
Katharina Morik, Peter Marwedel (Eds.)
Machine Learning under Resource Constraints · Fundamentals

Also of interest
Volume 2
Machine Learning under Resource Constraints.
Discovery in Physics
Morik, Rhode (Eds.), 2023
ISBN 978-3-11-078595-1, e-ISBN 978-3-11-078596-8

Volume 3
Machine Learning under Resource Constraints.
Applications
Morik, Rahnenführer, Wietfeld (Eds.), 2023
ISBN 978-3-11-078597-5, e-ISBN 978-3-11-078598-2

Machine Learning
under Resource
Constraints
Final Report of CRC 876

Editor in Chief
Katharina Morik

Volume 1/3

Machine Learning
under Resource
Constraints
Fundamentals

Edited by
Katharina Morik and Peter Marwedel

Editors
Prof. Dr. Katharina Morik
TU Dortmund University
Department of Computer Sciences
Chair for Artificial Intelligence
Computer Science 8
Otto-Hahn-Str. 12
44221 Dortmund
Germany

Prof. Dr. Peter Marwedel
TU Dortmund University
Computer Science 12
Otto-Hahn-Str. 16
44227 Dortmund
Germany

ISBN 978-3-11-078593-7
e-ISBN (PDF) 978-3-11-078594-4
e-ISBN (EPUB) 978-3-11-078612-5
DOI https://doi.org/10.1515/9783110785944

This work is licensed under the Creative Commons Attribution 4.0 International License. For details
go to https://creativecommons.org/licenses/by/4.0/.

Creative Commons license terms for re-use do not apply to any content (such as graphs, figures,
photos, excerpts, etc.) not original to the Open Access publication and further permission may be
required from the rights holder. The obligation to research and clear permission lies solely with the
party re-using the material.

Library of Congress Control Number: 2022949268

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the Internet at http://dnb.dnb.de.

© 2023 with the author(s), editing © 2023 Katharina Morik and Peter Marwedel,
published by Walter de Gruyter GmbH, Berlin/Boston
This book is published open access at www.degruyter.com.

Cover image: Collaborative Research Center 876
Printing and binding: CPI books GmbH, Leck

www.degruyter.com

Contents
Preface| XI

1 Introduction
Katharina Morik, Jian-Jia Chen | 1

1.1 Embedded Systems and Sustainability| 2
1.2 The Energy Consumption of Machine Learning| 4
1.3 Memory Demands of Machine Learning| 9
1.4 Structure of this Book| 12

2 Data Gathering and Resource Measuring| 15
2.1 Declarative Stream-Based Acquisition and Processing of OS Data with

kCQL
Christoph Borchert, Jochen Streicher, Alexander Lochmann,
Olaf Spinczyk | 16

2.2 PhyNetLab Test Bed
Mojtaba Masoudinejad, Markus Buschhoff | 34

2.3 Zero-Power/Low-Power Sensing
Andres Gomez, Lars Suter, Simon Mayer | 46

3 Streaming Data, Small Devices| 71
3.1 Summary Extraction from Streams

Sebastian Buschjäger, Katharina Morik | 73
3.2 Coresets and Sketches for Regression Problems on Data Streams and

Distributed Data
Alexander Munteanu| 85

4 Structured Data| 99
4.1 Spatio-Temporal Random Fields

Nico Piatkowski, Katharina Morik | 100
4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs

Nils Kriege, Christopher Morris| 116
4.3 Deep Graph Representation Learning

Matthias Fey, Frank Weichert | 129

VIII | Contents

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared
Memory
Nico Bertram, Jonas Ellert, Johannes Fischer | 144

4.5 Millions of Formulas
Lukas Pfahler | 160

5 Cluster Analysis| 179
5.1 Sparse Partitioning Around Medoids

Lars Lenssen, Erich Schubert | 182
5.2 Clustering of Polygonal Curves and Time Series

Amer Krivošija| 197
5.3 Data Aggregation for Hierarchical Clustering

Erich Schubert, Andreas Lang| 215
5.4 Matrix Factorization with Binary Constraints

Sibylle Hess| 227

6 Hardware-Aware Execution| 249
6.1 FPGA-Based Backpropagation Engine for Feed-Forward Neural Networks

Wayne Luk, Ce Guo| 250
6.2 Processor-Specific Code Transformation

Henning Funke, Jens Teubner | 263
6.3 Extreme Multicore Classification

Erik Schultheis, Rohit Babbar | 272
6.4 Optimization of ML on Modern Multicore Systems

Helena Kotthaus, Peter Marwedel| 285

7 Memory Awareness| 305
7.1 Efficient Memory Footprint Reduction

Helena Kotthaus, Peter Marwedel| 306
7.2 Machine Learning Based on Emerging Memories

Mikail Yayla, Sebastian Buschjäger, Hussam Amrouch| 325
7.3 Cache-Friendly Execution of Tree Ensembles

Sebastian Buschjäger, Kuan-Hsun Chen| 338

8 Communication Awareness| 359
8.1 Timing-Predictable Learning and Multiprocessor Synchronization

Kuan-Hsun Chen, Junjie Shi| 360

Contents | IX

8.2 Communication Architecture for Heterogeneous Hardware
Henning Funke, Jens Teubner | 379

9 Energy Awareness| 405
9.1 Integer Exponential Families

Nico Piatkowski| 406
9.2 Power Consumption Analysis and Uplink Transmission Power

Robert Falkenberg| 423

Bibliography| 437

Index| 485

List of Contributors| 489

Preface
Machine learning has been part of Artificial Intelligence since its inception. Only a
perfect being need not learn; all others, be they humans or machines, need to learn in
order to enhance their capabilities. In the 1980s, learning from examples and modeling
human learning strategies have been investigated in concert [490]. The formal statisti-
cal basis of many learning methods was put forward later and is still an integral part of
machine learning [298]. Neural networks have always been in the toolbox of methods.
Integrating all the pre-processing, exploitation of kernel functions, and transformation
steps of a machine-learning process into the architecture of a deep neural network
increased the performance of this model type considerably [265]. Modern machine
learning is challenged by the amount of data and by the demand of real-time inference.
This has led recently to an interest in computing architectures and modern proces-
sors. For many years, the machine-learning research could take the von Neumann
architecture for granted. All algorithms were designed for the classical CPU. Issues
of implementation on a particular architecture were ignored. This is no longer possi-
ble. The time for independently investigating machine learning and computational
architecture is over.

Computing architecture has experienced a similarly rampant development from
mainframe or personal computers in the last century to very large compute clusters and
ubiquitous computing of embedded systems in the Internet of Things. Cyber-physical
systems’ sensors produce a huge amount of streaming data that need to be stored and
analyzed. Their actuators need to react in real-time. This establishes a close connection
with machine learning. Cyber-physical systems and systems in the Internet of Things
consist of diverse components, heterogeneous both in hard- and software [470]. Modern
multi-core systems, graphic processors, memory technologies, and hardware-software
codesign offer opportunities for better implementations of machine-learning models.

Machine learning and embedded systems together now form a field of research
that tackles leading edge problems in machine learning, algorithm engineering, and
embedded systems. Machine learning today needs to make the resource demands of
learning and inference meet the resource constraints of used computer architecture
and platforms. A large variety of algorithms for the same learning method and diverse
implementations of an algorithm for particular computing architectures optimize learn-
ing with respect to resource efficiency while keeping some guarantees of accuracy. To
give just one example: the trade-off between a decreased energy consumption and an
increased error rate needs to be theoretically shown for training a model and for model
inference. Pruning and quantization are ways of reducing the resource requirements
by either compressing or approximating the model. In addition to memory and energy
consumption, timeliness is an important issue, since many embedded systems are
integrated into large products that interact with the physical world. If the results are
delivered too late, they may be useless. As a result, real-time guarantees are needed for

This work is licensed under theOpen Access. © 2023 the author(s), published by De Gruyter.
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-203

XII | Preface

such systems. To efficiently utilize the available resources, e.g., processing power, mem-
ory, and accelerators, with respect to response time, energy consumption, and power
dissipation, different scheduling algorithms and resource management strategies need
to be developed.

We have dedicated three books to this emerging field of research. They present
the results of 12 years of research in 12 projects that were pursued at the TU Dortmund
University in the collaborative research center CRC 876 (“Providing Information by
Resource Constrained Data Analysis”), funded by the Deutsche Forschungsgemein-
schaft (DFG). A collaborative research center is the most selective type of DFG funding.
Proposals are submitted in a two-step procedure. The proposals outline a perspective
of 12 years in a composition of projects that together shape a research field with a large
impact. If this first step is accepted, a detailed proposal for the first phase is submitted
and carefully reviewed. After the first phase, its results together with a detailed proposal
for the second phase are reviewed and may result in ending the CRC. Otherwise, the
second phase starts and at its end, the results and the proposal for the third phase are
submitted. At most, three phases are funded. A CRC is a strategic measure of German
research funding. The CRC 876 boosted the careers of project leaders. Overall, CRC 876
had 36 project leaders, only 8 of them have been members from the beginning to the
end. Hence, career opportunities could be offered to additional colleagues. The CRC
876 with its graduate school boosted the career of Ph.D. students: until 2021, more than
80 dissertations were successfully completed. Uncounted Bachelor and Master theses
have been supervised. From this wealth we draw the content of the three books. In
addition, guest authors contribute invited chapters.
– The first book establishes the foundations of this new field. It goes through all the

steps from the acquisition of data, their summary, and clustering to the different
aspects of resource-aware learning.
Several learning methods are inspected with respect to their resource requirements
and how to enhance their scalability on diverse computing architectures: deep
neural networks, graph neural networks, tree ensembles, matrix factorization, and
probabilistic graphical models.

– The second book is about machine learning for astroparticle and particle physics.
Instruments such as the Large Hadron Collider or Cherenkov telescopes or the
IceCube gather petabytes of data within which the relevant ones need to be de-
tected, often in real-time, and be stored for further analysis. This builds upon the
fundamental issues of the first book andmoves into the pipeline of data acquisition,
storage, and access, feature extraction, and learning. Here, machine learning is
part of the probabilistic rationalism of epistemology. The physical knowledge is
encoded in the Monte Carlo simulation and annotates the observations recorded
by the instruments. The interpretation of learned models is to enhance physical
knowledge. This yields a circle of theory development that is supported bymachine
learning.

Preface | XIII

– The third book describes how resource-aware machine-learning methods solve
real-world problems in the areas of medicine, industry 4.0, traffic and smart cities,
and mission-critical communication.

Each book is self-contained. Together they offer a comprehensive study of machine
learning and embedded systems becoming real-time systems, saving energy and of-
fering solutions to other fields. They represent an overview of the state of the art in
studying the mutual dependence of machine learning and embedded system design.
The presentation of this overview has been made feasible by an early vision of the
importance of linking the two domains. We are enthusiastic about the fact that the
vision underlying the creation of CRC 876 has become amain line of researchworldwide.
An early start has allowed us to study the links intensively. Nowwewould like to entrust
to novices and masters alike what we have learned along the long journey of CRC 876,
hoping that they might be inspired to work implementations of machine learning and
embedded systems.

Enjoy!
Katharina Morik
Peter Marwedel

1 Introduction
Katharina Morik

Jian-Jia Chen

Abstract: An enormous amount of data is constantly being produced around the world,
both in the form of large volume as in that of large velocity. Turning the data into
information requires many steps of data analysis: methods for filtering and cleaning
the data, joining heterogeneous sources, extracting and selecting features, summa-
rizing and aggregating the data, learning predictions, estimating the uncertainties
of the learned model and monitoring the model fitness in its deployment. All these
processes need to scale up, whether the long analysis workflows are integrated into
a deep learning architecture, or not. The data ecosystems no longer allow us to take
von Neumann architecture for granted where only compilers or application systems
address hardware issues. Specialized architectures for accelerating machine learning
have been developed, and machine learning algorithms have been tailored to novel
computer architectures. Both trends are aiming at efficiency, in particular the efficient
use of given resources: the real time of execution, the amount of energy, memory and
communication. In the struggle for sustainability resource restrictions are of utmost im-
portance. Energy consumption in particular receives considerable attention. We believe
that resource efficiency cannot be achieved by better machine learning algorithms or
by better hardware architectures alone. It demands the smart combination of hardware
and algorithms.

This chapter introduces the fundamentals of machine learning under resource con-
straints. Resource-aware machine learning is a new and important research field. It is
motivated by the following three issues.
– The resource constraints, regarding energy consumption, memory requirements,

real-time processing, and communication, are to be inspected and investigated
under a large diversity of scientific viewpoints.

– The trend towards the Internet of Things (IoT) and the many data producing de-
vices like cyber-physical systems or embedded systems pose a challenge to data
processing. It has led to the programming paradigms of distributed analysis and
federated analysis, with data summaries or compression as hot topics.

– The integration of machine learning and modern hardware has started to raise
international awareness and research efforts.

We want to describe the new field and highlight the contributions of the Collaborative
Research Center (CRC) 876 to creating it. The topical overview of machine learning

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-001

2 | 1 Introduction

under resource constraints is divided into three sections. First, we discuss research
on embedded systems and sustainability in Section 1.1. Then, we focus on machine
learning and its energy consumption (Section 1.2). Section 1.3 considers approaches to
reducing another important resource: the memory requirements of machine learning.
Finally, in Section 1.4, we give an overview of the chapters of this book, which follow
the steps of the data analysis process (Section 1.4).

1.1 Embedded Systems and Sustainability

Efficient and high-speed computing has always played a central role in the innovation
of information and communication technology (ICT). It is rooted in thewidely circulated
document “First Draft of a Report on EDVAC” (Electronic Discrete Variable Automatic
Computer) by John von Neumann [527]. Over decades, the von Neumann architecture,
which consists of a processor unit, a control unit, a memory unit, and input/output
peripherals, has been used to efficiently execute programs.

Although ICT has enabled many applications with a high impact on human society,
more and more electricity is consumed worldwide. The growth of ICT also has a global
impact on the sustainability of the electricity andCO2 footprintworldwide. It is projected
that by 2030 ICT will account for 7% and 20% of global demand under the optimistic
and expected estimated scenarios, respectively [18]. Hence, hardware and software
researchers and engineers cannot simply ignore energy efficiencywhen evaluating their
systems and workloads. With Moore’s law and Dennard scaling, the improvement of
clock frequency of central processing units (CPUs) continued over decades until roughly
2005–2007. Nowadays, the transistor counts in integrated circuits are still growing, but
the frequency improvement has ceased as power consumption and thermal dissipation
have become the scaling bottleneck.

The discontinuation of Dennard scaling has resulted in the boosting of application-
specific hardware accelerators inmodern computers to perform efficient andhigh-speed
computing.WhenGraphics ProcessingUnits (GPUs)were introduced (in 1999byNvidia),
they were only designed to accelerate the rendering of graphics. Today, application-
specific GPUs have become general-purpose vector processors. For machine learning
algorithms, specific accelerators include Google’s Tensor Processing Units (TPUs) and
Apple’s Neural Engines. Until the late 1980s, information processing could only be
performed on large mainframe computers. Later, the innovation of system integration
and technologyminiaturization enabled embedded systems, i.e., informationprocessing
embedded in enclosing products.

Nowadays, embedded systems are pervasive in human society and are widely
used in cars, trains, planes, telecommunication, fabrication, ambient intelligence,
and decision making. Such embedded systems typically interact with the physical
environment to collect information and/or control/influence the physical environment.
They share certain common characteristics and have to adhere to certain resource

1.1 Embedded Systems and Sustainability | 3

constraints, independent of the application area. Embedded systems are the core of
many innovations, such as cyber-physical systems (CPS), Internet of Things (IoT), and
Industry 4.0.

The pervasiveness of embedded systems and sensors contributes to the big data
computing paradigm, in which data is collected and processed in the cloud. However,
transferring data to the cloud consumes time and energy and may not be feasible due
to privacy concerns. To address such issues, edge computing, in which embedded edge-
nodes process their data locally and potentially share an abstracted model among each
other, is an emerging computing paradigm. Such a paradigm shift is also motivated
by privacy and security concerns and pushed by governmental policies, such as the
California Consumer Privacy Act and the European Union’s General Data Protection
Regulation, GDPR,which disallow sending/storing sensitive user data to central servers.
For example, Gaia-X is an initiative to establish an ecosystem for the next generation of
data infrastructure complied with GDPR.

Such a paradigm shift is also driven by the advances of IoT and embedded devices.
The annual DataSphere and StorageSphere forecasts published by International Data
Corporation (IDC) in 2021 show that “IoTdata (not including video surveillance cameras)
is the fastest-growing data segment, followed by social media.”¹ According to Statista,²
the number of IoT devices will reach 25.44 billion in 2030.

Embedded systems and IoT devices do not just imply that the computation power
is insufficient. Furthermore, they are typically subject to stringent resource constraints
due to the design optimization for resource efficiency without sacrificing dependability.
Specifically, their energy consumption needs to be particularly small. One study [282]
analyzes the tradeoff between performance, measured as MobileNet v1 throughput, and
the carbon footprint of mobile devices from Google, Huawei and Apple. They concluded
that “from 2017 to 2019, software and hardware optimizations primarily focused on
maximizing performance, overlooking the growth trend of carbon footprint.” [282]

Under resource constraints, memory can be critical both for the code size and the
run-time stack size since larger on-chip memory capacity generally leads to higher cost
and higher energy/power consumption. Nowadays, the speed of off-chip memories is
much slower than that of processors, resulting in thememory wall problem. In response,
memory hierarchy has been developed in the last decades to enable the illusion that
a large memory capacity can be created without significantly losing efficiency. Under
such a scheme, modern embedded processors may have either a hardware-managed
cache or a software-managed scratchpad memory (SPM), which can be utilized for
performance and energy improvement by exploiting temporal and spatial locality.

Under von Neumann architecture, data movement between the physically-
separating processing and memory units can be a performance bottleneck for both

1 https://www.idc.com/getdoc.jsp?containerId=prUS47560321.
2 https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/.

https://www.statista.com/statistics/1183457/iot-connected-devices-worldwide/

4 | 1 Introduction

energy consumption and performance. Such a bottleneck can be avoided by consid-
ering hardware, that offers processing capabilities so that the data resides without
the need to move it. This includes Logic-in-Memory (LiM) and Processing-in-Memory
(PiM). LiM can be achieved by realizing Boolean logic (e.g., XNOR, NAND, etc.) using
both conventional CMOS [8] and emerging beyond-CMOS [535] technologies. PiM can
be achieved by exploiting the memory as a crossbar array for efficient vector-matrix
operations. For example, TSMC has recently demonstrated an application-specific
integrated circuit (ASIC) chip at the 22 nm node, which offers an SRAM-based full-
precision PiM macro [138]. In January 2022, Samsung published a crossbar array of
spin-transfer-torque magnetoresistive random-access memory (MRAM) for in-memory
computing [352].³

In summary, edge computing is considered a key pillar to support artificial intelli-
gence andmachine learning in pushing our societies to an unprecedented technological
revolution. In view of the above discussions, embedded system designers must un-
derstand how machine learning algorithms work and machine learning algorithm
designers must understand how the underlying hardware can be efficiently utilized for
executing machine learning algorithms.

In this book, we inspect cooperative work that aims at resource efficiency for a
sustainable future. Focusing on embedded systems, the contributions in Chapter 6
discuss hardware-aware machine learning, including learning on FPGAs in Section 6.1,
optimizing the learning on multicore systems in Sections 6.4 and 6.3 and processor-
specific transformations in Section 6.2. Furthermore, memory awareness is investigated
in Chapter 7, covering memory footprint reduction in Section 7.1, machine learning
basedonemergingmemories (potentially beyond the classic vonNeumannarchitecture)
in Section 7.2, and cache-friendly machine learning in Section 7.3.

When devices are connected, communication, synchronization, and offloading are
essential. With this in mind, effective synchronization with resource sharing, communi-
cation with potential failures, and probabilistic timing information are investigated in
Section 8.1. Section 8.2 considers bandwidth limitations of different execution models
and coprocessor-accelerated optimization.

The next sections focus onmachine learning and introduce the Chapters on energy-
and memory-saving machine learning methods.

1.2 The Energy Consumption of Machine Learning

Machine learning has always been a central part of Artificial Intelligence (AI). Already
Allen Turing argued that programming a computer cannot scale up to the performance

3 https://news.samsung.com/global/samsung-demonstrates-the-worlds-first-mram-based-in-memory-
computing.

https://news.samsung.com/global/samsung-demonstrates-the-worlds-first-mram-based-in-memory-computing.
https://news.samsung.com/global/samsung-demonstrates-the-worlds-first-mram-based-in-memory-computing.

1.2 The Energy Consumption of Machine Learning | 5

that a learning machine can achieve [673]. According to the AI index of Stanford
University in 2022, publications in pattern recognition andmachine learning havemore
than doubled since 2015. Other areas strongly influenced by deep learning, such as
computer vision, data mining, and natural language processing have seen smaller
increases.⁴

The classes of algorithms in machine learning are too many to be characterized,
here. The field of machine learning covers a wide range. A bird’s-eye view sees different
approaches: geometric (e.g., decision trees, support vector machines), probabilistic
(e.g., probabilistic graphical models, Bayesian models), combinatoric (k-means, fre-
quent sets), logic (e.g., inductive logic programming), reinforcement models (e.g.,
bandit models), and neural networks (deep learning).

At a more technical level, we see learning tasks that specify the formal basis of
machine learning methods, defining what is learned (classification, regression, proba-
bility density, cluster model), from what it is learned (real-valued vectors, time series,
categorical data, count data), under which constraints (quality criteria, streaming/on-
line, distributed). As is common in statistics, the term “model” is used not only for the
class of possible learning results given the types of input, output and quality criteria,
but also for a particular instance, the learning result.

Combining approaches and learning tasks,we see the areas ofmachine learning. All
of them are growing. Several algorithms have been developed within these areas. Many
of them use algorithms for underlying inner procedures or compose learning methods
using building blocks such as kernel functions, matrix factorization, optimization,
regularization, or sampling. Investigating machine learning at all levels, from the
models to hardware architectures, is the particular profile of the research that has been
undertaken by the Collaborative Research Center 876 (CRC 876).

Today, resource restrictions are of utmost importance. Energy consumption in
particular receives considerable attention. Machine learning is put to good use in
order to save energy for sustainability. Google considers the application of DeepMind’s
machine learning to its data centers to be its most important application. The energy
used for cooling could be reduced by up to 40% through machine learning.⁵Machine
learning algorithms themselves are enhanced for low energy demands. One of the
invited talks at the International Conference on Machine learning (ICML) 2018—Max
Welling’s “Intelligence per Kilowatt-hour” supports our approach to joining embedded
systems and machine learning research. Its author said, “The next battleground in
AI might well be a race for the most energy efficient combination of hardware and
algorithms.” CRC 876 has contributed in exactly to this race. The results of its work
are reported here. In the following, we refer to the approaches described in this book
concerning machine learning and the resources of energy and memory.

4 aiindex.stanford.edu.
5 https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/.

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

6 | 1 Introduction

In general, green computing and sustainable computing have received considerable
interest. On the one hand, machine learning decreases the ecological footprint of
processes in many applications (see, e.g., [418]). On the other hand, machine learning
itself might use tremendous amounts of energy. This is particularly true for big language
models such as GPT-3. A careful analysis by Patterson et al. [556] compares the CO2
footprint of different natural language learners. The relation of the run-time of training,
the number of processors and their average power consumption together with the
power usage efficiency of the particular computing center where the machine learning
algorithm is executed gives an estimated kWh. This, in turn, is used to calculate tons
of CO2 equivalents: tCO2e = kWh × kgCO2e per kWh : 1000, where CO2e accounts
for carbon dioxide and other greenhouse gases, as opposed to CO2 which only covers
dioxide. GPT-3 uses 552.1 t of CO2 for training its 175 billion parameters, when using the
V100 processor. The mere energy consumption is 1287 mWh for its 14.8 days of training.
In general, the ecological footprint of machine learning should be reported [305]. Tools
for estimating the energy consumption of particular machine learning algorithms have
been implemented for regular computing clusters [650].

In contrast to the research efforts regarding deep learning on large data-centers,
investigating the energy consumption of small devices has not yet received enough
attention. However, as we have shown above, the Internet of Things (IoT) connects
billions of small devices and produces extremely large amounts of data. Their energy
consumptionneeds to be particularly small. For an embedded system that is not plugged
into the grid, the availability of energy is a critical constraint for its lifetime. Even for an
embedded system plugged into the grid, the cost of energy due to increased computing
performance canbe critical. Unnecessary energy consumption should also be avoided to
extend the lifetime of the embedded system. The power awareness and energy efficiency
of information processing on devices of the IoT are important for sustainable computing.
In this book, we focus primarily on small devices.

1.2.1 Measuring Energy Consumption

Investigating energy efficiency requires measuring energy consumption. Measuring
the true energy consumption directly is difficult because of noise sampling and the
need to use minimal resources for the sensing itself. The hardware-integrated sensing
instruments are often not precise enough for determining the energy consumed by
software running on an embedded system. An easy-to-use system for direct energy
sensing and an energy model for ARM processors based on linear regression have been
developed [105, 106]. Extremely restricted are the ultra-low-power devices that are used
in logistics, e.g., devices attached to a container. Based on reliable measurements,
the energy harvesting of devices with photovoltaic elements can be realized such that
the operating time is enhanced. Section 2.2 of this book shows the PhyNet testbed for
energy neutral sensor networks. A batteryless system, its indoor solar harvesting, and

1.2 The Energy Consumption of Machine Learning | 7

energy measurements are presented in Section 2.3. There, even the implementation of
a lightweight deep learning algorithm is included. Predicting the power consumption
in a communication network is particularly challenging. Section 9.2 presents methods
for modeling power consumption of embedded devices for different wireless commu-
nication technologies including a machine learning-based method for estimating the
transmit power from the available performance indicators, like strength and quality of
the received signal.

1.2.2 Different Processors

The energy consumption of different processors varies greatly. Using the example of
Quadratic Unconstrained Binary Optimization (QUBO), implemented by an evolution-
ary algorithm (EA), showed a stable order of magnitude of energy consumption over
diverse data-sets and parameter settings [510]. We indicate the numbers here because,
in general, such information needs to be given in scientific papers on machine learning.
Moreover, the Watt figures found in the QUBO experiments show the typical pattern of
magnitudes:
– Field Programmable Gate Arrays (FPGAs), 100W,
– CPU (Intel Core i7-9700K)101W,
– GPU (Nvidia GEFORCE RTX 2080 Ti)102W,
– QA (Quantum Annealer, IBM)104W.

Our compute cluster consumes on average 6.25 kWh, or in the order of magnitude of
103W. Of course, the particular energy consumption depends also on the number of
variables (here: 1024) and the parameters of the EA, e.g. the number of children in
each generation. However, the advantage of the FPGA can be estimated already on
the basis of these numbers. Since the compute cluster consumes 103 times as much
energy as does the FPGA, it would need to solve the learning problem in less time—here
in the order of 10−9 seconds—to use about the same energy, and this is not realistic.
Another example studies different implementations of applying a learned Decision
Tree (DT) model [110]. The classification is implemented in two different ways. One
implements the algorithm as is, the other unfolds the tree into if-else structures, aka
compilation. Energy consumption is then measured for FPGA (Xilinx Artix-7 Z-7020
FPGA with 53 200 lookup tables, 106 400 Flip-Flops (FF) in total combined with 4.9MB
block ram and 220 DSP units), and an ARM processor (Cortex-A9 with 666MHz, 512MB
DDR RAM and 512 kB cache). Each learned tree contains an average of 1349 nodes and
roughly 675 different paths from the root node to a leaf node. Throughput is measured
as elements per millisecond, energy consumption as nanoJoule per element. The native
implementation on FPGA uses 0.008W or 6.84 nanoJoule per element to classify, on the
ARM processor 1.53W or 105.5 nanoJoule per element to classify. The unfolded tree uses

8 | 1 Introduction

on FPGA 0.068W or 45.95 nanoJoule per element to classify, and on the ARM processor
1.53W or 52.76 nanoJoule per element to classify.

This general ranking of the order of energy consumption makes FPGAs attractive
for machine learning. In this book, Section 6.1 investigates reconfigurable multilayer
perceptron training on FPGAs and compares it with the PyTorch implementation. Fur-
thermore, Section 6.1 explores FPGA implementation of a Multilayer Perceptron (MLP),
a fundamental neural network structure for machine learning. FPGAs are especially
advantageous for deep learning because they support customized data types, where
GPUs support only a limited number of data types.

1.2.3 Reduced Run-Time and Real-time Processing

Many approaches to reducing the energy consumption of machine learning reduce the
run-time of a learningmethod.We take into account the execution of learning programs
and learned models not only regarding time complexity, but also regarding real-time
ability. Since many embedded systems are integrated into large products that interact
with the physical world, timeliness is an important issue. If the results are delivered
too late, they may have become useless. The computing of summaries “on the fly”, as
presented in Section 3.1, is designed to save memory and energy. In general, algorithms
for data streams require fast computing and memory reduction, as we discuss below.

The link between energy andmemory reduction also becomes clear in the approach
to graph deep learning in Section 4.3, where a general message passing is scaled up
for arbitrarily large graphs. The remarkable speed-up of clustering run-time as demon-
strated in Section 5.1 certainly saves energy as well. Exploiting parallelism, even for
non-uniformworkloads, is the key in Section 6.2 to reducing the run-time and increasing
the data throughput for database query execution. Section 6.3 describes extreme multi-
core computation, which exploits the independence of training for several thousand
labels. It trains each class versus all others using thousands of cores, each one learning
to predict one of the many classes. Along with the number of cores, the hardware-aware
parallel training solvers speed up until a saturation is reached and the speedup scales
only sublinearly.

Reducing run-time through an adaptive scheduling brings together the multi-core
computing architecture and machine learning. Section 6.4 examines the optimization
of the execution of diverse machine learning algorithms for parallel execution on a
multi-core architecture. The optimization itself also uses machine learning, namely, the
Bayesian model-based optimization . The Resource-aware Model Based Optimization
(RAMBO) framework saves energy through the run-time reduction.

1.3 Memory Demands of Machine Learning | 9

1.2.4 Minimizing Energy Consumption of Machine Learning Processes

If minimizing the energy of machine learning processes builds upon the analysis of
the algorithms, statistical guarantees can be given. Exponential families are a model of
learning that covers many learning tasks, e.g., the estimation of probability density
as it is used by, say, topic models, or the prediction of the maximally likely state as
it is used by naive Bayes or conditional random fields. A careful analysis of learning
modelsmay lead to running of very complexmachine learning tasks on very limited and
even ultra-low energy devices. This book offers such an approach in Section 9.1, which
describes the Integer Markov Random Fields (IntMRF) along with their theoretical
foundations. Note that it is the underlying model class that is restricted to the integers;
it is not just a restriction of the state space to integers. Here, the state space may be a
random discrete space without any additional constraints. The reduced run-time and
energy savings are due to the cheaper operations. The novel bit-length propagation
algorithm (BL-Prop) allows computing using integers only, i.e. real numbers are not
quantized afterwards, but all the learning processing uses only integers. In addition to
previous work ([567]), Section 9.1 introduces the novel numerical optimization method
IntGD for convex objective functions. It is based on an accelerated proximal algorithm
for non-smooth and non-convex penalty terms. For integer gradients computed via
BL-Prop, IntGD is guaranteed to deliver a pure integer learning procedure in which the
final parameter vector as well as all intermediate results are integers. Integer Markov
random fields are almost as expressible as real-valued ones are, but can be executed
on an ultra-low-power device that does not offer floating-point operations [570].

As we have seen, there are multiple ways to reduce the energy consumption of
machine learning: developing algorithms for more energy efficient processors (FPGAs),
tailoring machine learning algorithms, optimizing their execution for a reduced run-
time, and even developing novel learning algorithms designed to save energy.

1.3 Memory Demands of Machine Learning

1.3.1 Deep Learning

Deep learning challenges the GPU memory due to its many hyperparameters, tensor
alignment, particular convolution algorithms, and operator scheduling. In a detailed
analysis of 4960 failed deep learning runs, Yanjie Gao and colleagues found 8.8% of
them were caused by the exhaustion of GPU memory [242]. They then developed an
estimate for the GPU memory needs of deep learning models. In this book, the memory
demands of Graph Neural Networks (GNNs) are part of the work that is presented in
Sections 4.2 and 4.3. The usual mini-batch training becomes difficult in GNNs because
of the interdependency of neighboring nodes. The exponential growth of the graphs
has been shown in [455], which proposes sampling of edges. A more general solution

10 | 1 Introduction

for diverse GNN architecture is presented in Section 4.3. The novel GNN AutoScale
framework of message passing succeeds in making GNN applicable even in a streaming
setting, since for a single epoch and layer, each edge is processed just once.

The quantization of deep learning results in binary values of weights and activa-
tions, reducing the memory consumption drastically [325]. Binarized Neural Networks
(BNN) offer more lightweight processing. Combining machine learning and computer
architecture work has led to BNN on FPGAs for fast inference on very large streaming
data from astroparticle physics [112]. A further step towards the close interplay of algo-
rithms and hardware is to take into account modern memory technologies. Again, we
see the close relationship between energy consumption andmemory architecture in the
case of approximate or non-volatile memories that reduce the energy consumption but
increase the bit error rate. For BNNs, bit flips in the weights or the activation values of
the network decrease the accuracy of the model. How many bit errors can be tolerated
at the hidden layers? The idea of max margin optimization, developed for Support
Vector Machines (SVM) [680], inspired a formulation of a bit error tolerance metric that
could be inserted into the BNN training [113]. Machine learning anticipates hardware
errors and thus produces a robust learned model for the energy-saving computing
architecture. Section 7.2 explains this approach of reducing the bit error rate within the
training of a BNN in more detail.

1.3.2 Summaries and Clustering

Data summary or aggregation is necessary in order to learn from distributed sensor
streams. Sketching or sampling has been theoretically investigated for clustering data
streams [70, 103]. Coresets and sketches summarize data such that they can be analyzed
by any learning algorithm and they can deliver approximately the same result as would
result from training on the full dataset [516]. Section 3.2 analyzes coresets and sketches
for distributed and streaming data. The analysis covers approaches to Bayesian and
generalized linear regression. A sparse subspace of the original high-dimensional data
space is proven to be sample-efficient. The data reduction saves not only memory but
also run-time and energy demand.

Summaries with a fixed memory size are often developed using submodular func-
tions. For video summarization, a submodular set function could be optimized subject
to privacy constraints [495]. In 3.1, sieve streaming with fixed-size memory is enhanced
for sampling the most informative observations “on the fly”. In addition to saving re-
sources, the novel ThreeSieves algorithm offers summaries for human interactive data
exploration.

Unsupervised learning partitions data in many different ways. This book presents
the clustering of graph data in Section 5.1 and of curves in Section 5.2. The scalability
of hierarchical agglomerative clustering is considerably enhanced by the BETULA
algorithm in Section 5.3.

1.3 Memory Demands of Machine Learning | 11

Some problems occur as building blocks of learning algorithms. Matrix factorization
is one of them. An approach of Binary and Boolean matrix factorization that is robust
with respect to noise is presented in Section 5.4. It uses proximal gradient descent
optimization and allows overlapping clusters.

Another one is the max dicut problem: partitioning of a directed graph into two
subsets such that the sum of the edge-weights between the two subsets is maximized.
Section 4.4 investigates this problem for parallel algorithms, that scale for very large
graphs.

1.3.3 Executing Machine Learning

On the level of programming languages and operating systems, smart resource utiliza-
tion reduces the memory footprint [388]. Moreover, the dynamic sharing of memory
can be optimized [596]. Section 7.1 presents a memory management layer between the
R interpreter and the operating system that reduces the memory footprint by allocating
memory only to pages in the memory that are required.

Decision trees (DTs), although one of the earliest machine learning algorithms, still
pose research challenges. Training several thousand DTs leads to millions of decision
nodes that must be stored inmemory and processed in order to apply the learnedmodel
to new data. Hence, inferences using DT ensembles demand a smart memory layout.
Cache memory moderates between the main memory and the processor. Preventing
cache misses requires a well-designed memory layout. Section 7.3 offers an imple-
mentation that optimizes the memory layout while preserving the original ensembles’
accuracy. A code generator automatically adapts to underlying architectures.

1.3.4 Regularization and Reparametrization

Regarding models of learning, the reduction of memory demand has been investigated
for the exponential families. The memory consumption of Markov Random Fields
(MRFs) is dominated by the size of its parameter vector. Since each parameter is usually
accessedmultiple times during inference, they should be stored in a cachememory. The
key to compression is regularization and reparametrization,which exploit redundancies
in the true parameters. The general idea can be applied to discrete Markov random
fields and to multivariate Gaussian models [575]. Section 4.1 presents spatio-temporal
random fields. They model spatial networks as graphs and connected layers of these
graphs as temporal relations. A piecewise linear reparametrization of the parameters
of a clique (a part of the graph) is weighted by a decay vector, and the full model is
weighted by a corresponding decay matrix. In spatio-temporal random fields, it is
assumed that value changes at nodes do not change in sudden jumps over time. The

12 | 1 Introduction

reparametrization of spatio-temporal random fields based in this assumption is proven
to be universal, i.e. it is a bijection.

1.4 Structure of this Book

The book covers contributions from machine learning and embedded systems and
includes, in addition, algorithmic and database research that supports the overall goal
of resource-constrained data analysis. Its structure follows that of the workflow. It
starts with data of different kinds. Then it moves to executing machine learning and
the particular resource constraints, namely memory, communication, and energy. Each
chapter offers an introductory summary of its sections.
The book is organized as follows:
– This book starts in Chapter 2 with the data collection of embedded system de-

ployments. Section 2.1 presents the system kCQL for collecting complex operating
system data. kCQL acquires and combines event streams and system states of oper-
ating systems while maintaining low overheads. A physical sensor network testbed
is presented in Section 2.2 that can be used for large-scale energy accounting, posi-
tion tracking, application testing, and system data collections. Modeling, analysis,
calibration, and evaluation of batteryless in-door energy harvesting systems are
presented in Section 2.3.

– Chapter 3 considers data streams in resource-constrained embedded systems. Re-
garding summary extraction from streams, Section 3.1 presents an insertion-only
data stream learning algorithm based on maximizing submodular functions. Sec-
tion 3.2 covers a brief technical introduction to coresets and sketches and highlights
their importance for the design of data stream algorithms.

– Chapter 4 presents methods and techniques to learningmodels for structured data
with resource-awareness. In Section 4.1, a probabilistic learning model of spatio-
temporal random fields is introduced, which reduces memory consumption with-
out loss of the accuracy through universal reparameterization. In Section 4.2, the
Weisfeiler-Leman algorithm is connected to learning methods such as graph ker-
nels and Graph Neural Networks (GNNs). In Section 4.3, a unified and scalable
framework for message passing in GNNs is proposed. Section 4.4 presents algo-
rithms to compute cuts in directed graphs with high quality, which scales well in
shared memory. Section 4.5 presents a new technique based on GNNs to search for
scientific papers, utilizing key mathematical formulas instead of key words.

– Chapter 5 considers clustering in four complementary sections. Section 5.1 exploits
the sparseness of data for reducingmemory requirements and run-time. Section 5.2
handles sequences of points using the Fréchet distance and details an approxima-
tion for their clustering. Section 5.3 characterizes methods for hierarchical cluster-
ing that are well suited for streaming data processing on edge devices with limited

1.4 Structure of this Book | 13

resources. Section 5.4 offers a novel optimization subject to binary constraints for
matrix factorization, a method that is entailed in many learning algorithms.

– Chapter 6 deals with the heterogeneity of execution platforms of embedded sys-
tems. Section 6.1 presents the acceleration of learning neural networks on Field-
Programmable Gate Arrays (FPGAs). Parallel executions utilizing graphics pro-
cessors (GPU) for efficient database query processing and multicore systems for
accelerating extreme multi-label classification are presented in Section 6.2 and Sec-
tion 6.3, respectively. The RAMBO framework that can efficiently optimize machine
learning models on heterogeneous distributed systems is discussed in Section 6.4.

– Chapter 7 presents optimizations of machine learning algorithms with respect to
memory. Section 7.1 demonstrates that the memory footprint can be effectively
reduced by leveraging application-specific knowledge. Section 7.3 proactively opti-
mizes the memory layout in the implementation of the machine learning model to
favor the underlying cachememories with a probabilistic perspective. Furthermore,
Section 7.2 presents how learning models can accurately process in environments
with unreliablememories if we take bit errors into account duringmachine learning
training.

– Chapter 8 considers embedded systems under communication constraints. It covers
synchronization with resource sharing, communication with potential failures,
and probabilistic timing information in Section 8.1, and discusses bandwidth limi-
tations of different execution models and coprocessor-accelerated optimization in
Section 8.2.

– Chapter 9 is about energy efficiency. Section 9.1 shows how to reduce the power
consumption of complex learning models such as Markov random fields through
integer-only operations. The novel Bit-Length Propagation (BL-Prop) and integer
gradient descent (IntGD) algorithms can be executed even on ultra-low-power
(ULP) micro-controllers. Section 9.2 uses machine learning in order to estimate the
power consumption of diverse communication technologies in wireless systems
unleashed from the power grid and light-weighted small wearables.

Each chapter and section is self-contained. You may select the chapter or section you
want to read by topic or by data flow of data analysis processes. Youmaywant to read an
overall chapter or just some sections. Because we have written the book with teaching
in mind you can select a number of sections for specialized courses. Of course, we
also encourage readers seeking an in-depth understanding of the resource-efficient
combination of hardware and machine learning algorithms to read the entire book!

2 Data Gathering and Resource Measuring
This book starts with chapters ordered in analogy to the data analysis workflow before
it investigates particular resources. Data is the raw material for all machine learning
applications. Hence, gathering data is the first step. Where in the beginning of machine
learning, tables and later ondatabaseswere the only source of data, nowadayspetabytes
of data is produced by a huge variety of embedded systems. However, collecting the
data of embedded system deployments such as wireless sensor networks, Industry 4.0
and Internet of Things environments has several constraints due to their strict resource
limitations. This chapter discusses approaches and tools to handle data collecting in
embedded systems.

First, a framework for collection of complex operating systemdata is presentedwith
kCQL. Based on an extensible data model, kCQL’s declarative database-like queries can
acquire and combine event streams and system states while maintaining low overheads.
This simplifies the development of complex analyses.

Second, PhyNetLab, a large-scale physical sensor network testbed, is presented.
PhyNetLab supports the acquisition of data from real-world embedded system deploy-
ments. Aiming at mobile Industry 4.0 applications, it enables energy consumption
accounting, position tracking, application testing, and system data collections on a
large scale.

Third, batteryless systems are investigated in the guest contribution by Andres
Gomez. He presents an indoor solar harvesting dataset that supports the modeling,
analysis, calibration, and evaluation of energy harvesting systems. Moreover, hand
gesture detection using a SmartCard exploits a lightweight Deep Neural Network (DNN).

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-002

16 | 2 Data Gathering and Resource Measuring

2.1 Declarative Stream-based Acquisition and Processing of OS
Data with kCQL

Christoph Borchert
Jochen Streicher

Alexander Lochmann
Olaf Spinczyk

Abstract: Logging and debugging facilities of computer operating systems as well as
subsystem-specific tools do not provide sufficient information and cannot cope with
the volume and frequency required for data acquisition within the operating system.
This has led to several highly versatile dynamic operation system kernel instrumen-
tation frameworks, such as SystemTap and DTrace. These frameworks minimize the
performance impact on normal operation and allow complex analyses. However, such
event-based analyses need to be programmed in a complicated imperative manner
at a rather low level of abstraction. Conversely, a more recent framework, PiCO QL,
offers a declarative, and thus more powerful, database-like interface to the kernel state.
However, it is not able to trace events. We present kCQL, an approach that aims at
providing the best of both worlds. Based on an extendable data model, declarative
database-like queries can acquire and combine event streams and system states. This
simplifies the development of complex data analyses. At the same time, a common data
model and architecture provide the optimization of query execution and the reuse of
common subexpressions of different queries. The approach has numerous practical
applications, which are discussed at the end of the section.

2.1.1 Introduction

Computer operating systems readily expose a vast array of information, internal state,
event logs, and even basic statistics on events and resource utilization to be inspected
by developers and system administrators. Usually, this goes along with a set of tools to
further process and interpret the data. A well-known example for such a system data
interface is procfs, which can be found in many Unix-like operating systems.

The utilization of those interfaces certainly imposes some impact on the normal
operation. However, while access to state has an effect only when it actually takes
place, continuously tracing events or function calls causes a constant overhead, even
if the generated data goes unused. Thus, it is restricted and not all interesting data is
accessible that way.

As a remedy, there are dynamic instrumentation or tracing frameworks and
Operating-Systems Data Acquisition Frameworks (OSDAFs) such as SystemTap [196] and

2.1 Declarative Stream-Based Acquisition and Processing of OS Data with kCQL | 17

DTrace [119] that can retrieve more information at a higher level of abstraction, or even,
partially, in a declarative way.

The more recent PiCO QL [233] enables (non-modifying) SQL queries over a rela-
tional representation of the kernel state, something which is not possible using existing
event-based data acquisition tools. However, PiCO QL does not allow the tracing of
events.

2.1.2 Operating-System Data Acquisition Frameworks

Amultitude of methods and tools was devised to extract data from the operating system
without repeated manual instrumentation and recompilation. For example, LTTng
[172] and ftrace enable the static activation and deactivation of performance-critical
instrumentation. However, these frameworks are inflexible with regard to the data
they acquire. For example, the function tracer ftrace covers only function calls, the
respective function arguments, and context information such as the process identifier.

Generic instrumentation frameworks such as kprobes [400] allow on-demand trac-
ing of almost any instruction in the Linux kernel, but are tedious to use and potentially
dangerous, because they allow arbitrary modification of the data structures. Unlike
kprobes, ExtOS [42] and AnyCall [248] focus on the safe execution of user-level code
within the OS kernel and thereby facilitate Near Data Processing [41]. However, both
approaches use imperatively written code.

Ideally, OSDAFs provide a high-level view and languages to define instrumentation,
data collection and possible on-site processing. For simplicity, we refer to all these
definitions as “queries”, even if they are written imperatively. Generic OSDAFs have to
provide access to potentially any part of the operating-system (OS) without the need for
recompilation, and should impose only a minimal overhead at runtime. The following
concepts and processing steps are common in existing OSDAFs:
– Events are the primary source of information. The starting point is usually low-level

events, i.e. points in the operating system’s control flow. It is possible to trace
function calls and some frameworks also allow the tracing of single instructions.
High-level events abstract from the low-level control-flow events. For example, they
may indicate the reception of a network packet or the invocation of a system service.
Events can have associated context data. For function boundaries, those are the
calling parameters and the return value of the respective function. Accordingly,
high-level events offer higher-level context data, such as the destination address
of a network packet, which may not be readily available as a function parameter.
The provision of events that can be used in a data acquisition task is part of the
framework or an extendable library that belongs to it. Some frameworks also allow
for adding new high-level events based on other high-level events.

– OS State is any part of the operating system’s state. Low-level state directly refers
to the contents of variables and data structures, whereas high-level state provides

18 | 2 Data Gathering and Resource Measuring

some interpretation, for example, direct access to the name of a process issuing an
operating-system call. The provision of state that can be used in a data acquisition
task is analogous to the provision of events.

– Streams consist of the data flow that is generated from events and their associated
context data. For example, tracing all system calls regarding the I/O system may
already suffice for some tasks. For other tasks, further processing or combination
with state is necessary, such as when supplying the name of the calling process to
a trace of system calls.

2.1.2.1 Analysis of Existing Frameworks
In the first three event-driven OSDAFs listed below, queries usually consist of a set of
probes. A probe handles the data generation from events (or probe points). It consists
of a declarative specification of the events to probe and a probe body that generates
the data.

SystemTap A SystemTap [196] probe body is an imperatively written piece of code
that processes the event data, combines it with OS state, and generates output via
printf statements. It is written in a C-like language and is compiled to actual C code
with additional safety checks, which uses kprobes [400] to instrument the kernel code.
Besides probes, SystemTap also allows user-defined functions and global state. It can
also contain plain but unsafe C code. The set of traceable events and accessible states
is extendable. Most of it is part of a library (the tapsets) that is written in the same
language as the scripts.

DTrace DTrace [119] queries are written in the C-like and restricted (no cycles in
the CFG) D language. D programs solely consist of a set of probes that are compiled
to bytecode for execution in a virtual machine. Access to kernel state is possible via
built-in variables. Event and state provision is the responsibility of providers, which
decouple the details of data provision from the queries. While D is an imperative
language, associative arrays and aggregation functions allow for semi-declarative one-
line queries.

Fay There are also frameworks that allow for a completely declarative specification of
data retrieval. A declarative specification allows the transformation and optimization
of queries for performance. Fay [202] enables tracing for clusters of Windows machines.
TheHotpatchingmechanism serves as a hook for probes, which are responsible for data
collection. Fay can either be scripted from the Windows PowerShell or via a declarative
interface that allows writing SQL queries on possible trace points, which are then
translated to a set of probes and distributed processing across multiple hosts. The
queries are formulated as relational operations on the already existing probe output.
Fay does not allow the combination of event-based data with context information as a

2.1 Declarative Stream-Based Acquisition and Processing of OS Data with kCQL | 19

languagemechanism. Rather, the probes alone are responsible for collecting all relevant
state information in the instrumentation code and providing it as event context data.

PiCOQL PiCOQL [233] does not deal with events at all. Instead, it provides a relational
interface to the kernel data structures that can be inspected via SQL queries. Although
there is a wide range of applications for this kind of interface, queries that are based on
events such as incoming network packets cannot be answered this way. Thus, timely
data acquisition requires high-frequency polling. Its authors call it a complementary
approach to existing event-based systems that do not allow model-based declarative
access to internal data structures.

2.1.2.2 Comparison
DTrace offers providers that implicitly extend the model of available data and are not
bounded to any specific way of low-level data provision. SystemsTap is also extendable
in that it provides high-level state and events based on existing high-level abstractions.
By contrast, Fay offers declarative queries on event streams that can be optimized
automatically. PiCO QL is complementary as it represents state in a relational data
model that can be queried via SQL.

Our goal is to integrate event streams and state into a common model and provide
language mechanisms that support queries that have the combined expressiveness of
PiCO QL and Fay and the extensibility of DTrace and SystemTap without performance
loss. This would offer the best of all models in one framework.

2.1.3 kCQL: A Relational Streaming Interface for OS Data

A relational interface offers an expressive and powerful way to access kernel data as
described by the work on PiCO QL. Using that as a basis, we show how streams are
integrated into a relational data model and our query language kCQL.

2.1.3.1 Data Model
A high-level language that acquires and accesses OS data works on some kind of model
of the available events, their context data, and the available kernel state. Thismodel can
be implicitly given, such as by the probe definitions in the tapsets of SystemTap. DTrace
even allows the definition of complex data types for probe arguments (i.e., context
data for events). The entirety of traceable functions and their arguments as well as raw
kernel data structures also contribute to the model.

In a relational model, both relations and streams contain tuples with a fixed set of
attributes. Figure 2.1 shows a possible relational representation of a subset of the kernel
data structures and event stream. The process and socket IDs act as primary keys in the

20 | 2 Data Gathering and Resource Measuring

process

pid INT

name CHAR(20)

cred_fsuid INT

cred_fsgid INT

socket

sid INT

pid INT

«stream» packet

datalen INT

direction BYTE

sid INT

1

n

1

n

file

pid INT

fd INT

mode INT

inode_name CHAR(30)

inode_mode INT

inode_uid INT

inode_gid INT

process_group

pid INT

gid INT

n

n

group

gid INT
1

n

user

uid INT
1

n

n

n

n

Fig. 2.1: (Non-exhaustive) relational representation of kernel state and event streams.

process and socket relations, and are used as foreign keys in the socket relation and
the packet stream.

Thus, the packet stream looks like a relational database table definition. Its columns
represent the event’s context data. The difference between relations and streams is that
tuples can be removed from the former, but not from the latter. Streams aremonotonous
and infinite. Conceptually, they can be regarded as an ever-growing relation.

2.1.3.2 Relational Stream Query Languages
For data acquisition, we do not consider queries that modify relations or streams. Thus,
the incorporation of streams into our relational model as seen above allows us to treat
them almost like a database table. For example, the following operations from the
relational algebra could be executed on every tuple of one stream to produce another
stream:
– projection (e.g., SELECT datalen FROM packet)
– filtering (e.g., SELECT * FROM packet WHERE datalen > 100)
– joining to relations (e.g., SELECT pid, datalen FROM packet

JOIN socket ON packet.sid = socket.sid)
– union of streams (with the same schema)

Joining two streams S1 and S2 (as opposed to joining a stream to a relation) can be
defined based on their conceptual view as a relation without deletions. Each tuple from
S1 is joined to each tuple that S2 contains (or “has produced”) so far and vice versa [712].
An application scenario is a trace of read system calls, extended by the information
whether they actually triggered disk I/O, which is also an event stream. However, there
is no need to permanently store all read system calls that ever happened, but only a
limited window of these. Such a window (see next below) is a time-varying relation that
can be joined with the stream of I/O events.

2.1 Declarative Stream-Based Acquisition and Processing of OS Data with kCQL | 21

2.1.3.3 CQL
Our work builds upon the Continuous Query Language (CQL) [20] from Stanford. CQL
closely resembles standard SQL. In contrast to other stream query languages, such
as Aurora [1], it does not contain direct stream-to-stream operators (e.g., filtering or
projecting a stream). Streams have to be converted to a relation before they can be
processed by relational operators. Consequently, CQL augments SQL by four operators
to convert between streams and relations:
– Windows generate a time-varying relation that contains all stream tuples that

belong to the current window. The window size can be specified by the number of
tuples it contains (rowwindow) or by the maximum timestamp difference between
the oldest and the newest tuple in it (range window). A slide parameter (tuples or
duration, respectively) determines the size of the steps to move the window down
the stream.

– ISTREAM generates a stream from a relation that contains every tuple (or, in other
words, rows) inserted into that relation.

– DSTREAM generates a stream for deleted tuples.
– RSTREAM generates a stream from a relation. Every time the relation changes, all

of its tuples are inserted into the stream.

The restriction of all other operations to relations seems like a disadvantage that makes
an efficient implementation of a CQL-based data stream management system (DSMS)
impossible. However, these restrictions only apply to the language level, whereas the
internal query processing may look completely different.

2.1.3.4 Examples
This section presents a few queries and their output.

StreamQueries Packet logging tools, such as tcpdump, usually trace packets without
assigning them to the involved process. Nevertheless, this is possible by looking at the
socket numbers of the transport protocol and by using other tools, such as lsof, to find
the processes using these sockets. However, it is more convenient to do this in one step.
The query is shown in Listing 2.1. As we cannot directly operate on the packet stream,
we use a window to transform it into a time-varying relation. The relation generated
by a special form of a window, the now window, is rather peculiar, as the total time
it contains anything is zero. The tuples from the packet stream are inserted into the
window, and then deleted from it directly thereafter. The relation resulting from joining
the window on the socket and process relations also behaves in the samemanner. Using
the RSTREAM operator, a stream is then generated from these tuples. The result of this
query is a continuous flow of tuples as shown in Table 2.1.

22 | 2 Data Gathering and Resource Measuring

Listing 2.1: Packets: Assigns
network packets to processes.

Packets: RSTREAM (

SELECT packet.datalen AS len,

packet.direction AS dir,

process.pid AS pid,

process.name AS pname

FROM packet [now], socket,

process

WHERE packet.sid = socket.sid

AND socket.pid = process.pid

);

Tab. 2.1: Example output of the Packets query (List-
ing 2.1).

Timestamp len dir pid pname

14. . .546486 1474 > 3728 nc

14. . .551490 32 < 3728 nc

14. . .556010 114 > 3378 sshd

14. . .559973 70 > 3736 wget

.

Listing 2.2: PacketAggr: Sums up outbound network traffic in packets and bytes for each process in
5-minute intervals.

PacketAggr: RSTREAM (

SELECT pname, COUNT(*), SUM(len)

FROM Packets [RANGE 5 minutes SLIDE 5 minutes]

WHERE dir = '>' GROUP BY pid

);

We can use that as a basis for aggregations and summaries. For example, Listing 2.2
shows a query that gathers accumulated outbound network traffic (bytes and packets)
in 5 minute intervals, using the Packets query as a data stream source.

Continuous Queries In some cases, we do not want a stream but actually a relation
as an output where tuples can also be deleted. For example,

SELECT pid, name FROM process;

looks like a relational snapshot of the process list, but it is a continuous query in CQL.
Consequently, its output contains insertions and deletions as shown in Table 2.2. In
addition, the initial state of the query is captured (tuples with fictional timestamp 1, as
we cannot know the real time).

Access to Other Address Spaces To analyze performance issues of specific applica-
tions, kernel data alone is not sufficient. If applications provide respective data sources,
they can be combined with kernel data. For example, the query ApacheIO in Listing 2.3

2.1 Declarative Stream-Based Acquisition and Processing of OS Data with kCQL | 23

Tab. 2.2: Example output of “SELECT pid, name FROM process;”.

Timestamp Insertion/Deletion pid name (Comment)

1 + 1 init

initial relation
1 + 2 kthreadd
.
1 + 4260 man
1 + 4281 kcql.elf

1439915918621953832 - 4260 man exiting processes1439915923580930234 - 3679 bash
1439915928436850678 + 4285 screen starting process
1439915928439601848 - 4285 screen screen invokes

exec syscall1439915928439601848 + 4285 bash
.

Listing 2.3: ApacheIO: Output I/O load summary per file served by Apache.

ApacheIO:

SELECT Apache_HttpReqs.file, Apache_HttpReqs.ipSrc, COUNT(IO.duration),

AVG(IO.duration) AS avgduration

FROM Apache_HttpReqs, IO

WHERE Apache_HttpReqs.pid = IO.pid GROUP BY Apache_HttpReqs.file;

summarizes the number and average duration of disk operations per file served by the
Apache web server.

Multiple Instances of Data Sources The relational model is easily extendable to
multiple instances of a data source, such as multiple network interfaces. From the
modeling perspective, this is just an additional identifying column in the respective
relation or stream. Thus, the Packets query (Listing 2.1) and the subsequent aggregation
(Listing 2.2) still work and could be even extended by aggregation per network interface.

2.1.4 Implementation

An overview of kCQL’s architecture is given in Figure 2.2. We differentiate between the
clients and the kCQL core. Clients submit queries to the core and receive data continu-
ously until they explicitly revoke the query. The core generates a query execution plan
and processes the data according to the running queries. The necessary data sources,
however, are also provided by (other) clients. In this respect, clients are comparable to
the providers of DTrace. As clients can run in the kernel space and in any user process,
data has to be transported across address spaces. Instead of moving data to one central

24 | 2 Data Gathering and Resource Measuring

kC
Q

L
co

re

plan execute

u
se

r
sp

a
ce

ke
rn

el
 s

pa
ce

cl
ie

n
ts

cl
ie

n
t

instance

instanceinstance

planner

query

transport

op op

op
op

op

source

op

op

source

op

source

op

source

transport

Fig. 2.2: Architecture of kCQL

location for processing and then distributing the query results to the clients, the query
plan is partitioned in a way that tries to minimize data flow between address spaces.
Thus, each address space has its own instance of the DSMS engine, each processing a
different part of the query.

2.1.4.1 DSMS Engine
The heart of kCQL, its DSMS engine, is based on Stanford’s data stream management
system STREAM [21]. It is responsible for query plan generation and for query execution.
STREAM was built for pulling data from synchronous data sources that generate new
tuples ondemand. In contrast, kCQLworkswith asynchronousOS events. Thenecessary
modifications are described in Section 2.1.4.2.

Time-varying relations are represented as update streams, containing tuples anno-
tated with a timestamp and a tag for insertion or deletion. This does not only apply to
the query output (as shown in Table 2.2), but also to the query input (data sources) and
intermediate relations generated by relational operators (e.g., joins). As a consequence,
relations based on actual operating system data, such as the process table, also have to
be transformed into such an update stream.

Query Plan Generation After parsing the queries and the data source descriptions,
STREAM generates a directed acyclic data-flow graph of relational operators, from the
data sources to the query outputs. At this point, we introduce a step that partitions the
graph into the participating address spaces. After that, auxiliary structures are added to

2.1 Declarative Stream-Based Acquisition and Processing of OS Data with kCQL | 25

the query plan, which is then instantiated for execution. The engine instances contain
the following elements:
– Synopses provide a view on all tuples that are currently relevant for an operator or

contained in a relation. They also maintain indices to efficiently scan them using
predicates (e.g., to find join partners).

– Operators perform relational operations or conversions between streams and rela-
tions. For some operators, such as joins, the streaming representation of relations
is not sufficient, as they need a view on all tuples that are contained in a relation at
the time of the currently processed input tuple. They do so by means of a synopsis.
Source operators and output operators interface between the client and the engine
instance. For kCQL, we add senders and receivers to transport streams and relations
across address spaces.

– Queues buffer the tuple streams between operators. The queue elements contain
the tuple’s timestamp and, for relations, the type (insertion or deletion). To avoid
copying the tuple contents, the queue elements do not contain, but rather point to,
their location in a shared store.

– Stores contain the actual tuple contents and are shared between communicating
operators. They are used by operators and their synopses. The tuple contents are
extended by meta-information such as reference counting.

Besides basic optimizations of the query plan, such as merging, filtering, and projec-
tion into other operators, STREAM also replaces relational operators by pure stream
operators where appropriate. For the Packets query in Listing 2.1, STREAM does not
produce an actual window from the packets stream rather, it directly joins the stream
tuples on the relations. The same applies to filtering and projection.

Consistency by Temporal Monotonicity If we join a tuple from a stream (e.g., the
packets) on a relation (e.g., the process list), the join partner (e.g., the process) might
not exist anymore in the actual OS data structure (e.g., because the process might have
already been terminated). Using STREAM, that does not lead to inconsistencies, because
operators dequeue and process element by element in timestamp order. That means
that a join always dequeues the element from the stream and joins it on the tuples in
its synopsis. Only after that does it process the deletion in the relation and updates its
synopsis. This way, consistency is ensured also for all other operators, including pure
relational joins and windows.

However, that requires all queues to be ordered with respect to timestamps: an
operator must not enqueue a tuple with timestamp t0 after it enqueued a tuple with
a timestamp t1 > t0. For processing operators, that means that the timestamp of an
output tuple is always the maximum of the timestamps of the tuples it is based on. For
a full join of relations R and S this means: if a tuple x with timestamp t is inserted into

26 | 2 Data Gathering and Resource Measuring

R, then the generated output tuples, namely the results of joining {x} with S, have the
timestamp t .

Query Execution In STREAM, a single thread schedules operators in a round-robin
fashion, which is, in our adaptation, one thread per address space. The time slices are
given as a total maximum number of elements that can be processed from the input
queues.
An operator is blocked if its input queues are empty, when its output queue is full,
or when it encounters a temporal monotonicity stall. The latter condition can only
occur with multiple inputs. For operators with one input (e.g., filtering or windowing),
preserving temporalmonotonicity is straightforward: in each step, take thenext element
from the queue, remember its timestamp, and process it. If that leads to the production
of output elements, they all get the memorized timestamp.

Operators with multiple inputs have to determine the queue whose head element
has the oldest timestamp, and then proceed with that element like a single-input
operator. If one of the queues is empty, the operator cannot take the oldest element
from the non-empty queues, because the respective predecessor upstream still might
enqueue an element with an even older timestamp into the empty queue.

2.1.4.2 Enabling Asynchronous Events
Besides distributing operators across address spaces, we adapt the DSMS engine to
asynchronous OS event streams.

Asynchronous Sources Usually, the source operators pull a tuple from their asso-
ciated sources in each execution step. As this does not make sense with events that
occur asynchronously, the data sources in kCQL write the tuples into a buffer, and the
respective source operators read from that. At the start of query execution, all sources
that deliver relations have to dump the complete relation. For a relation on all OS pro-
cesses, this means iterating the whole process list and delivering every process as an
insertion element, as seen in Table 2.2. Hereafter, it has to generate new tuples when
the relation has to be updated. We use kprobes for the instrumentation of events that
generate streams and updates to relations.

Scheduling The scheduling thread in STREAM runs continuously until a given num-
ber of tuples is processed or it is stopped explicitly. This works fine as long as data
sources deliver a new element every time they are asked for it. The buffers of our asyn-
chronous data sources, however, can run empty. In that case, the continuously running
scheduler would waste CPU time.

Thus, our modified scheduler only runs operators that actually have work to do
(when they are not blocked, as explained in Section 2.1.4.1). If there is no such operator,
the scheduler is suspended. It can be resumed by asynchronous sources after they have

2.1 Declarative Stream-Based Acquisition and Processing of OS Data with kCQL | 27

produced a tuple, and by the transport when it receives an announcement from another
address space.

Breaking Temporal Monotonicity Stalls Temporal monotonicity stalls do not pre-
vent other upstream operators from further filling the non-empty queues. As the queues
are bounded, stalls propagate upstream to the data sources. In contrast to synchronous
operation, we cannot stop pulling data from these sources until the stall is cleared, as
we would miss events.

Thus, if we have at least one non-empty input queue, but are required to take the
next element from an empty queue, we try to find the oldest possible timestamp an
element enqueued into this empty queue could have. After that, we re-evaluate the
monotonicity condition with that timestamp.

To find the oldest possible timestamp, the operator asks the respective upstream
input operator. Every operator implements thatmethod, and it slightly differs depending
on the operator type:
– Sources return the timestamp from the head element in the ring buffer. If that buffer

is empty, they return the value of a synchronized variable (per address space) that
always contains the most recent timestamp of any newly produced data.

– Single-input operators return the timestamp of the input queue head. If the queue
is empty, they ask their upstream input operator.

– Multiple-input operators return the oldest timestamp of all queue heads. If all
queues are empty, they ask all their upstream input operators, and return the
minimum value.

– Receivers return the timestamp of the head element in the transport. If there is none,
the sender cannot directly return anything that would break the stall. However, it
prompts the respective sender in the peer address space to send an empty element
that just contains the required timestamp. Thus, the stall can be broken in the next
round.

2.1.4.3 Cross-Address-Space Transport
Queue elements need ordered stream-based, but not necessarily synchronous inter-
process communication. Using one of the existing synchronous inter-process commu-
nication mechanisms would either require a system call for every tuple, or manually
implemented buffers on each side. Thus, we decided to use ring buffers in shared mem-
ory segments. We use synchronous communication (procfs for kernel–user, message
queues for user–user) only to wake up sleeping senders and receivers: receivers sleep
when the ring buffer is empty, and the scheduling thread sleeps if no other operator
has work to do. When the corresponding sender writes new elements into the ring
buffer, it signals the scheduler to wake up the receiver. The same works vice versa
for a sender that goes to sleep because of a full transport ring buffer. To avoid shared

28 | 2 Data Gathering and Resource Measuring

and synchronized stores between different address spaces, we also write the tuples
(additionally to timestamp and type) directly into the ring buffer.

2.1.5 Evaluation

To evaluate kCQL, we examine both the overall runtime overhead and the synchronous
delay that is imposed by diverting the kernel’s control flow to event processing before
it can resume normal operation. We also measure both quantities for SystemTap and
PiCO QL for comparison.

Our evaluation platform is a desktop computer with an Intel Core i5-3570 processor
and Ubuntu Server 14.04. The clock frequencies of the four cores are fixed at 3.4 GHz
each. We use the Vanilla Linux kernel 3.14.17 for our implementation, configured with
Ubuntu’s generic configuration. We perform the evaluation under the following loads:
SysBench’s [382] prime number calculation (CPU and user mode only) and a full Linux
kernel build (x86_64-defconfig, CPU and I/O activity).

2.1.5.1 Queries
We use two queries for a quantitative evaluation of our approach. Both were imple-
mented as SystemTap scripts, which resulted in considerably more lines of code. For
the Packets query, we implemented two versions: one that closely resembles kCQL’s
mode of operation, using an incrementally updated copy of the process list (182 lines of
code), and one that directly accesses the process list whenever a packet is received (159
lines of code). The SystemTap implementation of the Files query consists of 46 lines of
code.

Assigning Network Packets to Processes (“Packets”) The first query has already
been shown in Listing 2.1 in Section 2.1.3.4. For the quantitative evaluation, a sec-
ond machine was connected to the machine under test with a direct gigabit Ethernet
connection, transmitting TCP packets at full speed.

Finding Files Currently Opened with Insufficient Permissions (“Files”) The sec-
ond query gathers files opened for reading by processes that do not have the necessary
access permissions. This query solely works on relations, which are, however, pro-
cessed continuously, immediately delivering a tuple as soon as the aforementioned
case occurs. The query is shown in Listing 2.4.

2.1.5.2 Overall Runtime Overhead
To quantify the overall runtime overhead imposed by data acquisition, we measured
the time SysBench and the kernel build took without data acquisition, as well as with
different queries using kCQL, SystemTap, and PiCO QL.

2.1 Declarative Stream-Based Acquisition and Processing of OS Data with kCQL | 29

Listing 2.4: Files: A continuously updated relation containing files opened with currently insufficient
permissions.

Files:

SELECT DISTINCT P.name, F.inode_name, F.inode_mode & 0400,

F.inode_mode & 040, F.inode_mode & 4

FROM process AS P, file AS F, process_group AS PG

WHERE P.pid = F.pid AND P.pid = PG.pid AND F.mode & 1 = 1

AND (F.inode_uid != P.cred_fsuid OR F.inode_mode & 0400 = 0)

AND (P.cred_fsgid != PG.gid OR F.inode_mode & 040 = 0)

AND F.inode_mode & 4 = 0;

none Packets

160

165

170

175

180

810

840

870

900

Kernel Build
SysBench

none SystemTap SystemTap (DA) kCQL
Query Method

Ex
ec

ut
io

n
Ti

m
e

[s
]

none Files

145.0

147.5

150.0

152.5

155.0

779.9

780.0

780.1

780.2

Kernel Build
SysBench

none SystemTap kCQL
Query Method

Ex
ec

ut
io

n
Ti

m
e

[s
]

Fig. 2.3: Clean runs of kernel build and SysBench compared with runs that simultaneously execute
SystemTap or kCQL with the queries Packets (left) and Files (right). The different baselines are due to
the presence (left) or absence (right) of incoming TCP packets.

Comparison with SystemTap Figure 2.3 contains box plots of the execution times of
SysBench and the kernel build for both queries, using kCQL and SystemTap. We also
sent network packets to the machine under test while generating the baseline for the
Packets query. Figure 2.4 is based on the same numbers, and shows the relative runtime
and overhead compared with the baseline.

It is apparent that direct access to the kernel state (DA) is unfavorable for the
Packets query. The tailored SystemTap scripts generate less overhead than kCQL by
using incrementally updated copies of the kernel state. While kCQL does not excel here,
the overhead is still reasonable.

The SystemTap implementation of the Files query can make use of an invariant:
the situation we track in the query can only occur directly after a call to setuid. We will
discuss this further in Section 2.1.6.1.

30 | 2 Data Gathering and Resource Measuring

Files Packets

+7
.3

%

+0
.2

5%

+0
.0

18
%

+0
.0

02
6%

+1
2%

+7
.2

%

+1
.7

% +1
3%

+1
.4

%

+0
.9

4%

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Kernel Build SysBench Kernel Build SysBench
Load

R
el

at
iv

e
R

un
tim

e

Query Method SystemTap SystemTap (DA) kCQL

Fig. 2.4: Comparison of average relative run-
time and overhead in percent compared with
clean runs of kernel build and SysBench.

kCQL PiCO QL

145

150

155

160

780

800

820

840

Kernel Build
SysBench

NA 0.01 0.02 0.05 0.1 0.2 0.5 1
Query Period [s]

Ex
ec

ut
io

n
Ti

m
e

[s
]

Fig. 2.5: Runtime overhead for the Files
Query compared with PiCO QL with different
invocation periods.

Comparison with PiCO QL PiCO QL is based on a traditional relational interface
without a notion for data streams. Thus, we try to achieve the same functionality with
frequent polling. The polling frequency plus the query execution time of PiCO QL
corresponds to the latency. In addition, the polling frequency governs the trade-off
between latency and performance overhead, which is why we evaluate PiCO QL¹ with
multiple polling frequencies and find the value that leads to the same overhead as
kCQL.

Figure 2.5 shows boxplots for the kernel build and SysBench runtimes without the
query and with the query using kCQL and PiCO QL with different invocation periods
(x-axis). Invoking PiCQ QL with the Files query every 10 to 20 milliseconds imposes
roughly the same overhead for the kernel build as running the continuous query with
kCQL.

2.1.5.3 Synchronous Overhead
Figure 2.6 shows histograms of the synchronous overhead (based on 100000 samples of
one run each), which is the partial time consumed by query processing directly after and
in the same context of an event (e.g., the according interrupt context). Not surprisingly,
the direct-access-variant of Packets performsworst, because every network packet leads
to a complete iteration over the process list. For the other query implementations, it is

1 This is based on git commit hash 7b2ad66e4a89229f6be392e73c1bda21e2b01434.

2.1 Declarative Stream-Based Acquisition and Processing of OS Data with kCQL | 31

kCQL SystemTap SystemTap (DA)

0

10000

20000

30000

40000

0

25000

50000

75000

Kernel Build
SysBench

0 5 10 0 5 10 15 20 0 10 20 30 40
Synchronous Overhead [µs]

co
un

t

kCQL SystemTap

0

20000

40000

0

10000

20000

30000

40000

Kernel Build
SysBench

0 5 10 15 20 0 5 10
Synchronous Overhead [µs]

co
un

t
Fig. 2.6: Synchronous Overhead for Packets (left) and Files (right) with SystemTap and kCQL.

generally lower than that of kCQL, probably due to the fact that kCQL does not yet use
per-CPU buffers for the synchronous part of query processing.

