-form, coupling to the QCD 3-form. In this
formulation, we have an additional gauge redundancy which must be
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protected. This limits the possible ways in which gravity can interact
with the axion, and thus allows us to parametrize its effects on the
axion potential.

In the Part I of this thesis, we will present the results we obtained in
[6]. We show that even in the presence of these dangerous gravitational
contributions to the axion potential, the axion can be saved due to the
fact that there are very light neutrinos that are gravitational anomalous.
Should there be non-perturbative gravitational effects, there will be a
bound state of neutrinos, similar to the 7’ in QCD, which will play
the role of the axion and thus restore the Peccei-Quinn solution to the
strong CP problem.

1.2 ROAD SIGNS FOR UV-COMPLETION

Resolving the quantum properties of black-holes and understanding
the correct way to UV-complete gravity are intimately connected is-
sues. If black-holes do exist in nature, it’s unavoidable that they will be
formed in high energy scattering experiments. If large black-holes are
really insensitive the high-energy details of the theory, gravity breaks
the link between high energy and low distances, and breaking this
link has dramatic consequences, since we can no longer rely on the
Wilsonian paradigm when it comes to gravity - we need a different
approach to UV-completion.

In this approach, the UV-completion of the system is accomplished
by the creation of large objects. These objects will dominate the spec-
trum of the theory at large energies, thus providing a bridge between
the infrared and the ultraviolet degrees of freedom. This mapping
allows the theory to be self-complete without the necessity of intro-
ducing degrees of freedom. In the Part II of this thesis, we will focus
on the results we presented in [27]. We argue that this paradigm of UV-
completion can be applied to theories other than gravities, and we will
derive some of the theoretical and phenomenological consequences of
this method of UV-completion.

1.3 BLACK-HOLE INFORMATION AND QUANTUM CRITICALITY

It is generally true that large occupation number leads to classical
world: when we look at the sun, we observe classical electromagnetic
radiation, even though at a fundamental level we have many single
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quanta being emitted in elementary processes. The same can be said
for most of our interactions with nature: we observe a mostly classical
world. In order to discover quantum mechanics, it took observations of
very small length scales, where the granularity associated with seem-
ingly continuous phenomena becomes apparent.

In reality, large does not necessarily mean quantum. Under cer-
tain conditions, a macroscopic number of bosons can occupy the low-
est quantum state of the system, forming a Bose-Einstein condensate.
With the advent of condensed matter, other examples of macroscopic
quantum phenomena became known, such as superfluidity, supercon-
ductivity and the quantum Hall effect.

Once we turn on interactions, quantum systems, no matter how
weakly coupled they are, seem to have a turning point whenever there
are so many particles that the collective coupling exceeds unity. At this
point, collective quantum effects become dominant and the systems be-
come intrinsically non-perturbative. In the case we will study, the sys-
tem undergoes a phase transition and the ground state becomes dom-
inated by the formation of a soliton - an intrinsically non-perturbative
object. By studying the system near the critical point, we find striking
similarity with some of the mysterious properties of black-holes.

In the Part III of this thesis, we will focus on the results we obtained
in [g3]. We will argue that in fact black-holes should be viewed as a
large quantum system which is stuck in a quantum phase transition,
and we will show how to understand information-theoretical proper-
ties of black-holes through quantum criticality.

1.4 ATTRACTIVE LIEB-LINIGER MODEL AND YANG-MILLS

The physics of 1+1D systems is very peculiar. While in higher dimen-
sions propagating particles can avoid interacting by just going around
each other, in one spatial dimension, if they are converging to the
same point, they have no choice but to scatter. For certain theories,
any multiparticle scattering can be factorized into multiple elementry
2 — 2 processes: theories that have this property satisfy the so-called
Yang-Baxter equation.

Theories that satisfy this property are said to be integrable. For our
application, the one property of integrable systems we need to retain
is that it allows us to convert the N-particle Hamiltonian eigenvalue
problem into the problem of N algebraic equations for N parameters.
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One intuitive way to understand why this is possible is the follow-
ing: in two dimensions, the S-Matrix of the theory is just a phase shift
that depends on the incoming momenta of the particles. If we define
the theory on a ring, we can perform an experiment in which a parti-
cle is dragged around the circle until it returns to the same position,
scattering with all other N — 1 particles along the way. Due to the fact
that the scattering is factorizable, this can be written as a product of
N — 1 elementary 2 — 2 scattering processes. Since we have periodic
boundary conditions, going around the circle restricts the total phase
shift of the wave-function to be a multiple of 277. Equating the phase
shifts, we have a constraint on the possible momenta of the particles.

This system of constraints is known as the Bethe equations, and it
completely determines the spectrum of the system.

In Part III of this thesis, we will present the results obtained in [68].
We will develop a method to solve the Bethe equations for the attrac-
tive Bose gas. By doing so, we are able to characterize the phase tran-
sition using the Bethe ansatz, and also show that the ground state of
the system can be mapped to the saddle-point of 2D Yang-Mills on a
sphere.
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FROM WEINBERG TO PECCEI - QUINN

Shortly after the discovery of strong interactions and the advent of
QCD, a problem, which became known as the U(1)4 problem, was
uncovered. Solving the U(1)4 was possible due to the discovery that
global axial transformations are in fact not symmetries of QCD at
quantum level - they are anomalous. The effect of this anomaly, as we
will see, is intimately connected to the vacuum of QCD, which is not
unique and contains non-perturbative topological objects - instantons
- which contribute to observable quantities in the theory. We observe,
however, that the parameter which controls these effects - the 6 angle,
has a very very small upper bound. In order to explain the smallness
of this parameter, Peccei and Quinn introduced another particle in the
spectrum - the Axion - whose expectation value corresponds to the ¢
angle, successfully being able to naturally have a theory in which 6 is
small.

In this chapter we will briefly review each one of these steps, starting
from the U(1)4 problem, and finishing with the introduction of the
Axion.

2.1 THE u#(l); NON-SYMMETRY

In this section we will review the developments that led to the discov-
ery of the U(1) 4 problem. For a comprehensive treatment, please refer
to [z].

Take the QCD Lagrangian with N flavours of quarks, and suppose
that all of the quark masses are 0. In this theory, we can identify
two possible ways of independently rotating the quark flavours, one
through a global vector U(N)y transformation, and another with an
axial U(N),4 transformation. We expect then that in this theory, we
have a global symmetry of U(N)y x U(N) 4.
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In reality, quarks are not massless, thus we don’t expect to observe
any exact global flavour symmetry in nature. We do, however, have
a big hierarchy of quark masses. While the up and down quarks are
very light, around the MeV scale, all the other quark flavours are much
heavier. The next lightest quark is the strange, with a mass of 95 MeV,
while all the other quarks are already at the GeV scale. In fact, the
up and down quarks have masses way smaller than the QCD scale
(= 200 MeV). It is then reasonable to expect that there is a global
approximate U (2)y x U(2) 4 symmetry in strong interactions.

Below the QCD scale quarks are not asymptotic states of strong
interactions. The QCD vacuum is characterized by a quark condensate

(q9) #0, (1)

so these global symmetries will be manifest in the spectrum of the the-
ory, which will be composed of bound state of quarks. It was observed
that indeed the global vector U(2)y = SU(2); x U(1)p symmetry is
present in strong interactions, due to the existence of the pion and the
nucleons in the hadronic spectrum.

In the case of the axial current, we would also expect the appearence
of a U(1)4 from the conserved U(2)4 current. However it is easy to
check that the condensate (m) dynamically breaks global axial sym-
metries. That means that if the QCD lagrangian was originally (ap-
proximately) invariant under some U(1)4, we would observe its cor-
responding (pseudo-) Goldstone boson in the low energy spectrum of
the theory, after symmetry breaking.

We arrive at a puzzle then, which is the following: the effect of the
explicit symmetry breaking terms in the QCD lagrangian predicts that
the mass of this pseudo-Goldstone boson of U(1)4 should be very
close to the mass of the pion, the lightest hadron in the spectrum.
We observe, however, the second lightest particle in the spectrum, the
7 meson, has a much higher mass than the pi meson. This puzzle,
discovered by Weinberg [2], is known as the U(1) 4 problem. Weinberg
then suggested that the only natural way to escape this problem is to
find a way to get of the initial axial symmetry of light quarks in QCD.
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2.2 THE ANOMALY

It had been known, however, that the axial symmetry was not a true
symmetry of the theory [3]. Associated with an axial transformation,
there is a current

Iy = @vursa (2)
the axial current, which is conserved whenever the theory is invari-
ant under an axial transformation. Classically, it is easy to check that
indeed this current is divergenceless in the theory. Quantum mechani-
cally, there is a one-loop diagram which contributes to the divergence
of the current. The divergence of the axial current, in the presence of
the gluon fields Fapv, will be

gN

where we introduce the dual gauge field F, defined as
= 1
Fay = EeyUlX,BFgﬁ (4)

The FJ Vfaw term on the right hand side of (g) is a very special entity,
since it can be written in the following form

F{"Faw = 0,K" . (5)

The vector Kj,, called the Bardeen current, is the dual of the Chern-
Simons three-form, which will play a major role in our discussion later.
This three-form can be written as

Ku = €unpy C*F7 (6)
7 = A% (PP = S fpe ADAY ) ?)

Despite the fact that the classical theory is invariant under U(1) 4,
what we find from (g) is that under the transformation

g — €75, (8)
we will the following contribution to the action
2 N 5
0S = e/d4x ouJt = 652 5 /d4x F} Faw

/ d*xd,K" | 9)

322

11
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While the divergence of the ]Z current is non-zero, what we find

is that it corresponds to a boundary term, since the 2l Vﬁaw contribu-
tion is nothing but a total derivative. One could be tempted to assign
AL (00) = 0 and quickly disregard this term, however as we will see,
the situation is more tricky, since the possible gauge choices of gauge
for the asymptotic behaviour of A can lead to a non-vanishing bound-
ary contribution.

2.3 TOPOLOGY AND THE ® vacuumMm

In the past sections, we have seen that the existence of a conserved
U(1) 4 current in QCD would lead to the appearance of a light Gold-
stone boson, since this symmetry would be spontaneously broken by
the quark condensate in the QCD vacuum. In reality, this symmetry is
anomalous, and thus only conserved classically. What we find is that
axial transformations induce a new term in the action which happens
to be a total derivative. Usually total derivatives can be disregarded,
since we choose vanishing boundary conditions for the fields at infin-
ity, but in this case we have the extra hassle of dealing with gauge
dependent fields, so any gauge transformation of 0 is a physically
equivalent choice of boundary condition.

Our goal is then to enumerate the possible choices of field configu-
rations that are asymptotically pure gauge, since these will be the ones
which will minimize the hamiltonian of the theory. In order to do so,
let us notice that a pure gauge (pg) field has the form (let us suppress
color indices for simplicity)

AR® = —ill(x)o,U" (x) (10)

where U(x) € SU(3) is a gauge transformation.

It seems like this is an ungrateful task, since these choices are neither
unique nor gauge invariant. However, it can be seen that the choices
of Agg fall into a countable infinity of equivalence classes. In order
to see this, let us make two restrictions on the gauge transformations:
first, we restrict ourselves to those that will approach 1 at infinity

xh_{rgo uix) =1 (11)
and we stick to the temporal gauge in order to eliminate the time-
dependence

Agg =0. (12)
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The choice of asymptotics for U (x) has the effect of identifying every
point at the spacial infinity, since they can’t effectively be distinguished
from the point of view of the gauge field. This identification thus
transforms R into S° through a transformation akin to a stereographic
projection.

The gauge transformation U(x) will then define a map

S? — SU(3) (13)

In order to classify this map in terms of homotopy, only the SU(2)
subgroup matters [5]. Furthermore, SU(2) can be mapped into S°
using the Pauli matrices representation of the group. This map is then
topologically equivalent to

S s3, (14)

which maps that the gauge transformations of 0 at spatial infinity
essentially map spheres into spheres. We know that in general it is
not possible to continuously deform one mapping into another, which
means that they fall into distinct homotopy classes. The homotopy
classes are elements of a ground - the homotopy ground. In the case
of mappings between spheres of the same dimension, this group is

ﬂd(Sd) =7 ,

meaning that every class of U(X) can be characterized by an integer n,
which is the d-dimensional generalization of a winding number.
For a given gauge field configuration A} (¥), this integer n is given

by

— lg3 d3—*T AZA]Ak
n= e XTr |€k . (15)
This quantity is related to the Bardeen current we introduced previ-
ously. With the choice of normalization we used, and sticking to the

A = 0 gauge, we have
4. o
K" = igey Tr [AlAJAk] . (16)

so the integral over the charge density K° precisely measures the wind-
ing number of the field.

As we see, there is actually a countable infinite number of distinct
vacua we can choose. Although these vacua are physically equivalent,

13
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nothing forbids us from having field configurations which transition
between different vacua at some point in time. Since all the vacua
belong to different homotopic classes, any field configuration that in-
terpolates between different vacua will have to cross regions where the
gauge field is no longer pure gauge. This corresponds to field configu-
rations which will have a non-zero action, similar to the problem of a
particle tunneling between different minima of a potential, separated
by a wall. These field configurations of finite action that interpolate
between different vacua at different times are called instantons.

As a matter of fact, the existence of instantons lift the degeneracy be-
tween the different vacua and forces us to consider a different ground
state for the theory. Two vacua characterized by different winding
numbers are not orthogonal, since there are finite action configura-
tions which will interpolate between these vacua.

It is instructive to consider a quantum mechanical example: con-
sider a theory with infinitely many degenerate vacua characterized by
an integer, and take the partition function of the system, with fixed
boundary conditions n and m for asymptotic past and future. Let
us consider only the simplest instanton, which interpolates between
n and n + 1, and its corresponding anti-instanton. We have have in-
finitely many tunneling process in between, as long as the number of
instantons and anti-instantons obey Ny — N; = m — n. The partition
function of the system can be then written as as sum over all the pos-
sible field configurations that respect this constraint. For some large
time T, we have

Z(n ZOZ

Ni, N;

Z T)NI+NI

NIIN ~—————0(N;— Nj,m—n) (17)

where Z; is the action for an single instanton. Using the representation

dao ;
py= [ 22 i0(a—b)
O(a,b) ¢
we can rewrite the partition function as
Z(n,m) sS4 Zd_ieiG(mn)+2TZICOS(9) (18)

In order to interpret this partition function, let us use the energy rep-
resentation of the matrix element Z(n, m)

Z(n,m) = ;e_E"T<n|k> (klm) . (19)
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For T — oo, only the ground state will contribute, so we can write

1
Eo %gr;o T InZ(n,m) . (20)
And thus we have
Ey x2Z;cos(0) (21)
This parameter 6 labels the true vacuum of the system. It is easy to
see that choosing .
0) =3 e™"|n) (22)
n

will lead to orthogonal, and most importantly, gauge invariant vacua.

In order to see how the choice of this vacuum affects the partition
function of our theory, consider the vaccum-to-vacuum transition am-
plitude for a given angle 6. We have

(0]0) = Zele =) (m|n) Zelevz (m+ v|n) (23)

and the integer v can be expressed as an integral over the divergence
of the Badeen current, which is precisely

v = 32n2/d4 FWFaW (24)

Using the path integral representation of (6|0), we hae
2 e
<00 >= Z/ DA eiS[A]—s—iGsf? [ d4x Y Eap (25)
) v

where the functional integration is taken, for each term in the sum,
over field configurations that satisfy the constraint (7).

We started by attempting to construct the vacuum of the theory.
This task was not so simple, since what we find is that due to the
gauge redundancy of the theory, there is an infinite number of classes
of field configurations that minimize the action. These classes are
parametrized by an integer, which measures how many times the
maps from the gauge group manifold winds around the spatial mani-
fold. In reality, these are not the appropriate vacua of the theory, since
there are instantons which transition between the vacua with finite ac-
tion. The orthogonal and gauge invariant way to construct the QCD
vacuum is to consider an infinite superposition of the n-vacua. The
QCD vacuum, or the 6 vacuum, is parametrized by a parameter 6, and
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these vacua are all orthogonal and gauge invariant. Choosing this as
the vacuum of the theory forces us, however, to introduce a term in
the lagrangian, which is precisely the CP violating FF term which we
encountered before.

2.4 THE STRONG CP PROBLEM AND THE AXION SOLUTION

In this section we review the works of Peccei and Quinn [p], which
proposed the axion as a solution to the strong CP problem.

Let us first remark that the term FF is not invariant under CP trans-
formations. Secondly, the vacuum expectation value (FF) is propor-
tional to the choice of 8, which completely parametrizes the vacuum
of the theory.

The value of 6, however, can be related to observable quantities.
There is a bound on the neutron dipole moment, which in turns im-
plies that & < 1077. There is no specific reason why 6 should be so
small, so explaining why 6 is so close to 0 is known as the strong CP
problem.

In order to solve this problem, Peccei and Quinn [y] introduced a
new symmetry U(1)po which can be realized due to the addition of a
new pseudo-scalar field, the axion a. Under a U(1)pg transformation,
the axion receives a shift

a(x) — a(x) +af, (26)

fa is an order parameter which is associated with the breaking of
U(1)pg. For f, — 0, the axion is no longer dynamical and the symme-
try ceases to be realized. This field is then coupled to the FF term in a
way that ensures that its current obeys

2

ayﬂ;Q = g%FngFayv- (27)
We have then the following lagrangian, neglecting the possible cou-
plings of axion to matter

Log= (042 & F Fyy + 20,07 8
PQ = +]Ta 3072 ° uyv+§ paodta. (28)

The essence of the PQ solution is that the effective potential for the
axion field, after integrating out the QCD dynamics, has a minimum
at

(a) = —0fa, (29)
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which precisely cancels the 6 contribution, thus getting rid of the (FF)
term.

In the next chapter we will reformulate the strong CP problem in
terms of the Chern-Simons 3-form. By doing so we are able to exploit
a more powerful formulation of the PQ solution, in which the axion
becomes a 2-form field. The shift-symmetry is promoted into a gauge
redundancy, and the goal of the axion will be to provie a mass gap for
the QCD Chern-Simons 3-form.

17
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In this chapter we review the formulation of the Axion symmetry in
terms of Three-Form gauging. For a comprehensive treatment of the
subject, we refer to the original work of Dvali [m=].

The strong CP problem is a problem of vacuum superselection. There
is an arbitrary parameter 6 which sets the strength of the the CP vio-
lating term in QCD. Whenever 6 is nonzero, we observe that

<F£Vﬁa;41/> # 0 (30)

and thus the theory would predict processes that violate CP symmetry.
The observed smallness of the neutron dipole moment can be related
to the parameter 6, which is bounded by 6 < 10~°. Peccei and Quinn
observed that this problem can be avoided by promoting the parame-
ter 0 into a dynamical field. This has the effect of restoring the original
anomalous chiral symmetry as a new shift symmetry under which the
this dynamical field will transform. The strong CP problem is then
solved because the minimum of the axion potential is for § = 0, which
implies a vanishing of the (F}"F,,,) correlator.

In this chapter, we seek to review the formulation of the PQ theory
in terms of a 3-form field [r2]. In this formulation, the strong CP
problem can be viewed as the problem of a massless 3-form gauge field
which creates a constant (4-form) electric field in the vacuum. This
phenomenon is similar to that of the Schwinger model in 1+1d, which
a 1-form gauge field creates a constant 2-form electric field, which
in the absence of charges remains constant - and thus the vacuum is
determined by the value of this electric field. In QCD, this 4-form
electric field has the peculiarity that it violates CP, and thus we know,
by phenomenology, that it must be screened somehow.

Screening an electric field is possible by giving the gauge field a
mass. In order to give a 3-form gauge field a mass, we need to intro-
duce a 2-form gauge field that will be responsible for “Higgsing” this
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three-form. A 2-form field in 3+1 dimensions is precisely dual to a
pseudo-scalar, which corresponds to the axion. It is clear, then, that
the shift symmetry of the axion field will be promoted to a gauge re-
dundancy of the 3-form field, whose gauge transformation have to be
offset by this shift of the axion 2-form.

It is clear that this formulation gives us a lot more power when it
comes to constructing the axion potential, since now we are bound
by a gauge redundancy instead of a global symmetry, and thus the
couplings of the axion are extremely constrained. Precisely for that
reason, we can use this machinery to speculate on how, and if, the
coupling of gravity to the axion might destabilize its potential and thus
ruin the PQ solution to the strong CP problem. In the next chapter,
however, we will extend this idea to include ways to protect the axion,
in case gravity does spoil the solution.

3.1 2-FORM AXION AND 3-FORM GAUGE FIELDS

The essence of the axion solution is the following: we have a shift-
symmetric (pseudo-)scalar field which plays the role of the 6 angle,
and this scalar is coupled to the ol Ul:“aw/ field, which as we’ll see, is
nothing more than the field strength of a 3-form gauge field. In the
vacuum, the electric field will be screened by the dynamical produc-
tion of a mass gap, but there are no new degrees of freedom and the
shift symmetry of the scalar field cannot be explicitly broken! In order
to see how this is possible, we need to introduce the 2-form field By,
which will play the role of the axion, and we need to see how this field
will couple to the QCD 3-form.

Let us start by introducing the Kalb-Ramond 2-form antisymmetric
field Byy. The kinetic term for this field is

Ptxﬁ’ypaﬁry 7 (31)
where the field strength P is defined as
P‘Xﬁ’Y = a[,XBM =dB ’ (32)

and dB is the exterior derivative of the 2-form B, in a coordinate inde-
pendent notation.
The kinetic term is invariant under the global shift

Buv = Buv + Qv , (33)



3.2 THE MASS GAP

and it also contains a redundancy
B— B+dy, (34)

where 7 is a 1-form. This redundancy, together with the antisymmetry
of B and the fact that one of the components is not dynamical, restricts
the number of degrees of freedom to 1. We also need to introduce the
3-form gauge field C,g,, whose kinetic term is

Fymﬁ’yFy“ﬁ’Y (35)
and the field strength tensor F is naturally
Fﬂ“ﬁ'Y = a[yC,XM =dC. (36)

The theory of invariant under the gauge transformation
C—-C+dQ, (37)

where () is a three-form.

In 3+1d the gauge redundancy is enough to strip the 3-form field
Cup, of all its propagating degrees of freedom. The situation is simi-
lar to that of the vector field in 1+1 dimension, in which despite the
absence of degrees of freedom, there is still a long range interaction
through means of a constant electric field. While in 1+1d this field
is sourced and screened by particle charges, in 3+1d the 3-form field
couples instead to branes or domain walls. We can visualize the effect
of C as that of a global capacitor plate - it creates a constant electric
field which can only be screened by a co-dimensional source.

In the presence of this constant electric field, the strength tensor can
be parametrized as

Fuapy = Fo€papy - (38)

In the absence of sources the equations of motion will be simply
9, F'P1 =0, (39)
which imply that the value F is arbitrary.

3.2 THE MASS GAP

In the case of a vector field A, which transforms as § A, = d,,w under
gauge transformations, the way to introduce a mass gap in the theory
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is by coupling the vector field to the derivative of a shift-symmetric
scalar in a way that the scalar field will absorb the gauge transforma-
tions of A, - or in other words, a 1-form gauge field can acquire a
mass gap by eating a O-form.

One should be however careful, since we always have the choice to
add a mass gap by hand without the necessity to worry about who
the gauge field is eating - which is just Proca theory. While doing that,
however, we are promoting A from a massless to a massive representa-
tion of the Lorentz group, and thus gaining an extra degree of freedom
- which is just the longitudinal polarization of the gauge field which
becomes physical. If the mass gap is dynamically generated, however,
we need to keep track of where the extra degree of freedom comes
from, and that is the essence of this whole discussion: the axion is a
necessary ingredient in screening the QCD 3-form precisely because it
provides the degree of freedom necessary to create a mass gap.

In the case of the 3-form, it can become massive in the vacuum by
eating the 2-form field. Let us construct the simplest lagrangian which
can do this

L = —3 Fuugpy EUPY = 12072 (Pagy — Capy)’ (40)

It is clear that this theory contains a mass gap and it only propa-
gates 1 degree of freedom. Furthermore, the equations of motion now
contain a term linear in Pyp,, which makes the field strength decay ex-
ponentially. Instead of propagating a long range force, the correlators
have now a typical length scale of m ™.

We can attempt to dualize the theory in order to check how it looks
in terms of the pseudo-scalar degree of freedom. In order to dualize
the theory, we treat P is a fundamental 3-form and enforce the Bianchi
identity as a constraint

Py Pug) = O, (41)

Introducing the lagrange multiplier a for the constraint, we will end
up with the following lagrangian
L = 2 g FFP7 — 12m%(P Copy)? — X aembra, p
=~ papy — 12m%(Pupy — Capy)”™ — 5p0€ n Papy) (42)
Integrating out P we arrive at the following lagrangian, where the
lagrange multiplier a is now the pseudo-scalar degree of freedom

A% 1

L= -
2m? 2

(aya)2 —Aza[aaCﬁMe“m‘s — FW!;WF”“M. (43)



3.3 QCD CHERN SIMONS 3-FORM

While the lagrangian defined in terms of P had an explicit mass
gap, it is not completely clear that the same is true for this theory. In
order to verify that indeed we have a mass gap, we can integrate out C
through its equations of motion and write the effective equations for a

2

Da+%(u—1€) = 0. (44)

where « is an integration constant. At the level of the equations of mo-
tion, we see that a mass gap is generated, although the field a remains
shift-symmetric in the lagrangian!

If we identify C,p, as being the Chern-Simons three-form of QCD,
the second term in the lagrangian (g3) is nothing more than the cou-
pling between the axion a and 2l VF&W' It is clear that both formula-
tions are equivalent, and that indeed the role of the axion is to generate
a mass gap - and thus the ground state of the theory is for 2 = 0, which
implies (FF) = 0.

3.3 QCD CHERN SIMONS 3-FORM

As we have seen, we can formulate the strong CP problem in the lan-
guage of a 3-form, the Chern-Simons 3-form C,g, which mediates a
long range correlation. Another way to see that this is indeed the case
is to consider the fact that the topological susceptibility of the QCD
vacuum is non-zero

<FﬁrPﬁ>q%O7éO- (45)

Since F = dC, we have
1
(€ Qg 5 (46)

Since we have a pole in the 4 — 0 limit, C is a massless field in the
effective theory. We can understand the physics of the 6 angle in the
tollowing way: whenever this correlator has a pole at zero momenta,
the low energy theory is dependend on the 6 angle. Removing the 6
dependence means introducing a mass gap for C, which will eliminate
the g = 0 pole.

It is instructive to ask the following question: what happens when
the quark masses are exactly 0 and chiral symmetry is classically exact?
As we have seen, in the presence of a chiral theory, we can simply
rotate the 6 angle away. But in order to interpret this in terms of mass
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gap generation, we need an extra degree of freedom which will Higgs
the Chern-Simons 3-form. The only candidate is the #” meson, which
is the would-be Goldstone of spontaneous chiral symmetry breaking!
So it is no surprise that the 77’ ends up being heavier than the 7w meson,
since its mass gap comes from two sources: the explicit breaking of
chiral symmetry by the light quark masses, and also the mixing with
the QCD 3-form which will dynamically generate a mass gap.

It is important to notice the following, though: although the 7’ me-
son is able to play the role of the axion in the 0 mass limit, the explicit
chiral symmetry breaking in real QCD is not small enough to comply
with the bounds on the 6 angle, as it was shown in [A8].

It is important to notice that we can generate this mass gap in purely
topological terms, following [r3]. In this language, it doesn’t matter
whether the mass gap generation comes from a fundamental boson,
like the axion, or some composite goldstone boson. All that matters is
that there is a current ], which is anomalous, thus satisfying

ouJt =FF=E, (47)

where we have E = dC, the field strength tensor of the Chern-Simons
3-form.

Let us show that this current automatically introduces a mass gap in
the theory. This anomalous current will introduce a unique coupling
in the action [13]

1
E=dul", (48)

While we don’t know the precise form of the low energy action of
the theory, we can use the power of effective field theory to make a
1/A expansion. Since we are interested in the zero momentum limit,
higher order terms will be irrelevant. To lowest order, we have

1 2

E 0
ﬁiﬂjﬂ . (49)

Upon variation with respect to C, we have the following equations
of motion

0
OE=-N0, ], (50)

which yields, after taking into account the anomalous divergence of |,

OE+A%E=0, (51)
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where we have also ignored an integration constant which does not

affect the physics of the result. At the end, it is clear that whenever we

have an anomalous current, a mass gap is generated and the %> = 0

pole is removed. This is true regardless of the form of the current J,.
In the presence of an axion, the current ], is simply

Ju= fi aaya (52)
whereas in a chiral theory, we have
Ju = Q_'YV’Y5Q ’ (53)

3.4 THE ROLE OF GRAVITY

In the PQ formulation of the axion, the reason why the strong CP
problem is eliminated lies on the fact that the minimum of the axion
potential happens for 2 = 0. This fact is heavily dependent on the
form of axion potential, though. In the presence of extra fields which
couple to the axion, the potential can receive corrections which spoil
the solution. In other words, the global shift-symmetry of the axion
is too weak to constraint its interaction, and the corrections are uncon-
trollable.

By gauging this symmetry, we are sure that the possible interactions
of the axion, now described by a 2-form B#V are within control. This is
because interactions which would spoil the gauge redundancy of the
theory will inevitable add new - likely unhealthy - degrees of freedom.
By enforcing the sanity of the theory, we are able to say exactly how
extra corrections might couple to the axion.

As we have seen (g2), the lagrangian

1
L = (3ua)? +fE+FE2 (54)

can be written in the following form after dualization, in a coordinate
independent notation

1
L=_5E'+ ta L (C—dBY, (55)
This theory contains a gauge redundancy, under which both C and
B transform

C—-C+dQ,
B—>B+Q, (56)
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where () is an arbitrary two-form.

We would like to stress that the possibility of rewriting the QCD ax-
ion in a dual language of By, and coupling it to a QCD Chern-Simons
was already considered in [r1], but unfortunately was abandoned, be-
cause the authors assumed that the duality between a and By does
not hold for a massive axion. This is not the case, since it is exclu-
sively the coupling to C that generates a mass for the axion in both
formulations.”

The power of the 3-form formulation is manifest here: since we have
a strong gauge redundancy that has to be respected, the gravitational
coupling to the axion must come in a similar way. The only possible
tield that can absorb a 2-form in a gauge transformation is another 3-
form, Cg. The only possible choice of C; in gravity is the gravitational
Chern-Simons field

Ce =TIdI — gFFT , (57)
with

dC; = RR=Eg;, (58)
where R is the Riemann tensor and R is its dual. For gravity thus to
ruin the axion solution the following two conditions must be satisfied:

e We must have a non-zero topological vacuum susceptibility
(RR, RR>an = const # 0 (59)
in the absence of the axion.

e The divergence of the axion current must contain a contribution
from aRR.

These two conditions can be set by two parameters: the scale Ag
which sets how big the vacuum susceptibility is; and the coupling
constant &« which determines the coupling of the axion to the gravita-
tional Chern-Simons 3-form. Whenever either one of these terms in 0,
the axion is safe since gravity can have no effect on the axion potential.

The Lagrangian which renders the QCD 6-term physical has the
unique form

1 2

1

Eé + = (sz +agCe —dB)?, (60)

f 7
The dual formulation of a massive By, in terms of massive three-forms was studied

in [rg] up to quadratic order in fields. The duality between the massive three-form
and the massive axion for an arbitrary form of the axion potential was proven in

[x3].
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where as just explained a and ag are two dimensionless parameters
which determine the respective coupling strengths. Normalizing the

three-forms canonically, rescaling B — B\/ (a2A% 4+ a2 AL ), and intro-
ducing the mixing angle,

a\?
cosp = /
\/ a2 A* 4 a2 AL
we can rewrite,
L = E? + E4 + m?*(Ccosp + Cgsinf — dB)?, (61)

where
m? = (aPA* + a2 AL/ f2

We see that, due to mixing, only one combination of three-forms is
becoming massive, whereas the orthogonal one, Csinf — Cgcosp, is
massless. The natural value of the QCD 6-term is measured by the
relative weight of the QCD three-form in this combination,

IXGAzG

2 A4
a2 At + wEAL

OQCD = sin[% = \/ (62)

We don’t know if either one of the gravitational parameters can be
non-zero, but let us assume that there exists a gravitational coupling
and that the scale Ag is large enough that this contribution would
indeed spoil the axion solution.

If that were to be the case, we would need to introuce another
axionic-type particle in order to Higgs the massless combination. From
our previous discussion, all we need is another current ];l whose di-
vergence will be sourced by the gravitational E;. The exact source of
this current is irrelevant, as long as it is anomalous under gravity.

In the next chapter, we will show that the standard model already
contains such a protection mechanism in the form of light neutrinos.
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As we have seen, the axion is able to solve the strong CP problem by
providing a mass gap to the QCD 3-form. This can be easily seen in the
language where an axion is an antisymmetric 2-form BW/ since Now
the shift-symmetry of the axion becomes a gauge redundancy, and the
axion plays the role of the extra degree of freedom which gets eaten
up by the 3-form in order to create a gauge invariant mass term. The
way the axion solution can be ruined by gravity is if gravity provides
an additional 3-form field which also couples to the axion 2-form.

In order to protect the axion, we need to provide the theory an extra
current which is anomalous under gravity. As a matter of fact, the
standard model already contains such a current: the neutrino lepton
number current. If the neutrinos were exactly massless, this current
would be enough to rotate the gravitational 6 angle away, but in fact
neutrinos have a tiny mass. What we will show in this chapter is that
if the mass of the lightest neutrino is small enough, we are able to
use this anomalous current to save the axion. Conversely, if we do
find that there is a non-vanishing A and nonzero coupling of Cg
to the axion, determining these parameters puts an upper bound on
the lightest neutrino mass. We will closely follow the derivation and
expand on the results we obtained in [f].

4.1 MASSLESS NEUTRINOS

For definiteness, we consider a single massless neutrino species of left
chirality v;. The chiral symmetry

v — ety (63)
is anomalous with respect to gravity and the corresponding current

i =y, (64)
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has an anomalous divergence [15]
9uJ'" = RR = Eg, (65)

where we have set the known anomaly coefficient to one. It is now
obvious that the massless pole is no longer there for E and Eg. Indeed
from the effective Lagrangian

d d
L= %EzntiEéJrfa "ﬂ‘+ f(j E”]M%EEGE“]LV (66)
where f, ~ Ag is a scale that sets the strength of anomaly-induced
coupling to neutrino current.

One can obtain the equations of motion for C and Cg which together
with (b5) show that there are no massless modes in E and Eg. Thus,
massless neutrino protects the axion solution to the strong-CP prob-
lem. In the next section we shall take into the account a possible effect
of the small neutrino mass.

4.2 SMALL NEUTRINO MASSES

Neutrino masses are, unfortunately, nonzero. Due to this reason, the
neutrinos cannot exactly rotate the gravitational 6 angle away, or con-
versely, the axion being minimized will not necessarily imply that that
0oCD will sit exactly at 0. The effects of small netrino masses - small
compared to the other relevant scales in the problem, AgCD and Ag
should not change the story too much in a qualitative way.

In this section we will calculate exactly the effect of a small neutrino
mass on the QCD 6 angle. Observationally [fi6], there is an upper
bound on neutrino masses Y_m, < 0.3eV [17], where the sum is over
all neutrino flavors. We therefore parametrize the mass of the lightest
neutrino by m,. In case m, is non-zero, the neutrino lepton number
is explicitly broken. This introduces an additional factor to the diver-
gence of the current (b4)

ouJl, = RR + m,vy°v . (67)

As we have shown before, the generation of the mass gap for Cg au-
tomatically implies that this current must be identified with a pseudo-
scalar degree of freedom. We shall denote it by #, in analogy with the
1" meson of QCD.



4.2 SMALL NEUTRINO MASSES

Notice, that we are not making any extra assumption. The necessity
of a physical 7, degree of freedom follows from the matching of high-
energy and low-energy theories [z, 13]. From the high energy point
of view, the axion is protected because the would-be gravitational 6-
term is rendered unphysical by a chiral neutrino rotation. In order to
match this effect in low energy description, the correlator (5g) must
be screened. By gauge symmetry, this is only possible if there is a
corresponding Goldstone-type degree of freedom that plays the role
of the Stiickelberg field for the gravitational three-form (g7). In other
words, the same physics that provides the correlator (5g), by consis-
tency, must also provide the physical degree of freedom, #,, necessary
for generation of the mass-gap in the presence of anomaly.

We can think of 7, as of a pseudo-Goldstone boson of the spontaneously-

broken lepton-number symmetry (p3) by non-perturbative gravity. In
a sense, 17, can be thought of as a low-energy limit of the neutrino
bilinear operator,

1
Ny — A—217751/ and ]5: — Agd'ny , (68)
G

in a way similar to relation of 7’ of QCD in terms of a quark bilinear
operator. With this connection, the effect of a small neutrino mass on
1y is similar to the effect of a small quark mass on 7’. Namely, to the
leading order in % such a deformation of the theory should result into
a small explicit mass of 7, in effective low energy Lagrangian. Because
physics must be periodic in the Goldstone field, this mass term should
be thought of as the leading order term in an expansion of the periodic
function. The higher order terms in this expansion cannot affect the
mechanism of mass-generation and are unimportant for the present
discussion. Thus, the dynamics of the theory is now governed by the
Lagrangian (68) with an additional mass term m, Agn?2 appearing from
the explicit symmetry breaking by the neutrino mass. Replacing the
currents with their corresponding pseudo-Goldstone bosons yields

1 1 a a n
L = —E*+—F2— _—E—a;—E;—-LE
N e A

+0y,a0"a 4 0,17,0" 17, — myAqu . (69)
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Here we have absorbed « into the definition of f, and have set the
decay constant of #, to be equal to Ag ". Ignoring numerical factors,
the equations of motion for C and G are

d(E—A4%> =0

a
d (EG — “GA%;JTH - A%Wv) =0, (70)

and the ones for a and 7, read

nglZ = —OCGEG—E
E
O+ mnc)p = == (71)

It is already clear from the last two equations that small enough neu-
trino mass will continue to keep 6-term of QCD under control. Indeed,
these two equations imply that in the vacuum (that is, for 5, = a =
constant) the value of the QCD electric four-form is E = mvth/\éiyv.
Since, the vacuum expectation value of 7, cannot exceed its decay con-
stant, Ag, the corresponding maximal possible value of the 0gcp is

E m tXGAS
Omax = sz = VA4 = ’ (72)

which vanishes for m, — 0.
Indeed, the vacuum solutions of (7g) and (1) are given by the fol-
lowing expressions

myAg (acB2 — P1)
Agmya + A*(Ag +my)

£ A myA*(B1 — acp2)
G — G A4 2 4
cmyas + A (Ag +my)

E=acA*

, (73)

where B and B, are dimensionless integration constants of (7o), i.e.
E = A4j% + A4[32 and Eg = A‘éoccj%7 + A%iyv + ﬁlAé. Since the maxi-
mal values of the two electric fields are bounded by the scales A* and
A%, the maximal values of the crresponding integration constants can

be order one.

In the absence of other scales in the problem, this is the only natural possibility, in
full analogy to the decay constant of 1’ meson being set by the QCD scale. The
possible difference between f, and Ag can easily be taken into the account and
changes nothing in our analysis.
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Let us parametrize this result by the ratio of the neutrino mass to the
gravitational scale by defining € = ;7. The maximal value for the
quantity agB2 — B is either order one or a; depending whether «a is
less or larger than one. For definiteness, we shall assume ag > 1. The
maximal value for the QCD electric four-form field E; then depends

on € as follows?
eucé

E=A* (74)

2, A%
€xg + AL

The limit of massless neutrinos, € — 0 leads to E = Eg = 0. In other
words, massless neutrino fully protects the axion from gravity.

Considering the value of the neutrino mass m, much smaller than
the gravitational scale Ag, m, < Ag, we get € >~ 7\1—(”; Then, the value
of E in the QCD vacuum is instead

4 “ZGmVA%
4 2 3
A+ azmy Ay

(75)

In terms of 6 this gives

aZm, A%
T OA4 2 3
A=+ agmy AL

(76)

In order to be compatible with observations (cf. the electric dipole
moment [i8, 1g]), § must satisfy the bound 8 < 10~°.

It is instructive to look at the values of E for different choices of
parameters. If the denominator in (76) is dominated by (szmVA%, there
is essentially no screening of the four-form electric field, E ~ A%, and
correspondingly the un-fine-tuned value is 6 ~ 1. In this case, the
axion solution of strong-CP problem is ruined. On the other hand, if
A* > aZm, A}, then requirement of the protection of the successful
axion mechanism, translates into the following bound on the lightest
neutrino mass,

9 A4
my, < 10~ .
v S ZAT (77)

In turn, the experimental measurement of the neutrino mass would
introduce an upper bound on the non-perturbative gravitational scale
of the anomaly Ac.

Note that we are not concerned with the actual value the gravitational Chern-
Pontryagin density takes in the vacuum as it is not constrained by measurements.
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The experimental searches [z, po] currently focus on the mass range
0.2eV < my, < 2eV. A detection of the lightest neutrino mass in this

window would give the bound {/a%Ag < 0.2GeV.

4.3 SUMMARY

In this chapter, we unveiled a very interesting connection between par-
ticle physics an collective quantum phenomena in gravity. We have
seen how the existence of non-perturbative gravitational objects might
interfere with the axion solution of the strong CP problem, and we
showed how light neutrinos may cancel this effect in a very unex-
pected way.

By relating the mass of the neutrinos with the scale that sets the grav-
itational anomaly, A, we have been able to create an upper bound on
the lightest neutrino mass, in case the gravitational Chern Simons 3-
form does indeed couple to the axion. In case we are able to measure
accurately the lightest neutrino mass, this relation gives us a bound on
the gravitational topological vacuum susceptibility.

One interesting consequence of this idea is the fact that it predicts
a new effective low energy pseudo-scalar degree of freedom, 7, that
plays the role analogous to 7’ meson of QCD. The phenomenological
consequences of the existence of this new degree of freedom has been
recently studied in [23], where the authors argue that the gravitational
6 term itself may be responsible for generating small neutrino masses.
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A QUESTION OF SCALES

5.1 THE WILSONIAN PARADIGM

It has been the dominant assumption in physics that nature obeys
the Wilsonian paradigm. According to this paradigm, at each energy
scale we have the presence of weakly coupled degrees of freedom, and
these degrees of freedom might change as we raise or lower the energy,
depending on the dynamics of the theory. While at high energies, we
have quarks and gluons as fundamental degrees of freedom of QCD,
at low energies hadrons, baryons and glueballs appear.

The fact that we can identify effective degrees of freedom at any
given energy scale means that it is always possible to parametrize
our knowledge of short distance physics by fixing observed symme-
tries and measured parameters. Although the dynamics of low-energy
QCD in terms of quarks and gluons remains unsolved, we have a rea-
sonably good understanding of the measurable low-energy processes
through the pion lagrangian. The internal dynamics of quarks and
gluons become frozen and manifest themselves through the pion de-
cay constant and the QCD scale.

One very important feature of Wilsonian theories is the fact when-
ever our degrees of freedom become strongly coupled, there should be
another weakly coupled degree of freedom that restores perturbative
unitarity in our theory. Using the example of QCD, when the pion la-
grangian violates unitarity, pions cease to be good degrees of freedom
and we need the introduction of quarks and gluons.

This assumption is surely justified by past observations: from the
4-Fermi interactions to QCD, it seems like there is always some new
particle(s) which are hidden when we reach a unitarity crisis. As it
stands, it seems as if the standard model is following the same path:
the scattering of W bosons becomes strong around the electroweak
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scale, and a weakly coupled boson was discovered. Whether it was
really the Higgs, some composite particle or the first resonance in a
larger tower, it is impossible to say just yet.

The Wilsonian paradigm has a deep implication for our understand-
ing of physics: a theory can never be deemed as fundamental in a phe-
nomenological sense, since it is only as good as our resolution power.
In Wilsonian theories, it is always possible to introduce degrees of
freedom that are limited to length scales smaller than those we can
probe, and those modifications will have no effect on the outcome of
experiments within our reach.