Since the query execution of PiCO QL is triggered asynchronously and not by an
event, there is no “synchronous latency”. However, PiCO QL invokes stop_machine()
before executing the query, thus delaying normal operation on all CPUs for the whole
query execution time. PiCO QL takes about 730 microseconds to answer the file query
on our machine.

2.1.6 Discussion

This section elaborates on the interface of the query language kCQL, security aspects,
and practical applications of our approach.

2.1.6.1 Query Interface
The main point of declarative languages is the ability to formally specify “what” rather
than “how”. The idea is that the best “how” can be derived automatically. In our case,
this comprises the derivation of a query plan, the placement of the operators, and
the way of accessing data. This gets particularly interesting when we have multiple
simultaneous queries. Due to the strict semantics of the data model and query, common
subexpressions of queries can be reused [620]. Considering non-experts, directly
specifying “how” also gives more room for inefficient implementations and even fatal
errors. The latter point is usually avoided by a combination of restricted languages and
dynamic checks as discussed in Section 2. Nevertheless, for a specific query, experts
achieve better results by directly specifying “how”.

32 | 2 Data Gathering and Resource Measuring

Thehand-crafted SystemTap variant of the Files querymadeuse of the expert knowledge
that the condition of interest (a file opened by a process that does not have reading
permission for it) can only occur directly after a certain event. Certainly, the kCQL query
could use a stream of calls to setuid, enabling the same trick. The fact that we can
achieve the same output with two differently performing declarative queries seems to
defy the point of automatically finding the best “how”. However, that is not an issue
of declarativeness but rather due to inherent relationships between different OS data
sources that are not yet visible to kCQL and subject to future work.

2.1.6.2 Security
Currently, only the root user is allowed to use kCQL. To allow ordinary users to use
kCQL, we could check if the user has the permission or capability to read from the parts
of the kernel state that are required for the query. We could also enforce predicates
that filter tuples. For example, a user might only be allowed to receive tuples from the
process relation that contain the respective user ID attribute. However, it is not obvious
what to do when tuples or attributes that the user cannot access are present in predicate
evaluation (e.g., in joins deep in the query plan), but not in the actual output.

2.1.6.3 Practical Applications
This section presents three case studies from our project that showhowdata collected in
the context of the Linux kernel canbeused to better understand and improve systems. In
two of the case studies we have tapped the Linux kernel of Android-based smartphones.
The third aims at improving the Linux kernel in general.

Open Smartphone Data Collection Data gathered on smartphones reveals a lot
about users, but also about the behavior and efficiency of the underlying system soft-
ware. During a 4-month study, we collected an anonymized open dataset on Android
smartphones, which is now freely available for research.² The data was collected from
various sources in the Linux kernel andAndroid’s application frameworkwithMobiDAC
[576], which is the predecessor of kCQL. The dataset has a formal meta model [649]
and was used, for instance, to predict the next mobile network cell in which a moving
user is likely to show up and to learn a smartphone energy model that can predict the
energy consumption of a future time window based on past history with a small error.

Reproducible LoadTests Based on another data collection in Android’s Linux kernel
and user-level services, we created representative resource usage profiles for arbitrary
Android apps [445]. This was done by recording traces of low-level events that are
signaled to the app, such as the arrival of a GPS fix or network packet, actions executed

2 http://sfb876.tu-dortmund.de/mobidata.

http://sfb876.tu-dortmund.de/mobidata

2.1 Declarative Stream-Based Acquisition and Processing of OS Data with kCQL | 33

by the app as a reaction, such as file I/O or display activity, and pauses. The traces
can be mixed to create arbitrary app profiles. Hereby the challenge is to adapt pause
durations and simulated event timestamps so that the mixed profile is realistic. System
software developers can playback the mixed traces as reproducable load tests without
the need for any real apps and, thus, can avoid any requirements on existing server
connections, user activity, and so on.

Learning OS Locking Rules With the proliferation of multicore and manycore sys-
tems the Linux kernel has tremendously grown in complexity, because concurrent
controls have to be coordinated in a fine-grained manner. Various kinds of locks are
being used for this purpose. Even for experienced system software developers, it has
become very difficult to determine the correct sequence of locks that have to be acquired
before a particular member of an in-kernel data structure may be accessed safely. Few
kernel components have a specification of their locking rules and most of them are
outdated. Based on kernel-level data acquisation, namely lock creation and usage
events, we developed LockDoc [446] as a possible solution to the kernel developers’
dilemma. LockDoc learns locking rules for data structures. It can thus (1) generate
documentation, (2) identify outdated rules in existing documentation, and (3) find bugs
in Linux by identifying rare event sequences that violate the learned rules. A number of
documentation and code improvements have already been contributed and integrated
into the Linux kernel.

2.1.7 Conclusion

Tapping the control and data flow of an operating system has its risks, as does any way
of tampering with a complex system. It can however provide us with vital information
that could hardly be obtained otherwise. The proper tools and abstractions help to
mitigate the risk.

Over a period of several years we have therefore developed kCQL, which combines
the best ideas of existing frameworks to a unique tool. It has a highly expressive query
language, a resource-efficient implementation, and supports data aggregation very
close to the data source.

Different application areas have been explored. It turned out that data gathered
in the system software context can be used to learn much about user and application
behavior, that we could precisely mimic application profiles, and that we could even
improve the Linux kernel and its documentation.

34 | 2 Data Gathering and Resource Measuring

2.2 PhyNetLab Test Bed

Mojtaba Masoudinejad
Markus Buschhoff

Abstract:Wireless sensor networks have matured to a point that they are ready for their
integration into industrial applications. However, before performing any real-world
roll-out, some aspects need detailed analysis. In addition to checks for the application
performance and durability, systemmodularity and energy neutrality are two important
concerns requiring accurate analysis. These requirements led to the development of
PhyNetLab, a test bed for material flow and warehousing applications on wireless
sensor networks.
Entities in industrial systems should be highly modular to enable flexible and re-

usable systems, and to ease the process of updating or upgrading system components
after deployment. This provides easy-to-setup systems that are dynamically improv-
able while minimizing post-deployment modification effort and costs. Hence, required
design principles for both hardware and software is explained by the case study of the
PhyNetLab test bed.
Energy neutrality is a fundamental requirement for wireless sensor networks in

logistics and production, because the infeasability of battery management of several
thousand network nodes will contracept any endeavor to become wireless here. This
section shows several means to achieve energy neutrality by using energy harvesting,
automatically generated energy models, and online energy accounting.
In addition to the hardware requirements, an industrial scale wireless sensor network

also has several software requirements, and these are narrowed down even further
when implementing a test bed for such a use case. Most importantly, PhyNetLab uses
Kratos, a real-time operating system based on C++ and AspectC++ that allows modular,
maintainable, and highly configurable code. Next to the language and framework
properties, Kratos employs energy consumption accounting for peripheral devices
while still running under heavy resource constraints.
The effectiveness and usability of the PhyNetLab test bed is further showcased by

presenting a material handling process of a production system that was entirely built
using PhyNetLab. Not only does it serve as a proof of concept for such a test bed, it also
provides insights for possible future works discussed at the end of this section.

2.2 PhyNetLab Test Bed | 35

2.2.1 Introduction

Research inWireless Senor Networks (WSN) has been continuously advanced in the last
years [209]. These networks are from diverse fields of applications with different aims,
specifications, and limitations. In addition to the singular WSNs developed separately,
federations of WSN have been built as well, with MoteLab [702], FIT/IoT-Lab [231], In-
driya [180], and WISEBED [304] as some famous implementations of them. While these
platforms show proof of concept and enable testing and development of WSNs, some
aspects are still open. Among them are the development of communication protocols
for specific applications and energy-aware system design and operation in a large-
scale deployment. Moreover, industrial roll-out requires more intensive system analysis
to assure reliability in long run continuous operation under full load in industrial
environments.

Among the different fields of application, in-house logistics or indoor materials
flow and warehousing are perfect candidates. On one hand, decentralization and mod-
ularization are considered key elements for future materials handling and warehousing
applications [599]. On the other hand, multiple electronic entities have been developed
to enable smart operation and communication of objects in this field [472]. Conse-
quently, fundamentals of an industrial use case are available and accessible scientific
concepts can be evaluated in this field.

Energy constraints due to the impossibility of recharging a large number of devices
and the size limitations of such mobile entities make them hardware with extreme
constraints. Meanwhile, the high dynamics of such processes with very fast paces
makes hard-coded algorithms inefficient. Consequently, these applications and the
PhyNetLab are perfect candidates for development, optimization and evaluation of
machine learning algorithms on hardware with extreme resource constraints.

Parts of this section are taken from [104] and [471] with the consent of the authors.

AWireless Sensor Network Test Bed for Warehousing An experimental materials
handling and warehousing platform is designed as a test bed for development, testing,
and optimization of industrial WSN case studies. A research hall withmore than 600m2

in TU Dortmund University is used here. Due to the flexibility requirements of future
in-house logistics, no component is stationed permanently in this area. For enabling the
transport of objects, five mobile robots are provided. In addition to the typical transport
boxes in two standard sizes, there are mobile workstations that can be positioned
dynamically according to the production process demands. These elements provide
a base for replicating different in-house logistics scenarios including: non-stationary
materials flow, different dynamic warehousing, and dynamic production planning and
process design.

The missing element for connecting these entities and for establishing a dynamic
smart system is the addition of smart electronic components with communication func-
tionality. These solutions should be small in size, light-weight,maintenance-free (or low

36 | 2 Data Gathering and Resource Measuring

Time Server Web Server Database Server

Internet
Gateway

Access
Point

...
Node Node Node

Fig. 2.7: Schematic structure of the PhyNetLab test bed.

maintenance), and autonomous. Moreover, they have to be energy-neutral to eliminate
the need for periodic recharges or battery exchanges. The process of developing such
a system will be discussed in the rest of this section. However, though we discuss the
design process, the main goal of such a system is the development, optimization, and
evaluation of materials flow systems that employs a WSN.

2.2.2 General Structure of the Test Bed

This experimental test bed is composed of three main layers. While a large number
of entities reside in the physical layer mounted on objects including transportation
boxes and workstations, a middle layer is made up of six access points (AP) that enable
communication using radio interfaces at 866MHz. Access to the outer world (internet)
is provided via a gateway that mainly accesses servers for time and data, in addition to
a web server that serves as a user interface. An abstract overview of the structure of
PhyNetLab is presented in Figure 2.7.

In addition to the overall structure of the WSN, PhyNetLab includes some extra
infrastructure which makes it an ideal experimental test bed. First, there is a motion
capturing system for tracking objects within the environment with sub-millimeter
accuracy and a frequency of up to 300Hz. This system includes a large number of
cameras emitting infra-red light. Objects to be tracked aremarkedwith specific reflectors
that can be observed by the cameras. Each object gets a set of reflectors with a unique
physical distribution. The formation of these reflectors is stored in the software of
motion capturing system. Combining views from different cameras provides accurate

2.2 PhyNetLab Test Bed | 37

positioning of each object within this system. This position data can be accessed inside
PhyNetLab by all nodes in the two lower levels.

A fundamental necessity for evaluating the energy neutrality of nodes (empowered
by photovoltaic (PV) and of energy harvesting) is a controlled lighting. This is possible
inside PhyNetLab via a smart lighting management that provides a controlled light
intensity to replicate diverse work and warehousing light scenarios.

2.2.3 Hardware

While the upper-tier hardware of PhyNetLab uses commercial servers with specific soft-
ware developed for this purpose, the middle layer APs are based on modified Raspberry
Pi boards. These are supplied with two 868MHz transceivers in addition to two WiFi
modules. In parallel to WiFi communication with the top tier and internet, dedicated
transceivers enable communication with the field-level nodes. However, all used hard-
ware are off-the-shelf components specifically programmed for the PhyNetLab test bed
application.

The key hardware aspect of PhyNetLab is the heterogeneity of the field level nodes
in a large scale. Meanwhile, these nodes should enable fast modification while prefer-
ably using the same interface. Hence, nodes in the field level (called PhyNode) that are
battery-powered have a modular design with a main board (MNB) and a swappable
board (SB). All nodes have a similar MNB, enabling interaction for a basic communica-
tion via ZigBee. Furthermore, the MNB is used for system flashing and power supply
while each SB has a specific hardware configuration that can be changed over time.
A general overview of a PhyNode board front view is presented in Figure 2.8, clearly
showing the separation between two modules with a single connection using an 8-pin
port.

The MNB is the fix compartment of PhyNode and provides fundamental functional-
ity via air software flashing. Therefore, it has a simple construction with a schematic
structure shown in Figure 2.9.

The MNB has a power module made of a Li-ion polymer battery with 1 250mAh
and a typical voltage range of 3 V to 4.2 V. Its voltage controller keeps the system in a
safe operational range, while protecting the battery. It also includes a RF transceiver
for communication using ZigBee, chosen mainly due to its low energy demand and
generality of use. This construction improves the process of flashing new software.

For its core functionality, an SB can have a large set of components with different
configurations. A schematic structure of the most advanced version of PhyNode com-
ponents is presented in Figure 2.10. Some modules such as sensors, user interfaces and
energy harvesting devices are optional and are not available in some batches. However,
all nodes use a MSP430FR5969 MCU from Texas Instruments, which provides 64KiB of
FRAM as well.

38 | 2 Data Gathering and Resource Measuring

Fig. 2.8: A PhyNode board’s front view. SB in the inner part is physically separated from the MNB
while having a single electrical connection through an 8-pin port. SB can be simply changed with
different versions to enable hardware diversity and as new components evolve over time.

Po
w

er
m

od
ul

e

Battery

Voltage
control

MCU

RF
controller

To SSB

Power

Data

Fig. 2.9: Schematic structure of PhyNode’s main board.

To build a heterogeneous network, five different configurations of the SB module are
used to create 350 PhyNodes within the PhyNetLab. This diversity provides the pos-
sibility of checking scenarios and solutions made of nodes with dissimilar hardware
specifications. This heterogeneity is essential for real-world industrial applications,
because mixing different solutions and versions of devices is a very common practice
in the industry.

2.2.4 Software

2.2.4.1 Test Bed Requirements
An energy-neutral embedded system as a test bed for IoT applications has several
requirements that go beyond the scope of typical embedded-systems engineering. Thus,

2.2 PhyNetLab Test Bed | 39

MNB
Power
Module

Fig. 2.10: Schematic structure of PhyNode’s swappable board.

to deliver a stable and re-usable code base for hardware access and scheduling, an
embedded real-time operation system called Kratos was developed for PhyNetLab.
Kratos fulfills the following requirements of PhyNetLab applications:
– Tailoring: The plethora of features and variants in Kratos, combined with the high

resource constraints in an embedded low-power system, require an easy way to
select and configure components for an application.

– Separation of concerns (SoC): The operating system code base shall be stable and
maintainable. This requires a separation of the concerns of Kratos developers,
driver/component developers, and application developers.

– Inversion of control (IoC): As part of the SoC strategy, IoC enables calls from the
operating system to the application code without altering the operating system
code base. In combination with tailoring, this allows for (configurable) calls to
drivers, e.g. for their initialization at system startup, and to application code.

– Crosscutting concerns: In contradiction to the SoC paradigm, there are also cross-
cutting concerns in a complex system. Here, common functionality (like the logging
of function calls) shall be developed as an own component on top of the existing
code base. As exemplified with the logging functionality, such a functionality must
not alter the source code in order to maintain the SoC. Another example shown
later in more detail is an energy consumption accounting during driver calls that
does not alter the original driver code. This is barely possible in purely imperative
or object-oriented languages.

– Energy analysis: To collect PhyNode performance data, a detailed energy con-
sumption analysis is necessary. Online energy measurement cannot fulfill this

40 | 2 Data Gathering and Resource Measuring

requirement, as it cannot be done for single system components, e.g. peripheral
hardware components, on the same chip as the microcontroller.

As a result of these requirements, Kratos was developed in AspectC++ [644, 645], an
aspect-oriented programming (AOP) language extension for C++. The AspectC++ com-
piler works as a pre-compiler for the target platform toolchain. AspectC++ can inject
or exchange source code into an existing code base during compile time in a process
called "code weaving". To do so, AspectC++ supplies its own language to identify code
locations ("joinpoints"), and a well-structured C++ alike language for the definition of
code fragments to weave, known as "advices". A combination of joinpoints and advices
is called an aspect.

An example use of AspectC++ in PhyNetLab was the utilization of the PhyNode
display, which requires a higher voltage for bus signals than delivered by the processor
in low energy mode. Instead of altering the display drivers, and thus making them
dependent on the processor type and rendering them unusable for other hardware
platforms, PhyNode’s display code weaves low-high power mode switching aspects into
the drivers, leaving their original code untouched. Furthermore, this behavior enables
tailoring: simply by choosing whether to compile this aspect or not is enough to enable
or disable the powermode switching without ever touching the code base. By that, code
developers are not required to anticipate possible future extensions by using "#ifdef"
statements for their configuration.

The AOP also helps to enable the IoC paradigm. Coming back to the earlier example
of driver initialization, drivers can now employ an aspect to insert a call to their initial-
ization code into Kratos. For this purpose, Kratos has a set of empty "hook" functions
where aspects are supposed to weave their code. Again, deactivating a driver simply
requires not compiling its code and this aspect.

In conclusion, the use of AspectC++ enables SoC, IoC, crosscutting concerns, and
supports tailoring at a very detailed level of granularity without the hard-to-maintain
syntactic overhead of "#ifdef" directives [63].

2.2.4.2 Energy Accounting (Energy Models)
An important parameter for the analysis and evaluation of test bed experiments is their
energy consumption. In systems with a highly constrained supply of energy, it is impor-
tant to understand what energy is used for, and which component is responsible for its
consumption. However, this is hard to answer by simple measurement. Moreover, an
"online" measurement, i.e., having measurement equipment on board and performing
measurements during runtime, has several disadvantages, including:
1. It consumes power by itself.
2. It cannot distinguish between different consumers.
3. It requires CPU time for storing data.
4. It needs a communication channel to the CPU, acquiring an important resource.

2.2 PhyNetLab Test Bed | 41

As an alternative, software energy models can help to estimate the power consumption
per hardware component. Since software models require a computational Overhead,
there are several design alternatives. Offlinemodels calculate the energy consumption
at design time, thus enabling highly detailed and precise models. However, they can
only statistically anticipate external events, such as incoming communication requests
and user interaction. By contrast, onlinemodels can dynamically adapt to the situation,
but seemingly have a trade-off between computational demands and accuracy. Nev-
ertheless, it was shown in [105] that highly accurate results can be achieved in many
real-world scenarios with low computational effort.

To achieve this, an energy model for a component has to follow a certain method-
ology. In the used modeling scheme, each component is modeled as a cost-annotated
Finite State Machine (FSM) consisting of energy states. The FSM has two types of cost
annotations: a state is annotated by average power costs, so a state’s energy consump-
tion can be calculated by multiplying the costs by the time the machine resides in the
respective state; transitions, however, are annotated by average energy costs, so that
switching between states can potentially have an energy impact.

In the given modeling scheme, driver function calls and interrupt service routines
cause state changes. So, there is a mapping between driver functionality and energy
model, and the energy model has to be constructed accordingly. In driver implementa-
tions on other operating systems, this might not be feasible, as there is a semantic gap
between the driver function call interface and the energy model (see Figure 2.11). Kratos
allows us to close the semantic gap by using a mapping scheme for an energy model.
However, the driver interface implementation still has to be mappable to transitions of
the model in general.

It is not obvious that this form of modeling is always feasible while maintaining
sufficient accuracy, since it might become a problem for arbitrarily complex hardware.
However, the complexity of hardware in energy neutral systems is limited, and a practi-
cal survey ofmodels for typical components like radio transceivers, sensors, CPUs, serial
bus drivers, different MCU platforms, etc., guided by the automated energy modeling
system shown in Section 2.2.4.3, yields accurate results in practice.

The energy model of a component can be used for online energy accounting within
the component drivers and other operating system modules. A low overhead imple-
mentation simply counts the numbers of transitions, i.e., driver calls, and maintains
a time lapse for each state of the FSM. When energy values are requested from the
accounting system, calculating the energy consumption of a component is as complex
as multiplying the count of each driver called by the respective transition energy, and
multiplying the time lapse of each state by the respective state power.

CPU energy consumption is a special case, because a CPU usually has no driver
implementation. However, CPU energywas accounted using the samemodeling scheme
in Kratos. A CPUmodel segregated different power modes or sleep modes as FSM states.
Instead of instrumenting a driver for accounting, the Kratos scheduler is used that
controls all CPU energy state transitions.

42 | 2 Data Gathering and Resource Measuring

OS functions

Driver

Hardware

App. App.

[April 16, 2019 at 13:15 – classicthesis version 0.1]

OS functions

Driver

Hardware

App. App.

E(t) = x

E(t) ∼= x

sync.

[April 16, 2019 at 13:15 – classicthesis version 0.1]

Fig. 2.11: Coherent and incoherent driver. The incoherent driver on the left allows no code-to-model
mapping (semantic gap). On the right, this is achieved by respecting the model structure within the
code. Source: [104]

The energy accounting code is injected into the original driver and scheduler code
by using the AOP. To work towards an automation of this process, which is called
instrumentation, a set of tools were developed that are able to import energy model
files and mappings between drivers and transitions, and to generate AspectC++ aspects
for the respective driver. Again, this enables application developers to quickly decide
whether to use instrumented or original drivers without altering the driver code base.

2.2.4.3 Energy Model in the Loop
The instrumentation system described before allows for quickly altering the cost anno-
tations of a model. It also allows for automated re-deployment of code to the actual
hardware. This can be used to determine the costs of states and transitions in a process
of supervised learning.

Thus, comparing actual power measurements to accounted energy can sharpen
the energy model. This can be achieved by using a measurement loop as depicted
in Figure 2.12. A device under test is programmed with an instrumented firmware.
The used model is a preliminary state machine with transition mapping, yet without
cost annotations. The operating system is additionally instrumented by a test pattern
generator that calls driver functions in a pre-configured order. The device running this
firmware is externally equipped with a power measurement unit. Both accounting and
measurement values are delivered to an external analysis engine, which determines
the quality of the cost solution and automatically creates a new model to re-iterate
the process. The loop either ends if a desired accuracy is reached or no significant
quality increase can be achieved throughout multiple runs. Also, the analysis engine
can identify structural problems within the FSM, e.g., states that show a great variance
in their power consumption.

2.2 PhyNetLab Test Bed | 43

Model
Instrumented

DriverHardware

Measurement Application

Online
Accounting

Analysis
Offline

Measurements

run sheet

[May 8, 2019 at 12:26 – classicthesis version 0.1]

Fig. 2.12:Measurement loop. Solid lines resemble automatic steps; dashed lines allow for manual
intervention. Source: [104]

This automated model annotation process opens the door for more complex models.
Until now, the model was limited to accounting driver calls without respecting function
call arguments. Introducing call argument costs (as a mathematical function of the
argument set) can greatly increase the accuracy of a model [106]. However, this comes
at a cost: the online evaluation of a driver’s energy consumption can now become as
complex as the argument cost function.

The measurement application that is generated for the target hardware is driven by
a run sheet, as shown in Figure 2.12. The run sheet defines validity ranges for all driver
function arguments. The synthesized measurement application iterates through the
power set of these ranges. The resulting data is analyzed in three steps:
1. Identification: In this phase, all arguments influencing the energy consumption

are selected. For this purpose, reference measurements are taken while keeping the
observed argument constant. Afterwards, the observed argument is varied through-
out several iterations. If the varied argument leads to an energy consumption that
is out of the noise bounds of the reference measurements, the observed argument
is considered influential.

2. Single-argument regression: The cost function for a single argument is identified
by using eight regression methods (linear, logarithmic, shifted logarithmic, expo-
nential, square, fraction, root, one-bit count). The function f (p⃗) with the lowest
sum of squared residuals (SSR) is chosen for the next step.

3. Multi-argument regression:All identified functions f (p⃗) ∈ F are combinedwithin
a compound function shown in Equation 2.1. The coefficients for this functions are
determined using regression while minimizing the error. The result is the assumed
cost function.

g(p⃗) =
∑︁

F′∈P(F)

⎛
⎝aF′ ·

∏︁

f∈F′
f (p⃗)

⎞
⎠ (2.1)

44 | 2 Data Gathering and Resource Measuring

Tab. 2.3: Symmetric model error of static and parameter-aware (right) model attributes for CC1200
and nRF24 transceivers in Monte-Carlo cross validation. Parameter influence is shown in the middle.

Model attribute Influencing Error

Data rate Payload length tx power Static Model

CC1200 TX power ✓ ✓ ✓ 12% 0.7%
CC1200 TX time ✓ ✓ – 87% 0.1%
CC1200 RX power ✓ ✓ – 0.2% <0.1%

nRF24 TX power ✓ – ✓ 34% 1.2%
nRF24 TX time ✓ – – 16% <0.1%
nRF24 RX power ✓ – – 2.2% <0.1%

To verify this approach’s validity, TI CC1200 and nRF24L01+ radio transceivers, a low-
power I2C temperature sensor (LM75B), and a synthetic peripheral with programmable
power consumption behavior were modeled and tested [106]. Both transceivers contain
IDLE, RX, TX, and SLEEP states. For the evaluation of the dynamic model approach,
three adjustable parameters were present: transmission power, bit rate, and transmitted
data length.
Table 2.3 shows the determined influence of parameters on model attributes and the
model error both for static and dynamic model attributes. Themodel error was assessed
using 200 Monte-Carlo cross-validation runs. Data was split into 2/3 for training and
1/3 for validation.

The results show that function arguments significantly influence energy consump-
tion, occasionally in unexpected ways. For example, it was expected that the power
consumption during TX is constant for the CC1200, and payload length would only in-
fluence the energy consumption through TX duration. In reality, even the actual power
depends on the payload length. It turned out that the CC1200 has a fixed preamble with
separately set transmission power, so the preamble/payload duration ratio (and hence
TX power) also depends on the payload size. By contrast, the nRF24 transmissions use
a fixed packet length by default, so the energy consumption of a packet transmission is
completely independent of the payload length.

With the synthetic peripheral, several functions for state power consumption were
tested. The used function was reliably detected within less than 0.7% model error.
Even in a pessimistic parameter-aware cross-validation setting (i.e., the parameter
combinations of training and validation set are mutually exclusive, which is rarely the
case in real-world usage), correct functions were determined in at least 90% of cases,
and model error did not exceed 1.4%.

For most parameter-independent transceiver states and the temperature sensor,
model errors below 0.8% were observed for state power consumption. The only excep-
tions were the CC1200 SLEEP state, showing random deviations of 7% independent of
the parameter settings, and few ultra-low-power states, which suffered from the limited

2.2 PhyNetLab Test Bed | 45

accuracy of the available measurement equipment. Absolute errors were below 1.2 µW
here.
Modeled transition energy showed errors of 1 to 10% (5 µJ) and transition duration
up to 2.5%. Only errors for transitions longer than 100 µs were correctly measured in
keeping with the horizontal accuracy of the measurement equipment. Assuming an
average of two transitions per second, overall model error was below 1.5%.

2.2.5 Experiment Examples

After developing, building, and evaluating both the hardware and software of PhyNet-
Lab, we conducted a simple case study by using measurement information for rough
indoor localization [473]. In this evaluation experiment, light intensity, temperature,
accelerations, and passive metrics such as Received Signal Strength Indicator (RSSI)
were measured in addition to the exact position of each node from the motion captur-
ing indoor localization system. Using a large collection of this information, different
machine learning applications were then utilized. These methods not only include
decision trees and random forests, but also k-nearest neighbours, Support Vector Ma-
chines (SVM), and Naive Bayes classifiers. Although they performed well in predicting
the position, only a small selection of them can be implemented on a PhyNode due to
the extremely constrained memory, computation, and energy resources. This shows
the necessity of further research on development and optimization of MLmodels for de-
vices with extreme resource constraints. After providing proof of concept for usage and
implementation possibilities of PhyNetLab, it was opened for real-world case studies.

In the first industrial evaluation application of PhyNetLab, the effect of integrating
cyber-physical systems (PhyNodes) within a dynamic materials flow system for produc-
tion lines was tested. The results of these experiments, reported in [730], have enabled
an initial analysis of decentral production planning using cyber physical devices. Fur-
thermore, these results help to establish AuDePrOC as a tool for a systematic decentral
strategy analysis [730].

In the next step, PhyNodes are integrated into mobile workstations to enable not
only a flexible materials flow, but also a dynamic factory and production system [285].
Such a plant can reorganize its overall structure to adapt itself according to the current
production necessities in an optimal manner. Hence, such a production system can
remove or add extra entities to the overall system dynamically by making use of the
infrastructure provided by PhyNetLab. These two initial experiments show both the
potentials of decentral and modular systems and the possible challenges ahead of
systems designed for their use. All in all, PhyNetLab and PhyNode provide a base test
bed for real-world evaluation (such as the application of communication aspects in
Section 9.2.2) and roll-out. Moreover, the tools and experiences collected during its
development will pave the road for more futuristic test beds to collect data and adapt
designs to them.

46 | 2 Data Gathering and Resource Measuring

2.3 Zero-Power/Low-Power Sensing

Andres Gomez
Lars Suter

Simon Mayer

Abstract: Over the past few decades, batteries have played a central role in the design
of wireless sensing systems. Large storage devices provide a stable energy supply, en-
suring long system lifetimes even when energy consumption is highly variable. This
storage capacity is a central tenet in the design of time-based sensing applications,
which can gather information about the system’s surroundings periodically. While a
large energy storage capacity has certain benefits, it also has several drawbacks. They
have limited recharge cycles, are costly to manufacture, and possibly include harmful,
poisonous materials. They can also increase the form factor significantly, and impose
restrictions on the temperature range of operation. Current trends point toward the
deployment of billions of interconnected sensing devices gathering information from
their surroundings, also known as the Internet of Things (IoT)). For this vision to be-
come a reality, power systems will need to be small, cheap, low-maintenance, reliable,
efficient, and scalable. While energy flow is absolutely necessary for IoT devices to
function, large energy storage capacity is not. Minimized energy provisioning will make
the IoT more economically viable and environmentally friendly. It also restricts the use
of high-power peripherals and introduces intermittence, raising new challenges in ap-
plication development. This contribution presents an overview of the main challenges
for low-power sensing with limited energy storage. Starting from hardware considera-
tions for high-efficiency energy harvesting, the benefits and limitations of batteryless
sensors are investigated. New software techniques are deemed necessary to address
these limitations, requiring close synergies between low-power software and hardware
components.

2.3.1 Introduction

Information has become one of the most important factors in modern economies, play-
ing a key role in sectors such as healthcare, infrastructure, and supply chains, among
many others. Whenever information from the physical domain is required, sensing
systems must be employed to gather the relevant data in a scalable and affordable
manner. Designing these systems for long-term deployments is a difficult challenge
since traditional battery-powered devices would be restrictive in terms of size, cost,
reliability, and maintenance. Large energy storage elements can provide a stable power
supply, leading to potentially long system lifetimes even when the system’s power

2.3 Zero-Power/Low-Power Sensing | 47

demands are highly variable. However, current trends point toward the deployment of
billions of interconnected embedded systems sensing data from their surroundings that
will be integrated into the IoT. In many IoT use cases, it is desired that these sensing
devices disappear physically as well as psychologically and that they require little
maintenance, motivating the use of mobile, wireless sensor nodes. Energy harvesting is
widely regarded to play an increasingly important role in supplying enough energy to
this new type of resource-constrained devices. However, even though costs have fallen,
few IoT products have embraced solutions based on energy harvesting. This is partly
due to a mismatch in both the power density and the timeliness of energy production
with respect to consumer requirements.

A new class of batteryless sensing systems has recently emerged that provides a
sustainable, long-term solution to supplying the expected large numbers of IoT devices
with sufficient operating power. These energy-opportunistic systems are functional
only when the environment provides enough energy for their operation; otherwise,
they consume zero energy. This contribution focuses on the design challenges for
the efficient execution of batteryless sensing applications, specifically those powered
by light. The work presented here perfectly complements the detailed mathematical
models for indoor photovoltaics discussed in Section 3.6 in Volume 3.

Starting from a study of the energy constraints imposed by indoor environments,
the main optimization criteria for batteryless platforms are introduced. Based on this
formalism, different application scenarios for wearable and statically placed sensors
are presented. These applications and their hardware considerations are discussed in
detail, as well as the software optimizations necessary to execute them reliably and
efficiently in a batteryless system.

If system operation depends on the energy extracted from its surroundings, it be-
comes of fundamental importance to understand the dynamics of the environmental
conditions. In the worst-case scenario, environmental conditions are non-deterministic
and highly variable. For robust operation, systems relying on energy harvesting, there-
fore, need to tolerate [261] or adapt [11] to variable harvesting conditions. Data from the
spatially and temporally variable environment and the energy that can be extracted
through harvesting are highly valuable for dimensioning, calibrating, and testing
such systems. Extensive irradiation data for outdoor solar harvesting is available from
weather service stations around the world, typically reaching back many decades. By
contrast, indoor solar harvesting data is only sparsely available, but becoming increas-
ingly critical for many IoT applications that target deployment in this environment
such as building automation and assisted living.

We discuss an extensive indoor energy harvesting dataset, first presented in [632],
that addresses the lack of long-term indoor solar harvesting traces. While other works
have performed illuminance measurements in indoor environments [267], this work
jointly monitors the extracted energy from the solar panel, the energy stored in the
battery, and the ambient conditions. The combination of power measurements using a
real harvesting system implementation and rich ambient sensor data enables diverse

48 | 2 Data Gathering and Resource Measuring

opportunities for analysis and evaluation, including power estimation, energy har-
vesting source modeling, and harvesting system efficiency analysis, to mention a few.
One of the key insights from this dataset is understanding quantitatively the energy
variability of indoor photovoltaic harvesters over a two-plus year period. The same
indoor solar cell can produce anywhere between 0 and potentially hundreds of joules
during one day, depending on geographical location, architectural design, and many
other variables.

When following the batteryless sensing paradigm, this potentially large energy flow
should be consumed as soon as the energy is harvested. Themain reason for this energy-
opportunistic operation is that the alternative, to store energy for future use, would
require an expensive, rechargeable energy storage device. As an example, a 500mAh
lithium ion polymer battery can easily cost several USD, even at volume, while a 47
μF ceramic surface mount capacitor can cost 0.1 USD. Minimized energy provisioning
will make the IoT more economically viable, environmentally friendly, and potentially
more energy-efficient. When a battery-powered device maintains an application circuit
energized for many years, a considerable amount of that stored energy will be spent
in sleepmode. Even if this is a highly optimized low-power mode, most commercially
available microcontrollers can reduce their power consumption to a few μWs in the
best-case scenario, assuming all other peripherals can be turned off. Consequently,
these few μWs can, over many years, turn into thousands of joules that were not spent
on the actual application, but just on keeping the system energized. Keeping the system
on is essential for many sensing applications, but not all. Energy-driven sensors will
spend harvested energy as soon as possible by running the application. During night
periods when there is no energy, the batteryless sensor will not be able to support the
energy-efficient sleepmode, and will turn off completely, consuming zero watts until
the environment can supply energy again. Batteryless systems thus spend a comparably
tiny amount of energy to keep the system in sleep; most of the energy will be spent
actually executing the application.

Batteryless sensing systems perform efficient data sampling when their surround-
ing environment provides enough energy. However, even when a transducer is large
enough to directly power an application circuit in the correct voltage and current range,
there is no guarantee that it will harvest at its maximum power point [631]. If the ap-
plication circuit adjusts its operating point to extract the maximum power from the
transducer, it will most likely not be the application circuit’s optimal operating point.
The most energy-efficient operation for the application circuit depends only on the
application and the peripherals it uses, not the environmental conditions. To maximize
the harvested energy and minimize the application’s energy cost, the system architec-
ture needs to have separate voltage domains for the harvesting and application circuits.
The power conditioning circuitry can thus become transducer-independent and allow
impedance matching for maximum power transfer without affecting the application
circuitry. The application circuit can also dynamically adjust its own operating voltage
according to the application requirements. These architectural requirements will be dis-

2.3 Zero-Power/Low-Power Sensing | 49

cussed in detail, alongwith the EnergyManagement Unit (EMU) solution, first proposed
in [259]. In the years since this architecture has been experimentally demonstrated to
be both energy-efficient and robust in a wide range of operating conditions.

EMU-based sensing systems leverage voltage and current decoupling to efficiently
execute task-based applications. As such, an environment that supplies only 10 µW at
1 V can still supply application circuits running at 3 V with tasks consuming up to 100s
of mW. Batteryless applications can thus execute reliably, even with unfavorable envi-
ronmental conditions. We will present two batteryless application scenarios based on
the EMU architecture. One details statically positioned ambient sensors that can trans-
mit data asynchronously using a Bluetooth Low Energy (BLE) radio. Another focuses on
awearable sensing application running on a batteryless system for accelerometer-based
gesture detection. We present the entire flow in this embedded learning application,
from data acquisition to model training and system performance optimization.

The remainder of this contribution is structured as follows: the indoor photovoltaic
dataset is discussed in Section 2.3.2, the Energy Management Unit (EMU) architecture is
presented in Section 2.3.5, the first batteryless sensing system for ambient monitoring
is introduced in Section 2.3.8, the second batteryless system for gesture detection is
discussed in Section 2.3.9, the analysis of both systems is presented in Section 2.3.14,
and we conclude in Section 2.3.17.

2.3.2 Energy Availability with Indoor Photovoltaics

Large datasets can assist the design and evaluation process of energy harvesting IoT
systems for outdoor scenarios. Since the harvesting characteristics in indoor environ-
ments vary significantly, these datasets are unsuitable for designing and evaluating
harvesting-based systems intended for indoor applications. In indoor environments,
the harvestable energy is severely limited, thus imposing strict energy constraints
for harvesting-based systems. Furthermore, the harvesting characteristic can change
drastically even for systems deployed close to one another. To understand the energy
indoors and appropriately design harvesting-based IoT systems, long-term indoor har-
vesting data from various indoor locations is needed. Such data also enables extensive
evaluations of energy harvesting systems indoors. We discuss the collection of an in-
door harvesting dataset that consists of measurements of the power harvested by a
solar panel, the energy buffered in energy storage, and the sensor data describing the
system’s ambient condition.

2.3.3 Measurement Setup and Deployment

The indoor harvesting dataset, first presented in [632], is collected with a custom-
designedmonitoring platform shown in Figure 2.13. The platform contains a solar panel

50 | 2 Data Gathering and Resource Measuring

(AM-5412, 50mm x 33mm) whose output is measured. The bq25505 harvesting chip
includes a boost converter withmaximumpower point tracking (MPPT) that ensures the
solar panel operates efficiently and also stores the harvested energy in a virtual battery
circuit. Since the measuring platform does not contain an application to consume the
harvested energy, an energy storage component would overflow and measurements
associated with it would not be consistent with the typical behavior of an energy
harvesting IoT system. Instead, the virtual battery circuit emulates a system’s energy
storage continuously operating at a typical voltage of 4.2 V. It maintains a consistent
operating point of the harvester management component and provides harvesting
measurements that align with the behavior of a harvesting-based system. To record the
ambient conditions, the platform contains two TSL45315 light sensors and a BME280
humidity sensor. The light sensors are located on two opposite sides of the solar panel
and provide illuminance lighting conditions that the solar panel is exposed to while
harvesting energy. The humidity sensor measures the ambient relative humidity, air
pressure, and temperature.

The custom platform is designed to be used in conjunction with the Rocketlogger
platform [631]. The Rocketlogger is a measurement device with a small form factor that
can seamlessly provide high-accuracy measurements for an extensive range of currents.
These features enable the RocketLogger to be used for long-term deploying logging
highly variable conditions found in indoor environments. The Rocketlogger can thus
measure the energy harvested by the solar panel and flowing into the harvesting chip
and the output of the bq25505 component as well as the ambient sensor data. The
sensors, energy extraction, and circuitry required for the virtual battery are powered by
the Rocketlogger, ensuring that the harvesting system is not affected. As an independent
observer, the RocketLogger has minimal impact on the system being measured and
provides the necessary data to relate environmental conditions to electrical power
signals.

Five measurement platforms consisting of the custom monitoring platform and
Rocketlogger as shown in Figure 2.13 are deployed throughout a floor in an office build-
ing at ETH Zurich, Switzerland. Figure 2.14 depicts the locations of the measurement
platforms. Due to construction, one platform was moved and the figure shows both its
initial and subsequent location. The deployments cover diverse environments. As such
the platforms are exposed to different mixtures of artificial and natural light and direct
and indirect sunlight during various times of the day. Additionally, the platform’s ori-
entations within rooms are varied and the occupancy patterns of the rooms range from
regularly and permanently occupied offices to only sporadic occupancy. All deployment
locations are described in Table 2.4.

2.3 Zero-Power/Low-Power Sensing | 51

Fig. 2.13:Measurement setup includes RocketLogger, solar panel, harvesting circuitry, and a virtual
battery. Sensors measure the ambient condition.

2.3.4 Energy Harvesting Dataset

The collected long-term indoor harvesting dataset is publicly available. The extensive
indoor energy harvesting dataset [632] contains power trances and ambient sensor data
covering more than two years starting in July 2017. The time span for which the data
from each location is available is listed in Table 2.4.

The energy harvested on average during a day is determined for each location and
summarized in Table 2.4. The table also shows the 75% percentile of the absolute devia-
tion from the mean. The energy yield varies drastically between locations despite their
proximity, highlighting the strong spatial variability characteristic of indoor harvesting.
Furthermore, the temporal variability of the energy availability in indoor environments
is visible with the wide range that the percentile spans. Station A primarily harvests
energy from artificial light. The illuminance levels there have certain patterns, like

(a) Floor plan (b) Diverse harvesting characteristics

Fig. 2.14: The measurement platforms were wall mounted on an office floor. The installations ex-
perienced diverse conditions affecting the daily harvested energy. Some locations (e.g. Station
D) receive much natural light and thus have a large energy budget. Others (e.g. Station A) mainly
harvest from artificial light and harvest significantly lower energy per day.

52 | 2 Data Gathering and Resource Measuring

Tab. 2.4: Summary of four measurement platform deployments: environment characteristics, mea-
surement timespan, and mean daily energy yield.

Station Location Natural light Timespan Mean daily energy

A Office Little 22 months 2.02 ±1.64 J
B Office Little 24 months 1.57 ±1.28 J
C Office Medium 24 months 2.87 ±2.36 J
D Laboratory High 24 months 14.18 ±11.67 J

reduced harvested energy during non-working days. Station D received direct sun light
for limited periods, resulting in a maximum daily harvested energy over 20×more than
the other stations dominated by artificial light.

2.3.5 Batteryless System Design

In the previous section, we have seen how energy harvesting can have high spatial
and temporal variability. Even when the same solar cell is deployed on a single floor,
they will have very different energy budgets, which can also be difficult to predict. If
the embedded systems are not designed to handle this variability, the environmental
conditions can have a catastrophic impact on the overall system performance. Battery-
powered devices could absorb this variability, but current trends in energy harvesting
systems point towards a significant reduction in storage capacity due to cost, size,
and environmental considerations. The trade-off in doing so is that a minimal service
cannot be guaranteed for long periods of time. This is because as storage capability
decreases, the behavior of these systems becomes more immediately influenced by the
environment.

Duty-cycling is a common dynamic power management technique that allows
a system to adjust its average energy consumption by introducing Low Power Mode
(LPM). However, in order to perform single tasks such as reading a sensor value or
transmitting a data packet, these systems need to be able to buffer the required energy.
Otherwise, environmental conditions can rapidly change and turn off the load before
it completes its task. Consequently, we argue that a novel energy management unit
(EMU) is needed to provide energy guarantees for such disadvantageous scenarios in an
efficient, transducer-agnostic manner. Due to the limited energy intake in batteryless
systems, the unit should self-start requiring as little time and energy consumption
as possible. During those short periods of limited energy intake, it maximizes the
energy build-up by harvesting at the source’s optimal power point. When powering the
load with short energy bursts, it provides a control interface to the load so its optimal
power point can be tracked. In this section, we present an EMU that satisfies these
requirements, as shown in Figure 2.15.

2.3 Zero-Power/Low-Power Sensing | 53

2.3.6 Batteryless System Architectures

In recent years, the research community has focused on systems with very limited
energy storage capacity. In the most extreme case, energy storage is so limited that
guaranteed application progress occurs at a very fine granularity, possibly down to
a few instructions per activation cycle. Depending on the environment, transducer,
and application, different types of circuits might be needed to supply the system with
the energy necessary for program progress at a supported voltage range. Generally
speaking, there are three types of architectures for batteryless sensing systems:

Directly-Coupled When the transducer has an I-V curve compatible with the applica-
tion circuit, it can be directly connected. These systems typically use a small decoupling
capacitance (<20 μF) to buffer small amounts of energy. If the energy storage is too small,
atomic tasks such as sensor measurements and radio transmission are not supported,
since their energy requirements are too large for a small transducer with limited energy
storage. In [39, 341], the authors propose a combined HW/SW approach to perform
computation when the source can directly sustain a computational load during short
periods of time. These works use volatile logic that requires state-retention mecha-
nisms. In [424, 698], the authors present storage-less and converter-less harvesting
systems in which the load uses frequency scaling to track the maximum power point
of the source. While frequency scaling can maximize the energy input in CPU-based
applications, it does not minimize the load’s energy consumption and is limited to
a narrow active power range. Even though directly-coupled systems avoid converter
losses, if the power input is below this narrow active range, the load cannot be pow-
ered and the system’s efficiency immediately drops to 0%. Unfortunately, this is often
the case in batteryless systems. When the energy source and load have incompatible
operating points, decoupling them with converters becomes a necessity. As opposed
to traditional, battery-based systems, decoupled batteryless systems have a limited
energy buffer between the source and load.

Boost Converter Only The authors of [158, 159] propose a low-power management
system that requires very low input voltage and current. These works are able to start
the energy conversion at very low input power levels, but require a large buffer capacitor
at the converter input. Consequently, both approaches suffer from very long start-up
times of at least 18 minutes due to charging a large input capacitance of 140mF at a
constant input power of 2.5 µW. As will be explained, our capacitance is chosen to
minimize the cold-start energy and time.

Boost Buck Converter Combination The authors of [152, 524] use a boost converter
for optimal power point tracking. However, the first proposed system utilizes RF har-
vesting to accumulate charge in a supercapacitor and then power a camera application

54 | 2 Data Gathering and Resource Measuring

max. Ein
with MPPT

min. Eburst
with DVFS

Fig. 2.15: Dynamic Energy Burst Scaling simultaneously optimizes both the energy input and output,
even when the transducer and application circuit operate at different voltage and current.

with a buck converter. The second uses a reconfigurable energy architecture that can
adapt the energy capacity depending on the application’s energymode. The boost/buck
converter topology with an energy buffer serves as a basis for the approach presented
in this contribution and has been successfully demonstrated in many other works such
as [262, 630].

2.3.7 Energy Management Unit (EMU)

EMU-based systems decouple the load from the source and efficiently build up charge
regardless of the load’s operating point. We now describe our model of EMU-based
systems, which captures the time evolution of the energy storage device as a function
of both the environment and application circuit. One of the main goals is to derive
equations that can apply to a wide variety of energy sources and loads. This model can
be used to optimize important system parameters, namely the EMU’s start-up costs and
the energy burst size.

EMU Performance The amount of energy buffered in the EMU depends on several
parameters including the input and load power, and the system’s non-idealities. The
equation governing the time-dependent energy level in a capacitor is as follows:

E′cap(t) =
d
dt Ecap(t) = ηboost

(︀
Vin(t), Iin(t)

)︀
× Pin(t)

− Pload(Si)/ηbuck − Pleak(t) (2.2)

In this equation, the positive term represents the energy intake, while the negative ones
represent the energy consumption.

Input Power The system has only one power input, Pin(t), supplied by the transducer.
We focus on the adverse scenario where Pin < Pload and Vin < Vload,min. This means

2.3 Zero-Power/Low-Power Sensing | 55

that directly coupling the transducer to the load is not possible since it would not meet
voltage requirements. Furthermore, the batteryless sensing system can be placed in
dynamic environments. In these cases, maximizing the system’s overall energy flow
demands that the source’s maximum power point be tracked.

Load Power In the proposed model, the load can have two states (Si): active or inac-
tive. When active, the load is characterized by three quantities: Eburst,i , Vload,i , Pload,i;
where Eburst,i defines the energy burst size required for one execution of task i, Vload,i
its supply voltage, and Pload,i the power consumption during the execution of task i.
These parameters were characterized experimentally. In the inactive state, the load is in
deep sleep and awaits the trigger from the energy management unit. Though the actual
power consumption during deep sleep depends on the hardware, complex sensing
systems typically consume a few µWs. If the deep sleep power is higher, possibly due
to additional enabled peripherals, it will simply take longer for the EMU to accumulate
the energy necessary for the next burst.

Converter Efficiencies Since decoupled systems can have the source and load oper-
ating at different voltages, converters are needed. This step, while necessary, introduces
non-negligible losses, which are represented by boost and buck converter efficiencies
ηboost(V , I) and ηbuck. The boost converter’s efficiency is particularly sensitive to the op-
erating voltage and current, meaning it must be parameterized. These efficiencies were
also characterized experimentally, and a simple look-up table is used for simulations.

Other Energy Losses Unfortunately, converter inefficiencies are not the only sources
of energy losses. The maximum power point tracking unit and the control circuit also
consume energy. The consumption of the control circuit Ictrl and buck converter Ibuck
consists of a constant current and resistive component and hence depends on Vcap.
For the energy buffer, a capacitor of size Ccap and resistive leakage Rcap is assumed.
Considering these components, the system leakage is summarized as:

Pleak(t) =Vcap(t) ×
(︀
Ictrl

(︀
Vcap(t)

)︀
+ Ibuck

(︀
Vcap(t)

)︀)︀

+ Vcap(t)2/Rcap . (2.3)

Equations 2.2 and 2.3 can accurately describe the time evolution of the system’s energy
levels. They will be used in the remainder of this section to estimate how different
parameters impact the system’s losses, and to then calculate the optimal parameters
that minimize the losses.

Given the system model presented above, we can start optimizing the cold-start
energy and start-up time. By definition, this is the fixed start-up cost to turn a batteryless
system on. In order to minimize these fixed costs for a given input power, we need to
minimize the start-up time defined as:

56 | 2 Data Gathering and Resource Measuring

(a)Maximum efficiency is limited by the boost and
buck converter.

(b) Application’s execution rate has a linear depen-
dency with input power.

Fig. 2.16: EMU-based systems are most efficient within a specific input power range. Optimized EMU
implementations can have a Psys,min of almost 10 µW at 380mV, and a Pload,max of almost 500mW.

tstart-up =

⎧
⎨
⎩t | Vcap(t) =

√︃
2
∫︀ t
0 E′cap(τ) dτ
Ccap

= Vload

⎫
⎬
⎭ (2.4)

However, the minimum capacitance is limited by the EMU’s maximum supported
voltage swing, as shown in the following equation:

Cmin,i =
2Eload,i

ηbuck(V2
max − V2

load,i)
, (2.5)

where Eload,i and Vload,i are the energy and voltage required to execute task i, and Vmax
is the EMU’s maximum supported voltage. The optimal capacitor value is then selected
as the highest Cmin,i among all tasks i. An optimized energy storage can both guarantee
the atomicity of task execution and also minimize the start-up time. This forms the
basis for the reliable execution of batteryless applications, even under variable and
unpredictable energy harvesting conditions.

Once the capacitor size has been tuned for any specific application, the EMU can
“abstract away” the environment and absorb its power variability. By decoupling the
application from the environment, the overall system energy efficiency and application
execution rate can be viewed as a function of the input source power (Psource), as
shown in Figure 2.16. When the input power Psource is below the activation threshold
Psys,min, EMU-based systems will remain fully powered down and have zero-percent
energy efficiency. Satisfying the input power condition is necessary but not sufficient,
as there is also a minimum voltage requirement, typically Vsource > 380mV, for the
harvesting subsystems to self-start. After the system can turn on, the overall energy
efficiency jumps and remains relatively constant until the loadhas reached itsmaximum
power consumption, Pload,max. After this threshold is surpassed, the energy efficiency
decreases since there is an energy surplus being wasted due to the impossibility to
consume or store the energy for later use. This can be seen in Figure 2.16b, where the
application’s execution rate, and its duty-cycle, increase linearly from 0% at Psys,min
to 100% at Pload,max. The main difference between different applications will be the
slope, which depends on the energy consumed by a single activation. Power-hungry

2.3 Zero-Power/Low-Power Sensing | 57

applications will have a lower slope, covering a larger input power range between
Psys,min and Pload,max.

2.3.8 Ambient Sensing Using Batteryless Sensors

Batteryless systems with passive elements such as Radio Frequency Identification
(RFID) cards have been in wide circulation for decades, but they perform only simple
computation, have a smallmemory capacity, and require specialized readers to energize
and communicate with them. More recently, researchers have studied batteryless sys-
tems with active components to harvest more abundant primary (naturally occurring)
energy to perform complex sensing, processing, and broadcasting. Batteryless systems
with active elements such as photovoltaic cells [152], thermoelectric generators, [593]
or kinetic energy harvesters [313] can have high power densities.

2.3.8.1 The MiroCard Platform
The MiroCard, first presented in [260], is a batteryless smart-card powered by light.
Since MiroCards covered by any light-blocking material cannot be remotely energized,
their activation is exclusively on-demand: when a user chooses to expose them to light.
The MiroCard is less than 2mm thick, and has a surface area of only 45mm × 60mm,
as shown in Figure 2.17. The top side is covered by an organic solar panel with an active
area of 35mm × 53mm, and all electronics are placed on the bottom. Thanks to its
optimized hardware and software, the MiroCard is able to harvest enough energy to
communicate wirelessly, even in low indoor lighting conditions down to 170 lx. While
its component costs are low, several Swiss Francs at high volume, it is indeed more
expensive than passive Automatic identification and data capture (AIDC) technologies
such as RFID. However, the active batteryless technology behind theMiroCard offers key
advantages in addition to higher power densities. The MiroCard’s Cortex M3 provides
high processing capabilities for advanced applications with secure communication
protocols and also features enough memory for Internet application protocols such as
Constrained Application Protocol (CoAP).

2.3.8.2 Overview
TheMiroCard project is an evolution of the Transient BLE Sensor Node project [630]. The
hardware design is based on the EMU first introduced in [259], which proposed current
and voltage decoupling between a transducer and the application circuit through
energy bursts. In doing so, simultaneous optimization of energy harvesting , through
MPPT, and application energy, throughDynamicVoltage and Frequency Scaling (DVFS),
become possible.

58 | 2 Data Gathering and Resource Measuring

Fig. 2.17: The batteryless MiroCard hosts multiple ambient sensors, including an accelerometer, but
can operate only when exposed to light. Since any non-transparent material covering the solar cell
prevents the device from sensing, processing, and transmitting, it is immune to RF skimming.

2.3.8.3 Energy Characterization
The MiroCard’s power consumption was recorded using a RocketLogger measurement
device [631]. A DC source was connected at the Vcap point, meaning it supplies the
entire card, including the harvester chip, and the application circuit (including the
down conversion). This measurement thus encapsulates all of the leakage sources
and converter inefficiencies present during batteryless operation. The measured power
trace of a single activation can be seen in Figure 2.18, with annotations indicating the
system state. Using an external trigger, many activations are recorded, and the average
energy consumption of the base BLE application is measured to be 175.31 µJ, including
converter inefficiencies. Adding temperature and humidity increases the application
energy consumption by around 30 µJ [631]. Two 47 µF ceramic capacitors are enough
to guarantee energy bursts of these sizes when Vcap ∈ [2.8V, 4.37V], even if it is less
than the chip specification of 150 µF.

2.3.8.4 Start-Up Time Measurements
As discussed previously, one benefit of storing energy in small capacitors is that the
RC charging constant is very low, so the system can charge up quickly. Effectively, this
means that when a system is completely energy-depleted, it can behave in an energy-
opportunistic manner even if the environment sporadically generates small amounts
of energy. To fairly measure how fast an EMU-based device wakes up, the system must
first be completely depleted, since any leftover charge would artificially decrease the
start-up time. We thus define the start-up as the amount of time after light exposure

2.3 Zero-Power/Low-Power Sensing | 59

that a fully depleted MiroCard takes to go from fully depleted until it transmits the
first BLE packet. To ensure reproducibility and fairness, the MiroCards have Vcap and
ground shorted before being exposed to different illuminance conditions. They are then
placed in a solar testbed [629], which offers a controlled illuminance environment. The
start-up time for five different illuminance conditions is measured and recorded.

Figure 2.19 shows one sample measurement. When a fully-off MiroCard is first
exposed to light, it enters a startup phase where the solar panel voltage Vsrc is first
clamped to 330mV as it charges its internal capacitors. In this phase, the AEM10941
harvester chip optimizes the charge transfer to its small storage capacitor and quickly
stabilizes the regulated Vcc voltage, as shown in Figure 2.19. Afterward, the MiroCard
enters energy-driven execution where it stays in LPM, consuming only 2.47 µA, as it
waits for an EMU trigger. The EMU triggers the application once the maximum capacitor
voltage of 4.37 V is reached, and three identification beacons are transmitted. In this
experiment, the raw BLE packet size is 42 bytes, containing 25 bytes of advertisement
data. The MiroCard can integrate current and historical sensor data (e.g. temperature
and humidity) at the cost of slightly larger energy consumption, as presented in [630].
As the environment provides more light, the MiroCard’s execution rate increases auto-
matically, thanks to the EMU’s energy proportionality and the stateless nature of the
application, where each activation is independent. In dynamic environments, MPPT
plays an important role in optimizing the energy input, especially if theMiroCard is only
exposed to light for short periods of time. The measurements at different luminosity
levels are summarized in Table 2.5.

2.3.9 Gesture Detection on the Batteryless MiroCard

This section covers the documentation of implementing gesture recognition on a bat-
teryless smart card. The following discussion provides a brief overview of different

- 4
0

10

20

35

Psys
[mW]

Trigger

0 1 3.5 5.25 8.5 9 11
Time [ms]

State LPM init config BLE shut-
down LPM

Fig. 2.18: In LPM, the MiroCard’s average system current is only 2.47 µA. When triggered, a single
activation broadcasts 3 BLE packets and lasts less than 8ms.

60 | 2 Data Gathering and Resource Measuring

0

2.5

4.37

Voltage
 [V]

Vcap

Vcc

Vsrc

Light On

BLE

0 1.0 3.88 6.9
Time [s]

State OFF Startup Time ON

Fig. 2.19: Power-on trace of a MiroCard, indoors with natural and artificial light (2 600 lx). It starts
up within 2.9 s and transmits BLE beacons at an average rate of 16.25 pkt/s. BLE transmission is
triggered when Vcap = 4.37 V (black box).

Tab. 2.5: Performance of ambient sensing application in indoor-light conditions.

Luminosity Startup
time

Average
input power

Average
comm. rate

2600 lx 2.88 s 978 µW 16.25pkt/s
1 000 lx 7.17 s 372 µW 6.17pkt/s
500 lx 13.62 s 181 µW 2.92pkt/s
250 lx 33.49 s 85 µW 1.9 pkt/s
170 lx 60.04 s 60 µW 0.75pkt/s

approaches for gesture detection. Afterward, the methodology to develop a gesture
detection model for batteryless embedded systems is discussed in detail.

2.3.10 Approaches to Gesture Detection

The term “gesture recognition” must be narrowed because there are different types
of gestures. [498] differentiate diverse forms of human gesture detection. Full-body
motion, for example, analyzes people’s body movements in sports or rehabilitation.
Facial expressions, i.e. head gestures, allow the tracking of eye movements or the
estimating of a person’s mood. The third gesture type refers to hand or arm gestures.
This work focuses on the latter since people will use their hands to handle a smart card
the size of a credit card. Therefore, the term gesture recognition is used as a synonym
for hand gesture recognition in the further course of this work. There exist different
approaches for detecting hand gestures explained in the following parts.

2.3 Zero-Power/Low-Power Sensing | 61

Camera One method is gesture detection using cameras. Several works [125, 641,
667] have demonstrated a gesture detection system that processes a video stream from
a camera. Once a specific gesture has been detected, the system can trigger different
actions.

Acceleration As discussed earlier, the light-poweredMiroCard contains an accelerom-
eter, which canmeasure forces induced by gesturemovements. A competing technology
known as Electromyography (EMG) technology can measure the electrical activity pro-
duced by muscles to detect certain gestures, though some argue is still too expensive
from a financial, computation- and power-consuming perspective [380]. While we fo-
cus on detecting gestures performed on a handheld device, other works have studied
gesture detection with one or more accelerometers at different locations. In [181], the
authors used accelerometer data recorded from the wrist for gesture detection. [677]
propose equipping each finger with an accelerometer to feed the trained support vector
classifier model with acceleration data. This approach allows recognizing each finger’s
position to detect deaf language letters to simplify translation and communication. All
the approaches presented above work on batteries or with power cables. Some related
works suggest batteryless gesture recognition. [653] introduced a SmartWheelTag to
recognize hand gestures based on changes in RFID patterns. [670] present the CapBand,
a wristband with an ultra-low power design, to detect gestures using environmentally
harvested energy and a capacitance sensing system. The prototype for demonstration
purposes harvests energy using a solar panel. [360] show a wristband architecture
with flexible solar panels covering the whole band. Gesture recognition relies on EMG
technology in this case. [436] use photodiodes for energy harvesting and gesture de-
tection. All photodiodes harvest enough energy to process an algorithm that predicts
gestures based on data from fluctuations in ambient light supply. This approach allows
the detection of finger motions. The question of which approach best suits gesture
recognition on a smartcard arises since most presented prototypes are worn on the
wrist or attached to fingers. One related work is from [551], who propose an RFID tag
combinedwith an accelerometer for gesture recognition for access permission checking.
A trained k-nearest neighbor model recognizes the external data from the RFID tag after
transmission. Nevertheless, this contribution utilizes a different approach, which will
be discussed in the following part.

2.3.11 Batteryless Machine Learning

Lightweight Neural Nets Running a machine learning model in a batteryless system
imposes stringent restrictions on the model. The model must execute quickly, and have
lowmemory and energy consumption requirements for light-powered, real-time gesture
recognition. infXL offers a Deep Neural Network (DNN) called lightweight (Lt-Wt) net in-
troduced in [370]. Lt-Wt net is specially developed for resource-constrained applications.

62 | 2 Data Gathering and Resource Measuring

Convolutional Neural Networks (CNN) generally require many more operations and
memory. However, the proprietary Lt-Wt model reduces operations, memory footprint,
and logic to improve the network’s speed and lower costs for storage and processing.
These adaptions result in higher energy efficiency and allow local processing on a
low-power device. Its lightweight architecture simplifies porting the model’s code to
different platforms. It basically contains four elements: one RAM array for inputs and
outputs, a lookup table as ROM, network definitions as ROM, and control rules.

When designing a newmachine learning application, the first step is typically data
acquisition. In our scenario, where accelerometer data will be classified into different
gestures, gathering high-quality data using the MiroCard is very important. Existing
datasets for different gestures would have different signatures since even the weight
distribution on the card can change the way the user movement is registered. We thus
recruited multiple users to record a new dataset with three classes of gestures using the
MiroCard. The recorded raw data needs preprocessing before using the infXL toolchain,
which automatically trains, tests, and validates the model. We will now discuss in
detail these steps and their outcomes. An accurate gesture classification model can be
integrated into the MiroCard as a simple human-machine interface to trigger different
actions.

Data Acquisition We implemented the following data acquisition process. The Miro-
Card is powered by a cable connected to a Raspberry Pi. This also allows the transmis-
sion of the accelerometer’s data from the MiroCard to the RPi, where it will be stored
in separate files. Data recording is performed with multiple users, which physically
interact with the MiroCard. First, a quick explanation session aims to introduce the
tasks to the participant. Then, a participant must record data for each gesture. The
user shakes the card sideways, then up/down, and finally, they move it randomly in a
way that is distinctly not sideways or up/down. It must be stated that the participant
must not stick to one position but has to change the card orientation. Therefore, shak-
ing the MiroCard upwards and downwards can also happen along different axes. A
recording session for one gesture lasts around three minutes. The participant makes
a break after each 3-minute session to restart data logging. This way of splitting the
gesture recordings simplifies data labeling. Therefore, the total time for data recording
is between ten and fifteen minutes per participant. Finally, each file contains a time
series of approximately 1800 data samples, given that the accelerometer operates at
10Hz for 3x60 seconds. One data sample consists of an x-, a y-, and a z-value. A total of
12 users participated in the data acquisition process.

Figures 2.20b and 2.20a show windows of 4 seconds for each gesture using the
same user as the above images. These plots provide a better view of the data behavior
of each gesture. The first figure, 2.20a, shows a large difference between the peaks and
bottoms of the z-values while the x- and y-values remain almost stable and accordingly
represent shaking the card upwards and downwards. Furthermore, the observation

2.3 Zero-Power/Low-Power Sensing | 63

(a) Up/Down gesture close-up. (b) Sideway gesture close-up.

Fig. 2.20: Four-second close-ups of the XYZ data values for two gestures. Oscillations are noticeable
in all data channels, with different amplitudes depending on the direction of movement.

that the z-values mean is around 1g allows deducing that this plot represents a shaking
upwards and downwards. The graphs in Figure 2.20b indicate sideways shaking since
the z-values’ changes are relatively small compared with the values of the y-axis. A
random gesture provides a reference movement different from the previous patterns.
These include both randommovements in 3D space, as well as standing still in different
orientations.

Model Training and Validation To train the Lt-Wt model, the entire labeled dataset
must be partitioned for training and testing. The training subset is split into features and
labels and then used to train multiple Lt-Wt models via TensorFlow and supplementary
algorithms. The models are evaluated with the testing dataset to estimate precision,
recall, F1-score, and accuracy measures. A model picker finds the final network that
meets the application’s requirements. Here, we present the evaluation of the final Lt-Wt
network.

2.6 shows the original dataset containing over 68 000 data samples from recordings
of 12 participants (2 female, 10 male). The infXL toolchain splits the balanced subset
into training and testing data with a ratio of 69:31. 30% of the training dataset is used
for validation. Therefore, 48.3% of the total balanced subset, or 32,865 data samples,
is used for training. 2.6 also shows that the distribution of the three classes is even. The
reason for the difference is that some recordings are not terminated exactly after three
minutes. The overflow is not cut out to maximize the ultimately usable dataset while
balancing.

Classification Model Accuracy The model’s performance is evaluated with the test-
ing dataset to estimate precision, recall, F1-score, and accuracy measures. The eval-
uation results for the model accuracy can be seen in Table 2.7. The F1-score for all

64 | 2 Data Gathering and Resource Measuring

Tab. 2.6: Distribution of labels and data within the dataset

Label distribution

Absolute size Relative size
Total exemplars 68 036 100%
Class 0 22583 33.2%
Class 1 22357 32.9%
Class 2 23096 33.9%

Data distribution

Absolute size Relative size
Training exemplars 32 865 48.3%
Validation exemplars 14 085 20.7%
Testing exemplars 21 086 31%
Total 68 036 100%

three classes is constantly over the 90%mark. Overall, the classification model has
an accuracy of 94%. The model performs best in differentiating between sideways
and up/down, whereas the biggest weakness is distinguishing between sideways and
random since the model is wrong in 581 cases out of 14 379. It is important to remember
that the model is capable of generalizing the device motion, regardless of the orienta-
tion. This implies that the classification is quite robust and will be able to recognize
the gestures among different users.

Tab. 2.7: Evaluation of model performance

Class Precision Recall F1-Score Sample size

Class 0 0.92 0.93 0.92 6933
Class 1 0.95 0.95 0.95 6707
Class 2 0.95 0.94 0.95 7446

2.3.12 Batteryless Classification of Time Series Data

The gesture detection models all require time series data comprising 20 data samples,
equaling 60 input values (1 sample contains one X, Y, and Z point each). 20 data samples
equal a time window of 2 seconds since the accelerometer operates at 10Hz. These
numbers have been chosen to accommodate human-made gestures of different lengths.
Though accelerometers have a wide range of possible sampling frequencies, 10Hz was
chosen as a good trade-off between the power consumption and the required sampling
frequency for human movement).

2.3 Zero-Power/Low-Power Sensing | 65

This data dependency for the classification task fundamentally changes the energy-
driven behavior of traditional EMU-based batteryless sensing systems. As shown in
Figure 2.21, it is no longer enough to have buffered the energy required by the classi-
fication task, since 20 data samples are now required. Effectively, the behavior with
gesture classification is time-triggered, and can only occur when the environmental
energy is enough to support it. If this is the case, then the 20 samples are copied from
the accelerometer’s FIFO buffer to the microcontrollers as soon as they are ready. In
its simplest form, batteryless gesture detection does not allow an overlapping win-
dowing approach, where the stride length can be smaller than the window size. The
reason is that the data classification would no longer be stateless, and would demand
a higher frequency of processing the Lt-Wt network and, therefore, increased energy
consumption.

(a) Finite State Machine. (b) Gesture Classification Timeline.

Fig. 2.21: Batteryless systems processing time series data require not just the energy ready signal
from the EMU. Gesture classification imposes a data requirement that must be met at the same time
as the energy requirement.

2.3.13 Experimental Evaluation

To characterize the active energy requirements of the gesture detection application, a
set-up similar to the presented in Section 2.3.8.3 was used. ADC source provided a stable
voltage to the MiroCard, whose current and voltage are recorded by the RocketLogger.
Additional GPIOs are used by the application to signal its internal state. This informa-
tion is then used to annotate the power trace. Figure 2.22 shows the energy consumption
for gesture detection and BLE transmission. The EMU triggers the MCU after 2 seconds
if there is enough harvested energy to process the Lt-Wt and send the result as a BLE
beacon. The time window of 2 seconds relies on the accelerometer’s sensing frequency
of 10Hz and ensures the availability of 20 data samples. This trigger is marked by the
red line. The classification process takes around 27 ms after the initial boot-up and
configuration. The Lt-wt net’s power consumption is relatively stable, between 20 and
35mW. The three peaks between 10mW and 20mW at the very end represent the indi-
vidual BLE transmissions. The entire activation consumed 723 µJ, and is dominated by
the classification task. After the energy consumption burst finishes, the processor shuts

66 | 2 Data Gathering and Resource Measuring

down tominimize the consumption. The accelerometer, however, remains continuously
enabled to gather data, which brings the sleep current consumption to 26 µA between
energy bursts.

After this energy characterization, it is determined that the system requires an
equivalent capacity of 1mF, which is enough to guarantee energy bursts of the required
size when Vcap ∈ [2.8V, 4.37V]. To understand how this storage element affects
reactivity, the start-up time was measured. Comparable to the methodology described
in Section 2.3.8.4, the capacitors were shorted before exposing them to light. This
measurement was made in an indoor environment, combining natural and artificial
light, with a combined illuminance of 900 lx measured with an illuminance meter.
The solar panel current and voltage, and the capacitor voltage were measured using
the RocketLogger. Figure 2.23 shows the measurement trace, which indicates that the
gesture detection application can start up within 11 s, and sustain data acquisition,
classification, and transmission under that illuminance condition.

2.3.14 Analysis

In previous sections, we have introduced two batteryless applications running on the
light-powered MiroCard platform: ambient sensing and gesture detection. The first is a
purely energy-driven application, where a wireless sensor transmits information about
the environment. This first application is energy-driven because each sensor activation
is stateless and thus independent from the other. The sensor’s activation frequency
automatically adjusts to balance the energy flow as the environmental energy changes
throughout the day. This energy proportionality has been a key characteristic in most
batteryless sensing systems, including the MiroCard. Thanks to this principle, MiroCard
users have full agency over the device’s operation. If a user stores the MiroCard in a non-

0

10

20

35

Psys
[mW]

Trigger

0 5.0 7.1 11.0 38.0 44.9
Time [ms]

State LPM ini conf read sensor + infXL + BLE shut-
down LPM

Fig. 2.22: The gesture application keeps the accelorometer enabled between activations of the
classification process, bringing the sleep current to 26 µA. When enough data has been buffered, a
single activation classifies the movement and broadcasts 3 BLE packets, lasting less than 33ms.

2.3 Zero-Power/Low-Power Sensing | 67

0

1.5

3

4.37

Vcap
[V]

Light On

0 1.0 2.3 11.15 19.1
Time [s]

State OFF Startup Time ON

Fig. 2.23: Start-up time for the gesture detection application, measured indoors with natural and
artificial light (900 lx). It starts up within 10.15 s. After this, the movement classification and BLE
beacon transmission occur every two seconds.

transparent location, it is physically impossible to energize the batteryless MiroCard.
However, as soon as the user decides to expose it to light, the transducer is able to
produce energy, and only then will the MiroCard start sensing and transmitting data.

2.3.15 Energy Proportionality vs Time Series Processing

The second application we have discussed is gesture detection on the batteryless Miro-
Card. As opposed to the ambient sensing scenario, each sensor activation has strict
timing and data dependency on the previous one. The classification model requires
20 data samples. At the specified sampling frequency, this requires 2 s. If the MiroCard
is unable to harvest enough energy for classification during those two seconds, either
data will be lost or the processing will fail. This is a fundamental limitation of using
batteryless sensors: there is no guarantee that energy can be harvested fast enough
to sustain a minimum service level. We have shown, however, that during those time
periods where the environmental conditions can sustain the MiroCard, it is able to
properly classify gestures in non-overlapping data windows. The non-overlapping part
is a limitation that arises from the lack of data retention in the chosen LPM for the
microcontroller. In practice, an SRAM block can be kept on with the accelerometer data
buffer. However, this increases the sleep current further and can decrease the overall
energy efficiency of the system. A side effect of the non-overlapping detection windows
is that if a gesture happens to be split by this artificial division, it is possible that the
classifier will not detect it. Consequently, the model’s high accuracy will not be directly
visible if the gesture is too short. Luckily, users gesturing with the MiroCard typically
do so for several seconds, so this issue is mitigated.