One natural question we can ask is: can Gravity also be viewed as
an effective field theory, in the Wilsonian sense? The answer is most
likely yes, and no. While it makes perfect sense to treat GR as an
effective field theory, there are very good reasons as to why it might
not be possible to UV-complete it simply by introducing new degrees
of freedom - gravity seems to break the Wilsonian paradigm.

In the next section we will try to convince you that due to the exis-
tence of Black-Holes, GR behaves very differently at large energies.

5.2 WILSON AND GRAVITY
We define GR through the Einstein-Hilbert action

_ 1 — 4
5_16nG/V gRd'x 78)

where R is the Ricci scalar and G is Newton’s constant. In natural
units, G has dimension of [M]~2 or [L]?. This allows us to define a
mass scale, the Planck scale

M, = (79)

The Planck mass takes the value of 10'9 GeV, which is orders of
magnitude higher than any mass scale we have access to, through
laboratory experiments. The electroweak scale, defined analogously
through the Fermi coupling constant Gr, sits at 246 GeV, orders of
magnitude below the Planck scale.

In order to define the theory quantum mechanically, we take the
theory of perturbations on top of the Minkowski vacuum and perform
a polynomial expansion of the action: ¢,y = 7,y + hyy. This turns out
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to be the unique theory of a spin 2 representation of the Lorentz group
invariant under the following gauge transformation

h]/”/ — hw/ + a(y(;/) (80)

After canonical normalization, the action will contain a quadratic
part and a series of terms which are polynomials of v, all with two
derivatives. Each one of this terms will be suppressed by an appropri-
ate power of M. Schematically, we can write the action as

1 1
S—/ahah—i—ﬁphahah—l—ﬁghhahah (81)

where we disregard the contraction of the indices.
If we introduce an external source on the theory, by consistency, we
have the following coupling

1
S1=1r1 / iy TH (82)

Suppose that this source describes a fundamental particle localized
within a region of typical size R. The typical energy of this particle
will be E =~ 1/R. In this situation, for distances much larger than R,
the hpp component will simply give us the Newtonian potential

M1
hoo = ——~ (83)

My r
Suppose we are external observers attempting to probe the gravita-
tional field of this source, how close to we need to go in order to see
deviations from the Newtonian potential? We can simply compare at
which scale the quadratic and cubic terms of the action become com-
parable,

1
ohoh ~ Mp hohoh (84)
which gives us
r=rs(E) = E/Mp (85)

assuming that R < rs(E). As a matter of fact, it is easy to check that
this scale is the same for any of the interaction terms, which tells us
that at this point every single term in the action has the same order of
magnitude.
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Indeed something dramatic happens at this scale, since it is precisely
the Schwarschild radius: the radius of the Horizon of a black-hole of
mass M. So the whole exercise was senseless from the beginning,
since the moment we prepared a particle confined to a small region
R < rg(M), we stopped probing the particle and started probing a
much larger object of radius rg.

The effect of Black-holes create a minimal scale Lp = 1/Mp. Any
particle localized within a region R < Lp ceases to be an effective
degree of freedom of the theory and starts being a black-hole instead.

UV-Completing GR by adding new degrees of freedom would re-
quire the introduction of particles which have a mass of the order of
the Mp. If we hold on to the previous assumptions, then these degrees
of freedom are inherently strongly coupled, since they always come
following by a very strong gravitational field. One way to avoid the
inherent strong coupling of heavier degrees of freedom would be to
make gravity weaker at high energies / high field values, which is
inconsistent due to the appearance of negative normed states [25].

The Wilsonian paradigm seems to be fundamentally in conflict with
the existence of black-holes. And due to the very nature of black-holes,
high energy and short distances can no longer be used interchangeably
- modifying the theory at high energies can have consequences which
trickle up to large distance phenomena. Trans-planckian physics is
not the physics of very small objects, it is the physics of very large
distances!

Perturbatively, it seems as if high-energy gravitational scattering still
encounters a crisis of strong coupling, and we still need a way to ad-
dress this issue.

5.3 BLACK-HOLES AS UNITARIZERS

Suppose we prepare a scattering experiment in gravity. Our initial
state is that of two gravitons colliding with a center of mass energy
Vs > M3, Perturbatively, the tree level 2 — 2 matrix element for this
process can be easily estimated, and we have

Atree ~ 86
yh~ (36
In this process, perturbative unitarity is violated for trans-planckian

energies. In this situation, we can no longer trust our expansion, since
the higher order diagrams contributing to the process are no longer
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suppressed, but rather enhanced. We know that this is in fact an ar-
tifact of perturbation theory, since as we discussed previously, this
scattering experiment will inevitably result in the formation of a black-
hole.

It is easy to understand why this happens: the scattering experi-
ment will inevitably localize of a pair of particles with center of mass
energy /s > Mp on a region of typical size 1/y/s < rs(v/s). In-
stead of a scattering experiment whose end-product are perturbative
states of the theory, we are producing a black-hole, which is a purely
non-perturbative object.

Due to the intrinsic non-perturbative nature of the black-hole, we
cannot probe it in any finite order of perturbation theory. While the
black-hole itself might be composed of soft objects for which there is
a natural perturbative expansion, the collective effects become order 1
and thus the field is strong.

It is extremely difficult to avoid the fact that (quantum) high-energy
scattering leads to black-hole formation, since this reasoning only re-
lies on the fact that the gravitational field is sourced by the expected
value of the energy momentum tensor - which is a requirement for
a consistent theory of gravity. In order to state that black-holes are
formed, all we need is universality and Gauss law. Avoiding black-
hole formation implies that we are no longer in a theory in which the
fundamental degrees of freedom are massless spin-2. Modifications of
gravity that get rid of black-holes must be severe!

Furthermore, should we attempt to modify gravity at high energies
in order to prevent black-hole formation, we need to either abandon
universality or in fact modify the theory at large distances, since black-
hole formation is insensitive to the short-distance details of the theory.
Abandoning universality will inevitably add extra degrees of freedom
to the theory, whereas modifying the theory at large distances is phe-
nomenologically unwanted.

In order to probe the short-distance behavior of the theory, we need
to design an experiment where we scatter degrees of freedom in that
length scale, thus the inevitability of black-hole formation tells us that
no length scale L < Lp can be probed, in principle. The attempt to
probe the short-distance behavior of the theory will inevitably lead to
the formation of a much larger object of length r = L3 /L > Lp.

While perturbative reasoning tells us that 2 — 2 trans-planckian
scattering violates unitarity, we know for a fact that in this regime we
are bound by black-hole formation. Furthermore, black-holes are not
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good asymptotic states of the theory, since they will eventually decay
by hawking radiation. In order to paint a consistent picture of what
is the end-product of the scattering experiment, we need to introduce
black-holes in the spectrum of the theory as intermediate states.

5.4 BLACK-HOLES AS S-MATRICES

From the previous reasoning, we know for a fact that the full non-
perturbative amplitude for a transplanckian 2 — 2 process cannot be a
growing function of s, as predicted by perturbation theory. As a matter
of fact, the higher is the center of mass energy, the more certain we are
that there will be black-hole formation, and the larger the black-hole
will be. The s — oo limit of the 2 — 2 amplitude should be in fact 0.

In reality, black-holes are not stable: they eventually decay by hawk-
ing radiation. For a black-hole of mass M > Mp, the typical wave-
length of the hawking quanta will be given by its Schwarschild radius
A M/ M%, > Lp. If this black-hole was created in a trans-planckian
scattering process with /s & M, what we observe is that the true end-
products of the scattering are not high-energy modes, they are rather
in the deep infrared.

The dominant process in a trans-planckian scattering experiment
should be in fact

2 — BH — Many IR quanta . (87)

where black-holes act as intermediary states in the process of energy
flow from the UV down to the IR of the theory.

As long as we have rg < Lp, we know that the decay of the black-
hole into a 2-particle state should be exponentially suppressed, so we
can estimate that the true 2 — 2 amplitude in a trans-planckian scat-
tering should be

Ay~ e /L)’ (88)

The exponential factor can be understood in the following way: (rg/L p)2
is nothing more than the entropy S of the black-hole, and since a two
particle state has very little degeneracy in the phase space, creating a
two particle state means choosing 1 out of ¢° microstates, thus creating
the exponential suppression.

Furthermore, since the radiation is mostly thermal with a tempera-
ture at the order of rg 1, we know that the probability that we are going
to find trans-planckian modes in Hawking radiation is exponentially



5.5 THE . PHENOMENA

suppressed. This UV-screening device is what allows us to conjecture
that gravity is in fact self-complete, regardless of any Wilsonian UV-
completion. Whichever are the high energy behavior of the theory, it
cannot be probed since processes with high momentum transfer are
blocked.

It seems that gravity has all in itself the power to both unitarize
scattering amplitudes and to flow energy down from UV modes into
the IR. It is natural that we ask if this is unique to gravity or whether
we can construct theories that share the same features. In the next
section we will discuss about what are the fundamental ingredients
that make self-unitarization possible.

5.5 THE 7« PHENOMENA

As we discussed, gravity has a built in mechanism that allows high-
energy scattering to be dominated by infrared processes. This happens
due to the fact that the length scale at which nonlinearities become
important actually grows with the total energy we source the gravita-
tional field with. Because large energies are always followed by large
field values, we have both a breakdown of perturbation theory and a
flow of energy from the UV to the IR.

The important feature here is that the effective gravitational charge
which sources the growth of the classical field is in fact energy. In a
theory where the charge is fixed as an external parameter, the growth
of the classical field remains the same regardless of the energy we put
into a scattering process.

Any theory that has built in this mechanism should in fact be sourced
by the energy. Nonlinearities in the theory then should be derivatively
coupled. Intuitively, it is easy to see why: asymptotically, fields that
obey Gauss law and are weakly coupled obey the 1/r law. The ef-
fect of non-linearities on these solutions is to increase the power of r,
which will increase the length scale at which they will also become
dominant. This is consistent with the fact that the first nonlinear term
in the perturbative expansion of GR is in fact

1
5= 30 / I TV 89)

where Tj is the energy momentum tensor of the quadratic term in the
expansion, schematically ol oh.
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Let us take a similar but much simpler theory, in which we couple
a real scalar field to its own energy momentum tensor and an external
source T.

1 1 1
L=5 0u)" + 300 0up)” + 30T (90)

A static spherically symmetric external source is going to produce a
potential which for » — oo behaves as

polr) ~ (o1)

where E is the energy of the source.

Analogously to what happens in gravity, in this theory the nonlin-
earities will become dominant at a scale given by

E

Ts = —=
M2’

(92)

so the stronger the source, the larger is the distance at which the non-
linearities become dominant. Analogously, should we prepare a scat-
tering experiment in this theory, by the time the two particles reach a
distance 7, the classical field will be dominant and we will leave the
perturbative regime.

This phenomenon, the 7, effect, plays a major role in infrared mod-
ifications of gravity (see, e.g., [32]). As a matter of fact, it is a funda-
mental property of theories which are not Wilsonian, since the attempt
to UV-Complete this theory by weakly coupled physics will inevitably
spoil the r, effect.

Whenever we enter the 7, region, we should abandon perturbation
theory altogether [323]. At this point, the background over which we
define the fock states - the ¢ quanta - has changed altogether, and we
are in the presence of a large non-perturbative object that needs to be
taken into account when calculating physical observables.

Although black-holes are unique to gravity, the presence of non-
trivial scales which increase with energy is universal. Any scalar the-
ory coupled in the appropriate way can exhibit this phenomenon. It’s
instructive to ask what that implies from the point of view of UV-
completion, given the special role that black-holes play in the UV sec-
tor of gravity.
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56 UV-COMPLETION BY CLASSICALIZATION

As we have seen, in derivatively coupled theories trans-cutoff scatter-
ing is followed by the creation of large classical field configurations.
In the case of gravity, we know that in high energy scattering we have
no other choice but to form a black-hole. The important feature of the
black-hole is that it absorbs all the possible momentum transfer which
would in principle probe the trans-planckian regime of gravity.

We can in fact find analogues of black-holes in other bosonic theo-
ries: large field configurations whose size grows with their total mass.
We call these field configurations classicalons. In the next chapter we
will discuss in detail a few examples of classicalon field configurations.

We can formulate the idea of classicalization in the following way: a
theory is classcalizing if it UV-completes itself without the necessity to
add new weakly coupled degrees of freedom beyond the cutoff scale.
In classicalizing theories, the role of UV-completion is taken up by
collective excitations of the original quanta. This many-body states is
composed of soft constituents, in the sense that their wave-length will
increase with the total energy of the configuration.

Suppose we are interested in resolving the structure of these classi-
cal field configurations in terms of the original quanta, and let us take
a theory in which we have the following 2 — 2 coupling constant

L* "
&= (7) (93)
where A is the wave-length of the particles involed in the process.
It is easy to see that we will have the following scaling for radius of

a classicalon of mass M.
1

For gravity we have « = (Lp/A)?, and thus we have n = 2 and we
recover the Schwarschild radius.

If this is a bound state of many quanta, their typical wave-length
will scale as r,, thus the total number of quanta should obey

N

M:Z (95)

and thus from (g3) and (gg), we have

= (96)
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As we will see further, the fact that we have this scaling is no acci-
dent, since it is precisely the condition that needs to be satisfied for
collective effects to become dominant. At this point, systems tend
to undergo quantum phase transitions, and the ground state changes
dramatically.

We are still left with the task of verifying whether explicit classicalon
solutions exist in these theories and constructing them explicitly. It
turns out that not every theory admits classicalons, and the crite-
ria reveals something very fundamental about which road the theory
chooses for UV-completion: Wilsonian or classicalization.

5.7 SUMMARY

In this chapter we reviewed important scales, first in gravity and then
in general derivatively coupled theories. We have seen that in Wilso-
nian theories, we always have the chance of probing smaller distances
through high-energy scattering; in gravity, the existence of black-holes
introduces another scale in the problem - the Schwarschild radius -
which transforms high energies into large distances.

We reviewed the idea that gravity has the possibility to unitarize
itself through black-hole creation, and that black-holes act as interme-
diate states, turning high-energy initial states into low energy hawking
radiation.

Extending this concept to general bosonic theories, we have revisted
the r, phenomena, in which derivatively coupled theories also display
this peculiar UV-IR mixing of gravity. We have also reviewed the
idea of classicalization, the hypothesis that not only gravity, but also
bosonic derivatively coupled theories are able to unitarize themselves
through creation of classical field configurations.
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In this chapter, we attempt to answer the following question: what can
the sign of an interaction tell us about the high energy behaviour of
the theory?

As we discussed previously, coupling constants of irrelevant op-
erators in effective field theories are simply parametrizing our igno-
rance about the degrees of freedom that mediate these interactions at
high energies. When we perform experiments at high enough ener-
gies to seemingly violate unitarity, we will, according to the Wilsonian
paradigm, probe instead the hidden structure of the interaction.

Although every derivatively coupled theory exhibit the 7, effect, it
is often the case that there is a weakly coupled UV-Completion sets in
before it is possible to observe the collective phenomena that give rise
to classicalization.

We would like to argue that for a class of theories, there is no possi-
ble weakly coupled UV-completion and the theory has no choice but
to classicalize. Furthermore, precisely for these theories we are able
to find continuous classicalon solutions. Conversely, whenever there
is the possibility of a weakly coupled UV-completion, we are not able
to find these static solutions in the theory. We will closely follow the
derivations and present the results we obtained in [27].

6.1 STATIC SOLUTIONS

We start with the theory which we will refer from now on as the Gold-
stone Lagrangian. It describes a single self-coupled shift-symmetric
scalar field

4
L= 0u0) +e @)’ (o7)

N| =
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where the parameter € can take the value +1. Our goal is to study how
static spherically-symmetric field configurations in the above system
depend on the choice of the sign. The solutions of this system satisfy
the equation of motion

0" {3,9 +eL10,9 (9,9)"} = 0. (98)

Since this is a total divergence, we can reduce the problem in the
static spherically symmetric case to an algebraic equation on d,¢

ML,
99 (1—eL (39)°) = = (99)

where we have introduced ML, as an integration constant which mea-
sures the total energy in the field configuration.

The solution will have two distinct regimes. For r — oo, the con-
tribution from the nonlinearities are irrelevant and we have the linear
solution

21
$(r — o0) ~ IZr (100)
while for r — 0, we have
1/3
rs [ T
¢(r —0) ~ ) (Z) (101)

and r, is defined as the scale at which the two solutions become com-
parable,

r. = (ML)Y?L,. (102)

Although we have the same asymptotics for both signs, a real contin-
uous solution that interpolates the linear and non-linear regime only
exists for e = —1. With positive € we have an extra real solution in
which 9,¢ — L2 as r — oo. This solution has diverging energy and is
thus unphysical.

This can be easily seen by focusing on the sign on 0,¢: when r — oo,
0:¢ is positive, whereas for r — 0, d,¢ takes the opposite sign of €.
Since 9,¢ = 0 is never a solution of the equation, it can never switch
sign, thus € must be negative.
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The physical solution for negative € has the following expression

2/3
rp = i+ (o) (103)
T (4G ()"
G(x) = x> 4/ x* + % (104)

and it is clear that it interpolates between the two regimes (mmm) and
(o).

6.2 THE ROLE OF HIGHER ORDER OPERATORS

It may be seen as artificial to stop at quartic order. In the spirit of effec-
tive field theory, one could be interested in investigating the behaviour
of the theory once we supplement it with higher order operators, since
inside the r, scale, higher order operators are dominant.

Suppose that we take € = —1 and add a (84))2” vertex suppressed
by some scale A that may or may not coincide with L1,

1 L} n n
L= > (a;ﬂP)z 1 (au4’)4 + # (aﬂﬁb)z : (105)

Even if it is still possible, for €, > 0, to unitarize the (9¢)*" vertex
above the scale A by integrating-in some weakly coupled physics, this
will only tame the growth of the scattering amplitude for processes
with 2n or more external legs. Its contribution to the 2 — 2 scattering
amplitude will be suppressed, since it will be on high loop order.

This operator — and whatever physics it is embedded into — cannot
help with the unitarization of the 2 — 2 amplitude coming from the
quartic term. Thus, regardless of higher order operators, for e = —1,
the theory is not expected to have any weakly-coupled Wilsonian UV-

completion and the only chance is to self-complete by classicalization.
m

Generalizing the previous analysis, in case €, = (—1)", then we can be sure that a
classicalon solution exists regardless of whether or not this higher order vertex is uni-
tarized by weakly coupled physics. In case the theory choses to embed this term into
Wilsonian physics, then as long as the scale m of this new weakly coupled physics
is much lower than the unitarity-violating scale, m < A, the contribution from this
vertex will always be subdominant with respect to the classicalon background, and
we still can expect the theory to classicalize.
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63 THE CASE OF THE LINEAR SIGMA MODEL

In order to understand the connection between the sign of € and the
nature of UV-completion, it is instructive to complete the theory by
embedding it into a weakly-coupled linear sigma model,

A

= 0,P|* - g(2|eI>|2—z;2)2, (106)

where ® is a complex scalar field carrying two real degrees of freedom,
and the Lagrangian is invariant under the global U(1) transformation

d — P, (107)

In the ground state of the theory, the symmetry (roy) is spontaneously

broken by the vacuum expectation value of ®, (P*®) = %02 SO we

can parametrize the degrees of freedom as

1 .
® = (0+p)e??,

V2

in terms of a radial (Higgs) mode p and a Goldstone boson ¢, which
under spontaneously broken U(1) transforms as,

NN Y (108)
(4 (4

In terms of the fields p and ¢ the Lagrangian becomes,

2
L= 3@+ 5 (142) @)~ S (0P + 2007, (109

from where p acquires a mass of m = Av.

For energies E < Av, we can integrate out p and write down an
effective low energy theory for ¢. Integrating out p through its linear
order equation,

{D—I—m } ( H(p) (110)

we get the following leading order low energy effective equation for ¢,

m2
o P AT S

where we have defined a cutoff length 12 = \/E(mv)_l. In the low
energy limit, m? > [J, this recovers (g8) with € = 1.
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The origin of the positive sign is now clear. Notice that the only
way to obtain a theory with € = 1 would be to flip the sign of m?,
making it tachyonic and thus unstable. It is clear that the only sensi-
ble weakly coupled sigma model whose effective low energy theory
admits classicalon solutions.

Furthermore, it can be checked explicitly [26] that the r, radius of
static classical sources collapses when the Goldstone theory is embed-
ded in the linear sigma model. This effect is a particular manifestation
of a very general de-classicalization phenomenon by weakly-coupled
UV-completing physics [28] that we shall discuss in more details be-
low. The above discussion shows why classicalizing theory cannot be
obtained as a low energy limit of a weakly-coupled UV-completion.

6.4 DBI

Another example that illustrates incompatibility between the classicalons

and UV-completion by a weakly-coupled theory, is provided by the
embedding of the Goldstone model (g7) into a Dirac-Born-Infeld (DBI)
theory. The Lagrangian (gz) can be thought as an expansion of DBI
type Langangian

Lpp] = elL;4\/1 + e L4 (8Hq>)2, (112)

where parameters €; > can take values £1. For the valuese; = e, = 1
this theory admits a classicalon solution [26],

2
1
p = (113)
L2 \/r* + r*

where 7, is an integration constant. On the other hand, the sensible em-
bedding into a weakly-coupled theory is only possible for €1 = €, =
—1. To see this, note that the action (=) can be viewed as an effective
low energy action (Nambu-type action) describing the embedding of a
3-brane (domain wall) in a five-dimensional space-time, with ¢ being
a Nambu-Goldstone mode of spontaneously broken translational in-
variance. Expanding this action in powers of ¢ we get the action very
similar to (gy),

_ —4 1 2 2 L_i 4
L=eL*4+ €6 5 (0u9)” — €163 1 (0ug)” + ... (114)
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The first term represents the brane tension with negative sign and this
tixes €1 = —1. The positivity of the kinetic term fixes e = —1. As
a result the sign of the next term is fixed to be the one that does not
admit classicalon solutions. Having a classicalizing theory requires
€1 = +1, which would give a wrong sign brane tension. We thus see
that, just like in the Higgs case, the weakly-coupled UV-completion is
possible for the sign that does not admit the classicalon solutions and
vice-versa.