68 | 2 Data Gathering and Resource Measuring

2.3.16 Contextualizing Indoor Energy Harvesting

At the beginning of this contribution, we have argued that indoor photovoltaics allows
sensing systems to tap into a vast source of primary energy. This primary energy comes
in two flavors: natural sunlight shining into indoor spaces and artificial lighting in-
stalled for human use. Though the average energy harvested in one day can vary greatly
depending on the location, time of year, and human presence, it can be as high as tens
of joules per day. For statically deployed MiroCards doing ambient sensing, this can
translate to over 28 000 activations per day, or roughly 1 activation (and three packets)
per second during working hours, even under the conservative estimates from artificial
lighting only. In essence, theMiroCard acts as a batteryless information fountain provid-
ing long-term, maintenance-free data, even in dimly lit environments. Increased energy
efficiency is just one of the benefits of batteryless sensors. For wearable applications,
the fast start-up time is another key differentiating feature. Users can, for privacy and
security concerns, ensure that MiroCards are completely powered off by just covering
the photovoltaic panel. When a user chooses to utilize a MiroCard, it must get exposed
to light, and it should self-power as fast as possible. This naturally depends on the
illuminance conditions. We have shown how a gesture-detecting MiroCard can turn on
within 11 s when the environment provides 900 lx, which is easily achieved with the
combination of natural and artificial light indoors.

2.3.17 Conclusions

This contribution presents a new class of batteryless sensing systems, capable of gath-
ering data in an energy-efficient, scalable, and environmentally friendly manner. Due
to their high power density and low cost, we focus primarily on photovoltaic energy
harvesting, which can utilize widely available indoor lighting in human-occupied areas.
We also present a multi-year dataset of indoor energy harvesting measurements in an
office building, demonstrating the potentially large, but highly variable daily energy
budgets. Even if the instantaneous harvested power can vary significantly in short time
periods, EnergyManagement Unit (EMU)-based designs can reliably execute batteryless
sensing applications. Though the designer cannot directly control how much energy
is available, it is possible to control under what conditions the application executes.
By buffering small amounts of energy, designers can control the operating voltage and
maximize the amount of work done per unit of energy. These small amounts of energy
are enough to execute a wide variety of sensing applications. We demonstrate a battery-
less ambient sensor that can be deployed in a fixed position, and generate thousands
of packets per day. These batteryless sensors are more efficient than their battery-based
counterparts because, during the night period, they are completely powered off, con-
suming zero power. This contribution also introduces a gesture detection application
on a batteryless smartcard. Using manually gathered data, a machine learning model

2.3 Zero-Power/Low-Power Sensing | 69

was trained and deployed to the smartcard. The extensive experimental evaluation
validates the reliability and energy efficiency of EMU-based designs. This new class of
batteryless sensing systems is capable of executing complex sensing applications and
promises a more scalable and cost-effective approach to distributed data gathering for
IoT systems.

3 Streaming Data, Small Devices
Big data often stem from sensors that stream theirmeasurements continuously. Imagine
for instance an embedded system that acts upon certain sensor inputs. Data streams
naturally occur in the Internet of Things, embedded systems and cyber-physical systems.
In particular, we encounter them in all kinds of small devices that have strictly limited
resources like limited energy, communication bandwidth, memory, and computational
power.

To model those scenarios from an algorithmic perspective and to quantify the
trade-off between the required resources and the accuracy achievable by a learning
algorithm, the algorithmic community has introduced the streaming model [523]. A
data stream algorithm makes one pass¹ over the data, presented in N items one by
one. Hereby, it maintains a summary of the stream whose size is limited to a sublinear
amount, often polylogarithmic in N or even constant. We distinguish between different
streaming models with increasingly dynamic updates:
Insertion-only data stream New items are only added to the data stream. The algo-

rithm processes one item after another and views each item as a new instance.
Dynamic data stream Items can be added or deleted from the data stream. The algo-

rithm processes the insertion or deletion of an item one after another. New items
can be added to the stream or already processed items can be removed from the
stream.

Turnstile data stream Every single feature or coordinate of data items canbemodified
by adding or subtracting values to update the current state. This is the most general
case in which an algorithm needs to process the insertion of new items and updates
to old items within the stream including their removal from the stream when
subsequent updates add up to zero.

This chapter shows general algorithmic approaches to process and summarize stream-
ing data and surveys recent research in this area, including several contributions of the
CRC 876. It also highlights the importance of these topics for teaching so that the next
generation of researchers and practitioners may tackle future challenges in this area.

Section 3.1 on summary extraction from streams presents an insertion-only data
stream algorithm to maximize submodular functions, which are very important and
have many applications. Prominent examples include maximizing entropy, and mutual
information of selected subsets of data. The section surveys several state-of-the-art al-
gorithms for the problem and gives an own technical contribution. It covers algorithmic
and analytical methods for data streams and relaxations of worst-case conditions to

1 The number of passes is often relaxed to a small constant or logarithmic amount for problems where
single pass algorithms are impossible to obtain or where a multi pass algorithm allows significantly
improved results over what is possible in a single pass.

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-003

72 | 3 Streaming Data, Small Devices

model typical behavior via probabilistic assumptions. The section may serve as a basis
for one lecture.
Section 3.2, on coresets and sketches, introduces general concepts for summarizing
data streams with respect to specific computational problems such as regression, classi-
fication, and clustering. It covers a brief technical introduction to coresets and sketches
and highlights their importance for the design of data stream algorithms. It surveys
the state of the art with a focus on contributions within the CRC 876. Each subsection
introduces one of the main research directions and provides briefly the central ideas
behind the results. The section may serve as a basis for a seminar or short lecture series
on the topic.

3.1 Summary Extraction from Streams | 73

3.1 Summary Extraction from Streams

Sebastian Buschjäger
Katharina Morik

Abstract: As processing capabilities increase, more andmore data is gathered every day
everywhere on earth. While machines are becoming more and more capable of dealing
with these large amounts of data, humans cannot keep up with the amount of data
generated every day. They need small and comprehensive representative samples of
data,which capture all the informative parts of the data, in otherwords: a data summary.
Formally, we formulate the data summarization problem as a function maximization
problem with a cardinality constraint in which we seek to maximize a utility function f
while selecting up to K elements in total.
Due to their compelling theoretical properties, submodular functions have been

widely adopted as a utility function for data summarization. Submodular functions are
set functions that reward adding a new element to a smaller set more than adding the
same element to a larger set and thereby naturally lead to small and comprehensive
summaries. This fits the restricted resources of small devices. We want to do a step
further and model the summarization as a streaming algorithm. Streaming algorithms
evaluate each data item once and decide immediately, on-the-fly with a limited memory
budget, if an item should be added to the summary or not. These algorithms can be
run on small, embedded devices while data is generated and thereby provide a data
summary anytime with minimal computational costs.
In this contribution, we discuss the framework of submodular functions in more

detail and survey the current state of the art for streaming submodular function maxi-
mization. We analyze each algorithm for performance guarantees as well as runtime
and memory consumption. We end the contribution with a comprehensive comparison
between algorithms for real-world summarization tasks over data streams with and
without concept drift.

3.1.1 Introduction

While computers can process terabytes of data within seconds, humans are often
overwhelmed with the sheer amount of information available. Humans can inspect and
interact well with small, representative samples of data. Such a data summarymust
capture all the informative parts of the data while being small and comprehensive.

In recent years, submodular optimization has found its way into the toolbox of
machine learning and datamining. It offers awell-establishedmathematical framework
to select small and comprehensible summaries for a variety of different tasks. The field

74 | 3 Streaming Data, Small Devices

of online submodular optimization studies algorithms that view each item only once
and then either add it to the summary or discard it.

Exploiting submodular optimization for summarization faces algorithmic chal-
lenges right where it is needed most, namely, in the context of the Internet of Things
(IoT), particularly regarding sensor networks and distributed processing, that needs
to be communication-aware and energy saving. Most of the data is produced by small
embedded electronics with limited processing and limited storage capabilities. Thus,
a data summary should be captured on-the-fly while the data is being generated and
before storing it. Currently, the best performing online algorithms offer an O(12 − ε)
approximation ratio where ε also influences the memory consumption of the algorithm.
Even moderate choices for ε quickly result in an unmanageable resource consumption.
Feldman et al. [220] showed that this approximation ratio is the best possible for data
stream algorithms and that any algorithm with a better worst-case approximation guar-
antee essentially stores all the elements of the stream (up to a polynomial factor in K,
where K is the summary size).

Existing algorithms are designed for the mathematical worst case and thereby have
a worst-case approximation guarantee. We argue, that most practical applications are
much more well-behaved. This insight allows us to move beyond the worst case and
design an algorithm that delivers a good data summary under moderate assumptions.
The resulting algorithmoffers a probabilistic approximation ratio of (1−ε)(1−1/ exp(1))
with high probability (1−α)K, where α is the desired user certainty and K is the summary
size. It performs O(1) function queries per item and requires O(K)memory. Note, that
this result does not contradict the upper bound ofO(12 −ε) from [220] since our algorithm
offers a better approximation quality with high probability, but not for the worst case.

In the next section we will discuss the framework of submodular function maxi-
mization. After that, we discuss existing algorithms, whereas Section 3.1.4 details the
novel ThreeSieves algorithm. Section 3.1.5 presents practical experiments and Sec-
tion 3.1.6 concludes the contribution. Parts of this text were previously published as a
conference paper in [109].

3.1.2 Submodular Function Maximization over Streams

In this contribution, we consider the problem of maximizing a submodular function
over a data stream and focus on the task of data summarization. More formally, we
consider the problem of selecting K representative elements from a ground set D into a
summary set S ⊆ D. To do so, we maximize a non-negative, monotone submodular set
function f : 2D → R+ which assigns a utility score to each subset:

S* = argmax
S⊆D,|S|=K

f (S) (3.1)

For the empty set, we assume zero utility f (∅) = 0. We denote the maximum of f with
OPT = f (S*). A set function can be associated with a marginal gain which represents

3.1 Summary Extraction from Streams | 75

the increase of f (S) when adding an element e ∈ D to S:

∆f (e|S) = f (S ∪ {e}) − f (S)

We call f submodular iff for all A ⊆ B ⊆ D and e ∈ D \ B it holds that

∆f (e|A) ≥ ∆f (e|B)

The function f is called monotone, iff for all e ∈ D and for all S ⊆ D it holds that
∆f (e|S) ≥ 0.

In general, the maximization of a submodular set function is NP-hard [214], which
makes solving Equation 3.1 difficult. Therefore, a natural approach is to find an ap-
proximate solution. Nemhauser et al. [230] presented a simple (1 − (1/ exp(1))) ≈ 63%
greedy approximation algorithm (denoted as Greedy in this contribution) for solving
Equation (3.1) which runs in linear time and requires a fixed memory budget. Greedy
offers a constant approximation guarantee and only requires O(K)memory. The disad-
vantage is that it requires K iterations over the entire ground set, which is costly if the
ground set is very large. Moreover, multiple iterations are impossible for streaming data.
Several streaming algorithms have been proposed that read each item exactly once
(when D is stored on disk) or process it once on arrival (a ‘true’ streaming setting). An
overview of these algorithms and their theoretical properties can be found in Table 3.1.
It is noteworthy that the majority of these algorithms achieve a 1/2 − ε approximation
guarantee, where ε is the desired approximation quality. A recent analysis by Feldman
et al. in [220] implies that this approximation ratio is the best possible in a streaming
setting and any algorithm with a better worst-case approximation guarantee essentially
stores all the elements of the stream (up to a polynomial factor in K). Unfortunately, for
all these algorithms the memory budget and the number of function evaluations per
item depend on ε. Even amoderate choice of ε turnsmemory and runtime requirements
unmanageable for small devices.

We recognize, that the worst case is often a pathological case whereas practical
applications are usually much more well-behaved. Therefore, some papers recently
proposed to ignore these pathological cases and develop algorithms with a better ap-
proximation guarantee in most cases, while using fewer function queries and less
memory [109, 485, 517]. The first algorithm for monotone submodular function max-
imization with cardinality constraints that ignores edge cases is the Three Sieves

algorithm proposed in [109]. It estimates the probability of finding a more informative
data item on-the-fly and only adds those items to the solution that are unlikely to be
‘out-valued’ in the future. The resulting algorithm offers a probabilistic approximation
ratio of (1 − ε)(1 − 1/ exp(1)) > 1/2 − ε with probability (1 − α)K, where α is the desired
user certainty. It performs O(1) function queries per item and requires O(K)memory.

76 | 3 Streaming Data, Small Devices

Tab. 3.1: Algorithms for non-negative, monotone submodular function maximization with cardinality
constraint K. ThreeSieves offers the smallest memory consumption and the smallest number of
queries per element in a streaming-setting. Adapted from [109].

Algorithm Approx.
Ratio

Memory Queries Stream Ref.

Greedy 1 − 1/ exp(1) O(K) O(1) ✗ [230]
StreamGreedy 1/2 − ε O (K) O(K) ✗ [258]
Random 1/4 O (K) O(1) ✓ [215]
PreemptionStreaming 1/4 O (K) O(K) ✓ [91]
IndependentSetImprovement 1/4 O (K) O(1) ✓ [121]
SieveStreaming 1/2 − ε O(K log(K)/ε) O(log(K)/ε) ✓ [32]
SieveStreaming++ 1/2 − ε O(K/ε) O(log(K)/ε) ✓ [367]
Salsa 1/2 − ε O(K log(K)/ε) O(log(K)/ε) (✓) [540]

ThreeSieves (1 − ε)(1 − 1/ exp(1))
with prob. (1 − α)K

O(K) O(1) ✓ [109]

3.1.3 Related Work

For a general introduction to submodular function maximization, we refer interested
readers to [393] and for a more thorough introduction into the topic of streaming sub-
modular function maximization to [124]. Most relevant to this contribution are non-
negative, monotone submodular streaming algorithms with cardinality constraints. To
the best of our knowledge, there exist six different algorithms which we survey here.
The theoretical properties of each algorithm are summarized in Table 3.1.

While not a streaming algorithm, the Greedy algorithm [230] forms the basis ofmany
algorithms. It iterates K times over the entire dataset and greedily selects the element
with the largestmarginal gain ∆f (e|S) in each iteration. It offers a (1−(1/ exp(1))) ≈ 63%
approximation and stores K elements. StreamGreedy [258] is its adaption to streaming
data. It replaces an element in the current summary if it improves the current solution
by at least ν. It offers an 1/2 − ε approximation with O(K)memory, where ε depends
on the submodular function and some user-specified parameters. The optimal approxi-
mation factor is only achieved if multiple passes over the data are allowed. Otherwise,
the performance of StreamGreedy degrades arbitrarily with K (see the Appendix of [32]
for an example). We therefore consider StreamGreedy not to be a real streaming algo-
rithm. Similar to StreamGreedy, PreemptionStreaming [91] compares each marginal
gain against a threshold ν(S). Here, the threshold dynamically changes depending
on the current summary S, which improves the overall performance. It uses constant
memory and offers an approximation guarantee of 1/4. Feige et al. show in [215] that
for any non-negative submodular function a uniformly chosen random set is a 1/4
approximation. A uniform random set over a data stream can be obtained via reservoir
sampling [688]. Also Chakrabarti and Kale proposed in [121] a streaming algorithm
with approximation guarantee of 1/4. Their algorithm stores the marginal gain of each

3.1 Summary Extraction from Streams | 77

element upon its arrival and uses this ‘weight’ to measure the importance of each item.
We call this algorithm IndependentSetImprovement. Norouzi-Fard et al. [540] propose
a meta-algorithm for submodular function maximization called Salsa, which uses
different algorithms for maximization as sub-procedures. The authors argue, that there
are different types of data streams and for each stream type, a different thresholding
rule is appropriate. Their algorithm offers a 1/2 − ε approximation, but some of the
thresholding rules require additional information about the data stream such as its
length or density. Since this is unknown in a true streaming setting, this algorithm is
not completely streaming-capable.

The first real streaming algorithm with 1/2 − ε approximation guarantee was pro-
posed by Badanidiyuru et al. [32] and is called SieveStreaming. SieveStreaming tries
to estimate the potential gain of a data item before observing it. Assuming one knows
the maximum function value OPT beforehand and let |S| < K, then an element e is
added to the summary S if the following holds:

∆f (e|S) ≥
OPT/2 − f (S)

K − |S| (3.2)

Since OPT is unknown beforehand one has to estimate it before running the algorithm.
Assuming one knows themaximum function value of a singleton setm = maxe∈D f ({e})
beforehand, then the optimal function value for a set with K items can be estimated
by submodularity as m ≤ OPT ≤ K · m. The authors propose the management of
different summaries in parallel, each using one threshold from the set O = {(1 + ε)i |
i ∈ Z,m ≤ (1+ ε)i ≤ K ·m}, so that for at least one v ∈ O it holds: (1− ε)OPT ≤ v ≤ OPT.
In a sense, this approach sieves out elements with marginal gains below the given
threshold – hence the authors name their approach SieveStreaming. Note, that this
algorithm requires the knowledge of m = maxe∈D f ({e}) before running the algorithm.
The authors also present an algorithm to estimate m on-the-fly which does not alter the
theoretical performance of SieveStreaming. Recently, Kazemi et al. proposed in [367] an
extension of the SieveStreaming called SieveStreaming++. The authors point out, that
the currently best performing sieve Sv = argmaxv{f (Sv)} offers a better lower bound
for the function value and they propose to use [maxv{f (Sv)}, K · m] as the interval for
sampling thresholds. This leads to an algorithm in which sieves are removed once they
are outperformed by other sieves and new sieves are introduced to leverage the better
estimation of OPT. SieveStreaming++ does not improve the approximation guarantee
of SieveStreaming, but only requires O(K/ε)memory instead of O(K log K/ε).

3.1.4 Getting More by Doing Less

SieveStreaming and its extension offer a worst-case guarantee on their performance
and indeed they can be considered optimal, providing that there is an approximation
guarantee of 1/2 − ε under polynomial memory constraints in ε and K [220]. However,

78 | 3 Streaming Data, Small Devices

we also note that this worst case often includes pathological cases, whereas practical
applications are usually much more well-behaved. One common practical assumption
is, that the data is generated by the same source and thus it follows the same distribu-
tion, e.g. for a certain time frame. In this contribution, we want to investigate these
better behaving cases carefully. This allows us to present an algorithm that improves
the approximation guarantee, while reducing memory and runtime costs in these cases.
More formally, wewill now assume that the items in the given sample (batch processing)
or in the data stream (stream processing) are independent and identically distributed
(iid). Note, that we do not assume any specific distribution. From a data streams per-
spective this assumption means, that we ignore concept drifts and assume that an
appropriate concept drift detectionmechanism is in place, so that summaries are, e.g.,
re-selected periodically. For batch processing this means, that all items in the batch
should come from the same (yet unknown) distribution. Please note, that in this case
we do not assume that all possible samples come from the same distribution, but we
merely assume that the sample we are given is consistent in the sense that all items
come from the same distribution. This is true for all data samples, where data items are
independent from each other, as we could simply define the overall distribution as a
mixture of simpler distributions. We now use this assumption to derive an algorithm
with (1 − ε)(1 − 1/ exp(1)) approximation guarantee of high probability.

SieveStreaming and its extension maintain O(log
(︀
K)/ε

)︀
sieves in parallel, which

quickly becomes unmanageable even for moderate choices of K and ε. Both algorithms
show the following behavior: many sieves in SieveStreaming quickly fill-up with unin-
teresting events if their novelty threshold is too small. SieveStreaming++ exploits this
observation by removing small thresholds early on and focuses on the most promising
sieves in the stream. If the novelty threshold is too large, both algorithms deliver sieves
that never include any item. Actually, there are only a few thresholds that produce
small and comprehensive summaries.

The management of many sieves, each with its own threshold might be un-
necessary. Instead of using many sieves with different thresholds we use only a single
summary and carefully calibrate the threshold: we start with a large threshold that
rejects most items, and then we gradually reduce this threshold until it accepts some —
hopefully the most informative — items.

As discussed, the set O = {(1 + ε)i | i ∈ Z,m ≤ (1 + ε)i ≤ K · m} offers a sufficient
approximation of OPT. We start with the largest threshold in O and decide for each
item whether we want to add it to the summary or not. If we do not add any of these
items (the exact threshold T for this will be discussed later) to S we may lower the
threshold to the next smaller value in O and repeat the process until S is full.

The key question now becomes: How to choose the threshold T appropriately? If T
is too small, we will quickly fill up the summary before any interesting items arrive that
would have exceeded the original threshold. If T is too large, we may reject interesting
items. Certainly, we cannot determinewith absolute certainty when to lower a threshold
without knowing the rest of the data stream or knowing the ground set entirely, but

3.1 Summary Extraction from Streams | 79

we can do so with a bounded probability. More formally, we aim at estimating the
probability p(e|f , S, v) of finding an item e which exceeds the novelty threshold v for a
given summary S and function f . Once p drops below a user-defined certainty margin
τ, i.e.,

p(e|f , S, v) ≤ τ

we can safely lower the threshold. Now, we have transformed the original problem
of choosing the right threshold of utility to that of choosing the right length of T and
arrive at the problem of estimating the probability of making the right choice. Moreover,
this probability must be estimated on-the-fly. Most of the time, we reject e so that S and
f (S) are unchanged and we keep estimating p(e|f , S, v) based on the negative outcome.
If, however, e exceeds the current novelty threshold we add it to S and f (S) changes.
In this case, we do not have any estimates for the new summary and must start the
estimation of p(e|f , S, v) from scratch. Thus, with a growing number of rejected items
p(e|f , S, v) tends to become close to 0 and the key question is how many observations
do we need to determine—with sufficient evidence—that p(e|f , S, v) will be 0.

The computation of confidence intervals for estimated probabilities is a well-known
problem in statistics. For example, the confidence interval of binominal distributions
can be approximated with normal distributions, Wilson score intervals, or Jeffreys
interval. Unfortunately, thesemethods usually fail for probabilities near 0 [81]. However,
there exists a more direct way of computing a confidence interval for heavily one-sided
binominal distribution with probabilities near zero [351] when the novelty of items is
independent and identically distributed (iid). Then, the probability of not adding one
item in T trials is:

α =
(︀
1 − p(e|f , S, v)

)︀T ⇔ ln (α) = T ln
(︀
1 − p(e|f , S, v)

)︀

A first order Taylor approximation of ln(1 − p(e|f , S, v)) reveals that

ln
(︀
1 − p(e|f , S, v)

)︀
≈ −p(e|f , S, v)

and therefore ln (α) ≈ T(−p(e|f , S, v)) leading to:

− ln (α)
T ≈ p(e|f , S, v) ≤ τ

Hence, the confidence interval of p(e|f , S, v) after observing T events is
[︁
0, − ln(α)T

]︁
. For

example, with 95% certainty the confidence interval of p(e|f , S, v) is
[︀
0, − ln(0.05)/T

]︀

which is approximately [0, 3/T] leading to the term Rule of Three for this estimate [351].
We can use the Rule of Three to quantify the certainty that with high probability there
will not be a novel item in the data stream after observing T items.

Note, that we can set α and the user-defined threshold τ and then compute the
minimum of the required number of observations T with the above relationship. Al-
ternatively, we may directly specify the maximum number of observations T as a user
parameter instead of α and τ, thus removing one hyperparameter. We call our algorithm

80 | 3 Streaming Data, Small Devices

ThreeSieves due to its usage of the Rule of Three. It is depicted in Algorithm 1 and
analyzed theoretically in Theorem 1.

Algorithm 1: ThreeSieves algorithm.
1 O ← {(1 + ε)i | i ∈ Z,m ≤ (1 + ε)i ≤ K · m}
2 v ← max(O); O ← O \ {max(O)}
3 S ← ∅; t ← 0
4 for next item e do
5 if ∆f (e|S) ≥ v/2−f (S)

K−|S| and |S| < K then

6 S ← S ∪ {e}
7 t ← 0
8 else

9 t ← t + 1
10 if t ≥ T then
11 v ← max(O)
12 O ← O \ {max(O)}
13 t ← 0

Theorem 1. ThreeSieves has the following properties [109]:
– Given a fixed groundset D or an infinite data stream inwhich each item is independent

and identically distributed (iid),
– ThreeSieves outputs a set S such that |S| ≤ K andwith probability (1−α)K it holds for

a non-negative, monotone submodular function f : f (S) ≥ (1 − ε)(1 − 1/ exp(1))OPT.
– It does one pass over the data (truly streaming) and stores at most O (K) elements.

3.1.5 Experiments

We now experimentally evaluate the following four questions:
Q1 Is ThreeSieves’ performance competitive against the other algorithms in its practi-

cal performance given its probabilistic guarantee?
Q2 If ThreeSieves is competitive, how does it relate to a uniform random selection of

summaries?
Q3 How does ThreeSieves behave for different T and different ε?
Q4 How large is the resource consumption of ThreeSieves in comparison with the

other algorithms?

We ask each algorithm to select a summary with exactly K elements. Since most algo-
rithms can reject items, they may select a summary with fewer than K elements. This

3.1 Summary Extraction from Streams | 81

makes a comparison between different algorithms difficult, because it favors algorithms
with larger summaries (f is monotone and hence adding items to the summary always
increases the function value), but not necessarily better summaries. For a fair compari-
son we ensure that all algorithms select a summary of size K by re-iterating over the
entire dataset as often as required until K elements have been selected, but at most
K times. We compare the relative maximization performance of all algorithms to the
solution of Greedy. We also measure the runtime and memory consumption of each
algorithm. The runtime measurements include all re-runs, so that many re-runs over
the data-set result in larger runtimes.

We will focus on two real-world data-sets. First, the ForestCover [157] data-sets
contains 286 048 examples of different forest cover types. Forest cover is the amount
of land area that is covered by forest. This proportion is structured into classes. The
learning task for this data-set is to predict the class of each cover by using the 10
provided cartographic variables that are obtained via remote sensing. Second, the
Creditfraud [443] data-set contains 284 807 fraudulent and legal bank transactions. The
learning task for this data-set is to classify each transaction using their 29 features.
However, we are interested to see a data summary for a user’ manual inspection of the
data. Hence, in our experiments we ignore the class information and aim at selecting
a diverse set of examples based on the features. More experiments using the novel
ThreeSieves algorithm can be found in [109].

We extract summaries of varying sizes K ∈ {5, 10, . . . , 100}maximizing the log-
determinant

f (S) = 1
2 log det(I + aΣS). (3.3)

ΣS = [k(ei , ej)]ij is a kernelmatrix containing all similarity pairs of all points in S, a ∈ R+
is a scaling parameter, and I is the identity matrix. In [619], this function is shown to be
submodular. Its function value does not depend on the ground-set D, but only on the
summary S, which makes it an ideal candidate for summarizing data in a streaming
setting. In [111], it is proven thatm = maxe∈D f ({e}) = 1+aK and thatOPT ≤ K log(1+a)
for kernels with k(·, ·) ≤ 1. This property can be enforced for every positive definite
kernel with normalization [268]. In our experiments we set a = 1 and use the RBF kernel
k(ei , ej) = exp

(︀
− 1
2l2 · ‖ei − ej‖

2
2
)︀
with l = 1

2
√
d
where d is the dimensionality of the data.

We vary ε ∈ {0.001, 0.005, 0.01, 0.05, 0.1} and T ∈ {500, 1000, 2500, 5000}. ²
We present two different sets of plots. Figure 3.1 contains plots for varying K with

a fixed ε = 0.001 (top figure) and plots for varying ε with fixed K = 50 (bottom plot).
Both figures show the relative performance, the runtime and the memory consumption
for different algorithms. Note, that we excluded Random, IndependentSetImprovement,
and Greedy for varying ε as their performance is independent of it.

2 The code for these experiments is available under https://github.com/sbuschjaeger/
SubmodularStreamingMaximization/.

https://github.com/sbuschjaeger/SubmodularStreamingMaximization/
https://github.com/sbuschjaeger/SubmodularStreamingMaximization/

82 | 3 Streaming Data, Small Devices

Performance over Different K ThreeSieveswith T = 5000 and Salsa generally per-
form best with a very close performance to Greedy for K ≥ 20. For smaller summaries
with K < 20 all algorithms seem to underperform, yet Salsa and SieveStreaming

performing best. Using T ≤ 1000 for ThreeSieves seems to decrease the perfor-
mance, which is reflected by the weaker guarantee of the algorithm. On Creditfraud,
ThreeSieves performs better than Greedy with a relative performance above 100.
Note, that only ThreeSieves showed this behavior, whereas the other algorithms
never exceeded Greedy. As expected, a uniform random selection shows the weakest
performance. SieveStreaming and SieveStreaming++ show identical behavior.

Please, note the logarithmic scale of the runtime. Here, we see that ThreeSieves
and Random are by far the fastest methods. Using T = 1000 offers some performance
benefit, but it is hardly justified by the decrease in maximization performance, whereas
T = 5000 is only marginally slower but offers a much better maximization performance.
SieveStreaming and SieveStreaming++ have very similar runtime, but are magnitudes
slower than Random and ThreeSieves. Last, Salsa is the slowest method.

Regarding the memory consumption, please note again the logarithmic scale. Here,
all versions of ThreeSieves use the least resources as our algorithm only stores a
single summary in all configurations. These curves are identical with Random so that
only 4 instead of 7 curves can be seen. SieveStreaming and their siblings use roughly
two magnitudes more memory since they keep track of multiple sieves in parallel. As
expected, SieveStreaming++ uses less memory than SieveStreaming which uses less
memory than Salsa.

Performance over Different ε The behavior of the algorithms for different approxi-
mation ratios shows a slightly different picture than before. For larger ε > 0.05 the per-
formance of the non-probabilistic algorithms remain relatively stable, but ThreeSieves
performance starts to deteriorate. For small ε ≤ 0.05 and larger T ThreeSieves and
Salsa again perform best in all cases. Again, SieveStreaming and SieveStreaming++

show identical behavior. Regarding runtime and memory consumption we see a similar
picture as before: ThreeSieves is by far the fastest method using the fewest resources
followed by SieveStreaming(++) and Salsa. Again, note, that ThreeSieves requires
the same amount of memory in all configurations and hence we find an overlap in plots.

WeConclude the Experiments In summary, ThreeSieves is competitive to the other
algorithms and sometimes even outperforms them. The probabilistic guarantee of the
algorithm comes along with a competitive performance in many cases while using
fewer resources. In some cases ThreeSieves even outperforms the Greedy algorithm.
ThreeSieves works best for small ε and large T. In contrast to the other algorithms,
the resource consumption and overall runtime of ThreeSieves does not suffer from
decreasing ε or increasing T.

3.1 Summary Extraction from Streams | 83

0 10 20 30 40 50 60 70 80 90 100

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

30
40
50
60
70
80
90

100
110

0 10 20 30 40 50 60 70 80 90 100
0.1

1

10

100

1000

10k

0 10 20 30 40 50 60 70 80 90 100

1

10

100

1000

10k

0 10 20 30 40 50 60 70 80 90 100

100

10k

1M

0 10 20 30 40 50 60 70 80 90 100

100

10k

1M

Greedy IndependentSetImprovement Random Salsa
SieveStreaming SieveStreaming++ ThreeSieves T = 500 ThreeSieves T = 1000
ThreeSieves T = 2500 ThreeSieves T = 5000

K K

R
el

at
iv

e
P

er
fo

rm
an

ce
R

un
tim

e
[s

]
N

um
. e

le
m

en
ts

 s
to

re
d

Forestcover Creditfraud

0 0.02 0.04 0.06 0.08 0.1

70

80

90

0 0.02 0.04 0.06 0.08 0.1

60

70

80

90

100

110

0 0.02 0.04 0.06 0.08 0.1

1

10

100

1000

0 0.02 0.04 0.06 0.08 0.1

1

10

100

1000

0 0.02 0.04 0.06 0.08 0.1

100

1000

10k

100k

0 0.02 0.04 0.06 0.08 0.1

100

1000

10k

100k

Salsa SieveStreaming SieveStreaming++ ThreeSieves T = 500 ThreeSieves T = 1000
ThreeSieves T = 2500 ThreeSieves T = 5000

ε ε

R
el

at
iv

e
P

er
fo

rm
an

ce
R

un
tim

e
[s

]
N

um
. e

le
m

en
ts

 s
to

re
d

Forestcover Creditfraud

Fig. 3.1: Comparison of IndependentSetImprovement, SieveStreaming, SieveStreaming++, Salsa,
Random, and ThreeSieves for different K values with fixed ε = 0.001 (top figure) and different ε
with fixed K = 50 (bottom figure). The first row shows the relative performance to Greedy (larger is
better), the second row shows the total runtime in seconds (logarithmic scale, smaller is better), and
the third row shows the maximummemory consumption (logarithmic scale, smaller is better). Each
column represents one data-set.

84 | 3 Streaming Data, Small Devices

3.1.6 Conclusion

Data summarization is a valuable tool for humans to inspect and understand large
amounts of data at a quick glance. For complex and long running processes these sum-
maries must be selected online while the data generating process takes place. While
the quality of a summary can be highly subjective to the task and person, submodular
functions offer a well-established mathematical framework to produce small and com-
prehensible summaries for a variety of different tasks. In this Section, we discussed
submodular functions and their maximization for data summarization. We focused
on the task of stream summarization in which each item is evaluated only once and
it must be decided on-the-fly whether it should be added to the summary or not. We
reviewed existing algorithms and their theoretical properties in this realm. They are
optimized towards the worst-case, whereas practical problems are often much more
well-behaved, in particular the data inside the stream are most often independent and
identically distributed (iid). This allows the ThreeSieves algorithm to compute good
summaries with high probability. We experimentally showed that ThreeSieves not
only outperforms the current state of the art, but also uses fewer resources by an order
of magnitude. The algorithm is designed such that kernel functions can be chosen.
This enables a more interactive data exploration for the human user, by, say, reviewing
multiple summaries with different kernel functions in a very short period of time.

3.2 Coresets andSketches for Regression Problems onData Streams andDistributedData | 85

3.2 Coresets and Sketches for Regression Problems on Data
Streams and Distributed Data

Alexander Munteanu

Abstract: Coresets and sketches are small data summaries for a given computational
problem such as regression or clustering. They preserve the cost function for any pos-
sible solution up to little distortion and thus serve as a proxy for the original massive
dataset during optimization or inference. They have strong aggregation properties such
as linearity or mergeability and thus facilitate their construction for data streams as
well as for distributed data. Once the data summary is computed, it can be analyzed
using a classical algorithm and the result will be provably close to an optimal solution.
In summary, this improves the efficiency and scalability and enables streaming and
distributed computation using standard offline algorithms.
We show how linear sketching enables streaming and distributed data processing

and show how even static off-line coreset constructions can be extended to those
flexible computational settings via theMerge &Reduce principle. Next we survey classic
sketching and coreset results for ordinary linear regression and show how those can be
extended tomore sophisticatedmodels, such as Bayesian regression, generalized linear
models, and dependency networks.We also show the limitations of data summarization
via complementing lower bounds and how natural assumptions and parameterized
beyond-worst-case analysis help to overcome those limitations.

3.2.1 Introduction

Developing highly efficient regression approaches is an important research direction
that aims at making modern statistical regression methods scalable to large and high-
dimensional data and also to settings where computational resources are scarce as
is often the case in the Internet of Things (IoT). We pursue this goal via modern data
reduction approaches: we have seen in Section 3.1 how direct sampling methods can
summarize the items presented in a data stream. Here we focus on two further methods
called sketches and coresets. Those three approaches are arguably the most promising
and widely used methods to facilitate the analysis of mass data with provable accuracy
guarantees. See [565] for an extensive survey. In recent years a new paradigm called
sketch-and-solve has been established for dealing with mass data. The idea behind
sketch-and-solve is to apply a simple and fast dimensionality reduction technique in a
first step to compress the data to a significantly smaller sketch of atmost polylogarithmic
size. Next, as a second step, we feed the sketch as input to a standard solver for the
problem. The theoretical challenge is to prove an approximation guarantee for the

86 | 3 Streaming Data, Small Devices

solution obtained from the sketch with respect to the original massively large dataset.
The general algorithmic principle is shown in the following scheme:

X
Π

−−−−−−−−→ Π(X)
↓ ↓

f (β|X) ≈ε f (β|Π(X)).

The classical way of data analysis is indicated by the left path, where we would feed the
massive dataset X directly to the algorithmandperform the computationally demanding
data analysis or learning task indicated by f (β|X). This might not even be possible when
the data does not fit in main memory or we encounter other computational restrictions.
Instead, we follow the path to the right, where the massive dataset X is reduced via a
dimensionality reduction mapping Π to obtain a significantly smaller data summary
Π(X) that is simple to calculate. The latter now fits into main memory and can be
given as input to the classical algorithm for an efficient data analysis. The bottom line
indicates that the result from analyzing the massive data is close to the result obtained
from the sketch. A comprehensive example is given in [245] where 2 TB of data are
compressed to only 140MB with a parameter estimation error of less than 4 × 10−6 for
a streamed Bayesian linear regression task.

In light of the sketch-and-solve paradigm, we focus on algorithmic approaches for
the data reduction Π that can be efficiently implemented in streaming settings as well
as in distributed environments. In particular, we develop methods to aggregate data
and to reduce the number of observations using sketches via random linear projections
and coresets obtained by importance sampling.

Sketching and coreset methods for regression on large-scale data are important
areas of research with many interesting open questions. Although basic models are
meanwhile well understood, research onmore complexmodern statistical andmachine
learning methods has just begun.

3.2.1.1 Brief Introduction to Coresets
Coresets are small, possiblyweighteddatasets that are designed to approximate an input
dataset with respect to a computational problem. A survey on common techniques
for obtaining coresets is given in [516]. Coresets usually depend on the considered
objective function or on a broader class of objective functions. The first definitions were
only implicitly given or were restricted to specific problems such as shape fitting or
clustering [35, 295]. We give a more general definition.

Definition 2 (see [516]). Let X be a set of points from a universe U and let Γ be a set
of candidate solutions. Let f : U × Γ → R≥0 be a non-negative loss function. Then a set
C ⊆ X is an ε-coreset of X for f and some ε ≥ 0, if

∀γ ∈ Γ : |f (X, γ) − f (C, γ)| ≤ ε · f (X, γ).

3.2 Coresets andSketches for Regression Problems onData Streams andDistributedData | 87

Data
Block 1 Block 2 Block 3 Block 4 Block 5 Block 6

C1B1

B0

C2

C3B2

C4 C5

C6

C7B3

C8 C9

C10

Final Coreset
C11

Fig. 3.2: Illustration of the Merge & Reduce principle from [246].

Note that the original point set is a perfectly accurate 0-coreset but has linear size. To be
a useful data reduction, a coreset is required to be of sublinear size, e.g., polylogarithmic
or even constant in the number of input points. The dependence on their dimension is
usually allowed to be a small polynomial.

Coresets have been studied extensively for nearly two decades as a data aggrega-
tion and reduction tool to address scalability issues for a plethora of computational
problems. Coresets have been developed for shape-fitting problems [6, 7, 33, 34, 218,
402], clustering [35, 216, 219, 453, 485], classification [294, 297, 594], ℓ2-regression [147,
188, 189, 432], ℓ1-regression [141, 142, 637], ℓp-regression [161, 709], M-estimators [144,
146], generalized linear models, [327, 501, 517, 594, 664], and other areas. We refer to
[565] for an extensive survey and to [516] for a technical introduction to coresets.

Aggregation Properties and Merge & Reduce Most coreset constructions have
strong aggregation properties as outlined in [295] for instance:

Definition 3. Coresets are calledmergeable if they satisfy the following properties:
1. If C1 and C2 are ε-coresets for input sets P1 and P2 respectively, then C1 ∪ C2 is an

ε-coreset for P1 ∪ P2.
2. If C1 is an ε-coreset for C2, and C2 is a δ-coreset for C3, then C1 is an (ε + δ)-coreset

for C3.

Given an off-line coreset construction that satisfies those properties, we can easily
process data streams and distributed (or parallel) data viaMerge & Reduce as a black
box technique. Merge & Reduce was first introduced in [47] as a general method for

88 | 3 Streaming Data, Small Devices

extending static data structures to handle insertions. More recently, it has been adapted
to work on coresets in the streaming setting [6, 295]. Nowadays, it is one of the main
tools in the design of efficient streaming and distributed algorithms for the analysis
of mass data. Though often only implicitly mentioned, Merge & Reduce has become a
standard technique in the coreset literature. Themerge(C1, C2) operation simply takes
the union as in the first item of Definition 3 whereas the reduce(P) operation calls the
off-line coreset construction algorithm on the point set P which can be used recursively
to compute an ε-coreset from an ε-coreset etc. using the second item of the definition.
Hereby, the error accumulates to εk after k recursive applications so one should control
the value of k = O(log n) by, say, employing a binary tree construction as in Figure 3.2.

Figure 3.2 illustrates the principle of Merge & Reduce data stream algorithms. Note
that all coresets are numbered in the order in which they are generated in a sequential
data streaming application. First, Block 1 containing a fixed number of points is read
from the stream into memory and the coreset C1 is calculated. The same process yields
coreset C2 derived from the data contained in Block 2 of the stream. Since C1, C2 are
siblings in the tree, they are combined into C3 := reduce(merge(C1, C2)). At this point
C1, C2 are not needed anymore and are thus deleted frommemory. TheMerge & Reduce
operations are indicated by the arrows in Figure 3.2. Now we proceed with C4 derived
from Block 3 and C5 derived from Block 4. Since C4, C5 are siblings in the tree, they
are combined into C6 := reduce(merge(C4, C5)) and deleted. Again we have siblings
C3, C6 on the same level, which are combined to C7 := reduce(merge(C3, C6)) and
deleted. The procedure is continued in the same manner until we reach the end of the
stream. Say this is the case after processing Block 6. Note that at this point C8, C9 have
been merged and reduced into C10 and have been deleted. The current state of the data
structure is that it holds only coresets C10 in bucket B2, i.e., on level 2, and C7 in bucket
B3, i.e., on level 3, respectively. The buckets B0 and B1 are empty at this point and
there are no further levels above level 3. Now a postprocessing step implicitly merges
C11 = reduce(merge(C7, C10)) via the working bucket B0.

The construction can also be computed in a parallel or distributed setting. One
possible scheme to achieve this, is to compute all coresets on the same level in parallel,
starting with coresets C1, C2 C4, C5, C8, C9 on level 1 and proceeding with parallel
computation of C3, C6, C10 on level 2 followed by C7 on level 3 and finally deriving the
final coreset C11 from C7 and C10.

Techniques that are similar toMerge&Reducewere employed in the area of physical
design for relational databases [88]. Another interesting variant of Merge & Reduce
directly combines statistical models rather than data summaries such as coresets [246].
We refer to Section 2.4.3 in Volume 3 of this book series for details.

3.2.1.2 Brief Introduction to Sketches
Sketching was introduced in the context of the theory of streaming algorithms. Popular
examples include the Count-Sketch [123] the CountMin-Sketch [154], and the Rademacher-

3.2 Coresets andSketches for Regression ProblemsonData StreamsandDistributedData | 89

Sketch [145]. Many contemporary sketches are variations or descendants of those basic
techniques; see [708] for a survey and technical introduction. Similar to a coreset, a
sketch is a succinct data summary, but it is not restricted to a subsample of the input or to
representative substitute data points. Instead, any data structure of sublinear size with
an efficient update procedure for processing new points may be regarded as a sketch.
Usually, one encounters linear mappings, i.e., sketching matrices in the literature.
Indeed, most known data stream algorithms are represented by linear sketches and
there is some evidence that linear sketches are nearly optimal for such algorithms under
certain conditions [429]. Linear sketches can be maintained dynamically in a data
stream. Also, they have strong aggregation properties, which allow the combination
of individual sketches—stemming from distributed data—to one single sketch for the
entirety of the data. Sketching methods are much better positioned than coresets for
handling high velocity streams, as well as highly unstructured massive databases [249,
628] and arbitrarily distributed data [648]. Linear sketches allow efficient applications
in single pass sequential streaming and in distributed environments, see. e.g., [145,
354, 709]. Both, streaming and distributed computational settings are fundamental in
the analysis of very large datasets and are very important for embedded systems and
cyber-physical systems.

Linear sketches can be updated in the most dynamic streaming setting, which is
commonly referred as the turnstilemodel, cf. [523]. In thismodel, we initialize amatrix X
to be the all-zeromatrix. The stream consists of (key, value) updates of the form (i, j, v),
meaning that Xij will be updated to Xij + v. Any entry can be defined by a single update
or by a subsequence of not necessarily consecutive updates. For instance, the sequence
. . . , (i, j, 25), . . . , (i, j, −7), . . . will result in Xij = 18. Deletions are possible by using
negative updatesmatching previous insertions. Due to linearity, linear sketches support
operations such as adding, subtracting, and scaling entire databases Xj (i.e., matrices or
vectors) efficiently in the sketch space, since ΠX = Π

∑︀
j αjXj =

∑︀
j αjΠXj. For instance,

if Xt1 and Xt2 are balances of bank accounts at time steps t1 < t2, then ΠT = ΠXt2 −ΠXt1
is a sketch of the transactions T within the period t ∈ (t1, t2].

3.2.2 Our Contributions

Our research focused on developing streaming algorithms for frequentist and Bayesian
linear regression as well as for generalized linear regression models. A common theme
consists in developing data reduction techniques such as sketching via random linear
projections or coresets via importance subsampling, retaining the statistical informa-
tion up to little distortion. Hereby, we address resource restrictions such as memory
access, communication cost, and runtime. Some highlights developed in the CRC 876 in-
clude coresets for specific classes of generalized linear models [501, 513, 515, 517] as well
as graphical models [501]. We developed sketches for Bayesian linear regression mod-
els [245] and extended them towards hierarchical priors [247] and generalized normal

90 | 3 Streaming Data, Small Devices

distributions defined over ℓp-spaces [511, 513, 637]. We translated the Merge & Reduce
principle from data summaries to maintaining statistical summaries in the streaming
model [246] and introduced an asymptotic data stream model [303]. Another signifi-
cant contribution lies in a dimensionality reduction for high-dimensional Bayesian
optimization in sketching-based embeddings of low-dimensional subspaces [512]. An
interesting further research direction is the development of dimensionality reduction
techniques for reducing the width of neural networks and studying the limitations
thereof [514].

3.2.2.1 Streaming Algorithms for Generalized Linear Regression
Generalized linear models (GLMs) extend classical linear regression to more flexible
classes of generating distributions, cf. [479]. Usually, one assumes that the realizations
of the dependent variable are generated from a member of the exponential family of
distributions, based on the independent observations. Well-known examples of such
distributions include the normal, binomial, Poisson, and gamma distributions. The
expectation of the dependent target variable Y is connected to the linear predictor Xβ
via a link function h,

h(E(Y)) = Xβ,

where X is the independent feature variable and β is the unknown parameter vector.
There is extensive work on sampling methods for approximating regression prob-

lems including ℓ2-regression [188, 189] and ℓ1-regression [141, 142, 637]. Those were
generalized to ℓp-regression for all p ∈ [1,∞) [161, 709]. More recent works studied
sampling methods for M-estimators [143, 144, 146] and generalized linear models [327].
We continued this line of research on coresets and sketches for logistic regression [515,
517] and p-generalized probit regression [513].

Logistic Regression Logistic regression is an important instance of a Generalized
Linear Model [479]. The aim of logistic regression is to estimate the parameter β implic-
itly defining Bernoulli distributions based on the observed data. An exemplary task
would be to assess the impact and interactions of variables in predicting the probability
of patients suffering from a certain disease, based on their personal, physiological,
and diagnostic data. This learning task is based on a fixed set of patient data X ∈ Rn×d

and corresponding labels Y ∈ {−1, +1}n indicating whether a patient is healthy or not.
Folding the labels into the data we define row-vectors Zi = YiXi for all 1 ≤ i ≤ n.

Our first result in [517] shows the impossibility of compressing the data sublinearly
in the input size, which holds in the worst case for any data reduction technique. To get
around this limitation, we introduced a novel parameter that can be used to bound the
complexity of compressing a dataset Z for logistic regression. This parameter is defined
by

μ(Z) = sup
β∈Rd\{0}

‖(Zβ)+‖1
‖(Zβ)−‖1

,

3.2 Coresets and Sketches for Regression Problems on Data Streams and Distributed Data | 91

where (Zβ)+, (Zβ)− comprise only the positive and negative entries of Zβ, respectively.
We call a dataset μ-complex if it satisfies μ(Z) ≤ μ. If the data is μ-complex for a small,
not necessarily constant μ, then there exists an importance sampling and reweighting
scheme based on the sensitivity framework of [219, 416] that produces an ε-coreset of
sublinear size O(ε−2μ

√
nd3/2 logO(1)(μnd))with high probability. A more involved re-

cursive sampling scheme produces an ε-coreset of size O(ε−4μ3d3 logO(1)(μnd)), which
is beneficial if the data is well-behaved and the input size is particularly large. Those
are the first provably sublinear coreset constructions for logistic regression.

The parameter μ(Z) has an intuitive statistical interpretation and might be of inde-
pendent interest as detailed in [517]. It is not uncommon in practice that μ(Z) is small,
since otherwise logistic regression exhibits methodological weaknesses.

Our experimental evaluation in [517] on real-world benchmark data shows that
there is an efficient implementation based on a sketched QR-decomposition that is more
accurate than uniform random sampling and state-of-the-art heuristic approaches such
as described in [327] while being competitive in terms of runtime.

Meanwhile, the coreset size has been reduced to Õ(ε−2μ2d) by replacing the lever-
age scores in the importance sampling distribution by ℓ1-Lewis weights [462]. This has
also improved the accuracy in experiments slightly, albeit at the cost of an increased
runtime.

However, one limitation of known coreset constructions is that they require two
passes over the data, one for approximating the importance sampling distribution
and another for subsampling and collecting the data. The recursive improvement to
polylogarithmic size, or calculating Lewis weights, requires even O(log log n) passes.
The Merge & Reduce framework is no remedy here due to the assumption of a small
μ(Z). One might argue that a random order stream satisfies this condition for every
batch of data, but in a worst-case setting we would have μ(Zi) → ∞ for some batch Zi,
even in cases where μ(Z) = 1.

Sketching Logistic Regression Towards creating a single-pass turnstile streaming
algorithm for mild μ-complex data with all computational flexibilities, we developed
the first linear sketch for logistic regression. Our main result [515] is a distribution over
stacked sparse randommatrices

Π =

⎡
⎢⎢⎢⎢⎢⎢⎣

S0
S1
...

SO(log n)
T

⎤
⎥⎥⎥⎥⎥⎥⎦

Here, at each level i, Si first subsamples a 2−i fraction of the input points which are
then hashed into a small number of buckets, where collisions are handled by summing
the elements in the same bucket. The construction is complemented by a small uniform

92 | 3 Streaming Data, Small Devices

sampling matrix T. The resulting sketch reduces n input points in d dimensions to only
O(poly(μd log n))×d.Weprove thatΠZ can be calculated over a turnstile stream in input
sparsity time, i.e., O(1) is spent on each non-zero element of the input. Moreover, with
high probability over the random construction of Π, we have for β̃ ∈ argminβ f (ΠZβ)
that

f (Zβ̃) ≤ O(1) min
β∈Rd

f (Zβ),

where f denotes the logistic loss function [515]. The intuition behind this approach is
that coordinates are grouped according to weight classes of similar loss that can be
handled separately in the analysis. Weight classes with a small number of members
will be approximated well on sketching levels with a large number of elements since
roughly all members need to be subsampled to obtain a good estimate. Weight classes
with many members will be approximated well on levels with a smaller number of
subsamples. This is because if too many members survive the subsampling there will
also be too many collisions under the uniform hashing, which would either lead to
a large overestimate when those add up, or, due to asymmetry, would cancel each
other and lead to large underestimations. Dealing with the asymmetry of the logistic
loss was another issue that needed to be controlled. The error could not be bounded if
the sign of an element was confused, since the ratio ℓ(x)/ℓ(−x) is unbounded for the
loss function ℓ(·) of unconstrained logistic regression. Finally, there could be too many
small contributions near zero. Logistic regression, unlike norms, assigns a non-zero
constant loss to them. Their contribution can thus become significant. This is taken
care of by the small uniform sample T of size Õ(μd).

Poisson Regression Poisson regression is another instance of a GLMmodel, which
aims at modeling count variables [479, 706]. A prominent example within the CRC 876
can be found in Section 4.1 in Volume 3 of this book series, where Poisson models
are used to predict the number of vehicles per minute passing sensors of the highway
ring around the city of Cologne. The predictions for a single sensor location are made
based on the measurements at all other locations and the parameters learned from a
Poisson regression model [284, 286]. This can be formalized as a Poisson dependency
network (DN) [301]. Dependency networks are graphical models comprising a collection
of GLMs, where each element of a set of d variables is regressed on all other variables.
Dependency networks have several interesting applications surveyed in [501], such as
collaborative filtering and density estimation, phylogenetic analysis, genetic analysis,
network inference from sequencing data, and trafficmodeling as well as topicmodeling.

In our work [501], we have developed coresets for dependency networks. Assuming
all GLMs in the dependency network to be ordinary linear regression models, we can
subsample and reweight the input points as in [188] to construct a coreset. Surprisingly,
we do not need to construct a coreset for each of the d GLMs separately. Instead, we

3.2 Coresets andSketches for Regression ProblemsonData Streams andDistributedData | 93

can exploit the common subspace structure of all GLMs to show that it is sufficient to
construct one single coreset of size O(ε−2d log d).

With Poisson GLMs, the situation is different. Again, we can show that in the
worst case, any data reduction technique produces either a summary of linear size or
fails to approximate the objective function to within a large superconstant factor [501].
Reviewing the statistical modeling for count data, we note that the Poisson lognormal
model is a statistical relaxation of the ordinary Poisson model [706]. It introduces a
connection to linear ℓ2-regression that we can exploit to show that a reweighted sample
of sizeO(ε−2d log2 d) gives a good approximation of the consistentmaximum likelihood
estimator in this model [501].

Our experimental evaluation [501] shows that the importance sampling scheme
outperforms uniform sampling for the normal GLMs. For the Poisson GLMs the result is
not as remarkable and the log-likelihood approximation seems worse for large sample
sizes at first glance. But as the subsample size drops below 20%, our method captures
more structure of the data. A remarkable, yet non-intuitive feature is that the approxi-
mation is capable of making better predictions than the optimal model [501]. Similar
effects have been observed independently in the general setting of randomized linear
algebra algorithms [461] and was attributed to an implicit regularization effect, since
the distortion induced by the approximation prevents the model from overfitting the
original data.

3.2.2.2 Sketches and Coresets for Bayesian Regression
Let us now focus on theoretical aspects of data compression for Bayesian regression.
We point the interested reader to Section 2.4 in Volume 3 of this book series for more
methodological results and applications. Bayesian regression does not assume a fixed
optimal solution for a dataset as is required in the frequentist case. Instead, it introduces
a distribution over the parameter space. The likelihood function L(Y|X, β)models the
information that comes from the data. The prior distribution ppre(β)models problem-
specific prior knowledge. Our goal is now to explore and characterize the posterior
distribution ppost(β), which, as a consequence of Bayes’ theorem, is a compromise
between the information from observed data and from the prior knowledge that we
assume for the parameters³

ppost(β|X, Y) ∝ L(Y|X, β) · ppre(β).

Random Projections for Bayesian Regression Our work on random projections for
Bayesian regression [245] extends previouswork on frequentist ℓ2-regression [145] to the
Bayesian setting. Certain types of random projections studied in theoretical computer
science form a so-called ε-subspace embedding. Those are linear sketches for ℓ2-spaces,

3 Here, a ∝ b means that there exists a constant c > 0 such that a = cb.

94 | 3 Streaming Data, Small Devices

which preserve the ℓ2-norm of all vectors in a linear subspace with little distortion. The
guarantee we obtain is that there exists a distribution over sketching matrices Π with a
reduced target dimension O(d/ε) such that

∀β ∈ Rd : (1 −
√
ε)‖Xβ‖2 ≤ ‖ΠXβ‖2 ≤ (1 +

√
ε)‖Xβ‖2

holds with high probability over the random choice of Π. This implies that it preserves
the ℓ2-regression error up to a factor of (1 + ε) [145], i.e., if we solve the compressed
regression problem to obtain β̃ ∈ argminβ∈Rd ‖Π(Xβ − Y)‖ then β̃ satisfies

‖Xβ̃ − Y‖2 ≤ (1 + ε) min
β∈Rd

‖Xβ − Y‖2.

For Bayesian regression we also apply an ε-subspace embedding Π to compress the
data matrix [X, Y] ∈ Rn×(d+1) to a sketch [ΠX, ΠY] ∈ Rk×(d+1) for slightly larger k ∈
O(poly(d)/ε2), whose dimensions notably do not depend on n. Our main finding is
that the results of a Bayesian analysis on the sketch and on the original dataset are
also similar up to little distortion, depending on the approximation parameter ε. More
specifically, if we denote by p = ppost(β|X, Y) and q = ppost(β|ΠX, ΠY) the posterior
distribution on the original data and on the sketch respectively, then p ≈ε q, i.e., they
are close to each other. We can quantify the approximation via theWasserstein distance
[245]. This choice is especially appealing, because it relates the distance of probability
measures to properties in the ℓ2-space over which they are defined. For normal distri-
butions this entails that their location parameters as well as their covariances are close
to the original.

The aforementioned results were restricted to the most prominent case of Bayesian
linear regression, namely to the basic case of a likelihood based on Gaussian distribu-
tions and a multivariate normal distribution as a prior. The model class of the prior
includes the degenerate, but common non-informative choice of a uniform distribution
over Rd.

Hierarchical Models Hierarchical regression models offer an extension of the previ-
ous result to a broader class of prior distributions [247]. They present amodern statistical
approach that is especially useful when information on different levels is present, e.g.,
in a meta-analysis, where raw data is available for some studies, but only averages for
the others [699]. A hierarchical model is given by

ppost(β, θ|X, Y) ∝ L(Y|X, β) · ppre(β|θ) · phyper(θ),

where the prior on β on the first level depends on a hyperparameter θ that is again
modeled via a hyper-prior phyper(θ) on the second level of the hierarchy. Such models
can be naturally extended to model arbitrary, deep or broad hierarchies, and to model
numerous different populations.

3.2 Coresets andSketches for Regression Problems onData Streams andDistributedData | 95

Generalized Normal Prior Distributions Generalized normal priors are another
modern statistical extension that we study [247, 511]. They result from generalizing the
inducing norm from ℓ2 to ℓp for p ∈ [1,∞). Their probability density function is given
by

f (x) = p
2ςΓ(1/p) exp

(︂
− |x − μ|

p

ςp
)︂
,

where μ is a location parameter and ς is a scale parameter. The parameter p determines
the shape and heaviness of the tails. Special cases include the normal distribution for
p = 2, the Laplace distribution for p = 1, and the uniform distribution on [μ − ς, μ + ς]
for p → ∞. Generalized normal distributions have been suggested and employed as a
robust alternative to model deviations from normality [438] and to model a Bayesian
analogue of LASSO regression [554]. Alternatively, they can also be employed to model
a higher sensitivity to outliers [513]. This is also important in the context of correcting
statistical models [518].

Generalized Normal Likelihood Distributions Generalized normal likelihoods can
also be treated with subspace embeddings. We note that the first such generalization
for ℓ1 was developed in the CRC 876 [637]. The case p ∈ [1,∞) can be approximated in
a similar way as in the case of normal distributions via further generalized subspace
embedding techniques for ℓp [709]. However, this is technically more challenging
[511]. One complication is that the embedding sizes are much larger for p > 2 than
for p ≤ 2. The other problem is that the distortion is as large as O((d log d)1/p) rather
than (1 ± ε). We thus use the random projection only in a preprocessing step [511] to
obtain a so-called well-conditioned basis, which can be thought of as an ℓp-analogue
to an orthonormal basis for ℓ2. From this we can derive sampling probabilities such
that by taking O(d2p+3 log2 d log(1/ε)ε−2) reweighted random samples, we achieve the
desired (1 ± ε) distortion. This is in line with [709] for p > 2 but is slightly weaker for
p ∈ [1, 2]. However, our simpler unified algorithm applies universally to both cases.
Similar methods were recently developed for obtaining coresets for the p-generalized
probit model [513] and are currently being extended to the Bayesian setting.

3.2.2.3 Bayesian Optimization in Embedded Subspaces
Bayesian optimization (BO) has emerged as a powerful technique for the global op-
timization of black-box functions that are expensive to evaluate [80, 235, 624]. Here
‘black-box’ means that we may evaluate an unknown but fixed objective function f at
any point to observe its value, possibly with noise but without derivative information.
The goal is to find

x* ∈ argminx∈C f (x)

over a set C, the domain of optimization, which can represent constraints, such as a
box-constraint C = [−1, 1]D on a large D-dimensional domain, for instance.

96 | 3 Streaming Data, Small Devices

The advantages of Bayesian optimization are sample efficiency, provable convergence to
a global optimum, and a low computational overhead. A critical limitation is the num-
ber of parameters that BO can optimize over. This is especially true for themost common
form of BO that uses Gaussian Process (GP) regression as a surrogatemodel for the objec-
tive function. Thus, it is not surprising that expanding BO to higher-dimensional search
spaces is widely acknowledged as one of the most important goals in the field [235].
Our work [512] advances the field, both, in the theory of high-dimensional Bayesian
optimization and in improving practical performance.

The idea of Bayesian optimization is to learn a Gaussian process surrogate model
on the previous evaluations in order to gain knowledge on where to evaluate next by a
simpler optimization of an acquisition criterion, e.g., the Expected Improvement (EI).
Under the assumption that the objective function depends essentially only on a low
de-dimensional effective subspace of an ambient high-dimensional space, we used
a sparse subspace embedding matrix to perform the optimization in an intermediate
subspace of dimension O(d2e /ε2). This solved several open problems in the area [512]:
1. It fixed the problem of large dilations that caused previous Gaussian embedding

matrices to project the evaluation points out of the feasible region of optimization.
2. We provided a rigorous proof that the underlying Gaussian process is well approxi-

mated in terms of its mean and variance functions, which indicates that the sample
efficiency is preserved.

3. We extended the result under mild assumptions to several highly non-linear kernel
spaces, which may be of independent interest.

4. It is computationally much faster than previous and contemporary approaches due
to the sparse embedding.

5. It performs among the best algorithms in practice even when the low-dimensional
assumption is not satisfied, cf. [201].

We refer to Section 2.5 in Volume 3 for more research and applications using Bayesian
optimization.

3.2.3 Conclusion

We introduced the concepts of coresets and sketching, which are methods for sum-
marizing data in such a way that the reduced dataset retains provable approximation
guarantees for a given computational or statistical learning problem. This enables
analyzing data in resource-constrained environments such as data streams and dis-
tributed systems, sensor networks etc., which are common in embedded systems and
cyber-physical systems. By reducing the data before their aggregation or analysis, our
methods help to save computation time and memory requirements and support com-
munication awareness. Consequently, this also saves resources on a lower technical
level, for instance energy and bandwidth.

3.2 Coresets andSketches for Regression Problems onData Streams andDistributedData | 97

Originating from the theory of computing community in the early twenty-first century,
those methods have paved their way into the machine learning and statistical commu-
nities over the last decade ever since the Big Data hype. From there, they are anticipated
to spread into all kinds of technical and application domains in the near future. This
also underlines the importance of integrating them into contemporary undergraduate
and graduate training programs.

Research on data reduction techniques, such as coresets and sketching, is an
evergrowing field from theoretical and from applied perspectives. The limitations and
possibilities for relatively simple but important base problems like linear regression
are now well-understood. But it remains open and challenging in many cases to extend
research to more sophisticated and computationally more demanding methods such as
Bayesian statistics, and neural networks.

We anticipate great advances in the field of Bayesian statistics. The advantages of
those methods lie in their theoretical statistical foundation, the interpretability of their
models, and their built-in quantification of uncertainty. However, normally Bayesian
methods require horrendous amounts of resources. Our fundamental research has
shown initial approaches for making those methods scalable and resource-efficient,
and leaving still a lot of potential for future research.

4 Structured Data
In this chapter, we show methods and techniques that learn models for structured
data in resource-aware environments. In practice, data models can often be structured
as a graph where different data points are represented as nodes and the relationship
between data points is captured by edges. Graphs occur in many applications because
they serve well to represent objects of the physical world as compositions of parts.
Molecules, for instance, can be described by a graph where the atoms are represented
by nodes and their bonds by the edges. Another example are mathematical formulas,
whose composition is semantically well modeled by graphs (see Section 4.5). Moreover,
interactions between nodes of a graph can even be structured over time leading to
spatio-temporal probabilistic graphs (see Section 4.1).

Once a particular type of a graph model is determined the models can be trained to
do machine learning tasks such as classifying graphs or, when we interpret a graph as
a transitional system, predicting the probability of a change from one state to another.
The learning methods we use in this chapter can be divided mainly into discriminative
Graph Neural Networks (GNNs) and generative Random Fields. GNNs use a learning
approach that is derived from Convolutional Neural Networks (CNNs) by aggregating
information of the neighborhood of each node through a message passing function
(see Sections 4.2, 4.3, 4.5). Random Fields are a probabilistic model that captures the
dependencies between multiple random variables and is trained to answer queries
for a probability of event A under the condition that event B already happened (see
Section 4.1). GNNs and Random Fields are different methods but both can be used to
express the same kind of problems. For example, to infer conditional probabilities for
each event we can use multiple GNNs in a layered approach [376]. However, the way in
which they take care of the computational resources is rather different.

Here is an overview of this chapter. In Section 4.1, a new model is proposed to train
spatio-temporal networkswith RandomFields called the Spatio-Temporal RandomField.
This model reduces the memory consumption without loss of the accuracy through a
theoretically well based universal reparameterization. In Section 4.2, theWeisfeiler-
Leman algorithm is explained with a focus on theoretical runtimes and the scalability
of the algorithm. Then, the connection between the Weisfeiler-Leman algorithm and
learning methods using graph kernels and GNNs, is surveyed. In Section 4.3, a unified
framework for differentiable message passing in GNNs is introduced, and techniques
for increasing its scalability are proposed. Section 4.4 proposes a framework to compute
cuts in directed graphs with high quality, which scales well in shared memory and
can be used in semi-supervised learning as well as in data compression. Section 4.5
presents a new technique to search for scientific papers, which uses mathematical
formulas instead of words. A GNN is trained on a huge dataset extracted from arXiv
and it is shown that the model scales well in practice.

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-004

100 | 4 Structured Data

4.1 Spatio-Temporal Random Fields

Nico Piatkowski
Katharina Morik

Abstract: Parameter sharing is a key technique in various state-of-the-art machine
learning approaches. The underlying idea is simple yet effective. Given a highly over-
parametrizedmodel whose input data obeys some repetitive structure, multiple subsets
of parameters are tied together. On the one hand, this reduces the number of parameters,
which simplifies the corresponding estimation problem. On the other hand, informa-
tion is transferred from one part of the data space to another, thus allowing the model
to learn patterns that never explicitly occurred in the training data. In the context of
resource constrained data analysis, the primary interest lies in the reduced memory re-
quirements, induced by the lower parameter space dimension and a presumably lower
sample complexity. In this contribution, the concept that underlies parameter sharing
is transferred to the spatio-temporal domain. More precisely, a re-parametrization of
undirected probabilistic graphical models, known as Markov Random Fields (MRFs) is
proposed for non-stationary time series of finite length. MRFs are equivalent to deep
latent variable models [568] but obey an easier-to-interpret structure. Data for such
spatio-temporal models arises naturally in distributed sensor networks. The corre-
sponding machine learning models are, however, far too large to be processed directly
at the sensor level. Re-parametrized probabilistic models exhibit a very sparse parame-
ter space that facilitates probabilistic inference directly from a compressed model. This
section studies different variants of the underlying re-parametrization and compares
them in numerical experiments on benchmark data. Furthermore, we propose how
the learning procedure can be embedded directly into a sensor network: proximal
optimization is applied in a distributed setting. It turns out that the parameter opti-
mization is purely local and that communication between sensor nodes is required
only for the gradient computation. Different real-world applications, including traffic
models and sensor network models underpin the practical relevance of compressed
Spatio-Temporal Random Fields (STRF).

4.1.1 Introduction

Spatio-temporal sensor data is an archetypical instance of structured data. Inherent
dependencies that span over space and time constitute demanding challenges when
aiming for reliable models with reasonable resource requirements. Here, we consider
the task of spatio-temporal state prediction, where the spatio-temporal structure is
represented by an undirected graph G = (V , E) that is either known or inferred from

4.1 Spatio-Temporal Random Fields | 101

data. Nodes within the network represent locations at different points in time t from
a finite time horizon T. Based on a set of N partially observed joint realizations, a
generative model Pθ is learned, where θ is the trainable parameter. This task arises
frequently in the analysis of sensor networks e.g., communication networks [577] or
satellite image data [229]. For the sake of clarity, modeling the traffic in a highway
network will serve as our running example. That is, the model must answer queries for
all parts of the network and all points in time. Examples of such predictions are:
– Given the traffic densities of all roads in a street network at discrete time points

t1, t2, t3 (e.g., 8 o’clock onMonday, Tuesday,Wednesday): indicate the probabilities
of traffic levels on a particular road A at some other time point, not necessarily
following the given ones (e.g., 7 o’clock on Thursday).

– Given a traffic jam at place A at time ts: output other places with a probability
higher than 0.7 for the state “jam” in the time interval of ts < t < tt.

One particular interest lies in learning probabilistic models for answering such queries
in resource-constrained environments. This addresses huge amounts of data on fast
computing facilities moderate data volume on embedded or ubiquitous devices. Results
and methods that are presented in this contribution are based on [566] and [567].

4.1.2 Previous Work

In this section, an overview of previous contributions to spatio-temporal modeling is
given. The task of traffic forecasting is often solved by simulations [467]. This presup-
poses a model instead of learning it. In the course of urban traffic control, events are
merely propagated that are already observed, e.g., a jam at a particular highway section
results in a jam at another highway section, or the prediction is based on a physical
rule that predicts a traffic jam based on a particular congestion pattern [287]. Many
approaches apply statistical time series methods such as auto-regression and moving
average models [705]. They do not take into account spatial relations but restrict them-
selves to the prediction of the state at one location given a series of observations at this
particular location. An early approach, that of Whittaker, Garside, and Lindveld [703],
relies on the street network topology for deriving spatial relations. The training is done
via Kalman filters, which imply a strictly linear conditional independence structure,
that is not expressive enough for answering queries like the ones stated above. A statis-
tical relational learning approach to traffic forecasting uses explicit rules for modeling
spatio-temporal dependencies [441]. Here, training is done by a Markov Logic Network
delivering conditional probabilities of congestion classes. The discriminative model is
restricted to binary classification tasks and the spatial dependencies need to be given
by hand-tailored rules. Moreover, the model is not sparse and training is not scalable.
Even for a small number of sensors, training takes hours of computation. When the
estimation of models for spatio-temporal data on ubiquitous devices is considered,

102 | 4 Structured Data

such as when learning to predict smartphone usage patterns based on time and visited
places, minutes are the order of magnitude in demand. Hence, even this advanced
approach does not yet meet the demands of the spatio-temporal prediction task in
resource-constrained environments.

Some geographically weighted regression or non-parametric k-Nearest Neighbor
(kNN) methods model a task similar to spatio-temporal state prediction [263, 477, 743].
The regression expresses the temporal dynamics and the weights express spatial dis-
tances. Another way to introduce the spatial relations into the regression is to encode
the spatial network into a kernel function [440]. The kNN method by [409] models
correlations in spatio-temporal data not only by their spatial but also by their temporal
distance. As stated for the spatio-temporal state prediction task, the particular place
and time in question need not be known in advance, because the lazy learner kNN
determines the prediction at query time. However, this approach does not deliver prob-
abilities along with the predictions, either. For some applications, traffic prognoses
for car drivers, a probabilistic assertion is not necessary. However, in applications of
disaster management, the additional information regarding likelihood is desirable.

As is easily seen, generative Markovmodels fit the task of spatio-temporal state pre-
diction. For notational convenience, let us assume only one variable X. Any generative
probabilistic model represents the joint P(X, Y) and allows us to derive P(Y|X) = P(X,Y)

P(X)
as well as P(X|Y) = P(X,Y)

P(Y) . In contrast, discriminative probabilistic models represent
P(Y|X) directly and must be trained specifically for each Y—this property is inherent
since each realization of Y requires a different normalization constant. In our example
a distinct model would need to be trained for each place. Hence, a huge set of discrimi-
native models would be necessary to express one generative model. A discussion of
discriminative versus generative models can be found in a study by [531]. Here, we refer
to the capability of interpolation (e.g., between points in time) of generative models
and their informativeness in delivering probability estimates instead of merely binary
decisions.

Spatial relations are naturally expressed by graphical models. For instance, dis-
criminative graphical models such as Conditional Random Fields (CRFs) have been
used for object recognition over time [182], while generative graphical models such
as Markov Random Fields (MRFs) have been applied to video or image data [322, 723].
The number of training instances does not influence the model complexity of MRFs.
However, the number of parameters can easily exceed millions. In particular when
using MRFs for spatio-temporal state prediction, the numerous spatial and temporal
relations soon lead to inefficiency.

We have argued in favor of using generative graphical models that model both,
spatial and temporal dependencies, at the same time. However, some problems have
until now prohibited this:
– The original parametrization is not well suited for producing sparse models.
– Trained models tend to overfit to the training data.

4.1 Spatio-Temporal Random Fields | 103

– Training high-dimensional models is not feasible.

In the following, we shall review existing work on graphical models (Section 4.1.3) and
regularization methods (Section 4.1.4) so that we can then introduce a new method for
spatio-temporal state prediction that does not suffer from the listed disadvantages.