65 EVIDENCE FROM SPECTRAL REPRESENTATION

The impossibility of sensible weakly-coupled UV-completion for e =
—1 can be seen from the following general argument. Suppose that
there is such a UV-completion, that would imply that the 4-derivative
vertex is an effective is obtained by integrating out some heavier weakly
coupled degrees of freedom that couples to ¢ in the following form

0oy J', (115)

where [, is some effective (in general composite) operator that en-
codes information about the given UV-completing physics. From the
symmetry properties it is clear that the current J,, can transform ei-
ther as spin-2 or spin-0 under the Poincare group. The effective four-
derivative vertex of ¢ is then result of a non-trivial (J,,Jsp) correlator.
The positivity of € follows from the positivity of the spectral function
in the Kéllen-Lehmann spectral representation of this correlator. The
most general ghost and tachyon-free spectral representation of this
current-current correlator is (see, e.g., [39]),

1~ = ~ 1~ =~
_ < 2 o 3 (Tuaflvp + Tupliva) — 37uilap
U Jup) = /0 dm” py(m”) Sp +

® 2 2\ Muvlap
+ /0 dm= po(m )—D el (116)

where 77,y = u + ar’% and pp(m) and po(m) are the spectral func-

tions corresponding to massive spin-2 and spin-0 poles respectively.
The crucial point is that the absence of ghost and tachyonic poles de-
mands that these spectral functions are strictly positive-definite and
vanish for m?> < 0 (the latter condition fixes the lower bound of inte-
gration). The entire weakly-coupled UV-dynamics is encoded in the
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detailed form of these spectral functions, which is completely unim-
portant for us except for the signs.

Convoluting this expression with d,,¢d,¢, and ignoring high deriva-
tives, it is clear that the coefficient of an effective low energy vertex is
strictly positive,

9,009 I"P)3ugdpp > (3,99 9)° [ dne? (%pﬁ) + £ °(m)> .

m2
(117)
Having a negative sign for the coefficient requires either a ghost or
a tachyonic pole. The linear sigma model example considered in the
previous section corresponds to a particular choice pz(mz) = 0 and
po(m?) « §(m? — (Av)?).

Thus, the negative sign cannot be obtained by integrating out any
weakly-coupled Wilsonian physics. However, instead of dismissing
such a possibility, we should take this as a message that the theory
tells us that we have to abandon the Wilsonian view, and treat the
quartic vertex as fundamental. The road that the theory chooses in such
a case is UV-completion through classicalization.

6.6 CLASSICALIZATION AND SUPERLUMINALITY

In the Goldstone example, the static classicalon solutions appear pre-
cisely for the sign of the interaction for which we have backgrounds
with superluminal propagation [3u]. In the presence of a weakly cou-
pled UV-completion, that would allow for closed timelike curves, thus
ruining the causality of the theory. Since no weakly coupled UV-
completion exists in the first place, the theory is still safe. If the
UV-completion happens by classicalization, superluminality need not
imply violation of causality.

To explain the reason, let us first reproduce the argument why su-
perluminality appears and why this may lead to a problem. Consider
the goldstone Lagrangian (g7). In this theory one can consider an ex-
tended field configuration that locally has a form ¢, = c,x*, where
cu are constants that are chosen to be sufficiently small, so that the

invariant is well-below the cutoff scale, (aw)z = cuc® < L% On
such a background the linearized perturbations ¢ = ¢ + ¢ sees an
effective Lorentz-violating metric,

Nuv + eLi CuCy + ey (118)
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which gives a superluminal dispersion relation for e < 0.

In order for this superluminal dispersion relation to become an in-
consistency, one should be able to create closed time-like curves and
to send signals into the past. Such a situation can be arranged by a set
of highly boosted observers. However, here we reach a subtle point.
In order to send a signal into the past at least some of the observers
must be boosted relative to the background with trans-cutoff center of
mass energies.

Such a boost relative to a background is not a symmetry transforma-
tion and is physical. So to rely on such a thought experiment we have
to be sure that the interaction between an observer and the background
allows for such a boost. Here comes the issue of the UV-completion.
Since the center of mass energies are trans-cutoff, the legitimacy of the
boost depends on the UV-completion.

If the UV-completion is by weakly-coupled physics (which is an im-
plicit assumption of ref[gu]), then boosts are allowed, since for such
UV-completions the cross-sections diminish at high energies, and a
background is not an obstacle for the boost. However, as we have seen,
for the superluminal sign the Wilsonian UV-completion is absent any-
way. Instead, the theory allows classicalons, which is an indication
that the theory chooses the classicalization path for UV-completion.

In this case, the trans-cutoff boosts are a problem, since the cross-
section increases with energy and any attempt to boost an observer rel-
ative to the background with trans-cutoff energy per particle should re-
sult into creation of many soft quanta that will cutoff the boost. In this
way, the system is expected to self-protect against creation of closed
time-like curves and violation of causality.

67 CLASSICALIZATION AND THE d-THEOREM

The a-theorem is the four dimensional generalization of Zamolodchikov’s
c-theorem in two dimensions [36]. What the theorem establishes is
that for a RG flow between two CFT fixed points, at the UV and the
IR respectively, Cardy’s a-function [35] fulfills the strong inequality
a(UV) > a(IR).

Since along the flow the theory is not conformal, the ' Hooft’s anomaly
matching conditions should be appropriately improved. This has been
recently done in [33] based on previous results in [37]. The key idea is
to interpret the theory along the flow as a spontaneously broken CFT
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with the dilaton as the corresponding Nambu-Goldstone boson. More
precisely, given the UV CFT we add a relevant deformation to induce
the flow as well as the coupling to the dilaton field. This is done in
order to restore the conformal invariance leading to a total Tﬁ = 0.
The vacuum expectation value (VEV) f setting the breaking of the
conformal symmetry defines the decay constant of the dilaton field.
Along the flow some massless UV degrees of freedom will become
massive. The IR fixed point is obtained after integrating these out.
Thus, the final theory in the IR contains in addition to the IR CFT the
low energy effective theory for the dilaton. This effective theory is

£ = () + 2055 (09", (119)
with a satisfying the anomaly matching condition: a(UV) —a(IR) = a.
Thus, the a-theorem follows from the sign of the derivative coupling
of the effective low energy theory for the dilaton.

The connection with classicalization is now pretty clear. In fact the
effective low energy theory for the dilaton is, as we have discussed in
the previous sections, of the type of theories that, depending on the sign
of the derivative coupling, can be self-completed in the UV by classical-
ization.

In order to understand the meaning of the a-theorem let us focus
on the effective Lagrangian (rrg). By itself this theory has a unitar-
ity bound at energies of order f. This is obvious from the scattering
amplitude that scales like

2452
~ y
In order to make sense of this theory we need to complete it at energies
E > f. In the previous setup it is obvious how the effective theory of
the dilaton is UV completed. Namely, the completion takes place by
the UV degrees of freedom of the UV CFT fixed point we have started
with. In other words, the effective theory (rrg) is, by construction,
completed in the UV E > f in a Wilsonian sense. The interesting
thing is that this Wilsonian completion determines the sign of a to be
positive and therefore the proof of the a-theorem. This result directly
follows from our previous discussion in the sense that for a negative
sign of a the theory cannot be completed in Wilsonian sense.

In other words, the sign of the derivative coupling — and therefore
the a-theorem — depends on how the theory tames the growth of the

A(s) (120)
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amplitude (=), i.e., on how the low energy effective theory of the dila-
ton unitarizes. A Wilsonian unitarization forces this sign to be positive.
Therefore, once we embed the dilaton dynamics in a flow with a well-
defined UV CFT fixed point, the sign is forced to be positive, leading
to the a-theorem. We cannot reach this conclusion directly from the
Lagrangian (rrg). In fact, general arguments based on dispersion re-
lations for the dilaton scattering amplitude necessarily hide the key
assumption on how the growth of the amplitude at high energies has
been tamed.

Classicalization tells us however what is the physics when the sign
is negative. In this case the theory unitarizes at high energies by clas-
sicalization. This means that the scale f setting the unitarity bound
becomes the limit on length-resolution in the sense that the theory at
higher UV energies turns into a theory that probes IR scales. In partic-
ular, we can suggest the following conjecture. Let us start with a CFT
in the IR and let us add an irrelevant operator and a coupling to a dila-
ton in order to keep the conformal invariance. If the effective theory
of this dilaton has negative sign for the derivative self-coupling, the
theory will classicalize in the UV. It's important to notice that there is
a subtlety in the derivation given in [33], which relies on the analyt-
ical structure of the 2 — 2 scattering amplitude in the forward limit.
In massless theories, one has branch cuts all over the real line, which
makes it impossible to write a dispersion relation by closing the inte-
gration contour, as done in [30], in the case where the theory is already
supplemented with a mass gap. In order to attempt to make this work
in a massless theory, one needs to regulate the theory in the infrared
by introducing a small mass, which is not a continuous change in the
theory, as noted in [33] in the context of gravity.

6.8 CLASSICALIZATION AND THE STANDARD MODEL

Our observations have important implication for determining the UV-
completion of the Standard Model. If the scattering of the longitudinal
W-s is unitarized by Higgs or any other weakly coupled Wilsonian
physics, the sign of the four-derivative self-coupling must be positive.
In the opposite case no weakly-coupled Wilsonian UV-completion is
possible, but the theory makes up due to the existence of classicalons,
indicating that unitarization happens through classicalization. This is
remarkable, since measurement of the sign of the longitudinal WW-
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scattering amplitude can give a decisive information about the UV-
completion of the theory.

For completeness, let us repeat our arguments for the non-abelian
case. Since we are concerned with the scattering of the longitudinal
W-s, which are equivalent to Goldstone bosons, we shall work in the
gaugeless limit.

The Standard Model Lagrangian (with Higgs) then reduces to a
Nambu-Goldstone model with spontaneously broken SU(2) global
symmetry,

A? .
0,H"o"H, — > (H“*Ha — E) , (121)
where H, (a = 1,2) is an SU(2)-doublet scalar field.

Following [26], we shall now represent the doublet field in terms of
the radial (Higgs) and Goldstone degrees of freedom,

H, = U,(x)p(x)/V2 = (cosbe™, —sinfe F)o//2 (122)

where 0,a, and B are the three Goldstone fields of the spontaneously
broken global SU(2) group.
In this parameterization the Higgs Lagrangian becomes,

00 + £ @uUtal) — (02— )2 (123)
up 5 \u 1 3 P . 3

N

where
U (x)T,U(x) = [(aﬂe)z+Coszﬂ(aytx)2+sin29(8yﬁ)2] L (124)

Integrating out the Higgs through its equation of motion, which at
low energies becomes an algebraic constraint

2
pz = * ﬁ(aywayu) , (125)

and rescaling, U — vlU, we obtain the following effective theory

%(ay utoru) +

o (Ol U)?. (126)
This is similar to (gz) with e = 1 and L} = 2/(A%v*). The gauge case
can be trivially restored by replacing d,, with the covariant derivatives
of the SU(2) x U(1) group. The positive sign of the four-derivative
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term indicates that the theory can be UV-completed by the Higgs par-
ticle. On the other hand, for the negative sign no such completion is
possible, and the theory chooses the classicalization route. Thus, by
detecting the sign of this operator at low energies we obtain the infor-
mation about which route the theory chooses for its UV-completion.
This sign can in principle be read-off from measuring the sign of the
amplitude of longitudinal WW-scattering.

6.9 SUMMARY

In this chapter, we have addressed the issue of how a derivatively
coupled theory chooses the way to UV-completion, and how the low
energy effective theory signals which road it will follow.

Using the e Kéllen-Lehmann spectral representation, we have shown
that the sign of the quartic coupling tells us whether it is possible or
not, in principle, to embed this theory in a weakly coupled theory
with extra degrees of freedom. While for the positive sign there are
sensible Wilsonian UV-completions, for the negative sign that is for-
bidden. Furthermore, classicalon solutions only exist for theories with
the negative sign for the coupling constant.

Our message is that for theories with the negatie sign, this vertex
should be treated as fundamental, rather than an effective low-energy
description of a more fundamental interaction. Since we have clas-
sicalon solutions, the theory will unitarize itself by classicalization and
thus can be deemed as fundamental.

We can apply this reasoning to the standard model and make the
following prediction: should the sign of the quartic longitudinal WW
scattering amplitude be negative, this theory does not admit a weakly
coupled UV-completion. Even though a Higgs-like resonance has
been already discovered, measuring the sign will provide a powerful
cross-check that we are in fact dealing with the Higgs boson.
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THE PROBLEM WITH BLACK-HOLES

This chapter covers the history of Black-Hole thermodynamics. For a
comprehensive treatment of the subject we refer to the original works
of Hawking [g7] and Bekenstein [gg].

As we have seen in the previous chapter, black-holes play a cru-
cial role in gravity. They provide a connection between high energy
and long distance physics, being the intermediate states between trans-
planckian scattering and soft Hawking radiation.

What is often referred to as black-holes are in fact a set of classical so-
lutions of Einstein’s equations. These solutions are universal and only
depend on the choice of 3 parameters, mass M, angular momentum
J and electric charge Q. This universality of black-holes is referred to
as the no-hair theorem: these are the only measurable charges of black-
holes, and they have no more hair attached. We emphasize that the
word theorem is a stretch, since this is a property of classical black-
holes, and it is well known that black-holes can indeed carry quantum
mechanical hair [62].

In this chapter we will briefly recap the problems concerning the
classical description of black-holes. The essence of these problems is
the incompatibility of the hairlessness of black-hole with the unitary
evolution of quantum mechanics. It is not our goal to formally red-
erive 40 years of results in black-hole physics, but rather to provide an
intuitive path so that readers can understand the motivation for our
work in the next chapter.

We will then argue that the only way to address these issues is by
abandoning the semi-classical treatment of black-holes and quantum
mechanically resolve the metric itself. By doing so, we need to create
an ansatz about how to describe the black-hole state in terms of the
degrees of freedom we have available. We will see that this is a very
powerful ansatz, which opens the door to many possibilities to explore
the quantum properties of black-holes.
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7.1 A BRIEF HISTORY OF BH THERMODYNAMICS

Bekenstein and Hawking discovered in the early 1970s that black-holes
have thermodynamic properties. Their discoveries can be summarized
in two formulas,

ik A
kT = -, S = % (127)

27
which relate classical properties of black-holes: area an surface gravity,
with intrinsically quantum mechanic ones: temperature and entropy.
The presence of 7 in the equations make manifest the fact that this
is indeed a quantum relation, and cannot be explained in a purely
classical setting.

The historical derivation of these quantities traces back to Hawk-
ing’s [g7] proof that the area of a black-hole can never decrease, which
is a very similar to the second law of thermodynamic. This observation
went hand in hand with Bekenstein’s gedanken experiment:

Suppose that indeed black-holes carry no hair, and let us throw in-
side the black-hole an object which carries entropy. Once this object
crosses the boundary of the black-hole, we have effectively decreased
entropy from the black-hole exterior. If the black-holes do not increase
its entropy by eating this object, we have violated the second law of
thermodynamics [g9].

The correspondence between area and entropy was strengthened by
the discovery of other analog laws of quantum mechanics. This cul-
minated in [48] publishing the 4 laws of Black Hole mechanics” for
a black-hole characterized by mass M, charge Q and angular momen-
tum J:

0. The surface gravity «x is constant over the horizon.

1. Small variations of M, |, and Q obey

K

oM =
8tG

SA + Q6] + DsQ (128)

where () is the angular velocity and @ is the electric potential at
the horizon.

2. The area of the black-hole cannot decrase

SA>0. (129)
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3. The surface gravity k¥ cannot be reach 0 through any physical
process.

These laws are analogous to the laws of thermodynamics, with x
playing the role of temperature and A playing the role of entropy. Note
that for Schwarschild black-holes, we have x = 1/2rs;, meaning that
large black-holes have small surface gravity.

We should take this with a word of warning, however: if we shine
a laser into a room full of gas, the temperature will increase; also, if
the gas in the room radiates, its temperature will decrease. This is a
very simple observation that can be summarized as: the heat capacity
is positive. Temperature reacts positively to heat flow.

In a black-hole, the surface gravity decreases as the mass increase:
the black-hole temperature reacts negatively to the absorption of heat.
Analogously, a radiating black-hole will increase its temperature. If
the black-hole is to be viewed as an object in thermal equilibrium, a
negative heat capacity would render it thermodynamically unstable.

The more physical interpretation of this temperature x was given by
Hawking [46], who discovered that black-holes radiate. This radiation,
for large black-holes, has a thermal spectrum with a temperature given
by (127), and its density matrix is that of a mixed state.

This derivation is based on the fact that the vacuum of a past ob-
server watching the formation of a black-hole differs from the vacuum
of the future observer who already sees the black-hole. Relating these
vacua through a Bogoliubov transformation, it can be seen that the
future vacuum is actually populated with radiation. It is important to
notice that the spectrum of Hawking radiation is obtained by assum-
ing that the radiation is a vacuum phenomenon, in the sense that it
only relies in the Schwarschild geometry.

Regardless of the thermodynamical interpretation, it is clear that
black-holes should carry some form of entropy from a statistical point
of view: the fact that black-holes only carry 3 conserved charges means
that for an outside observer, there is a panoply of micro-states which
can conspire to form the same black-hole. In other words, a classical
observation cannot distinguish between a black-hole that was formed
by a particle collision or another formed by the collapse of a star, as
long as they carry the same conserved charges.

The fact that black-holes carry a statistical entropy means that there
are in fact ¢ micro-states which remain unresolved in the classical
description. This is a huge contrast with the no-hair theorem, since it
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automatically tells us that a resolution of the black-hole entropy can
only be attained quantum mechanically.

7.2 THE INFORMATION PROBLEM

Let us now assume that black-holes carry indeed no hair and that
Hawking radiation is truly thermal. If these assumptions hold, we can
create a black-hole from a pure initial state with a sufficiently large
energy, and its resulting black-hole will be described by one of the
classical geometries. Once the black-hole evaporates, all that is left
will be Hawking radiation, which is in a mixed state. So the black-
holes have effectively converted a pure state into a mixed state, thus
violating the unitary evolution of quantum mechanics.

Since the evaporation only depends on the physics at the horizon,
we also cannot rely on Planck scale physics to modify the spectrum of
the radiation. If the background remains classical, thermality is exact
up to 1/M corrections. By the time the black-hole is small enough
such that Planck scale effects may become dominant, all the radiation
has already left the black-hole.

Another way to phrase this problem is the following observation,
made by Page [ba]: Suppose that the radiation that the black-hole
emits is maximally entangled with the black-hole. The entanglement
entropy between the black-hole and its exterior will initially grow as a
function of time, however it is bounded by the size of the Hilbert space
of the smallest system. When the area of the black-hole is halved, the
Hilbert spaces of the black-hole and its exterior have the same size,
and that is when the entanglement entropy should be maximum. After
this time - known as the Page time, entanglement entropy should start
decreasing.

This result is naturally contradicting to Hawking’s calculation, since
nothing lead us to believe that something dramatic happens at that
time, if we accept that radiation is a pure vacuum process. The implicit
assumptions for Hawking’s results are still valid, however something
must be dramatically changed.

Many physicists, starting from Hawking [g5], have used this result
to show that quantum mechanics must break down in the presence of
gravity. It is of course obvious that if we ignore the quantum effects
of the background itself throughout its whole evaporation, the unitary
evolution will be lost. In order to make a statement about the validity
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of quantum mechanics, it’s just natural that one should really take
quantum mechanics into account.






A QUANTUM RESOLUTION

In order to resolve what are the true quantum microstates of the the-
ory, we need to first redefine what we mean when we talk about a
black-hole. Classically, as we said, a black-hole is a specific solution
of Einstein’s equations in the presence of a localized source. Quantum
mechanically, however, we need to define a black-hole state

|BH; {Qi})

which lives in the Fock space of our gravitational theory and might
depend on a set of charges {g;}.

The classical limit is that in which the black-hole is infinitely mas-
sive, so that backreaction effects are negligible; and the coupling con-
stant is 0, so that there are no fluctuations around the background. We
then keep the Schwarschild radius constant, so that the black-hole has
a finite size

M — oo
L% — 0

ML% — 7 (130)
In this limit, we should recover the classical notion of geometry

(BH; {Qi}|&u|BH; {Qi}) — guv (131)

where g, is the classical metric corresponding to the charges M, Q
and J. There are infinitely many states that satisfy this requirement,
all of which have differing expectation values of ¢,,¢.s and higher
order correlation functions.

Determining what is the correct state of the theory in the presence of
source that will induce black-hole creation is equivalent to solving the
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infinite hierarchy of Dyson-Schwinger equations. The classical equa-
tions of motion are nothing more than the first order truncation of this
hierarchy of equations, on which it is implicitly assumed that

<§yvgaﬁ> = <§yV><§aﬁ>- (132)

This assumption is justified if the state is an exact coherent state,
however the buildup of correlations due to particle creation will in-
evitably be responsible for the growth of the the variance ($,,8ap) —
(§uv) (8ap), which is related to particle creation.

Let us go back to Page’s formulation of the information problem,
and let us try to resolve the following puzzle: by the time a large black-
hole has evaporated half of its Hilbert space, it is still large, in the sense
that an expansion in 1/M is still valid; however, since entanglement
entropy must start decreasing, something dramatic must happen in
order to change the spectrum of Hawking radiation.

As a matter of fact, it is not entirely true that something dramatic
must happen. Let us attempt to define the previous problem in a more
formal language. We have a state specified at some time (. This may
be described by a density matrix pp(fp) in either a pure or mixed state.
In the case of a large black-hole, this can be taken to be a coherent
state, which is the most classical state we can construct.

Equivalent to the specification of the density matrix is the specifica-
tion of the time ordered equal time correlators for t = ty: the one-point
function

Tr {op(to)P(to, x)}

, the two-point function

Tr {pp(to)P(to, x) P(to,y)},

etc. @ denotes the Heisenberg field operator. For the case of a coherent
state, we know that every higher order correlation function can be
written in terms of the one-point function, since it is a Gaussian state
with o variance.