4.1.3 Graphical Models

The formalism of probabilistic graphical models provides a unifying framework for
capturing complex dependencies among random variables, and building large-scale
multivariate statistical models [692]. Let G = (V , E) be an undirected graph with the
set of vertices V and the set of edges E ⊂ V × V. Note that the subset relation is strict,
since self-edges are not allowed. Moreover, we represent undirected edges as sets (as
opposed to ordered tuples). For each node (or vertex) v ∈ V, letXv be a randomvariable,
taking values xv in some space Xv. The concatenation of all n = |V| variables yields a
multivariate random variable X with state spaceX = X1 ×X2 ×· · ·×Xn. Training delivers
a full probability distribution over the random variable X. Letϕ be an indicator function
or sufficient statistic that indicates if a configuration x obeys a certain event {Xα = xα}
with α ⊆ V. We use the short-hand notation {xα} to denote the event {Xα = xα}. The
functions of x defined in the following can be also considered as functions of X. We
replace x by X when it makes their meaning clearer. Restricting α to vertices and edges,¹
one gets

ϕ{v=x}(x) =
{︃
1 if xv = x
0 otherwise,

ϕ{(v,w)=(x,y)}(x) =
{︃
1 if (xv , xw) = (x, y)
0 otherwise

with x ∈ X, xv ∈ Xv and y ∈ Xw. Let us now define vectors for collections of those
indicator functions:

ϕv(x) :=
[︀
ϕ{v=x}(x)

]︀
x∈Xv

,

ϕ(v,w)(x) :=
[︁
ϕ{(v,w)=(x,y)}(x)

]︁
(x,y)∈Xv×Xw

,

ϕ(x) :=
[︀
ϕv(x),ϕe(x) : ∀v ∈ V , ∀e ∈ E

]︀
.

(4.1)

The vectors are constructed for fixed but arbitrary orderings of V , E and X. The di-
mension of ϕ(x) is thus d =

∑︀
v∈V |Xv| +

∑︀
(v,u)∈E |Xv| × |Xu|. Now, consider a dataset

D =
{︁
x1, x2, . . . , xN

}︁
with instances xi. Each xi consists of an assignment to every

node in the graph. It defines a full joint state of the random variable X.

1 In general, one may consider indicator functions not only for nodes and edges, but for all cliques
(fully connected subgraphs) in G. Our description still applies to higher order models, since we can
convert them into models using only nodes and edges [692, Appendix E].

104 | 4 Structured Data

The quantities

μ̂{v=x} =
1
N

N∑︁

i=1
ϕ{v=x}(xi), μ̂{(v,w)=(x,y)} =

1
N

N∑︁

i=1
ϕ{(v,w)=(x,y)}(x

i) (4.2)

are known as empirical moments and they reflect the empirical frequency estimates of
the corresponding events. We say that a given probability density function p with base
measure² ν and expectations Ep

[︀
ϕ{xα}(x)

]︀
is locally consistent with dataD if and only

if p satisfies themoment matching condition

Ep
[︀
ϕ{xα}(x)

]︀
= μ̂{xα}, ∀α ∈ V ∪ E,

i.e. the density p is consistent with the data w.r.t. the empirical moments.
This problem is underdetermined in that there are many densities p that are consis-

tent with the data, so that we need a principle for choosing among them. The principle
of maximum entropy is to choose, among the densities consistent with the data, the
densities p* whose Shannon entropyH(p) is maximal.H is given by

H(p) := −
∫︁

X

p(x) log2
(︀
p(x)

)︀
dν(x).

This is turned into the constrained optimization problem

max
p∈P

H(p) subject to Ep
[︀
ϕ{xα}(x)

]︀
= μ̂{xα}, ∀α ∈ V ∪ E.

It can be shown that the optimal solution p* takes the form of an exponential family of
densities

pθ(X = x) = exp[⟨θ,ϕ(x)⟩ − A(θ)],

parametrized by a vector θ ∈ Rd. Note that the parameter vector θ and the sufficient
statistics vector ϕ(x) have the same length d. The term

A(θ) := log
∫︁

X

exp[⟨θ,ϕ(x)⟩]dν(x)

is called log partition function. It is defined with respect to a reference measure ν such
that P(X ∈ S) =

∫︀
S pθ(x)dν(x) for any measurable set S. Expanding ϕ(x) by means of

Equation 4.1 reveals the usual density of pairwise undirected graphical models, also
known as pairwise MRFs

pθ(X = x) = 1
expA(θ)

∏︁

v∈V
exp[⟨θv ,ϕv(x)⟩]

∏︁

(v,w)∈E
exp[⟨θ(v,w),ϕ(v,w)(x)⟩]

= 1
Ψ(θ)

∏︁

v∈V
ψv(x)

∏︁

(v,w)∈E
ψ(v,w)(x).

2 Notice that when the underlying state space X is discrete, then ν is the counting measure and we
may identify the density p with the measure P.

4.1 Spatio-Temporal Random Fields | 105

Here, Ψ = expA is the cumulant-generating function of pθ, and ψα refers to the poten-
tial functions.

Inference, that is, computing the marginal probabilities or maximum a-posteriori
states of each vertex, can be carried out by message propagation algorithms [404,
560, 690], variational methods [692], or quadrature-based methods [572, 573]. In order
to fit the model on some dataset, the model parameters have to be estimated. If the
dataset contains only fully observed instances, the parameters may be estimated by the
maximum likelihood principle. The estimation of parameters in the case of partially
unobserved data is a challenging topic on its own. Here, we assume that the datasetD
contains only fully observed instances. The likelihood L and the average log-likelihood
ℓ of parameters θ given a set of i.i.d. dataD are defined as

L(θ;D) :=
N∏︁

i=1
pθ(xi) and ℓ(θ;D) := 1

N

N∑︁

i=1
log pθ(xi) = ⟨θ, μ̂⟩ − A(θ). (4.3)

The latter is usually maximized due to numerical inconveniences of L. The most fre-
quently applied optimization methods are iterative proportional fitting [160], gradient
descent and quasi-newton methods such as L-BFGS or the conjugate gradient [538].
Section 4.1.5 will show how to model spatio-temporal dependencies within this formal-
ism.

4.1.4 Regularization

As we can see, the number of parameters in θ grows quite rapidly as we consider more
complex graphical models. A large number of parameters is generally not preferable,
since it may lead to overfitting, and it resists the implementation of a memory-efficient
predictor. Therefore, some regularization is necessary to achieve a sparse and robust
model.

Popular choices of regularizers are the l1 and l2 norms of the parameter vector,
‖θ‖1 and ‖θ‖2. By minimizing the L1 norm, we coerce the values for less informative
parameters to zero (similar to LASSO [660]), and by the l2 norm we find smooth func-
tions parametrized by θ (similar to the penalized splines [559]). Using both together is
often referred to as the elastic net [748]. For graphical models, elastic nets appeared
in the context of structure learning (estimating the neighborhoods) [156] in a manner
similar to the approach of [484]. For the state prediction task, there exist two short
workshop papers [569, 571] using the elastic net. However, their analytical and empirical
validation of such an approach is rather limited.

106 | 4 Structured Data

φ(X) θ

θ(t)

φ(t,X)

Gt+1

Gt

Gt−1

(a) (b)

Gt+1

Gt

Gt−1

Fig. 4.1: A spatio-temporal model consisting of multiple snapshot graphs Gt for t = 1, 2, . . . , T . The
spatial and temporal edges are represented by solid and dotted lines, respectively. (a) A layer Lt is
shown as the shaded region with simple temporal edges (Lt does not include the elements of Gt+1),
along with the corresponding sufficient statistic and parameter subvectors ϕ(t, X) and θ(t). (b) An
extended model with “crossing” temporal edges between consecutive snapshots. This extended
model is adopted in our experiments.

4.1.5 From Linear Chains to Spatio-Temporal Models

Sequential undirected graphical models, also known as linear chains, are a popular
method in the natural language processing community [407, 654]. There, consecutive
words or corresponding word features are connected to a sequence of labels that reflects
an underlying domain of interest like entities or part of speech tags. If we consider
a sensor network G that generates measurements over space such as a word, then it
would be appealing to think of the instances of G at different time points, like words in a
sentence, to forma temporal chainG1−G2−· · ·−GT .Wewill nowpresent a formalization
of this idea followed by some obvious drawbacks. Hereafter, we will discuss how to
tackle those drawbacks and derive a tractable class of generative graphical models for
the spatio-temporal state prediction task.

We first define the part of the graph corresponding to the time step t as the snapshot
graph Gt = (Vt , Et), for t = 1, 2, . . . , T. Each snapshot graph Gt replicates a given
spatial graph G0 = (V0, E0), which represents the underlying physical placement of
sensors, i.e., the spatial structure of random variables that does not change over time.
We also define the set of spatio-temporal edges Et−1;t ⊂ Vt−1 × Vt for t = 2, . . . , T and
E0;1 = ∅, that represent dependencies between adjacent snapshot graphs Gt−1 and Gt,
assuming a Markov property among snapshots, so that Et;t+h = ∅whenever h > 1 for
any t. Note that the actual time gap between any two time frames t and t + 1 can be
chosen arbitrarily.

The entire graph, denoted by G, consists of the snapshot graphs Gt stacked in
the order of time frames t = 1, 2, . . . , T and the temporal edges connecting them:
G := (V , E) for V := ∪Tt=1Vt and E := ∪Tt=1{Et ∪ Et−1;t}. We sketch the structure of G in
Figure 4.1.

4.1 Spatio-Temporal Random Fields | 107

θ

Gt+1

Gt

Gt−1

j

j

vt = q

vt−1 = s

G0 v

Realizations of v

}
}
θ(t)

θ(t− 1)

Spatial graph

Fig. 4.2: An example of indexing for a node and state pair over time. A sensor modeled by the node
v in the spatial graph G0 shows its measurements vt−1 and vt at time frames t − 1 and t, respectively.
The pairs vt−1 = s and vt = q are located at the same index j in the subvectors θ(t − 1) and θ(t).

For the sake of a simple description, we define a layer Lt as the partial subgraph of G
containing all vertices of Vt and all edges of Et ∪Et;t+1, for t = 1, 2, . . . , T. For instance,
a layer Lt is depicted as a shaded region in Figure 4.1. Let a ∈ Xv and b ∈ Xw and define
the subvectors of ϕ(X) and θ that correspond to a layer Lt as follows:

ϕ(t, X) := (ϕv=a(Xv),ϕ(v,w)=(a,b)(Xv , Xw) | v ∈ Lt , (v, w) ∈ Lt ,),
θ(t) := (θv=a , θ(v,w)=(a,b) | v ∈ Lt , (v, w) ∈ Lt).

(4.4)

By construction, the layers L1, L2, . . . , LT define a non-overlapping partitioning of a
graph G, which allows us to write

⟨ϕ(X), θ⟩ =
T∑︁

t=1
⟨ϕ(t, X), θ(t)⟩.

The subvectors ϕ(t, X) and θ(t) have the same length d′ := d/T for all t = 1, 2, . . . , T.
Note that the subvectors should be “aligned”, in the sense that the jth elements in all
subvectors must point to the same node:state or edge:states pair over time.We illustrate
this in Figure 4.2.

The spatial graph G0 and the sizes of the vertex state spaces Xv determine the
number of model parameters d. In order to compute this quantity, we consider the
construction of G (as shown in Figure 4.1 (b)) from G0. First, all vertices v and all edges
(u, v) from G0 are copied exactly T times and added to G = (V , E), whereas each copy
is indexed by time step t, i.e. v ∈ V0 ⇒ vt ∈ Vt , 1 ≤ t ≤ T and likewise for the edges.
Then, for each vertex vt ∈ V with t ≤ T − 1, a temporal edge (vt , vt+1) is added to G.
Finally, for each edge (vt , ut) ∈ Ewith t ≤ T −1, the two spatio-temporal edges (vt , ut+1)
and (vt+1, ut) are also added to G. The number of parameters per vertex v is |Xv| and

108 | 4 Structured Data

accordingly |Xv||Xu| per edge (v, u). Thus, the total number of model parameters is

d =
∑︁

v∈V0

T∑︁

t=1
|Xvt | +

∑︁

v∈V0

T−1∑︁

t=1
|Xvt | |Xvt+1 | +

∑︁

(u,v)∈E0
|XvT | |XuT |

+
∑︁

(u,v)∈E0

T−1∑︁

t=1
(|Xvt | |Xut+1 | + |Xvt+1 | |Xut | + |Xvt | |Xut |) .

(4.5)

If we assume that all vertices v, u ∈ V share a common state space and that state
spaces do not change over time, i.e. Xvt = Xut′ , ∀v, u ∈ V , 1 ≤ t, t′ ≤ T, the expression
simplifies to

d = T|V0| |Xvt |⏟ ⏞
of vertex parameters

+
[︀
(T − 1)(|V0| + 3|E0|) + |E0|

]︀
|Xvt |

2
⏟ ⏞

of edge parameters

with some arbitrary but fixed vertex vt. Note that the last two assumptions are only
needed to simplify the computation of dimension d; the spatio-temporal random field
that is described in the following section is not restricted by any of these assumptions.

Thismodel now truly expresses temporal and spatial relations between all locations
and points in time for all features. However, the memory requirements of such models
are quite high due to the large problem dimension. Even loading or sending models
may cause issues when mobile devices are the platform. Furthermore, the training does
not scale well because of step-size adaption techniques that are based on sequential
(i.e., non-parallel) algorithms.

4.1.6 Spatio-Temporal Random Fields

Now we describe how we modify the naive spatio-temporal graphical model discussed
above. We have two goals in mind: (i) to achieve compact models retaining the same
prediction power, and (ii) to find the best of such models via scalable distributed
optimization.

4.1.6.1 Towards Better Sparsification
The memory consumption of MRFs is dominated by the size of its parameter vector:
the graph G can be stored within O(|V| + |E|) space (temporal edges do not have to be
constructed explicitly), and the size of intermediate variables required for inference is
O(2|E||Xv|). That is, if |Xv| ≥ 2 for all v, the dimension d in Equation 4.5 and therefore
the memory consumption of the parameter vector are always a dominant factor. Also,
since each parameter is usually accessedmultiple times during inference, it is desirable
to have them in a fast storage, e.g. a cache memory.

An important observation on the parameter subvector θ(t) is that it is unlikely
to be a zero vector when it models an informative distribution. For example, if the

4.1 Spatio-Temporal Random Fields | 109

nodes can have one of the two states {high, low}, suppose that the corresponding
parameters at time t satisfy [θ(t)]v = 0 for all v and equally for all edge weights. Then
it implies P(Xv = high) = P(Xv = low), a uniform marginal distribution. The closer
the parameters of a classical MRF tend towards 0, the closer are the corresponding
marginals to the uniform distribution.

When all consecutive layers are sufficiently close in time, the transition of distribu-
tions over the layers will be smooth in many real-world applications. But the optimal
θ is likely to be a dense vector, and it will require a large memory and possibly a long
time to make predictions with it as we deal with large graphical models. This creates
the necessity for a different parametrization.

4.1.6.2 Reparametrization
In our reparametrization, we consider a piecewise linear representation of θ(t) with
new parameter vectors ∆·i ∈ Rd

′
for i = 1, 2, . . . , T,

θ(t) =
t∑︁

i=1

1
t − i + 1∆·i , t = 1, 2, . . . , T . (4.6)

Our motivation is best shown by the differences in θ between two consecutive layers,
∆(t−1):t := θ(t)−θ(t−1) = ∆·t−

∑︀t−1
i=1

1
(t−i+1)(t−i)∆·i. That is, the difference (slope) ismostly

captured by the first term ∆·t, and by the remainder terms ∆·(t−i) with quadratically
decaying weights in O(i−2), for i = 1, 2, . . . , t. We note that a simpler alternative might
be setting θ(t) =

∑︀t
i=1 ∆·i, but our approach leads to better conditions in optimization

which allow for faster convergence.
With the new parameters, if the changes between two consecutive layers are near

zero, that is, θ(t) ≈ θ(t − 1), then we expect ∆·t ≈ 0. This is a novel property of the
new parametrization, since with the classical parameters θ the condition does not
necessarily entail θ(t) ≈ 0. In otherwords, ∆·t = 0 implies no changes in the distribution
from t − 1 to t, but θ(t) = 0 implies the distribution at t suddenly becoming a uniform
distribution, regardless of the previous state at layer t − 1. An example is illustrated in
Figure 4.3.

Since we have defined θ as a concatenation of vectors θ(1), θ(2), . . . , θ(T), the
reparametrization reads as follows:

θ =

⎡
⎢⎢⎢⎢⎣

θ(1)
θ(2)
...

θ(T)

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

∆·1
1
2∆·1 + ∆·2

...∑︀T
i=1

1
t−i+1∆·i

⎤
⎥⎥⎥⎥⎦
, ∆ :=

⎡
⎢⎣

| | |
∆·1 ∆·2 · · · ∆·T
| | |

⎤
⎥⎦ .

For convenience, we define the slope matrix ∆ ∈ Rd
′×T as above, which contains ∆·1,

∆·2, . . . , ∆·T as its columns. In the following we sometimes use the notations θ(∆) and
θ(t, ∆), whenever it is necessary to emphasize the fact that θ and θ(t) are functions of

110 | 4 Structured Data

[θ(t)]j

1 2 3 4

∆1;2 = Zj2 > 0 ∆2;3 = Zj3 = 0 ∆3;4 = Zj4 < 0

[θ(1)]j = Zj1

[θ(2)]j = Zj1 +Zj2 [θ(3)]j = Zj1 +Zj2 +Zj3

[θ(4)]j =

4∑

i=1

Zji

t

Fig. 4.3: A simplified example of the reparametrization of [θ(t)]j, the jth element in the subvector
θ(t), over the timeframes t = 1, 2, 3, 4. We store slopes ∆jt instead of the actual values of the
piecewise linear function [θ(t)]j between two consecutive timeframes t − 1 and t (except for ∆j1 which
works as an intercept). Near-zero slopes ∆jt ≈ 0 (∆j3 = 0 above) can be removed from computation
and memory.

∆ under the new parametrization. Finally, another property of our reparametrization is
that it is linear. Therefore an important property for optimization carries over: A(θ(∆))
is convex in ∆ as A(θ) is convex in θ [692].

We note that due to the summation in Equation 4.6 our reparametrization with
∆ introduces some additional overhead compared with the classical parametrization
with θ. In particular, whenever an algorithm has to read a value from θ, it has do
be decompressed instantly, which adds asymptotic complexity O(T) to every access.
However, if we obtain a sparse representation with ∆, then it can be stored in small
memory (possibly even in CPU cache memory) and therefore the chances for cache
misses or memory swapping will be reduced. This becomes an important factor when,
say, we deploy a learned model to applications running on mobile devices. Chapter 7
presents approaches to memory-aware learning in other classes of learning methods.

4.1.6.3 Analysis
We define the l1 and l2 regularizers for the slope matrix ∆ as follows,

‖∆‖1 :=
d′∑︁

j=1
‖∆j·‖1, ‖∆‖2F :=

d′∑︁

j=1
‖∆j·‖22. (4.7)

The two regularizers induce sparsity and smoothness respectively, as we have discussed
in Section 4.1.4. The difference is that due to the reparametrization, now differences
between parameters θ(t − 1) and θ(t) are penalized, not the actual values they contain,
which are unlikely to be zero.

The proposed reparametrizations can result in large improvements regarding a
model’smemory consumption. Clearly, the amount of reduction depends on the specific

4.1 Spatio-Temporal Random Fields | 111

dataset. It is hence even more astonishing that the reparametrization itself can be
applied without any harm—it can represent any natural parameter. Let us consider a
proper definition of our former intuition. For the sake of generality, let C be any clique
(e.g., an edge) of the underlying graph.

Definition 4 (Piecewise Linear Reparametrization [567]). Let G be a spatio-tem-poral
graph of length T, and let D(h) ∈ [0; 1]h×h be a lower unitriangular³ matrix. Any MRF
with graph G and piecewise linear clique-wise reparametrization

θC=x′ = ηD(h)(∆C=x′) = D(h)∆C=x′ (4.8)

where h = T − (max{t′ | v(t′) ∈ C} − min{t′ | v(t′) ∈ C}) is called a spatio-temporal
random field.

Based on that definition, we can derive some useful properties.

Lemma 5 (Universality of the Reparametrization). The spatio-temporal repara-metrization
is universal. That is, the piecewise linear reparametrization is a bijection.

Proof Indeed, any ∆ ∈ Rd can be mapped to some θ ∈ Rd by multiplication with D
according to Definition 4. To see that the converse also holds, note that for each t ∈ [T],
detD(h) =

∏︀t
i=1 D(h)i,i = 1, due to unitriangularity. Each D(h) is thus invertible and so

is the block diagonal matrix D∘. So for any given natural parameter θC=y, we can find
the corresponding reparametrization via ∆C=y = D−1θC=y. That is, ηD is bijective and
hence universal. ■

Since ηD is universal, any natural parameter can be represented via some ∆. More-
over, ηD is a linear function of ∆. The convexity of a function is preserved by composing
it with a linear function. Hence, the reparametrized negative average log-likelihood
ℓ(ηD(∆);D) = A(ηD(∆)) − ⟨ηD(∆), μ̃⟩ is a convex function of ∆.

Up to now, we have not saved any memory since ∆ and θ have the same dimension.
By imposing l1- and l2-regularization on the reparametrized objective, we arrive at the
problem

min
∆∈Rd

A(ηD(∆)) − ⟨ηD(∆), μ̃⟩ +
λ2
2 ‖∆‖2F + λ1‖∆‖1

⏟ ⏞
ℓST(∆;D)

. (4.9)

The following theoremshows that the intuition thatweused todesignour reparametriza-
tion has indeed the desired effect—it allows us to convert redundancy into sparsity
by detecting negligible changes in consecutive natural parameters. Moreover, a
polynomial number of samples suffices to achieve a small estimation error with high
probability.

3 An unitriangular matrix is triangular and all entries on its main diagonal are 1.

112 | 4 Structured Data

Theorem 6 (STRF Consistency). Consider a random variable X with exponential family
density, parameter θ* ∈ Rd whose reparametrization has minimal norm among all
equivalent parameters, and a generalized sequence structure of length T. We are given a
datasetD with N = |D| samples from X. Suppose ‖∇2A(θ*)−1‖∞ ≤ κ and ‖∆‖∞ ≤ γ, and
set λ1 = 4T

√︀
log(d)/N and λ2 = γ−1λ1. If N ≥ 324κ4d12 log(d)/(T − d2)2, then, for an

arbitrary decay matrix D:
– the distance between the true parameter θ* and the estimate ηD(∆̂) is bounded, i.e.,

‖ηD(∆̂) − θ*‖∞ ≤ 3κd2λ1 ,

– any sparsity in the estimate implies some redundancy in the true parameter, i.e.,
∆̂C=x′ (t) = 0 ⇒

|θ*C=x′ (t − 1) − θ*C=x′ (t)|

≤ 3d2κλ1
T + (t − 1)

(︂
t−1
max
i=1

|∆̂C=x′ (i)| +
3d2κλ1
T

)︂
,

for any clique C and time-point t. Both statements hold with probability at least 1− (2/d).

A proof for this statement can be found in [567].

4.1.7 Experimental

We evaluate the performance of our suggested method on two real-world datasets,
where each set is described by a spatial graph G0 = (V0, E0) with a set of sensors
V0 and connections E0, and a set of historical sensor readings D. We evaluate two
approaches: MRFs with the original parametrization (MRF) and the spatio-temporal
random fields⁴ (STRF) presented in this section.

First we discuss the model training. We investigate the prediction quality and
sparsity of resulting models with respect to regularization parameters. We also present
the impact of separable optimization on training time. Next, the quality of prediction
on test sets is discussed, regarding the sparsity (and thereby the size in memory) of
trained models. Finally, we discuss the qualitative results regarding the interpretability
of the STRF model.

Throughout the experiments, our STRF algorithmhas produced solutions satisfying
our target optimality of < 10−5 within ten iterations. A description of the traffic and
temperature datasets as well as the quality measures (accuracy Acc and number-of-
non-zero-ratio NNZ) used for this evaluation can be found in [566].

4 An implementation is part of the Python package pxpy which is available at https://pypi.org/project/
pxpy.

https://pypi.org/project/pxpy
https://pypi.org/project/pxpy

4.1 Spatio-Temporal Random Fields | 113

Traffic Temperature
NN

Z
Ra

tio

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

STRF

MRF

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.005 0.01 0.015 0.02 0.025

−ℓ
(θ
;D

)

 0

 50000

 100000

 150000

 200000

 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

 0

 1000

 2000

 3000

 4000

 5000

 0 0.005 0.01 0.015 0.02 0.025

λ1 λ1
Fig. 4.4: The effect of regularization on models for varying sparsity parameter λ1 (left: traffic data,
right: temperature data, top: NNZ ratio, bottom: negative log-likelihood). All measurements were
obtained after ten iterations, which was enough for STRF to reach the target optimality.

4.1.8 Regularized Training of Spatio-Temporal Random Fields

In our model, the l2 regularizer imposes “smoothness” on the dynamics of parameters
over time, providing a controllable way to avoid overfitting noisy observations. The
degree of smoothness is controlled by λ2, whereas the compression ratio is controlled
by λ1. Positive values of λ2 help in our method, since the curvature estimation becomes
better conditioned.

4.1.8.1 Sparsity of Trained Models and Their Training Accuracy
Figure 4.4 shows the performance of STRF (ourmethod) andMRF (classical parametriza-
tion) in terms of the negative log-likelihood and the NNZ ratio for a range of values
for λ1. The parameter λ2 was fixed to 10−1 (the characteristics were almost identical
for various λ2 values we tried in the range of [0, 1]). For MRF, we augmented the ob-
jective with the l1 and l2 regularizers discussed in Section 4.1.4, and then applied a
subgradient descent method with fixed step size (η = 10−2). Our results show that (i)
the subgradient method does not properly perform regularization for MRF, regardless
of the choices of (λ1, λ2); (ii) the negative log-likelihood decreases as λ1 is increased,
which is expected because at the strongest l1 regularization will force all marginals to
be uniform distributions; (iii) our method STRF identifies sparse models accordingly to
given regularization strength, while retaining similar likelihood values to MRF. More

114 | 4 Structured Data

precisely, focusing on the curves for STRF, likelihood keeps improving until λ1 reaches
0.47. Beyond this value, themodel is compressed toomuch, losing its prediction power.
Overall, the pair (λ1, λ2) = (0.4655, 1.0)with NNZ ratio 0.101573 has been identified
as a good choice for the traffic data, and the pair (λ1, λ2) = (0.0255, 1.0) with NNZ
ratio 0.248136 has been identified as a good choice for the temperature data, since both
lead to sparse models with reasonable likelihood values. We use these values in the
following experiments.

Since the number of edge parameters is a dominant factor in the dimension d of
the parameter space, it would be desirable that STRF sufficiently compresses edge
parameters. Considering the NNZ ratio of vertex and edge parameters separately, it
turns out that STRF has such a property: with the good parameter values above, the
NNZ ratio of vertices is about 0.95, whereas that of the edges is about 0.09.

4.1.9 Prediction on Test Sets

Here we investigate (i) the test-set performance of the sparse models, obtained with
the good parameter values of λ1 and λ2 found in training, and (ii) how the sparsity of
trained models affect the testing time.

The test-set accuracy of the models, obtained by the regularization parameters
described in Section 4.1.8.1, is presented in Figure 4.5. Here our method STRF, the
classical MRF, the kNN algorithm with several values of k, and the random guessing
method, are compared. The prediction quality of themodels produced by STRF is almost
identical to that of MRF, although the STRF models are much smaller in size (10.2%
and 24.8% of the MRF models in size, for traffic and temperature, respectively). The
kNN algorithm sometimes performs better than STRF and MRF, but remember that kNN
cannot capture probabilistic relations and requires access to full training data, which
is not the case for STRF and MRF.

4.1.10 Conclusion

In this contribution, we presented an improved graphical model designed for the
efficient probabilistic modeling of spatio-temporal data. It is based on a combination of
parametrization and regularization, such that the estimated parameters are sparse and
the estimated marginal probabilities are smooth without losing prediction accuracy.
We investigated the sparsity, smoothness, prediction accuracy, and scalability of the
model on real-world datasets. The experiments showed that often around 10% of the
original model size suffices to achieve almost the same prediction accuracy. Moreover,
the method is amenable to parallelization and scales well with an increasing number
of CPUs.

4.1 Spatio-Temporal Random Fields | 115

None observed Random observed
Te
st
Ac
cu
ra
cy

(T
ra
ffi
c)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

STRF MRF 4NN 3NN 2NN 1NN RAND

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

STRF MRF 4NN 3NN 2NN 1NN RAND

Te
st
Ac
cu
ra
cy

(T
em

pe
ra
tu
re
)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

STRF MRF 4NN 3NN 2NN 1NN RAND

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

STRF MRF 4NN 3NN 2NN 1NN RAND

Few observed Many observed

Te
st
Ac
cu
ra
cy

(T
ra
ffi
c)

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

STRF MRF 4NN 3NN 2NN 1NN RAND

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

STRF MRF 4NN 3NN 2NN 1NN RAND

Te
st
Ac
cu
ra
cy

(T
em

pe
ra
tu
re
)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

STRF MRF 4NN 3NN 2NN 1NN RAND

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

STRF MRF 4NN 3NN 2NN 1NN RAND

Fig. 4.5: Test accuracy of STRF, MRF, and k-nearest neighbor algorithm on the traffic dataset for four
scenarios: unconditioned (first column, first two rows), random observed layers (second column, first
two rows), conditioned on Monday (first column, last two rows), conditioned on Monday to Saturday
(first column, last two rows).

116 | 4 Structured Data

4.2 The Weisfeiler-Leman Method for Machine Learning with
Graphs

Nils Kriege
Christopher Morris

Abstract: The Weisfeiler-Leman method is a classic heuristic for graph isomorphism
testing, which iteratively encodes vertex neighborhoods of increasing radius by vertex
colors. Two graphs whose vertex colors do not match are called non-isomorphic. The
method is fundamental for recent advances inmachine learningwith graphs, e.g., graph
kernels and graph neural networks. This contribution overviews the development of
graph kernels based on the Weisfeiler-Leman algorithm, which are among the most
successful graph kernels today. We describe the Weisfeiler-Leman heuristic for graph
isomorphism testing, from which the classical Weisfeiler-Leman subtree kernel directly
follows. Further, we summarize the theory of optimal assignment kernels and present
theWeisfeiler-Leman optimal assignment kernel for graphs and the relatedWasserstein
Weisfeiler-Lemangraph kernel.Wediscuss kernel functions based on the k-dimensional
Weisfeiler-Leman algorithm, a strict generalization of the Weisfeiler-Leman heuristic.
We show that a local, sparsity-aware variant of this algorithm can lead to scalable
and expressive kernels. Moreover, we survey other kernels based on the principle of
Weisfeiler-Leman refinement. Finally, we shed some light on the connection between
Weisfeiler-Leman-based kernels and neural architectures for graph-structured input.

4.2.1 Introduction

Graph-structured data is ubiquitous across application domains ranging from chemo-
and bioinformatics [40, 647] to image [633] and social network analysis [193]. In drug
discovery, molecules are represented as graphs [379] and the search for promising drug
candidates that bind to a specific target protein can be greatly accelerated by machine
learning methods suitable for graph data. Moreover, proteins themselves [64] as well
as their interactions and complexes [646] (also see 2.6 in Volume 3) can be adequately
modeled as graphs. The increasing amount of data in these areas offers enormous
potential in studying diseases and their cures. However, due to the size and complexity
of the data, automated methods for their analysis are required.

To develop successful machine learning models in these domains, we need tech-
niques that can exploit the rich information inherent in the graph structure and the
feature information contained within vertices and edges. In recent years, numerous
approaches have been proposed for machine learning with graphs—most notably,
methods based on graph kernels [398] and graph neural networks (GNN) [122, 252, 272].

4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs | 117

Here, graph kernels based on the 1-dimensional Weisfeiler-Leman algorithm (1-WL) [28,
271], and corresponding GNNs [509, 714] have recently advanced the state of the art in
supervised node and graph learning.

The 1-WLwas introduced as a heuristic for the graph isomorphism problem and
is widely used as a subroutine in graph isomorphism and canonization algorithms
following the individualization-refinement paradigm [480]. It allows recognizing two
graphs as non-isomorphic. More precisely, 1-WL assigns colors to the nodes of two
graphs in an iterative process, such that isomorphic graphs are assigned matching
node colors. Whenever two graphs obtain different colorings, they are guaranteed
to be non-isomorphic. However, two graphs with matching colors may still be non-
isomorphic. The abilities and limitations of the 1-WL for this task have been studied
for decades and are well understood [271]. In machine learning with graph-structured
data, the goal is less clear, and a general objective is to compute a meaningful similarity
between graphs. Two graphs that are non-isomorphic but differ only by one edge, say,
should still be considered highly similar. In practical applications, it has been observed
that the Weisfeiler-Leman technique is often suitable to approximate computationally
demanding graph similaritymeasures based on theminimumnumber of edit operations
required to transform one graph into the other [397, 646]. (See 2.6 in Volume 3 for
details.) Moreover, Weisfeiler-Leman type algorithms are remarkably successful in
machine learning tasks. However, their abilities and limitations in these applications
are not well understood and are the subject of current research.

Here, we give an overview of the recent progress of graph kernels based on the
Weisfeiler-Leman paradigm. That is, we review the 1-WL and its more expressive gener-
alization, the k-WL. Starting from the Weisfeiler-Leman subtree kernel [627], a simple
graph kernel based on the 1-WL, we survey the area with a focus on assignment-based
kernels and an extension based on the k-WL. Moreover, we overview the connections
between the Weisfeiler-Leman algorithm and graph neural networks.

4.2.2 Preliminaries

In the following, we introduce notation and give the necessary background on graph s.
As usual, let [n] = {1, . . . , n} ⊂ N for n ≥ 1, and let {{. . .}} denote a multiset.

4.2.2.1 Graphs
A graph G is a pair (V , E) with a finite set of vertices V and a set of edges E ⊆ {{u, v} ⊆
V | u ̸= v}. We denote the set of vertices and the set of edges of G by V(G) and E(G),
respectively. For ease of notation, we denote the edge {u, v} in E(G) by (u, v) or (v, u).
In the case of directed graphs the order of the nodes is distinguished and E ⊆ {(u, v) ∈
V×V | u ̸= v}. A labeled graphG is a triple (V , E, l)with a label function l : V(G)∪E(G) →
Σ, where Σ is some finite alphabet. Then l(v) is the label of v in V(G) ∪ E(G). The

118 | 4 Structured Data

vv

ϕ0(G) = (1, 1, 3)

C10

vv

ϕ1(G) = (1, 1, 2, 1)

C11RelabelRelabel
(((((
�, {{�,�}}

)))
Relabel

((
�, {{�,�}}

))

Fig. 4.6: Illustration of the coloring scheme of the 1-WL.

neighborhood of v in V(G) is denoted by δ(v) = N(v) = {u ∈ V(G) | (v, u) ∈ E(G)}. Let
S ⊆ V(G) then G[S] = (S, ES)with ES = {(u, v) ∈ E(G) | u, v ∈ S} is the subgraph of G
induced by S. A tree is a connected graph without cycles. A rooted tree is a tree with a
designated vertex called root in which the edges are directed such that they point away
from the root. Let p be a vertex in a rooted tree; we call its out-neighbors children with
parent p.

We say that two graphs G and H are isomorphic if there exists a bijection φ : V(G) →
V(H) that preserves the edges, i.e., (u, v) is in E(G) if and only if (φ(u), φ(v)) is in E(H)
for all u and v in V(G). If G and H are isomorphic, we write G � H and call φ an
isomorphism between G and H. Moreover, we call the equivalence classes induced
by � isomorphism types. In the case of labeled graphs, we additionally require that
l(v) = l(φ(v)) for all v in V(G) and l((u, v)) = l((φ(u), φ(v))) for all (u, v) in E(G).

4.2.2.2 Kernels
A kernel on a non-empty setX is a symmetric, positive semidefinite function k : X×X →
R. Equivalently, a function k is a kernel if there is a feature map ϕ : X → H, whereH is
a Hilbert space endowed with the inner product 〈·, ·〉, such that k(x, y) = 〈ϕ(x), ϕ(y)〉
for all x and y in X. Let G be the set of all graphs, then a kernel on G is called a graph
kernel.

4.2.3 The Weisfeiler-Leman Algorithm

The 1-WL is a classical heuristic for the graph isomorphism problem [28, 273, 700]. Here,
we formally introduce the 1-WL and its generalization, the k-WL, which form the basis
for the graph kernels described in the following sections.

4.2.3.1 The 1-dimensional Weisfeiler-Leman Algorithm
Intuitively, the 1-WL aims to capture the structure of a graph by iteratively aggregating
labels or colors of adjacent vertices. Two equally colored vertices get a different color if
their neighborhood is colored differently. See Figure 4.6 for an illustration.

4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs | 119

Fig. 4.7: Two graphs that cannot be distinguished by the 1-WL.

Formally, let (G, l) be a labeled graph. In each iteration i ≥ 0, the algorithm computes a
coloring C1i : V(G) → S, where S is some arbitrary codomain. In the first iteration, we
color the vertices according to the labeling l, i.e., C10(v) = l(v) for v in V(G). For i ≥ 0,
C1i+1 is defined by

C1i+1(v) = Relabel
(︁
C1i (v), {{C1i (w) | w ∈ δ(v)}}

)︁
.

Here, Relabel is an injection that maps the pair consisting of the current color and the
multiset of colors of adjacent vertices to a new color. Hence, two vertices with the same
color in iteration i get a different color in the next iteration if the number of neighbors
colored with a certain color is different. Observe that it is straightforward to extend the
1-WL to labeled, directed graphs. We run the algorithm until convergence, i.e.,

C1i (v) = C1i (w) ⇐⇒ C1i+1(v) = C1i+1(w),

holds for all v and w in V(G). We call the partition of V(G) induced by C1i the stable
partition. For such i, we define C1∞(v) = C1i (v) for v in V(G). For two graphs G and H, we
run the algorithm in “parallel” on both graphs. Then the 1-WL distinguishes between
them if

|V(G) ∩ (C1∞)−1(c)| ̸= |V(H) ∩ (C1∞)−1(c)|,

for some color c in the codomain of C1∞. If the 1-WL distinguishes two graphs, the graphs
are not isomorphic.

4.2.3.2 k-dimensional Weisfeiler-Leman Algorithm
The 1-WL is not able to distinguish between all pairs of non-isomorphic graphs. See
Figure 4.7 for such a pair. The k-WL is a natural generalization of the 1-WL, which gets
more powerful by coloring k-tuples defined over the set of vertices.

Formally, let G be a graph, and let k ≥ 2. Moreover, let v be a tuple in V(G)k, then
G[v] is the subgraph induced by the components of v, where the vertices are labeled
with integers from {1, . . . , k} corresponding to indices of v. In each iteration i ≥ 0, the
algorithm computes a coloring Cki : V(G)k → S, where S is some arbitrary codomain.
In the first iteration (i = 0), two tuples v andw in V(G)k get the same color if the map
vi ↦→ wi is an isomorphism between G[v] and G[w]. Now, for i ≥ 0, Cki+1 is defined by

Cki+1(v) = relabel(Cki (v),Mi(v)),

120 | 4 Structured Data

where the multiset

Mi(v) =
(︀
{{Cki (ϕ1(v, w)) | w ∈ V(G)}}, . . . ,

{{Cki (ϕk(v, w)) | w ∈ V(G)}}
)︀
, (4.10)

and
ϕj(v, w) = (v1, . . . , vj−1, w, vj+1, . . . , vk).

That is, ϕj(v, w) replaces the j-th component of the tuple vwith the vertex w. We run
the algorithm until convergence, i.e.,

Cki (v) = Cki (w) ⇐⇒ Cki+1(v) = Cki+1(w),

for all v andw in V(G)k holds, and call the partition of V(G)k induced by Cki the stable
partition. For such i, we define Ck∞(v) = Cki (v) for v in V(G)k. The procedure of deter-
mining if two graphs are non-isomorphic is the same as for the 1-WL. With increasing k
the algorithm gets more and more powerful [117]. That is, for each k ≥ 2 there exists a
pair of graphs that the k-WL cannot distinguish but the (k + 1)-WL can.

Let A and B be two heuristics for the graph isomorphism problem, e.g., the k-WL,
then we write A ⊑ B (A ⊏ B, A ≡ B), if algorithm A is more powerful (strictly more
powerful, equally powerful) than B in terms of distinguishing non-isomorphic graphs.
Using this notation we write

(k + 1)-WL ⊏ k-WL,

for k ≥ 2, to state the result mentioned in the last paragraph.

4.2.4 Kernels Based on the Weisfeiler-Leman Algorithm

The Weisfeiler-Leman algorithm forms the basis for some of the most successful graph
kernels. Here, we give an overview on kernels based on the 1-WL, followed by kernels
based on the k-WL. Moreover, we survey other kernels related to the Weisfeiler-Leman
paradigm.

4.2.4.1 Weisfeiler-Leman Subtree Kernel
The idea of theWeisfeiler-Leman subtree graph kernel [627] is to compute the 1-WL for
h ≥ 0 iterations resulting in a label function C1i : V(G) → Si for each iteration 0 ≤ i ≤ h.
Now after each iteration, we compute a feature vector ϕi(G) in R|Si| for each graph G.
Each component ϕi(G)c counts the number of occurrences of vertices labeled with c
in Si. The overall feature vector ϕWL(G) is defined as the concatenation of the feature
vectors of all h iterations, i.e.,

ϕWL(G) =
[︀
ϕ0(G), . . . , ϕh(G)

]︀
.

4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs | 121

The Weisfeiler-Leman subtree kernel for h iterations is then computed as

kWL(G, H) = ⟨ϕWL(G), ϕWL(H)⟩,

where ⟨·, ·⟩ denotes the standard inner product. The running time for a single feature
vector computation is in O(hm) and O(Nhm + N2hn) for the computation of the gram
matrix for a set of N graphs [627], where n and m denote the maximum number of
vertices and edges over all N graphs, respectively.

4.2.4.2 Weisfeiler-Leman Optimal Assignment Kernels
The Weisfeiler-Leman subtree kernel counts pairs of vertices with the same label. A
different approach is to assign each vertex of G to a vertex of H. Constructing an as-
signment that maximizes the structural overlap and agreement of vertex attributes is
a general concept for comparing graphs and also forms the basis of graph matching
or network alignment. This principle was proposed to obtain graph kernels, where the
similarity between two vertices is determined by an arbitrary base kernel [236]. However,
it was soon observed that the resulting similarity measure is in general not positive
semidefinite [685]. Subsequent research has identified a specific class of base kernels,
for which the similarity derived from optimal assignments is guaranteed to be a valid
kernel, i.e., positive semidefinite [395]. We summarize the theory of valid assignment
kernels and then describe how a suitable base kernel can be obtained from the 1-WL.

Valid Optimal Assignment Kernels We consider the general setting, where the
elements of two sets are to be assigned to each other. Let [X]n denote the set of all
n-element subsets of a set X andB(X, Y) the set of all bijections between X and Y in
[X]n for n in N. The optimal assignment kernel KkB on [X]n is defined as

KkB(X, Y) = max
B∈B(X,Y)

∑︁

(x,y)∈B
k(x, y), (4.11)

where k is a base kernel on X. For the application to sets of different cardinality, the
smaller set can be augmented by dummy elements d with k(d, ·) = 0.

Similar to the concept of an ultrametric, which must satisfy the strong triangle
inequality, the so-called strong kernelwas introduced as a kernel satisfying k(x, y) ≥
min{k(x, z), k(z, y)} for all x, y, z in X. It was shown that the function KkB is a valid
kernel if k is a strong kernel [395]. Strong kernels are equivalent to kernels obtained
from a hierarchical partition of their domain. Formally, let T be a rooted tree such that
the leaves of T are the elements of X and ω : V(T) → R≥0 a weight function. We refer to
the tuple (T, ω) as a hierarchy. A hierarchy on X induces a similarity k(x, y) for x and y
in X as follows. For v in V(T) let P(v) ⊆ V(T) denote the set of vertices in T on the path
from v to the root r. Then the similarity between x and y in X is

k(x, y) =
∑︁

v∈P(x)∩P(y)
ω(v).

122 | 4 Structured Data

For every strong kernel k there is a hierarchy that induces k and, vice versa, every
hierarchy induces a strong kernel [395].

The optimal assignment kernel of Equation 4.11 can be computed in linear time
from the hierarchy (T, ω) of the base kernel k by histogram intersection. For a node v
in V(T) and a set X ⊆ X, let Xv denote the subset of X that is contained in the subtree
rooted at v. Then the optimal assignment kernel is

KkB(X, Y) =
∑︁

v∈V(T)
min{|Xv|, |Yv|} · ω(v), (4.12)

which can be seen as the histogram intersection kernel for appropriately defined his-
tograms representing the sets X and Y under the strong base kernel k [395].

Optimal Assignment Kernels from the 1-WL The 1-WL produces a hierarchy on the
vertices of a (set of) graphs, where the ith level consists of nodes Si+1 with an artificial
root at level 0. The parent-child relationships are given by the color refinement process,
where the root has children S1. This hierarchy with a uniform weight function induces
the strong base kernel

k(u, v) =
h∑︁

i=0
kδ(C1i (u), C1i (v)), kδ(x, y) =

{︃
1 if x = y
0 otherwise

(4.13)

on the vertices. The kernel counts the number of iterations required to assign different
colors to the vertices and reflects the extent to which the vertices have a structurally
similar neighborhood. The optimal assignment kernel with this base kernel is referred
to as Weisfeiler-Leman optimal assignment kernel and was shown to achieve better
accuracy results in many classification experiments than the Weisfeiler-Leman subtree
kernel. Moreover, the weights of the hierarchy associated with a strong base kernel can
be optimized via multiple kernel learning [396].

4.2.4.3 Wasserstein Weisfeiler-Leman Graph Kernels
Related to assignment kernels are techniques based on the Wasserstein distance. Given
two vectors a and b in Rn+ with entries that sum to the same value and a ground cost
matrix D in Rn×n+ , theWasserstein distance (or earth mover’s distance, optimal transport
distance)⁵ is

W(a, b) = min
T∈Γ(a,b)

⟨T, D⟩, Γ(a, b) =
{︁
T ∈ Rn×n+ : T1 = a, T⊤1 = b

}︁
, (4.14)

where Γ(a, b) is the set of so-called transport plans and ⟨·, ·⟩ denotes the Frobenius dot
product. Although Γ(a, b) allows doubly stochastic matrices, the Wasserstein distance

5 Depending on the context, slightly different definitions are used in the literature. Often, they require
that a and b be distributions.

4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs | 123

is a generalizationof themin-versionof Equation4.11. The ground costmatrix, providing
the dissimilarity between entries of a and b, has a role analogous to the base kernel.

TheWasserstein distance can be applied to the vertices of two graphs using ground
costs obtained by 1-WL [663]. The entries of D are given by

d(u, v) = 1
h + 1

h∑︁

i=0
ρ(C1i (u), C1i (v)), ρ(x, y) =

{︃
0 if x = y
1 otherwise.

(4.15)

Equation 4.15 is closely related to Equation 4.13 and can be regarded as its associ-
ated normalized distance. The Wasserstein distanceW(a, b) of Equation 4.14 is then
combined with a distance-based kernel [283], specifically a variant of the Laplacian
kernel. The resulting function was shown to be positive semidefinite. The authors also
proposed extending the 1-WL to continuous attributes replacing discrete colors with
real-valued vectors. Then, the ground costs of the Wasserstein distance are obtained
from the Euclidean distance between these vectors. However, in this case, it is not
guaranteed that the resulting function is positive semidefinite.

The Weisfeiler-Leman assignment kernel and the Wasserstein Weisfeiler-Leman
kernel employ the 1-WL and improve the classification accuracy observed in practice
onmany datasets over theWeisfeiler-Leman subtree kernel. However, they are not more
powerful in distinguishing non-isomorphic graphs. One approach to obtain kernels
more expressive in this sense is to use the k-WL.

4.2.4.4 Kernels Based on the k-WL
The k-WL was also used to derive graph kernels [504, 506]. Essentially, the kernel
computation works the same way as in the 1-dimensional case, i.e., a feature vector is
computed for each graph based on color counts. To make the algorithm more scalable,
the authors of [506] resorted to color all subgraphs on k vertices instead of all k-tuples,
resulting in a less expressive algorithm. Moreover, the authors proposed that only a
subset of the original neighbors be considered to exploit the sparsity of the underlying
graph. Further, they offered a sampling-based approximation algorithm to speed up the
kernel computation for a large graph, showing that the kernel can be approximated in
constant time, i.e., independent of the number of vertices and edges, with an additive
approximation error. Finally, they showed empirically that the proposed kernel beats
the Weisfeiler-Leman subtree kernel on a subset of tested benchmark datasets.

Similarly, Morris, Rattan, and Mutzel [504] proposed graph kernels based on the k-
WL. Again they proposed a local variant of the k-WL, named δ-k-LWL, that only considers
a subset of the original neighborhood. However, they considered k-tuples and proved
that a variant of their method is slightly more powerful than the original k-WLwhile
taking the original graph’s sparsity into account. That is, instead of Equation 4.10, the
δ-k-LWL uses

Mδ
i (v) =

(︀
{{Ck,δi (ϕ1(v, w)) | w ∈ δ(v1)}}, . . . , {{Ck,δi (ϕk(v, w)) | w ∈ δ(vk)}}

)︀
.

124 | 4 Structured Data

Hence, the labeling function is defined by

Ck,δi+1(v) = relabel(Ck,δi (v),Mδ
i (v)). (4.16)

Empirically, they show that one of their variants of the k-WL achieves a new state of the
art across many standard benchmark datasets while being several orders of magnitude
faster than the k-WL.

4.2.4.5 Other Kernels Based on the Weisfeiler-Leman Algorithm
In the following, we survey other graph kernels that build on the Weisfeiler-Leman
paradigm.

Weisfeiler-LemanKernel Framework Ageneral technique tomodify and strengthen
graph kernels is to modify their labels such that additional information is encoded.
This can be achieved by computing the first h ≥ 0 colors C10, . . . , C1h of the 1-WL [627].
Then, given an arbitrary graph kernel used as base kernel, the correspondingWeisfeiler-
Leman kernel is the sum of the base kernel applied to pairs of graphs with the label
C1i for i in {0, . . . , h}. TheWeisfeiler-Leman subtree kernel described in Section 4.2.4.1
is obtained for a base kernel counting common vertex labels. Another instance of the
approach commonly used is obtained by using the shortest-path kernel [65].

Hash Graph Kernel Framework In chem- or bioinformatics, edges and vertices
of graphs are often annotated with real-valued information, e.g., physical measure-
ments [508]. Previous graph kernels that can take these attributes into account are
relatively slow and employ the kernel trick [65, 222, 394]. Therefore, these approaches
do not scale to large graphs and datasets. Moreover, kernels such as the Weisfeiler-
Leman subtree kernel cannot adequately deal with such continuous information due
to its discrete nature. To overcome this, the hash graph kernel framework was intro-
duced [507]. The idea is to iteratively turn the continuous attributes into discrete labels
using randomized hash functions. This allows the application of fast, explicit graph
feature maps, e.g., the Weisfeiler-Leman subtree kernel, which are limited to discrete
annotations. In each iteration, the algorithm samples newhash functions and computes
the featuremap. Finally, the featuremaps of all iterations are combined into one feature
map. In order to obtain a meaningful similarity between attributes in Rd, one requires
that the probability of collision Pr[h1(x) = h2(y)] of two independently chosen random
hash functions h1, h2 : Rd → N equals an adequate kernel on Rd. Equipped with such
a hash function, approximation results were derived for several state-of-the-art kernels
that can handle continuous information [507]. In particular, we derived a variant of the
Weisfeiler-Leman subtree kernel, which can handle continuous attributes. The exten-
sive experimental study showed that instances of the hash kernel framework achieve
state-of-the-art classification accuracies while being orders of magnitudes faster than
kernels that were specifically designed to handle continuous information.

4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs | 125

Neighborhood Aggregation in Graph Kernels The idea of neighborhood aggrega-
tion iswidelyused, and there are often subtle differences indefinition. For completeness,
we mention several graph kernels following this general idea. The neighborhood hash
kernel [314] is similar in spirit to the Weisfeiler-Leman subtree kernel, but represents
simple labels by bit-vectors and uses logical operations and hashing to encode the direct
neighborhood for efficiency. Propagation kernels proposed in [528] provide a generic
framework to define kernels on graphs based on an information propagation scheme
for labels and attributes. Propagation, e.g., based on random walks, is performed
individually on the two input graphs and a kernel is obtained by comparing label dis-
tributions after every propagation step. In the case of continuous (multi-dimensional)
attributes, a single hash function is used to obtain a discrete label. In [537] a general
message passing framework for kernels was proposed, where the concept of optimal
assignments (see Section 4.2.4.2) was introduced in the neighborhood aggregation step.
Persistent Weisfeiler-Leman kernels [597] combine 1-WLwith persistent homology to
extract topological features such as cycles. Recent theoretical results that link 1-WL
to graph homomorphisms [167] were used to define graph kernels that have the same
expressive power as the 1-WL, but a different feature space [533].

4.2.5 Graph Neural Networks and Their Connection to the Weisfeiler-Leman Algorithm

GNNs emerged as an alternative to graph kernels for graph classification and other
machine learning tasks on graphs such as node classification or regression. Standard
GNNs can be viewed as a neural version of the 1-WL, where colors are replaced by
continuous feature vectors and neural networks are used to aggregate over node neigh-
borhoods [252, 292, 375]. In effect, the GNN framework can be viewed as implementing
a continuous form of graph-based “message passing”, where local neighborhood infor-
mation is aggregated and passed on to the neighbors [252]. By deploying a trainable
neural network to aggregate information in local node neighborhoods, GNNs can be
trained in an end-to-end fashion together with the parameters of the classification or re-
gression algorithm, possibly allowing for greater adaptability and better generalization
compared with the kernel counterpart of the classical 1-WL.

A GNN model consists of a stack of neural network layers, where each layer aggre-
gates local neighborhood information, i.e., features of neighbors, around each node
and then passes this aggregated information on to the next layer. See Figure 4.8 for an
illustration of the architecture.

In the following, we formally define GNNs and outline their connection to the
Weisfeiler-Leman algorithm. Let G = (V , E, l) be a labeled graph with an initial node
coloring f (0) : V(G) → R1×d that is consistent with l. This means that each node v is
annotatedwith a feature f (0)(v) inR1×d such that f (0)(u) = f (0)(v) if and only if l(u) = l(v).
Alternatively, f (0)(v) can be an arbitrary real-valued feature vector associated with v.
Examples include continuous atomic properties in chemoinformatic applications or

126 | 4 Structured Data

v1 v2 v3

v4 v5

v1 v2 v3

v4 v5

fW1
merge

(︁
f (v4), fW2

aggr
(︀
{{f (v2), f (v5)}}

)︀)︁
fW1
merge

(︁
f (v4), fW2

aggr
(︀
{{f (v2), f (v5)}}

)︀)︁

Fig. 4.8: Illustration of the feature aggregation scheme of GNNs. The new feature of the node v4 is
computed from its old feature and the features of its neighbors v2 and v5.

vector representations of text in social network applications. A basic GNN model can
be implemented as follows [292]. In each layer t > 0, we compute a new feature

f (t)(v) = σ
(︁
f (t−1)(v) ·W (t)

1 +
∑︁

w∈N(v)
f (t−1)(w) ·W (t)

2

)︁
(4.17)

in R1×e for v, whereW (t)
1 andW (t)

2 are parameter matrices from Rd×e , and σ denotes a
component-wise non-linear function, e.g., a sigmoid or a ReLU.⁶

Onemay also replace the sum defined over the neighborhood in the above equation
by different permutation-invariant, differentiable functions, e.g., mean or max, and
one may substitute the outer sum by, say, a column-wise vector concatenation [252].
Thus, in full generality a new feature f (t)(v) is computed as

fW1
merge

(︁
f (t−1)(v), fW2

aggr
(︀
{{f (t−1)(w) | w ∈ N(v)}}

)︀)︁
, (4.18)

where fW2
aggr aggregates over the set of neighborhood features and fW1

merge merges the
node’s representations from step (t−1)with the computed neighborhood features. Both
fW2
aggr and fW1

merge may be arbitrary differentiable functions, e.g., neural networks, and, by
analogy to Equation 4.17, we denote their parameters asW1 andW2, respectively.

A vector representation fGNN over the whole graph can be computed by aggregating
the vector representations computed for all nodes, e.g.,

fGNN(G) =
∑︁

v∈V(G)
f (T)(v),

where T > 0 denotes the last layer. More refined approaches use differential pooling
operators based on sorting [736] or soft assignments [724]. To adapt the parameters
W1 andW2 of Equations 4.17 and 4.18 to a given data distribution, they are optimized
in an end-to-end fashion (usually via stochastic gradient descent) together with the
parameters of a neural network used for classification or regression. Efficient GPU-
based implementations of many GNN architectures can be found in [225] and [696]. See
also Section 4.3.

6 For clarity of presentation we omit biases.

4.2 The Weisfeiler-Leman Method for Machine Learning with Graphs | 127

4.2.5.1 Connections to the Weisfeiler-Leman Algorithm
A recent line of work [468, 509, 714] connects the power or expressivity of GNNs to that
of the Weisfeiler-Leman algorithm. The results show that GNN architectures generally
do not have more power to distinguish between non-isomorphic (sub)graphs than the
1-WL.

Formally, let (G, l) be a labeled graph, and letW(t) =
(︀
W (t′)

1 ,W (t′)
2
)︀
t′≤t denote the

GNN parameters given by Equations 4.17 and 4.18 up to iteration t. We encode the initial
labels l(v) by vectors f (0)(v) in R1×d using a 1-hot encoding. The first theoretical result
shown in [509] states that the GNN architectures do not have more power to distinguish
between non-isomorphic (sub-)graphs than the 1-WL. More formally, let fW1

merge and fW2
aggr

be any two functions chosen in Equation 4.18. For every encoding of the labels l(v) as
vectors f (0)(v), and for every choice ofW(t), the coloring C1i of the 1-WL always refines
the coloring f (t) induced by a GNN parameterized byW(t).

Theorem 7. Let (G, l) be a labeled graph. Then for all t ≥ 0 and for all choices of initial
colorings f (0) consistent with l, and weightsW(t),

c(t)l ⊑ f (t) .

The second result of [509] states that there exists a sequence of parameter matrices
W

(t) such that GNNs have the same power in terms of distinguishing non-isomorphic
(sub-)graphs as the 1-WL. This even holds for the simple architecture Equation 4.17,
provided we choose the encoding of the initial labeling l in such a way that linearly
independent vectors encode different labels.

Theorem 8. Let (G, l) be a labeled graph. Then for all t ≥ 0 there exists a sequence of
weightsW(t), and a 1-GNN architecture such that

c(t)l ≡ f (t) .

Hence, in the light of the above results, GNNs may be viewed as an extension of the
1-WL, which in principle have the same power but are more flexible in their ability to
adapt to the learning task at hand and can handle continuous node features.

4.2.5.2 Higher-order Graph Neural Networks
The above results also have been lifted to the k-dimensional case. For example, Maron,
Ben-Hamu, Serviansky, and Lipman [468] devised an architecture based on simple
matrix operations that has the same power as the 3-WL. In a recent work, Morris, Rattan,
and Mutzel [504] devised neural architectures, denoted δ-k-LGNN, that resemble the
construction for GNNs.

Formally, given a labeled graph G, let each tuple v in V(G)k be annotated with an
initial feature f (0)(v) determined by the isomorphism type of G[v]. In each layer t > 0,

128 | 4 Structured Data

we compute a new feature f (t)(v) as

fW1
merge

(︁
f (t−1)(v), fW2

agg
(︀
{{f (t−1)(ϕ1(v, w)) | w ∈ δ(v1)}}, . . . ,

{{f (t−1)(ϕk(v, w)) | w ∈ δ(vk)}}
)︀)︁
,

in R1×e for a tuple v, whereW (t)
1 andW (t)

2 are learnable parameter matrices from Rd×e.⁷
Moreover, fW2

merge and the permutation-invariant fW1
agg can be arbitrary differentiable

functions, responsible for merging and aggregating the relevant feature information,
respectively. Note that one can naturally handle discrete node and edge labels as well
as directed graphs. The following result shown in [504] demonstrates the expressive
power of the δ-k-LGNN in terms of distinguishing non-isomorphic graphs.

Theorem 9. Let (G, l) be a labeled graph. Then for all t ≥ 0 there exists a sequence of
weightsW(t) such that

Ck,δt (v) = Ck,δt (w) ⇐⇒ f (t)(v) = f (t)(w).

Hence, for all graphs, the following holds for all k ≥ 1:

δ-k-LGNN ≡ δ-k-LWL.

4.2.6 Conclusion and Future Work

TheWeisfeiler-Lemanmethodhas been studied for decades in graph theory and recently
turned out to be an essential technique inmachine learningwith graphs [505], achieving
high accuracy on many real-world datasets [508]. While the Weisfeiler-Leman algo-
rithm’s expressivity limits machine learning methods to distinguishing non-isomorphic
graphs, the generalization abilities of such methods are understood to a lesser extent,
indicating an avenue for future research. Moreover, heterogeneous networks with differ-
ent edge types or graphs annotated with temporal information will become increasingly
important. The adaption of the Weisfeiler-Leman paradigm to such settings has only
recently been considered, e.g., for temporal graphs [544], and the development of new
suitable learning methods has only just begun.

7 For clarity of presentation we omit biases.

4.3 Deep Graph Representation Learning | 129

4.3 Deep Graph Representation Learning

Matthias Fey
Frank Weichert

Abstract: Learning with graph-structured data such as molecules, social, biological,
and financial networks, requires effective representations that successfully capture their
rich structural properties. In recent years, numerous approaches have been proposed
for machine learning on graphs —most notably, approaches based on graph kernels
and Graph Neural Networks (GNNs). Graph neural networks exploit relational inductive
biases of the underlying data by following a differentiable neural message passing
scheme, and show-case promising performance on a variety of different tasks due to
their expressive power in capturing different graph structures. However, despite the
indisputable potential of GNNs in learning such representations, one of the challenges
that have so far precluded their wide adoption in industrial and social applications is
the difficulty to scale them to large graphs. In particular, the embedding of a given node
depends recursively on all its neighbor’s embeddings, leading to high inter-dependency
between nodes that grows exponentially with respect to the number of layers.
Here, we demonstrate the generality of message passing through a unified frame-

work that is suitable for a wide range of operators and learning tasks. This generality
of message passing led to the development of PyTorch Geometric, a well-known deep
learning library for implementing and working with graph-based neural network build-
ing blocks. Furthermore, we discuss scalable approaches for applying graph neural
networks to large-scale graphs. In particular, we show that scalable approaches based
on sub-sampling of edges or non-trainable propagations weaken the expressive power
of message passing. In order to overcome this restriction, we present GNN AutoScale,
a framework for scaling arbitrary message passing neural networks to large graphs.
GNN AutoScale prunes entire sub-trees of the computation graph by utilizing historical
node embeddings from prior training iterations while provably being able to maintain
the expressive power of the original architecture.

4.3.1 Introduction

Graphs are widely used for abstracting complex systems of interacting objects, such as
social networks, knowledge graphs, molecular graphs, and biological networks, as well
as for modeling 3D objects, manifolds, and source code [320]. To develop successful
machine learning models in these domains, we need techniques that can exploit the
rich information inherent in the graph structure, as well as the feature information
contained within a graph’s nodes and edges. Recently, graph neural networks emerged

130 | 4 Structured Data

as a powerful approach and the de facto standard for representation learning on graphs.
GNNs are able to capture local graph structure and feature information in a trainable
fashion to derive powerful node representations suitable for a given task at hand [291,
455]. To achieve this, they follow a simple neighborhood aggregation procedure or neu-
ral message passing schememotivated by twomajor perspectives: The generalization of
classical CNNs to irregular domains, and their strong relations to theWeisfeiler-Lehman
algorithm [226, 509, 715] (see Section 4.2.5).

The recentwork in the fields of geometric deep learning and relational representation
learning provides a large number of graph-based operators, which allows for precise
control of the properties of extracted graph-based features [134, 225, 252, 292, 375, 378,
588, 683, 697, 714, 715]. Nonetheless, all those recent operators can be described by a
simple message passing formulation, leading to a unified framework suitable across a
wide range of operators and learning tasks [252]. The generality of message passing led
to the development of the PyTorch Geometric library, a deep learning framework for
implementing and working with graph-based neural networks [225].

While GNNs have become better understood andmodels have becomemore sophis-
ticated, advancements in this field should be more noticeable with access to increasing
data. However, applying mini-batch training of GNNs is challenging since the embed-
ding of a given node depends recursively on all its neighbor’s embeddings, leading
to high inter-dependency between nodes that grows exponentially with respect to
the number of layers [455]. Several recent works address this problem via different
sampling techniques (leading to sub-sampling of edges) [455, 600], or by decoupling
propagations from predictions [234, 321, 378, 710, 726]. Although empirical results
suggest that the aforementioned methods can scale GNN training to large graphs, these
techniques are either restricted to shallow networks, non-exchangeable operators, or
reduced expressivity. In particular, existing approaches consider only specific GNN
operators and it is not yet well known whether these techniques can be successfully
applied to the wide range of GNN architectures available.

In the next sections, we will discuss and introduce the aforementioned general
neural message passing framework, and show how common GNN operators fit into this
scheme. We proceed by introducing the PyTorch Geometric library [225], which makes
it easy to implement those GNN operators in practice. Furthermore, we present our
GNN AutoScale framework for scaling arbitrary message passing GNNs to large-scale
graphs [224].

4.3.2 Representation Learning on Graphs via Neural Message Passing

We begin by refining the general neural message passing scheme from Section 4.2.5 that
is utilized in state-of-the-art graph neural networks and, along the way, introduce the
necessary notation and background. Let G = (V, E) or A ∈ {0, 1}|V|×|V| denote a graph
with node feature vectors xv for all v ∈ V and (optional) edge features ev,w in case

4.3 Deep Graph Representation Learning | 131

w2

w3

w1

v

Fig. 4.9:Message passing flow in a GNN layer. Each direct neighbor of a node crafts a message that
is sent along the given edge. Each node aggregates their incoming messages to update its current
node representation.

(v, w) ∈ E ⊆ V×V. Here, we aremostly interested in learning final node representations
hv ∈ RD for all v ∈ V in an end-to-end fashion that are suitable for a given downstream
task (such as node, link, or graph classification). In node classification, each node
v ∈ V is associated with a label yv, and the goal is to learn a representation hv from
which yv can be easily predicted. In link prediction, we want to find the missing links
in an incomplete graph, and we can directly use hv and hw, v, w,∈ V, for predicting
the existence of an edge between the given node pair. In graph classification, each
individual graph is associated with a label y, and we can use {{hv : v ∈ V}} alltogether
to predict the label y in a permutation-invariant fashion.

Graph neural networks operate on graph-structured data G by following a neural
message passing scheme, where a representation of a node is iteratively updated by
aggregating representations of its neighbors [252]. After L iterations of aggregation, the
representation of a node captures both structural and feature information within its
L-hop neighborhood. Formally, the (ℓ + 1)-th layer of a GNN is defined as

h(ℓ+1)v = f (ℓ+1)θ

(︁
h(ℓ)v ,

{︁{︁(︀
h(ℓ)w , h(ℓ)v , e(ℓ)w,v

)︀
: w ∈ N(v)

}︁}︁)︁
(4.19)

= Update(ℓ+1)θ

⎛
⎝h(ℓ)v ,

⨁︁

w∈N(v)
Message(ℓ+1)θ

(︀
h(ℓ)w , h(ℓ)v , e(ℓ)w,v

)︀
⎞
⎠ (4.20)

where h(ℓ)v represents the feature vector of node v obtained in layer ℓ and N(v) =
{w : (w, v) ∈ E} defines the neighborhood set of v. We initialize h(0)v = xv. Since differ-
ent nodes can have identical feature vectors, a GNNoperates onmultisets {{. . .}}, defined
as a 2-tuple X = (Pd , c), where Pd denotes the underlying set of X and c : Pd → N≥1
counts its multiplicity. A general illustration of this message passing flow is given in
Figure 4.9. Most recent GNN operators f (ℓ)θ can be decomposed into differentiable and
parametrizedMessage(ℓ)θ and Update(ℓ)θ functions parametrized by weights θ, as well
as permutation-invariant aggregation functions

⨁︀
, e.g., taking the sum, mean or maxi-

mumof features [225].Message andUpdate can be chosen in different ways, depending
on the task at hand. For example,Message functions can transform incoming features

132 | 4 Structured Data

either linearly or non-linearly [252, 588, 697]; aggregative functions can model static
[714], structure-dependent [375], or data-dependent aggregations [683]; and Update
is typically used to preserve central node information via skip-connections [292] or
residuals [134, 378].

Ideally, a maximally powerful GNN could distinguish non-isomorphic graph struc-
tures by mapping them to different representations in the embedding space. In recent
studies [509, 714], it has been shown that the representational power ofGNNs is bounded
by the capacity of theWeisfeiler-Leman (WL) graph isomorphism test [701], (see Sec-
tion 4.2.3), which uniquely refines the coloring of a node c(ℓ)v : V → Σ based on the
colors of their neighbors. In fact, a GNN’s expressiveness is equivalent to the WL test if
all its layers f (ℓ)θ are injective, i.e., if they never map two different neighborhoods to the
same representation. As a result, numerous GNN operators have been proposed that are
equally powerful as the WL test [155, 714], as well as higher-order variants to increase
their representational power even further [67, 227, 468, 504, 509, 519] (see Section 4.2).
We now briefly review how current state-of-the-art GNN operators fit into the given
neural message passing scheme (omitting final non-linearities due to simplicity).

Graph Neural Networks (GNN) [375] can be considered as one of the pioneers of
graph-structured deep learning methods, and they are motivated by a first-order ap-
proximation of spectral graph convolutions. Its underlying GNN operator uses a sym-
metrically normalized mean aggregation of linearly transformed neighboring node
representations

h(ℓ+1)v =

Update(ℓ+1)θ⏞ ⏟
1
cv,v

Wh(ℓ)v +
∑︁

w∈N(v)⏟ ⏞ ⨁︀
1
cw,v

Wh(ℓ)w
⏟ ⏞
Message(ℓ+1)θ

, (4.21)

where cw,v =
√︀
deg(w) + 1

√︀
deg(v) + 1with deg(·) denoting node degree, andW being

a trainable weight matrix.

Graph Attention Networks (GAT) [683] builds upon the idea of GCNs where the
structure-dependent normalization coefficients are replaced by an anisotropic, learn-
able aggregation guided by attention

h(ℓ+1)v =

Update(ℓ+1)θ⏞ ⏟
αv,vWh(ℓ)v +

∑︁

w∈N(v)⏟ ⏞ ⨁︀
αw,vWh(ℓ)w⏟ ⏞
Message(ℓ+1)θ

, (4.22)

where attention coefficients are computed via

αw,v =
exp

(︁
LeakyReLU

(︁
a⊤
[︁
Wh(ℓ)v ,Wh(ℓ)w

]︁)︁)︁

∑︀
k∈N(v)∪{v} exp

(︁
LeakyReLU

(︁
a⊤
[︁
Wh(ℓ)v ,Wh(ℓ)k

]︁)︁)︁ . (4.23)

4.3 Deep Graph Representation Learning | 133

with additional trainable parameters a.

Spline-Based Convolutional Neural Networks [226] utilize edge information ew,v
to learn a data-dependent filter matrix

h(ℓ+1)v =

Update(ℓ+1)θ⏞ ⏟
Wh(ℓ)v +

∑︁

w∈N(v)⏟ ⏞ ⨁︀
gθ(ew,v)h(ℓ)w⏟ ⏞
Message(ℓ+1)θ

(4.24)

via a parametrized and continuous B-Spline kernel function gθ(·).

Graph Isomorphism Networks (GIN) [714] make use of sum aggregation and MLPs
to obtain a maximally powerful GNN operator

h(ℓ+1)v =

Update(ℓ+1)θ⏞ ⏟
MLPθ

(︁
(1 + ϵ) h(ℓ)v +

∑︁

w∈N(v)⏟ ⏞ ⨁︀
h(ℓ)w⏟ ⏞

Message(ℓ+1)θ

)︁
, (4.25)

where ϵ is a trainable scalar in order to distinguish neighbors from central nodes.

Principal Neighborhood Aggregation (PNA) [155] networks leverage mulitple ag-
gregators combined with degree-scalers to better capture graph structural properties

h(ℓ+1)v =

Update(ℓ+1)θ⏞ ⏟
W2
[︁
h(ℓ)v ,

⨁︁

w∈N(v)
W1

[︁
h(ℓ)v , h(ℓ)w

]︁

⏟ ⏞
Message(ℓ+1)θ

]︁
, (4.26)

whereW1 andW2 denote trainable weight matrices, and

⨁︁
=

⎡
⎢⎣

1
s(deg(v), 1)
s(deg(v), −1)

⎤
⎥⎦

⏟ ⏞
Scalers

⊗

⎡
⎢⎣

mean
min
max

⎤
⎥⎦

⏟ ⏞
Aggregators

, (4.27)

with⊗ being the tensor product and

s(d, α) =
(︃

log(d + 1)
1
|V|
∑︀

v∈V log(deg(v) + 1)

)︃α
(4.28)

denoting degree-based scalers. Having introduced the basic concepts of message pass-
ing within GNNs, we now look more closely at their practical implementation (Sec-
tion 4.3.3) and resource efficiency (Section 4.3.4).

134 | 4 Structured Data

v1

v2

v3

v4 MESSAGE�
(
h(l)1 , h(l)2 , e(l)2,1

)

MESSAGE�
(
h(l)1 , h(l)3 , e(l)3,1

)

MESSAGE�
(
h(l)1 , h(l)4 , e(l)4,1

)
gather (I) scatter_⬚ (I)

UPDATE�

Fig. 4.10: Computation scheme of a GNN layer by leveraging gather and scatter methods based on
edge indices I, hence alternating between node parallel space and edge parallel space.