Whenever we have Hawking quanta, we are populating the state
with modes that have zero expectation value. In the semi-classical
language, we write

D(t,x) =Do(t, x) + 6D(t, x)
(®(t, x)) =(Po(t, x)) (133)
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where the expectation value denotes the trace over the density matrix
pp. Nevertheless, these quanta have a non-zero contribution to the
two-point function of the field operator

(@(t, )@ (£, y)) = (Po(t, x)Po(t, y)) = (6P(t, x)6P(Ly))  (134)

The semi-classical approximation not only relies on the fact that the
mass of the black-hole is large, but it also requires that the deviations
away from coherence are small. In this basis of operators, the devia-
tions away from coherence are precisely given by the magnitude of the
Hawking quanta, which is a growing function of time.

By the time the Hilbert spaces are comparable, the interaction of the
mean-field (®) with the fluctuations (6PéP) become comparable to
the self interactions of the mean-field itself. In other words, in each
emission process there are corrections which scale as 1/N, where N
is the number of degrees of freedom that make up the black-hole. For
these N degrees of freedom, the size of the Hilbert space will scale
exponentially with N. When the cumulative effect of these corrections
become of order 1, t < N, we reach Page’s time.

In condensed matter, this behaviour is known as a problem of secu-
larity (see e.g., [67]). When performing perturbative expansions using
approximation schemes that are not self-consistent, there are terms
that arise which will spoil the validity of the approximation at a fi-
nite time which typically scale as an inverse function of the coupling
constant. In this example, that is exactly what we observe, since we
expect N to be the timescale at which the semi-classical method fails
completely. In order to make the approximation self-consistent, it is
necessary to include the back-reaction effect on the background.

We will not attempt to solve the full problem of time-evolution, since
it is challenging both numerically and analytically. One way of incor-
porating the quantum effects of the background itself is to adopt a
reasonable ansatz for the black-hole state and verify that it indeed re-
produces all the properties of black-holes we are familiar with. This
was the philosophy was adopted by Dvali and Gomez [51], and we
will review their results, and see that it is in fact possible to derive all
the feature of black-holes from a purely quantum mechanical ansatz.

8.1 THE QUANTUM % PICTURE OF BLACK HOLES

As we have seen, most paradoxes of quantum mechanics arise from
treating the black-hole as a purely classical objected on top of which
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there are quantum fluctuations. In order to depart ourselves from the
semi-classical treatment, it is necessary to promote the background to
a quantum object, and effectively resolve it in terms of the quantum
degrees of freedom of the theory.

We will follow the prescription suggested by Dvali and Gomez [51]
and review the essential points in their model.

If we take a bound state of size g, we expect that the typical degree
of freedom localized in that state should have a wavelength of order
rg as well. For the case of the black-hole, we have that

A=rs=Lp(LpM) ,

where M is the total mass of the black-hole. In order to determine the
number of degrees of freedom N in the bound state, we observe that
NA™1 = M, by which we have

N = (MLp)? = (2—1)2 - (Lip)z . (135)

We find that the number of constituents in the black-hole follows the
area law, just like the Bekenstein-Hawking entropy. For macroscopic
black-holes, N is a very big number, so it is natural to assume that
collective quantum effects will be of major importance and we will
have the formation of a Bose-Einstein condensate. In order to check
how important collective effects are, we can calculate the collective
coupling agN, where a¢ is the 2 — 2 gravitational coupling, given by

ng = A"2L% . (136)
We find that for N given by (x35), we have

DCGN =1 ’ (137)

which precisely tells us that we sit on a very special point in the cou-
pling space.

In this prescription, Hawking radiation arises naturally as the deple-
tion out of the condensate. In this condensate, the collective binding
energy is agN /rg, which in this special point becomes rgl, which is
exactly the kinetic energy of a single degree of freedom. The conden-
sate is then leaky: any excitation is enough to scatter particles out of
it. The time-scale of evaporation can be easily computed using com-
binatoric arguments: there are N? possible scattering events, and the
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scattering rate is a2. The typical energy of the process is of order rs_l,

so we have

1 1
I = Nzazca = E . (138)

which precisely matches the semi-classical calculations.

8.2 THE PHASE TRANSITION IN THE ATTRACTIVE BOSE GAS

Before we continue our discussion about black-holes, it is instructive
to introduce the toy model we will consider and derive some of the
features that will be fundamental in the future discussions. The model
we will now consider is that of a Bose gas with attractive ¢ interactions,
and for simplicity we will consider the system on a 1D-circle of radius
R. The Hamiltonian is given by

1n* 27 TR 4, o

A=t [T [—vﬁ*(e)asl/?(e) - TR OF 09090 (139

where « is a dimensionless coupling constant. We chose the sign of the
interaction in such a way that for positive a, we are in the attractive
regime. For the sake of simplicity, we will use units in which m = R =
h=1

83 MEAN FIELD THEORY

The Gross-Pitaevskii energy functional can be derived using a mean-
tield approach, we have

2
Ecr= [~ a0 [lo0¥(0)* — 51 (O)I] (140)

We focus on the N-particle sector of the theory, enforcing the con-
straint [ d6|¥(0)]*> = N through a Lagrange multiplier. Minimizing
the constrained energy functional leads to the time independent Gross-
Pitaevskii equation

193 + mal ¥o(0) | ¥o(0) = p¥to(6), (141)

where y = dE/dN is the chemical potential.
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This solutions of the GP equations depend on the value of «. For
small values of a the system sits in a homogeneous phase where the
wave-function is constant

N
Yo(0) = gy aN <1 (142)

whereas for aN > 1 the system undergoes a phase transition and we
have [59]

¥o(0) = 21\72 I;((’:;)) dn (E (:) (60— 90)\m) aN>1  (143)

where dn(u|m) is the Jacobi elliptic function and K(m) and E(m) are
the complete elliptic integrals of the first and second kind and m is
determined by the equation

2
K(m)E(m) = —-aN. (144)

84 BOGOLIUBOV TRANSFORMATION

The spectrum of this theory can be studied by performing a mode
expansion of the field operators. We have

$(6) Y. et (145)

27-[ k=—o0

where 4; are the annihilation operators of for the k-th mode. This
decomposition leads to

(e )
~t At A ”
Z A1 A4k —m (146)
k=—o00 kil m=—
Since the ground state in the weak coupling phase is homogeneous,
we can make the assumption that the 0-mode of the system will be
macroscopically occupied, in such a way that

< Ap) > 1
N — N0_1

A

2 (afag) <1 Yezo - (147)
7&




85 BH QUANTUM CRITICALITY AND INFORMATION STORAGE

A

With these conditions met, we can replace @ and 4" by /Ny and
disregard the interaction terms that are not at least linear in Ny. We
arrive at the following Hamiltonian

1
H = kZ: (k2 - aN/Z) a,tak — ZocN 2 (a,’:aik + aka_k> . (148)
20 k0
The Hamiltonian can be diagonalized
H = Z exbiby €x = 1/k?(k? — aN) (149)
k0
though the Bogoliubov transformation

ay = by +vibt,, (150)

where we have the following Bogoliubov coefficients

1 K-
u%zi 1+€—kZ] (151)
I
2 2
S P
% =75 + o ] (152)

Whenever we approach the phase transition, the mode with k = 1
becomes gapless. It should be noted, however, that right at the phase
transition the Bogoliubov approximation breaks down. This is due to
the fact that it becomes free to populate the first excited mode, thus the
assumption that only the 0 mode is macroscopically is no longer valid.
At any finite distance from the phase transition, we can still choose N
large enough that the Bogoliubov approximation is still valid.

Furthermore, looking back at (rag), we see that the Bogoliubov ap-
proximation is equivalent to taking N — co while keeping a N con-
stant.

85 BH QUANTUM CRITICALITY AND INFORMATION STORAGE

Based on the observations from the attractive Bose gas, in [s0] the
following idea was proposed: black-holes are in fact condensates that
sit exactly on the critical point of a quantum phase transition.

A critical point is characterized by mode crossing: at this value of
the coupling, at least one excited mode will have the same energy as
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the ground state. This makes it such that a certain number of states
will be degenerate and thus the entropy of the system will grow dra-
matically at the quantum phase transition, since the ground state is
not uniquely defined.

One way to study the ground state and excitation spectrum of the
system is to perform the Bogoliubov transformation (17g), in which we
take one macroscopically occupied mode - the ground state - and find
the modes that diagonalize the excitations around this state. This pro-
cedure is very similar to the semi-classical treatment of black-holes, in
which we take the background to be infinitely heavy and calculate the
fluctuations around the black-hole, thus finding Hawking radiation.

In both cases, the backreaction effects are taken to be exactly 0, since
there is no dynamical evolution of the background mode. In the con-
densate case, this is enforced by technically sending N to co while
keeping a« N constant, whereas in the second case, we take M to infin-
ity while keeping ML?% constant.

Technically, once a mode becomes gapless in the N — co limit,
there are infinitely many states which will be degenerate, since any
n-particle occupation of that mode will have the same energy. For fi-
nite N, however, we have backreaction effects which provide a natural
regularization of the gap of the excited modes. We have 1/N-type
corrections which allow us to distinguish between the different micro-
states of the macroscopic ground state.

The entropy of a condensate with infinitely many particles at the
critical point is technically infinite, since we need infinite resolution
power to distinguish between the infinitely many micro-states of the
now infinitely degenerate ground state. In the same way, an infinitely
massive black-hole with finite radius also has infinite entropy, since
fluctuations cost nothing due to the fact that the coupling is technically
0.

The essence of the black-hole information problem can be very sim-
ply explained in terms of Bose-Einstein condensates: 1/N effects pro-
vide a natural labeling of the many would-be degenerate states which
overlap with the ground state. These extra charges that are associ-
ated with the occupation of the almost-degenerate modes disappear
completely in the strict N — co limit.

Let us reformulate this point by reintroducing % in the formulas.
The entropy of a black-hole scales as

A
4G
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This expression diverges in the classical limit, which would lead us to
conclude that the entropy, and thus the capacity to store information,
is infinite. This is consistent with the statement that a Bose-Einstein
condensate at the critical point also has technically infinite entropy in
the N — oo limit, but at the same time the ground state is essentially
featureless.

It is clear that if we want to understand how information is pro-
cessed and retrieved from a black-hole, we need to study the effec-
tive theory of the quasi-degenerate excited modes which make-up the
black-hole state. While we do not have the technology to tackle this is-
sue on a purely gravitational theory, we will continue with the bosons,
since it provides remarkable insights without the technical issues asso-
ciated with gravitational theories.
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GOLDSTONE THEORY AND QUANTUM
CRITICALITY

As we have seen, there is an inherent puzzle regarding the ability of a
classical black-hole to hold and process information. In one hand, the

entropy of a black-hole
A

e
diverges in the classical limit, while on the other hand, a classical black-
hole is only described by 3 parameters. The lack of extra possible ways
to parametrize a black-hole state would lead a classical observer to
believe that the entropy of a black-hole is essentially 0, since for this
observer it would be impossible to create such a large degeneracy of
microstates.

Obviously, the only possible resolution is to identify what are the
quantum micro-states that act as information carriers. By identifying
the underlying degrees of freedom, we will be able to prescribe an
extra family of states that will be responsible for carrying the exponen-
tially large information that the black-hole is able to store.

In order to explain the origin of these microstates, we will focus on
the microscopic theory offered in [51], in which the black hole is de-
scribed as a composite multi-particle state of soft gravitons at a quan-
tum critical point [ro]. This system can approximately be described as
a Bose-Einstein condensate of gravitons of characteristic wavelength
~ Rg and occupation number N ~ R%/ L%.

In this picture, the microscopic carriers of black hole entropy and
information are collective Bogoliubov-type excitations. As we have
seen from studying the model (r3g), around the critical point they
become nearly gapless and decouple from the rest of the modes in the
N — oo limit. When we deviate from the Bogoliubov approximation
and consider the extra interactions that are 1/N suppressed, we find
that these states have a typical energy separation of ~ 1/N. Hence,
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if a system has N gapless Bogoliubov modes, there are expected to
exist ~ eN nearly-degenerate quantum states that can be labeled by
the occupation numbers of their respective modes, and the entropy
should scale as ~ N.

In the strict limit where the Bogoliubov approximation is exact, which
we’ll refer as the decoupling limit, we have N — co while « N remains
constant. In this limit, the system is supposed to be mostly classical,
since the 0 mode is overwhelmingly more occupied than all the others.
This of course breaks down at the phase transition, where the ground
state of the system becomes degenerate and thus Bogoliubov theory
fails. The system is mostly quantum at this point [53, 53]. At any fi-
nite distance from the critical point, we can still choose N sufficiently
large to offset the these effects and make the Bogoliubov theory valid.

Naturally the decoupling limit is artificial, since physical systems do
have a finite occupation number. The 1/N corrections, or deviations
from Bogoliubov theory, introduce a natural regularization of the gap
and the occupation number of the nearly gapless modes.

Without this regularization, we are left on a situation in which the
entropy of the system is formally infinite, since there is not limit to how
much we can populate any mode that becomes gapless. The entropy
puzzle of the black-hole is also manifest here: Since while the ground
state is infinitely-degenerate, there are no features that describe it: it
carries no information.

Despite the fact that we have an infinite number of gapless states,
the required time for resolving their differences also becomes infinite.
This time-delay reconciles the views of the two observers. The classical
ground state of the system appears as featureless for any finite interval
of the observation time.

One important question we may ask is the following: How impor-
tant is the nature of the constituent bosons? One might argue that it
is impossible to expect that these results hold in a theory where our
degrees of freedom have non-0 spin. However such a quick dismis-
sive reasoning would miss the striking similarity between the infor-
mation processing features we observe in the Bose gas and the myste-
rious properties of black-holes which still lack a quantum resolution.
While we do not claim that in fact quantum constituents of black-hole
should display the same properties as the bose gas, we suspect that
the information-processing features that originate from the fact of crit-
icality may not be so sensitive to the precise nature of the constituents.
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If this is true, then a wide class of critical systems must share some of
the black hole information-processing abilities.

This would be a very important conclusion, since it would allow us
to study black hole properties on much simpler systems, both theoret-
ically and experimentally. Furthermore, it would open up the possibil-
ity to implement table-top systems that mimic some of the quantum
properties of black-holes, beyond the classical approximation.

In this chapter, we will follow the derivations and present the results
we obtained in [73].

9.1 CRITICALITY AND PSEUDO-GOLDSTONE PHENOMENA

As it was noticed in [r0], the simplest prototype models of attractive
Bose-Einstein condensates already exhibit similarities with the black
hole quantum portrait. The cost of the information-storage per qubit is
by a factor of 1/ N cheaper relative to the energy-cost exhibited by non-
critical quantum systems. In the latter systems, for the same amount
of information storage, one typically pays the energy price of the in-
verse size of the system, ~ g, since this is the scale that is typically
associated with the excitation with single modes that act as informa-
tion carriers. Also, the degeneracy of states within the 1/N energy
gap increases with N. Moreover, a sharp increase of one-particle en-
tanglement takes place near the critical point [53], and the scrambling
of information becomes maximally efficient [5g].

The time-dependent evolution of the critical condensate uncovers a
scaling solution in which the condensate is stuck at the critical point
throughout the collapse [p5]. This is the behavior that one would ex-
pect if the microscopic foundation of Hawking radiation were through
the collapse and quantum depletion of the condensate. ”

In order to study the effective theory of information processing near
the phase transition, we will start with the system that was used in
[r0] and introduced in the previous chapter.

32
2 - /ddxtlﬁzh—mA‘P _h /ddx1p+1/]+ Py, (153)

Let us remark here that there is interesting evidence from the S-matrix that the
above multi-particle picture represents the correct microscopic description of black
hole physics. Indeed, the 2 — N scattering S-matrix element of two trans-Planckian
gravitons into N soft ones reproduces an entropy suppression factor e~ when the
number N is given by the quantum critical value [56]. Similar conclusions were
reached in [p7] in a different approach. For other aspects and related work, see [b1].
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where p =} \/Lve’%’? ar, V. = R% is the d-dimensional volume and

k is the d-dimensional wave-number vector. al, a- are creation and

Kk
annihilation operators of bosons of momentum k. They satisfy the
usual commutation relation [ay, a;ci/] = 0zgp- & 1s the coupling constant,

which is positive in the attractive regime. Rescaling the Hamiltonian,
we can write
hz
H
2R?m
Introducing a notation a = (%) ZRT’” and taking d = 1 we arrive at

the following Hamiltonian,

H =

_ 2 t a t ot
H =) kaja — 1 Y. ag ay, ., - (154)
k k1+ky—kz—ks=0

As we have seen in the previous chapter, at the phase transition only
the modes with |[k| = 1 become gapless. One approximation we can
perform is to disregard the contribution of higher order modes, since
their qualitative effect on the behaviour of the system near the phase
transition will be subdominant. We will later justify this approxima-
tion in a more quantitative way.

Let us then define the triplet operator

a; = (a_1,4a0,01) (155)
and the corresponding number operators
n, = afal- (156)

We treat the operator a; as a triplet under a global symmetry group
SU(3), |

a; — aj = Ula;, (157)
where UZJ is a unitary transformation matrix which keeps invariant the
total number operator

n=yn. (158)
i
Thus, in any state with non-zero particle occupation number,

(n) = N, (159)

the SU(3)-symmetry is spontaneously broken and the order parameter
of breaking is N. This fact allows us to map the dynamics of the
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quantum phase transition in a Bose-Einstein condensate described by
the Hamiltonian (157) onto the pseudo-Goldstone phenomenon in an
SU(3) sigma model. The Hamiltonian in terms of the triplet 4; can be
written as

= Y n- 111(1+ 140ag + ajajaia_q) + = Z n7 + Hsys) -

i=—1,1 4 i=—1
(160)
where, Hgy;(3) is the SU(3)-invariant part of the Hamiltonian and has
the following form,

= 4.t _
Hgyiy = ok +4n+y(n N). (161)
Here, u is the Lagrange multiplier that fixes the total particle number.
Let us first investigate the ground-state of the SU(3)-symmetric Hamil-
tonian. Minimization with respect to n; gives the following equations,

9Hgy (3 w
on; ——an—i—z—ky—O (162)
and oH
SUB) _ N —
o n— N . (163)

The vacuum is achieved at # = N and y = a(N —1/4). The SU(3)-
symmetry is spontaneously broken down to SU(2) and there is a dou-
blet of Nambu-Goldstone bosons. For example, choosing the vacuum
at ny = n_1 =0, n3 = N and ignoring O(1)-corrections to the zero
mode occupation, the Goldstone doublet is (a1,a_1). The existence
of the Goldstone boson is the manifestation of the indifference of the
system with respect to redistributing occupation numbers among the
different levels.

The addition of the first three terms in (£6d) breaks the SU(3) sym-
metry explicitly and lifts the vacuum degeneracy. Let us investigate
the effect of these terms on the state n; = (0,N,0). Notice, this VEV
continues to be the extremum of the Hamiltonian even after the addi-
tion of the explicit-breaking terms, but the value of y is now shifted
toy = 5(N —1/2). The would-be Goldstone modes now acquire a
non-trivial mass-matrix,

1— 4N —&N)
A (164)
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This matrix is diagonalized by states ajjghe = \% (a1 +a' ;) and Oheavy =

2-(ay —a® ), with eigenvalues 1 and 1 — aN respectively. In this basis

V2
the Hamiltonian becomes,

1, 0
(0, 1— th.) (165)

Thus, a would be Goldstone doublet is now split into a light mode
and its heavy mode partner. Since the explicit breaking terms leave
unbroken the U(1) subgroup of SU(3), corresponding to the genera-
tor Q = diag(1,0,—1), the mass eigenstates ajjgp; and apeqyy are also
U(1)-charge eigenstates. They carry charges equal to +1 and —1 re-
spectively. In the usual language, the charge Q is a momentum opera-
tor.

Let us at this point highlight the relation between the Goldstone
modes djight and apeayy and the usual Bogoliubov eigenmodes of the
mass matrix (£64). The latter are obtained by diagonalizing the mass
matrix through a canonical transformation; in our setup, they are
given by

by = uasy — 0105, (166)

L_1+vi-aN - 1-VI-aN
17 21— aN)/4” ' 21— aN)/4

In this description, the Hamiltonian has two degenerate eigenvalues
€,-1=V 1—aN. (168)

The modes ajigp; and apeayy relate to the Bogoliubov modes through

with
(167)

1 1
Alight = E(ul + v1) <b1 + inl) = \/2(1 AN/ <b1 + b11> ,
(169)
_ 1/4
Aheavy = %(ul - 01) (bl - b-|;1> = % (bl - b-l;1> . (170)

The Goldstone mode thus encodes a light direction in configuration
space, reachable through occupying both Bogolyubov modes simul-
taneously. Note that a state with Bogolyubov occupation number
of O(1) corresponds to a Goldstone configuration with aﬁghtahght ~

1/4/1 —aN, which is responsible for the /1 — aN-difference in the
eigenvalues.
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The heavy partner, on the other hand, corresponds to a heavy multi-
particle direction in configuration space, reachable through populating
either one of the Bogolyubov modes with O (1/+1/1 — aN) particles. In
turn, this explains the aN-independence of the second eigenvalue of
(T64)-

For1—aN < 0 one of the pseudo-Goldstone bosons becomes tachy-
onic and the vacuum is destabilized. The physics of this instability
is that for aN > 1 the SU(2) preserving vacuum is no longer en-
ergetically favorable and the system flows towards the new ground-
state. This new ground-state can be found by minimizing the full
Hamiltonian, (f6d). In order to minimize this Hamiltonian, let us set
a; = /e, The only phase-dependent term in the Hamiltonian is
the second term in (6d), which takes the form

—% (aja’ japag + ajagara_1) = —a (\/nin_ing)cos(6y 4 6_1 — 26o).