4.3.3 PyTorch Geometric: Implementing Graph Neural Networks

The practical implementation of graph neural networks is challenging, as high GPU
throughput needs to be achieved on highly sparse and irregular data of varying size.
Here, we introduce and discuss the PyTorch Geometric library [225], a library for deep
learning on irregularly structured data, built upon PyTorch [555]. In addition to gen-
eral graph data structures and processing methods, it contains a variety of recently
published methods from the domains of relational learning and 3D data processing. Py-
Torch Geometric achieves high data throughput by leveraging sparse GPU acceleration,
by providing dedicated CUDA kernels, and by introducing efficient mini-batch handling
for input examples of different sizes. All implemented methods support both CPU and
GPU computations and follow an immutable data flow paradigm that enables dynamic
changes in graph structures through time. PyTorch Geometric is released under the
MIT license and is available on GitHub.⁸ It is thoroughly documented and provides
accompanying tutorials and examples as a first starting point.⁹

In PyTorch Geometric, we represent a graph G = (X, (I, E)) by a node feature matrix
X ∈ RN×F of N nodes holding F features, and a sparse adjacency tuple (I, E) of E
edges, where I ∈ N2×E encodes edge indices in COOrdinate (COO) format and E ∈ RE×D

(optionally) holds D-dimensional edge features. All user-facing APIs, e.g., data-loading
routines, multi-GPU support, data augmentation, and model instantiations are heavily
inspired by PyTorch to keep them as familiar as possible.

In practice, the realization of Equation 4.20 can be achieved by gathering and scat-
tering node features and a vectorized elementwise computation ofMessage andUpdate
functions, as visualized in Figure 4.10. Although working on irregularly structured in-
put, this scheme can be heavily accelerated by the GPU. In contrast to implementations
via sparse matrix multiplications, the usage of gather and scatter proves to be advanta-
geous for low-degree graphs and non-coalesced input, and allows for the integration
of central node and multi-dimensional edge information directly while aggregating.

8 GitHub repository: https://github.com/rusty1s/pytorch_geometric.
9 Documentation: https://pytorch-geometric.readthedocs.io.

https://github.com/rusty1s/pytorch_geometric
https://pytorch-geometric.readthedocs.io

4.3 Deep Graph Representation Learning | 135

We implement different reductions for the scattering of neighboring node features via
dedicated CUDA kernels, although execution on other hardware is applicable as well.
For more, see Chapter 6.

We provide the user with a general MessagePassing interface to allow for rapid and
clean prototyping of new research ideas. In order to use the interface, users only need
to define the methodsMessageθ, i.e., message, and Updateθ, i.e., update, and choose
an aggregation scheme

⨁︀
. For implementing message, node features are automatically

mapped to the respective source and target nodes. Almost all recently proposed neigh-
borhood aggregation functions can be lifted to this interface, including (but not limited
to) the methods already integrated in PyTorch Geometric. Overall, PyTorch Geometric
currently bundles over 40 different GNN operators proposed in literature, as well as
over 15 complete models.

(Hierarchical) Pooling PyTorch Geometric also supports graph-level outputs as op-
posed to node-level outputs by providing a variety of graph-level pooling functions [435,
687, 736]. To further extract hierarchical information and to allow deeper GNN mod-
els, various pooling approaches can be applied in a deterministic or data-dependent
manner [118, 175, 205, 241, 588, 633, 697, 724].

Mini-Batch Handling Our framework supports batches of multiple graph instances
(of potentially different size) by automatically creating a single (sparse) block-diagonal
adjacency matrix and concatenating feature matrices in the node dimension. Therefore,
neighborhood aggregationmethods can be applied without anymodifications, since no
messages are exchanged between disconnected graphs. In addition, an automatically
generated assignment vector ensures that node-level information is not aggregated
across graphs as when executing global aggregation operators.

Processing of Datasets We provide a consistent data format and an easy-to-use
interface for the creation and processing of datasets, both for large datasets and for
datasets that can be kept in memory during training. In order to create new datasets,
users just need to read/download their data and convert it to the PyTorch Geometric
data format via the respective processmethod. In addition, datasets can bemodified by
the use of transforms, which take in separate graphs and transform them, say, for data
augmentation, for enhancing node features with synthetic structural graph properties,
in order to automatically generate graphs from point clouds or to sample point clouds
from meshes.

Empirical Evaluation We evaluated the correctness of the implemented methods by
performing a comprehensive comparative study in homogeneous evaluation scenarios,
reaching state-of-the-art performance on several graph benchmark tasks. For example,
experiments for the semi-supervised node classification performance of common GNN

136 | 4 Structured Data

Tab. 4.1: Performance (accuracy and standard deviation) of semi-supervised node classification
experiments for fixed and random splits across 100 runs.

Method Cora CiteSeer PubMed
Fixed Random Fixed Random Fixed Random

Cheby [164] 81.4±0.7 77.8±2.2 70.2±1.0 67.7±1.7 78.4±0.4 75.8±2.2
GCN [375] 81.5±0.6 79.4±1.9 71.1±0.7 68.1±1.7 79.0±0.6 77.4±2.4
GAT [683] 83.1±0.4 81.0±1.4 70.8±0.5 69.2±1.9 79.0±0.3 77.5±2.3
SGC [710] 81.7±0.1 80.2±1.6 71.3±0.2 68.7±1.6 78.9±0.1 76.5±2.4
ARMA [52] 82.8±0.6 80.7±1.4 72.3±1.1 68.9±1.6 78.8±0.3 77.7±2.6
APPNP [378] 83.3±0.5 82.2±1.5 71.8±0.5 70.0±1.4 80.1±0.2 79.4±2.2

architectures are easily finishedwithin 1–2 seconds per run, either using fixed or random
training splits. Table 4.1 presents the results of state-of-the-art GNNs on several citation
datasets [621, 718]. Notably, all experiments show a high reproducibility of the reported
results.

4.3.4 Scalable and Expressive Graph Neural Networks

While the full-gradient in GNNs is straightforward to compute since we have access to
all hidden node representations of all layers, this is not feasible in large-scale graphs
due to memory limitations and slow convergence [455]. Therefore, given a loss function
ϕ, it is desirable to approximate its full-batch gradient stochastically

∇L = 1
|V|
∑︁

v∈V

∇ϕ(h(L)v , yv) ≈
1
|B|

∑︁

v∈B⊆V

∇ϕ(h(L)v , yv), (4.29)

which considers only a mini-batchB ⊆ V of nodes for loss computation. However, this
stochastic gradient is still expensive to compute due to the exponentially increasing
dependencies of node representations over layers, a phenomenon known as neighbor
explosion [292]. Specifically, the representation of a given node depends recursively on
all its neighbor’s representations, and the number of dependencies grows exponentially
with respect to the number of layers.

Recent works try to alleviate this problem by proposing various different sampling
techniques [455], which can be broadly categorized as node-wise, layer-wise, and
subgraph sampling strategies. In general, these techniques can all be viewedas different
variants of dropping edges [600]. Node-wise sampling [126, 292] recursively samples a
fixed number k of 1-hop neighbors, leading to an overall bounded L-hop neighborhood
of O(kL) for each node. In contrast to tracking down inter-layer connections, layer-
wise sampling techniques independently sample nodes for each layer, leading to a
constant sampled size in each layer [126, 323, 747]. Here, variance is further reduced via
importance sampling or adaptive sampling techniques. In subgraph sampling [137, 731,

4.3 Deep Graph Representation Learning | 137

732], a full GNN is run on an entire subgraph G[B] induced by a sampled batch of nodes
B ⊆ V. Notably, most of these sampling approaches eliminate the neighbor explosion
problem, but there are challenges to preserving the edges that present a meaningful
topological structure.

Another line of work is based on the idea of decoupling propagations from predic-
tions [234, 378, 710, 726]. Here, input node features are first enhanced by performing
several rounds of propagation via, say, the normalized Laplacian matrix or the person-
alized matrix, before they are inputted into an Multilayer Perceptron (MLP) to perform
the final prediction.While this scheme enjoys fast training and inference time, it cannot
be applied to any GNN, especially because the propagation is non-trainable. Recently,
Huang, He, Singh, Lim, and Benson [321] proposed a simple post-processing step to
correct and smooth the predictions of a simple graph-agnostic model via label propaga-
tion. While this step is orthogonal to recent GNN advancements, it can only be applied
in transductive learning scenarios.

It is well known that the most powerful GNNs adhere to the same representational
power as the WL test [701] in distinguishing non-isomorphic structures [509, 714], i.e.,
h(L)v ̸= h(L)w in case c(L)v ̸= c(L)w , where c(L)v denotes a node’s coloring after L rounds of
color refinement. However, in order to leverage such expressiveness, a GNN needs to
be able to reason about structural differences across neighborhoods directly during
training. It has been shown that GNNs that scale by sub-sampling edges are not capable
of doing so [224]:

Proposition 10. Let f (L)θ : V → Rd be a L-layered GNN as expressive as the WL test
in distinguishing the L-hop neighborhood around each node v ∈ V. Then there exists
a graph A ∈ {0, 1}|V|×|V| for which f (L)θ operating on a sampled variant ˜A, ãv,w =⎧
⎨
⎩

|N(v)|
|Ñ(v)| , if w ∈ Ñ(v)

0, otherwise
, produces a non-equivalent coloring, i.e., ˜h(L)v ̸= ˜h(L)w while c(L)v =

c(L)w for nodes v, w ∈ V.

Therefore, a special interest lies in the question if there exist scalable GNN variants
that are as expressive as their full-batch counterpart.

4.3.4.1 Scaling Graph Neural Networks via Historical Embeddings
We now introduce the GNNAutoScale (GAS) framework [224], which scales graph neural
networks by pruning entire sub-trees of the computation graph and filling the missing
information by utilizing historical embeddings acquired in previous training iterations
[126, 153], leading to constant GPU memory consumption with respect to input node
size without dropping any data. Since GNNAutoScale accounts for all data, it provably
is able to maintain the expressive power of the underlying graph neural network.

Let h(ℓ)v denote the node embedding in layer ℓ of a node v ∈ B in a mini-batch
B ⊆ V. For the general message scheme given in Equation 4.20, the execution of f (ℓ+1)θ

138 | 4 Structured Data

H̄(1)

H̄(2)
v1

v2v3

v4v5

v6

v7
v8

Mini-batch B
1-hop neighborhood

⋃
v∈B

N (v) \ B

G

GPU

CPU

f
(3)
θ

f
(2)
θ

f
(1)
θ

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2 v3 v4

v1 v2

GPU

f
(3)
θ

f
(2)
θ

f
(1)
θ

v1 v2 v3 v4 v5 v6 v7 v8

v1 v2 v3 v4 v5 v6

v1 v2 v3 v4

v1 v2

Fig. 4.11:Mini-batch processing of GNNs with historical embeddings.■ denotes the nodes in the
current mini-batch and■ represents their direct 1-hop neighbors. For a given mini-batch (left),
GPU memory and computation costs increase exponentially with GNN depth (middle). The usage of
historical embeddings avoids this problem as it prunes entire sub-trees of the computation graph,
which leads to constant GPU memory consumption with respect to input node size (right). Here,
nodes in the current mini-batch push their updated embeddings to the history ¯H(ℓ), while their direct
neighbors pull their most recent historical embeddings from ¯H(ℓ) for further processing.

can be formulated as:

h(ℓ+1)v = f (ℓ+1)θ

(︁
h(ℓ)v ,

{︁{︁
h(ℓ)w : w ∈ N(v)

}︁}︁)︁

= f (ℓ+1)θ

(︁
h(ℓ)v ,

{︁{︁
h(ℓ)w : w ∈ N(v) ∩B

}︁}︁
∪
{︁{︁
h(ℓ)w : w ∈ N(v) \B

}︁}︁)︁

≈ f (ℓ+1)θ

(︁
h(ℓ)v ,

{︁{︁
h(ℓ)w : w ∈ N(v) ∩B

}︁}︁

⏟ ⏞
(1) Local embeddings

∪
{︁{︁
¯h(ℓ)w : w ∈ N(v) \B

}︁}︁

⏟ ⏞
(2) Historical embeddings

)︁

Here, we separate the neighborhood information of the multiset into two parts: (1) the
local information of neighborsN(v) that are part of the current mini-batchB, and (2)
the information of neighbors that are not included in the current mini-batch. We then
approximate the embeddings of out-of-mini-batch nodes with their historical embed-
dings denoted as ¯h(ℓ)w . After each step of training, the newly computed embeddings
h(ℓ+1)v are pushed to the history and serve as historical embeddings ¯h(ℓ+1)w in future
iterations.

A high-level illustration of its computation flow is visualized in Figure 4.11. It can
be seen that in the original data flow without historical embeddings the required GPU
memory increases as the model gets deeper. After a few layers, embeddings for the
entire input graph need to be stored, even if only amini-batch of nodes is considered for
loss computation. By contrast, historical embeddings eliminate this problem by approx-
imating entire sub-trees of the computation graph. The required historical embeddings
are pulled from an offline storage, instead of being re-computed in each iteration, which
keeps the required information for each batch local. For a single batchB ⊆ V, the GPU
memory footprint for one training step is given by O(|

⋃︀
v∈BN(v) ∪ {v}| · L) and thus

only scales linearly with the number of layers L. The vast majority of data (the histories)
can be stored in RAM or hard drive storage rather than GPU memory.

4.3 Deep Graph Representation Learning | 139

In contrast to existing scaling solutions based on the sub-sampling edges, GAS provides
the following advantages:
1. GAS trains over all the data: In GAS, a GNN will make use of all available graph

information, i.e., no edges are dropped, which results in lower variance and more
accurate estimations. Nonetheless, for a single epoch and layer, each edge will be
only processed once, putting its time complexity O(|E|) on par with its full-batch
counterpart. Notably, more accurate estimations will further strengthen gradient
estimation during backpropagation. Specifically, the model parameters will be
updated based on the node embeddings of all neighbors since ∂h(ℓ+1)v /∂θ also
depends on {{ ¯h(ℓ)w : w ∈ N(v) \B}}.

2. GAS enables constant inference time complexity: The time complexity of model
inference is reduced to a constant factor, since we can directly use the historical
embeddings of the last layer to derive predictions for test nodes.

3. GAS is simple to implement: Our scheme does not need to maintain recursive
layer-wise computation graphs,whichmakes its overall implementation straightfor-
ward and comparable to full-batch training. Only minor modifications are required
to pull information from and push information to the histories.

4. GAS provides theoretical guarantees: In particular, if the model weights are kept
fixed, ¯h(ℓ)v eventually equals h(ℓ)v after a fixed amount of iterations [126].

While sampling strategies loose expressive power due to the sub-sampling of edges,
scalable GNNs based on historical embeddings leverage all edges during neighborhood
aggregation. Therefore, a special interest lies in the question if history-based GNNs are
as expressive as their full-batch counterpart. Here, a maximally powerful and scalable
GNN needs to fulfill the following two requirements: (1) it needs to be as expressive as
the WL test in distinguishing non-isomorphic structures, and (2) it needs to account for
the approximation error ‖ ¯h(ℓ−1)v −h(ℓ−1)v ‖ induced by the usage of historical embeddings.
Since it is known that there exists a wide range of maximally powerful GNNs [155, 509,
714], we can restrict our analysis to the latter question.

Theorem 11. Let f (L)θ be an L-layered GNN. If the historical embeddings do not run too
stale, i.e., ‖ ¯h(ℓ−1)v − h(ℓ−1)v ‖ ≤ ϵ, then there exist Message(ℓ)θ and Update(ℓ)θ functions,
ℓ ∈ {1, . . . , L}, such that there exists a map ϕ : RD → Σ so that ϕ(˜h(L)v) = c(L)v for all
v ∈ V.

Informally, Theorem 11 (proof in Fey et al. [224]) indicates that scalable GNNs using
historical embeddings are able to distinguish non-isomorphic structures (that are
distinguishable by theWL test) directly during training, which is what makes reasoning
about structural properties possible.

Nonetheless, to allow for high expressiveness, we need to tighten the upper bound
of the approximation error induced by the usage of historical embeddings. As denoted
before, the output embeddings of f (ℓ+1)θ are exact if |

⋃︀
v∈BN(v) ∪ {v}| = |B|, i.e., all

140 | 4 Structured Data

neighbors of nodes in B are also part of B. However, in practice, this can only be
guaranteed for full-batch GNNs. Motivated by this observation, we aim to minimize
the inter-connectivity between sampled mini-batches, i.e.,min |

⋃︀
v∈BN(v) \B|, which

minimizes history accesses and therefore reduces overall staleness in return.
We make use of graph partitioning methods such as Metis [175, 361] to achieve

this goal. It aims to construct partitions over the nodes in a graph such that intra-links
within clusters occur much more frequently than inter-links between different clusters.
Intuitively, this results in a high chance that neighbors of a node are located in the
same cluster. Notably, modern graph clustering methods are both fast and scalable
with time complexities given by O(|E|), and only need to be applied once, which leads
to an insignificant computational overhead in the pre-processing stage. However, this
approach leads to the acceleration of training, since the number of neighbors outside of
B is heavily reduced, and pushing information to histories leads to contiguous memory
transfers.

4.3.4.2 Fast Historical Embeddings
Our approach accesses histories to account for any data outside the current mini-batch,
which requires frequent data transfers to and from the GPU. Therefore, a special interest
lies in the optimization of pulling from and pushing to the histories. We achieve that
by making use of non-blocking device transfers. Specifically, we immediately start
pulling historical embeddings for each layer asynchronously at the beginning of each
optimization step, which ensures that GPUs do not run idle while waiting for memory
transfers to complete. A separate worker thread gathers historical information into
one of multiple pinned CPU memory buffers (denoted by Pull), from where it can
be transfered to the GPU via the usage of CUDA streams without blocking any CPU
or CUDA execution. Synchronization is done by synchronizing the respective CUDA
stream before inputting the transferred data into the GNN layer. The same strategy is
applied for pushing information to the history. Considering that the device transfer
of ¯H(ℓ−1) is faster than the execution of f (ℓ)θ , this scheme does not lead to any runtime
overhead when leveraging historical embeddings and can be twice as fast as its serial
non-overlapping counterpart, (cf. Figure 4.12). We have implemented our non-blocking
transfer scheme with custom C++/CUDA code to avoid Python’s global interpreter lock.

4.3.4.3 Experimental Evaluation
For training large-scale GNNs, GPU memory consumption directly dictates the scalabil-
ity of the given approach. In Fey et al. [224], we confirmed that GNNs trained via GAS are
able to learn expressive node representations, closely resemble the performance of their
non-scaling counterparts, and reach state-of-the-art performance on large-scale graphs.
Here, we show how GAS maintains a low GPU memory footprint while, in contrast to
other scalability approaches, accounting for all information present in the data. We
directly compare the memory usage of GCN+GAS training with the memory usage of

4.3 Deep Graph Representation Learning | 141

Time

H2D Data

Kernel f
(1)
θ f

(2)
θ f

(3)
θ

(a) Full-batch execution

Main Pull Pull

H2D Data H̄(1) H̄(2)

Kernel f
(1)
θ f

(2)
θ f

(3)
θ

D2H H̄(1) H̄(2)

(b) Serial mini-batch execution

Worker Pull Pull

H2D Data H̄(1) H̄(2)

Kernel f
(1)
θ f

(2)
θ f

(3)
θ

D2H H̄(1) H̄(2)

(c) Concurrent mini-batch execution

2x performance
improvement

Fig. 4.12: Illustrative runtime performances of a serial and concurrent mini-batch execution com-
pared with a full-batch GNN execution. In the full-batch approach (a), all necessary data is first
transferred to the device via the Host2Device (H2D) engine, before GNN layers are executed in serial
inside the kernel engine. As depicted in (b), a serial mini-batch execution suffers from an I/O bot-
tleneck, in particular because each kernel engine has to wait for memory transfers to complete. The
concurrent mini-batch execution (c) avoids this problem by leveraging an additional worker thread
and overlapping data transfers, leading to a two times performance improvements compared with a
serial execution, which is on par with the standard full-batch approach.

full-batch GCN [375], mini-batch GraphSAGE [292], and Cluster-GCN [137] training
on three large-scale datasets [320, 731] (Table 4.2). Notably, GAS is easily able to fit
the required data on the GPU, while the memory consumption only increases linearly
with the number of layers. Although Cluster-GCNmaintains an overall lower memory
footprint than GAS, it will only utilize a fraction of the available information, i.e., about
23% on average.

We now analyze how GAS enables large-scale training due to fast mini-batch exe-
cution. Specifically, we are interested in how our concurrent memory transfer scheme
reduces the overhead induced by accessing historical embeddings from the offline stor-
age. For this, we evaluate running times of a 4-layer GINmodel on synthetic graph data,
which allows fine-grained control over the ratio between inter- and intraconnected
nodes (Figure 4.13). Here, a given mini-batch consists of exactly 4000 nodes, which are
randomly intraconnected to 60 other nodes. We vary the number of inter-connections
(connections to nodes outside of the batch) by adding out-of-batch nodes that are

142 | 4 Structured Data

Tab. 4.2: GPU memory consumption (in GB) and the amount of data used (%) across different GNN
execution techniques. GAS consumes low memory while making use of all the data.

#nodes 717K 169K 2.4M
#edges 7.9M 1.2M 61.9M

Method Yelp ogbn- ogbn-

arxiv products

3-
l a
ye
r Full-batch 9.44GB/ 100% 2.11GB/ 100% 31.53GB/ 100%

GraphSAGE 2.19GB/ 14% 0.93GB/ 33% 4.34GB/ 5%
Cluster-GCN 0.23GB/ 13% 0.22GB/ 40% 0.23GB/ 16%
GAS 0.79GB/ 100% 0.34GB/ 100% 0.59GB/ 100%

4-
la
ye
r Full-batch 12.24GB/ 100% 2.77GB/ 100% 41.10GB/ 100%

GraphSAGE 4.31GB/ 19% 1.55GB/ 37% 11.23GB/ 8%
Cluster-GCN 0.30GB/ 13% 0.29GB/ 40% 0.29GB/ 16%
GAS 1.07GB/ 100% 0.46GB/ 100% 0.82GB/ 100%

Serial Access Concurrent Access

Computational Overhead I/O Overhead

0 2 4 6

100

200

300

400

Inter-/Intra-connectivity Ratio

R
u
n
ti
m
e
O
v
er
h
ea
d
[%

]

Fig. 4.13: Runtime overhead between serial and concurrent history access patterns in relation to
the inter-/intraconnectivity ratio of mini-batches. The overall runtime overhead is further separated
into computational overhead (overhead of aggregating additional messages) and I/O overhead
(overhead of pulling from and pushing to histories). Our concurrent memory transfer scheme reduces
historical-caused overhead by a wide margin.

randomly connected to 60 nodes inside the batch. Notably, the naive serial memory
transfer increases runtimes up to 250%, which indicates that frequent history accesses
can cause major I/O bottlenecks. By contrast, our concurrent access pattern shows
no I/O overhead at all, and the overhead in execution time is solely explained by the
computational overhead of aggregating far more messages during message propaga-
tion. Considering the increased amount of additional data available, this overhead
is marginal, in particular because most real-world datasets come with inter-/intra-
connectivity ratios between 0.1 and 2.5 [224]. Further, the additional overhead of
computingMetis partitions in the pre-processing stage is negligible. Computing the
partitioning of a graph with 2M nodes takes only about 20–50 seconds (depending on
the number of clusters).

4.3 Deep Graph Representation Learning | 143

4.3.5 Conclusion

We introduced graph neural networks for graph machine learning based on deep learn-
ing techniques. We demonstrated that graph neural networks follow a general message
passing scheme, which is suitable for a wide range of operators and learning tasks. The
generality of message passing is show-cased in the PyTorch Geometric library, a well-
known deep learning library for implementing and working with graph-based neural
networks. Furthermore, we discussed scalable approaches for applying graph neural
networks to large-scale graphs. In particular, we showed that scalable approaches
based on the sub-sampling of edges or non-trainable propagations weaken the ex-
pressive power of message passing. By contrast, our proposed framework, AutoScale,
overcomes this restriction by utilizing historical node embeddings while being both
fast and memory-efficient to train. While this scheme allows scalable graph machine
learning on single or multiple GPUs on the same machine, additional considerations
need to be taken into account when data is laid out in a distributed fashion (Section 8.2).

144 | 4 Structured Data

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for
Shared Memory

Nico Bertram
Jonas Ellert

Johannes Fischer

Abstract:Weengineer parallel algorithms for approximating themaximumcut in a large
directed graph. Our general approach is to first partition the graph into p parts, where
p denotes the number of processing elements. The individual processors then indepen-
dently compute an approximation to their local part of the graph using high-quality
sequential approximation algorithms. In a final step, a singleMax-Dicut instance of
size O(p2), capturing the interprocessor edges, is defined and solved exactly, using
fast parallel Integer Program solvers or slow approximation algorithms that compute
a good approximation. By partitioning the input graph into p′ > p parts, we get a
smooth trade-off between cut quality and running time. We also show applications of
our algorithm in parallel grammar-based text compression.

4.4.1 Introduction

Data that occurs in real-world applications can often be structured as graphswhere data
points are represented as nodes and relationships between different data points are cap-
tured by edges. Graphs occur in many applications, e.g., road networks, relationships
in social networks [193], and bioinformatics [40].

The problem of finding a partitioning of a directed graph into two subsets S and T
such that the sum of the edge-weights between the two subsets is maximized is one
of the classical NP-complete problems. We denote this problem withMax-Dicut. It is
closely related to its counterpart in undirected graphs,Max-Cut, which was shown to be
NP-complete by Karp [359]. In fact,Max-Dicut seems much harder thanMax-Cut since
every instance of Max-Cut can be easily transformed into an instance of Max-Dicut. It
can be shown that this transformation also defines a reduction from aMax-Cut instance
to aMax-Dicut instance which shows the NP-hardness of Max-Dicut. That means that
there is probably no polynomial time algorithm to compute an optimal solution for
Max-Dicut.

One common approach in theory and practice is to solve such hard problems by
using approximation algorithms. These algorithms allow for a multiplicative error α
with 0 < α < 1 so that the computed cut is in the worst case by a factor of α worse than
the optimal cut. We call this factor α the performance guarantee of an algorithm.

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory | 145

One simple randomized algorithm assigns each node with probability 1
2 either to S

or T, which leads to a solution with an expected performance guarantee of 1
4 . This

algorithm can be derandomized with the method of conditional expectations [590, 643].
Buchbinder et al. described a linear time algorithm with a performance guarantee of 1

3
[90] that can also be randomized to achieve an expected performance guarantee of 1

2 .
Currently, the best-known performance guarantee of 0.874 uses a formulation

of Max-Dicut as an Integer Program that is then relaxed into a Semidefinite Program
and achieves a performance guarantee of 0.79607 [256]. This algorithm can be de-
randomized as well [459]. The performance guarantee was later further improved to
0.859 [750]. The best-known performance guarantee of 0.874 was achieved by further
improving this approach [426]. In case that the Unique Games Conjecture [372] is true,
the performance guarantee can be improved up to 0.878.

There are also attempts to solveMax-Cut by using amachine learning approach. Gu
and Yang described a deep neural network combined with learning strategies such as
supervised learning and reinforcement learning [275]. Yao et al. [719] used Graph Neural
Networks [291] to solveMax-Cut and compared it with the algorithm by Goemans for
undirected graphs [256] and a local search procedure [59]. The results for both machine
learning approaches are promising. However, theywere only evaluated for small graphs;
how to apply these approaches for directed graphs remains open.

Max-Cut can also be used in a graph-based semi-supervised learning approach.
Wang et al. [695] showed that a bivariate cost function can be reduced to a constrained
Max-Cut formulation. Since this formulation has a number of linear constraints on the
nodes and the edge weights can be negative, most approximation algorithms cannot be
used directly. The authors propose using a greedy gradientMax-Cut algorithm, instead.

To our knowledge, no algorithm exists that produces aMax-Dicutwith high quality
and performs well in shared memory. One approach to developing such algorithms
is to use a graph partitioner [100] to partition a graph into k parts of roughly equal
size in terms of node balancing or edge balancing. On each of the k parts we can run
a sequential algorithm to compute a local solution with high quality that we have to
merge in a final step. In this contribution, we first describe some elementary algorithms
to compute aMax-Dicut in a graph. Then, we engineer a framework that computes a
Max-Dicut with high quality in shared memory that uses the pattern described above.
We also show howwe can use a parallelMax-Dicutwith high quality in grammar-based
string compression to improve the compression ratio.

Parts of this work have already been published in [49].

4.4.2 Preliminaries

First, we define cuts in directed graphs. Then, we describe some important approxima-
tion algorithms forMax-Dicut.

146 | 4 Structured Data

1

2

3

4

5

6

2

1 3

2

4

3

4

2

2

7

(a)

1

2

3

4

5

6

2

1 3

2

4

3

4

2

2

7

(b)

Fig. 4.14: A graph with two example cuts. The nodes that are in S are colored in white and the nodes
that are in T are colored in gray. The edges that are not counted for the cut are dashed. The cut in (a)
has the value 4. The cut in (b) has the value 16, which is the optimal value.

4.4.2.1 Notations
Here, we define the necessary notations for graphs and cuts in directed graphs. A
directed and weighted graph G is a tuple (V , E, w) where V = {1, ..., n} is the set of
vertices, E ⊆ V2 is the set of edges with |E| = m and w : E → R>0 defines the non-
negative weights of each edge.

A cut in a directed and weighted graph G = (V , E, w) is a partitioning of V into
the subsets S and T so that the sum of the edge-weights for edges with origin in S
and target in T is maximized. The value of a cut with respect to S and T is defined by
C(S, T) =

∑︀
i∈S,j∈T w(i, j). We omit S and T in case they are clear by the context. The

maximum cut is then defined by Cmax = maxS,T C(S, T). We call an edge (u, v) with
u ∈ S and v ∈ T a cutting edge. In Figure 4.14 we see examples of cuts in a directed
graph.

4.4.2.2 Algorithms
In the following, we will describe the algorithms we implemented in our framework.
First, we describe a naive random approximation and its derandomization. Then, we
describe the algorithm by Goemans and Williamson.

Random Partitioning One simple algorithm to produce a partitioning of a graph G
is to decide for each node v independently with probability 1

2 whether we assign v to
S or T. This algorithm calculates a cut with an expected performance guarantee 1

4 in
linear time.

Theorem 12. The described algorithm calculates a cut with an expected performance
guarantee of 1

4 in O(n) time.

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory | 147

Proof. Since we assign each node in constant time either to S or T, the running time is
O(n). Now, we have to show the performance guarantee. Let G = (V , E, w) be a directed
graph. LetW =

∑︀
i,j∈V wij. First, we observe that

Cmax ≤ W. (4.30)

Next, let e = (u, v) ∈ E be an arbitrary edge. This edge is a cutting edge only if u ∈ S
and v ∈ T. Since we assigned each node randomly with probability 1

2 to either side of
the partition, the probability that e is a cutting edge is exactly 1

4 . So in expectation our
calculated cut has the value E[C] = 1

4W. By Equation 4.30 it follows that 1
4W ≥ 1

4Cmax
and lastly E[C]

Cmax ≥
1
4 .

Derandomization The random algorithm described above can be derandomized so
it deterministically produces a cut with a performance guarantee of 14 . This can be done
with the method of conditional expectations [590, 643]. Suppose we already placed
nodes 1, . . . , i − 1 into either S or T. We denote as E[C |1, . . . , i − 1] the expected value
of the cut when we place nodes i, . . . , n at random into each partition. Now, we want to
assign node i to either S or T. Let us assume that the value E[C |1, . . . , i − 1] ≥ 1

4Cmax
(when i = 0 this assumption is trivially satisfied). Intuitively, we try to put i into the
partition that results in the best expected outcome. Since E[C |1, . . . , i − 1] ≥ 1

4Cmax,
at least one of both decisions has to result in an expected value of the cut of 1

4Cmax. We
can calculate the expected increase for each decision for node i as follows:

A =
∑︁

j<i
j∈T

wij +
1
2
∑︁

j>i
wij (4.31)

B =
∑︁

j<i
j∈S

wji +
1
2
∑︁

j>i
wji (4.32)

Equation 4.31 describes the expected increase of the cut when we place i into S and
Equation 4.32 describes the expected increase of the cut when we place i into T. In
both sums the first term refers to the already calculated partitioning of 1, . . . , i − 1. The
second term refers to the expected value whenwe assign i+1, . . . , n at random to either
S or T. When we choose the maximum of A and B, we have E[C |1, . . . , i] ≥ 1

4Cmax and,
when we assigned all nodes, E[C] ≥ 1

4Cmax.

Theorem 13. The described algorithm calculates a cut with a performance guarantee of
1
4 in O(m) time.

Goemans andWilliamson Algorithm In the following, we describe the Goemans
and Williamson algorithm [256] that in its original description had a performance
guarantee of 0.79607 but was further improved up to 0.874 [426]. To illustrate the

148 | 4 Structured Data

algorithm, we describe the algorithm for undirected graphs that has a performance
guarantee of 0.878 and show at the end how to modify the algorithm for directed
graphs.

First, we need some additional notation. By Prob[A]we denote the probability that
event A happens. The function sgn(x) denotes the sign function that is defined as

sgn(x) =

⎧
⎪⎪⎨
⎪⎪⎩

1 x > 0
0 x = 0
−1 x < 0.

The general idea of the algorithm is to solve a relaxed formulation of Max-Cut as an
integer quadratic program (IQP) and then assign each node to either S or T depending
on the computed solution. The interesting part about this algorithm is that we relaxed
our formulation to a semidefinite program. This method, first introduced by Goemans
and Williamson, leads to improved performance guarantees for other problems as well
such asMax-2-SAT [256].

Let G = (V , E, w) be a directed graph. We start with the following formulation of
Max-Cut as IQP:

maximize 1
2
∑︁

i<j
wij(1 − xixj)

subject to xi ∈ {−1, 1} ∀i ∈ {1, . . . , n}
(4.33)

Each node i is represented by a variable xi that has value −1when i is placed into S and
1when i is placed into T. Whenwe look at the term (1−xixj), we can see that it evaluates
to 2 if nodes i and j are in different partitions and 0 otherwise. Hence, each cutting
edge is counted twice, which is why we normalize the calculated value by 1

2 . Solving
Equation 4.33 is still NP-hard but now we examine the properties of this formulation
when we relax its variables to vectors of dimension n. Let Sn be the n-dimensional unit
sphere. In Equation 4.34 we see the relaxed formulation.

maximize 1
2
∑︁

i<j
wij(1 − vivj)

subject to |vi| ∈ Sn ∀i ∈ {1, . . . , n}
(4.34)

Note, that the optimal solution of Equation 4.34 is an upper bound of the optimal
solution of Equation 4.33 because every solution of Equation 4.33 is also a solution of
Equation 4.34 (we can transform xi to a vector vi by setting the first element to xi and
every other value to 0). In Figure 4.15a we see five vectors that for simplicity’s sake are
embedded in the unit circle. At first glance, it is hard to see how we should divide the
vectors into the partitions S and T. Intuitively, v1 and v2 are relatively similar to each
other so it should be more likely that they are placed in the same partition as v2 and
v4. This similarity can be expressed by the scalar product of vectors u and v, which is
defined by u · v = |u| · |v| · cos(α) = cos(α) where α is the angle between u and v.

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory | 149

v1

v3

v5
v2

v4

(a)

v1

v3

v5

r

S

T

v2

v4

(b)

Fig. 4.15: An example for how to assign nodes to either S or T . In (a) we see a solution to Equa-
tion 4.34. In (b) we see a random vector r that defines a partitioning of the nodes. Since v1 , v4 and
v5 lie on the same side of r, we set S = {1, 4, 5} and T = {2, 3}. For simplicity, all vectors are
embedded in the 2-dimensional unit circle.

To compute an optimal partitioning is still hard but we can compute a partitioning
that results in a good solution with high probability. We choose a random vector r
uniformly distributed over Sn. With r we can define a partitioning by putting all vectors
vi that lie on the same side of r into S i.e., S = {i | vi · r ≥ 0} and all other vectors into
T i.e. T = {i | vi · r < 0}. This partitioning is visualized in Figure 4.15b. Intuitively, it is
more likely that with this partitioning similar vectors are placed in the same partition,
which should result in a good solution. This intuition can be formalized in the following
lemma.

Lemma 14. Let vi and vj be vectors that are optimal solutions of Equation 4.34 and
r ∈ Sn be a random vector drawn uniformly from the n-dimensional unit sphere. Then

Prob[sgn(vi · r) ̸= sgn(vj · r)] =
1
π arccos(vi · vj).

By Lemma 14 our calculated Cut has an expected value of

E[C] = 1
π
∑︁

i<j
wij arccos(vi · vj).

From the fact that arccos(vi ·vj)
π ≥ α 1

2 (1 − vivj) with α > 0.878 we can derive the following
theorem:

Theorem 15. Let vi and vj be vectors that are optimal solutions of Equation 4.34. Then

E[C] ≥ α12
∑︁

i<j
wij(1 − vivj) ≥ αCmax .

150 | 4 Structured Data

Now, we still have to show how to get an optimal solution for Equation 4.34. We can
transform this formulation into a semidefinite program (SDP). First, we have to define
positive semidefinite matrices.

Definition 16. Let M ∈ Rn×n be a symmetric matrix. M is called positive semidefinite
if all of its eigenvalues are non-negative. If M is positive semidefinite, we denote this by
M ⪰ 0.

The following important property holds.

Lemma 17 ([257, 410]). Let M ∈ Rn×n be a positive semidefinite matrix. There exists a
matrix B ∈ Rn×n such that M = BTB. We can calculate B in O(n3) time with a Cholesky
Decomposition.

A semidefinite program has the following form where A1, ..., Am , B1, ...Bm ∈ Rn×n are
constant matrices and b1, ..., bm ∈ R. The variable matrices Xi ∈ Rn×n have the con-
straint that they should be positive semidefinite matrices. To multiply matrices, we use
the Frobenius inner product defined by: A · B =

∑︀
i,j AijBij.

maximize A1 · X1 + ... + Am · Xm
subject to Xi ⪰ 0 ∀i ∈ {1, . . . ,m}

Bi · Xi = bi ∀i ∈ {1, . . . ,m}

(4.35)

Optimal solutions for a SDP can be computed in O(nc log(1ϵ)) time for some c > 0 by
using interior point methods [343] where ϵ > 0 is an error parameter.

To convert Equation 4.34 into an SDP in the form of Equation 4.35, we set yij = vi · vj.
We observe that yij describes the cosine of the angle between vectors vi and vj and
yij = yji. So the matrix

Y =

⎛
⎜⎜⎜⎜⎝

y11 y11 . . . y1n
y21 y22 . . . y2n
...

...
. . .

...
yn1 yn2 . . . ynn

⎞
⎟⎟⎟⎟⎠

is a symmetric matrix that describes the cosine of the angles between every vector. The
element yii describes the length of vector vi. Since every vector lies on the unit sphere
Sn, we add the condition that yii = 1 for every i ∈ {1, . . . , n}. So the formulation of
Max-Cut as SDP is as follows.

maximize 1
2W · ((1)n×n − Y)

subject to Y ⪰ 0
yii = 1 ∀i ∈ {1, . . . , n}

(4.36)

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory | 151

Here W is defined as the weight matrix of G and (1)n×n is the matrix that contains 1
in each component. By Lemma 17 we can obtain an optimal set of vectors vi with a
Cholesky Decomposition in time O(n3).

Now, we show how to modify our formulations to get an approximation algorithm
that results in a cut with a performance guarantee of 0.79607 forMax-Dicut. We start
again with the formulation of Max-Dicut as IQP:

maximize 1
4
∑︁

i<j
wij(1 + x0xi − x0xj − xixj)

subject to xi ∈ {−1, 1} ∀i ∈ {1, . . . , n}
(4.37)

Here, we introduce an additional variable x0 that marks which side lies in S. More
precisely, if x0 is equal to −1 all other nodes i with xi = −1 should be assigned to S and
to T otherwise. The term (1+ x0xi − x0xj − xixj) evaluates to 4 if xi is assigned to S and 0
otherwise. That is why we have to normalize with the value 1

4 . Similar to the undirected
Max-Cut, we relax the variables in Equation 4.37 so that they are n dimensional vectors.

maximize 1
4
∑︁

i<j
wij(1 + v0vi − v0vj − vivj)

subject to |vi| ∈ Sn ∀i ∈ {1, . . . , n}
(4.38)

For its formulation as a SDP we use the matrices X ∈ Rn+1×n+1 and Y , Z ∈ Rn×n that are
defined as follows:

X =

⎛⎜⎜⎜⎜⎝
y00 y01 . . . y0n
y10 y11 . . . y1n
...

...
. . .

...
yn0 yn1 . . . ynn

⎞⎟⎟⎟⎟⎠ Y =

⎛⎜⎜⎜⎜⎝
y11 y11 . . . y1n
y21 y22 . . . y2n
...

...
. . .

...
yn1 yn2 . . . ynn

⎞⎟⎟⎟⎟⎠ Z =

⎛⎜⎜⎜⎜⎝
y10 y10 . . . y10
y20 y20 . . . y20
...

...
. . .

...
yn0 yn0 . . . yn0

⎞⎟⎟⎟⎟⎠
ThenMax-Dicut can be formulated as SDP as follows:

maximize 1
4W · ((1)n×n + Z − ZT − Y)

subject to X ⪰ 0
yii = 1 ∀i ∈ {0, . . . , n}

(4.39)

When we compute a solution for Equation 4.39, we choose a random vector vector r
uniformly distributed over Sn. Since v0 marks the side for the partition S, we assign all
nodes i where vi and v0 lie on the same side to S. More precisely, we set S = {i | sgn(vi ·
r) = sgn(v0 · r)} and T = {i | sgn(vi · r) ̸= sgn(v0 · r)}.

By analyzing the algorithm similarly to the undirectedMax-Cut, we find that our
algorithmhas a performance guarantee of 0.79607. The following theorem summarizes
our results.

Theorem 18. The described algorithm calculates a cut with a performance guarantee of
0.79607 in polynomial time.

152 | 4 Structured Data

1 2

4

5 6

7

8

9

10

3

2

5

1
7 2

2
3

4
1

1

2

5
4

3

2

2
1

3
10

1

2

2

3

(a)

1 2

4

5 6

7

8

9

10

3

5

1
7 2

3

4

5
4

3

2
3

10

(b)

Fig. 4.16: The input graph in (a) is partitioned into 4 subgraphs, which can be seen in (b), so that the
sum of the edge-weights between the subgraphs is minimized.

4.4.3 Framework

In this section we introduce a parallel framework that computes aMax-Dicutwith high
quality in shared memory. First, we give an overview of the whole framework before
we introduce each step individually.

Our approach is to partition an input graph G into k subgraphs Gi of roughly equal
size so that the dependency between the subgraphs is minimized i.e. the edge-weights
between the subgraphs are minimized. Then on each computed subgraph, we run in
parallel a sequentialMax-Dicut algorithm to compute several local cuts. In a final step,
we have to merge the locally computed cuts. We achieve this by defining a new graph
on whichMax-Dicut is solved where each node represents a partition computed by
the localMax-Dicut algorithms.

4.4.3.1 Graph Partitioning
The first step of our framework is to partition the input graph G = (V , E, w) into k
subgraphs so that we can run aMax-Dicut algorithm on each subgraph independently.
Our goal is to include as much edge information as possible into each subgraph to
improve the quality of the computedMax-Dicut.We achieve this bymaximizing the sum
of the edge-weights in each subgraph or, vice versa, by minimizing the sum of the edge-
weights between the subgraphs. That is to say, we want to minimize

∑︀
i,j∈{1,...,k} Eij

where Eij is the sumof the edge-weights between subgraph Gi and Gj. To compute awell
balanced graph partitioning in shared memory, there already exist several approaches.
In our framework we use the graph partitioner KaHIP [13], which partitions G into the
subgraphs Gi = (Vi , Ei , w), i ∈ {1, ..., k} so that each subgraph has roughly equal
size, i.e. we allow for a multiplicative error ϵ so that |Vi| ≤ (1 + ϵ)

⌈︁
|V|
k

⌉︁
. We also use a

partitioning algorithm that naively divides either the nodes or edges into k chunks of
equal size. We could also useMetis, as in Section 4.3. However, KaHIP outperforms
Metis and is better suited for our application. In Figure 4.16 we see an exemplary input
graph that is partitioned into 4 subgraphs.

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory | 153

1 2

4

5 6

7

8

9

10

3

5

1
7 2

3

4

5
4

3

2
3

10

Fig. 4.17: On each computed subgraph in Fig. 4.16 we compute a Max-Dicut. The nodes that are in Si
are colored in white and the nodes that are in Ti are colored in gray.

4.4.3.2 Compute Local Solutions
After partitioning the input graph into multiple subgraphs, we run in parallel a sequen-
tialMax-Dicut algorithm on each subgraph to compute a local cut for each subgraph.
We can compute cuts with higher quality when we use algorithms with better perfor-
mance guarantees. Since these algorithms are also slower, we have to consider which
algorithm achieves the best trade-off between the quality of the cut and the runtime of
the framework.

We have implemented the randomized algorithm with an expected performance
guarantee of 1

4 and its derandomized variant, the algorithm with a performance guar-
antee of 13 that was introduced by Buchbinder [90], and the algorithm with an expected
performance guarantee of 0.79607 by Goemans and Williamson [256]. As an example,
we show in Figure 4.17 the optimalMax-Dicut for all subgraphs that were computed in
Figure 4.16.

4.4.3.3 Merging
In a final step, we have to merge the computed local cuts into a global cut. A naive
approach is to define S =

⋃︀
i Si and T =

⋃︀
i Ti as the trivial cut. The problem with this

approach is that it does not consider the edges between the subgraphs. It might be
possible that it is more advantageous to swap the subsets Si and Ti in the global graph
or even to put Si and Ti into the same partition. To consider each possible combination
of merging the cuts, we reduce the problem of merging the local solutions to another
Max-Dicut instance. We build a complete graph H with 2k nodes in which each node
represents a locally computed partition Si or Ti. Let X and Y be two nodes of H. We
add an edge (X, Y) to H with weight

∑︀
i∈X,j∈Y w(i, j). Then, we can run aMax-Dicut

algorithm on H. Since the graph has only 2k nodes, we can use an expensive algorithm
to compute an exact solution. In our framework we implemented a simple brute-force
algorithm and an algorithm that solves the formulation of Max-Dicut as an Integer
Program. We can also use the approximation algorithm with a performance guarantee
of 0.79607 by Goemans and Williamson. In Figure 4.18 we see how the local cuts that
were computed in Figure 4.17 are merged into a new Max-Dicut instance. Then, we
compute the global solution on this instance.

154 | 4 Structured Data

2

3 4

1, 5 6, 7 8

109

2

12

22

3

4

2

1

1

1

2

3

7

3

3

10
2

1
2

(a)

2

3 4

1, 5 6, 7 8

109

2

12

22

3

4

2

1

1

1

2

3

7

3

3

10
2

1
2

(b)

Fig. 4.18:We compute a new Max-Dicut instance with 8 nodes (Fig. 4.18a) by merging the nodes
that are in the same partition after Fig. 4.17. We run an exact Max-Dicut algorithm on this instance
and compute the global Max-Dicut in Fig. 4.18b. The nodes that are in S are colored in white and the
nodes that are in T are colored in gray.

Tab. 4.3: A summary of our used input graphs.

Graph |V | |E|

recomp_dna1GB_5 28245 1439986
road-luxembourg-osm 114600 239332
rt-retweet-crawl 1112703 4557704

4.4.4 Evaluation

In this sectionwe evaluate our framework.We conducted our experiments on the LiDO3-
Cluster of the Technical University of Dortmund¹⁰ on a node with an Intel Xeon CPU
E5-2640 processor (20 cores, 2.4 GHz, L1 32K, L2 256K, L3 256M) with 64GB of RAM. The
code was written in C++ and compiled using GCC 8.4 using OpenMP for parallelization.

We evaluate our framework on the input graphs that are summarized in Table 4.3.
The graph recomp_dna1GB_5 was generated from a recompression tool [342] by using
the 1 GiB prefix of the text dna.txt from the Pizza & Chili text corpus.¹¹ Here, the nodes
represent the characters from the alphabet and we have an edge (a, b) if the pair ab
appears in the text. The weight of the edge represents the number of occurrences
of the pair ab. The graphs road-luxembourg-osm and rt-retweet-crawl were taken
from Network Repository [604]. The graph road-luxembourg-osm is a road network of
Luxembourg and the graph rt-retweet-crawl is a Retweet graph of Twitter where each
node represents a Twitter user and we have an edge between two users when one user
retweets a tweet from the other user.

10 https://www.lido.tu-dortmund.de/cms/de/LiDO3/index.html, accessed June 9, 2022.
11 http://pizzachili.dcc.uchile.cl/, accessed June 9, 2022.

https://www.lido.tu-dortmund.de/cms/de/LiDO3/index.html
http://pizzachili.dcc.uchile.cl/

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory | 155

4.4.4.1 Experiments
For our experiments, we evaluate each part of our framework separately. First, we com-
pare our partitioning algorithms KaHIP, NodeSlice, and EdgeSlice. Then, we compare
our localMax-Dicut algorithms Derandomization, Buchbinder, and Goemans. For the
Goemans algorithm, we compare two variants: one solves the SDP exactly, which we
call Goemans, the other solves the SDP with a small error where we set ϵ = 0.01, which
we will call Goemans(ϵ = 0.01). For our merging algorithms, we compare the Buch-
binder algorithm, the two Goemans variants described above, and an exact algorithm
that solves an integer linear program (ILP). When we evaluate the algorithms of one
part of our framework, all other parts are fixed, i.e. for the partitioning we use KaHIP,
as the localMax-Dicut algorithm we use Buchbinder, and as merging algorithm we
use Goemans (ϵ = 0.01). We conducted all of our experiments five times and took the
average of each result for the computed cut as well as the runtime for each step in the
framework. We divide the graphs into as many as 2048 parts. Up until 16 parts, we use
the same amount of cores as the number of parts. For more than 16 parts, we constantly
use 16 cores.

1 2 4 8 64 2048

0.6

0.8

1

C
u
t

[
V
a
lu

e
1
0
0
0
0
0
]

road-luxembourg-osm

1 2 4 8 64 2048

15

20

rt-retweet-crawl

1 2 4 8 64 2048

300

320

340

recomp_dna1GB_5

2 4 8 64 2048

0.001

0.1

10

Number of Subgraphs

T
im

e
[s
]

2 4 8 64 2048
0.001

0.1

10

Number of Subgraphs

2 4 8 64 2048

0.001

0.1

10

Number of Subgraphs

KaHIP NodeSlice EdgeSlice

Fig. 4.19: The computed cut and the runtime for our partitioning algorithms while the other steps of
the framework are fixed algorithms. Missing data points indicate either that the runtime of the whole
framework exceeded the time limit or that the memory exceeded the RAM.

In Figure 4.19, we can see our results for our partitioning algorithms. We see that
using KaHIP as a partitioner results in an almost constant cut quality for each number
of subgraphs for the graph road-luxembourg-osm and rt-retweet-crawl while the

156 | 4 Structured Data

cut quality when using the naive partitioning algorithms NodeSlice and Edgeslice
gets worse when we partition the graph into more subgraphs. However, on the graph
recomp_dna1GB_5 the cut quality when using NodeSlice and EdgeSlice scales better
than KaHIP. The runtime of KaHIP is on all inputs significantly slower than NodeSlice
and EdgeSlice and does not scale as well as the naive algorithms.

1 2 4 8 64 2048

1

1.1

C
u
t

[
V
a
lu

e
1
0
0
0
0
0
]

road-luxembourg-osm

1 2 4 8 64 2048
19.5

20

20.5

21

rt-retweet-crawl

1 2 4 8 64 2048

300

320

340

recomp_dna1GB_5

2 4 8 64 2048

0.001

1

1, 000

Number of Subgraphs

T
im

e
[s
]

2 4 8 64 2048

0.001

1

1, 000

Number of Subgraphs

2 4 8 64 2048

0.001

1

1, 000

Number of Subgraphs

Buchbinder Derandomization Goemans

Goemans (ε = 0.01)

Fig. 4.20: The computed cut and the runtime for our localMax-Dicut algorithms while the other
steps of the framework are fixed algorithms. Missing data points indicate either that the running
time of the whole framework exceeded the time limit or the memory exceeded the RAM.

In Figure 4.20, we can see our results for the localMax-Dicut algorithms. We can see
that by using the variants of the Goemans algorithmour framework produces the overall
best cut quality. However, these algorithms only compute a solution when we partition
the graph into a large number of subgraphs or when we have smaller subgraphs. For
larger subgraphs, the Goemans algorithm either takes too long or consumes too much
memory. The runtime of the Goemans algorithms is significantly larger than the linear-
time algorithms but it gets faster the smaller the subgraphs get.

In Figure 4.21, we can see our results for the merging algorithms. Note that, since
our framework uses some random variables, the computed quality may vary between
different configurations. Overall, the merging has only a small effect on the cut quality.
As one would expect, the exact algorithm that solves an ILP gives the best solutionmost
of the times, closely followed by the exact Goemans algorithm. Using Goemans (ϵ =
0.01), our framework produces a good cut quality most of the times,as well. However,
for 128 parts or more the cut quality gets significantly worse on road-luxembourg-osm.

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory | 157

1 2 4 8 64 2048

0.96

0.98

1

1.02

C
u
t

[
V
a
lu

e
1
0
0
0
0
0
]

road-luxembourg-osm

1 2 4 8 64 2048

19.5

20

20.5

rt-retweet-crawl

1 2 4 8 64 2048

290

300

310

320

recomp_dna1GB_5

2 4 8 64 2048

0.001

1

1, 000

Number of Subgraphs

T
im

e
[s
]

2 4 8 64 2048
0.01

1

100

Number of Subgraphs

2 4 8 64 2048

0.01

10

10, 000

Number of Subgraphs

Goemans (ε = 0.01) Buchbinder ILP

Goemans

Fig. 4.21: The computed cut and the runtime for our merging algorithms; the other steps of the
framework are fixed algorithms. Missing data points indicate either that the runtime of the whole
framework exceeded the time limit or that the memory exceeded the RAM.

The runtime of ILP is overall the slowest and on rt-retweet-crawl becomes too slow
for 128 and more parts. The Goemans variants are faster than IPL but are still slower
than Buchbinder. We can see that ILP and the Goemans variants slow the larger the
Graph H becomes.

4.4.5 Application in String Compression

Max-Dicut is used in building a succinct data structure over strings to answer Longest
Common Extension (LCE) queries efficiently. An LCE query over a string S asks for two
positions i and j for the longest common prefix of the suffixes starting at position i and
j.

To answer such queries efficiently, one can use the recompression technique that
was described by Jez [342]. With this technique, a string S is compressed into a context-
free grammar that generates exactly S. Then, we build an LCE data structure [330] on
top of the grammar. The memory usage is O(z log(nz)) and the query time is O(log(n))
where z is the size of the Lempel-Ziv 77 factorization [746] and n is the size of S.

During the compression of S into a context-free grammar, we try to find pairs ab
and build a rule X → ab so that as many pairs are covered by a rule. To do that, we
build a directed graph G in which each node represents a character of S and we insert

158 | 4 Structured Data

Tab. 4.4: The results of different recompression algorithms. We compare the running time in seconds
and the compression ratio (compressed text length divided by original text length) for 8 cores on
different texts taken from the Pizza & Chili text corpus. In all experiments we use 200MiB prefix for
each text. We mark in bold text the best result on the respective text. Additionally, we provide the
size of and the alphabet size σ for each text.

max-dicut_recomp lp_recomp

Text σ Time [s] ratio Time [s] ratio

cere 5 290.75 4.9% 21 4.91%
dna 16 286.2 42.42% 26 42.29%
einstein.en 139 211.75 0.17% 26 0.17%
english 239 277.4 41.23% 36 42.72%
para 5 256.6 6.81% 22 6.82%
sources 230 288.2 37.79% 33 39.91%

an edge from a to b if the pair ab appears in S. Then, a cut in G represents a partition
of the characters into two subsets Σ1 and Σ2 so that we can compress as many pairs ab
with a ∈ Σ1 and b ∈ Σ2 as possible without overlapping pairs. Accordingly, there is a
direct correlation between the quality of the computed cut and the compression ratio
of S.

We integrated our framework for computing aMax-Dicut in a tool that computes
the compression with recompression in shared memory. We compare the algorithm
max-dicut_recomp that uses ourMax-Dicut framework with the algorithm lp_recomp

that computes first a naiveMax-Cut (S, T) and then compares C(S, T) and C(T, S) in
the directed graph and takes the largest value. Additionally, lp_recomp tries to take the
solution that produces lesser production rules.

Again, we conducted our experiments on the LiDO3-Cluster of the Technical Univer-
sity Dortmund on a node with an Intel Xeon CPU E5-2640 processor (20 cores, 2.4 GHz,
L1 32K, L2 256K, L3 256M) with 64GB of RAM. We compared the compression ratio and
runtime for 8 cores of our algorithms on a number of texts taken from the Pizza & Chili
text corpus.¹²We repeated our experiments five times and took the average as the final
result.

Table 4.4 shows our results. We can see that max-dicut_recomp achieves on almost
all texts a similar or better compression ratio than lp_recomp. On english and sources

the compression ratio increases by 1–2%. However, to increase the compression ratio
for max-dicut_recomp we need around 10 times more runtime than lp_recomp on all
texts on 8.

12 http://pizzachili.dcc.uchile.cl/, accessed June 9, 2022.

http://pizzachili.dcc.uchile.cl/

4.4 High-Quality Parallel Max-Cut Approximation Algorithms for Shared Memory | 159

4.4.6 Conclusion

In this section we described a framework that calculates a high qualityMax-Dicut in
shared-memory that is also easily extendable. We implemented our framework and
evaluated it in shared-memory on real-world graphs. The experiments showed that
our graph partitioning algorithm KaHIP does not scale well in shared-memory so we
plan to use other partitioning algorithms in the future. The best configuration of our
framework is to partition our graph into small graphs and use Goemans as our local
Max-Dicut algorithm.

We also integrated our framework into a software that calculates a grammar-based
compression. By using our framework, we achieve in most cases better compression
rates. However, our new algorithm is much slower than other compression algorithms.

160 | 4 Structured Data

4.5 Millions of Formulas

Lukas Pfahler

Abstract: Amid the increase in the number of research publications, the search for
relevant papers has become tedious. In particular, searches across disciplines or schools
of thinking are not supported. This is mainly due to the retrieval in terms of keyword
queries, as technical terms differ in different sciences and at different times. Relevant
articles might better be identified by their mathematical problem descriptions. Just
looking at the equations in a paper already gives a hint to whether the paper is relevant.
Hence, we propose a new approach for the retrieval of mathematical expressions based
on machine learning. We design an unsupervised representation learning task that
combines embedding learning, contrastive learning, and self-supervised learning. We
want our learned representation to allow the automatic identificationof related, relevant
mathematical expressions. Using graph convolutional neural networks we embed
mathematical expressions in low-dimensional vector spaces that allow efficient nearest-
neighbor queries. To train our models, we collect a huge dataset with over 29 million
mathematical expressions from over 900000 publications on arXiv.org. The math is
converted into an XML format, which we view as graph data. In this data, we are able
to automatically identify equalities and inequalities that we can use for training and
testing of our models. Furthermore, our empirical evaluations involve a dataset of
manually annotated search queries show the benefits of using embedding models for
mathematical retrieval. This contribution is based on a conference paper [563] and
more details can be found in [562].

4.5.1 Introduction

Machine learning has contributed to many a search engine success story. Unfortunately,
the search is most often based on words or text. Technical terms in different disciplines,
however, may have different meanings or the same meaning may be referred to by
different terms. For instance, various usages of Bayes’ law occur in different scientific
fields and can be found under different names. For instance in astrophysics, it is known
as information field theory [200]. Without a knowledge of physics or the use of the
name Bayes, the law is easily recognized by the formula P(d|s) = P(d, s)/P(s) in any
paper. Another example is a 1925 paper by Ising in the physics journal under the
title Ferromagnetismus. Today, the Ising model is also popular in machine learning,
but it is referred to first as the Hopfield network and later as the Boltzmann machine.
This illustrates the aspect of time: words for particular topics change over time. The
language of Ising’s paper is German; the paper introducing Jensen’s inequality in 1906

4.5 Millions of Formulas | 161

is written in French. Again, the inequality f ((a + b)/2) ≤ f (a)/2 + f (b)/2 can be easily
understood, in both cases. We conclude that the most compact and comprehensive
way to transport the main ideas of scientific manuscripts in disciplines like computer
science or physics are the equations used. Thus it should also be the way we formulate
our search queries when searching for scientific manuscripts. In order to judge the
relevance of mathematical expressions for a search query, a system has to generalize
between different notations and match the parts of equations, that describe the same
concepts, even if they appear in a different form. A human reader resorts to domain
knowledge acquired over years of training in his field to judge relevance. We wonder
how machine learning models with access to vast amounts of mathematical content
can help to automatize this process.

In this work, we propose using graph neural networks to learn a representation of
mathematical expressions that captures semantic relatedness. To this end, we design
two unsupervised learning tasks, one classic embedding learning task based on con-
textual similarity and one self-supervised learning task inspired by masked-language
models. We curate a dataset of over 28.9 million equations from over 900000 papers on
arXiv.org and represent the equations as graphs with one-hot encoded features. Then
we train our models on this large collection of equations. We compile an evaluation
dataset with annotated search queries from several different disciplines and show-
case the usefulness of our approach for deploying a search engine for mathematical
expressions.

4.5.2 Math Search and KDD

Mining and indexing mathematical expressions in document collections is a challeng-
ing task, mostly tackled in the information retrieval community [277, 745]. We outline
how the problem of math search is treated with the tools from Knowledge Discovery in
Data and data mining and present related work on the machine learning methods we
chose for our approach.

Representation The first question we have to consider is how to represent mathe-
matical expressions. Approaches can be divided into two categories: those for visual
representation and those for semantic representation. The former category is focused on
the layout of an expression. The most prominent choices are LaTex, a Turing-complete
language used in the publications on arXiv.org, and Presentation MathML¹³, an XML
dialect for displaying math on the web that we chose in this work. The latter category
includes Content MathML and OpenMath, two similar XML dialects that focus on se-
mantics rather than layout, and domain-specific languages for symbolic math solvers

13 https://www.w3.org/TR/MathML3/.

https://www.w3.org/TR/MathML3/

162 | 4 Structured Data

like Mathematica that also allow the manipulation and transformation of formulas. To
the best of our knowledge, no large, public collection of semantic math expressions
exists and, unfortunately, converting math from a display-representation, where data
is available in large quantities, to a semantic representation, which seems more ap-
propriate for searching, is a non-trivial task. Available solutions either use rules and
heuristics, e.g. the converter ml2om that translates LaTeX to OpenMath[661], or also ap-
plymachine learning [693].We chose to applymachine learningmethods directly on the
Presentation MathML representation. The bottom line of the representation question
is that math is expressed in trees, either XML or other parse trees. Our previous work
[564] may be the notable exception to this: we chose to represent equations as fixed-size
bitmaps. While one could argue that this is an unsuitable choice, the multitude of
machine learning or computer-vision approaches that successfully transform images of
typeset [170] or hand-written [15, 460] math back to tree-based representations suggests
that bitmap representations preserve all required information of tree-based approaches.

Similarity Measure The second question is how we compute similarity between
formulas. Zanibbi et al. distinguish text-based, tree-based, and spectral approaches
[729]. Text-based approaches transform tree-structured math into a sequence by pre-
order traversal, say, and then estimate the similarity using methods for sequences
such as cosine similarities of bags-of-words or the length of the largest common sub-
string. Tree-based approaches focus onmatching trees or subtrees. Typically computing
similarities using sub-structures, either sub-sequences or sub-trees, involves solving
dynamic-programming problems. Spectral approaches work on paths or partial sub-
trees in the trees. An example is the work by Zhong and Zanibbi [745], which indexes
root-leaf paths of operator trees. From matches of the root-leaf paths, they compute
the largest common subexpression to score the similarity of two equations. To convert
math from LaTeX to the semantic representation of operator trees, the authors use ca.
100 grammar rules created by domain experts.

A new trend is to use machine learning to learn a similarity measure. A machine
learning model maps an equation to a dense, low-dimensional vector. The similarity
between these so-called embeddings can be computed via their inner product, which
enables fast indexing using a variety of index structures, including faiss and annoy,
designed for efficiently handling millions of these dense, low-dimensional vectors.
Mansouri et al. [464] propose that equations be embedded using fastText, a method
originally designed for computing word embeddings, while in our previous work [564]
we compute embeddings with a similar embedding learning task and convolutional
neural networks (see Section 4.2).

Graph Convolutional Neural Networks We have proposed an embedding model
based on Graph Neural Networks (GNN) [563] introduced in this contribution. They are
an appealing model choice for this task, as like classic Convolutional Neural Networks

4.5 Millions of Formulas | 163

(CNNs) for image processing, they compute feature maps based on local neighborhoods
and thus can work on relations between symbols in formulas. While in CNNs we have
features associated with each pixel in the pixel grid and neighborhoods are defined
by this grid, in GNNs we have features associated with each node of the graph and
neighborhoods are defined by the edges in the graph. We define graph structures
x = (X, E) as a tuple of node-features X and edges E. Let |x| denote the number of nodes
in x. We assume that X ∈ R|x|×d where Xi are the features of the i-th node. A GNN maps
an input graph to an outputwith transformed feature vectors in a d′-dimensional output
space but with identical edge structure. We use the graph network to compute a vector-
valued embedding for mathematical expressions by an average-pooling operation that
aggregates all node-embeddings of a graph into a single graph-embedding.

Additionally we investigate the use of transformer architectures [681], more specif-
ically of Bidirectional Encoder Representations (BER)T models [173], for the task of
embedding mathematical expressions into vector spaces. Transformers can be viewed
as GNNs on a fully connected graph where each layer aggregates neighborhoods using
self-attention [681].

Self-Supervised Learning We further draw inspiration from a recently proposed
class of representation learning tasks called self-supervised learning. Self-supervised
learning tasks are unsupervised learning tasks, where parts of the inputs are used to
construct proxy tasks. The representations learned in these proxy-tasks can then be
used in downstream tasks. For instance, we can rotate images and train a model to
predict the rotation angle, as proposed by Gidaris et al. [251]. Using massive amounts
of unlabeled data readily available, we can fit models that solve a task like this.

We are particularly interested in , where parts of the input are hidden from a model
and the model’s task is to predict the hidden parts. This was made popular by the BERT
model for pretraining natural language representations [173] and has since then been
adopted to other inputs such as pretraining for image classification with convolutional
neural networks [669]. We construct a masking task for mathematical expressions and
use graph convolutional neural networks to predict the masked parts.

4.5.3 The Data

We outline how we gather data from arxiv.org and transform it to graph structured data
for our graph convolutional neural network.

4.5.3.1 Dataset
We are working on data obtained from arxiv.org, a service where scientists can upload
their manuscripts or pre-prints without reviewing process. We have downloaded all the

164 | 4 Structured Data

ast
ro-
ph

con
d-m

at cs
ma
th
he
p-p

h

ph
ysi
cs

qu
an
t-p
h
he
p-t
h
gr-
qc sta

t

nu
cl-
th
he
p-e
x
q-b

io

ma
th-
ph
he
p-l
at
nli
n

nu
cl-
ex
q-fi

n ees
s
eco

n

ch
ao-
dy
n0

0.5

1

1.5

2
·105

Subject Area

Fr
eq

ue
nc

y

Fig. 4.22: Number of papers per subject area in our sample.

LaTeX sources of publications up to April 2019 from the official bulk data repositories.¹⁴
This way we have obtained 934,287 papers. As we can see in Figure 4.22, the large
majority of these papers are from disciplines where mathematical expressions are an
important part of the publications. The most prominent subject areas are astrophysics,
condensed-matter physics, high energy physics, computer science, and mathematics.

From all publications, we extract mathematical expressions by using regular ex-
pressions for the most common math-environments such as ’equation’, ’align’, etc. We
do not use inline math snippets but focus on expressions that stand on their own, as
they tend to describe more important concepts. Furthermore we extract user-defined
commands and macros. Using the library Katex¹⁵ we compile the raw LaTeX-equations
to the XML-based MathML format. Out of all papers downloaded, 760 041 papers contain
at least one equation that we were able to convert to MathML. In total we have a dataset
of 28 973 591 MathML equations. Furthermore we have used regular expressions to find
arXiv-ids in the bibliographies of the paper to build a citation graph. In total, 540 892
papers have an outgoing edge, with a total number of edges of 4 553 297. Since we only
detect those references that use an arXiv-id in, say, an texttturl, our citation graph is
only a subgraph of the true citation graph.

To ensure reproducibility we provide the scripts used for processing the public
arXiv data dump, extracting the mathematical expressions and converting them to
MathML as well as collecting meta-data and citations at https://github.com/Whadup/
arxiv_library¹⁶.

14 https://arxiv.org/help/bulk_data_s3.
15 http://katex.org.
16 You can find the datasets used in this study at http://github.com/Whadup/arxiv-learning. We also
share our citation graph, which might be interesting in other applications.

https://github.com/Whadup/arxiv_library
https://github.com/Whadup/arxiv_library
https://arxiv.org/help/bulk_data_s3
http://katex.org
http://github.com/Whadup/arxiv-learning

4.5 Millions of Formulas | 165

) (2 1 , - + = i 0 n x t k | d s . m a r p e 3 j c ’ l f] [u 4 � g T y z NA q o R∑ b µ

2

4

6

·107

Character

Fr
eq
ue
nc
y

Fig. 4.23: The 50 most frequent characters in math environments.

4.5.3.2 Data Representation
In order to feed the MathML to a graph convolutional neural network, we have to convert
it to a graph with vectorial node features. The MathML standard defines around 30
different XML-tags such as <mi> for math identifiers or <mo> for math operators. Some
of these tags use attributes, to change font or spacing, say. Leaf nodes contain text such
numbers, parenthesis, or letters (Greek, Latin, etc...). We view the XML structure as a
tree and use its nodes and edges and derive features based on tags, attributes, and text.
For each node we use one-hot encoded feature vectors of dimensionality 256. First, we
represent each node as a single token, where the token is derived by concatenating tag,
attributes and text and use the 256 most frequent tokens that capture the majority of
tokens in the data. Attribute values often contain numbers, e.g., for changing the font-
size. We round these numbers to one decimal place to reduce the number of possible
values. In addition to the one-hot encoded features, we store the position of the node
among its sibling nodes.

Then, for the use with transformermodels, we compute a sequential representation
of our tree-structured data by a pre-order traversal of the tree.

4.5.4 Learning to Find Related Equations

In this section we will introduce the graph convolutional neural network used for
computing embeddings and present two unsupervised learning tasks used for training
the network. indexsubsubsectionModel for Embedding Formulas

Graph Neural Network We define a graph convolutional neural network for the task
of embedding mathematical expressions into a low-dimensional vector space. The raw
MathML is converted to graphs with vectorial features as described in Section 4.5.3.2. We
propose using a special first layer that combines the one-hot encoded information at a
node with the decimal position attribute. Following Vaswani et al. [681], we encode the
position of the i-th node pi ∈ N using positional embeddings. We use fixed sinusoid
embeddings [681] denoted by E(pj), but in order to still allow the model to control the

166 | 4 Structured Data

influence of the positional embeddings, we introduce a learnable scaling coefficient α
initialized to 1.

x(1)i = ReLU

⎛
⎝ ∑︁

j∈N(i)∪i
W (1)xj + αE(pj) + b(1)

⎞
⎠

The first layer is followed by 3 fully-connected graph convolution layers of width 512,
where the l-th layer is defined by

x(l)i = ReLU

⎛
⎝ ∑︁

j∈N(i)∪i
W (l)x(l−1)j + b(l)

⎞
⎠

which linearly transforms all nodes using a weight matrix W (l), adds a bias term
b(l), aggregates by computing the sum over all neighbors N(i) and applies the ReLU
activation component-wise. All graph convolution layers output feature maps with 512
dimensions. In our tree-structured data we assume all edges are bi-directional; hence
the set of neighbors consists of the parent node and all child nodes. We apply batch-
normalization before the first and third graph convolution layer. For the remainder of
this paper, let ϕ(x) ∈ R|x|×512 denote the output of the last graph convolution layer
given the input x. To obtain a single embedding for an input graph, we compute the
mean of all node features. This mean is transformed in another linear layer to reduce
the dimensionality to 64. For the remainder of this paper, let ϕ̄(x) ∈ R64 denote this
embedding of x.

When scoring similarities between embeddings with margin losses, we need to con-
trol the normof the embeddings, otherwise the notion of adherence to amargin becomes
meaningless. Ding et al. [179] and others have proposed normalizing all embeddings to
unit length. We propose a softer normalization inspired by batch normalization[335]
that also allows us to obtain embeddings with norms smaller than 1. For every training
batch of graphs, we compute the mean of the norm as well as its standard deviation.
Then we inversely scale each embedding by the mean plus the standard deviation. This
way, most embeddings have a norm smaller than 1. We keep a running average of the
means and standard deviations. At inference time, we use these running averages for
scaling.

Transformer The original transformer model — as proposed by Vaswani et al. [681] —
is slightly modified in BERT [173], which only uses encoder layers. In our work we use
the same transformer model architecture as BERT — including the same encoder layers,
activation functions, optimization algorithms, and learning rate schedules. The trans-
former architecture introduces the multi-head-attention layers as the key mechanism
for learning the relations between each pair of tokens in the input sequence. This is ap-
plicable on mathematical formulas too, because understanding the relations between
the symbols of a mathematical formula is crucial for understanding the meaning of
the formula. We also extend the vocabulary by the special classification, separation,

4.5 Millions of Formulas | 167

masking, and unknown token—as did [173]—in order to predict masked tokens and
thereby integrate in the model the ability to correct mathematical expressions.