(171)
Since there is no other conflicting phase-dependent term in the energy,
in the minimum we will have cos(6; + 0_1 —26y) = 1. We can thus
set without any loss of generality,

01 +60_1—20p = 0. (172)

Another simplifying observation is that in the extremum 7n; and n_;
must be equal. This can be seen by extremizing the Hamiltonian with
respect to ny and n_1,

oH
8n1

oH —1 -2 /My +gn —zxn+g+ =0 (174)
m, 2\ 0Tt g H= 74

which show that 77 and n_; can be non-zero only together. Moreover
they must be equal, since they satisfy the same equation, with only one
positive root. This can be seen by multiplying (r73) and (r7g) by n;
and n_1 respectively. The resulting quadratic equations are identical,

n_1 o
_no _|_ —

x 4
2 n 2

—1 nl—zxn—i—4+y:0 (173)

oH o o o
n=— = -ni +m(l —aN +~ + pu) — 5/nqmng = 0 (175)
8n1 2 4 2
oH
n_1 = 57121 +n_1(1 — aN +ﬁ+ n) — ﬁ\/71—1111110 =0

-~ dn_y 2~ 2

(176)
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and have only one positive root. Thus, without any loss of generality
we can minimize the Hamiltonian for the configuration n; = (x, N —
2x,x), which gives

7
H = szxz + 2x(1 —aN) — %N(N— 1) . (177)

Since x is positive definite, for aN < 1, the minimum is achieved at
x = 0. For aN > 1, the minimum is at

x = %(sz— 1). (178)

Not surprisingly, this corresponds to the first Fourier modes of the
bright soliton solution to the Gross-Pitaevskii equation in the overcrit-
ical regime [58]. The energy of the ground-state is given by

2 o
Hym = — %( N — 1) — ZN(N— 1), (179)

where the first term only exists for aN > 1.

We can now understand the critical phenomenon in terms of this
Goldstone-mode. The large occupation number serves as an order
parameter for a spontaneous breaking of a global SU(3)-symmetry.
This symmetry corresponds to redistribution of the particle occupa-
tion numbers between the different momentum states, without chang-
ing their total number. This symmetry is only approximate, and nor-
mally the would-be Goldstone mode has the mass of the order of the
first momentum level (that is order one in our units). However, the
phase transition corresponds to the point where the particle number
distribution changes. This necessarily implies that the corresponding
pseudo-Goldstone mode must become massless at this point.

Notice that since x parameterizes the occupation number of (pseudo-
)Goldstones, x = ngoy = ”;ol 49¢014, the Hamiltonian (z77) essentially
represents the effective action for this mode,

44
Hgola = (ngota)” gotd + MgolaMMyeq — NN -1). (180)

Thus, the mass of the pseudo-Goldstone is given by m§ oid = 2(1—aN)
and the self-coupling is given by agey = a%. At the critical point, the
Goldstone mass term vanishes and the theory is described by a gapless

mode with a self-interaction strength given by ag,y = 7/2N,

17 1
Hgog = (ngold)zﬁi -z N- (181)
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Of course, the phenomena uncovered in the Goldstone formulation
are in one-to-one correspondence to those that are seen in a mean-field
and Bogoliubov description of the model. In fact, as hinted before,
the minima of the Hamiltonian Eq.(r77) correspond to the k = —1,0,1
modes of the solutions to the mean-field Gross-Pitaevskii equation: for
aN < 1 we found the homogenous condensate, while the solution for
aN > 1 corresponds to a localized bright soliton. In this context, one
should also keep in mind that the solution (x, N — 2x, x) only agrees
with the exact quantum mechanical ground state in the limit N — oo.
At any finite N, the ground state is a smeared distribution centered
around (x, N — 2x, x) with x given by (178), as can be seen in Fig. (m).
In particular, the ground state at the critical point is characterized by
strong entanglement and is therefore not well described by a mean
tield. This, however, will not alter our conclusion on state-counting
and information processing to be performed in the following sections.

We reemphasize that in the Goldstone language, the critical point
amounts to destabilization of the SU(2)-invariant vacuum. With the
pseudo-Goldstone method we have traded the diagonalization of the
Hamiltonian with the minimization procedure. Substituting the small
deformations of the order parameter by the Goldstone mode allowed
us to derive the effective action for the latter. This is similar to deriving
an effective Hamiltonian of a phonon field in a background external
magnetic field, which breaks the rotational symmetry of a ferromagnet.
The analogous role in our treatment is assumed by the terms in the
Hamiltonian that explicitly break SU(3)-symmetry. 2

We conclude this section by pointing out that one can continue an
analytic treatment of the system into the solitonic regime by perform-
ing an x-dependent canonical rotation on the creation and annihilation
operators a;. We define the condensate mode

X 2x X
Ccond = [ 379-1 +1/1- N +4/ N (182)

Notice also a curious analogy with the sigma-model of large-N-color QCD. In this
case our N would be mapped on the number of colors, whereas the levels k = £,0
to quark flavors. The pseudo-Goldstone boson then is analogous to pion, which also
has 1/N suppressed self-coupling.
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Figure 1: (a) Ground state for «aN = 1.5 at various values of N,
using the parametrization |GS) = YN '/ 5 ax|x, N —2x, x).

ay are normalized according to Zf;] :/ g a2 = N, since as

N — oo, fol/z a(Ny)?dy = 1 and thus it's possible to com-
pare them at different N. As N increases, the distribu-
tion becomes increasingly more peaked at x;,. (b) x,, for

N = 800 particles compared with the analytic prediction
Xm = 72 (aN —1).




9.1 CRITICALITY AND PSEUDO-GOLDSTONE PHENOMENA

and the corresponding orthogonal modes

1
Ci1:§

(183)
The resultant Hamiltonian is now always minimized by the configura-

tion (c_1,ccond,€1) = (0,N,0). Expanding around this vacuum leads
to a quadratic Hamiltonian which can be written in matrix form as

mp mp M3 Ny C1
t+ ot My my My M3 €1
Hy = (Clrc—lrclrc—l) + (184)
ms mny mp My Cq
nmyg ms My 14 C_1
with
_ aN _ 34+14ax
my 1-5 +x(8a N
) 7 (=1+3aN — 7ax)
= ax (37X (185)
ms 5 (B3-7%) ,
m i3 _ N _ 7x=
4 s (4 -N-%7)

Canonical diagonalization again leads to two distinct eigenmodes; for
aN < 1, their energy is € = /1 —aN. For aN > 1, one of them
remains exactly gapless, while the other has a frequency

e =+v1—aN ;(4+3sz). (186)

The former is the mode that corresponds to translations of the soliton,
whereas the other is the Bogolyubov mode that is only light in the
vicinity of the critical point. In the Goldstone language, the Goldstone
mode ay;gp; splits into two parts, essentially given by its real and imag-
inary parts. One remains gapless and generates translations of the
localized ground state; the other is gapless only at the critical point

and obtains a frequency € = (1 —aN )2(4;;(3N“N) for aN > 1.

The appearance of the light modes can of course again be related
to the breaking of SU(3) generators. Keeping in mind that in the
rotated description the symmetry transformations are given by ¢/ =
SUS~1c, where S is the symplectic matrix that generates the canoni-
cal transformation, we immediately see that the translation generator
Q = diag(1,0,—1), which commutes exactly with the Hamiltonian for
all x, does no longer annihilate the ground state. The generator that re-
distributes particle numbers, on the other hand, only commutes with
H at the critical point.

<i1+\/1—2—x> 012y et 2 <¢1+,/1—2—x> a_1] .
n N 2 n
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9.2 INFORMATION PROCESSING

The above form (£8d) of the effective Hamiltonian displays the role
of quantum criticality for information storage and processing. The
quantum information in the above system is encoded in the state of
the Goldstone mode. The remarkable thing about it is the low energy
cost of information-qubit-storage, which is suppressed by powers of
1/ N relative to the inverse size of the system. This phenomenon is a
manifestation of quantum criticality.

What is the role of quantum criticality for information storage and
processing? From the effective Hamiltonian (f8d) we can read that
the quantum information in the system is encoded in the state of the
Goldstone mode.

In the absence of a Goldstone mode, the price of information storage
would be related to the gap of the theory, which is typically related to
the inverse size of the system. Since in this system information is
stored in a Goldstone mode, we have a 1/N suppression, which is a
manifestation of quantum criticality.

Since encoding information is so cheap, it is naturally that we ask

whether information is actually encoded or the time-evolution of the
system will eventually spoil the storage. In the time evolution of the
Goldstone state we can distinguish two sources:
one is the interaction governed by a quartic self-interaction Hamilto-
nian (f81). The rate of this process is suppressed by powers of 1/N,
and correspondingly the time-scale of evolution is very long.
The second source of time evolution is the Goldstone mass term that
parametrizes the departure from quantum criticality. In the overcritical
regime, this mass is imaginary and results in an exponential growth
of the Goldstone occupation number. This instability is described by a
Lyapunov exponent that, as shown in [5g], leads to the generation of
one-particle entanglement and potentially to the scrambling of infor-
mation.

9.3 NUMERICAL RESULTS OF STATE EVOLUTION

An exact numerical diagonalization of the Hamiltonian (g5g) provides
a complementary analysis which is valid also at the critical point. Us-
ing the same technique as in [53], we can verify the above results by
comparing the the first Bogoliubov state as well as a lowly occupied
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Figure 2: Expectation value of energy in state with Goldstone occu-

pation <”Iright‘1hght> = 1 as a function of aN for N = 500.

Goldstone state to the exact eigenstates of the Hamiltonian (g57). Sev-
eral quantities are instructive.

In Fig.a we plot the expectation value of the energy in a state with
Goldstone occupation <”Irightﬂlight> =1 as a function of aN. The solid
line corresponds to the analytic result (i8d). The increase of energy

around the phase transition is suppressed by 1/N and thus not visible.
In Fig.ga we plot the exact time evolution of the Bogolyubov state

|15) = bjb",|0p)

where |0p) is the Bogolyubov ground state. The results are obtained
for fixed particle number N = 500, while the effective coupling aN is
varied. We observe an decrease of the frequency as « N approaches the
critical point. To illustrate this point better, we plot the frequency of
oscillations versus aN for N = 100, 300 and 500 in Fig gb. We observe
the square root behavior (68), with the frequency scaling with aN as

vV1—aN+ O(1/N)

9.4 OCCUPATION AND STABILITY OF HIGHER MODES

In the previous sections we have made the assumption that it’s jus-
tified to ignore higher momentum modes, since their contribution to
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Figure 3: (a) Normalized exact time evolution of the time depen-
dent part of the first Bogolyubov state for N = 500 and
aN = 0.004 (black, solid), 0.596 (red, dashed) and 0.976
(blue, dotted). (b) Frequency of oscillation as a function
of aN at various values of N. The solid line corresponds

to the analytic result 24/1 — aN

the dynamics of the lowest lying excitations of the system near the
phase transition was negligible due to their big gap, compared to the
tirst momentum mode. In this section we will verify this assumption.
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As we shall see, the occupation numbers of modes with momentum
number k are suppressed by a factor of (x/N)K-1,

Looking again at (157), we notice the following: we can decompose
this Hamiltonian into a part that preserves and other that breaks a
global SU(2|k| + 1) symmetry, similarly to what we did for SU(3).
This symmetry, which corresponds to the redistribution of occupation
numbers among the fist k levels, is explicitly broken by the momentum
term.

We can think of this breaking as the decoupling limit of a spontaneous
breaking by a spurion order parameter, ¥, in the adjoint representation
of the SU(2|k| 4+ 1) group, with the expectation value B

S = diag(—|k|,...,~1,0,1,...,|K|)

Obviously, the kinetic term in the Hamiltonian (x5g), can then sim-
ply be written as an SU(2|k| + 1)-invariant product, a* 2% a.

The spurion 'Y can be thought of as an expectation value of the
number operator of a "hidden” Bose-gas of some ¢;-particles, interact-
ing with 4; by an infinitely weak coupling x, s.t. 27X = x Y (¢c70;). In
that case, the momentum operator is replaced by a peculiar SU(2|k| +
1) invariant interaction term and both occupation numbers sponta-
neously break one and the same SU(2|k| + 1)-symmetry. The Gold-
stones bosons are superpositions of a-s and o-s. The orthogonal com-
binations are pseudo-Goldstones.

Now, let us take the limit x — 0, while simultaneously taking the
occupation numbers of o-particles to infinity in such a way that the
products k(v 0;) = i are kept fixed for all i = —1,1,... We arrive
at the situation in which in the a-particle sector, the entire informa-
tion about the breaking is summed up in the expectation value of
the spurion X.. Correspondingly, all the Goldstones in the a-sector be-
come pseudo-Goldstones. With increasing momentum level |k|, the
masses of pseudo-Goldstones increase whereas their occupation num-
bers rapidly diminish.

In order to see this, let us compute the occupation numbers of the
k = £2 modes. The corresponding annihilation operators for k = +2
and k = —2 are a; and a_j, respectively. The bilinear mass matrix of

This expectation value leaves invariant the U(1)-subgroup with the generator Q
which is proportional to 2. As in the case of SU(3), this charge represents a momen-
tum operator.
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these modes expanded about the state n; = (0,x, N —2x,x,0), has the

form
44
(4— %DIC\IN 4 —20¢N) (187)
This has two eigenvalues, 4 — %o&N and 4 — %ocN . Both eigenstates are
stable as long as aN < 8/3.

However, the modes n_; » nevertheless can get populated due to the
mixing with the lower levels. The occupation number of the lower
modes acts as a source for the higher ones. The occupation numbers
of the higher modes can be easily obtained by minimizing the bilinear
Hamltonian including the effective source terms for a_,». This source
is generated from the interaction term after plugging the expectation
values of n_1 1. The phases of the expectation values can again safely
be set to zero, because all the source terms are negative. The corre-
sponding effective Hamiltonian for a; and a_» has the form,

Hy 5= —(8—3aN)(al + a_5)(ay + a',)

NN

+-(8 —aN)(al — a_y)(ay — a',) (188)

3
— 50X /(N —2x)(ap + a',) +h.c

Minimizing this with respect to a_; » we see that
N_po ~ x*/N. (189)

Similarly, we can derive the occupation numbers of higher momen-
tum modes. In general, modes with momentum |k| have occupation
numbers ~ x(x/N)kK=1 which rapidly approaches zero for x/N < 1.
Thus in this regime, our assumption is well justified. In particular, this
regime covers the neighborhood of the phase transition, around which
x is small.

This behavior can also be confirmed by a numerical study of the
system. To this end, we consider the Hamiltonian (x57) with a mo-
mentum cut-off at |k| = 2. An instructive quantity is the occupation
number n_j, of the |k| = 2 modes for low lying states around the
phase transition. As can be seen in Fig. g, there is no appreciable
contribution of the |k| = 2 modes to the low lying states at least until
aN ~ 2. We can moreover confirm the quadratic behavior (f8q).
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Figure 4: Contribution of the |k| = 2 modes to the lowest lying
eigenstates for N = 10 (black) and N = 20 (red). The
dots correspond to the exact numerical results, while the
solid line depicts the analytical behavior (T89).

9.5 DERIVATIVELY-COUPLED CASE

The model considered in the previous sections admits two solutions
that become degenerate for N — co at the critical point. In d dimen-
sions, this number can be increased by a factor of 4; this corresponds
to the number of gapless Bogolyubov modes. For finite N, we may
define an entropy for a %iven N-particle system at the critical point by
counting all states with _EEO < 1/N. Given the gap of the light modes,
AE ~ 1/N, we obtain Z,Ic\’ (d+]’§_1) ~ N states within the accountable

range of energies. This implies an entropy S ~ dlog N.

We may attempt to reproduce an entropy that scales with N like
the Bekenstein-Hawking entropy of black holes, S ~ N, by increasing
the number of pseudo-Goldstone modes at the critical point. This can
be achieved, for example, by taking the coupling to be momentum-
dependent. In order to see this, consider a Hamiltonian,

H = /ddx ¢+%;A1p — Lt /ddx <¢+§¢+> <1p§tp) , (190)

93



94

GOLDSTONE THEORY AND QUANTUM CRITICALITY

where ¢ = } \%el%f ar, V = R% is the d-dimensional volume and k
is the d-dimensional wave-number vector. L is a fundamental length
and sets the cutoff of the effective theory. Rescaling the Hamiltonian,
we can write H = % H, where

72 .t Toka ) al at
H = Zk apax — & Z <k2k4> A, Ay, Ay Ak, - (191)
% k1+ky—k3—ks=0

d+1
and ay = (L‘}R ) ZRT’“ Let us again find the effective bilinear Hamil-

tonian for k # 0 modes, about the point np = N and ny,y = 0. We
obtain
H = Zkz (1 — agN) a%az (192)
k0

Thus, at g = 1/ N, all modes are critical and there is the same number
of massless pseudo-Goldstones as the number of momentum modes.

This peculiar behavior can be equivalently understood in a mean
field analysis. Minimizing Eq. (rgg) under the constraint of fixed total
particle number yields the Gross-Pitaevskii equation

A L o
ot Y AP =y, (193)

where y is again the Lagrange multiplier fixing the total particle num-
ber [dVy'y = N. Using the ansatz ¢ = \/geikf, Eq.(m93) becomes

K (1
o (E - “0N> =K. (194)

Hence plane waves of arbitrary wavenumber solve the GP equation

(9g3). By inserting ng into the Hamiltonian (rgg), we read off the
energy of the plane wave solutions
K2
Ex=5_(1-aoN). (195)
At the critical point, all plane wave solutions become degenerate; the
corresponding modes a; are the Bogolyubov modes.
In order to give a lower bound on the entropy of this system for
a given N, we have to keep in mind that for the validity of the non-
relativistic treatment we should only include modes with |E\ < kpax =
mR /1. Their number is Nyax = (kiax)?. This number sets the number
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of legitimate pseudo-Goldstone modes. However, not all the massless-
pseudo-Goldstone modes contribute the same weight into the entropy.
This is because their self-couplings have different strengths. Hence
exciting different pseudo-Goldstone species will contribute into the
Hamiltonian differently. In order to identify which species give the
maximal contribution into the entropy of the system, let us consider
the effective Hamiltonian for the pseudo-Goldstone modes. It has the
following form (we ignore numerical factors OF order one),
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. 2\ 2 S _
Hecolg = Z |k| (ngold(k)> a0 + 1gora(k) (1 —aoN) | + cross-couplings,

k0
. . . (196)
where 114,14(k) = ago1a (k)*agold(k) is the occupation number of pseudo-
Goldstone of a given momentum number k. At the critical point, the
mass terms vanish and the Hamiltonian is given by the quartic cou-

plings,

> 2\2 .
Hgolg = Z k[0 (ngou(k)> + cross-couplings. (197)
k0

We can obtain a lower bound for the number of states in the allowed
range by looking for the |k| that provides the maximal contribution
to the partition sum. We need to take into account two competing
effects: The larger \H, the more modes, and thus states, are sup-
plied. On the other hand, the energy cost of a given mode grows
with |k|, thereby limiting the maximum allowed occupation. Moreover,
we pay a penalty for occupying modes more than once as seen from
the quadratic dependence of (rgyz) on ”gold(E)- A conservative lower
bound is thus obtained by summing over all states in a shell around
the limiting momentum k; which allows for all Goldstone modes of
given wavenumber to be occupied exactly once. Lower momenta
will yield subdominant contributions due to the reduced number of
modes and the related penalty for higher occupation; higher momen-
tum modes, on the other hand, are too costly to excite. We obtain the
contribution,

ScHeoa ~ k| (|7€1|2040> : (198)

where we ignored a possible cancellation from the cross-couplings.
The factor |k;|4 comes from the total number of modes. The maximal
contribution to the entropy will come from the species with largest |k|,
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subject to the condition 6y Hg,y < 1. Taking into the account that
a9 = 1/N, and assuming L,/ = m~!, we obtain

— 1 _d_
Ikl| = N®2 , Npodes = N2 (199)

for the limiting momentum and the corresponding number of modes.
We get the following contribution to the entropy from the pseudo-
Goldstone species,

Nd/d+2 Nd/d+2 p
N, ~log ) ( . ) ~ N+, (200)
k

Note that we have also evaluated the full partition sum numerically
and thereby verified that the wavenumbers with |k| ~ |k;| provide the
dominant contributions.

If we take into the account the effect of cross-couplings, ignoring
possible “flat directions” on which the different contributions cancel,
we get a more conservative lower bound on the entropy. The number
of cross-couplings for a given momentum level |k| scales as the number
of corresponding pseudo-Goldstones squared, ~ (kd)?*. Then, equa-
tion (f(g8) changes to

ScHeora ~ 1K1 ([k[?a0) - (201)

This lowers the allowed number of simultaneously-excitable Goldstones
to P
» = N2tz , (202)

Independently, we observe the general message that the derivative
self-coupling of bosons leads to a dramatic increase of pseudo-Goldstone
modes.

96 THE CARRIERS OF BLACK HOLE ENTROPY

We finally wish to address the following question. Which of the large
number of degenerate states are good candidates for carrying the
Bekenstein-type entropy of a black hole? In order to answer this ques-
tion, we shall distinguish two categories of states.

1) The first category represents states that cannot be resolved semi-
classically in any macroscopic measurement. That is, the quantum
information stored in such states becomes unreadable in the infinite-
N limit. We shall refer to this category of states as type-A.
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2) The second category are states that can be resolved in some macro-
scopic interference experiments. That is, the quantum information
stored in such states can be read out even for N = co. We shall corre-
spondingly refer to these states as type-B.

What distinguishes these two categories of states microscopically?
In our picture the states of both categories can be labeled by the occu-
pation numbers of some nearly-gapless quantum degrees of freedom.
As discussed above, these information-carriers can be described as Bo-
golyubov and/or Goldstone degrees of freedom. What distinguishes
the two category of states is the scaling behavior of information-carrier
occupation numbers in large N limit.

The type-A category of states refers to those in which the relative oc-
cupation number of gapless degrees of freedom vanishes in the large-
N limit. That is, none of these information-carrier degrees of freedom
are macroscopically occupied. Correspondingly, the type-A states can-
not be resolved in any macroscopic measurements.

For type-B states, some of the Goldstone modes can be macroscopi-

cally occupied with an occupation number that scales as a non-vanishing

fraction of N in the N — oo limit. Such states can be resolved in macro-
scopic interference experiments.

This discussion is more relevant for the derivatively-coupled model
(mgu), since it exhibits a large diversity of Goldstone modes. However,
to keep the discussion as simple as possible, we shall here consider
only the model (153). Therein, let us now exemplify which states can
be attributed to the type-A and type-B categories.

As discussed previously, at the critical point, two gapless modes
emerge. The appearance of these states is a direct consequence of
quantum criticality. They come from those components of the SU(2)-
doublet pseudo-Goldstone that are not affected by the explicit break-
ing. One of them is only an approximate Goldstone, corresponding
to one linear superposition of the off-diagonal generators from the
quotient SU(3)/SU(2) x U(1). This Goldstone is massless only near
the critical point. In contrast, the other degree of freedom is an exact
Goldstone corresponding to the spontaneously broken U(1)-generator
Q = diag(1,0,—1) of SU(3). This Goldstone is massless everywhere
at and beyond the critical point.

A counting of states in the Goldstone as well as in the Bogolyubov
language suggests that the number of independent states below the
1/ N energy gap near the critical point scales at least as N 1/4, However,
the total number of almost orthogonal states with expectation value of
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energy below the same gap becomes larger if we also include coherent
states in the counting (see Appendix). This is because the coherent
states are neither energy nor number eigenstates and involve superpo-
sitions of arbitrary energetic modes with arbitrarily large occupation
numbers. Correspondingly, they explore a much bigger fraction of
the Hilbert space than the states constructed out of a finite number of
energy or number eigenstates.

Only the states with vanishing fractions of Goldstone (or Bogolyubov)
occupation numbers belong to the type-A category. On the other hand,
states with macroscopic occupation numbers of Goldstones, such as co-
herent states, belong to the type-B category. The latter states can be
resolved in macroscopic measurements, even in N = oo limit. This is
a manifestation of the fact that the coherent states are “classical”.

Given the fact that interference experiments with black holes have
never been performed, both of these categories are very interesting,
since they both reveal the internal microscopic structure of black holes.
However, the question is whether both of the types of states should be
counted as carriers of black hole Bekenstein entropy.

Should Bekenstein entropy originate exclusively from the quantum states
with small-occupation numbers of many species of gapless Bogolyubov - Gold-
stone degrees of freedom, or should the states with large occupation numbers
of few species also count?

For now, we shall keep both options open.

9.7 SUMMARY

We started this chapter with a question: how does one reconcile the
fact that the entropy of a classical black-hole is infinite with the fact
that there are only three parameters that describe every possible clas-
sical black-hole? It is clear that any possible model that can address
this question should have two defining features: an exponential set
of almost generate quantum states; and a decoupling limit in which
these states are indistinguishable given a finite timescale.

In this chapter, we have shown that this question can in fact be an-
swered if we consider a many-body system near a quantum phase
transition. Furthermore, we have shown that this system is a viable
candidate for the underlying mechanism for black hole information-
processing, along the lines of [ru, 53, 53]. We showed that the simplest
multi-particle systems with critical behavior capture qualitative fea-
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tures of information-processing that is expected for black holes, such
as the low energy cost of information storage, large degeneracy of
states and scrambling of information.

In order to visualize the nature of the critical phase transition in the
language of spontaneous symmetry breaking, we developed a new de-
scription in which we mapped the quantum phase transition in attrac-
tive Bose-gas on a Goldstone phenomenon in a sigma model. The two
systems represent two realizations of one and same unitary symmetry
that rotates different momentum modes into each other. This symme-
try is broken both spontaneously as well as explicitly, but the explicit
breaking vanishes, up to 1/N effects, at the critical point, resulting
onto the gapless pseudo-Goldstone modes.

Our findings, within the validity-domain of the description, confirm
the results of previous studies [ru, 53, 4] and shed light on the criti-
cality phenomenon from a novel angle. Our studies indicate that the
key information-processing properties of black holes are shared by a
larger class of the critical systems, including the ones that can be de-
signed in table-top labs. This opens up a possibility of “borrowing”
black hole information processing abilities for implementing them in
the laboratory systems.

Since our findings suggest that critical instability is the key for ef-
ficient information processing, it would be interesting to find out, by
generalizing our approach, whether other unstable systems, for ex-
ample, the ones with parametric resonance instabilities [b5] and large
classical statistical fluctuations, studied in [b6], also exhibit some anal-
ogous properties of information scrambling and processing.
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1D BOSE GAS AND INTEGRABILITY

In the previous chapter we have introduced the 1-D Bose gas with at-
tractive coupling as a prototype in order to understand the properties
of quantum systems near a quantum phase transition, with the goal or
relating its information-processing properties to those of Black-Holes.
It is clear from the previous discussion that this system is an interest-
ing theoretical laboratory to study properties of strongly interacting
quantum many-body systems. Experimentally, it has also been fea-
tured quite extensively in recent years, since the Feshbach resonance
makes it possible to simulate effective one-dimensional systems at ar-
bitrary couplings using cold atoms [g5, 81, g1, 78].

As we discussed, the theory undergoes a large particle number
phase transition [8d]. This phase transition interpolates between a ho-
mogeneous phase in the weak coupling limit to a phase dominated by
a solitonic bound state in the strong coupling limit, known as a bright
soliton. The dynamics of the phase transition has been extensively
studied, both using the mean-field analysis [8d] and also by a trunca-
tion and numerical diagonalization of the Hamiltonian [96, gz, 76, 75].

Another interesting feature of this model is that it is exactly inte-
grable [84]. As we'll see, this implies that the Schrodinger equation of
the system can be mapped to a set of algebraic equations - the Bethe
equations - which fully determine the complete spectrum of the the-
ory. Despite the fact that the system can be in principle solved using
this technique, in practice the equations are transcendental and cannot
be analytically solved without any approximations. The only regime
where it is possible to obtain exact solutions is in the ¢ — oco limit,
where we are in the deep solitonic regime. In this regime, it is possible
to explicitly construct exact solutions of the Bethe equations, due to
the string hypothesis [87], which we’ll revisit later.

One way to simplify the problem is to consider the large particle
limit of the theory, using some scaling limit. There is an extensive
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literature covering the thermodynamic limit, in which we take N — oo
while keeping N /L constant - where L is the size of the system. In
this limit, it is possible to study the properties of the system through
means of integrability techniques (e.g. [70, 72, 71, B3, gol). This is
possible due to the fact that the thermodynamic limit of the theory
is intrinsically a strong coupling limit, since the interaction term is
irrelevant, becoming stronger in the infrared.

The scaling limit which allows us to probe the weak coupling limit
of the theory is the one in which we take N — oo while keeping
NcL = g constant. In this limit, the phase transition happens at finite
g, and we are able to probe exactly what happens with the Bethe states.

Finally we observe that the ground state can be mapped exactly to
the large-N saddle point of U(N) Yang-Mills theory on a two-sphere,
where the phase transition manifests itself as the confinement / de-
confinement phase transition of Douglas and Kazakov [7z], which is
deeply connected to random matrix theory [85] and has diverse mani-
festations [77, 73]

We describe the one-dimensional Bose gas in terms of the canonical
fields ¥ and Y7, obeying the equal time commutation relations

[¥(x, ), ¥ (y, )] = d(x —y) . (203)
The Hamiltonian for the model, defined on an interval of length L, is
L
H= / dx YT (1)9:¥ (x) + ¥ () ¥ ()F()¥(x) . (204)
0
We can define the following integrals of motion, which can be inter-

preted as the momentum P and the particle number N, both commut-
ing with the Hamiltonian

N = /dx T (x)p(x) (205)
i
P=-3 /dx B ()2 (x) — (0" (1)) (x) (206
Since the Hamiltonian commutes with the particle number operator,

we can construct its eigenstates by simply writing down the most gen-
eral for of a N-particle state

lyN; E, p) = \/%/sz x(z1, e 2N E, ) ¥ (21) .. ¥ (20)[0) . (207)



10.1 THE COORDINATE BETHE ANSATZ

Each eigenstate is characterized by a symmetric function ), which be-
sides the spatial dependence, will in general depend on a finite set of
parameters which will determine the momentum and energy of the
corresponding eigenstate. In order to determine this function, we act
on |ipn; E, p) with the operators E and P and find the solution of the
eigenvalue equations.

The eigenvalue problem

H[yn; E, p) = E[YN; E, p)

becomes a Schrodinger equation for the wavefunction ), with the
quantum mechanical Hamiltonian:
N 92
Hy = Z—@+CZ5(XZ'—X]') (208)
i=1 i i#j
and the solutions x of the eigenvalue equation will have a momentum
given by

AR
Pyx(x1,...,xN) = —i Z ($> x(x1, ., XN) (209)
i=1 1

10.1 THE COORDINATE BETHE ANSATZ

The model defined by the Hamiltonian (BoS) is known as the Lieb-
Liniger model, it was first studied in detail by Lieb and Liniger (XX)
who used the coordinate Bethe Ansatz (XX) in order to construct the
ground state and excitation spectrum of the theory in the repulsive
regime (¢ > 0).

As it turns out, the solutions obtained in the attractive and repulsive
regime and qualitatively very different, which reflect on the form of
the eigenstates obtained by the Bethe Ansatz. While the repulsive case
has been extensively studied, both at 0 and finite temperature, the
appearance of bound states make the treatment of the attractive case
significantly more difficult.

In this section, we will review the coordinate Bethe Ansatz and how
it can be applied to construct the eigenstates of (2aS).

10.1.1  2-body problem

To the idea behind the Bethe Ansatz, let us consider first an explicit
solution of the 2-body problem defined by the Hamiltonian (208). This
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model has the following property: whenever the particles lie on differ-
ent positions, the potential is 0, so the eigenstates can be constructed
by separating the wave-function in the domains in which x; > x; and
vice-versa.

The most general Ansatz we can write is then the following;:

x(x1,x2) = f(x1,x2)0(x2 — x1) + f(x2,x1)0(x7 — x2) (210)

where 6 is the Heaviside step function. Let us assume a superposition
of plane waves for f(x1,x7)

f(x1/ xz) — Alzeix1k1+x2k2 _|_A21eix1k2+x2k1 (211)

The parameters k; play the role as a generalization of the momenta
for the interacting problem, so they are often referred to as quasi-
momenta, rapidities or roots. The action of the free Hamiltonian on

the x will yield
(ail + 8§2> x(x1,x2) = ailf(xl,xz)ﬂ(xQ —x1) + ailf(xg,xl)H(xl — X7)
+8§2f(x1,x2)9(x2 —x1) + aazczf(x2/x1)9(x1 —X2)
— 0, f(x1,%2)6(x2 — x1) — 9, f(x2, ¥1)6(x1 — x2)
— 0, f(x1,X2)6 (22 — X1) — 9, f (¥2, 1) 6 (31 — x2)

where we have used the fact that u(x)d' (x) = —u/(x)é(x), and we have
axlf(xl, XZ) = afo(xz, xl) = ik%Alzeixllirxzkz —+ ik%Aﬂeixlszrxzkl
afo(xl,xz) = axlf(xz,xl) = ik%A12€ix1k1+x2k2 —+ ik%Ameixlkz_szkl
aJZle(xll Xz) — 83252f(x2/ xl) — _k%A12eix1k1+x2k2 . k%A21eix1k2+x2k1
aizf(xh x2) — aJZle(XZI xl) — —k%Alzeixlkl_'_xzkz . k%Ameixlkg—&-xzkl

Summing all the contribution, the eigenvalue equation becomes

Hy = (K + ) x+

26(x1 — x2) (c(A1 + A1) — i(A1p — Agy) (kg — ko)) e'F1tk)n
(212)
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which is satisfied as long as

A12 . (kl — kz) — iC
Ayn (ki — ko) +ic (213)

Whenever the k; are real, this ratio has unit norm, so it is simply a
phase shift. The ratio of amplitudes for the different permutation of
particles is physically the phase shift that the wave-function acquires
whenever the particles cross each other:

A2 iak—k)
—— =e V1 21
Ay, (214)

with
a(z) = 2arctan(z/c) + (215)

As it stands, the amplitudes are still not completely determined,
since we have not yet imposed the periodic boundary conditions on
the wave-function. Imposing boundary conditions will also fixed the
possible values that the rapidities can have

10.1.2 Bethe Equations

We will now generalize the previous result for the N-particle problem,
and subsequently impose boundary conditions in order to derive the
Bethe equations for the system.

Suppose that we assemble all particles on distinct positions, and let
us define a domain D; as one specific ordering of the particle positions,
with Dy : x; > xj for i > j. Because of the symmetry of the wave-
function, any other ordering ordering domain can be obtained from
D; by a permutation of the particles. Since the potential is 0, in this
domain the wave-function is an eigenstate of the free Hamiltonian, but
subject to non-trivial boundary conditions.

Anagolously to (z1n), we write the wave-function as a superposition
of plane waves on the various domains

N

x(x1, . xn) = Y x(x1, ., xn; D) 1(D;) (216)
i=1

X(xlr ) XN Dz) _ ZA(P/ Di)eikp1X1+...+ikpNXN , (217)
P

P is a permutation of the set {1, ..., N}.
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Since the wave-function is bosonic, a permutation of the particle
positions should leave it unchanged. By permuting the particle posi-
tions we are going to a different domain, so if a permutation takes
from a domain D; to a domain D;, we should have by consistency that
A(P,D;) = A(P',D;), where P’ is the permutation that will differ from
P in the same particle indices as D; differs from D;.

To construct the boundary condition, we consider the variable A; =
xj41 — Xj. Let us integrate (2aB) from A; = —e to A; = +e. Since
the wave-function is analytic, the left-hand-side will be 0 in the ¢ — 0
limit. On the right-hand-side, we have a contribution of c¢ from the
d-function, and the boundary terms from the second-derivative. On
the domain Dj, the problem is equivalent to

HOx(x1,...,xn; D1) = E x(x1, ..., xn; D1) (218)
lim °o 9 —c | x(x xn;D1) =0 (219)
Xj—=Xjt1 ax]'+1 ax] KL e AN 1) = ?

We can now substitute the original problem with the interacting
Hamiltonian by a system of N free particles constrained to the do-
main D; and subject to the boundary conditions (grg). In order to
construct the wave-function, take the following ansatz for the ampli-
tudes, inspired by the 2-body problem

A(P) = (—1)PH (kp]. —kp, — ic) (220)
j>1

The wave-function can be written in a compact form using the fact
that

Z(_1)Pexp{i2xjkpj} = det[exp{ixk;}] (221)
P j

We have then, up to normalization

X = H (i 92 + c> det[exp{ixjk;}] (222)

NSz \ 9% 9

It is easy to see that this ansatz also satisfies the boundary conditions
(z1g). We can start by verifying the following equality

: d 0
lim (——a—xl—c)X—O (223)

X1—Xp axZ
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=
N

Q

=
=

(224)

and under this decomposition (gz3) can be written as

lim i—i 2—c2 x=20 (225)
X1—=x2 x> ax1 = 5

It is clear that { is antisymmetric under the exchange x; <+ x2, while
the prefactor is symmetric under the same exchange. Since the left-
hand-side whenever x; — x,, the equality is proven. It is easy to see
by the same construction that the the the condition is also satisfied for
any pair {i,i+1}.

We are still left with the task of imposing periodic boundary con-
ditions on the wave-function and thus constraint the set of possible
quasi-momenta. A simple way to derive the equations is the follow-
ing: suppose that we start on domain Dj, pick particle j and move it
all the way around the circle. On one hand, the wave-function will
acquire a phase given by ¢®iL. On the other hand, it will scatter with
the N — 1 particles it will find on the way, and each scattering event
will contribute with a phase shift, given by (gr3). We have then the
following set of identities

. (k — kl) —+ ic
el =TT -2L—%— (226)
g (k] — kz) —1c
These identities constraints the possible quasi-momenta for a given
eigenstate of the system, and are known Bethe Equations.
The energy and momentum eigenvalues of the Bethe eigenstates are
given, as a function of the quasi-momenta, simply as

N

P =) k (227)
j=1
N

E= ijz (228)
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10.1.3 The sign of c

In the repulsive regime, it was shown [98] that the Bethe states with
real momenta form a complete set of the N-particle Hilbert space,
which implies that all roots of the Bethe equations for ¢ > 0 will be
real. This is consistent with the intuition that the ground state of a
repulsive gas will be characterized by scattering states occupying a
Fermi sea.

The Bethe Equations (E26) do not have unique solutions for k;. More
specifically, when taking the logarithm on both sides, we must specify
in which branch we are, which can be done by choosing a set of inte-
gers 1;, one for each k;. The physical role of the k; can be understood
as setting the excitation level of each of the particles. We have, with
a(z) = 2arctan(z/c) + 7,

N
k]L = 27'(71]' — Z Oé(k] — kl) (229)
i=1

It is clear by the form of the wave-function ansatz that whenever
two kj coincide, the wave-function vanishes. This creates an exclusion
principle for the n;: as long as the quasi-momenta are all real, all #;
must differ. It is easy to check by going to the non-interacting limit
that the lowest energy state we can build is one in which the n; are
symmetrically distributed around o:

nj = —? +j j=12.N . (230)

When c is negative, however, we are in the attractive regime of the
Bose gas, and bound states appear in the spectrum. The appearence
of bound states is reflected in the fact that the quasi-momenta are
now allowed to become complex. Whenever the quasi-momenta are
complex, the wave-function develops exponentially decreasing compo-
nents, which corresponds to localized states.

In the attractive gas, we are then allowed to have multiple parti-
cle sitting on the same excitation level, as long as the imaginary part
of their quasi-momentum differs. Particles that share the same real
part of the quasi-momenta but have different imaginary part are in a
bound state, and the real part of the quasi-momenta tells us the total
momentum of the bound state.

Although the quasi-momenta are allowed to become complex, we
need to make sure that the total energy and momentum of the system
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are still real. Take k; = r; +im;, the the moment and energy of the
state can be written as

N N

P=) ri+i) m (231)
j=1 j=1
N N

E = 2 (r]2 — m}z) + 2 2 rim; (232)
= j=1

so to ensure that both imaginary parts are real, we need that all quasi-
momenta must come in complex conjugate pairs.

10.2 SUMMARY

In this chapter, we reviewed the Bethe ansatz technique to solve the
1D bose gas. We have seen how to construct the Bethe wave-function
as a function of the quasi-momenta k; and how the boundary condi-
tions impose a set of algebraic equations for the quasi-momenta. Al-
though solving these equations completely determine the spectrum of
the system, in reality there is no known way to solve them for arbitrary
couplings.

The system for ¢ > 0 differs dramatically from the attractive sys-
tem. While in the repulsive case the ground state is dominated by
a fermi-liquid type distribution for the quasi-momenta, in the attrac-
tive case the formation of bound states reflects in the appearence of
complex momenta. These complex momenta imply exponentially de-
caying wave-functions, which signals localized particle configurations.

In the next chapter we will introduce a method to solve the ground
state of the system at arbitrary coupling in the N — oo limit. This
method allows us to show that the ground state can be mapped to the
saddle point of 2D Yang-Mills on a sphere.
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In the previous chapter we have seen how the attractive Bose gas can
be solved using the coordinate Bethe ansatz. In practice, building the
eigenstates of the model implies solving a system of N algebraic equa-
tions for the quasi-momenta k;. While there is no general method to
construct these Eigenstates at arbitrary N, in this chapter we will intro-
duce the formalism that will allow us to obtain both the ground state
and the lowest lying excitations in the decoupling limit, N — co with
cN fixed.

Just by looking at (232), it is clear that in order to minimize the
energy, we must choose all quasi-momenta to have 0 real part. The
ground state of the attractive gas will be then simply a static bound
state of N particles. In order to find how the quasi-momenta are dis-
tributed in the imaginary line, however, we still need to solve the Bethe
equations.

Doing the following replacement k; — —ik; and ¢ — —c, we arrive
at the Bethe equations that we will solve:

ki — k]' +c
kiL = Zlog m (233)
jF# ]

Constructing real solutions of these equations is equivalent to finding
the ground state of the system.

In this chapter we will show that it is possible to solve (233) at lead-
ing order in a 1/N expansion, while keeping the "t Hooft coupling of
the system, cN, fixed. This will be done by going to the continuum
limit of the k;, and transforming the set of algebraic equations into one
constrained integral equation. This integral equation can be solved
using known methods and will give us the distribution of k; for any
coupling.
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One interesting curiosity that arises is that the system can be explic-
itly mapped to the saddle point of 2D Yang-Mills on a sphere. We will
show here the derivations and results we obtained in [bS].

11.1 THE DEEP SOLITONIC REGIME

Suppose first that that we take L — oco. In this limit, the left-hand-
side is either —co or 4-c0. One the right-hand-side we must have then
that at least one of the arguments of the logarithms must be 0. We
can consistently create a solution that satisfies the equation by putting
all the k; on a ”string” in which the distance between adjacent quasi-
momenta is approximately c, with exponentially small deviations [87]:

ki~ cL(j—(N+1)/2) (234)

Using (z32), we find that the energy of this configuration is

E:—%@BNOﬂ—Q (235)

Although this expression diverges in the N — oo, the energy per parti-
cle is finite in the scaling limit:

o Lo 15

E/N ~ ¢ L°N* = 18 (236)

To convince ourselves that the L — oo limit corresponds to the

strong coupling limit, we can write the Bethe equation in dimension-

less units by taking k — ck. In this choice of units, the left-hand-side

of (233) becomes k;Lc, and thus the dimensionless 2 — 2 coupling
constant of the theory becomes cL.

11.2 CONTINUUM LIMIT

Before we attempt to construct solutions for arbitrary coupling, we
need to introduce the variables that will be used in the N — co limit
treatment of the theory. In order to proceed, we need to assume that
the N roots k; of (233) converge to a continuous function, defined as

ki=gk(i/N) . (237)



11.2 CONTINUUM LIMIT

This assumption is justified by the following observation: take the root
distribution in the strong coupling limit (23g). In the scaling limit we
have

ki/g—ki1/g~cL/g+ O(e Ny =1/N 4+ O(e 8N) (238)

thus making k(x) a continuous function of x in the strong coupling
limit.

Since (233) is a continuous function of ¢ and k;, we find that the
k(x) must be a continuous function of x for all ¢, as long as the roots
k; do not fall on the poles of the logarithm. This is equivalent to the
constraint that

ki — kj| > ¢ (239)

for all pairs {i,j} which is a fundamental property of this system and
is the reason why we encounter a phase transition.