We explore three differently-sized variants of the BERT architectures for embedding
mathematical expressions. While BERT has a hidden-size-dependent number of atten-
tion heads, we keep them constant. We set the number of different multi-head-attention
heads D to 4. By doing so the hidden size H has the largest impact on the performance
of the multihead attention. As for the intermediate projection size, we kept this always
bigger than the hidden size so that we can have a linear projection on a higher space.
The resulting models are summarized in Table 4.5.

Tab. 4.5:Math-BERT model configurations.

Model L H I D Params GFLOP

SMALL 4 128 768 4 1.2m 0.7
BASE 8 256 768 4 6.0m 3.6
LARGE 12 512 768 4 25.0m 15

4.5.4.1 Representation Learning Tasks
We propose that our embeddings are trained using two self-supervised learning tasks
simultaneously by adding their respective losses.

Contextual Similarity For learning relations between equations, we rely on the
established contextual similarity task that was first made popular by word embeddings
[493] and has hence been used in many representation learning approaches, including
our approach [564] for learning similarities between equations. The main idea is that
objects that frequently appear in shared contexts are related. We define the context of
mathematical expressions as the paper containing the equation and conjecture that
two equations are related if they appear in the same paper, as originally proposed in
[564]. We extend this approach and further define two equations as related if one paper
references the other using a citation graph. This way we hope to connect equations
that describe the same context but use different notation. In addition, we discriminate
between sampling expressions from the same paper and from the same section. We
hope that within sections, equations are more related to each other. For obtaining
positive examples of related equations, we
1. sample a paper uniformly at random and select an expression from this paper

uniformly at random;
2. randomly select whether we sample from the same section, same paper or along a

citation;
3. sample a positive example using that method; when we cannot find a positive

example using that method, we jump back to (1).

168 | 4 Structured Data

For learning similarities we also require negative examples. To obtain these, we sample
a paper uniformly at random and select an expression from this paper uniformly at
random. The random process that generates these weak labels for similarity learning
introduces a lot of noise, as many equations we claim to be related are in fact unrelated
and some of the pairs we say are unrelated are related. We leave the investigation of
more advanced sampling schemes to future work.

Using the sampled equations x with positive x+ and negative partners x−, we apply
similarity learning. We have to choose a suitable loss function and investigate two
different losses: Triplet and Histogram. The triplet loss [38] that we have previously
used [564], contrasts the similarity between a positive pair of examples and a negative
pair of examples and demands that the similar pair has a higher similarity by a user-
defined margin ∆, usually set to 1.

ℓt(x, x+, x−) = max(0, ∆ − ⟨ϕ̄(x), ϕ̄(x+)⟩ + ⟨ϕ̄(x), ϕ̄(x−)⟩) (4.40)

We have proposed using the histogram loss as first published by Ustinova and Lem-
pitsky[676]. It does not work on a triplet of equations, but on a mini-batch of size m
positive pairs X+ and a batch of negative pairs X− with respect to anchor examples X.
We collect all similarities between positive pairs in a vector s+ = (⟨ϕ̄(xi), ϕ̄(x+i)⟩)i=1,...,m
and of all negative pairs in s−. We divide the interval [−1, 1] into R−1 equally-sized bins
with boundaries −1 = t1, t2, ..., tR = 1 and width ∆ = 2/(R − 1) and build histograms
for the positive similarities and the negative similarities. Now we demand that the
positive histogram leans more toward the +1 similarity than the negative histogram.
We formalize this intuition as

ℓh(s+, s−) =
1
m2

R∑︁

r=1

r∑︁

r′=1

(︃ m∑︁

i=1
δr[s−i]

)︃(︃ m∑︁

i=1
δr′ [s+i]

)︃
(4.41)

where instead of hard assignments, we use the triangular kernel

δr[s] =

⎧
⎪⎪⎨
⎪⎪⎩

(s − tr−1)/∆ if s ∈ [tr−1, tr]
(tr−1 − s)/∆ if s ∈ [tr , tr+1]
0 otherwise

to put similarities into bins. This way we obtain a differentiable loss function. We hope
that histogram loss is more robust with regard to the massive noise in our labels as
each positive example is contrasted with all negative examples.

Masking Task We propose extending the contextual similarity task by another task
and optimizing the sum of both tasks for training our embedding models. The main
idea of our second task is, that the symbols in mathematical expressions do not appear
independent from each other, but have strong dependencies. Thus if we hide a fraction

4.5 Millions of Formulas | 169

of the symbols in an equation, we should be able to approximately reconstruct the hid-
den symbols from the remaining symbols. This task is reminiscent of masked language
modeling tasks made popular by BERT [173] for natural language processing. In order
to successfully solve this task, a model has to learn about the frequencies of symbols
and their dependencies from the data, as is illustrated in Figure 4.24.

min 1
n

n∑︁

i=1
ℓ(⟨w, i⟩, yi)

P(=?) =

⎛
⎜⎜⎝

w : 0.81
β : 0.04

...

⎞
⎟⎟⎠ P(=?) =

⎛
⎜⎜⎝

x : 0.73
y : 0.02

...

⎞
⎟⎟⎠

Fig. 4.24: Example of the masking task with fictional values.

More formally, we proceed as follows. For each input graph x with features X, we
randomly set the feature vector of 15% of the nodes to all zero obtaining the graph x■.
Thenwe computeϕ(x■) ∈ R|x|×512. Now for eachmasked node,we solve a classification
task: given ϕi(x■), predict the right token, i.e. the combination of XML-tag, XML-
attributes, and character. This classification task is solved using a single linear layer of
dimensionality 256 with softmax-activation and cross-entropy-loss.

ℓi = ℓ(softmax(W)ϕi(x■) + b, Xi)

The loss is only evaluated for the masked tokens and we compute the mean over all
masked tokens to obtain a loss value for x■.

Adding this task to the contextual similarity task has the additional advantage that
we now learn a representation that not only captures context information, but also
preserves information about the raw input symbols.

4.5.4.2 Data Augmentation
Data augmentation eases the generalization of machine learning models and is particu-
larly popular for image classification tasks where we can augment images by randomly
rotating, scaling, padding, etc. Formathematical expressions, we propose the following
random data augmentation. Since we know that a renaming of symbols in equations

170 | 4 Structured Data

rarely changes the semantic, we propose randomly permuting the character features of
all nodes that correspond to a math identifier, encoded in <mi> tags according to the
MathML standard. For each equation we process, we sample a number of flips from a
Poisson distribution with an expected value of 32. Then starting with the identity per-
mutation that does not change the order of our 192 features, we construct a permutation
with the desired number of flips by incrementally exchanging two random characters.

4.5.5 Experimental Results

In this section we perform an experimental evaluation of our embedding model. In
particular, we focus on the use-case of a search engine for mathematical expressions.
We begin by investigating the effects of the individual components of our model on a
small, closed subset of the data. Then we investigate the effectiveness of our method
on all 29.9 million equations.

4.5.5.1 Analysis on the Machine Learning Subset
We begin our analysis only on arXiv publications where the primary subject classifica-
tion is machine learning (cs.LG). This is a natural choice, as we have some expertise to
judge the quality of our results, a task which we are in no way equipped for across all
subject fields.

Of these 9936 publications, we sample two subsets, train and test sizes of 7949 and
1987, respectively, and a total number of equations of 237 335 and 54 767, respectively.We
use the train-set for building our embedding models and use the test-set to investigate
generalization properties.

For training, we sample 1 million triplets (x, x+, x−). Of these triples, 45.9% have a
positive pair from the same section, 42.2% from the same paper, and 13.9% along an
edge in the citation graph. We sample 100k triplets for testing with similarly distributed
positive examples.

We perform an ablation study on our proposed embedding model and compare
it with prior work. This section investigates the influence of our design choices. We
decided (a) to use the histogram loss instead of the triplet loss, and (b) to add amasking
task, (c) to data augmentation.

We measure the ranking score, i.e. the fraction of all triples in the training data
where same-class pairs of equations have higher similarities than across-class pairs. As
we see in Table 4.6, our evaluations indicate that all of our design choices contribute
favorably to the overall performance on hold-out data, as deactivating any component
decreases the score. We note that the biggest gain is achieved by switching from triplet-
loss to histogram-loss. We believe that this is due to the massive noise in our labels.

We also compare with our previous model [564] and see that we beat it by a small
margin. However, this comparison is not entirely fair, as their model was trained on a

4.5 Millions of Formulas | 171

Tab. 4.6: Ablation Study.

Influence factor Ranking
hold-out

Ranking
eval

Accuracy
eval

Full model 76.5 (±0.0) 57.7 (±0.0) 60.6 (±0.0)
No histogram loss 72.5 (−4.0) 49.6 (−8.1) 30.9 (−29.7)
No masking 75.2 (−1.3) 54.3 (−3.4) 50.0 (−10.6)
No augmentation 75.3 (−1.2) 53.6 (−4.1) 50.0 (−10.6)

Bitmap CNN original[564] 76.2 (−0.3) 71.9 (+14.2) 68.3 (+7.7)
Bitmap CNN retrained 70.0 (−6.5) 50.0 (−7.7) 52.9 (−7.7)

larger dataset of around 25 000 papers, probably including some of the papers in our
test set. We use their code to re-train on our subset of equations and yield a substantial
margin of 6.5 percentage points.

We also use our previous evaluation data [564]. It consists of 103 equations labeled
into 13 categories related to machine learning including k-means, LSTMs, empirical
risk minimization, etc. Since only bitmaps are available, we transcribe the equations
manually. There are three issues with this evaluation set. First, it is too small to produce
significant numbers. Second, some equations in the dataset appear in the training data.
This is not only the case for our subset, but also for the training data used in [564].
Third, many equations within a category are obviously from the same paper, hence we
have seen some of the pairs in our training data. Nevertheless we use the evaluation
data. Indeed in our use-case of search engines, the crawled equations will always be
in the training data and only the user queries will be unseen equations. In a way, we
simulate this with the evaluation data.

Following the original experimental protocol, we measure the 1-nearest-neighbor
accuracy obtained in leave-one-out validation (named Accuracy) as well as the above
Ranking score. In Table 4.6, we again see that our model is only surpassed by the
pre-trained model that uses a larger training dataset. This motivates the use of a much
larger dataset.

4.5.5.2 Large-Scale Experiments
For training on all the papers in our dataset, we sample two different sets of training
triplets, one with 5 million triplets and one with 20 million triplets. We train our models
on a Nvidia GTX1080 GPU with 8GB memory, which allows us to process mini-batches
of 128 triplets, or 384 equations. During training, we process around 1300 triplets per
second, not counting the time for reading data from hard disk. In total, one of the 20
epochs of training on 20 million triplets takes 6:30h on our system. We use annoy to
construct an index for approximate nearest neighbor retrieval. In total, our index uses
13 GB of hard disk storage to manage all mathematical expressions in our dataset.

172 | 4 Structured Data

Tab. 4.7: Evaluation Scores.

Dataset Ranking
eval

Accuracy
eval

1mio ML-subset triplets 57.7 60.6
5mio full ArXiv triplets 76.2 80.9
20mio full ArXiv triplets 75.3 84.0
Bitmap CNN original[564] 71.9 68.3

Beforewe evaluate ourmodels in a search engine study,we again check the performance
on the aforementioned evaluation data. The results in Table 4.7 indicate the power of
using large amounts of training data, although it is unclear if using 20 million training
triplets is an advantage over using only 5 million. Our large-scale models beat all the
models trained on smaller amounts of data. Even though the smaller models were
trained on only machine learning-related data, we obtain better scores on the machine
learning evaluation data by training on all disciplines.

Let us now inspect two example search queries. In Figures 4.25 and 4.26 we see the
two examples from the introduction, Bayes law and Ising models, and their respective
nearest neighbors under our model trained on 5million triplets. We see that we can find
other definitions of Bayes’ law as well as the related law of total probability. When we
perform a query for the Isingmodel and look at the first 20 results, we find papers where
the model is called the Boltzmann machine as well as papers that refer to the Ising
model. This illustrates the power of querying for mathematical expressions instead of
using keywords.

4.5.5.3 Search Engine Study
Finally we want to study the usefulness of our embedding approach for a search engine
application more systematically. Traditionally, validating search engines using the
measures precision or recall requires relevance scores for each result for each evalu-
ation query. We see that this requires much manual annotation work since we have
to manually identify each relevant equation for each query. Unfortunately, we were
not able to find available evaluation data. The best fit is the NTCIR-12 task evaluation
data [729] consisting of 37 annotated queries. But this is not appropriate for our ap-

Query: P(d | s) = P(d,s)
P(s)

1st result: P(s | d) = P(d|s)P(s)
P(d)

4th result: P(d) =
∫︀
P(d | s)P(s)ds

Fig. 4.25: Example: Bayes’ law. We report the first result and the first result that does not show
Bayes’ law, but, in this case, the related law of total probability. The first result is from: R. H. Leike, T.
A. Enßlin, Charting nearby dust clouds using Gaia data only, 2019.

4.5 Millions of Formulas | 173

Query:
∑︀

i<j wij si sj +
∑︀

i θi si
’Boltzmann’ Result: E = −

∑︀
i bi si −

∑︀
i<j wijsisj.

’Ising’ Result: H = −
∑︀

i<j Cij Jijσiσj −
∑︀

i hiσi

Fig. 4.26: Example: Ising model. We find equations related to both Ising models and Boltzmann
machines. First result is from: Weinstein, Learning the Einstein-Podolsky-Rosen correlations on a
Restricted Boltzmann Machine, 2017. Second result is from: Ferrari et al., Finite size corrections to
disordered systems on Erdős–Rényi random graphs, 2013.

proach, as most queries are a combination of math as well as keywords. When we
ignore the keywords, the remaining query becomes very generic, for instance x + y,
which makes it very unlikely that we accurately find the articles labeled as relevant. In
addition, the overall focus of the NTCIR-12 task is recovery of exact matches, whereas
our focus is on retrieving related expressions.

Consequently, we curate and publish our own evaluation dataset. To reduce the
manual annotation labour, we want to apply a heuristic for the relevance judgement.
To this end, we have asked our colleagues, many from disciplines other than computer
science and data science, to provide us with equations that we should query. For each
equation, they provide a set of keywords or keyphrases that should appear in the section
around the result. If one of the keywords is present, we count the result as correct. In
this way, we can evaluate our search result without manually checking result lists. If
a keyword has more than 10 characters, we also count it, if we find a substring that
has a Levenshtein distance less than 2. In total, we have 53 evaluation queries publicly
available and editable online.¹⁷

We inspect two different information retrieval metrics that do not require the num-
ber of relevant documents in advance: Precision@k and unnormalized Mean Average
Precision. Precision@k is defined as the fraction of relevant documents within the first
k results. We report it for lists of 10, 100, and 1000 results and compute its mean over
our evaluation queries.

Unnormalized Mean Average Precision is derived from the standard mean average
precisionmetric. Sincewe do not now the number of relevant documents in advance, we
omit this term, limit the search to a maximum of 1000 results, and obtain the following
definition

uMAP =
1000∑︁

k=1
P(k)∆k

where P(k) is Precision@k and ∆k specifies if the k-th result is relevant. Again we
compute the mean over all evaluation queries. Compared with Precision@k, uMAP

17 Crowd-sourced evaluation data can be accessed and edited here: https://www.overleaf.com/
8721648589nrjxgwmtzfvm.

https://www.overleaf.com/8721648589nrjxgwmtzfvm
https://www.overleaf.com/8721648589nrjxgwmtzfvm

174 | 4 Structured Data

Tab. 4.8: Search Engine Performance

P@10 P@100 P@1000 uMAP

BoW 0.4567 0.3170 0.2083 106.17
5Mio 0.5038 0.3817 0.2984 165.04
20Mio 0.4547 0.3709 0.2897 156.51

considers the order of the search results and rewards relevant results early in the result
lists.

For reference, we include retrieval based on a bag-of-words (BoW) representation.
To this end, we use our data representation as in Section 4.5.3.2, but compute the sum
over all nodes in the graph to obtain a single 256-dimensional vector of the whole tree.
We retrieve the nearest neighbors using cosine similarity.

In Table 4.8, we see that our approach beats the bag-of-words margin, in particular
for larger values of k. We see for Precision@10, the performance between BoW and our
embedding model is very similar. This is because for many queries the top-10 results
are mostly near-perfect matches that are easily identified. However when looking at
more results, we are able to find almost 50%more relevant equations.

4.5.5.4 Retrieval of Equalities and Inequalities
We have extracted equalities and inequalities in the test set of our data using regular
expressions. Using a simple heuristic, we filter the resulting (in-)equalities, such that
left-hand-side (LHS) and right-hand-side (RHS) do not differ in length dramatically,
thereby eliminating formulas such as definitions, where the LHS is only a single symbol.
We derive three different datasets, one with only equalities (LHS and RHS split at "="),
onewith inequalities (split at < and ≤) and onewithmixed relations (split at =<>≤ and ≥).
This data allows us to use the LHS of the (in-)equalities as queries in hopes of retrieving
RHS. We have made our finetuning-data available at https://whadup.github.io/arxiv_
learning/ as well.

Following other machine learning-based approaches for mathematical retrieval
[464, 563, 564], we use our models to encode formulas into a dense vector space and
retrieve results using approximate nearest neighbor search [48]. In the case of our BERT
models, we use output embedding of the CLS token as the representation for the whole
formula and finetune the model to output meaningful embeddings for this first token.
We finetune our models on half of the available data and test on the remaining half.

Finetuning Task We propose using contrastive learning to learn to identify the RHS
given the LHS. The learning task in contrastive learning is identifying the right partner
for each input in a minibatch of datapoints. Hence the representation learning problem
is formulated as a classification problem. Let Xl , Xr ∈ Rm×d contain the output embed-
dings of a minibatch of LHSs and RHSs. We normalize each embedding to unit length

https://whadup.github.io/arxiv_learning/
https://whadup.github.io/arxiv_learning/

4.5 Millions of Formulas | 175

and denote the normalized embeddings by X̄l and X̄r. We use the InfoNCE loss[547],
i.e. the negative log-likelihood of softmax probabilities parameterized by the pairwise
cosine similarities between the LHSs and RHSs:

ℓτ(X̄l , X̄r) = m−1
m∑︁

i=1
log exp(⟨X̄li , X̄ri ⟩/τ)∑︀

j ̸=i exp(⟨X̄li , X̄rj ⟩/τ)
(4.42)

where τ > 0 is a hyperparameter that controls the temperature of the output probability
distribution, which we set to 10−2. The contrastive learning task is more difficult for
larger batchsizes m, as there are more candidate RHSs to chose from and thus the
underlying classificationproblembecomesmore difficult. But it has been shown that the
utility of the model increases for larger batchsizes [134, 496], which we also investigate
in our application.

Baseline Models In addition to our models we include several baseline models:
– First, we test a simple bag-of-words (BoW) model that is trained on a bag of MathML

tree nodes. This model does not use a pre-training phase, but is only tuned on
the finetuning data. The BoW model maps the sparse BoW representation to a
d-dimensional vectorial embedding though a single matrix multiplication. In com-
parison with our BERT models, we do not restrict the vocabulary size of the inputs.
The representation is trained using the same contrastive learning taskwith InfoNCE
loss. We test d ∈ {64, 128, 256} and report the best result after varying learning
rates and number of training epochs in a grid search.

– Second we evaluate a pretraining approach based on the BoWmodel. The word-
embedding-based approach fastText by Joulin et al.[350] is trained by predicting
which tokens appear in the contexts together. Mansoury et al. use it for learning
embeddings of formulae by serializing a MathML layout tree similar to the one
we use in this work [464], hence we include it in our comparison. We finetune
these embeddings by learning a linear mapping into a d-dimensional vector space,
d ∈ {64, 128, 256} using the same contrastive learning task.

We begin by training our models and the baseline models with a minibatch-size of 1024.
Then we also investigate the effect of varying the batch size. Our implementations of
all methods is available at http://github.com/Whadup/arxiv-learning.

Results For testing, we compute embeddings for all LHSs and RHSs in the test data
and store them in an index structure. We use annoy [48], an indexing method for an
approximate nearest-neighbor search based on an ensemble of random projection trees.
We use an ensemble of 16 trees with default hyperparameters, but we found that the
results were very insensitive to our particular parameter choices.

Then we query the k-nearest neighbors, k ∈ {1, 10, 100}, for each formula from
the test set and check if the corresponding other side of the (in-)equality is in the result
set. This way we can compute recall values to measure the quality of our embeddings.

http://github.com/Whadup/arxiv-learning

176 | 4 Structured Data

Tab. 4.9: Results of the mathematical retrieval experiment. We report recall@K for K ∈ {1, 10, 100}.

Model Equalities (36864) Relations (40960) Inequalities (13312)
R@1 R@10 R@100 R@1 R@10 R@100 R@1 R@10 R@100

SMALL-PRE 0.379 0.577 0.714 0.432 0.626 0.749 0.397 0.661 0.795
SMALL-NO-PRE 0.400 0.584 0.700 0.405 0.632 0.769 0.371 0.632 0.769
BASE-PRE 0.511 0.71 0.805 0.503 0.697 0.791 0.484 0.765 0.86
BASE-NO-PRE 0.434 0.623 0.729 0.446 0.63 0.734 0.409 0.682 0.797
LARGE-PRE 0.507 0.704 0.799 0.496 0.683 0.777 0.489 0.765 0.864
LARGE-NO-PRE 0.452 0.637 0.737 0.46 0.640 0.736 0.427 0.703 0.817

BOW 0.483 0.653 0.739 0.491 0.658 0.743 0.503 0.738 0.821
FASTTEXT [350] 0.480 0.650 0.739 0.488 0.651 0.742 0.488 0.713 0.810
GNN [563] 0.507 0.833 0.884 0.512 0.834 0.883 0.504 0.870 0.922

We summarize our findings in Table 4.9. Our BERT approach substantially outperforms
both the BoW approaches, without (BOW) and with pretraining (FASTTEXT). This
suggests that our model is capable of matching formulas based on characteristics that
go beyond merely counting the number of matching tokens. However, the graph neural
network GNN outperforms the sequential models in most scenarios, sometimes even
substantially. It is, however, noteworthy that of the transformer models, the mid-size
model is most useful.

For the mid-size and large models we observe the benefit of pretraining, as models
that were trained from scratch perform worse than their pretrained counterparts. For
the small models we do not consistently see this effect.

Overall, the recall at 10 for our approaches is already pretty high, which indicates
that our representation learning on structured data is useful in search engine applica-
tions where users generally want to inspect only a small number of results.

4.5.6 Conclusion

Finding relevant literature across disciplines is essential for research. The search results
should contain papers that are both relevant and stimulating. Very often, a look at
the formulas in a paper gives a compact description of the problems and solutions it
discusses. Hence, the goal is to find related papers based on the mathematical expres-
sions. This task is different from mathematical information retrieval, but it shares the
problem of determining the right representation of mathematical expressions.

In order to handle the large amounts of data that are common in search engine
applications, we need models that allow efficient computation of the vector represen-
tations. Our approach based on graph-neural networks is a good fit for this demand
as it makes use of the sparsely connected input graphs. As such it is much more com-

4.5 Millions of Formulas | 177

putationally efficient than the other transformer models that we considered in this
contribution.

We have demonstrated that representation learning on structured input is a useful
approach for mathematical retrieval. Self-supervised and embedding learning suc-
cessfully learned real-valued representations of tree-structures that allow efficient
nearest-neighbor searches.

5 Cluster Analysis
An important process when analyzing a new dataset is to understand the dataset
properties, characteristics, and contents. An essential ingredient here is the so-called
“domain expertise”, the knowledge about domain-specific pecularities of the data to get
them preprocessed into an appropriate form for analysis. But even a domain expert that
understands the meaning of the data may not be aware of some of its characteristics.
In Exploratory Data Analysis (EDA), the data has now been preprocessed, cleaned, and
transformed into an appropriate shape for further analysis—a tidy tabular form, say,
and scaled such that we can apply distance measures. We can now explore the dataset
to identify interesting substructures, that may either already be known (and may be
a good candidate for labeling for later classification), that may be unknown, though
irrelevant to the problem at hand, or that may ideally be not yet known, but interesting.
Finding such novel knowledge about the data is known as the “data mining” step in
the “Knowledge Discovery in Databases” (KDD) process. New knowledge represents
the nuggets of gold that we are looking for in our mountains of data. There are several
kinds of patterns that we may be looking for: these could be frequent patterns (such
as combinations or sequences), anomalies (also called outliers, as we assume these
objects to be rare deviations from normal data), and clusters.

In this chapter, we focus on clusters which are subsets of the dataset that are more
coherent within the group, and that exhibit a larger deviation between these groups.
Depending on the notions of coherence and deviation, we can arrive at very different
notions of clusters – and hence of algorithms. Additionally, models and algorithms
may differ by assumptions such as whether the data must be partitioned into disjoint
subsets, or whether clusters may overlap. Clusters may form hierarchies, or may only
be noticeable in particular subspaces or projections. Some methods reduce clusters to
a single central point (for example the omnipresent k-means, but also k-medoids and
manymore), while other models allow non-convex clusters of arbitrary shape as long as
the data is connected (for example, density connected in DBSCAN and Support Vector
Clustering, but also in spectral clustering). There exists a huge zoo of algorithms, which
may produce very different results. The appropriate choice of model and algorithm
depends on the problem to solve. In many cases, k-means is a poor choice even though
it may appear to be the easiest to use. It will always assign points to the nearest cluster
center and it does not even handle clusters with varying diameter well.

Our focus in this book is on resource efficiency, which includes many aspects in
clustering, as it is a very expensive problem. Many clustering problems are NP-hard
to solve exactly, hence finding the optimum solution is infeasible for large datasets.
Instead, it is common to use heuristics such as the standard algorithm for k-means that
will only find a local fix point solution (which may not even be a local optimum), or to
approximate the data.

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-005

180 | 5 Cluster Analysis

In Section 5.1, we will focus on k-medoids clustering, which conceptually is related to k-
means clustering but not limited to squared Euclidean distances. The usual algorithms
for this problem require runtime and memory quadratic in the number of data points,
and hence are not considered to be very efficient by the usual expectations for clustering
(given that the popular k-means algorithms are considered to be linear in the number
of data points N). The solution discussed here exploits that datasets can be sparse (i.e.,
havemanymissing values) when working with structured data and not coordinate data,
so that we can then avoid working with a full matrix.

In Section 5.2, we consider the input to the k-clustering problems to consist of
time series or sequences of points, that can both be interpreted as polygonal curves.
Since the order of the points matters, our choice of the distance measure is the Fréchet
distance, which is widely known by the “dog on a leash” analogy: assume one trajectory
is that of the dog, and the other that of the owner. What is the minimum length of a
leash needed to be able to always connect the two trajectories, and hence the maximum
distance these two objects must have had? However, in this case a single distance
computation is expensive, and hence we may not have the resources to compute all
pairwise Fréchet distances. It is widely believed that for two trajectories withm vertices
each no algorithms with running time O

(︀
m2−η)︀ exist, for any constant η > 0. To

improve resource efficiency, we investigate algorithms for clustering such curves by
approximating them in a more compact form that allows the bounding of the distances.

Section 5.3 improves the scalability and resource efficiency of hierarchical cluster-
ing (where the common AGNES algorithm is of complexity O(N3)), by aggregating the
data into a tree-based summary data structure. These summaries are built in linear
time and use only constant memory, and we show how these summaries can then
be clustered using different distances and algorithms. The clustering process then
depends on the size (bounded to a constant) of the summary storage, and given m
summaries, the complexity then is O(N + m2) if we employ improved algorithms such
as the nearest-neighbor chain algorithm. Because these data summaries can be built in
a single pass over the dataset with constant memory, the resulting methods are well
suited for streaming data processing on edge devices with limited resources. They can
also be built in parallel on multiple processors and then aggregated afterwards, and are
hence a good choice for aggregating big data in a cluster before continuing the analysis
on a smaller system.

In Section 5.4, we change to yet another data type, namely Boolean matrix data
that is then factorized. Matrix factorization is a central technique underlying many
approaches ranging from spectral clustering to word embeddings (word2vec can be
seen as a factorization of a word cooccurrence matrix). Boolean matrixes are a special
case that indicates the presence and absence of items, such as words in documents,
products in a market basket, or that indicate gene expression levels. While a matrix-
based approach is relatively memory intensive to store, advances in modern hardware
such as acceleration with graphics processors (GPUs) help enormously to improve
the scalability of such approaches. Such processing capabilities have since become

5 Cluster Analysis | 181

available for embedded systems in the form of GPUs in mobile CPUs (e.g., Kirin CPUs)
as well as embedded tensor processing units (e.g., Google Coral Edge TPUs).

Cluster analysis is an explorative approach to data analysis, and hence is usually
performed multiple times during the data analysis process. The results must not be
considered an ultimate truth (a “validation” is usually not possible in a meaningful
way for real data, unfortunately). But they can help to identify data properties and
data problems (in particular with respect to preprocessing), and they can serve as an
inspiration for further processing and analysis. For example, clusters may lead to the
discovery of an appropriate classification of the data, though the individual clustering
results tend to be too unreliable for a fully automatic classification, and users are better
advised to label the data as desired manually after studying the clusters.

182 | 5 Cluster Analysis

5.1 Sparse Partitioning Around Medoids

Lars Lenssen
Erich Schubert

Abstract: Partitioning Around Medoids (PAM, k-medoids) is a popular clustering tech-
nique to use with arbitrary distance functions or similarities, where each cluster is
represented by its most central object, called the medoid or the discrete median.In oper-
ations research, this family of problems is also known as the Facility Location Problem
(FLP). FastPAM recently introduced a speedup for large k to make it applicable for larger
problems, but the method still has a runtime quadratic in N. In this contribution, we
discuss a sparse and asymmetric variant of this problem, which can be used on graph
data such as road networks.
By exploiting sparsity, we can avoid the quadratic runtime andmemory requirements,

and make this method scalable to even larger problems, as long as we are able to
build a small enough graph of sufficient connectivity to perform local optimization.
Furthermore, we consider asymmetric cases, where the set of medoids is not identical
to the set of points to be covered (or in the interpretation of facility location, where
the possible facility locations are not identical to the consumer locations). Because of
sparsity, it may be impossible to cover all points with just k-medoids for kvalues which
are too small, which would render the problem unsolvable and would break common
heuristics for finding a good starting condition. Hence, we consider determining k
as a part of the optimization problem and propose to first construct a greedy initial
solution with a larger k, then to optimize the problem by alternating between PAM-
style “swap” operations where the result is improved by replacing medoids with better
alternatives and “remove” operations to reduce the number of k until neither allows
further improvements of the result quality.
We demonstrate the usefulness of this method on a problem from electrical engineer-

ing, with the input graph derived from cartographic data.

5.1.1 Introduction

The algorithm Partition Around Medoids (PAM, [363, 365]), also known as k-medoids,
is a popular clustering algorithm used as alternative to k-means clustering when one
wants to minimize other distances than squared errors distance. Similar to k-means, it
aims at minimizing the sum of distances from a cluster center, but the cluster center in
k-medoids is one of the data points and called amedoid, and the distance function here
may be arbitrary. This increases the flexibility over k-means, which uses the arithmetic
mean as the cluster center. The mean minimizes squared errors, and because of this

5.1 Sparse Partitioning Around Medoids | 183

Euclidean (L2), Manhattan (L1), and
squared Euclidean (L22) distance sums

to the different central points.
L2 L22 L1

Arithmetic Mean 6.909 6.330 8.674
Per-axis Median 6.761 6.530 8.267
Geometric Median 6.712 7.008 8.431
Euclidean Medoid 6.726 7.391 8.526

Fig. 5.1: Four different central points: the arithmetic mean , per-axis median , geometric median ,
and the Euclidean medoid .

k-means only minimizes Bregman divergences such as the squared Euclidean distance.
Even on one-dimensional data, it does not minimize the linear error, which is easily
seen from the difference between the arithmetic mean and the median. While k-means
minimizes the sum-of-squared errors, k-medoids, with k representative medoids mi
minimizes the absolute error criterion (“Total Deviation”, TD):

TD :=
∑︁k

i=1

∑︁
xc∈Ci

d(xc ,mi) (5.1)

where d(xc ,mi) is the distance between the data point xc of cluster Ci and the
medoid mi; though the distance is not necessarily the Euclidean distance, and not
necessarily a metric. The difference between the arithmetic mean, the per-axis median,
the geometric median, and the medoid of a dataset is exemplified in Figure 5.1. It can
be seen that the medoid is less sensitive to outliers than the arithmetic mean, and also
that k-means does not minimize Euclidean distances (but the squared distances).

In operations research, the k-medoids problem is also known as the (discrete)
facility location problem. Several variants of this problem have been researched there.
The variants differ mainly in the objective function to be minimized. For example, k-
center instead minimizes the maximum distance of all points to their assigned cluster
centers. There has been substantial research in the area of finding approximation
algorithms for all these different problems.

Unfortunately, the algorithms commonly used for k-medoids are not very scalable
to large problems, as we will discuss in the next section.

5.1.2 Runtime Complexity of Partition Around Medoids

The k-medoids problem is NP-hard [357]; hence we have to resort to approximate so-
lutions, using greedy and local optimization techniques. The PAM algorithm is such
an approach: its initialization (known as BUILD) is a greedy approximation to the k-
medoids problem, which afterwards is refined using a local search (called SWAP).

184 | 5 Cluster Analysis

Greedy initialization chooses k times the point that reduces the error the most; local
search then optimizes this solution by searching for the best way to swap one of the
cluster centers with a non-center. While the name k-medoids resembles k-means, the
standard PAM algorithm works differently from the standard k-means algorithm. A
k-means-like strategy of alternating optimization for k-medoids has been proposed
several times [299, 465, 553, 595], but was shown to produce worse solutions than a
swap-based approach such as PAM [603, 616, 658]. Kanungo,Mount, Netanyahu, Piatko,
Silverman, and Wu [355] proposed a swap-based approach to also improve the results
of k-means, but it is rather expensive as we will see below.

Both the greedy initialization as well as the local search require that all pairwise
distances be stored in a distance matrix. Greedy initialization performs k iterations,
each of cost O(N2) to find the best medoid to add. PAM’s swap evaluates O(k(N − k))
potential swaps, each with a reduced effort of O(N − k) operations by computing only
the change in the loss function. Hence each swap takes O(k(N − k)2) time to find,
which already was an improvement over the naive approach in O(k2(N − k)2). The
resulting runtime complexity of PAM is O(kN2i), where i is the number of iterations
until convergence for which little is known except that it usually is reasonably small,
and likely has an unfavorably high worst case just as with k-means.

We have recently proposed improved versions of PAM named FastPAM [617] and
FasterPAM [616], which provide a substantial speedup over PAM by eliminating the
nested loop over the k-medoids. By greedily performing the first swap that improves
the loss (instead of the best swap) and random initialization, we could decrease the
runtime complexity to O(N2i)with an empirically much smaller i (but with a similar
theoretical worst case).

Because both methods use each pairwise distance several times—and the method
is in particular interesting to use with a more complex and hence expensive distance
function—it is prohibitive to not use it with a pairwise distance matrix. Hence both
methods also require O(N2)memory.

5.1.3 Sparse Partitioning Around Medoids

A large part of these pairwise distances may be unnecessary to know exactly. It is easy
to see that given some assignment of points tomedoids, and themaximumdistance τ of
this assignment, we could replace all values larger than τ in this input distance matrix
with τ, and the solution would not change. Hence there is some natural “cut-off” to
distances, and larger values do not contribute to the solution. If our distance function
satisfies the triangle inequality, we may be able to omit computing some of these large
distances (e.g., with the algorithm of Newling and Fleuret [530]).

In this research, we want to focus on a different scenario, where the cut-off may be
given in advance (and may be different for each point), but the distance is not necessar-
ily metric. An real-word example for such as problem will be introduced in Section 5.1.4.

5.1 Sparse Partitioning Around Medoids | 185

While we can (and, effectively, will) treat distances considered uninteresting for the ap-
plication as infinite (or sufficiently large) values, using a sparse storage or the distances
only immediately reduces the memory usage, not the runtime. Unfortunately, this also
easily breaks the optimization procedure, which relies on first finding a feasible initial
solution, then performing local changes that improve the solution. A greedy strategy
such as the one discussed above is usually not able to find a valid initial solution for
a small k (and in particular, for a very small k the problem may become unsatisfiable
with a finite loss). In such cases, the local optimization will also not help, as neighbor
solutions will often still be invalid, and hence make no progress. This is most easily
seen when the dataset consists of many components that are not connected with edges
of finite length.

Instead of searching directly for a solution with k centers, we can solve a second
problem of k-medoids clustering at the same time: how to choose k? As with k-means
clustering, choosing the “optimal” k has eluded a general solution, and is mostly
performed by some crude heuristic such as the infamous Elbow criterion, which is
frequently misused.

If we allow the algorithm to vary k, we can much more easily find a valid initial
solution (e.g., by choosing the best unconnected vertex until everything is covered).
But of course this will usually yield a much higher number of clusters k than desired.
But if we perform a multi-criteria optimization in the refinement phase, we may be able
to reduce the number of clusters along with minimizing our main objective.

When varying k, we will obtain a Pareto front of solutions that are all optimal in
one way or another. This can be formalized as solutions not “dominated” by any other
solution in each criterion at the same time. To reduce the set of remaining candidate
solutions, it is best if we have some additional constraints to satisfy based on the
particular problem to solve.

5.1.4 Use Case: Simulation of Electrical Substation

We obtain networks using OSMOGrid, which implements ideas of distribution network
generation of Kays et al. [366] on the basis of public data (OpenStreetMap, OSM). The
electrical grid is modeled to follow the streets, and the buildings are used to model
consumers. Power consumption is estimated based on zoning and building size, and
used to simulate the load flow in the grid. We have made some graph simplifications in
preparation for the problems presented below. We remove dead ends, and move the
consumers locations (i.e., buildings) to the next point in the street network. Figure 5.2
shows the simulation based on the township Witten Stockum.

On the basis of this graph structure, there are different computational tasks in
which resource-efficient clustering models are necessary. One of these tasks is the
simulation of electrical substations within the graph. We want to identify the optimal
positions of power substations, so that the electric losses in the network are minimized.

186 | 5 Cluster Analysis

As the electric loss is related to load, voltage, and cable length, we approximate it using
the distance between substations and their connected consumers, which is weighted
by the consumer load. We describe this as a facility location problem, which comes
from urban and public service planning. The objective function FL for facilities and
demand points is

FL =
∑︁

i∈Demands
d(i,m(i)) +

∑︁
j∈Centers

c(j) , (5.2)

with c(j) as the cost of opening a facility, and d(i,m(i)) as the distance between con-
sumer i and the assigned centerm(i). FL has strong similarities to the objective function
of k-medoids. We take the facilities as the electrical substations and the consumers as
the demand points. Figure 5.3 shows results of clustering the consumers with Faster-
PAM for k = 4 substations for the generated graph for Witten Stockum. We can observe
that cluster assignment follows the road network, and consumers are not necessarily
assigned to the closest center “as the bird flies”.

Even with the FasterPAM improvements, the runtime complexity is O(N2i) for
N nodes in the graph and i iterations of the optimization procedure. The underlying
OSM planet file contains about 1.2 TB of data. Even though we are only interested in
modeling smaller areas of the world, we need to reduce complexity for solving the
task for whole cities or regions in an acceptable runtime, as these will nevertheless
contain several thousands of houses. We take advantage of some properties of a typical
electrical network. We consider only nodes with at least 3 outgoing edges as possible
optimal substation locations (except for disconnected points). The optimal position on

Fig. 5.2: Simulation of an electrical grid based on OSM data of Witten Stockum.

5.1 Sparse Partitioning Around Medoids | 187

Fig. 5.3: Clustering of the demand points of the generated graph structure according to optimal
substation locations with k = 4 using FasterPAM.

a single edge is trivial to calculate and is neglected. Hence, it is beneficial to formulate
this as an asymmetric problem, where demand points and facility locations are no
longer the same set. The distance matrix then no longer has to be calculated for all
node pairs, but only for all demand points and substation location connections. This
reduces the complexity to O(Nmi) for N consumers, m possible substation locations,
with m < N. If we further limit the maximum distance between a consumer and a
substation (to limit the power losses), this distance matrix becomes sparse, i.e., we now
have missing values that we can consider as infinite values. If we do not store these
missing values and iterate using appropriate sparse data structures, we can expect to
further reduce the runtime to O((e+N +m) · i) for e edges. Assuming a similar density of
houses and roads everywhere, we can expect the number of edges e to be approximately
linear in the area of the map we are processing.

5.1.5 Sparse k-Medoids

To use k-medoids clustering for problems with asymmetric and sparse input data, we
have to adapt the objective function of k-medoids.We stillwant tominimize the “total de-
viation” of all data points {x1, ..., xN} from the current set ofmedoidsM ⊆ {y1, ..., ym},

188 | 5 Cluster Analysis

but we no longer assume M ⊂ X as in tranditional k-medoids. Furthermore, for some
points, there currently may be no closest reachable medoid m(xi), and all distances
from this xi to all medoidsmi ∈ M are undefined. In such cases, we have to incorporate
a penalty π(xi) in our loss ℓ:

ℓ :=
∑︁N

i=1

{︃
π(i) if m(xi) = undefined
d(xi ,m(xi)) otherwise

(5.3)

Note that we allow the set M to change in size below. The penalty π(i) can be used to
trade the loss of not covering all possible data points against having larger distances.
We do not further consider tuning this parameter below, but we instead use π(i) = π =
const → ∞ to enforce a complete coverage. Because such extreme values can cause
numerical problems, our implementation always uses pairs (i, d) to store a loss (and a
loss change): an integer i to count the number of unassigned points, and the sum of
distances of assigned points d, such that mathematically we have ℓ = i · π + d, but do
not suffer from numerical problems.

Based on the objective function, we introduce DynBUILD (Dynamic Asymmet-
ric BUILD initialization) as an adaptation of the BUILD algorithm of Kaufman and
Rousseeuw [363, 365] to asymmetric sparse input datasets. The greedy BUILD approach
is supplemented by a dynamic increase of k, if after choosing k-medoids, some objects
(still) are not reachable by the current set of medoids. The algorithm hence always
choses at least k-medoids and covers all consumers. As a baseline, the strategy de-
noted Random simply uses a given percentage of points as initial cluster centers, and
may hence yield an initial solution where constraints are violated, but our improved
DynSWAP procedure will repair these while optimizing the assignment. Sparse++ is
an adaptation of the well-known k-means++ [25] method to sparse data, where cluster
centers are chosen in proportion to how many points they cover (again, we continue
choosing additional centers until all constraints are satisfied).

We introduce DynSWAP (Dynamic SWAP for asymmetric sparse data) as a dynamic
SWAP algorithm based on FasterPAM [616, 617], adapted to dynamically reduce k,
while efficiently processing asymmetric and sparse input data. DynSWAP differs from
FasterPAM’s SWAP in two ways: To dynamically change k depending on the constraints,
we check after each swap whether we can reduce k without violating a constraint
(line 30) if the current object is not suitable for swapping but reduces the number of
violated constraints; if added as a new medoid (line 34) then we make it an additional
medoid.We deliberately chose to reduce k only if we also perform a swap, as to alternate
between optimizing the existing medoids and learning the number of clusters k. Both
checks are very efficient to implement, as we already know the removal loss change for
all medoids (∆ℓ−m1 , . . . , ∆ℓ−mk , also needed by the FastPAM improvement over PAM)
andwe also have in ∆ℓ+ the loss change when adding a newmedoid. We can remove the
medoid mi without breaking any constraint if the π component is zero: ∆ℓ−mi

π = 0, and
making the current candidate yj a new medoid is beneficial if its ∆ℓ+π < 0. Whenever

5.1 Sparse Partitioning Around Medoids | 189

adding, removing, or swapping a medoid, we need to update for all data points xo the
nearest medoid n1(o), the distance to the nearest medoid dn1 (o), and the distance to
the second nearest medoid dn2 (o). This can be done more efficiently by updating the
previous values, exactly as in FasterPAM. Based on this information, we can also update
∆ℓ−m1 , . . . , ∆ℓ−mk , which is the loss change for removing each medoid, efficiently: for
each object, removing the nearest medoid incurs a loss change of (0, dn2 (o) − dn1 (o))
if there is a second nearest medoid, and (π(o), −dn1 (o)) otherwise. Removing another
medoid except the nearest medoid does not incur a loss change.

When computing the loss change for adding a new candidate medoid yc, we ini-
tialize an array ∆ℓ with the removal loss of each existing medoid, an optimization from
FastPAM [617]. To avoid an inner loop over all medoids k, we also incorporate an idea
from FasterPAM [616], namely to accumulate in the variable ∆ℓ+ the loss change that
applies to all medoids. An interesting property of ∆ℓ+ is that it is the loss change for
adding a new medoid, which we use for dynamically increasing the number of clusters,
too. We benefit from sparsity in this approach because we do not have to consider
objects that are not neighbors of the candidate yc: the loss change by removing existing
medoids has already been accounted for, and as they are not reachable from yc, there
is no loss change when adding the replacement medoid. Because of this, our loop

Algorithm 2: DynBUILD: Dynamic Asymmetric BUILD initialization
1 ℓ,M ← (∞,∞), ∅
/* Choose the first medoid: */

2 foreach yj do // compute loss for each yj
3 ℓj ← (

∑︀
i π(i), 0) // everything is unassigned

4 foreach xo ∈ N(yj) do // check neighbors (sparse)

5 ℓj ← ℓj + (−π(o), d(x0, yj))
6 if ℓj < ℓ) then ℓ,M ← ℓj , {yj} // current best

/* Choose the remaining medoids: */

7 for i = 1 . . . k − 1 do
8 ∆ℓ*, y* ← (0, 0), ∅ // storage for best solution

9 foreach yj /∈ M do

10 ∆ℓj ← (0, 0) // loss change accumulator

11 foreach xo ∈ N(yj) do // check neighbors (sparse)

12 δπ ← −π(o) if dn1 (o) =∞ else 0
13 δd ← d(xo , yj) − dn1 (o)
14 if δπ < 0 or δd < 0 then ∆ℓj ← ∆ℓj + (δπ, δd)
15 if ∆ℓj < ∆ℓ* then ∆ℓ*, y* ← ∆ℓj , yj // current best

16 ℓ,M ← ℓ + ∆ℓ*,M ∪ {y*} // use best new medoid

17 if i = k − 1 and ℓπ > 0 then k ← k + 1 // increase k
18 return ℓ, {m1, ...,mk}

190 | 5 Cluster Analysis

Algorithm 3: DynSWAP: Dynamic SWAP for asymmetric sparse data
1 ylast ← invalid
2 foreach xo do compute n1(o), dn1 (o), dn2 (o)
3 ∆ℓ−m1 , . . . , ∆ℓ−mk ← compute loss change removing mi
4 while still changing do
5 foreach yc /∈ {m1, . . . ,mk} do
6 break outer loop if yc = ylast // no improvements found

7 ∆ℓ ← (∆ℓ−m1 , . . . , ∆ℓ−mk) // removal loss

8 ∆ℓ+ ← 0 // accumulator (FasterPAM)

9 foreach xo ∈ N(yc) do // check neighbors (sparse)

10 doc ← d(xo , yc) // distance to candidate

11 if dn1 (o) =∞ then // xo not covered yet

12 ∆ℓ+ ← ∆ℓ+ + (−π(o), doc)
13 else if doc < dn1 (o) then // new nearest

14 ∆ℓ+ ← ∆ℓ+ + (0, doc − dn1 (o))
15 if dn2 (o) =∞ then // no second nearest

16 ∆ℓn1(o) ← ∆ℓn1(o) + (−π(o), dn1 (o))
17 else

18 ∆ℓn1(o) ← ∆ℓn1(o) + (0, dn1 (o) − dn2 (o))
19 else if dn2 (o) =∞ then // no second nearest

20 ∆ℓn1(o) ← ∆ℓn1(o) + (−π(o), doc)
21 else if doc < dn2 (o) then // new second nearest

22 ∆ℓn1(o) ← ∆ℓn1(o) + (0, doc − dn2 (o))
23 i ← argmin({∆ℓi}) // best current medoid

24 ∆ℓi ← ∆ℓi + ∆ℓ+ // add accumulator

25 if ∆TDi < (0, 0) then // eager swapping (FasterPAM)

26 swap roles of medoid m* and non-medoid yc
27 ℓ ← ℓ + ∆ℓi
28 update n1(o), dn1 (o), dn2 (o), ∆ℓ−m1 , . . . , ∆ℓ−mk

29 ylast ← yc // new stopping position

// After each swap, try to reduce k:
30 if min(∆ℓ−m1

π , . . . , ∆ℓ−mk
π) = 0 then // Dyn↓

31 r ← argmin({∆ℓ−mi})
32 remove medoid mr
33 update n1(o), dn1 (o), dn2 (o), ∆ℓ−m1 , . . . , ∆ℓ−mk

34 else if ∆ℓ+π < 0 then // Dyn↑

35 add new medoid yc as it fixes at least one constraint
36 update n1(o), dn1 (o), dn2 (o), ∆ℓ−m1 , . . . , ∆ℓ−mk

37 ylast ← yc // new stopping position

38 return ℓ,M

5.1 Sparse Partitioning Around Medoids | 191

only needs to iterate over the neighbors. For each neighbor xo, we distinguish four
cases: (1) the point is currently not yet covered, hence we gain π(o) but incur d(xo , yc)
in line 12; (2) the new medoid is closer than all existing medoids and hence we gain
dn1 (o) − d(xo , yc) in line 14. For the case of removing the nearest medoid, we have
already included dn1 (o), and hence we have to cancel this out (either with −π(o) or
dn2 (o)). If the new medoid is only second nearest, and there is (3) no previous second
nearest, only the loss of removing the nearest medoid needs to be updated in line 20.
If (4) a previous second nearest exists, but is farther than the new medoid, we also
need to adjust the loss of removing the nearest medoid by the difference that arises
from an assignment to the new medoid instead of to the previous second closest in
line 22. Similar case distinctions—except for handling the case of an undefined second
closest—can already be found in FasterPAM [616].

We observe that the two loops in lines 5 and 9 iterate over all edges, hence the
complexity of the procedure is O((e + N · k) · i), where e is the number of edges and i
the number of iterations. In the street network example, we can argue that e ∈ O(N) as
we scale the approach to larger networks (as we would keep the maximum distance
constant, but increase the area). Hence, this sparse k-medoids version scales linearly
for this application. If we have a densely connected graph, then e ∈ O(N2) and the
runtime matches that of standard FasterPAM.

5.1.6 Experiments

In our experiments, we expect to see a speedup comparedwith FasterPAM.We alsowant
to check how the dynamic change of k works under consideration of constraints. We
have to evaluate how well the Sparse k-medoids is able to find the smallest possible k
still meeting the constraints. Hence, we analyze three initializationmethods DynBUILD,
Random, and Sparse++. Finally, we perform a qualitative evaluation by comparing our
simulations with original substation locations from OSM.

Datasets To verify the algorithm, we need sufficiently large test datasets, and choose
constraints to obtain sparse distance matrices. In this work, we focus on the processing
and evaluation of energygrids generated by OSMOGrid. For quality evaluation, we
choose areas where many substations are documented in OSM. Figure 5.4 shows a
cutout of the electrical grid generated by OSMOGrid for the city of Witten, using the
127 substation locations from OSM (although this likely is not complete, as seen in
Figure 5.4). We can then compare the quality of our calculated models to the model
based on the real substations, but we need to remember that there may be additional
substations missing in OSM, and that real power networks have grown historically,
have to satisfy additional constraints, and are hence not optimal. For the purpose of
generating “realistic” networks, it is desirable to achieve a comparable quality, without
overfitting to the example data we have. On the dataset, we evaluate the dynamic

192 | 5 Cluster Analysis

Fig. 5.4: Grid simulation and known substation locations in OSM for Witten. The road network con-
tains 37 287 edges and 36844 nodes, N = 35 713 consumer and m = 1130 possible places for
substations. The location of 127 substations is documented in OSM, but very likely several are miss-
ing, especially in the east.

500 1 000 1 500 2 000 2 500 3 000 3 500 4 000 4 500 5 000 5 500 6 000
0

20

40

60

80

100

Maximum Power Cable Length (m)

Sp
ar
se

Di
st
an
ce
s(
%
)

0

50

100

150

Nu
m
be
ro

fm
ed
oi
ds

(k
)

Best k satisfying all constraints
Distances over threshold

Fig. 5.5: Sparsity of the distance matrix depending on a maximum cable length constraint between
consumer and substation for the simulation of Witten, and the minimum number of substations k for
which no constraint is broken.

methods for choosing k. The “optimal” k depends on the constraints, and thus on the
sparsity of the distance matrix. Figure 5.5 shows the smallest k to meet the constraint
of a maximum cable length in the grid. With increasing cable length, the number of
missing distances in thematrix decreases, but the best number of substations decreases
much faster.

We evaluate the algorithms in the ELKI open-source toolkit [618] in Java. For com-
parability, we perform all computations in ELKI and use the original implementations
of FasterPAM as a reference. This way we avoid side-effects caused by different imple-
mentations [399]. We run 100 restarts on an AMD EPYC 7302 processor using a single
thread, and evaluate the average, maximum, and minimum values.

5.1 Sparse Partitioning Around Medoids | 193

Tab. 5.1: Comparison of k depending on initialization and swap algorithms for generating a grid for
Witten. All results are averaged over 100 restarts.

Algorithm k after Runtime in ms Medoid

SuccessInit. SWAP Init SWAP Init SWAP changes

Random5 Dyn↓ 56 56 0.2 6919.2 205.3 0%
Dyn↓↑ 56 77.9 0.2 7862.3 287.9 100%

Random10 Dyn↓ 113 82.8 0.1 11578.8 354.9 100%
Dyn↓↑ 113 82.5 0.1 11044.4 372.9 100%

Sparse++ Dyn↓ 182.3 80.3 16.3 8632.2 269.2 100%
Dyn↓↑ 182.2 80.6 3.6 8640.3 268.4 100%

DynBUILD Dyn↓ 93 76.3 389.9 4296.3 141.9 100%
Dyn↓↑ 93 76.2 394.6 4320.3 141.4 100%

Dynamic k To evaluate the quality with a variable k, we compare the solutions
found by the algorithms to the best-known solution of all runs. We also compare the
different initialization algorithms, and the variants of the dynamic SWAP. We measure
the solution’s k, the runtime of initialization and SWAP, and whether the result satisfies
all constraints. Summarized results are shown in Table 5.1. Only Random5 initialization
without dynamic increase of k fails to satisfy constraints. This was to be expected,
because it only uses 5% of the possible substations as medoids, but there does not
appear to be a solution with just this many clusters. Because DynBUILD is deterministic,
it always produced k = 93 clusters after initialization. After the SWAPphase, the average
k was 76.2, which is 2.2more than the best known k = 74 (we iterate in a randomized
order in SWAP to avoid dependence on the input data order). Since the initial solution
already satisfied all constraints, and SWAP preserves this property, k can only decrease.
Among the random initializations, Random5 with DynSWAP↓↑ found the best results
on average. With k = 77.9 after the SWAP phase, the number of stations is on average
3.9× larger than the best k. Finally, the SWAP after DynBUILD needs on average 48.4%
of the runtime of the SWAP after a random initialization. Due to random initialization,
the average number of medoid changes during the SWAP increases significantly from
141 to 310, showing that DynBUILD has superior starting conditions compared with
random sampling and Sparse++.

Runtime Speedup In order to evaluate the runtime of the different methods, we
perform experiments for varying constraints and values of k. Figure 5.6 shows the total
runtime (initialization and SWAP) for DynBUILD, Random5, Random10, and Sparse++
initialization. We again use the Witten dataset and choose the distance constraint such
that all methods can achieve the desired k. We compare the runtime with the FasterPAM
implementation with a random initialization (as recommended for FasterPAM). For
DynBUILD we evaluate the SWAP with a dynamic decrease of k (Dyn↓) and for all
random initialization the SWAPwith both a dynamic increase and decrease of k (Dyn↓↑).

194 | 5 Cluster Analysis

We use a log scale on this plot because of the huge differences: the sparsity optimized
DynSWAP over all initializations on average uses only 7% of the runtime of the original
FasterPAM with random initialization; the DynBUILD and DynSWAP↓ combination on
average uses only 4%. This was expected as FasterPAM has to process the much larger
dense matrix. With increasing k, we can use a more sparse matrix here, which is the
reason why the DynSWAP approaches become faster while FasterPAM becomes slower
due to the higher number of clusters. The various random initializations differ only
slightly in runtime, but require on average about twice as long as DynBUILD. In addition
to the fast runtime, DynBUILD with Dyn↓SWAP also produces the lowest number of
excess clusters compared with the best known k, with an average of 2.2 stations more
than the best known k = 74.

40 50 60 70 80 90 100 110 120 130 140 150

104

105

Best known number of clusters k

Ru
nt
im

e
(m

s,
lo
g
sc
al
e)

DynBUILD - Dyn↓SWAP Random5 - Dyn↓↑SWAP
Random10 - Dyn↓↑SWAP Sparse++ - Dyn↓↑SWAP
Random - FasterPAM

40 50 60 70 80 90 100 110 120 130 140 150
0

5

10

15

Best known number of clusters k

Ex
ce
ss
cl
us
te
rs
k

DynBUILD - Dyn↓SWAP Random5 - Dyn↓↑SWAP
Random10 - Dyn↓↑SWAP Sparse++ - Dyn↓↑SWAP

Fig. 5.6: Runtime of the initialization and SWAP for DynBUILD, Random5, Random10, and Sparse++
initialization depending on the best number of k for the simulation of the grid of Witten. For refer-
ence, the random initialization and SWAP runtime of the FasterPAM implementation is included,
where the k chosen is the best one we know. The best k is controlled indirectly by the constraints set,
as in Figure 5.5. In addition to the runtime, the deviation from the best known k after SWAP is also
shown.

5.1 Sparse Partitioning Around Medoids | 195

Quality In order to evaluate the resulting quality, we compare the optimized sub-
station locations to the substations tagged in the OSM (these are likely incomplete).
Table 5.2 shows the results for a target k = 127 compared with the loss of the 127
tagged substations, as shown in Figure 5.4. Sparse++ and Random10 initialization with
Dyn↓↑SWAP results in the lowest loss with 1.3149×107 and is 29% lower than the loss
of the tagged substations. The quality difference between the randomized initializa-
tions is not significant, however (the SWAP does a good enough job of always reaching

Tab. 5.2: Comparison of the loss of the grid with 127 tagged substations with the calculated loss for
k = 127. All results are given as average values of 100 restarts. All constraints were satisfied after the
SWAP phase.

Algorithm Loss after SWAP ×107 Runtime in ms Medoidavg. min. changesInit. SWAP d π d π Init SWAP

Random5 Dyn↓↑ 1.3155 0 1.3083 0 0.1 12418.6 469.6
Random10 Dyn↓↑ 1.3149 0 1.3085 0 0.1 10395.5 339.8
Sparse++ Dyn↓↑ 1.3149 0 1.3083 0 16.4 10796.5 279.4
DynBUILD Dyn↓ 1.3171 0 1.3092 0 525.6 9225.4 294.9

Tagged substations 1.86 0

Fig. 5.7: Simulation of an electrical grid based on OSM data of Witten. 127 substations calculated
with Sparse++ and Dyn↓↑SWAP from Table 5.2. All consumers are color-coded to their nearest sub-
station.

196 | 5 Cluster Analysis

a good solution). The main difference here is in the runtimes, where the strategy of
sampling more centers than necessary and then decreasing, seems superior to the
others. The minimum loss over 100 restarts is obtained with Sparse++ and Random5

with 1.3083 × 107. DynBUILD initialization with Dyn↓SWAP finds a slightly higher loss
of 1.3271 × 107, but yields the fastest total runtime with 9 551.0ms, despite using the
slowest initialization by far.

All methods found significantly better solutions (1.31 vs. 1.86) than the “gold stan-
dard” solution given by the OSM tags. This had to be expected because of supposedly
missing tags, but also because the real grids were grown over time and the substa-
tions were built one by one, and not automatically optimized. In our simulation, we
have complete information about the grid structure and can thus calculate an optimal
substation distribution (green field planning) that cannot be realistically achieved in
practice, because the existing power network cannot simply be replaced and has to
obey additional constraints. Nevertheless, the resulting networks can be useful for
simulating power networks in different scenarios, such as when investigating the effect
of significantly expanding the charging infrastructure for electric cars.

5.1.7 Outlook

In the experiments, we focused on the specific use case of energy grid simulation. Be-
sides optimizing the FasterPAM approach for sparse problems, we have begun working
on automatically finding the parameter k as part of the optimization problem. For this,
we combined two losses in our loss function: one corresponding to the cost of poorly
handled locations (which could also be outliers), and the other part being the classic
k-medoids problem. It would be easy to incorporate an additional cost term to the
opening or closing of locations, and to weigh these costs differently. In this experiment,
we used a strict requirement to cover all locations (i.e., π → ∞), but using a smaller
weight may yield interesting approximations.

So far, we have considered the problem of optimal substation positions without a
maximumcapacity of substations. In reality, there is amaximum load that can be served
by a substation. In densely populated areas therefore, we may need more substations.
This results in a capacitated facility location problem that contains such an additional
capacity constraint, and is worth exploring in future work.

5.2 Clustering of Polygonal Curves and Time Series | 197

5.2 Clustering of Polygonal Curves and Time Series

Amer Krivošija

Abstract: Sensormeasurements can be represented as points inRd. Ordered by the time-
stamps of these measurements, these points yield a time series, that can be interpreted
as a polygonal curve in the d-dimensional ambient space.
The Fréchet distance is a popular dissimilarity measure for curves, in its continuous

and discrete versions. These are the dissimilarity measures of choice should the inner
structure of the curves be observed. One of the limitations is the inherent complexity
of the computation of the Fréchet distance. It is believed that no algorithms exist
to compute the Fréchet distance between two curves with m vertices each (called
complexity of the curve) in the running time that is subquadratic in m.
Clustering is a fundamental computational task on curves. We consider clustering in

the (metric) spaces with the Fréchet distance. The research of the k-clustering problems
on curves, with the bounded complexity of the cluster centers, was started by Driemel,
Krivošija, and Sohler [185], whose results are limited to the one-dimensional ambient
curves. These results started a series of publications, which we survey in the first part
of this section.
Related to the k-clustering is the middle curve problem [12]. Buchin, Funk, and

Krivošija [98] studied the computational complexity of this problem, based on the
previous work by Buchin et al. [93, 95], and showed that the middle curve problem is
NP-complete. This result is presented in the second part of this section.

5.2.1 Introduction

Sensors and other measuring devices generate vast amount of data every day. We
consider the recorded data in the order of the measurements. Such data describes
trends of an event (e.g. stock market, ECG, etc.), or trajectories of some object (e.g. bird
migration, routes of ships, etc.). Sensor measurements ordered by their respective time
stamps define a time series. By connecting sensor measurements, that are represented
as points in Rd, in that order using the straight-line segments, we can interpret the
time series as a polygonal curve in the d-dimensional ambient space.¹ In this section
we consider the clustering problems on the input consisting of polygonal curves, i.e.
finding one or more representative curves such that some goal function of the input’s
distance to the representative curves is minimized. The resource constraint we consider

1 An ambient space is the space surrounding an object, e.g. here Rd .

198 | 5 Cluster Analysis

is the algorithms’ running time. A curve in the Euclidean space Rd, for d ∈ N, is a
continuous function² τ : [1,m] → Rd. A polygonal curve is a curve such that there are
the values 1 = t1 ≤ t2 ≤ . . . ≤ tm = m, with wi = τ(ti) that we call vertices, and such
that for all i ∈ {1, . . . ,m − 1} each curve segment between τ(ti) and τ(ti+1) is affine,
i.e. line segment. W.l.o.g. we may assume that ti = i, for all i ∈ {1, . . . ,m}, thus for
all x ∈ [0, 1] it is τ(i + x) = (1 − x) · τ(i) + x · τ(i + 1). The line segments between two
consecutive vertices wi and wi+1 are called edges. We identify the curves with their
images (τ([1,m]) ⊆ Rd). We work only with polygonal curves, thus we simply refer to τ
as a curve, and write τ = ⟨w1, . . . , wm⟩. We say that such a curve τ has complexity m.

An alternative view on curves is provided by the data mining community that
analyzes the signal measurements. A time series is a series (w1, t1), . . . , (wm , tm) of
measurements wi ∈ Rd of a signal taken at times ti ∈ R. We assume 1 = t1 < t2 <
. . . < tm = m and m is finite. A time series may be viewed as a continuous function
τ : [1,m] → Rd by linearly interpolating w1, . . . , wm in order of ti, i ∈ {1, . . . ,m},
thus being a polygonal curve in the ambient space Rd. This notation does not specify
the points of time at which the measurements are taken. This is justified by the choice
of the dissimilarity measures we work with, and thus we make no distinction between
the notions of time series and curves in Rd. We denote with ∆d the set of all polygonal
curves in the ambient space Rd, and with ∆dm the set of all polygonal curves in Rd of
complexity at most m.

The choice of the dissimilarity measure on the set of the curves is very important.
By using the well-known Hausdorff distance (that treats curves as sets), two curves con-
sisting of the same measurement values would be at distance 0, even if the order of the
time stamps would be completely random. A natural way to compare the curves while
observing their ordered structure is using the (continuous or discrete) Fréchet distance.
The Fréchet distance is the minimal cost of transforming one curve into another, where
the cost measure of the transformation is the maximum distance between the mapped
points along both curves. This is often illustrated in the literature by the metaphor of
the shortest leash that allows a man and a dog to run along the two curves, without
ever moving backward.

Formally, letH denote the set of continuous and monotonically increasing func-
tions f : [1,m′] → [1,m′′]with the property that f (1) = 1 and f (m′) = m′′. The functions
inH are bijections. For two given functions σ : [1,m′] → Rd and τ : [1,m′′] → Rd, their
(continuous) Fréchet distance is defined as

dF (σ, τ) = inf
f∈H

max
t∈[1,m′]

‖σ(t) − τ(f (t))‖2, (5.4)

The Fréchet distance between two curves is defined as the Fréchet distance of their cor-
responding continuous functions. Note that any f ∈ H induces a bijection between the

2 The domain [1,m] can be replaced by an arbitrary interval [a, b], with a < b.

5.2 Clustering of Polygonal Curves and Time Series | 199

two curves. We refer to the function f that realizes the Fréchet distance as a matching.³
We say that the matching witnesses the Fréchet distance between the two curves.

The continuous Fréchet distance requires a mapping of the complete domain inter-
val. A related dissimilarity measure is the discrete Fréchet distance, which requires only
a mapping between the vertices of the input curves. Let two curves σ, τ in Rd be given
by their sequences of vertices σ = ⟨v1, . . . , vm′⟩ and τ = ⟨w1, . . . , wm′′⟩. A traversal T
of σ and τ is a sequence of pairs of indices (i, j) of vertices (vi , wj) ∈ σ × τ such that
i) the traversal T starts with (1, 1) and ends with (m′,m′′), and
ii) the pair (i, j) of T can be followed only by one of (i + 1, j), (i, j + 1) or (i + 1, j + 1).

Every traversal is monotone. If T is the set of all traversals T of σ and τ, then the discrete
Fréchet distance between σ and τ is defined as

ddF (σ, τ) = min
T∈T

max
(i,j)∈T

‖vi − wj‖2. (5.5)

We can overload the notion and say that the traversal that realizes the discrete Fréchet
distance is a matching.

A related dissimilarity measure to the discrete Fréchet distance is theDynamic Time
Warping (DTW) distance. The cost measure of the DTW transformation between two
curves is the sum instead of themaximum over all pairs of matched points. DTW is often
used in the machine learning community. However, DTW is not a metric, while both
the continuous and the discrete Fréchet distance are metric on the set ∆d [14, 197].⁴ The
metric properties are useful tools for theoretical analysis of the algorithms.

When discussing the Fréchet distance of two curves σ and τ, we assume for the sake
of simplicity, that both of them are of complexity m. The Fréchet distance is commonly
computed using the algorithm of Alt and Godau [14] for the continuous case (in time
O
(︀
m2 logm

)︀
), and the algorithm of Eiter and Mannila for the discrete case (in time

O
(︀
m2)︀). The state-of-the-art algorithms have running times roughly quadratic in m [5,

92]. It is widely believed, based on the conditional lower bounds, that no algorithms
to compute either distance measure exist with running time significantly better than
O
(︀
m2)︀.
Bringmann [77] showed that, unless SETH⁵ fails, there is no O

(︀
m2−η)︀ algorithm to

compute the (continuous or discrete) Fréchet distance for any η > 0, in the ambient

3 It may be that such a matching exists in the limit only. This technicality is removed using a slight
perturbation of the function. See a proof in the paper by Buchin et al. [97].
4 The continuous Fréchet distance is a pseudo-metric, since two different functions can be at the
distance 0. This can be easily repaired by observing the equivalence classes of functions, and thus we
say that the Fréchet distance is also a metric.
5 The Strong Exponential Time Hypothesis (SETH) claims that there is no η > 0, such that there is an
algorithm for all k, that answers if a formula in conjunctive normal form with N variables, and whose
claims have at most k literals, is satisfiable, in time O

(︀
(2 − η)N

)︀
. SETH is a fruitful tool for showing

conditional lower bounds. It was used to show similar claims for the DTW distance as well.

200 | 5 Cluster Analysis

space Rd, d ≥ 2. This result was extended by Bringmann andMulzer [79] for the discrete
Fréchet distance and for d = 1. Finally, Buchin, Ophelders and Speckmann [94] showed
that even if d = 1, no strongly subquadratic time algorithm exists to approximate the
(continuous or discrete) Fréchet distance better than the factor 3, unless SETH fails.

5.2.2 (k, ℓ)-Center and (k, ℓ)-Median Clustering

Q: Can one find k representative curves with at most ℓ vertices each? A: It is NP-hard to
do this exactly, but it can be well-approximated in time linear in the number of the input
curves.

Given are a ground set X equipped with dissimilarity measure d, and two positive
integers k and n. For the well-known k-clustering problems we get a set P ⊂ X with
|P| = n as input, and we aim to find a set C ⊂ X, with |C| = k, such that the elements
of P are assigned (clustered) to a center from C, and such that some goal function is
minimized. Three most often studied problems are the k-center, the k-median, and the
k-means problem, where the maximum distance, the sum of the distances, and the
sum of the squares of the distances, respectively, of the input elements to the assigned
centers is minimized.⁶We call these problems the k-clustering problems.

These problems arewell researched, both in Euclidean and in generalmetric spaces.
We focus on the k-center and k-median problems. Both problems are NP-hard, both in
Euclidean and in general metric spaces [213, 483]. k-center is NP-hard to approximate
better than a factor 2 [213]. k-median in general metric spaces cannot be approximated
better than a factor 1 + 2/e ≈ 1.736, unless NP ⊆ DTIME

[︁
nO(log log n)

]︁
[337]. Even the

discrete k-median is NP-hard in Euclidean space, and thus implicitly in general metric
spaces [550].

In the Euclidean spaceRd there exists a series of (1+ε)-approximation algorithms to
the k-clustering problems. Many of these are based on the concept of coresets; that is, a
coreset is a (weighted) set smaller than the input that (1+ε)-approximates the clustering
cost of the input with respect to any choice of k centers (strong coresets), or with respect
only to the optimal choice of the k-centers (weak coresets). For a survey of the coreset
methods for k-clustering, see the work of Munteanu and Schwiegelshohn [516].

We address now the state of the art for k-clustering problems in general metric
spaces. For the k-center problem there exists a simple greedy 2-approximation algorithm
by Gonzalez [264] (and also independently given by Hochbaum and Shmoys [317]),
which is also optimal. Intuitively, the algorithm picks the first center from the input at
random, and then k − 1 times the point from the input that maximizes the distances to
the already chosen centers.

6 For each of these problems the discrete version of the problem can be observed. There the set of
centers C needs to be a subset of P. In particular, the discrete k-median is known as the k-medoid
problem.

5.2 Clustering of Polygonal Curves and Time Series | 201

For the k-median in general metric spaces, it is the discrete version that is usually
studied. Note that every α-approximation to the discrete case is a 2α-approximation
to the unrestricted case, due to the triangle inequality. Chen [130] gave a (10 + ε)-
approximation algorithm with running time O

(︁
nk + k7ε−5 log5 n

)︁
. The approximation

factor of Chen [130] was further improved in two papers, but with a running time
that is no longer linear in n. Li and Svensson [433] gave a (1 +

√
3 + ε) ≈ (2.732 + ε)-

approximation in time O
(︁
n(1/ε)

2
)︁
. Byrka et al. [116] improved the result of Li and

Svensson [433] to a (2.675 + ε)-approximation algorithm, with the running time
O
(︁
n(1/ε) log(1/ε)

)︁
.

An important line of research is built upon the (1 + ε)-approximation algorithm
for the k-median problem by Kumar, Sabharwal, and Sen [405] with running time
O
(︁
nd · 2(k/ε)

O(1)
)︁
, based on the random sampling. Their result was originally devel-

oped for the Euclidean k-median problem. Kumar et al. [405] showed that a small
uniform sample of a constant number of input points, independent of n: O

(︁
(1/ε)O(1)

)︁
,

is sufficient to construct a candidate set of size O
(︁
2(1/ε)

O(1)
)︁
, that contains a (1 + ε)-

approximation for the 1-median problem (and then recursively construct a (1 + ε)-
approximation to the k-median problem). Indyk and Thorup [333, 659] showed that to
approximate the discrete metric 1-median on n points within a factor of (1 + ε) a uni-
form sample of size O

(︀
(1/ε2) · log n

)︀
is sufficient. Ackermann, Blömer, and Sohler [2]

showed how this argument can be adapted to the metric spaces with finite doubling
dimension,⁷ which includes the continuous Euclidean space ℓd2.⁸

Ackermann, Blömer, and Sohler [2] showed that a (1 + ε)-approximation to the
k-median problem in general metric spaces can be efficiently found, if a (1 + ε)-
approximation to the 1-median problem can be found by taking a random sample of
constant size, and exactly solving the 1-median problem on the sample. This result
holds not only for themetric spaces with finite doubling dimension (e.g. ℓd2), but also for
the (not necessarily metric) spaces, whose dissimilarity measure satisfies the sampling
property. The above results, however, do not apply directly to the spaces with dF or ddF
metric, due to the unbounded doubling dimension ([185]).

Before approaching the k-clustering problems in the metric space (∆d , dF) or
(∆d , ddF) we need to address the overfitting problem: even if we are looking only for a
single cluster representative (center) for the input of n curves in ∆dm under the Fréchet
distance, the optimal solution can have the complexity O (mn), as noted by Ahn et
al. [12]. This is not desirable considering resource-constraints, and often unnecessary
for the modeling of the real-world problems. Therefore, we adapt the classical problems

7 The doubling dimension of a metric space is the smallest positive integer d such that every ball of the
metric space can be covered by 2d balls of half the radius, cf. [281].
8 ℓd2 denotes the (vector) space Rd equipped with the Euclidean norm ‖ · ‖2.

202 | 5 Cluster Analysis

by bounding the complexity of the clustering center curves by a constant ℓ ∈ N, as
introduced by Driemel et al. [185].

Formally, given a set of n curvesW = {τ1, . . . , τn} ⊆ ∆dm and parameters k, ℓ ∈ N,
ℓ ≥ 2, that we assume to be constants, we define that the (k, ℓ)-clustering problem
is to find a set of k curves C = {ς1, . . . , ςk} taken from ∆dℓ that minimizes one of the
following cost functions:

cost∞(W, C) = max
1≤i≤n

min
1≤j≤k

dF
(︀
τi , ςj

)︀
, (5.6)

cost1(W, C) =
n∑︁

i=1
min
1≤j≤k

dF
(︀
τi , ςj

)︀
. (5.7)

We refer to the clustering problem as (k, ℓ)-center (Equation 5.6) and (k, ℓ)-median

(Equation 5.7), respectively.

The (k, ℓ)-clustering problems are NP-hard. When k is part of the input, the hardness
result was shown by Driemel et al. [185] for both the (k, ℓ)-center and the (k, ℓ)-median
problems, by reduction from their classical counterparts in Rd. In this case the (k, ℓ)-
center problem is NP-hard to be approximated better than factor 2.

When ℓ is part of the input, then there is no polynomial-time approximation scheme
for the (k, ℓ)-center problem, as shown by Buchin et al. [95], who reduced the problem
from the Shortest Common Supersequence (SCS) problem (cf. the definition of the SCS
problem on page 205). The approximation factor bound depends on the dimension of
the ambient space d and on whether the Fréchet distance is discrete or continuous. The
lower bound factors fromBuchin et al. [95] are presented in Table 5.3. These bounds hold
even if k = 1, i.e. for the smallest enclosing ball problem. The (k, ℓ)-median problem
is NP-hard as well, if ℓ is part of the input. This was shown by Buchin, Driemel and
Struijs [93] by reduction from the SCS problem. Before Driemel et al. [185] defined the

Tab. 5.3: The lower bounds for the approximation factor of an approximation algorithm for the (k, ℓ)-
center problem, if ℓ is part of the input [95].

Continuous Fréchet distance Discrete Fréchet distance

d = 1 1.5 2
d ≥ 2 2.25 2.598

(k, ℓ)-clustering problems, there existed only approaches to find a single representative
curve for a set of n input curves. As such, Buchin et al. [96] looked for a median curve
using only parts of the input curves; Har-Peled and Raichel [296] defined a mean curve
minimizing the distance to the input curves; and Ahn et al. [12] defined the middle
curve. We discuss the middle curves more in detail in Subsection 5.2.3.

5.2 Clustering of Polygonal Curves and Time Series | 203

Driemel et al. [185] gave the first (1 + ε)-approximation algorithms for both the (k, ℓ)-
center and the (k, ℓ)-median problems under the continuous Fréchet distance in the
one-dimensional ambient space. Their results are based on the curve simplifications
called signatures, that capture the important vertices of the curves, while keeping the
continuous Fréchet distance to the original curves small. The signatures bound the
search for the candidate cluster centers for both the (k, ℓ)-center and the (k, ℓ)-median
problem. The signatures’ technique, albeit limited to the one-dimensional ambient
space, was used recently to obtain approximation algorithms for the near neighbor
problem ([78, 186]). The techniques of Driemel et al. [185] provided only constant-factor
approximation algorithms for the discrete Fréchet distance case.

In the multidimensional (d ≥ 2) ambient space, there exists a constant-factor ap-
proximation algorithm for the (k, ℓ)-center problem by Buchin et al. [95]. They adapted
the algorithmof Gonzalez [264]with an approximation factor of 3 for the discrete Fréchet
distance (in time⁹ Õ(mn)), and the factors 3 and 6 for d = 2 and d > 2 respectively, for
the continuous Fréchet distance (in time Õ(mn + m3)). The result of Buchin et al. [95]
for the discrete Fréchet distance was later improved by Buchin, Driemel, and Struijs [93]
into a (1 + ε)-approximation algorithm with running time Õ(mn), for d ≥ 1. They also
gave an exact algorithm for d ≤ 2 with running time Õ((mn)2kℓ+1).

For the (k, ℓ)-median problem an improvement to the result of Driemel et al. [185]
was given by Buchin, Driemel, and Struijs [93]. They gave a (1 + ε)-approximation
algorithm for d > 1 under the discrete Fréchet distance in time Õ(nmdkl+1). This result
was further improved into a (1 + ε)-approximation algorithm under discrete Fréchet
distance by Nath and Taylor [525], with running time Õ(mn). Their approach extends
to the k-median under the Hausdorff distance.

We note that for the (k, ℓ)-median problem, Driemel et al. [185] (for the continuous
Fréchet distance) adapted the sampling property of Ackermann et al. [2] to guarantee
the complexity of the sampled candidate curves. Nath and Taylor [525] (for the discrete
Fréchet distance) circumvented the limitations of Ackermann et al. [2] by introducing the
concept of coverability, which generalizes the notion of doubling dimension. However,
it is an open question if the coverability holds for the continuous Fréchet distance.

To find a (1+ε)-approximation to the (k, ℓ)-median clustering under the continuous
Fréchet distance for d > 1 is still an open problem. However, for d > 1 there are recent re-
sults byMeintrup,Munteanu, and Rohde [485], and by Buchin, Driemel, and Rohde [97],
that both obtain a (1 + ε)-approximation solution to the (k, ℓ)-median clustering under
the continuous Fréchet distance, but with a caveat. The result of Meintrup, Munteanu,
and Rohde [485] assumes that the number of outlier input curves is bounded, which
is a natural beyond-worst-case assumption. In the worst case, however, their bound
guarantees only a factor (2 + ε). The result of Buchin, Driemel, and Rohde [97] has no
assumptions on the input, but yields a bicriteria approximation solution with complex-

9 The tilde-notation Õ(X) hides polylogarithmic factors in X, i.e. Õ(X) = O
(︀
Xpolylog(X)

)︀
.

204 | 5 Cluster Analysis

ity of each center curve at most 2ℓ − 2, in time linear in n and polynomial in m. The
work of Buchin, Driemel, and Rohde [97] avoided problems that occur in the previous
work [2, 185, 525] using the shortcutting curve simplification technique, related to the
signatures, to guarantee the good approximate medians, but at the cost of increasing
the center curves’ complexity.

We summarize the best-known results for the problems we discussed in this sub-
section in Table 5.4.

Tab. 5.4: The best-known approximation algorithms for the (k, ℓ)-center and the (k, ℓ)-median prob-
lems. For each result the reference, the approximation factor, and the runtime are given.

d Continuous Fréchet distance Discrete Fréchet distance

(k, ℓ)-center 1 [185] 1 + ε Õ(mn) [93] 1 + ε Õ(mn)

2 [95] 3 Õ(mn + m3) [93] 1 + ε Õ(mn)

> 2 [95] 6 Õ(mn + m3) [93] 1 + ε Õ(mn)

(k, ℓ)-median 1 [185] 1 + ε Õ(mn) [525] 1 + ε Õ(mn)

≥ 2 ? ? ? [525] 1 + ε Õ(mn)

Bicriteria ≥ 2 [97] 1 + ε O
(︀
mO(1)n

)︀
Outliers bounded ≥ 2 [485] 2 + ε O

(︀
mO(1)n

)︀

For the (k, ℓ)-means problem (an analogous extension of the known k-means problem)
the techniques of Driemel et al. [185] yield a constant factor approximation algorithm
(under both dF and ddF), but with a runtime polynomial in n ([401]). No other results
on this problem are known. For the k-clustering problem under the DTW distance the
only known theoretical result is the work of Brill et al. [76], who gave an exact algorithm
for 1-median in one-dimensional space, but whose running time is exponential in m.

5.2.3 Middle Curve Clustering

Q: Can one find one representative curve using only vertices from the input curves? A: It is
NP-hard to do so exactly. Given are a set of n polygonal curvesW = {τ1, . . . , τn} ⊆ ∆dm,

a value δ ≥ 0, and a dissimilarity measure d for polygonal curves. We use d = ddF
as in the work of Ahn et al. [12], and for the continuous Fréchet distance d = dF the
definitions hold verbatim. An (unordered)middle curve at distance δ toW is a curve
μ = ⟨m1, . . . ,mℓ⟩ with vertices mi ∈

⋃︀
τj∈W

⋃︀
w∈τj{w}, 1 ≤ i ≤ ℓ, such that it holds

max{ddF
(︀
μ, τj

)︀
: τj ∈ W} ≤ δ.

5.2 Clustering of Polygonal Curves and Time Series | 205

If the vertices of a middle curve μ respect the order given by the curves ofW, then we
call μ an ordered middle curve. Formally, for all 1 ≤ j ≤ n, if the vertex mi ∈ μ is
matched to wo ∈ τj realizing ddF

(︀
μ, τj

)︀
, then for the vertices mi′ ∈ μ, i < i′, it holds

that mi′ ∈
(︁⋃︀

τx∈W\{τj}
⋃︀
w∈τx{w}

)︁⋃︀(︁⋃︀
{wo′ : wo′ ∈ τj , o′ > o}

)︁
. If the vertices of μ

are matched to themselves in their original curves τ ∈ W in the matching realizing
ddF (μ, τ) ≤ δ, we have a restricted middle curve. There is a hierarchy of the three
middle curve notions: an ordered middle curve is simultaneously an unordered middle
curve. A restricted middle curve is simultaneously an ordered middle curve.

We define the decision problems corresponding to finding such a curve. Let a set
of polygonal curvesW = {τ1, . . . , τn} and a δ ≥ 0 be given as input. The Unordered
Middle Curve problem returns true if and only if there exists a middle curve μ at
distance δ toW. The Ordered Middle Curve and Restricted Middle Curve return
true if and only if there exist an ordered and a restricted middle curve, respectively, at
distance δ toW. Otherwise, the problems return false.

Ahn et al. [12] presented dynamic programming algorithms for each variant of
the middle curve problem (under the discrete Fréchet distance). The running times
of these algorithms for n ≥ 2 curves of complexity (at most) m are O

(︀
mn logm

)︀
for

the unordered case, O
(︀
m2n)︀ for the ordered case, and O

(︀
mn logn m

)︀
for the restricted

middle curve case. However, there are no known algorithms to compute the middle
curves under the continuous Fréchet distance. Ahn et al. [12] noted that for all three
variants of the problem there is a simple 2-approximation, by taking any of the input
curves. This holds for both dF and ddF, due to the triangle inequality.

The exponential running times (in n) of the three algorithms by Ahn et al. [12] yield
the question if there is a lower bound for these problems. We present in this subsection
the proof that all three variants of theMiddle Curve problem are NP-complete (under
both dF and ddF). This hardness result was given originally by Buchin, Funk, and
Krivošija [98].

The technique for the proof that all variants of theMiddle Curve are NP-hard is
based on the proof by Buchin et al. [95] and Buchin, Driemel, and Struijs [93] for the
NP-hardness of the smallest enclosing ball and 1-median problems for curves under
Fréchet distance. Their proof is a reduction from the Shortest Common Supersequence
(SCS) problem, which is known to be NP-hard, as shown by Pietrzak [578]. The SCS
problem has as input a set S = {S1, . . . , Sn} of n sequences over a binary alphabet
Σ = {A, B}, and t ∈ N. SCS returns true if and only if there exists a sequence S* of
length at most t, that is, a supersequence¹⁰ of all sequences in S.

OurNP-hardness proof differs from the proof of Buchin et al. [93, 95] in three aspects.
First, the mapping of the characters of the sequence is extended by additional points.
Second, in order to validate all three variants of our problem, the conditions of the
restricted middle curve have to be fulfilled, i.e. each vertex has to be matched to itself

10 A sequence S′ is a supersequence of the sequence S′′ if S′′ is a subsequence of S′.

206 | 5 Cluster Analysis

(in the original curves). Third, our representative curve is limited to the vertices of the
input curves. We show the reductions from SCS to the Restricted Middle Curve, and
from Unordered Middle Curve to SCS. The hierarchy of the middle curves concludes
the circular equivalence proof for all three variants of the problem.

Given are a set S = {S1, . . . , Sn} of sequences over Σ = {A, B}, and t ∈ N defining
a SCS instance that returns true. We construct for each sequence Si ∈ S a polygonal
curve in R, and thereby aMiddle Curve instance. We use the following points in R:

v−3 = −3, v−2 = −2, v−1 = −1, v0 = 0, and
v1 = 1, v2 = 2, v3 = 3.

(5.8)

We use the notation
(︀
vi , . . . , vj

)︀t to represent the concatenation of the sequence of
vertices vi , . . . , vj that is repeated t times. Each character in a sequence Si ∈ S is
mapped to a curve in R as follows:

η(A) =
⟨
v0(v−1v1)tv−2v−3v−2(v1v−1)tv0

⟩
,

η(B) =
⟨
v0(v1v−1)tv2v3v2(v−1v1)tv0

⟩
.

(5.9)

The curve η(Si) representing the sequence Si ∈ S is constructed by concatenating
the curves resulting from each character’s mapping. The set of all resulting curves is
denoted by G = {η(Si) : Si ∈ S}. We call the subcurves ⟨v−2v−3v−2⟩ and ⟨v2v3v2⟩ letter
A and letter B gadgets, respectively, and the subcurves between two letter gadgets (or
at the beginning and at the end of curves) consisting of v−1, v1, and v0 buffer gadgets.

We define the set It = {(a, b) ∈ Z2 : a, b ≥ 0, a+b = t}. A pair (a, b) ∈ It represents
the number of A’s and B’s in a possible supersequence of length t. For some (a, b) ∈ It
we construct the curves ζ (Aa) and ζ (Bb) in R with

ζ (Aa) =
⟨︀
v1(v−3v1)a

⟩︀

ζ (Bb) =
⟨
v−1(v3v−1)b

⟩
.

(5.10)

Weuse these curves to construct the (Unordered andRestricted, respectively)Middle
Curve instance

(︁
G ∪ {ζ (Aa), ζ (Bb)}, 1

)︁
for a pair (a, b) ∈ It. We prove that the SCS

instance (S, t) returns true if and only if there exists a pair (a, b) ∈ It such that(︁
G ∪ {ζ (Aa), ζ (Bb)}, 1

)︁
is anUnordered andRestricted, respectively,Middle Curve

instance that returns true. We consider the discrete Fréchet distance case first, and
then discuss the differences for the continuous case.

Lemma 19. If (S, t) is a SCS instance returning true, then there exists a pair (a, b) ∈
It such that

(︁
G ∪ {ζ (Aa), ζ (Bb)}, 1

)︁
is a Restricted Middle Curve instance for the

discrete Fréchet distance that returns true.

Proof. If (S, t) is a SCS instance returning true, then there exists a supersequence of
the sequences in Swith length at most t. Let S* be this supersequence with letters s*i ,
for i ∈ {1, . . . , t}.

5.2 Clustering of Polygonal Curves and Time Series | 207

We construct a curve μ(S*) = ⟨m1, . . . ,m2t+1⟩ using vertices of the curves in G, such
that μ(S*) represents S*. The vertex mj for j ∈ {1, . . . , 2t + 1} is defined as:

mj =

⎧
⎪⎪⎨
⎪⎪⎩

v0 j is odd,
v−2 j is even and s*j/2 = A,
v2 j is even and s*j/2 = B.

The vertices with even indices in μ(S*) represent the characters in S* while the vertices
with odd indices act as a buffer between them. For every Si ∈ S there is the curve η(Si) ∈
G. We construct a traversal between η(Si) and μ(S*), that realizes ddF

(︀
η(Si), μ(S*)

)︀
≤ 1.

Since Si is a subsequence of S*, we iterate over the letters of S* and Si, starting from
the first letter, and as long as there are letters in S* do:
If the current letter in S* and Si is the same, map v0 ∈ μ(S*) to the next buffer gadget

in η(Si) (and the possible rest of the previously unused buffer gadget). Then, map
v2 ∈ μ(S*) to the letter A gadget in η(Si) (or map v−2 ∈ μ(S*) to the letter B gadget
in η(Si)). Move to the next letter in both S* and Si. Note that the buffer gadget in
η(Si) is not yet mapped.

If the current letters in S* and Si differ, then map v0 ∈ μ(S*) to the possible rest of the
previous buffer gadget in η(Si), and:
– if we have A in S* and B in Si, then map v0 ∈ μ(S*) to v0, v1 ∈ η(Si), and

v−2 ∈ μ(S*) to v−1 ∈ η(Si). Move to the next letter in S*.
– if we have B in S* and A in Si, then map v0 ∈ μ(S*) to v0, v−1 ∈ η(Si), and

v2 ∈ μ(S*) to v1 ∈ η(Si). Move to the next letter in S*.
If there are no more letters in Si, then depending on the last letter in Si we have the

following cases (and in all cases, move to the next letter in S* afterward):
– ifA is the last letter in Si, andwehaveA in S*, thenmap v0 ∈ μ(S*) to v1 ∈ η(Si),

and v−2 ∈ μ(S*) to v−1 ∈ η(Si).
– if A is the last letter in Si, and we have B in S*, then map v0, v−2 ∈ μ(S*) to

v−1 ∈ η(Si), and v0 ∈ μ(S*) to v1 ∈ η(Si).
– if B is the last letter in Si, and we have A in S*, then map v0, v2 ∈ μ(S*) to

v1 ∈ η(Si), and v0 ∈ μ(S*) to v−1 ∈ η(Si).
– if B is the last letter in Si, and we have B in S*, then map v0 ∈ μ(S*) to v−1 ∈

η(Si), and v2 ∈ μ(S*) to v1 ∈ η(Si).

We conclude with mapping v0 ∈ μ(S*) to the unused rest of the last buffer gadget in
η(Si). Notice that the vertices in μ(S*) are mapped to themselves in η(Si) (in the curves
they are taken from), while vertices v0, v2, or v−2 in μ(S*) respect the order from the
original curves, thus the conditions for a restricted middle curve are met. The distance
between the mapped points is at most 1, thus we have ddF

(︀
η(Si), μ(S*)

)︀
≤ 1, for all

Si ∈ S. See Figure 5.8 for an example.
Set a and b to the number of occurrences of A and B in S* respectively, therefore

it is a + b = t. Per definition μ(S*) contains v−2 exactly a times, thus we can match

208 | 5 Cluster Analysis

η(AB)
v3

v2

v1

v0

v−1

v−2

v−3

v3

v2

v1

v0

v−1

v−2

v−3

v3

v2

v1

v0

v−1

v−2

v−3
η(BB)

µ(S∗)

Fig. 5.8: Construction of the restricted middle curve μ(S*) at the distance 1, for the SCS instance
({AB, BB}, 3), represented by the curves η(AB) and η(BB) (blue). The supersequence S* = ABB
is represented by the curve μ(S*) = ⟨0, −2, 0, 2, 0, 2, 0⟩ (red). A traversal realizing the distance is
marked by dashed violet lines.

these v−2 to the vertices v−3 ∈ ζ (Aa), while the remaining vertices v0, v2 ∈ μ(S*) can
be matched to the vertices v1 ∈ ζ (Aa), respecting the order of the vertices on μ(S*)
and ζ (Aa). Analogously there are b vertices v2 ∈ μ(S*), and they can be mapped to
the vertices v3 ∈ ζ (Bb). The vertices v0, v−2 ∈ μ(S*) can be mapped to v−1 ∈ ζ (Bb).
Therefore it holds that ddF

(︀
μ(S*), ζ (Aa)

)︀
≤ 1 and ddF

(︁
μ(S*), ζ (Bb)

)︁
≤ 1. So μ(S*) is a

restricted middle curve of G ∪ {ζ (Aa), ζ (Bb)} at distance 1, as claimed.

One may ask why we need the curves ζ (Aa) and ζ (Bb) in Lemma 19. The next lemma
resolves that question.

5.2 Clustering of Polygonal Curves and Time Series | 209

Lemma 20. If there exists a pair (a, b) ∈ It such that
(︁
G ∪ {ζ (Aa), ζ (Bb)}, 1

)︁
is an

Unordered Middle Curve instance for the discrete Fréchet distance that returns true,
then (S, t) is a SCS instance that returns true.

Proof. Given a pair (a, b) ∈ It, let μ be an unordered middle curve of the set G ∪
{ζ (Aa), ζ (Bb)} at distance 1. We construct a sequence that represents the curve μ and
prove that every Si ∈ S is a subsequence of this sequence.

We observe a matching between μ and ζ (Aa) that realizes ddF
(︀
ζ (Aa), μ

)︀
≤ 1. Since

ζ (Aa) consists only of vertices v1 and v−3, and there cannot exist a point in R with
distance of at most 1 to both of these vertices, every vertex in μ can only be matched to
one vertex in ζ (Aa). Since for every two vertices v−3 in ζ (Aa) there is a v1 vertex between
them in ζ (Aa), a vertex in μ can bematched to at most one v−3 in ζ (Aa). The same holds
for the vertices v1 in ζ (Aa). Thus every vertex in μ is matched to exactly one vertex in
ζ (Aa). Analogously every vertex in μ is matched to exactly one vertex in ζ (Bb).

We can partition the vertices of μ into 2a + 1 subsets Ma
i , i ∈ {1, . . . , 2a + 1},

where all vertices within one subset Ma
i are mapped to the i-th vertex in ζ (Aa) (in the

matching realizing ddF
(︀
ζ (Aa), μ

)︀
). Analogously we can partition the vertices of μ into

2b + 1 subsets Mb
j , j ∈ {1, . . . , 2b + 1} (using the matching realizing ddF

(︁
ζ (Bb), μ

)︁
).

We combine these partitions into one.We call the subsetsMa
i that represent v−3 ∈ ζ (Aa)

the A-subsets, and the subsets Mb
j that represent v3 ∈ ζ (Bb) the B-subsets.

We note that there cannot exist a vertex in μ that is simultaneously in some A-
subset and some B-subset, otherwise it would be at distance at most 1 to both v3 and
v−3. We take over the A- and B-subsets into the new partition (and call them letter
subsets). By construction there are a + b = t letter subsets. The remaining vertices in μ
– either before the first letter subset along μ, or after the last letter subset, or between
two letter subsets form the pairwise disjunct buffer subsets, and thus together with
letter subsets define a partition of the vertices of μ. There can be at most t + 1 buffer
subsets, thus there are at most 2t +1 subsets in the constructed partition of the vertices
of μ. Figure 5.9 shows an example of such a partition.

The sequence S* can be constructed using the constructed partition of μ, by re-
placing the A-subsets with the letter A, and the B-subsets with the letter B. The buffer
subsets are simply omitted. The sequence S* has length t. We need to prove that S* is a
supersequence of all sequences in S.

Let for some Si ∈ S be η(Si) ∈ G its representing curve. As μ is a middle curve
of G ∪ {ζ (Ai), ζ (Bj)} at distance 1, there exists a matching of η(Si) and μ that realizes
ddF

(︀
η(Si), μ

)︀
≤ 1. In this matching, a vertex in one A-subset (of the partition of the

vertices of μ) cannot be matched to two vertices in different letter gadgets (in η(Si)),
since the buffer gadget separating two letter gadgets contains the vertex v1, which
cannot be matched to a vertex in an A-subset with distance at most 1. Analogously, a
vertex in one B-subset cannot be matched to vertices in two different letter gadgets.

210 | 5 Cluster Analysis

Each letter A gadget in η(Si) contains vertex v−3 which has to be matched to a vertex in
an A-subset of the vertices of μ (otherwise by construction it would be at distance at
most 1 to v1). Analogously, each letter B gadget in η(Si) contains vertex v3 which has to
be matched to a vertex in a B-subset. Thus each letter gadget in η(Si) corresponds one-
to-one to a letter subset in μ, and the sequence of letter gadgets in η(Si) corresponds to
the sequence of letter subsets in μ. Therefore Si is a subsequence of S*, as claimed.

Lemma 19 and Lemma 20 show a viable reduction from the SCS problem, which is
known to be NP-hard, to (every variant of) theMiddle Curve problem. Given the SCS
instance (S, t), theMiddle Curve instance

(︁
G ∪ {ζ (Aa), ζ (Bb)}, 1

)︁
for a pair (a, b) ∈ It

can be constructed in a time linear in the input size. As the number of possible pairs
(a, b) ∈ It for a given supersequence of length t is linear in t, the number of different
Middle Curve instances is also linear in t. Thus the reduction can be computed in a
time polynomial in the input size of the SCS instance. Therefore, the following theorem
holds for the discrete Fréchet distance.

Theorem 21. Every variant of theMiddle Curve problem for the discrete and the con-
tinuous Fréchet distance is NP-hard.

Like the proof of Buchin et al. [95], the shown reduction for the discrete Fréchet distance
can be adapted to prove Theorem 21 for the continuous Fréchet distance, too. Lemma 22
and Lemma 23 take the place of Lemma 19 and Lemma 20, respectively. The rest of the
proof is taken verbatim.

Lemma 22. If (S, t) is an instance of the SCS that returns true, then there exists a pair
(a, b) ∈ It such that

(︁
G ∪ {ζ (Aa), ζ (Bb)}, 1

)︁
is a Restricted Middle Curve instance

for the continuous Fréchet distance that returns true.

Proof. Given the SCS instance (S, t) returning true, Lemma 19 implies that there exists
a pair (a, b) ∈ It, such that ddF (τ, μ) ≤ 1 for all τ ∈ G ∪ {ζ (Aa), ζ (Bb)}, and for the
restricted middle curve μ = μ(S*) constructed in its proof. Since the discrete Fréchet
distance is an upper bound for the continuous Fréchet distance, we have dF (τ, μ) ≤
ddF (τ, μ) ≤ 1 for all τ ∈ G∪{ζ (Aa), ζ (Bb)}. Thismeans that μ is also a restrictedmiddle
curve for the continuous Fréchet distance.

Lemma 23. If there exists a pair (a, b) ∈ It such that
(︁
G ∪ {ζ (Aa), ζ (Bb)}, 1

)︁
is an

Unordered Middle Curve instance for the continuous Fréchet distance that returns
true, then (S, t) is a SCS instance that returns true.

Proof. Given a pair (a, b) ∈ It, let μ be an unordered middle curve of the set G ∪
{ζ (Aa), ζ (Bb)} at distance 1. We adapt the proof of Lemma 20 to the continuous case.
Since dF

(︀
ζ (Aa), μ

)︀
≤ 1, there has to be a point qa on the curve μ that is at distance at

most 1 to the vertex v−3 ∈ ζ (Aa), for each such a vertex. Thus qa ∈ [−2, −3]. But since

5.2 Clustering of Polygonal Curves and Time Series | 211

dF
(︁
ζ (Bb), μ

)︁
≤ 1, there has to be a point on ζ (Bb) at distance at most 1 to qa, thus such

a point is in [−2, −1]. Since all points on ζ (Bb) lie in [−1, 3], it implies that that point
has to be exactly at −1, thus qa = v−2. We call that point an A-subset of μ. It is possible
that the curve μ contains several consecutive vertices at v−2, and in that case the whole
subcurve defined by such vertices is an A-subset of μ. Analogously, we conclude that
for each v3 ∈ ζ (Bb) there is a point v2 ∈ μ, and call it a B-subset of μ.

As in Lemma 20, we partition the curve μ into 2a+1 (or 2b+1) subcurves (subsets)
Ma
i , i ∈ {1, . . . , 2a + 1} (or Mb

j , j ∈ {1, . . . , 2b + 1}). If we enumerate them, the
subcurves with even indices are A-subsets (resp. B-subsets) of μ, and the rest of the
curve μ defines the subcurves with odd indices. Again, we combine these two partitions
of μ into one, since no point on μ can be in both A- and B-subsets. The sequence S* is
constructed by replacing each letter subset in μ with the corresponding letter.

The rest of the proof of Lemma 20 follows, since for each Si ∈ S and for thematching
that realizes dF

(︀
η(Si), μ

)︀
≤ 1, it holds that a vertex in one A-subset in μ cannot be

mapped to the vertex v−3 in two different letter B gadgets in η(Si), and each vertex
v−3 ∈ η(Si) has to be mapped to a vertex in an A-subset. The analogous claim can be
made for B-subsets. There is a one-to-one correspondence between the letter gadgets
in η(Si) and the letter subsets in μ, thus Si is a subsequence of S*.

Using Theorem 21,we cannowprove theNP-completeness of each variant of theMiddle
Curve decision problem. Given aMiddle Curve instance (P, δ)with P containing n
curves of complexitym, we guess non-deterministically a middle curve μ of complexity
ℓ. We can decide whether the Fréchet distance between μ and a curve τ ∈ P is at most
δ in time O (mℓ) using the algorithm by Alt and Godau [14] for the continuous, and by
Eiter and Mannila [197] for the discrete Fréchet distance. We note that the algorithm by
Alt and Godau [14] has to be modified a bit, as it uses a random access machine instead
of a Turing machine, as this allows the computation of square roots in constant time.
But comparing the distances is possible by comparing the squares of the square roots,
thus this results in a non-deterministic O (nmℓ)-time algorithm for the Unordered
Middle Curve problem.

In order to decide the Ordered Middle Curve problem, it is necessary to compare
themiddle curve to the input curves, which is possible in time O (nm). For the restricted
RestrictedMiddle Curveproblem thematching corresponding to the Frechet distance
≤ δ has to be known. This matching is a result of the decision algorithm by Alt and
Godau [14]. Given thismatching, it canbe checked in timeO (m + ℓ) if a vertex ismatched
to itself. This yields the following theorem.

Theorem 24. Every variant of theMiddle Curve problem for the discrete or continuous
Fréchet distance is NP-complete.

212 | 5 Cluster Analysis

5.2.4 Further Reading

In this subsection we reference for further reading the other theoretical clustering
results that emerged from CRC876-A2, related to the topic of this section.

Driemel andKrivošija [184] investigated the relation between loss of the information
on curves and saving of computing resources by embedding of Fréchet distance in the
lower-dimensional spaces by random projections. The concept of the Fréchet distance
can be extended to graphs and surfaces. Buchin et al. [99] gave an algorithm to compute
the Fréchet distance between trees.

If the points w1, . . . , wm ∈ Rd, that defined a curve when observed as the vertices
in the order of their indices, are observed in the way that they define a discrete distri-
bution over a finite number of locations in Rd where a point may appear, we have the
clustering of probabilistic points. Here, the quality of the clustering centers is evaluated
in expectation over the random input. In particular, for the problem of probabilistic
1-center clustering (smallest enclosing ball) the previously best algorithm was the PTAS
of Munteanu et al. [218], that had time linear in the number of points, but exponential in
the dimension d of the ambient space. This dependency on d was reduced to linear by
Krivošija and Munteanu [402] using a novel combination of stochastic and subgradient
descent techniques. This further enabled an application to the probabilistic version of
the SVDD problem, with extensions to kernel spaces in even an infinitely large ambient
dimension.

Related to the 1-center clustering problem, Bury, and Schwiegelshohn [102] studied
the set similarity Jaccard center problem, where the input consists of a collection of
sets. They showed that the problem is NP-hard and provided a PTAS.

If the input curves are only singleton points, then we have the Euclidean k-
clustering problems in Rd. One line of research on (1 + ε)-approximation algorithms
to the k-median is based on the strong coresets (together with the framework of Ku-
mar et al. [405], cf. Subsection 5.2.2). Previously the smallest known strong coresets
of Feldman and Langberg [217] still were size dependent on the dimension d: their
size was O

(︀
(dk log k)/ε2

)︀
, which yielded the total running time for the k-median

algorithm of O
(︁
nd + 2poly(k,1/ε)

)︁
. Sohler and Woodruff [636] gave strong coresets

for the Euclidean k-median of size independent of the dimension: O
(︀
(k2 log k)/ε4

)︀
.

These coresets can be computed in time Õ
(︀
(n + d)poly(k/ε) + exp(poly(k/ε))

)︀
. After

the result of Sohler and Woodruff [636] the bound on the size of the strong coresets
for the k-median was further lowered, and the most recent improvement is the new
framework of Cohen-Addad, Saulpic, and Schwiegelshohn [149], which is applicable for
large variety of settings. For the Euclidean k-median problem the best-known coresets
have size O

(︀
(k log k)/ε3

)︀
, which is close to the lower bound of Ω(k/ε2). Both results

were given by Cohen-Addad et al. [148].
For the k-means problem Feldman, Schmidt, and Sohler [219] gave a method to

reduce the strong coresets to a constant size independent on the dimension d of the

5.2 Clustering of Polygonal Curves and Time Series | 213

input space. Cohen-Addad and Schwiegelshohn [150] studied classic k-median and k-
means problems in the beyond-worst-case scenario. They gave local-search-based PTAS
for the both problems for the stable input instances. Becchetti et al. [45] showed that
(1+ε)-approximation of the cost of the k-means clustering can be obtained using a data-
oblivious random projection onto roughly Õ((log k + log log n)/ε6) dimensions, as well
as using a data-dependent random projection onto roughly Õ(log k/ε4) dimensions.

If the input points are not released simultaneously, but one at a time, then we have
a streaming setting. For the k-median problem in the dynamic streaming scenario in the
discrete Euclidean space, Braverman et al. [70] gave O

(︀
dk/ε2

)︀
space/time algorithm.

All previous algorithms required space/time exponential in the dimension d. Cohen-
Addad, Schwiegelshohn, and Sohler [151] investigated the diameter and the k-center
problems in general metric spaces under the sliding window streaming scenario, and
provided first constant-factor approximation algorithms. Fichtenberger et al. [228]
designed an efficient data stream algorithm for the k-means problem that works well in
practice, based on coresets and on the well-known BIRCH algorithm.

214 | 5 Cluster Analysis

ζ(A1)

µ

ζ(B2)

v3

v2

v1

v0

v−1

v−2

v−3

v3

v2

v1

v0

v−1

v−2

v−3

v3

v2

v1

v0

v−1

v−2

v−3

ζ(A1)

µ

ζ(B2)

v3

v2

v1

v0

v−1

v−2

v−3

v3

v2

v1

v0

v−1

v−2

v−3

v3

v2

v1

v0

v−1

v−2

v−3

Individual Partitions of μ Combined Partition of μ

Fig. 5.9: A possible matching between the middle curve μ (black), and the curves ζ(A1) (blue) and
ζ(B2) (red). (a): The individual mappings and partition of μ based on ζ(A1) and ζ(B2) (blue and red
boxes, respectively). (b): The combined partition of μ. Letter parts in tiled violet (A - rising, B - falling
tiling), buffer parts in gray.

5.3 Data Aggregation for Hierarchical Clustering | 215

5.3 Data Aggregation for Hierarchical Clustering

Erich Schubert
Andreas Lang

Abstract: Hierarchical Agglomerative Clustering (HAC) is likely the earliest and most
flexible clusteringmethod, because it can be usedwithmanydistances, similarities, and
various linkage strategies. It is often usedwhen the number of clusters the dataset forms
is unknown and some sort of hierarchy in the data is plausible. Most algorithms for HAC
operate on a full distancematrix, and therefore require quadraticmemory. The standard
algorithm also has cubic runtime to produce a full hierarchy. Both memory and runtime
are especially problematic in the context of embedded or otherwise very resource-
constrained systems. In this section, we present how data aggregation with BETULA, a
numerically stable version of the well-known BIRCH data aggregation algorithm, can
be used to make HAC viable on systems with constrained resources with only small
losses on clustering quality, and hence allow exploratory data analysis of very large
datasets.

5.3.1 Introduction

Hierarchical Agglomerative Clustering (HAC) is a popular clustering method that is
especially useful if a hierarchy of clusters exists in the dataset. Initially, each data
entry is seen as a cluster of one. At each hierarchy level, the two clusters with the least
distance (c.f. Section 5.3.2) between them are combined until the whole dataset is in
one cluster. Another commonly used name, Simple Agglomerative Hierarchical Nesting
(SAHN), reflects this easy-to-understand core idea. The standard algorithm used for
HAC, known as AGNES [364], requires the pairwise distances between all data points
to be stored in a distance matrix, and when merging clusters, two columns and rows in
this matrix are to be combined using the Lance-Williams equations [411, 412]. AGNES
can be utilized with different primary distance functions, but also with different cluster
distances (commonly called linkages), see Section 5.3.2. Hierarchical Agglomerative
Clustering, like many other clustering methods, is a rather resource-hungry process
commonly implemented using O(N2) memory and O(N2) to O(N3) time, depending
on the exact algorithm implemented. One possibility to reduce the resource demands
for big data or when using small embedded systems is data aggregation. The BIRCH
(Balanced Iterative Reducing and Clustering using Hierarchies) [737, 738] algorithm is a
well-known data aggregation technique for clustering. BIRCH is a multi-step clustering
algorithm that aggregates the data into a tree structure known as CF-tree before the
actual clustering. We will first review some fundamentals of hierarchical clustering,

216 | 5 Cluster Analysis

and then discuss an improved version of BIRCH, called BETULA [413, 414], that avoids
some numerical problems in the original BIRCH. We then show how it can be used to
accelerate HAC for big data, and reduce its memory requirements.

5.3.2 Hierarchical Clustering Linkages

Because Hierarchical Agglomerative Clustering is based on the idea of always merging
the two closest clusters, we need to define a suitable distance between clusters, not
just between single points. Usually, we want this distance to be consistent with our
distance between single points. This notion of “cluster distance” is commonly called
the “linkage” criterion. The choice of linkages affect greatly how the resulting clusters
look, but they also influence which algorithms can be used.

The two most widely known linkage strategies are single-link and complete-link,
where the distance of two clusters is defined as the minimum or maximum distance
of any two points. However, many other linkages have been proposed in literature,
many as far back as the 1950s by, e.g., McQuitty [482], Sneath [634], Sokal and Sneath
[638], and Wishart [707]. More recent proposals include Mini-Max [19] and medoid
linkages [307, 499, 613]. Several (but not all) linkages can be expressed in terms of
Lance-Williams recurrences [411, 412], which offer computational advantages. WPGMA
(McQuitty) and WPGMC (median linkage) can only be defined in terms of a recurrence,
and do not have a closed-form based only on the sets of points. The Lance-Williams
formula is as follows:

d(A∪B, C) =αAd(A, C) + αBd(B, C) + βd(A, B) + γ|d(A, C)−d(B, C)| . (5.11)

Different linkage strategies can be defined in terms of the factors αA, αB, β, and γ as
given in Table 5.5. These may depend on the sizes of the clusters A, B, and C, which
we denote as nA, nB, and nC. For brevity, we use the shorthand nAB := nA∪B = nA+nB,
and nABC := nA∪B∪C = nA+nB+nC. An additional—and often overlooked—detail is
the initialization of the distance matrix. While single, complete, and group-average
linkage work with any distance, the centroid, Ward, and median methods need to be
initialized with squared distances and are closely tied to the Euclidean distance and
variance. Ignoring this initialization difference (and interpretation of the output) can
easily lead to incorrect results [521]. The reason becomes apparent when considering
the objective function of the clustering, and the closed-form as in Equations 5.12 to 5.14.
Consider single-linkage first (and, by substitutingmax formin, complete-linkage). Here
the aim is tomerge clusters A and Bwith the smallest distance between their points, i.e.,
with the smallest dsingle(A, C) := mina∈A,c∈C d(a, c). If both clusters consist of a single
element, we obviously have dsingle({a}, {c}) = d(a, c), and we can recursively compute
this linkage using dsingle(A ∪ B, C) = min{dsingle(A, C), dsingle(B, C)}. It is easy to see
that the weights given in Table 5.5 correspond to using the minimum or maximum.

5.3 Data Aggregation for Hierarchical Clustering | 217

Tab. 5.5: Common linkages in terms of Lance-Williams factors

Linkage αA αB β γ Init.

Single 1/2 1/2 0 −1/2 d(a, b)
Complete 1/2 1/2 0 1/2 d(a, b)

Group-average (UPGMA) nA
nAB

nB
nAB

0 0 d(a, b)

McQuitty (WPGMA) 1/2 1/2 0 0 d(a, b)

Centroid (UPGMC) nA
nAB

nB
nAB

− nA · nB
nAB2

0 d(a, b)2

Median (WPGMC) 1/2 1/2 −1/4 0 d(a, b)2

Ward nAC
nABC

nBC
nABC

− nC
nABC

0 d(a, b)2

Group-average linkage, also known as Unweighted Pair Group Method with Arithmetic
mean (UPGMA), is another very intuitive linkage and is often considered one of the best
to use in practice. The idea is to capture the average distance between elements from
different clusters, i.e., davg(A, C) := 1

nAnC
∑︀

a∈A
∑︀

c∈C d(a, c). Clearly, for one-elemental
clusters, we have davg({a}, {c}) = d(a, c). The recursive computation formula is easy
to derive:

davg(A ∪ B, C) = 1
nABnC

(︂∑︁

a∈A

∑︁

c∈C
d(a, c) +

∑︁

b∈B

∑︁

c∈C
d(b, c)

)︂

= 1
nABnC

(︀
nAnCdavg(A, C) + nBnCdavg(B, C)

)︀

= nA
nAB davg(A, C) +

nB
nAB davg(B, C) (5.12)

The term “weighted” (going back to Sokal and Sneath [634, 638]) can be confusing: it
refers to the influence each point has. In “unweighted” group average, each object has
the same weight (and, hence, the weight of each cluster is proportional to the number
of objects contained), whereas, in the “weighted” version i.e McQuitty and Median
linkage, each cluster has the same weight (and, hence, each object in a larger cluster
has a reduced weight). As easily seen in Table 5.5, both “weighted” versions correspond
to their “unweighted” counterparts if we fix the cluster sizes to a constant nA = nB := 1,
i.e., ignoring the cluster sizes when merging.

McQuitty’s Weighted Pair-Group Method with Arithmetic mean (WPGMA [482])can
be recursively defined as dMcQ(A∪B, C) = 1

2 (dMcQ(A, C)+dMcQ(B, C)), which introduces
an unfortunate dependency on the “merge history” of the child clusters A and B. Given
three objects a, b, c, merging a and b first, then with c may yield a different result
than first merging one of the other pairs. A similar argument holds for median linkage
(WPGMC), discussed below.

The Unweighted Pair-Group Method using Centroids (UPGMC), also known as cen-
troid linkage, combines clusters by the distance of the cluster means μA = 1

|A|
∑︀

x∈A x,

218 | 5 Cluster Analysis

a

b

m c

d(a,c)

d({a,b},c)

Fig. 5.10: An example showing why median and centroid linkages are non-monotone: the midpoint m
of the merged cluster {a, b} is closer to c than any of its clusters members a and b were.

i.e., it always merges the smallest dcent(A, C) = ‖μA − μC‖. Computing the distances be-
tween the means explicitly require many additional distance computations and hence
is slower and less resource-efficient than a recurrent approach. But there is a special
relationship between the mean, the variance, and squared Euclidean distance that we
can exploit to compute this special case elegantlywith a recurrence.Wediscuss this rela-
tionship, without loss of generality, only for univariate data, because squared Euclidean
is simply the sum of the squared variates. We then have ‖μA−μC‖2 = μ2A + μ2C − 2μAμC
and obtain

dcent(A∪B, C) = nA
nAB dcent(A, C) +

nB
nAB dcent(B, C) −

nAnB
nAB2 dcent(A, B)

=μ2AB + μ2C − 2μABμC = ‖μAB − μC‖2 . (5.13)

This means that for squared Euclidean distances, we can compute the distance of
the means without computing the means themselves. Hence, we need to initialize
the distance matrix with squared Euclidean distances, and also need to interpret the
resulting linkage distances as such squared values.

The idea of median linkage (or Weighted Pair-Group Method using Centroids,
WPGMC) is to minimize the distance of the medians, ‖mA∪B − mC‖, where the median
is recursively defined as mA∪B = 1

2 (mA + mB), the midpoint of the previous medians.
For squared Euclidean distances, we again have a recurrent formula: the derivation is
exactly as for centroid linkage, but with fixed nA = nB = 1. Median linkage and centroid
linkage have the oddity that the distance d(A ∪ B, C) can be less than the distance of
d(A, C), which can yield non-monotone dendrograms. If we draw a tree representing
the cluster merges, and use the linkage distance as the height of a branch, the resulting
tree does not monotonously grow. Such anomalies in the trees are also referred to
as inversions, and can only exist if a linkage does not have the reducibility property
of Bruynooghe [89]). Intuitively, this happens when the new center is between two
well-separated clusters, and then closer to a third than either of the two, as illustrated
in Figure 5.10. This can cause undesirable results, and these linkages should be used
with care.

The popular Ward linkage optimizes the criterion [16, 364, 707]:

dWard(A, B) =2nA ·nB
nAB

⃦⃦
μA − μB

⃦⃦2 (5.14)

5.3 Data Aggregation for Hierarchical Clustering | 219

CF1 CF2 CF3 . . .

CF1 CF2 CF3 . . . CF1 CF2 CF3 . . . CF1 CF2 . . .

Fig. 5.11: Basic structure of a CF-Tree

The factor 2 in this equation ensures that dWard({a}, {b}) =
⃦⃦
a, b

⃦⃦2, as desired for
one-elemental clusters. This criterion can be described as the “minimum increase in
the sum of squares” [582], which may come as a surprise given that the equation only
uses the means, and does not appear to contain the sum of squares. The reader may
have noticed that k-means clustering also minimizes the sum of squares. The main
difference here is that Ward linkage imposes a hierarchical structure on the result,
whereas k-means imposes a flat partitioning into k partitions. Usually, the result of the
Ward linkage cut at k partitions will be (often substantially) worse than that of k-means
(for the consistency reasons explained in Schubert [613] for the case of medoid linkage),
but k-means results for varying k will usually not nest into a hierarchy of clusters.
Equation 5.14 can be obtained from rewriting the increase in the sum of squares via the
König-Huygens theorem:

dWard(A, B) =
∑︀

x∈A∪B
‖x−μAB‖2 −

∑︀
a∈A

‖a−μA‖2 −
∑︀
b∈B

‖b−μB‖2

= 2nAnB
nAB ‖μA−μB‖2

The Lance-Williams recurrence given in Tab. 5.5 follows (full derivation omitted):

dWard(A∪B, C) = 2nABnC
nABC ‖μAB−μC‖2 = 2nABnC

nABC
⃦⃦ nA
nAB μA+

nB
nAB μB−μC

⃦⃦2

= nAC
nABC dWard(A, C) + nBC

nABC dWard(B, C) − nC
nABC dWard(A, B)

5.3.3 The Cluster Feature Tree (CF-Tree)

We now briefly introduce the CF-Tree of the improved BETULA version [413, 414], which
improves the numerical accuracy of the original BIRCH CF-Tree [737, 738].

The CF-Tree (Cluster Feature Tree) is a basic height-balanced tree storing cluster
features (CF). Each BETULA cluster feature [414] is a triple

CF := (n, μ, SSE) (5.15)

where n in this context is the number of data points or their aggregated weight, μ
denotes the mean vector, and SSE is the sum of squared deviations from the mean. Two

220 | 5 Cluster Analysis

BETULA cluster features can be efficiently combined into one:

nAB =nA + nB (5.16)
μAB =μA + nB

nAB (μB − μA) (5.17)

SSEAB =SSEA + SSEB + nB(μB − μA)(μB − μAB) . (5.18)

A single data point x can be trivially represented by a Cluster Feature (1, x, 0). The rules
also follow from the König-Huygens theorem and can be found in Lang and Schubert
[413]. The numerical inaccuracies of the original BIRCH approach were previously
observed by Schubert and Gertz [614].

The CF-Tree is a height-balanced tree: each leaf is a cluster feature that represents
data point(s). Inner nodes store the aggregated information of their children. The tree
is built by sequentially inserting all data points. When adding a data point or cluster
feature to the tree, it is inserted by traversing the tree and choosing the least distant
node on each level. When a leaf entry is reached the data is added to the leaf entry
if the absorption threshold (c.f. Section 5.3.4) is not violated. If the data cannot be
added to an existing leaf entry, a new leaf entry is generated. The threshold can be set
based on expert input which results in a tree of variable size but with a fixed accuracy
guarantee. But because we can also add cluster features to the CF-Tree the sameway, we
can dynamically rebuild the tree from its leaf entries with an increased threshold once
a selected maximum number of leaf entries is reached, to reduce the tree’s memory
usage. In this case, the tree is built within a fixed size range but with variable accuracy,
which is beneficial for scenarios where we have memory resource constraints.

5.3.4 Distances for Cluster Features

Zhang et al. [737, 738] originally proposed several distance functions and absorption
criteria for BIRCH cluster features. Both essentially measure a distance, but distance
functions are used to choose insertion sub-trees, whereas absorption criteria are used
to decide when to add to an existing node, or when to create a new node. As suggested
by Lang and Schubert [414], we do not distinguish between distances and absorption
criteria in the following, as there is no benefit to doing so.

Euclidean distance:
D0(A, B) =

⃦⃦
μA − μB

⃦⃦
(5.19)

Manhattan distance:
D1(A, B) =

⃦⃦
μA − μB

⃦⃦
1 (5.20)

Inter-cluster distance:
D2(A, B) =

√︁
1

nAnB
∑︀

x∈A
∑︀

y∈B
⃦⃦
x − y

⃦⃦2 (5.21)

5.3 Data Aggregation for Hierarchical Clustering | 221

Tab. 5.6: Linkage strategy for (squared) Euclidean distances and the corresponding BIRCH distance
with their objective function.

Linkage Closed form BIRCH distance

UPGMA 1
nAnB

∑︀
x∈A

∑︀
y∈B ‖x − y‖2 D22

UPGMC ‖μA − μB‖ D02
Ward 2nAnB

nAB
‖μA − μB‖2 2 · D42

Intra-cluster distance (= diameter absorption criterion):

D3(A, B) =
√︁

1
nAB(nAB−1)

∑︀
x,y∈AB

⃦⃦
x − y

⃦⃦2 (5.22)
Variance-increase distance:

D4(A, B) =
√︁∑︀

x∈AB
⃦⃦
x−μAB

⃦⃦2 −∑︀x∈A
⃦⃦
x−μA

⃦⃦2 −∑︀x∈B
⃦⃦
x−μB

⃦⃦2 (5.23)
Radius absorption criterion:

R(A, B) =
√︁

1
nAB
∑︀

x∈AB
⃦⃦
x − μAB

⃦⃦2 (5.24)

These distances can be computed efficiently based on the summary statistics stored in
BETULA cluster features. The corresponding equations and their derivations can be
found in Lang and Schubert [413].

5.3.5 Hierarchical Clustering with Cluster Features

While the CF-Tree itself is a form of hierarchical clustering, its levels, and inner structure
are not in a form that is easily interpretable. Because of this, it is usually only used in
data aggregation as preparation for the actual clustering, for which only the leaf entries
are used. Naively, one could just use the centers of the leaf entries and use a standard
hierarchical clustering algorithm. This approach discards the variance information of
the clustering features.

The interesting observation now is that linkages and CF distances are not very
different. We show that there is a correspondence between certain linkages and CF
distances that can be exploited for clustering by incorporating additional information
stored in the cluster features besides using only the centers. In Table 5.6 we summarize
the identified relationships between linkage strategies known from literature andBIRCH
distances with their respective object function. The most obvious similarity can be seen
when looking at the Centroid-Euclidean-Distance (D0, Equation 5.19) and the Centroid-
linkage (Equation 5.13), which are almost the same. The differences between Ward-
linkage (Equation 5.14) and the Variance-increase-distance (D4, Equation 5.23) are only
in the notation and that D4 squared is Ward, but since BETULA internally uses squared
distances for computational reasons, this difference is trivial. The last linkage that can
be expressed as a BETULA distance is UPGMA, which is effectively the squared Inter-

222 | 5 Cluster Analysis

cluster-distance (D2, Equation 5.21). This similarity becomes obvious when replacing
the general equation with the one for UPGMA with the squared Euclidean distance:

dUPGMA(A, B) = 1
nA ·nB

∑︀
a∈A

∑︀
b∈B d(a, b) (5.25)

= 1
nA ·nB

∑︀
a∈A

∑︀
b∈B

⃦⃦
a − b

⃦⃦2 . (5.26)

While WPGMA cannot have an exact match, we may nevertheless choose D2 and D0 as
their respective “unweighted” counterparts because of their close relationship.With this
knowledge, we can now meaningfully transition from cluster features into hierarchical
clustering with the Lance-Williams formula by calculating the distance matrix based
on the corresponding distances between the cluster features.

We can also do the opposite, and instead of using the classic linkage strategies,
we can perform the following adaptation to hierarchical clustering of cluster features,
while using the distance functions from Section 5.3.4 instead of a separate linkage
strategy. As in standard hierarchical clustering (e.g., AGNES), we find the smallest
non-diagonal value in the distance matrix to find the best next merge. But instead
of combining distances using the Lance-William equation, we can instead combine
the corresponding two cluster features using the update Equations 5.16 to 5.18, and
compute new distances with respect to the new CF.

For both cases (Lance-Williams and CF distances), we can use the approach of
Anderberg [16] and NN-chain [520] for acceleration. While the first does not improve the
worst-case complexity of O(|CF|3), it typically performs closer to quadratic in runtime.
The second may yield different results for non-reducible distances (c.f. [89], Centroid
and Median linkage), but guarantees O(|CF|2) runtime; furthermore, it can be imple-
mented with only linear memory for some linkages. As the CF-Tree allows us to reduce
the data to a constant size less than O(

√
N) or O(3√N) (as applicable) cluster features,

we can then perform hierarchical clustering in time linear in the original data input
size N and within a constant memory limit, making this useful for resource-limited
data processing.

5.3.6 Experiments

We evaluate hierarchical clustering with and without BETULA cluster features. We are
interested in comparing the runtime and quality of aggregated and non-aggregated
algorithms but do not compare different linkage strategies. As baselines, we use the
Anderberg [16] andNN-Chain [520] algorithms (the latter in an implementation that only
uses linear memory). For BETULAwe allow amaximum of 25 000 leaf entries, such that
no data aggregation takes place for the smallest datasets. Both of these HAC algorithms
can be combined with BETULA in different ways. We use “full data” when not using
BETULA aggregation; “CF centers” denotes the naive approach using the Euclidean
distances of the cluster features centers andnoweights (found inmany implementations

5.3 Data Aggregation for Hierarchical Clustering | 223

Tab. 5.7: Average runtime in seconds and number of cluster features after BETULA initialization for
different algorithms and data generators with N =50000 and d =5 dimensions.

Algorithm Input
Uniform Gaussian

Runtime |CF| Runtime |CF|

Anderberg full data 142.96 - 147.05 -
Anderberg CF centers 12.99 17482.4 4.88 9496.7
Anderberg CF linkage 12.85 17482.4 4.71 9496.7
NN-Chain full data 49.64 - 49.44 -
NN-Chain CF aggregation 11.39 17482.4 4.36 9496.7
NN-Chain CF linkage 7.18 17482.4 3.15 9496.7

of BIRCH). For “CF linkage”, the initial distances are computed using the full cluster
feature information, but afterward, the algorithm uses the Lance-Williams equations
for hierarchical aggregation. The “CF aggregation” approach maintains cluster features
throughout the hierarchical clustering process.

All algorithms are implemented in the Java framework ELKI [618]. By using the
same framework for all implementations we try to minimize the effects caused by
implementation differences, as recommended for comparing algorithms [399]. Each
experiment was repeated 10 times with varying input orders on a single core of an AMD
EPYC™ 7302 CPU. Because of our focus on improving the scalability, we may rely on
synthetic data for this experiment.We sample data fromboth a 5-dimensional uniformly
distributed hypercube and from a combination of 500 5-dimensional Gaussian clusters
(as applicable). While the uniform distribution is supposed to adversely affect the
aggregation quality of BETULA, the Gaussian clusters are well-suited for this type of
aggregation.

First, we look at the runtime analysis with 50 000 data points, the biggest dataset
the baseline Anderberg implementation can process.¹¹ As Table 5.7 shows, the NN-
Chain algorithm can be significantly faster than the Anderberg algorithm (at least
for this low-dimensional dataset). While we still largely limit the data aggregation of
BETULA (set to a maximum of 25 000 leaves), the number of CFs obviously is the main
contributor to the runtime, as seen when comparing the results on uniform data with
those on Gaussians. The design of BETULA does not allow for the exact control of
this number, but when the given maximum is reached a smaller tree is built from the
current leaves. By choosing a smaller limit, an even larger speedup over the baseline
algorithms would be possible. Because the data aggregation performed by BETULA
is deterministic, the same input leads to the same tree, and hence the number of CF
in Table5.7 is independent of the clustering step used afterward. Next, we look at the

11 This is because the array size reaches the 231 array length limit of Java.

224 | 5 Cluster Analysis

(a) UPGMC (b)Ward

Fig. 5.12: Runtime versus dataset size on uniformly distributed data.

Tab. 5.8: Root mean squared deviation for different linkages, algorithms, and datasets with
N =50000. All values are given as mean value plus minus standard deviation over 10 runs.

Algorithm Input Generation UPGMC UPGMA Ward

Anderberg full data Uniform 10.34 ± 0.00 10.11 ± 0.00 10.12 ± 0.00
Anderberg CF linkage Uniform 10.53 ± 0.03 10.29 ± 0.02 10.27 ± 0.01
NN-Chain full data Uniform 10.17 ± 0.04 - 10.17 ± 0.04
NN-Chain CF linkage Uniform 10.36 ± 0.03 - 10.35 ± 0.02

Anderberg full data Gaussian 3.56 ± 0.00 3.51 ± 0.00 3.38 ± 0.00
Anderberg CF linkage Gaussian 3.56 ± 0.00 3.53 ± 0.03 3.40 ± 0.01
NN-Chain full data Gaussian 5.25 ± 0.05 - 5.25 ± 0.05
NN-Chain CF linkage Gaussian 5.09 ± 0.05 - 4.95 ± 0.08

scalability of our approach. Figure 5.12 shows the runtime of the algorithms for centroid
(UPGMC) and Ward linkage on various dataset sizes in a log-log plot. We can see the
quadratic increase in the runtime of the baseline NN-Chain and Anderberg algorithms.
For the Anderberg baseline, only times up to 50 000 points are given because of Java
array size restrictions, but scalingwould be at least as bad as for theNN-Chain algorithm.
The runtime for all variants that use BETULA for data aggregation seems to fluctuate
around some constant value. This is caused by changes in the number of tree leaf CFs.
Because the results are averaged over multiple permutations of the dataset, tree sizes
and tree rebuilds are not constant for a particular dataset size. Even for big dataset
sizes, the CF-tree construction phase, which has a runtime in O(N), plays a minor
role compared with the later hierarchical clustering phase and its O(|CF|2) runtime;
reading the input data once is unavoidable in most applications. The quality of a
hierarchical clustering is hard to evaluate properly because it very much depends on
the dataset and application. A thorough evaluation of a clustering on real data will
usually require manual inspection by a domain expert. For our experiments, we chose
to simply compare the variability of the clusters when cut into 500 clusters, assuming
that a result with less spread also indicates a better clustering.

5.3 Data Aggregation for Hierarchical Clustering | 225

(a) Uniform (b) Gaussian

Fig. 5.13: Root mean squared deviation versus dataset size using centroid (UPGMC) linkage for both
dataset generators and k =500.

Table 5.8 shows the root mean squared deviation (RMSD) for all relevant algorithms for
the datasets with 50 000 data points. Here, the runtime improvements with BETULA
were significant but the difference in quality for all algorithms is very small for the
uniform dataset (within the variability caused by NN-Chain using a processing order
different from Anderberg). The results of the evaluation on the Gaussian data warrants
further discussion. On this dataset, which is favorable to the assumptions of BETULA,
the negative effect of the data aggregation when combined with Anderberg is even
smaller. There is no measurable difference for UPGMC and only slightly worse results
for UPGMA and WARD. By contrast, the NN-Chain algorithm suffers from its known
differences to the Anderberg algorithm (making greedy locally optimal choices, as
opposed to choosing the global optimum).

Finally, we evaluate the scalability of our approach. Figure 5.13 shows the root
mean squared deviation of the k = 500 clusters. For N = 25000, where no aggregation
takes place, the results are the same, with and without BETULA. The results for the
datasets with more entries are similar. When the number of cluster features used
stays below 25 000, the quality only is impacted slightly. On the uniform data, the
difference in quality between the algorithms is small. The Gaussian data shows that
the difference between the NN-Chain and Anderberg algorithms is bigger than that of
the data aggregation with BETULA. The only outlier is the combination of BETULA and
NN-Chain, which shows a noticeably worse result.

5.3.7 Conclusion

In this section, we discussed how the scalability of hierarchical clustering can be
improved by integrating data aggregation techniques from BIRCH (or its more stable
variant BETULA).We showhowhierarchical linkages relate to particular BIRCHdistance
criteria, and that some criteria improve the clustering for the same metric. We use this
relation to accelerate the hierarchical clustering with small effects on the quality of the
clustering while keeping most benefits of hierarchical approaches and expanding it to

226 | 5 Cluster Analysis

dataset sizes not practical for the standard approaches. This optimization allows the
usage of hierarchical clustering on small or embedded systems with limited memory
by using data aggregation to decouple the total data size from the input data size of
the much more expensive hierarchical clustering step, leading to better scalability.
While there is some loss in clustering quality, it is small enough for most use cases of
explorative data analysis, i.e., we will still be able to make meaningful choices for the
subsequent steps in our data analysis process.

5.4 Matrix Factorization with Binary Constraints | 227

5.4 Matrix Factorization with Binary Constraints

Sibylle Hess

Abstract:A natural strategy for dealing with big data is to compress it. Compression can
be used as a preprocessing step, as known from dimensionality reduction tasks, or it
can be used to identify underlying patterns in the data that extract the core information.
Both learning tasks can be formulated as a matrix factorization. Here, we discuss those
matrix factorizations that impose binary constraints on at least one of the factor matri-
ces. Such factorizations are particularly relevant in the field of clustering, where the
data is summarized by a set of groups, called clusters. Unfortunately, the optimization
methods that are able to integrate binary constraints mostly work under one condition:
exclusivity. For clustering applications this entails that every observation belongs to
exactly one cluster, which is inept for many applications.
We propose a versatile optimization method for matrix factorizations with binary

constraints without requiring additional constraints, such as exclusivity. Our method
is based on the theory of proximal gradient descent and supports the use of GPUs.
We show that our approach is suitable to discover meaningful clusters even in the
prevalence of a high level of noise by means of synthetic and real-world data.

5.4.1 Introduction

In the field of clustering, and more generally in the field of data mining, one of the
most relevant challenges is the optimization which is subject to binary constraints.
In particular with respect to resource efficiency, binary constraints gain relevance
due to the decreased storage requirements of binary models. Yet they also help to
make data mining results interpretable. Is a picture showing a cat? Should a movie be
recommended to this user? Binary results provide definite answers to the questions
arising when solving data mining tasks.

Manymethods are able to solve binary-constrained problems. However, theymostly
work under one condition: exclusivity. Under this condition, we assume that if a picture
shows a cat, then it cannot show a dog, or if a movie is assigned to one cluster (e.g.,
a genre), then it cannot belong to another cluster (i.e., to another genre). From these
examples, we can easily observe that the exclusivity assumption does not always make
sense. For example, a movie generally belongs to more than one cluster, e.g., a genre.
The effect that exclusivity is unrealistic is most often observable for applications in high-
dimensional data. The clustering of high-dimensional data requires a simultaneous
feature selection to circumvent the curse of dimensionality, stating that all instances
are approximately equally similar to each other in high dimensions. This introduces

228 | 5 Cluster Analysis

the task of biclustering, a simultaneous clustering of rows and columns, such as movies
and users, features and observations. Users within a bicluster give similar ratings for
the movies in the bicluster. Yet, a science-fiction fan (usually) does not exclusively like
science-fiction movies. In this respect, the exclusivity assumption is clearly imposing
stringent, unrealistic constraints.

Similar observations can be drawn in other biclustering applications. For instance,
the biclustering of gene-expression data is employed to identify groups of genes and
patients, that are strongly linked by similar expression levels. Such an analysis can
discover functions of genes related to clinical traits. However, one gene generally does
not have a single function in an organism, but is actually involved inmultiple biological
processes [580]. Turning it the other way around, not every gene necessarily plays a
significant role in the considered conditions. In this case, the exclusivity assumption
would force every gene to belong to one cluster. Hence, outliers, or isolated objects,
could be improperly modeled in the presence of the exclusivity assumption.

A popular way to circumvent the difficulties of binary optimization is to either
apply greedy heuristics to the combinatorial binary problem, or to relax the binary
constraint into a nonnegative and/or orthogonal one (cf. Section 5.4.3). However, the
heuristics can not guarantee theoretical properties and relaxed fuzzy clusters need to
be post-processed into binary results, at which point theoretical guarantees are lost.

In this contribution we discuss two methods and propose a theoretically founded
optimization of biclustering methods as part of the collaborative research center CRC
876. The first method, PAL-Tiling [309, 310, 311], optimizes a Boolean matrix factoriza-
tion, indicating a clustering of binary data that particularly allows for the overlap of
clusters and the modeling of outliers. The second method Broccoli (Binary RObust Co-
Clustering Optimization through alternating LInearized minimization) [312] optimizes
a biclustering of real-valued data to obtain models that can handle cluster overlap
and the presence of outliers. Both methods employ a penalization approach, where a
relaxed objective is optimized while the violation of binary constraints is penalized.

We highlight synthetic and qualitative experiments of the proposedmethods, show-
ing that both methods are able to detect biclusterings of various structures and are
robust to the noise in the data and other parameters. The qualitative inspection reveals
that both methods are able to derive meaningful clusters, which are interpretable by
their modular structure.

5.4.2 Matrix Factorization – the Mother of Clustering

Even researchers who are not directly involved in matrix factorization probably know of
two prominent instances: Singular Value Decomposition (SVD) and k-means clustering.
SVD decomposes a given data matrix D ∈ RN×d, gathering N observations of d features,
into the product of three matrices D = UΣV⊤. The matrices U ∈ RN×N and V ∈ Rd×d

are orthogonal, which means that they are invertible and the inverse is given by the

5.4 Matrix Factorization with Binary Constraints | 229

transposed matrix. The matrix Σ ∈ RN×d is a rectangular diagonal matrix, having the
singular values in decreasing order on the diagonal σ1 = Σ11 ≥ σ2 = Σ22 ≥ . . . ≥ 0. The
singular values indicate the importance of the directions indicated in U and V. To see
this, we write the SVD as a weighted sum of the outer products of columns in U and V
(we denote column s of U or V with U·s or V·s). Let k = min{N, d}, then we have

D = σ1U·1V⊤
·1 + . . . + σkU·kV⊤

·k .

The columns of the orthogonal matrices U and V have all a norm of one. Hence, the
singular values indicate the significance of every outer product U·sV⊤

·s for the approxi-
mation of D. If a singular value is equal to zero, then the corresponding outer product is
not relevant for the representation of D. Likewise, singular values close to zero indicate
expendable outer products. This opens up the possibility of compressing the matrix by
a low-rank product, as with truncated SVD.

Truncated SVD computes for a given rank r < min{N, d} an approximation of the
matrix D by solving the following optimization problem:

min
X,Y

‖D − YX⊤‖2 s.t. Y ∈ RN×r , X ∈ Rd×r . (5.27)

The solution to this optimization problem is given by truncating the SVD to the first
r columns of the factor matrices: YX⊤ = U·RΣRRV⊤

·R¹², where R = {1, . . . , r}. The
truncated decomposition reflects the most important components of the data.

For example, if the data matrix is mean-centered (that is, the mean of all observa-
tions in D is equal to zero), then the columns of V indicate the principal components
of the data and the squared singular values relate to the variances of the data in the
direction of the principal components. Here, the low-dimensional projection of the data
onto the principal components, given by U·RΣRR, is often used as a dimensionality
reduction technique.

The main drawback of SVD is its interpretability. In principle, the matrix X of
Equation 5.27 denotes a pattern in the data. The degree with which an observation Dj·
exhibits pattern X·s is denoted by the value Yjs. Yet the mixture of positive and negative
values in Y and X makes the interpretation of patterns and their occurrence difficult.
This is why constraints on the matrices X and Y have been introduced.

One such constraint is the limitation to nonnegative factor matrices in Nonnegative
Matrix Factorization (NMF). NMFwas originally introduced by Paatero and Tapper [548]
under the name positive matrix factorization. It gained attention since the publication
from Lee and Seung [423], who showed that the nonnegative constraints and the result-
ing parts-based explanation of the data empower the interpretability of the results. The
drawback of NMF is that the constraint to nonnegative values makes the polynomially
solvable objective of truncated SVD NP-hard [682]. In particular, the amount of local
minima increases with the introduction of nonnegative constraints. As a result, the
optimization of NMF plays an important role in the quality of the obtained result.

12 The matrix U·R contains all columns of U whose index is in the set R.

230 | 5 Cluster Analysis

Tab. 5.9: Overview of matrix factorization objectives for popular clustering and biclustering models.
The matrix D is the data matrix and K is a positive semi-definite quadratic matrix, (e.g., the kernel
matrix, or in the case of spectral clustering, the negative graph-Laplacian). We denote with X† the
Moore-Penrose inverse of X.

Clustering objective

k-means min
X ,Y

⃦⃦
D − YX⊤

⃦⃦2 s.t. X ∈ Rd×r , Y ∈ 1N×r

Kernel k-means (&
Spectral Clustering)

min
X ,Y

⃦⃦
U − YX⊤

⃦⃦2
s.t. X ∈ Rd×r , Y ∈ 1N×r , K = UU⊤ , U ∈ RN×k

Checkerboard min
X ,C,Y

⃦⃦
D − YCX⊤

⃦⃦2
s.t. X ∈ 1d×u , Y ∈ 1N×r , C ∈ Rr×u

Plaid min
X ,Y

⃦⃦
D − YY†D − DXX† + YCX⊤

⃦⃦2
s.t. X ∈ 1d×u , Y ∈ 1N×r , C = Y†DX

Block-Diagonal min
X ,C,Y

⃦⃦
D − YCX⊤

⃦⃦2
s.t. X ∈ 1d×r , Y ∈ 1N×r , C = diag(C11 , . . . , Crr)

Binary min
X ,Y

⃦⃦
D − YX⊤

⃦⃦2 s.t. X ∈ {0, 1}d×r , Y ∈ {0, 1}N×r

Boolean min
X ,Y

⃦⃦
D − Y ⊙ X⊤

⃦⃦2 s.t. X ∈ {0, 1}d×r , Y ∈ {0, 1}N×r

The Relationship to Clustering NMF is considered to be fuzzy clustering. Thematrix
X denotes the patterns of feature values of the data and Yjs indicates the degree with
which pattern X·s belongs to observation Dj·. Yet filtering the most important informa-
tion from a fuzzy clustering still requires post-processing of the result. For example, to
extract the observations that belong to the cluster with index s, a threshold has to be
specified that defines how large a fuzzy cluster indicator Yjs has to be to indicate cluster
membership. This post-processing step is alleviated if we introduce binary constraints
to the matrix factorization objective.

Table 5.9 summarizes thematrix factorization objectives that define the correspond-
ingly denoted clustering task. We see that the factor matrix Y is often constrained to be
in the set 1N×r. This set denotes all partition indicator matrices

1N×r = {Y ∈ {0, 1}N×r | |Yj·| = 1, 1 ≤ j ≤ N},

where |Yj·| denotes the L1-norm of the jth row of Y. A clustering indicated by the matrix
Y ∈ 1N×r assigns every observation Dj· to exactly one cluster: the cluster with index s
for which Yjs = 1. We say that the clustering implements the exclusivity constraint in
this case.

We see in Table 5.9 that many popular clustering methods are instances of matrix
factorization with binary constraints. In particular, the popular k-means clustering
computes amatrix factorization into the cluster assignmentmatrix Y, and the centroids,
indicated by the columns of X. Also nonconvex clustering methods such as kernel k-
means and spectral clustering are instances ofmatrix factorization.Here, the objective is

5.4 Matrix Factorization with Binary Constraints | 231

to compute a k-means factorization on the factor U of a symmetric decomposition of the
kernelmatrix (or the graph Laplacian) K = UU⊤. This formulation of spectral clustering
in terms of the objective of k-means closes a long-standing gap, which explains why
the application of k-means on the eigendecomposition of the graph-Laplacian is so
successful [308].

The models of Checkerboard, Block-Diagonal, and Plaid clustering are biclustering
models. Likewise, Binary and Boolean matrix factorization compute biclusterings,
which are even more suitable for binary data D ∈ {0, 1}N×d. A biclustering computes a
simultaneous clustering of features and observations. Especially for high-dimensional
data, where all observations tend to be equally similar, biclustering is applied. The idea
of biclustering is that for every cluster of observations, a group of features is identified,
such that the points cluster in the subspace spanned by the selected features.