In order to understand the origin of this constraint, imagine chang-
ing the coupling adiabatically. Suppose as well that for some value of
¢ the inequality is satisfied for all pairs {i,j}. If at some point only
a pair of roots {i,i + 1} violate the inequality, then there will be only
one diverging contribution in the sum for the root i and j. In this sit-
uation, by iterating the argument, it must happen that all of the pairs
{i,i+ 1} violate the inequality for the same value of c, since the di-
vergent contributions can be pairwise cancelled. Nevertheless, we are
still left with root 1 and root N, which have only one near neighbour
and thus only one divergent contribution, so they must diverge.

Since for g — oo we have that the inequality is satisfied, it is clear
then that there are no finite solutions of the Bethe equations for any g.
It is important to notice, however, that that in the strict N — oo limit,
the inequality can be saturated.

In terms of continuum variables, we can write the inequality (239)
for consecutive roots as

lim glk(x +1/N) ~ k(x)] > g/N (240)
which is nothing more than a constraint on the first derivative of k(x)
Kl =1 (241)

We can also define the density of roots

olk) = & (242)
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which satisfies p(k) < 1. This quantity appears when transforming
discrete sums into integrals, since we have
N 1 kmax

Flk) = [ k() = [ akp(F®R)  @43)
=1

1
N ! ,
i min

with the endpoints of integration determined by the identity

Kmax
/k k) dk=1 (244)

Given that the roots always appear in complex conjugates, p(k) =
p(—k), and thus —k,iy = kmax-

We need now to rewrite the Bethe equations (233) in terms of con-
tinuum variables. The sum on the right-hand-side of can be split in a
near contribution from |j —i| < eN and the rest, for some € > 0. As
long as k' > 1, the near contribution vanishes when taking the dou-
ble limit lim._,o limy_,« (see appendix). For the rest of the sum, the
following Taylor expansion is valid

ki—ki+ £
lim log 0N _28_1

Nooo Oki—ki— &  Nk—kj

(245)

Using (2z3), we find that in the continuum limit, the Bethe equations
become the integral equation

kmaX
gk=273/_k ]f(_”) du (246)

u

max

together with the constraint

p(k) <1 (247)
11.3 WEAK AND STRONG COUPLING SOLUTIONS

We have now replaced the problem of finding the N solutions of the
Bethe equations (233) to determining the constrained solution p(k) of
(246).

As long as the constraint is satisfied, the solution of the integral
equation (g46) is a semi-circle [g2]

g2 k2

o(k) = 8§~ (248)

1
s
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~0.58 058

-0.55 0.55

Figure 5: Continuum root distribution p(k) (black) and numerical data
points at N = 400 (red fill)

117



118 THE GROUND STATE OF THE ATTRACTIVE BOSE GAS AND 2D YANG-MILLS

This distribution satisfies p(k) < 1 for g < 2. When g = 72,
p(0) =1 and the system undergoes a phase transition.

When ¢ > 7%, we use the strong coupling asymptotics (23g) make
the following ansatz for p

(1 kel b ]
Pl = {p(k) ke[—a,~b)U(ba (249)

which means that for some interval [—b,b|, p will saturate the con-
straint. Outside this interval, p has a different functional for, which is
to be determined from

gk — 210g(£ Z) ZP/baﬁ(u) (kl k—il— )du (250)

The solution of this integral equation is known [92, 73]

bZ b2
o0 = /@ =) () s

and the parameters a and b are determined from the following condi-

tions:
4K(x)(2E(x) = (1 -x)K(x)) = ¢
ag =4K(x) and x=b?/a?

The functions E(x) and K(x) are the elliptic functions of the first
and second kind, which in our conventions can be written as

(252)

V1—axu? 1-— qu
/ (253)
1 —u?
1
du (254)

"o VI—x2V1o w2
IT; (x,y) is the elliptic function of the third kind, defined as

Mxy) = [ ! au (255)
by 0 (1—xu2)\/1—yu2/1—u? 2
Note that for ¢ — 72, we have b — 0 and (7r?) becomes a semi-
circle and thus the root distribution changes continuously at the phase
transition.

In figure g we show the continuum limit root distribution for several
values of the effective coupling. The numerical results for N = 400, ob-
tained directly from (233), are superimposed on the graphs and match
very well.




11.4 GROUND STATE ENERGY

T2 27T29

-3 772

Figure 6: Ground state energy per particle. Numerical results for 400
particles are shown in brown. In green is the mean-field
result in the strong coupling phase. The dashed line shows
the thermodynamic limit [87].

11.4 GROUND STATE ENERGY

Although the density changes continuously at the point of phase tran-
sition, we will show that the second derivative of the ground state
energy per particle is discontinuous, thus making the phase transition
third order.

We will also compare the expression for the ground state energy
at arbitrary coupling with the result obtained from mean-field theory,
and verify that both expressions indeed coincide, as it should be ex-
pected since the mean-field theory should yield the correct large-N
ground state.

Using (z32) and (273), the ground state energy per particle is given
by the following expression

1
e= L K= / K2o(k) dk (256)

In the weak coupling phase (48) this expression has a very simple
form. In the solitonic regime (251), we can use the integral representa-
tion of I'l; and contour integration to calculate the energy. We have

g for ¢ < m?
—€= (257)

=9’ (8((12 +b?) + g(a® — bz)z) for ¢ > m?
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In order to check the order of the phase transition, we need to calcu-
late the derivatives of (g57) with respect to g for ¢ = 2. This can be
done by performing a series expansion of a and b, using (252), in the
vicinity of ¢ = 712, We find

—e=g+ %(g — )2+ 0((g—7?)?), for g>n?
We observe that €(g) and €(g) are continuous at 72, whereas the sec-
ond derivative is discontinuous, confirming that it is indeed a second
order phase transition.

We can relate (g57) with the mean-field theory expression for the
ground state energy. In the large-N limit, mean-field theory is ex-
pected to produce the correct ground state energy, so this serves as a
nontrivial check for our method. We have, from [8d], for g > 2

m 2
~ent = 3 e (2= ) E(n) £ (1= m)Km) (@5

with m determined from
4E(m)K(m) =g (259)

The parameter m has the physical interpretation of describing the
physical width of the soliton in the mean-field analysis, measured in
units of L. In order to reproduce our results, we need to find a transfor-
mation that relates it to x from equation (g52), which is the parameter
that measures how many roots are condensed in the constraint surface.
This can be done through the substitution

m=1—m
L (= i (260)

(1+ /mq)?

And using the following relations "

()]
(i) |-

2
=K
1+,/m1

E(m) = (14 +/m)E

(L]
(261)

1 (17.3.29) and (17.3.30) from [bg].
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Figure 7: Asymptotic behavior of A(N) .
B
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Figure 8: Best fit parameters B for different couplings.

it is possible to show the equivalence between the mean-field ground
state energy and (g57).

11.5 NUMERICAL CHECKS

Although there is no analytic solution of the discrete version of the
Bethe equations (g33), we can solve them numerically for chosen val-
ues of g. The algorithm uses the Levenberg-Marquadt solver provided
by Mathematica, and in order to optimize the process, we use tracking;:
some initial guess is chosen for small ¢ and then the solution for g is
used as the starting searching point for g + dg.
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As a measure of how close the numerical solution is from the large-
N expression, we compute the mean square deviation

1 N

AN,g) =5 ) (ki (g) — gk (%@)2 (262)

i=1

and k(x, g) is defined by numerical integration of (z51, £48).

The results are shown in Fig. p, where we display A (N, g) as a
function of N for different values of g.

We observe that A (N, g) behaves like A(g)N—5(8). We show the best
fit parameters B(g) in figure B. Based on these numbers, we conjecture
that B = 2 at large N, and we notice that the convergence seems to be
slower at the point of phase transition, probably due to the increased
numerical accuracy needed at that point.

11.6 EQUIVALENCE TO 2D YANG-MILLS ON A SPHERE

As we have seen, the phase transition in the 1D Bose gas can be un-
derstood using integrability techniques. In this language, the phase
transition is characterized by a change in the functional form of the
density of Bethe roots for the critical coupling ¢ = 7%. This change
is due to the saturation of a constraint which is lost in the continuum
formulation and is then superimposed to the integral equation which
defines the ground state of the system.

In a sense, this phase transition can be understood as a confinement
to deconfinement phase transition. The effective coupling g grows lin-
early with the size of the system L, which signals that the interactions
are stronger in the infrared. Furthermore, while for low couplings the
mean-field ground state is homogeneous, after the phase transition
the ground state is dominated by the formation of a non-perturbative
bound state.

Interestingly, we can make this connection formal by mapping the
ground state of this system to the saddle-point of 2D Yang-Mills on a
sphere. We will briefly recap how 2D Yang-Mills can be solved, and
then we will make the connection explicit.

The partition function of two-dimensional Yang-Mills can be written
as a sum over representations R of the gauge group, given a manifold
G of area A. Determining the saddle-point of this partition function
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is equivalent to determining the representation that has the highest
contribution to the partition function [g3].

Z6 (A) = Y_(dim R)?>2Ce~ ANV C(R)/2N (263)
R

where A is the 't Hooft coupling.

For the case of the group U(N), the sum goes over all Young tableaux,
which are characterized by the components of the highest weight. These
are integer numbers obeying the inequality

00> >Ny > .. 2NN > —00 (264)

and in terms of this set, we have

Zn i—2i+N+1) (265)
dimR:H<1— ”1_71) (266)
i>j

In the large-N limit the representations can be characterized by a
continuous function h, defined as

Nh(i/N)= —n;+i—N/2 (267)

and the partition function becomes

Zoo(A) = / Dh(x) exp(—N2Se[h])

AN
Sestlh //log|h ()] drdy + 225 / Pax— 2

Since the n; are monotonic, 11(x) obeys the inequality h(x) — h(y) >
x — y, which is equivalent to

ox

3, = P < 1. (269)

In terms of the density p(h), the saddle point of the partition func-
tion (B68) yields the following integral equation

AN =2P / % ds (270)
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Comparing (246) with (z79), it becomes clear that both systems obey
the same integral equation. Most importantly, both systems obey the
same constraint (26d), which is responsible for the existence of the
phase transition.

This correspondence maps the density of Young tablaux boxes h to
the density of Bethe roots k and the coupling AA? to the effective LL
coupling g, while the number of particles N is mapped to the degree
of the gauge group U(N). Furthermore, the phase transition at g = 7
in the Lieb-Liniger model appears as the confinement/deconfinement
phase transition in the gauge theory.

11.7 SUMMARY

In this chapter we have studied the ground state of the attractive Bose
gas using integrability techniques. We derived the integral equations
that provide the density of Bethe roots in the continuum limit. We
have shown that in the continuum limit, a constraint on the density
arises, and by solving the constrained integral equations we were able
to derive the root distribution in the ground state in the decoupling
limit: N — oo with cN fixed.

We have also shown a remarkable property of this system: in the
decoupling limit, we can map the ground state of the Bose gas to the
saddle point of 2D Yang-Mills on a sphere. We don’t know, however,
whether this correspondence has a deeper physical origin or whether
it is purely a mathematical coincidence. Nevertheless, it seems like a
promising avenue for future investigations, especially considering that
various relations between (supersymmetric) YM theory and integrable
systems have already been uncovered [88].
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In this thesis, we have dealt with the problem of how quantum col-
lective phenomena arises in both gravity and other bosonic theories.
The nature of collective phenomena is intrinsically non-perturbative:
these are regimes where the coupling constant « is not necessarily the
expansion parameter of the theory: the expansion parameter becomes
the collective coupling aN. When this expansion parameter becomes
1, we expect the many-body quantum phenomena to dominate over
the the perturbative effects of the theory. This is often associated to a
large-Ncriticality phenomena: the point in the coupling space where
the system undergoes a quantum phase transition.

A clear cut definition of an occupation number of quanta does not
arise immediately from classical solutions. In a standard perturba-
tive treatment, these solutions are treated as backgrounds over which
quantum fields propagate, and classical backgrounds are not treated
as quantum objects themselves. In the simplest attempt to define an oc-
cupation number, we saw how both black-holes and classicalons share
the criticality property: in both cases, the number of constituents scale
exactly as 1/«. These systems can be taken to by dynamically stuck in
a quantum phase transition. As a model for black-holes, we took the
attractive Bose gas in order to exploit the properties of the quantum
phase transition.

We exploited two non-perturbative methods to probe the quantum
phase transition of the attractive Bose gas.

The first method was based on a truncation of the Hamiltonian,
which reduces the system to a quantum mechanical problem of 3 in-
teracting levels. We observe that we can identify the lowest lying ex-
citations of the system as (pseuo-)goldstone bosons of a broken SU(2)
symmetry. The breaking of the SU(2) happens due to the fact that the
0-momentum mode acquires an expectation value in the ground state.
The gap of the excitations is given by the fact that there are explicit
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breaking terms, and right at the phase transition the explicit terms
vanish, up to 1/N corrections which correspond to the frequency of
these modes.

The fact that the modes have a tiny frequency has interesting con-
sequences for information processing and storage. To start, it is ex-
tremely cheap to store information on the system: typically, one pays
a price which is of the order of the inverse size of the system. Since
we have a tiny gap, exciting this mode becomes easy, even in a finite
sized system, and thus there is very little cost to store information.
In the strict decoupling limit, we observe that the cost of information
storage is 0 and also the number of states which can be occupied for
these given modes diverges. Furthermore, we see that this information
storage is not destabilize by the time-evolution of the system, which
means that these are long lived modes, having a lifetime which is pro-
portional to N - and become infinitely lived in the strict N inf limit.

These properties are very similar to what one observes in Black-
Hole physics. Also for black-holes, we observe that the entropy of a
classical system is infinite, and the system is long lived. By taking the
mass to be finite, we observe that for t « N, which corresponds to Page
time, information release for the black-hole should be maximal. This
leads us to believe that in fact the information processing properties
of black-holes can be shared by many other systems, which may even
be accessible in table-top experiments.

The second method we used was integrability. It is well-known that
this system can be solved through means of the Bethe ansatz. Using
the Bethe ansatz, we are able to transform the Hamiltonian eigenvalue
problem into a system of algebraic equations, which can be solved
either analytically or numerically. Although we know that the system
undergoes a large-N phase transition at «N = 1, there is no known
way to analytically solve the Bethe equations in this regime in order to
study this phase transition using integrability techniques.

By going to the continuum limit of the equations, we were able
to transform the system of algebraic equations into one constrained
integral equation. This integral equation, together with the constraint,
is very familiar from the study of Yang-Mills in 2D. It corresponds to
the saddle-point equation of this theory defined on a 2-sphere. It is
not a surprise that this system also undergoes a phase transition: the
Douglas-Kazakov (Gross-Witten) phase transition.

In Yang-Mills, this phase transition interpolates between the confine-
ment and deconfinement phases of the theory. Although there are no
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propagating degrees of freedom, this statement can be made since one
can still check the scaling of Wilson loops. Although we do not know
yet whether this correspondence goes beyond the mathematical state-
ment, we are optimistic, since recent discoveries seem to indicate that
there is an intimate general relationship between critical systems and
gauge theories defined on boundaries [g7].

It would be instructive to use this method to calculate the correlation
functions of the system, as well as the excitation spectrum. We have
made progress in both of these problems, and will include the results
in a future publication.

Many-body states also manifest themselves in a topological nature.
We know that the vacuum of Yang-Mills is infinitely degenerate, and
there are classical field configurations that interpolate between these
vacua at different times. These are called instantons, and play a very
important role in QCD.

In a quantum field theory, symmetries of the classical action need
not be symmetries of the full theory. In the case of massless fermions
coupled to Yang-Mills, the classically conserved chiral symmetry is
anomalous, and the divergence of the chiral anomaly is given by FF.
In the effective action, this corresponds to a shift of the 8 angle of the
QCD vacuum, thus making this angle unobservable.

When we have a mass gap, we no longer have the ability to rotate
the 6 angle away by a chiral rotation, thus promoting the 6 angle to an
observable which can be related to the topological susceptibility of the
vacuum. Whenever this quantity, given by the correlator (FF, FF), is
non-zero, physical quantities, such as the neutron dipole moment, are
dependent on the 6 angle. It is important to notice that FF is a total
derivative, and the only reason why one should expect physical conse-
quences from FF is due to the fact that the theory contains instantons
in the spectrum. Using current algebra methods, it is possible to relate
this quantity to the physical parameters of the theory, and that gives
us an upper bound 6 < 10~°.

The problem of explaining the smallness of this parameter is known
as the strong CP problem. The most embraced solution, the Peccei-
Quinn mechanism [], relies on introducing a new particle in the spec-
trum, whose expectation value corresponds to the value of 6. The
coupling to the FF dual term ensures that a mass gap for the axion
will be generated, thus forcing its vacuum expectation value to be o.

This problem can be reformulated in the language of 3-forms [r=z].
In this language, the axion is a 2-form which is eaten up by the QCD
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Chern Simons 3-form. The strong CP problem exists whenever this 3-
form is massless, since it then can propagate a long range correlation.
In this formulation of the PQ solution, the axion 2-form is eaten up in
order to generate a mass gap. This mass gap the “de-electrifies” the
vacuum, thus solving the strong CP problem.

In the presence of gravity, we can ask the following question: how
does GR affect the solution of the strong CP problem? If this is true,
then there should be non-perturbative gravitational effects that will
render the gravitational equivalent of FF observable. This in fact exists,
and it is the RR correlator, which corresponds to the divergence of the
gravitational Chern-Simons three-form.

In the first part of the paper, we provided the necessary conditions
that gravity must fulfil in order to spoil the axion solution to the strong
CP problem. More specifically, we have shown, using the language
of 3-forms, that there is only one possible way in which gravity can
couple to the axion in order to make 6ocp non-zero again: the gravita-
tional Chern-Simons 3-form must also mix with the axion.

In this situation, we have two 3-forms and only one extra 2-form to
provide a mass gap, so one combination of the QCD and gravitational
3-form will be massive, while the other remains massless. In order to
solve the problem, we need to make both combinations massive, thus
we need another particle that plays the role of an axion. In a chiral
symmetry, as we said, this issue is automatically solved, since we can
just rotate the 6 term away. Unfortunately there are no chiral quarks
that we know of. There are, however, very light particles which are
insensitive to QCD, only caring about gravity: these are the neutrinos.

We have shown that despite the fact that neutrinos are massive, as
long as the lightest neutrino mass is small enough compared to the
scale at which the gravitational non-perturbative effects take place, it
is able to screen the gravitational Chern-Simons 3-form.

Quantum mechanically, GR is the theory of a self-interacting spin-2
particle. The self-interactions of this degree of freedom - the graviton
- are a necessary condition in order to enforce diffeomorphism invari-
ance, which becomes a gauge redundancy of the quantum theory. It
is impossible to change the structure of the self-interactions without
introducing extra degree of freedom, and for that reason, the theory is
bound to be nonrenormalizable, with a perturbative unitarity breaking
scale of Mp ~ 109GeV.

The breakdown of perturbative unitarity is related to the process of
black-hole creation. Whenever we try to scatter particles with a cen-
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ter of mass momentum higher than the Planck scale, we necessarily
end up creating a black-hole. Based on this observation, it was conjec-
tured [25] that there are no microscopic degrees of freedom beyond the
Planck scale, and in reality black-holes are the true degrees of freedom
of the theory in the deep ultraviolet.

This statement has very puzzling consequences, since it implies a
departure from the Wilsonian paradigm of quantum field theory. In
the Wilsonian paradigm, whenever we reach the unitarity breaking
scale of the theory, there is the appearance of new microscopic, weakly
coupled degrees of freedom that restore the unitarity of the theory.
These degrees of freedom need not be elementary degrees of freedom
of the theory, but they should be able to be treated as elementary
in the scale at which they set it. The UV-completion of a Wilsonian
theory is then equivalent of “opening up” the interaction vertices. This
corresponds to replacing coupling constants by propagators of heavier
degrees of freedom with some massive pole.

In gravity, this procedure fails for two reasons: the attempt to change
the interaction vertices inevitably introduce new, possibly dangerous,
degrees of freedom which would be observed a low energies. The
second source of problems is the fact that in gravity, high energy de-
grees of freedom are no longer confined to short distances: black-holes
provide a UV - IR correspondence, since heavy black-holes are large!

If black-holes are indeed the UV degrees of freedom of the theory, it
is impossible to probe distances shorter than the Planck length. Any
attempt to probe these scales will inevitably create a mean field con-
figuration which is much larger than the Planck scale. This motivated
the proposal that in fact, gravity is not UV-completed by new weakly
coupled degrees of freedom, it is self-complete thanks to the fact that
black-holes make hide the microscopic structure of the theory. The the-
ory is UV-completed by Classicalization: high energy scattering leads
to the creation of large mean-field configurations.

One can extend this reasoning and ask whether it is possible that
this behaviour is reproduced in other bosonic theories. In the second
part of this thesis, we exploited the properties that these theories must
tulfil in order to have the possibility to be UV-completed by classical-
ization. More specifically, the sign of the quartic derivative coupling
encodes information about the path which the theory will following
in the UV.

While for the positive sign we can treat this theory as an Effective
Field Theory of, say, a linear sigma model, for the negative sign there
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are obstructions to UV-completing this theory in the Wilsonian way. It
is possible to show that any theory that contains a heavy massive pole
that is integrated out will lead to a positive sign: we are show this
using spectral representation, thus avoiding the regularization issues
in dealing with the analyticity analysis of the S-Matrix [33].

Furthermore, the theory with the negative sign allows for the prop-
agation of superluminal modes. If the theory is UV-completed by
weakly coupled physics, then it would be possible to use these modes
to create closed timelike curves and thus violate causality. In a classi-
calizing theory, however, the large background remains at high ener-
gies, and thus the Lorentz group is no longer a symmetry of the theory,
and we are not able to have boosted observers in the UV: boosting will
create large mean-fields.

The connection between the negative sign and classicalization can
be made explicit by noticing that there are only continuous classical
tield configurations for localized sources in the theory in which the
sign is negative. That means that localizing a source will be followed
by the creation of this large mean-field, whereas in the positive sign
there is no possible field configuration that can be formed around this
source: the theory begs for extra degrees of freedom.
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