A variant of the binary matrix factorization, where clusters are explicitly allowed
to overlap, is the /indexMatrix factoization!BooleanBoolean matrix factorization. Here,
the matrix multiplication is computed in Boolean algebra, yielding 1⊕ 1 = 1. Note that
in binary matrix factorization the area where two biclusters overlap is approximated by
1 + 1 = 2, and the area where three biclusters overlap is approximated by 1 + 1 + 1 = 3,
and so on. Hence, the overlap of binary biclusters introduces an approximation error to
the binary data matrix. In Boolean algebra, this is not the case and we always obtain a
binary matrix as the result of a Boolean product of binary matrices.

5.4.3 Reviewing Optimization for Constrained Matrix Factorizations

By and large, there are threemainways to handle the computational challenging task of
clustering. If the exclusivity assumption is applied, then the objective can be optimized
with the alternatingminimization scheme known fromLloyd’s k-means algorithm. If the
exclusivity assumption is inept, as is often the case in biclustering applications, then
the optimization usually relies on a relaxation of the binary constraints. This approach
has the problem that a crisp cluster assignment has to be inferred in a postprocessing
step. However, optimality guarantees are lost after this step. The third possibility is to
apply (usually greedy) heuristics, which search for the optimizers in the binary space.
However, the problem of heuristics is their lack of theoretical foundation. Usually, there
are no guarantees over the found solution.

In the following, we review these approaches before we propose our optimization
scheme, which is based on a relaxed objective with a penalization of non-binary values.

Alternating Minimization The exclusivity assumption enables an efficient alternat-
ing minimization that follows the scheme of the k-means algorithm [444]. In every
iteration, one of the factor matrices is optimized while the other factor matrices are
fixed. Here, the exclusivity assumption enables the analytical derivation of the opti-
mizer in every iteration [243, 494]. That is, we do not need to apply gradient descent in

232 | 5 Cluster Analysis

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

0.5

1 10(x2 − x)2 (Mexican hat)
Λ(x) (cf. Equation 5.32)

Fig. 5.14: Binary penalization functions: the Mexican hat function and Λ.

every optimization step, but we can directly state the optimum for one of the matrices.
This facilitates an optimization subject to binary constraints. This optimization scheme
has been implemented for checkerboard biclustering [139, 475, 694] and for diagonal
biclustering [293, 640]. Koyutürk and Grama [391] and Li [434] propose alternating min-
imization schemes for binary matrix factorization, restricting one of the factor matrices
to the exclusivity assumption. In this scenario, row-clusters are always nonoverlap-
ping, but column-clusters may overlap, or vice versa. Alternating minimization is an
elegant and theoretically founded optimization method, but its feasibility is restricted
to clusterings with the exclusivity assumption.

Approaches Based on a Relaxation If we do not want to apply the exclusivity as-
sumption, and want to reflect outliers or the overlap of clusters, then we cannot make
use of the alternating minimization method in a computationally efficient way based
on k-means (or at least we don’t know how). In this case, an often employed strategy is
to relax the binary constraints such that numerical optimization approaches can be
applied. Most often, the binary constraints are relaxed to nonnegative constraints with
hard or soft orthogonality constraints of the factor matrix columns [165, 176, 178, 536,
725, 733]. The more strongly orthogonality is enforced, the more the resulting fuzzy clus-
tering resembles a clustering with the exclusivity assumption. In the most extreme case,
the factor matrix columns are orthogonal and a binary cluster assignment is indicated
by every nonzero entry. By contrast, if we allow for more fuzzy cluster indicators, then
we allow for overlap in clusters, but a discretization of the fuzzy clusters is nontrivial.

One of the few attempts to solve the task for binary matrices without making
use of the exclusivity assumption is the penalization approach proposed for binary
biclustering [740, 741, 742]. So far, multiplicative updates have been used to minimize
the approximation error together with a penalization term for non-binary values, called
the Mexican hat function (cf. Figure 5.14).

The optimization of the relaxation-based approaches with multiplicative updates
can be seen as a gradient descent method, where the step-size is chosen small enough
such that the constraints are not violated. This results unfortunately in a slow conver-
gence rate and a particularly strong sensitivity to initialization.

5.4 Matrix Factorization with Binary Constraints | 233

Heuristics Most heuristics follow a greedy approach, where the clusters are added
one by one and the next cluster is selected in a greedy manner. Greedy methods are not
necessarily heuristics. For example, for truncated SVD, the calculation of the optimal
rank-r factorization is reducible to calculating an optimal rank-one factorization, given
the optimal rank-(r − 1) factorization. However, this property does not hold if nonnega-
tivity or binary constraints are introduced. Still, the greedy optimization scheme might
lead to satisfying solutions if the optimal rank-one factorization is much more easily
computed than the factorization of a higher rank.

There are approaches relying on a greedy heuristic for plaid [135, 419, 674], bi-
nary [391], and Boolean matrix factorizations [244, 491]. The drawback of the greedy
approach is the lack of quality guarantees, where comparable numerical optimization
methods at least assure convergence to a local minimum of the objective.

5.4.4 A Novel Proximal Gradient Descent Method to Optimize Matrix Factorizations
Subject to Binary Constraints

The objective of matrix factorization is nonconvex. This entails that there are multi-
ple local optima that are typically not all suited to reflect a good clustering structure.
Moreover, binary constraints on the matrices make this issue even more evident: every
binary matrix induces a local optimum. Indeed, every binary matrix is the only feasible
(and, therefore, the best) optimizer within its ϵ-ball neighborhood for small enough ϵ.
In addition, if other factorization matrices are allowed to have continuous values, as
in k-means or checkerboard biclustering, the optimization of the continuous matrix
can lead to a significant decrease in the approximation error, even if the binary cluster
assignment matrix is far away from the global optimum. This phenomenon makes it
hard to distinguish between local optima and the global optimum by means of the
objective function value (i.e., by observing the approximation error). In other words,
having a good optimizer is generally not enough: we need a very good optimizer that
simultaneously i) handles the existence of many local optima that are almost indis-
tinguishable from the global optimum by observing only the objective function, ii)
integrates binary constraints, and iii) is robust to noise and can handle the presence of
outliers.

Proximal Gradient Descent Bolte, Sabach, and Teboulle [60] extend optimization
results known for convex optimization to the nonconvex case with the Proximal Alter-
nating Linearized Minimization (PALM). This technique focuses on objectives breaking
down into a smooth part F and a possibly nonsmooth component ϕ

min
X,Y

F(X, Y) + ϕx(X) + ϕy(Y) s.t. X ∈ Rd×r , Y ∈ RN×r . (5.28)

We assume for now that F(X, Y) =
⃦⃦
D − YX⊤⃦⃦2 returns the approximation error in

the Frobenius norm. The nonsmooth part ϕ may return ∞, which can be used to

234 | 5 Cluster Analysis

model restrictions of the search space, e.g., the nonnegativity constraint of NMF. PALM
performs alternating proximal mappings from the gradient descent update with respect
to F. That is, the following steps are repeated for t ∈ {1, . . .}:

Xt+1 = proxαxϕx (Xt − αx∇XF(Xt , Yt)); (5.29)

Yt+1 = proxαyϕy (Yt − αy∇YF(Xt+1, Yt)). (5.30)

The proximal mapping of a function ϕ returns a matrix satisfying the following mini-
mization criterion:

proxϕ(X) ∈ argmin
X*

{︂
1
2‖X − X

‖2 + ϕ(X)
}︂
. (5.31)

Loosely speaking, the proximal mapping gives its argument a little push in a direction
that minimizes ϕ. For a detailed discussion, see, e.g., [552]. As we can see in Equa-
tions 5.29 and 5.30, the evaluation of this operator is a base operation. Finding the
minimum of the proximal mapping in every iteration by numerical methods is infeasi-
ble in practice. Thus, the trick is to use only simple functions ϕ for which the proximal
mapping can be calculated in a closed form.

The PALM optimization scheme provides furthermore a step-size strategy that
guarantees convergence to a local minimum [60]. The step-sizes are here given by the
inverse of the Lipschitz constants of F(X, Y).

Penalizing Nonbinary Values Binary constraints on matrices are incorporated into
a relaxed objective by a penalizing term. We employ here the penalizing function

Λ(x) =
{︃
−|1 − 2x| + 1 x ∈ [0, 1]
∞ otherwise.

(5.32)

Function Λ is shown in Figure 5.14; it achieves itsmaximumvalue 1.0 at 0.5, itsminimum
value 0.0 at binary values, and returns infinity outside of the interval [0, 1]. Further,
we define that the function Λ applied to a matrix X returns the matrix Λ(X) = (Λ(Xis))
of the same dimensionality.

The function Λ is non-smooth, but feasible for optimization by proximal gradient
descent. Hess, Morik, and Piatkowski [310] have shown that the proximal operator for
Λ satisfies for x ∈ R

proxλΛ(x) =
{︃
max{0, x − 2λ} x ≤ 0.5,
min{1, x + 2λ} x > 0.5.

(5.33)

The parameter λ > 0 is the regularization weight. The larger λ is, the more the value x
is pushed into the direction of binary values.

5.4 Matrix Factorization with Binary Constraints | 235

5.4.5 PAL-TILING – Optimizing Boolean Matrix Factorizations

A possible reason for the prevailing usage of heuristics in Boolean matrix factorization
is the reasonable belief that relaxations to nonnegative or other continuous values are
not apt to approximate a product in Boolean arithmetic. Contrary to this belief, we argue
for the opposite: a nonnegative relaxation is particularly suited to derive overlapping
clusterings and is therefore also suited to approximate Boolean matrix factorizations,
whose main characteristic is to allow for overlap between the clusters. Now we need to
be a bit careful with the word approximate. The Boolean Matrix Factorization (BMF)
problem is NP-hard and NP-hard to approximate within a constant factor [491]. Hence,
we will not be able to produce an efficient algorithm that comes arbitrarily close to the
optimal Boolean solution (unless NP=P). Yet, we are able to find good local Boolean
optima in a relaxed space.

First of all, we can compute the Boolean matrix product in elementary algebra with
the use of the thresholding function

θρ(x) =
{︃
1 if x ≤ ρ
0 otherwise

and θ(x) = θ0.5(x).

We define the function θ(X) = (θ(Xis))is to map an input matrix to a binary matrix of the
same dimensionality. The property 1⊕ 1 = 1 is maintained because the thresholding
function θ maps every value larger than one to one. Hence, the Boolean matrix product
Y ⊕ X⊤ = θ(YX⊤) is computable in elementary algebra with a thresholding operation.

We demonstrate the relationship between relaxed matrix factorizations and the
Boolean product in Figure 5.15. The binary datamatrix D has two overlapping biclusters,
and is approximated by NMF as shown in the top two equations. The matrices DA and
DB in Figure 5.15 show the resulting binary and Boolean approximations, where θmaps
every value larger or equal than one half to one. We find that the reconstruction error
is largest when the thresholded NMF factors are multiplied in elementary algebra,
corresponding to a binary matrix factorization. In contrast, the fuzzy cluster indication
by NMF is suited to indicate a definite clustering with respect to the Boolean algebra.

In conclusion, we propose a two-step procedure. In the first step, the relaxed, but
nonbinary penalized objective is optimized by PALM. In the second step, the approx-
imately binary factor matrices are rounded to binary values, such that the Boolean
product is minimized.

Algorithm Specification 1 (PAL-Tiling). Given a data matrix D ∈ {0, 1}N×d, and a
Boolean optimization problem, such as

min
X,Y

‖D − Y ⊙ X⊤‖2 s.t. X ∈ {0, 1}d×r , Y ∈ {0, 1}N×r .

236 | 5 Cluster Analysis

D =
1 1 1 0
1 1 1 1
0 1 1 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠ ≈

1 .9 .9 .1
.7 1.2 1.2 .7
.1 .9 .9 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠

≈
1 0
.6 .6
0 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠ ·

1 .9 .9 .1
.1 .9 .9 1

⎛
⎝

⎞
⎠

DA =
1 1 1 0
1 2 2 1
0 1 1 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠ = θ

1 0
.6 .6
0 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠ · θ

1 .9 .9 .1
.1 .9 .9 1

⎛
⎝

⎞
⎠

DB =
1 1 1 0
1 1 1 1
0 1 1 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠ = θ

⎛
⎜⎜⎝θ

1 0
.6 .6
0 1

⎛
⎜⎜⎝

⎞
⎟⎟⎠ · θ

1 .9 .9 .1
.1 .9 .9 1

⎛
⎝

⎞
⎠

⎞
⎟⎟⎠

Fig. 5.15: Approximation of a binary matrix D with two overlapping biclusters (top) applying NMF
(second from above) and the factorizations resulting from thresholding the factor matrices to binary
matrices in elementary algebra (second from below) and Boolean algebra (below). Biclusters are
highlighted.

1. Optimize the following objective with proximal gradient descent:

min
X,Y

‖D − YX⊤‖2 + λx⟨Λ(X), 1⟩ + λy⟨Λ(Y), 1⟩

s.t. X ∈ Rd×r , Y ∈ RN×r . (5.34)

That is, perform the PALM update steps from Equations 5.29 and 5.30 for F(X, Y) =
‖D − YX⊤‖2 and the regularizing functions

ϕx(X) = λx⟨Λ(X), 1⟩, ϕy(Y) = λy⟨Λ(Y), 1⟩.

2. Return the binary matrices that result from a suitable thresholding operation of the
relaxed result. That is, perform a grid search on the set T = {0, 0.05, 0.1, . . . , 1}:

(ρ*x , ρ*y) = argmin
ρx ,ρy

{‖D − θρy (Yt)⊙ θρx (X⊤
t)‖2 | ρx , ρy ∈ T}

(X, Y) = (θρ*x (Xt), θρ*y (Yt))

The matrix or vector 1 indicates a constant one matrix, whose dimensionality can be
inferred from context. The Frobenius inner product ⟨Λ(X), 1⟩ =

∑︀
i,s Λ(Xis) sums the

penalization terms over all matrix entries. As a default value, we employ a natural
choice for the regularization weight λx = λy = 1.

The procedure of PAL-Tiling describes the general framework for the optimization
of the Boolean matrix factorization error. Recent contributions in the field of Boolean

5.4 Matrix Factorization with Binary Constraints | 237

matrix factorization also incorporate a mechanism to automatically determine the rank
of the factorization. To this end, objective functions other than the approximation error
in Frobenius norm are commonly optimized in BMF. So far, we have proposed two
approaches to facilitate the optimization with PAL-Tiling. The rank determination
can be integrated into an outer loop of PAL-Tiling, where the models of various ranks
are compared. One approach uses the well-established Minimum Description Length
(MDL) principle to determine the rank as the one yielding the minimum description
length of the model. Here, the objective in Boolean algebra is the employed description
length [310]. The other approach is to optimize the Boolean approximation error, and to
conduct statistical tests on the probability that at least one of the clusters is generated
by noise [311].

5.4.6 BROCCOLI – Optimizing Tri-Factorization Biclusterings

While the final thresholding step for the optimization of Boolean factorizations is
needed to translate the fuzzy clustering structure to the Boolean algebra, the bicluster-
ing models of checkerboard and block-diagonal clustering use the elementary algebra
matrix product. As a result, the relaxed formulation of the objective with the nonbinary
penalization terms in Equation 5.34 will have the same optimizers as the corresponding
binary matrix factorization objective (cf. Table 5.9), if the penalizing weights λx and λy
are large enough.

After every gradient descent step of one of the cluster indicator matrices, the prox-
operator is applied and pushes the matrix towards binary values. Hence, if the nonbi-
nary penalization weights λx and λy are large enough, then we will get binary matrices
after a couple of iterations. However, in this case, we also risk converging to a local
optimum close to the initialization. This would make our method even more sensitive
to the initialization than it already is due to the nonconvexity of the objective. In turn,
if we choose a value for λ that is too small, then the optimum of the penalized objective
might not return binary matrices. We circumvent these issues by gradually increasing
the regularization weights throughout the optimization process. In addition, we employ
individual regularization weights. To this end, we introduce the regularization weights
as optimization parameters that are as large as possible in the optimal solution. We
achieve this by subtracting the sum of the regularization parameters ⟨λx , 1⟩ + ⟨λy , 1⟩
from the objective function value (cf. Equation 5.35).

Algorithm Specification 2 (Broccoli). Given a datamatrix D ∈ RN×d and a biclustering
optimization problem, such as

min
X,Y ,C

‖D − YCX⊤‖2 + ϕc(C) s.t. Y ∈ {0, 1}N×r , X ∈ {0, 1}d×r , C ∈ Rr×r .

1. Optimize the following objective with proximal gradient descent:

238 | 5 Cluster Analysis

min
X,Y ,C,
λx ,λy

‖D − YCX⊤‖2 + ⟨λx , Λ(X) − 1⟩ + ⟨λy , Λ(Y) − 1⟩ + ϕc(C)

s.t. (λx)is , (λy)js ≤ λ+ for all 1 ≤ i ≤ d, 1 ≤ j ≤ N, 1 ≤ s ≤ r.

Y ∈ RN×r , X ∈ Rd×r , C ∈ Rr×r (5.35)

That is, perform the PALM update steps in an alternating fashion for X,C, λx, Y, C, and
at last for λy. Where F(X, Y , C) = ‖D − YCX⊤‖2, and the regularizing functions

ϕx(X) = ⟨λx , Λ(X)⟩ ϕy(Y) = ⟨λy , Λ(Y)⟩

The parameter λ+ in Equation 5.35 is employed as a placeholder for the maximally
required regularization weights λx and λy such that the optimizing factor matrices Y
and X of Equation 5.35 are binary. Bounding the regularization weights above by the
parameter λ+ ensures that the objective in Equation 5.35 is well-defined. However, we
do not need to determine the parameter λ+ in practice.

The parameter matrices λx and λy are the regularization weights of the non-binary
penalization terms Λ(X) and Λ(Y). The Frobenius inner product

⟨λ, Λ(X)⟩ =
∑︁

i,s
λisΛ(Xis)

sums the elementwise penalization terms weighted by the parameters λ.
The implementation details of the Broccoli optimization scheme can be found

in Hess, Pio, Hochstenbach, and Ceci [312]. In contrast to the Boolean factorization
framework PAL-Tiling, the initialization plays an important role for Broccoli. Instead
of the vanilla PALM optimization method, Broccoli employs stochastic proximal
gradient descent [187].

5.4.7 Experiments

We highlight here a few results from the applications of the PAL-Tiling instance
Primp [310] and the Broccoli implementation using a nonnegative matrix factoriza-
tion for initialization [312]. More experiments than the ones displayed here can be
found in the corresponding literature [309, 310, 311, 312].

We compare the PAL-Tiling instance Primp (henceforth indicated as PAL-Tiling)
with the available implementations of the BMF methods Panda+¹³,Mdl4bmf¹⁴, and
Nassau.¹⁴

We compare Broccoli with six competitors: two methods based on a nonnegative
relaxation (henceforth denoted by N [447] and NN [165]), two methods based on an

13 http://hpc.isti.cnr.it/~claudio/web/archives/20131113/index.html.
14 http://people.mpi-inf.mpg.de/~skaraev/.

http://hpc.isti.cnr.it/~claudio/web/archives/20131113/index.html
http://people.mpi-inf.mpg.de/~skaraev/

5.4 Matrix Factorization with Binary Constraints | 239

orthogonal relaxation (henceforth denoted byO [725] andOO [165]) and the biclustering
methods Fabia [318] and Floc [716]. Since N, NN, O and OO return fuzzy membership
values for each observation, we binarize the result for comparison purposes. For each
sample (observation or feature) we set the top-k fuzzy cluster indicator values to one,
where k is the number of ground truth clusters the sample belongs to. Note that in
this way we provide our competitors with additional background knowledge, that is
not available in real-world scenarios. The goal is to estimate how good the clustering,
derived froma relaxed result, could potentially be, if supported by additional knowledge
(e.g., from domain experts).

Quality Metrics We quantify how well a computed cluster indicator matrix matches
the ground truth by an adaptation of themicro-averaged F1-measure, known frommulti-
class classification tasks. We compute a one-to-one matching τ between computed and
ground truth clustering and compute the average F1-measure of the matched clusters.
That is,

Fy =
1
r

r∑︁

s=1
F1(Y·s , Y*·τy(s)), Fx =

1
r

r∑︁

t=1
F1(X·t , X*·τx(t)).

We return the average F1-score of the feature and observation clusters:

F = 1
2 (Fy + Fx).

The F1-measure has values between zero and one. The closer it approaches one, the
more the computed clustering matches the ground truth. The plots that display the
F-measure indicate its average value with error bars having the length of twice the
standard deviation.

5.4.8 Synthetic Dataset Experiments

PAL-Tiling We generate data matrices according to the scheme established by Karaev,
Miettinen, and Vreeken [356], Lucchese, Orlando, and Perego [451], and Miettinen
and Vreeken [492]. We generate (1600 × 500) and (1000 × 800) dimensional datasets
as outlined by Hess, Morik, and Piatkowski [310]. Given dimensions d, N, and noise
parameter p, a factorizationof rank r* = 25 is generatedbyuniformly randomlydrawing
each tile (X*·s , Y*·s) from all tiles of size |X*·s| ∈ [0.01d, 0.1d] and |Y*·s| ∈ [0.01N , 0.1N].
Finally, each bit entry (Y* ⊙ X*⊤)ji is flipped with probability p.

We compare the effects of the matrix dimensions and aggregate results over 10
generated matrices with dimensions 1000 × 800 and 1600 × 500. Figure 5.16 plots the
F1-measure and the rank of the returned BMF against the percentage of noise. Nassau
particularly strongly underestimates the rank for the 1600 × 500 dimensional matrices.
Here, Nassau returns close or equal to zero tiles, even if the noise is low. This effect can

240 | 5 Cluster Analysis

0 5 10 15 20 25
0

0.5

1

F 1
-s
co
re

1000 × 800

0 5 10 15 20 25
0

0.5

1
1600 × 500

0 5 10 15 20 25
0

10

20

30

40

Noise Parameter p [%]

Ra
nk
r

0 5 10 15 20 25
0

10

20

30

40

Noise Parameter p [%]

PAL-Tiling Mdl4bmf Panda+ Nassau

Fig. 5.16: Variation of Bernoulli noise parameter p for 1000 × 800 and 1600 × 500 dimensional data.
Comparison of F1-measures (the higher the better) and the estimated rank of the calculated Boolean
matrix factorization (the closer to 25 the better) for varying levels of noise, i.e., p is indicated on the
x-axis (best viewed in color).

actually be alleviated if we transpose the matrix, which makes Nassau perform similar
to Mdl4BMF, yet with a stronger tendency to underestimate the rank. We observe
that all algorithms tend to underestimate the rank the more the noise increases. This
culminates in the replication of almost none of the tiles at the highest noise level for
the algorithms Panda+ and Nassau. Panda+ yields correct rank estimations up to a
noise of 15%, but its fluctuating F-measure indicates that planted tiles are not correctly
recovered after all.Mdl4bmf shows a robust behavior. Its suitable rank estimations
up to a noise of 15% are mirrored in a high F-measure. PAL-Tiling is characterized by
overall high values in the F1-measure. The experiments demonstrate a high robustness
of the proposed BMF optimization scheme PAL-Tiling to noise on synthetic data.

Broccoli For the biclusterings generated by a tri-factorization, we create a set of
synthetic clusterings with overlap and outliers by sampling every cluster indicator
matrix by a Bernoulli distribution. Entry X*it and Y*js is equal to one with probability q =
0.2. Thereby, we ensure that a cluster contains at least 1% of the data points/features,
that are exclusively assigned to this particular cluster. The core matrix is sampled as a
sparse matrix containing uniformly distributed values Cst ∈ [0, 5]. The probability that
a non-diagonal element is not equal to zero is equal to 1/r. The data matrix is generated

5.4 Matrix Factorization with Binary Constraints | 241

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

Noise Parameter σ

F 1
-s
co
re

300 × 200

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

Noise Parameter σ

1000 × 800

Broccoli N NN O OO Fabia Floc

Fig. 5.17: Variation of the Gaussian noise parameter σ, comparison of F -measures (the higher the
better) for 300 × 200 data matrices with three row- and column-clusters and 1000 × 800 data matrices
with five row- and column-clusters.

by adding random Gaussian noise to the ground truth factorization:

Dji = [Y*j·CX*i·
⊤ + ϵji]≥0,

where ϵji ∼ N(0, σ) and the operator [·]≥0 projects negative values to zero. We gen-
erate for every noise variance σ ∈ {0, 0.2, 0.4, . . . , 2} and dimensionality (N, d) ∈
{(300, 200), (1000, 800)} five datasets. For the smaller 300 × 200 dataset, we choose
a rank of r = 3 and for the larger 1000 × 800 dataset, we choose a rank of r = 5.

In Figure 5.17, we plot the F1-measure against the Gaussian noise parameter σ. The
maximum value of σ is 2.0. For σ = 2, roughly 1/3 of the noise samples are larger than
or equal to 1.0, and about 2/3 of all noise samples have an absolute value larger than or
equal to 1.0 in expectation. We see that throughout the increase of the noise parameter,
Broccoli attains a high F-measure, close to 1.0, which slightly drops when the noise
variance exceeds 1.0. The methods N, NN, O, and OO, which are based on orthogonal
and nonnegative relaxations seem largely unaffected by the noise parameter, and attain
on average an F1-score between 0.7 and 0.8. Fabia and Floc attain the lowest F1-score
of all competitors, where the F-score of Fabia has a tendency to increase with the noise
parameter up to 0.7. This is possibly due to the fact that Fabia and Floc do not explicitly
handle the possible presence of noise in the data.

242 | 5 Cluster Analysis

5.4.9 Qualitative Experiments

PAL-Tiling In this experiment, we explore how the algorithms relate to their actual
cognition of structure and noise, and illustrate what their biclusters look like. Image
data allows us to visually inspect the resulting factorizations and to intuitively assess
the captured relevant sub-structures.

We employ a standard representation of images: the RGB888 pixel format. Each
of the w × h pixels is represented by 24 bits, using 8 bits per color (red, green and
blue). In order to convert an image into a set of observations, we divide it into blocks
(patches) of 4 × 4 pixels, resulting in a total of w

4 ×
h
4 observations per image. We

adopt this representation from computer vision, where image patches are a standard
preprocessing step for raw pixel data [340]. Within each block, let (r, g, b)l,k denote the
pixel at row l and column k, where r, g, b ∈ {0, 1}8 are the 8-bit binary representation
of its red, green, and blue color values. We model the concatenation of all 16 pixels
within one block as one observation
[︀
(r, g, b)1,1, (r, g, b)1,2, (r, g, b)1,3, (r, g, b)1,4, (r, g, b)2,1, . . . , (r, g, b)4,4

]︀
(5.36)

which has a length of 24 · 16 = 384 bits.
This way, we process a selection of “aliens” from the classic game Space Invaders.

Reconstruction results and top-4 patterns of the Space Invaders image are shown in
Figure 5.18. All methods reconstruct at least the shape of the aliens. In terms of color,
however, the results diverge. Panda+ and Nassau interpret all colors as negative noise
effects on the color white; white has a binary representation of 24 ones. PAL-Tiling
andMdl4bmf reconstruct all three colors of the original image, yet the reconstruction
of Mdl4bmf exhibits injections of white blocks. Hence, only PAL-Tiling is capable of
reconstructing the color information correctly.

Having a look at derived biclusters, the greedy processes of Panda+ and Nassau
become particularly apparent: Panda+ and Nassau overload the first factor with all
the shape information. The remaining factors reduce the quantitative reconstruction
error, but have no deeper interpretation.Mdl4bmf tries to model one type of alien by
each bicluster. Although this would result in a reasonable description of the image,
the actual extraction of tiles suffers from the greedy implementation. For example,
we can see that the first tile captures information about the yellow aliens as well as
strayed parts of other aliens. This unfortunate allocation of tiles results in the injection
of white blocks in the reconstruction image. PAL-Tiling separates by its tiles the three
basic color channels that are actually used to mix the colors that appear in the original
image. The results of this qualitative experiment illustrate the benefits of a non-greedy
minimization procedure.

5.4 Matrix Factorization with Binary Constraints | 243

≈ = ⊕ ⊕ ⊕

(N
as
sa
u)

≈ = ⊕ ⊕ ⊕

(M
dl
4b
m
f)

≈ = ⊕ ⊕ ⊕

(P
an

da
+)

≈ = ⊕ ⊕
(P
AL

-T
il
in
g)

Fig. 5.18: Reconstructions of the Space Invaders image and visualizations of the top-4 outer prod-
ucts. Best viewed in color.

244 | 5 Cluster Analysis

Wordclouds representing the feature clusters for OO

Fig. 5.19: Illustration of derived word-clusters by the method OO on the 20 Newsgroups dataset. The
size of a word reflects its weight in the corresponding cluster (X·s).

Broccoli We perform a qualitative inspection of the results by means of the 20 News-
groups dataset.¹⁵ The 20 Newsgroups dataset is a collection of posts belonging to one
of twenty topics that are hierarchically organized. We process the textual data as a
data matrix, reflecting for N = 11314 posts the term-frequency of d = 6643 lemma-
tized words. We apply the methods Broccoli, NN, and OO to derive r = 20 row- and
column-clusters. Fabia and Floc were not able to successfully process such a large
dataset.

The obtained column-clusters (the feature clusters that in this case are clusters of
words) are shown in Figures 5.19–5.20. We display here only the fuzzy cluster indicators
of the orthogonal relaxationmethodOO; the results fromNNwere very similar [312]. The
size of word i in the wordcloud of a fuzzy cluster s corresponds to the assigned weight
Xis ≥ 0. In turn, the binaryword-indicators of Broccoli are visualized such that the size
of a word in the cloud is proportional to the inverse of the number of clusters the word
is assigned to. That is, those words that are unique to the respective cluster are larger
than those words which are assigned to multiple clusters. Looking at the visualizations

15 http://qwone.com/~jason/20Newsgroups/.

http://qwone.com/~jason/20Newsgroups/

5.4 Matrix Factorization with Binary Constraints | 245

Wordclouds representing the feature clusters for Broccoli

Fig. 5.20: Illustration of derived word-clusters by Broccoli on the 20 Newsgroups dataset. The size of
a word reflects its weight in the corresponding cluster (X·s).

of clusters, we see that the wordmax pops up prominently in many clusters. The word
max obtains comparably very high term frequencies. The average term frequency of
a word is equal to 1.59, and 99% of all words have a term frequency smaller than or
equal to 8. The wordmax occurs in 149 posts and obtains term frequencies in [1, 800].
Hence, the wordmax attains exceptionally high term frequencies in a few posts and
exhibits therewith a special role. The unusual high term frequency of the wordmax is
handled differently among the clustering methods. While OO gives a high weight to
this word in almost all clusters, Broccoli ignores the high frequency of this word. This
demonstrates the more modular approach of biclustering with binary cluster-indicator
matrices and a robustness to outliers.

We can detect meaningful clusters that address a specific topic for all clustering
methods. Comparing the addressed topics among the clustering methods, we see that
Broccoli provides a distinctive view on the dataset, identifying, for example, a religion
cluster that is not featured by themethodOO. Hence, althoughBroccoli’s optimization
makes use of a relaxed objective, its results still offer another view on the data with
respect to that provided by the relaxed counterparts.

246 | 5 Cluster Analysis

5.4.10 Applications, Impact, and Future Work

In this work, we have reviewed the optimization methods for clusterings that have a
matrix factorization objective. Our comparison of popular clustering objectives has
shown that the majority of methods is designed to find partitioning clusters, adhering
to the exclusivity constraint: every point is assigned to exactly one cluster. Suitable
adaptations of Lloyd’s algorithm guarantee the convergence to a local optimum of the
objective function subject to the partitioning and particularly binary constraints. This
offers an undeniable advantage over other practical alternatives that relax the binary
constraint or heuristics. The major drawback of relaxing approaches is the discretiza-
tion step, in which theoretical guarantees, which might be provided for solutions of
the relaxed objective, are usually lost. However, the exclusivity constraint, enabling
the alternating minimization according to Lloyd, is not feasible in some applications.
Overlapping and nonexhaustive clusterings are more likely to represent the truemodel
when it comes among other things to the clustering of text or genomic data. In this
case, the theoretical foundation regarding the efficient optimization of corresponding
objectives is leaky.

We have proposed a general optimization framework for overlapping clusterings
by means of proximal alternating minimization. In particular, we have proposed two
approaches to optimize biclustering objectives, where the exclusivity assumption is
most often inept. The method PAL-Tiling is designed for the optimization of a Boolean
matrix factorization, which is used to derive overlapping and non-exhaustive clusters
of binary data. The method Broccoli is designed for a biclustering of real-valued data,
based on a tri-factorization.

Our experimental analysis highlights the power of the proposed optimization
approach on two instances: the MDL-based BMF method Primp (denoted here as
PAL-Tiling) [310] and the NMF initialization of the Broccoli framework [312]. Our
experiments on synthetic data indicate in particular the robustness of our proposed op-
timization approach to noise, amount of overlap, and number of outliers (cf. Figures 5.16
and 5.17). Our qualitative inspection of found clusters indicates the meaningfulness of
the found clusters (cf. Figures 5.20 and 5.18).

This makes PAL-Tiling and Broccoli a theoretically founded, practically well-
performing and flexible approach that has the potential to spark further research on the
optimization of non-exclusive clusterings in particular, and on the learning of discrete
structures in general.

Future Work The proposed optimization approaches are flexible and have the poten-
tial to found a standard method for the optimization of clustering structures based on
matrix factorization that does not require the exclusivity assumption. Note, that many
popular clustering methods are based on (or can be viewed as) a matrix factorization:
k-means, spectral clustering, and variants of deep clustering. In addition, techniques to

5.4 Matrix Factorization with Binary Constraints | 247

cope with specific data characteristics in matrix factorization can easily be transferred
to the optimization scheme adopted in PAL-Tiling and Broccoli.

In addition, nonconvex optimization is an ongoing field of research. There are
stochastic [163, 187], accelerated [427], and inertial [581] variants of the PALM optimiza-
tion scheme. That is, the power of the proposed optimization framework grows with the
research on the underlying optimization schemes. An analysis of proposed nonconvex
optimization schemes for the optimization subject to binary constraints and clusterings
in particular, would be a topic of further research.

6 Hardware-Aware Execution
Efficient learning has been the focus of research for decades. Many studies explore
various software/hardware techniques to improve the efficiency of learning process
while preserving the accuracy of the derived learning models. Along with the various
demands of applications nowadays, from simple like image recognition to advanced
like fundamental steering, how to deploy learned models and execute them efficiently
has been of key interests in the industry. Considering various resource constraints such
as throughput, timeliness, and energy consumption imposed by the targeted scenarios
and the adopted hardware platforms, most machine learning techniques, which often
rely on high-performance computers and clusters, must be carefully redesigned to fulfill
the assigned missions at edge devices while addressing the efficiency of resource usage.

To this end, we summarize in this chapter relevant research conducted in CRC
876, which is oriented to the awareness of hardware execution, and supplement two
external contributions to cover a broader spectrum of this research direction. Unlike
most existing techniques for executing neural networks on Field-Programmable Gate
Arrays (FPGAs), we focus on the of learning, which is actually more computationally
demanding (see Section 6.1). In addition, we exploit modern graphics processing units
(GPUs) for efficient database query processing (see Section 6.2) and study how paral-
lelization onmulticore systems should be deployed for accelerating extrememulti-label
classification (see Section 6.3). At the end, we present our RAMBO framework, which
can efficiently optimize machine learning models even on heterogeneous distributed
systems (see Section 6.4). Thementioned techniques in this chapter tend to reveal differ-
ent perspectives to achieve efficient learning on various hardware platforms. Although
it is not possible to cover all relevant techniques, the introduced insights should clearly
reveal that a proper usage of hardware can be very effective, especially for the efficiency
of learning process.

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-006

250 | 6 Hardware-Aware Execution

6.1 FPGA-Based Backpropagation Engine for Feed-Forward Neural
Networks

Wayne Luk
Ce Guo

Abstract: Feed-Forward Networks (FFNs), or multilayer perceptrons, are fundamental
network structures for deep learning. Although feed-forward networks are structurally
uncomplicated, their training procedure is computationally expensive. It is challenging
to design customized hardware for training due to the diversity of operations in forward-
and backward-propagation processes. In this contribution, we present an approach to
train such networks using Field-Programmable Gate Arrays (FPGAs). This approach
facilitates the design of reconfigurable architectures by reusing the same set of hard-
ware resources for different operations in backpropagation. In our empirical study,
a prototype implementation of the architecture on a Xilinx UltraScale+ VU9P FPGA
achieves up to a 5.2 times speedup over the PyTorch platform running on 8 threads on
a workstation with two Intel Xeon E5-2643 v4 CPUs.

6.1.1 Introduction

The majority of FPGA-based deep learning architectures are for inference procedures,
which makes predictions using pre-trained networks. However, training is a compu-
tationally demanding procedure that limits the application of deep neural networks.
Backpropagation is the core process in the training procedure of neural networks.
This contribution discusses an FPGA-based architecture for backpropagation for Feed-
Forward Networks (FFNs). An FFN consists of multiple layers of connected nodes. Each
node in a layer takes the weighted sum of the activation signals from the previous layer
and generates an activation signal by evaluating a nonlinear activation function.

We studyFFNs for two reasons. First, as stand-alonemodels, they are useful in learn-
ing problems with unstructured information such as non-image and non-sequential
data. For instance, in the event classification problem for the Higgs boson [3], the cor-
relation between attributes are difficult to capture with other neural networks such
as Convolutional Neural Networks (CNNs), while FFNs can provide decent accuracy.
Second, as deep network components, FFNs usually appear as the decision-maker in
convolutional neural networks; they also serve as generators and discriminators in
Generative Adversarial Networks (GANs) [266].

Although FFNs appear less complicated than other neural types of neural networks,
training FFNs efficiently on FPGAs is challenging. For instance, in convolutional neural
networks, a layer of nodes may share a small set of parameters. This parameter-sharing

6.1 FPGA-Based Backpropagation Engine for Feed-Forward Neural Networks | 251

property naturally reduces on-chip memory usage. However, FFNs do not have similar
properties as each connection between a pair of nodes carries a unique scalar parameter,
resulting in a high memory bandwidth usage.

Unlike research in general hardware design for neural network training like [431]
and [374], we pay attention to the features and limitations of reconfigurable hardware.
The following summarizes the challenges that we face.
1. Challenge of diverse arithmetic operations. The hardware resources on an FPGA

chip stay unchanged while the arithmetic operations frequently change during
backpropagation. To reuse the hardware resources and minimize the overhead for
reconfiguration, it is desirable to design multifunctional hardware modules that
support multiple operations without runtime reconfiguration.

2. Challenge of hardware adaptability. The size of the network and hardware resources
vary greatly in different applications. A proper hardware design should be adaptive
to all reasonable network sizes and hardware platforms.

3. Challenge of complex control logic. When a multifunctional hardware module sup-
ports more operations, the control logic becomes more complicated. In particular,
it is challenging to define a set of commands to control the hardware modules to
collaborate at different stages in backpropagation.

It is difficult to find off-the-shelf solutions because most existing systems for gradient
computation and training run on CPUs and GPUs. The novel aspects covered in this
contribution include the following:
1. Reuse of hardware resources for different operations. We extend the multifunc-

tional multiplication block in [278] to allow different operations to share the same
set of hardware resources without runtime reconfiguration, which addresses the
challenge of diverse arithmetic operations. In addition, the resource usage of the
architecture is independent of the network layout, which addresses the challenge
of hardware adaptability.

2. Commands to control the hardware. To use the same set of hardware resources for
different operations without significant loss of efficiency, it is necessary to find a
proper set of commands to control the hardware.We define a small set of commands
in this section, addressing the challenge of complex control logic.

3. Empirical evaluation. We conduct experiments to compare an experimental imple-
mentation of the hardware on an FPGA platform with the PyTorch deep learning
framework running on CPUs and GPUs.

6.1.2 Background and Related Work

This section provides a short introduction to Feed-forward networks and and their
hardware-based training approaches.

252 | 6 Hardware-Aware Execution

x
0

x
1

x
2

y
0

y
1

Input layer Hidden layer Output layer

Fig. 6.1: An example feed-forward network.

6.1.2.1 Feed-Forward Networks and Backpropagation
A feed-forward network contains nodes arranged in layers. For instance, Figure 6.1
shows a layout of an FFNwith three layers of nodes and two layers of connections. Each
node in the input layer feeds a feature of the data point to the network. All nodes in
layer l receive signals from all nodes in the previous layer (l − 1) and produce an output
signal in the form of a vector. The generation of output signal involves two steps. The
first step is to calculate the weighted-sum vector:

tl = Wl−1xl−1 (6.1)

where xl is a vector containing the output of all nodes in layer l; andWl−1 is a matrix
of real numbers specifying Nl weight vectors. The second step is to produce an output
signal xl with

xl = fact(tl) (6.2)

where fact(·) is a non-linear function defined on real vectors.
It is necessary to specify the weightsW = {W0 . . . WL−1} before using the network

to make predictions. One may find out the weights using data via training. A training
algorithm searches for a set of weights that fits a dataset D with respect to an error
measure E(W , D). An efficient training algorithm typically updates the parameter set
using the gradient

∇W = ∂E(W , D)
∂W (6.3)

to minimize the error on the training data. The de facto method to compute the gradient
∇W is backpropagation [422].

An episode of backpropagation includes a forward pass and a backward pass of
signals. In the forward pass, the network takes a data point and computes a prediction
following the direction of the network. In the backward pass, the network propagates

6.1 FPGA-Based Backpropagation Engine for Feed-Forward Neural Networks | 253

an error signal in the opposite direction to compute the gradient. Note that the back-
propagation process does not include the optimization algorithm, which uses gradients
to update the weights [421].

The backpropagation process is computationally demanding. The sheer amount of
network parameters results in problems in the algorithms and hardware. With regard to
algorithms, the high dimensionality of the parameter space slows down the convergence
of the optimization procedure. As a result, the optimization algorithm needs to invoke
a large number of backpropagation episodes before obtaining an accurate network
model. With regard to hardware, parameters consume considerable memory space and
IO bandwidth during computation because the nodes do not share parameters.

The Graphics Processing Unit (GPU) is arguably the most widely-used hardware
platform to implement training algorithms for neural networks. The GPU platform
provides high performance with relatively low hardware costs and a short design cycle.
However, trends in the development of machine learning suggest that FPGAs may
become more promising than GPUs for two reasons. First, more neural networks will
be based on customized data types, especially quantized numbers [326]. GPUs can
natively support only a limited number of data types. By contrast, FPGAs can support
customized data types efficiently. Second, the performance gap between GPUs and
FPGAs is narrowing fast [541]. In particular, the size of on-chip memory, clock speed,
number of hardware DSP units, memory bandwidth, and the process technology of
FPGAs have significantly advanced.

6.1.2.2 Reconfigurable Computing for Neural Network Training
Among the statistical models for classification and regression, neural networks are
some of the most popular candidates for reconfigurable acceleration [488]. Because
we focus on the training process, we do not cover the hardware engines that only
perform inference. Reviews that cover inference engines include [408, 497, 500, 546].
The first type of solutions is the acceleration of the training process of general-purpose
neural network architectures. Eldredge and Hutchings [198] divide the backpropagation
algorithm into three stages and design hardware for each stage separately. During the
training process, the hardware performs a runtime reconfiguration at the beginning
of each stage. Paul and Rajopadhye [558] propose a systolic backpropagation engine
that avoids the runtime reconfiguration. In their design, all calculations in a complete
background procedure are mapped to hardware. Murugan et al. [522] designs a training
architecture for a networkwith five nodes. An implementation on a Xilinx Virtex-E FPGA
runs at 5.332MHz. Li and Pedram [437] propose a coarse-grain architecture mainly to
implement the matrix multiplication operations in training. Langhammer and Pasca
[417] discuss architectures that evaluate common activation functions with different
approximation methods. Kim et al. [374] present the DeepTrain platform to perform
energy-efficient training for various types of deep networks. The DeepTrain platform
offers tools to generate sequences of operations for the hardware architecture using

254 | 6 Hardware-Aware Execution

network descriptions extracted from the TensorFlow deep learning framework. Maeda
and Tada [458] propose a training engine for neural networks using the simultaneous
perturbation rule [457] to avoid the gradient computation in the training process.

The second type of solutions is the design and optimization of hardware-oriented
neural network structures. A popular network structure in this category is the Block-
based Neural Network (BbNN). Moon and Kong [502] first propose the BbNN and im-
plement the prediction facility on the FPGA platform. A BbNN connects a collection
of neutron blocks. A neutron block carries four numeric I/O ports. Each I/O port may
serve as either an input port or an output port. An output port provides an activation
signal computed from the input signals on the same neutron block. Jiang et al. [344,
345, 346] study the training process of the BbNN using evolutionary algorithms on the
CPU platform. The idea behind their training approach is to encode the topology of
the network and the configuration of the neural blocks into a vector so that an evo-
lutionary algorithm may improve the network by manipulating the vector. Merchant
and Peterson [488] make it possible to train the block-based neural networks on the
FPGA platform. The third type of solutions is the customization of domain-specific or
problem-specific neural networks. A representative neural network structure in this
category is the convolutional neural network. The convolutional neural network [403]
is a feed-forward network structure inspired by the visual cortex of animals. The major
application of CNNs is image recognition [403]. The reconfigurable acceleration solu-
tions for CNNs usually take advantages of the unique properties of structured data.
Farabet et al. [212] propose an FPGA-based RISC processor that matches basic opera-
tions in the CNN. The processor uses a description of a pre-trained CNN in the form of
a sequence of instructions to make predictions. A useful observation in this section
is that a proper reduction of the precision of image operations results only in a little
negative impact on the predictive accuracy. However, the precision reduction may save
a considerable amount of hardware resources. Further optimizations [428, 684, 734]
have made FPGA devices faster and more energy efficient than CPUs and GPUs. Zhao et
al. [744] propose the first stand-alone training engine for CNNs using a streaming data
path. The data path contains a collection of parameterized modules. The organization
of these modules changes over time with the runtime reconfiguration, which enables
the data path to train different layers of a network. In addition to CNNs, FPGA-based
reinforcement learning methods have emerged in recent years. Shao and Luk [625]
present an architecture trust region policy optimization, which allow robots or agents
to efficiently learn policies by interacting with an environment. An implementation on
an Intel Stratix-V FPGA achieves up to a 20 times speedup against a 6-thread software
reference on an Intel Core i7-5930K CPU running at 3.5 GHz. Gankidi et al. [240] design
a Q-learning architecture for a planetary robot. An implementation of the architecture
on an Xilinx Virtex-7 FPGA achieves 43 times speedup compared to an Intel 6-gen i5
CPU running at 2.3 GHz.

6.1 FPGA-Based Backpropagation Engine for Feed-Forward Neural Networks | 255

6.1.3 Architecture for Backpropagation

This section presents the hardware architecture of the backpropagation engine and
automated generation of control sequences. During a backpropagation process, two
major operations consume the majority of execution time.
1. Linear combination. A node takes the linear combination of the outputs from all

nodes in the previous layer. In the forward pass, the operation combines activation
signals. In the backward pass, the operation combines error signals and computes
gradients.

2. Non-linear function evaluation. A node evaluates a real-valued non-linear function.
In the forward pass, the operation evaluates an activation function. In the backward
pass, the operation evaluates the derivative of the activation function.

The two major operations are computationally demanding because their time com-
plexity depends on the network layout [421]. Specifically, the time spent on linear
combination grows linearly with the number of network parameters. By contrast, the
time spent on function evaluation grows linearly with the number of nodes in the
network. Other operations in backpropagation are less computationally expensive than
the twomajor operations. For instance, it is necessary to compare the actual label of the
training data and the prediction to calculate the initial error signal for the backward
pass. However, the comparison runs only once in a backpropagation episode, and the
calculation typically has linear complexity regarding the data dimension.

The two major operations are fundamentally different regarding arithmetic opera-
tions. A straightforward way to customize hardware architecture is to create separate
arithmetic modules for both operations [437]. However, the sequential dependencies
between the calculations allow only the execution of one type of operation at the same
time. Therefore, when the arithmeticmodule for one operation is active, the correspond-
ing arithmetic modules work with a full load, but the modules for all other operations
are idle. In other words, only a small fraction of logic units work, resulting in wastage of
hardware resources. Admittedly, it is possible to prepare separate bitstreams such that
each operation takes all hardware resources [198, 744]. However, it is necessary to recon-
figure the hardware to switch between operations. Frequent runtime reconfiguration
may take a considerable amount of execution time.

We design a hardware block that works for all backpropagation operations. Our ob-
jective is to allow different operations to share as many arithmetic facilities as possible.
We use a command sequence to dynamically switch between operations by adjusting
the behavior of a small subset of arithmetic units without incurring runtime reconfig-
uration. Figure 6.2 shows the top-level diagram of the architecture, which supports
both linear combination and function evaluation. Major components include the buffer
crossbar and the arithmetic block.
– The buffer crossbar communicates with two buffers. At any time, the buffer control

signal from the command specifies a source buffer and a target buffer. The crossbar

256 | 6 Hardware-Aware Execution

Command

Buffer 0

Buffer 1

Buffer crossbar
for reading

Buffer control signal

Buffer address 1

Buffer address 0

ModifierModifier control signal

Buffer crossbar
for writing

Entrywise multiplier

Gradient accumulator

Row-sum module

Arithmetic block

Parameter stream

Gradient accumulation signal

Data stream

Fig. 6.2: Top-level diagram of the backpropagation engine.

reads a vector from the source vector and passes the vector to the arithmetic block.
The crossbar also accumulates the output vector from the arithmetic block to the
target buffer.

– The arithmetic block extends the multifunctional multiplication block proposed
in [278]. The modifier in the arithmetic block corresponds to the overrider in [278].
This block has two execution modes: the linear mode, which multiplies a matrix by
a vector, and the function evaluation mode, which evaluates a non-linear function
for all elements in the vector. Our extension includes the gradient accumulator
and the row-sum module. A binary signal from the command controls whether
the multiplier accumulates the entry-wise products to the gradient. The entrywise
multiplier feeds its results to a row-sum module which calculates the sum of each
row in the linear mode.

The arithmetic module switches to the linear mode for linear combination. The core
calculation for a linear combination operation is to evaluate a vector of weighted sums
using a b-dimensional input vector x and a b × b weight matrix W. We evaluate an
approximate version in the form of a piecewise linear function.

The architecture addresses two challenges in Section 1. First, the components and
their connections are independent of the operation. As a result, it is unnecessary to
perform a runtime reconfiguration when the operation changes, which addresses the
challenge of diverse arithmetic operations. Second, the resource usage is independent
of the layout of the network. Therefore, it is possible to scale the architecture for dif-
ferent hardware platforms to control cost or power consumption, which addresses the
challenge of hardware adaptability.

One may follow the design flow illustrated in Figure 6.3 to apply the architecture to
a backpropagation task. The design flow includes hardware customization and com-
mand sequence generation. Hardware customization is the process to set two design
parameters. One design parameter is the batch size b, which determines the size of

6.1 FPGA-Based Backpropagation Engine for Feed-Forward Neural Networks | 257

Hardware customization

Synthesis tool chain
Command
Sequence

generation

Batch size b Degree of data parallelism g

Hardware
description

Command sequence generator

Network layout N
0
... N

L-1

Bitstream for
reconfigurable

hardware

Command
sequence

Reconfigurable hardware

Fig. 6.3: Design flow.

Tab. 6.1:Memory traffic (number of data entries per command).

Operation ME Inward Outward

Data load 0 bg 0
Linear combination for forward pass 0 b2 0
Function evaluation for forward pass: batch 0..(U − 2) 1 b2 0
Function evaluation for forward pass: batch (U − 1) 1 b2 b
Linear combination for backward pass: node error 0 b2 0
Linear combination for backward pass: gradient output 0 b b2

Function evaluation for backward pass 0 0 0

the entrywise multiplier. A larger b allows the entrywise multiplier to process more
multiplications in parallel for a single data point. The other parameter is the degree of
data parallelism g, which determines the number of data points processed in parallel.
After customization, the architecture has g arithmetic blocks. Each arithmetic block
contains a modifier, an entrywise multiplier, and a row-summodule. Each entrywise
multiplier includes b × b scalar multipliers. After filling the design parameters to the
hardware description, it is possible to generate a bitstream to program the reconfig-
urable hardware using the synthesis toolchain. Command sequences generation is the
process that produces a sequence of commands from the layout of the network.

The memory bandwidth usage of the hardware depends on the operation and
the hardware parameters. For ease of discussion, we assume that all data entries in
the feature matrix, network parameters, and gradients have the same width. We may

258 | 6 Hardware-Aware Execution

measure the memory traffic by the number of data entries transmitted per command.
Table 6.1 summarizes the memory traffic for different operations.

6.1.4 Collaboration of Components

In this section, we explain how the components collaborate to execute different opera-
tions in backpropagation. The modifier in the arithmetic block determines whether the
system performs linear combination or non-linear function evaluation.
– The modifier switches to the linear mode for linear combination. The core cal-

culation for a linear combination operation is straightforward. In particular, the
arithmetic block evaluates a vector of weighted sums using a b-dimensional input
vector x and a b × b weight.

– The modifier switches to the function evaluation mode for non-linear function eval-
uation. Rather than evaluating an activation function following its mathematical
definition, the arithmetic block evaluates an approximate version in the form of a
piecewise linear function.

Before running the hardware, it is necessary to define a list of commands to control
the hardware architecture. We briefly discuss a set of commands that can be used to
perform backpropagation in a straightforward manner. This command set addresses
the challenge of complex control logic discussed in Section 1. We first describe two
commands that read and write the same buffer including data load and memory reset.
We then present the commands for linear combination and function evaluation where
the arithmetic block read and write different buffers.

The architecture supports two commands that operate on a single buffer. The first
command sets the addressed location in the target buffer to zero. As the arithmetic
block always accumulates to the target buffer, it is necessary to initialize Nl entries in
the target buffer to zero to ensure correct calculation. A command to reset a memory
location needs to set the source buffer to be the same as the target buffer and point both
addresses to the location to reset. The parameter memory provides a b × b negative
identity matrix. With these settings, the output of the row-sum module is the opposite
of the original value −xt. The accumulation of the value back to the target memory
location resets the content to zero. The second command loads d dimensions from g
data points to the target location. The memory crossbar directly reads a data point from
the data stream, ignoring the output of the arithmetic block.

The other two commands operate on two buffers. The first command is for the
linear combination operation. In each batch, the arithmetic block takes b signals as the
input and begins to propagate the signals to b nodes in the adjacent layer in parallel.
The second command is for the function evaluation operation. Each modifier takes a
copy of the variable and evaluates the piecewise linear function that approximates the
activation function.

6.1 FPGA-Based Backpropagation Engine for Feed-Forward Neural Networks | 259

Tab. 6.2: Resource usage.

Resource Total Used Percentage

Logic utilization 1 182240 382256 32.33%
DSP blocks 6840 4105 60.01%
Block memory (BRAM18) 4320 1292 29.91%
Block memory (URAM) 960 150 15.63%

6.1.5 Evaluation

We empirically evaluate the architecture in this section by comparing an FPGA im-
plementation of the architecture and the PyTorch machine learning platform on a
dual-CPU workstation.

6.1.5.1 Experiment Settings
We compare our architecture running on an FPGA-based acceleration card with a CPU
implementation running on a multicore CPU. The architecture runs on a Xilinx Ul-
traScale+ VU9P FPGA with 16 nm technology. We run the FPGA chip at 120MHz. The
architecture executes command sequence to g = 16 data instances in parallel with
dimensional batch size b = 8. Table 6.2 shows the resource usage of the implementation.
The software implementation runs on the PyTorch 1.0 machine learning platform run-
ning on a workstation with two Intel Xeon E5-2643 v4 CPUs and 128GB DDR4 memory.
The process technology of the CPUs is 14 nm, which is slightly more advanced than the
FPGA. The workstation has 12 physical cores supporting 24 threads in total. The base
frequency of the CPU cores is 3.4 GHz, and the maximum turbo frequency is 3.8 GHz.

We consider two representative types of network layouts in the experiments. We
call them bucket-shaped networks and cone-shaped networks respectively for ease of
discussion. In a “bucket-shaped” network, all layers contain an identical number of
nodes. These networks usually appear in stand-alone classifiers, generativemodels, and
reinforcement learning. In a “cone-shaped” network, a hidden layer has no more nodes
than its previous layer. These networks learn compressed features and representation
as each layer introduces information loss in a controlled manner.

Table 6.3 shows the test cases we designed using network layouts similar to those
in real-world applications. We test two activation functions–rectifier linear function
(relu) and the hyperbolic tangent function (tanh)–for each layout. Due to the alignment
requirement of our hardware platform, we round the size of each layer to the next
multiple of 32. We also produce challenging test cases for each application by linearly
scaling the size of all layers. Specifically, the design of test cases is as follows.
– The experiments with “bucket-shaped” networks include 12 test cases. Test cases

B0 and B1 correspond to the network structure for reinforcement learning in [276].
The network has 2 hidden layers with 200 nodes in each layer. Test cases B2 and B3

260 | 6 Hardware-Aware Execution

correspond to a study of traffic-flow prediction [454]. The network with the largest
layer size contains 3 layers of hidden nodes with 400 nodes in each layer. Test cases
B4 and B5 correspond to the network in the generative adversarial networks in
[23]. The network contains 4 hidden layers with 512 nodes in each layer. Test cases
B6–B11 are challenging versions for B0–B5, where the layer size of each case is 8
times that of the original version.

– The experiments with “cone-shaped” networks include 8 test cases. Test cases C0
and C1 correspond to the stacked autoencoder in [713]. The network has two hidden
layers containing 400 and 225 hidden nodes, respectively. Test cases C2 and C3
correspond to the denoising autoencoder for speech data recognition in [221]. The
network contains two hidden layers, one with 1000 nodes and another with 500.
Test cases C4–C7 are challenging versions for C0–C3, where the layer size of each
case is 4 times that of the original version.

We use randomly generated data and network parameters to test the efficiency of the
system. Assuming that the function evaluation procedure takes the same time for differ-
ent inputs, the total execution time for each backpropagation process is independent of
the data distribution and the network parameters. In other words, given the same data
size, the total execution time should stay unchanged regardless of the data source. As a
result, using randomly generated data and network parameters facilitates experiments
with various data sizes without affecting observations. The number of data instances
for each test case is 220. In each test case, we calculate the gradient with respect to 100
sets of weights.

6.1.5.2 Results and Discussion
Table 6.3 records the experimental results. In this table, the benchmark column records
the numbers of data instances; the ‘CPU-1T’, ‘CPU-4T’, and ‘CPU-8T’ columns contain
the execution times in seconds for the corresponding implementation. The ‘SU’ columns
give the speedup of the FPGA implementation over the CPU with 1 thread, 4 threads,
and 8 threads, respectively.

The architecture discussed in this contribution is faster than the CPU system in all
but one test case. In the tests with bucket-shaped networks, the architecture achieves
up to a 9.4, 5.4, and 5.2 times speedup compared with the software reference on 1, 4,
and 8 threads. In the tests with cone-shaped networks, the architecture achieves up
to a 7.8, 4.6, and 4.7 times speedup compared with the software reference on 1, 4, and
8 threads. In addition to the overall speed advantage of the architecture, we have the
following additional observations:
1. The software implementation scales poorly with the number of threads. The soft-

ware running 4 threads achieves only around 2 times speedup against a single
thread. The speed advantage on 8 threads over 4 threads is insignificant. In test

6.1 FPGA-Based Backpropagation Engine for Feed-Forward Neural Networks | 261

Tab. 6.3: Execution time (seconds) and speedup.

ID Layers Activation CPU-1T CPU-4T CPU-8T FPGA SU-1T SU-4T SU-8T

B0 224x2 tanh 0.285 0.219 0.155 0.071 4.0 3.1 2.2
B1 224x2 relu 0.181 0.104 0.090 0.071 2.5 1.5 1.3
B2 416x3 tanh 0.731 0.356 0.274 0.105 7.0 3.4 2.6
B3 416x3 relu 0.521 0.202 0.162 0.104 5.0 1.9 1.6
B4 512x4 tanh 1.020 0.504 0.430 0.138 7.4 3.7 3.1
B5 512x4 relu 0.786 0.320 0.235 0.137 5.7 2.3 1.7
B6 1792x2 tanh 4.102 2.493 2.109 0.615 6.7 4.1 3.4
B7 1792x2 relu 3.715 2.163 1.820 0.615 6.0 3.5 3.0
B8 3328x3 tanh 21.758 13.120 13.176 2.576 8.4 5.1 5.1
B9 3328x3 relu 20.827 13.783 12.400 2.574 8.1 5.4 4.8
B10 4096x4 tanh 45.501 24.847 25.286 4.822 9.4 5.2 5.2
B11 4096x4 relu 44.755 24.036 24.320 4.817 9.3 5.0 5.0
C0 416,256 tanh 0.179 0.125 0.167 0.089 2.0 1.4 1.9
C1 416,256 relu 0.137 0.086 0.102 0.087 1.6 1.0 1.2
C2 1024,512 tanh 0.577 0.339 0.421 0.169 3.4 2.0 2.5
C3 1024,512 relu 0.494 0.266 0.299 0.169 2.9 1.6 1.8
C4 1664,1024 tanh 2.092 1.189 1.259 0.375 5.6 3.2 3.4
C5 1664,1024 relu 2.121 1.104 1.021 0.375 5.7 2.9 2.7
C6 4096,2048 tanh 13.467 7.997 8.147 1.732 7.8 4.6 4.7
C7 4096,2048 relu 13.207 7.643 7.636 1.725 7.7 4.4 4.4

cases B10 and B11, the software running on 8 threads is even slower than when
running on 4 threads.

2. The software is more sensitive to the selection of the activation function than the
architecture. With the same network layout, the software tends to be faster with
the rectifier linear function than with the hyperbolic tangent function. The speed
advantage is especially significant when the software runs on 4 and 8 threads. This
observation confirms the speed advantage of the rectifier linear function on CPUs
[255]. By contrast, the architecture on FPGA evaluates any activation using the
same number of commands. Therefore, the execution time of the architecture for a
given layout is independent of the activation function.

3. The experimental implementation achieves slightly higher speedup with larger
networks that carry more network parameters. For instance, in the experiments
with bucket-shaped networks with the ‘tanh’ function, the speedup over 8 threads
rises from 2.2 to 5.2 while the layer size expands from 224 to 4096. An exception of
the observation is that architecture achieves high speedup against a single CPU
thread in test case B0. A possible reason for the exception is that artifacts such as
memory initialization for both software and hardware take significant time when
the network is small. In this case, the comparison is less reliable than it is in other
tests.

262 | 6 Hardware-Aware Execution

Besides the observations above, we have two conjectures based on the hardware design
and the experimental results. First, the speed of the architecture will grow if more DSP
blocks are available. The arithmetic block contains b2g scalar multipliers in parallel.
Our synthesis tool implements thesemultipliersmainlywithDSPblocks. Therefore, DSP
blocks become the critical resource for the design, as shown in Table 6.2. The number
of data points processed in parallel grows linearly with the number of multipliers. As
a result, when more DSP blocks are available, we may set a larger g to deploy more
multipliers to improve the speed. Second, given the same set of hardware resources, our
architecture can process networks with more nodes and parameters than some existing
solutions such as [558] and [522] for two reasons. One reason is that the number of
multipliers is independent of the network layout. The other reason is that the on-chip
memory only needs to keep the activation and error signals for two adjacent layers.

6.1.6 Conclusions

We presented a hardware architecture to perform backpropagation for training multi-
layer perceptrons. The key to acceleration is to reuse the same set of hardware resources
to process different operations involved in backpropagation. Our architecture does
not incur runtime reconfiguration when switching between operations. The hardware
resource usage is independent of the network layout. A prototype implementation of
the architecture on a Xilinx UltraScale+ VU9P FPGA achieves up to 5.2 times speedup
over PyTorch running on 8 threads on a workstation with two Intel Xeon E5-2643 v4
CPUs.

6.2 Processor-Specific Code Transformation | 263

6.2 Processor-Specific Code Transformation

Henning Funke
Jens Teubner

Abstract: During the last decade, the compilation of database queries to machine code
has emerged as a very efficient alternative to classical, interpretation-based query
processing modes [529]. Compiled code can better utilize advanced features of modern
CPU instruction sets; avoid interpretation overhead; and—most importantly—minimize
data I/O (e.g., to main memory).
This success story raises the hope that compilation strategies can be lifted to non-

standard architectures, such as GPUs or other accelerators, as well as to support other
data-intensive processing tasks. However, as we shall see in this section, the data-
parallel nature of the devices is at odds with established techniques in query com-
pilation, resulting in massive resource under-utilization if compilation strategies are
applied too naively.
As a remedy, we propose two novel mechanisms that re-establish compute efficiency

of compiled code on data-parallel hardware: Lane Refill and Push-Down Parallelism
are “virtual operators” that participate in optimization and code generation just like
true query operators (making our approach seamlessly integrate with existing systems).
At runtime, they compensate for lurking resource under-utilization by adapting par-
allelization strategies on-the-go. The outcome is a resource utilization that is close
to the hardware’s maximum, while causing negligible overhead even in unfavorable
situations.
Lane Refill and Push-Down Parallelism are part of our compiler platform DogQC,

which leverages modern graphics processors for efficient database query processing.

6.2.1 Data-Parallel Processing Models

Data-parallel processingmodels are a particularly promising way to max out the achiev-
able compute performance within the constraints of hardware technology (power and
heat dissipation). Instead of dedicating chip resources to control flow management,
data-parallel architectures target throughput. For instance, executing an instruction
for 32 fields at a time can reduce the control flow management work by a factor of 32,
when compared with a scalar execution.

264 | 6 Hardware-Aware Execution

scan
(lineitem)

· · · σ
⋊⋉
π

aggr

Fig. 6.4: Plan excerpt.

6.2.1.1 Divergence in Data-Parallel Architectures
GPUs are a popular incarnation of this idea, and spectacular performance results
have been reported in various application domains. However, actually leveraging the
available hardware resources in a beneficial way can be challenging. Divergence effects,
which may arise whenever data is not perfectly regular, may compromise the benefits.

In this section, we will look at mechanisms to combat performance penalties that
may result from divergence effects. To understand the divergence problem, let us con-
sider the execution of a database query, as illustrated here in Figure 6.4 for Query Q10
from the TPC-H benchmark set. A query compiler will attempt to compile the plan
region into a straight-line sequence of code, i.e., a pipeline. The motivation to do so
is to propagate tuples within registers rather than spilling data to (slow) memory.

During execution, not all lineitem tuples will actually traverse the full pipeline.
Some tuples might instead be eliminated by operators such as filter σ or join⋊⋉. If this
happens, a sequential processor will immediately abort the pipeline, continue with the
next input item, and hence keep CPU efficiency at peak.

Data-parallel execution back-ends, by contrast, do not have the option of aborting
a pipeline early, unless all tuples in the same batch of work are eliminated.

Figure 6.5 illustrates this effect for a GPU-based back-end (assuming a batch—or
“warp”—size of eight for illustration purposes). In some warp iteration, only warp lanes
1, 5, and 7 might have passed the filter σ, leaving the five remaining warp lanes inactive
(indicated as dashed arrows). The following join de-activates another two warp
lanes, bringing GPU efficiency down to 1/8 in this example.
The resulting GPU under-utilization is even worse in real settings. To scan a lineitem
table with 150 million rows, actual GPUs will require 5 million warp iterations, each
consisting of 32 warp lanes. Although σ filters out about 2/3 of all rows, it is extremely
unlikely that all lanes within a warp become inactive. Therefore, (almost) all 5 million
warp iterations proceed into the join operator⋊⋉. Only 1% of the remaining rows find
a match during the join. In an actual dataset, 2.9 million rows remain after the join,
but they are spread across 1.1 million warp iterations. Ideally, the projection π and
aggregation aggr operators could have been processed by only 2.9M/32 = 90K warp
iterations. In other words, state-of-the-art query compilation techniques will leave 92%
of the GPU’s processing capacity unused.

6.2 Processor-Specific Code Transformation | 265

scan
(lineitem)

σ

⋊⋉

π

aggr

150M tpl

σ = 1.0
5M warp its

50M tpl

σ = 0.33
5M warp its

2.9M tpl

σ = 0.01
1.1M warp its

2.9M tpl

σ = 0.01
1.1M warp its

Bu
ild-

sid
e

pip
elin

e

Fig. 6.5: GPU under-utilization due to filter divergence.

6.2.1.2 DogQC: A Database Query Compiler for GPUs
GPU code generated by our query compilerDogQC¹ leverages Lane Refill and Push-Down
Parallelism techniques to counter divergence effects like the ones illustrated above. In
the rest of this section, we will give a high-level idea of the Lane Refill and Push-Down
Parallelism techniques (Sections 6.2.2 and 6.2.3), then report on experimental results
for DogQC (Section 6.2.4), and wrap up in Section 6.2.5. More details on the Lane Refill
and Push-Down Parallelismmechanisms can be found in the respective full paper [237].

6.2.2 Lane Refill Technique

Divergence effects (here: filter divergence) are a consequence of the SIMT (“single in-
struction, multiple threads”) execution paradigm embodied in all modern graphics
processors. A number of threads (or lanes, typically 32 of them) are grouped into awarp.
During execution, all lanes within a warp execute the same GPU instruction.

The SIMTmodel encounters a problemwhenever some lanes or data elements need
a different amount or kind of processing than others. In such situations, control flows
will diverge. Since all lanes within a warp still execute the same instruction, lanes will
be turned inactive and their computation result will be discarded. As illustrated above,
this can result in resource under-utilization.

To illustrate the severity of this effect, we instrumented the query plan shown earlier
(Figure 6.5) to monitor warp utilization at the plan point marked with a magnifying
glass . Figure 6.6 shows a histogram on the number of warps that have passed this

1 https://github.com/Henning1/dogqc.

https://github.com/Henning1/dogqc

266 | 6 Hardware-Aware Execution

1 2 3 4 5 6 7 8 9 32
0

1

2

3

4 ·105

... ...

Number of Active Lanes

W
ar
p
Ite
ra
tio

ns

Fig. 6.6: Lane activity profile with filter divergence.

⋊⋉

π

1
refill
buffer

flush

2
refill
buffer

flush

3
refill
buffer

flush

4
refill
buffer

refill

Fig. 6.7: Lane Refill: tuples from three low-activity iterations are suspended to the refill buffer and
resumed for full lane activity in the fourth iteration.

plan stage with a warp utilization of 1, . . . , 32 active lanes. It is easy to see that only a
fraction of the available compute capacity is used; in most warps, only one or two out
of 32 warp lanes performed actual work.

6.2.2.1 Balance Operators and Refill Buffers
To combat the situation, DogQC injects balance operators into the relational query
plan. Code generated for these operators detects warp under-utilization at runtime.
Whenever utilization drops below a configured threshold, the state of all remaining
active lanes is suspended to a refill buffer and the pipeline starts over with a fresh set of
input tuples.

Figure 6.7 illustrates this for three successive warp iterations 1○ through 3○. Since
only 2, 1, and 3 lanes remained active in these iterations (respectively), their state is

6.2 Processor-Specific Code Transformation | 267

1 2 3 4 5 6 7 8 9 32
0

1

2

3

4 ·105

... ...

Number of Active Lanes

W
ar
p
Ite
ra
tio

ns

Fig. 6.8: Lane activity profile with lane refill buffer to consolidate filter divergence.

flushed to the refill buffer. After flushing, each of those warp iterations is terminated
and processing starts over with the next set of input tuples.

6.2.2.2 Refilling
As soon as a sufficient number of lane states have been stored to the refill buffer, the
buffer can be used to refill lanes that have become inactive. This time, the under-utilized
warp iteration is not terminated but continues processing with full utilization after
refilling. This is visualized in Step 4○ of Figure 6.7. Here, only two out of eight warp
lanes remained active after the downstream join operator. Using the refill buffer, the
remaining sixwarp lanes can be filledwith useful work, resulting in full warp utilization
upstream.

Implementationwise, flushing and refilling are backed up in DogQC by CUDA’s
__ballot_sync, __popc (“population count”), and shufflingprimitives. These primitives
are highly efficient; balance operators will cause little overhead even when only a few
warps go below the utilization threshold.

6.2.2.3 Effect of Lane Refill
Lane Refill brings warp utilization back to a high compute efficiency. Following the
balancing operator, all executed warps (except for the last warp in each grid block) are
guaranteed to have a warp utilization above the configured threshold.

In Figure 6.8, this is illustrated with a histogram for the same plan point that we
profiled earlier (Figure 6.6), but this timewith a balance operator applied. The histogram
confirms that (a) (almost) nowarps exist with a utilization below 26 lanes (the threshold
we configured); and (b) the total number of executed warps has dropped by a factor of
about 10. In terms of overall execution performance, lane refill will improve execution
times by about 2 − 3× for the example plan shown in Figure 6.5.

268 | 6 Hardware-Aware Execution

◁▷

...
Bui

ld-s
ide

pip
elin

e

Fig. 6.9: Expansion divergence. Here, some rows in the probe-side relation will find more join part-
ners on the probe side than on the other side.

6.2.3 Push-Down Parallelism Technique

DogQC’s Push-Down Parallelism technique addresses another flavor of divergence that
may arise orthogonally to the aforementioned filter divergence. Expansion divergence
is the effect when a different amount of work is needed to process each of the items
within a warp. Database join operations are a common situation where this effect arises.
Figure 6.9 on the right illustrates the effect. Probe side tuples coming from the right
may find a different number of join partners each. Specifically, in the example, lane 6
will have significantly more tuples to process than the remaining warp lanes. In such a
situation, existing query compilers will process all matches of a single probe-side tuple
within the same warp lane. In the example, execution times would be dominated by
the sequential processing of all matches for lane 6.

Push-Down Parallelismmitigates the situation by parallelizing the processing of the
matches of a single probe-side tuple across the available warp lanes. To this end, the
execution state of probe-side lanes is broadcast over lanes, as illustrated in Figure 6.10.
Build-side matches are partitioned across. Again, we leverage efficient CUDA primi-
tives, such as __ballot_sync and __shfl_sync (“shuffle sync”). Please refer to [237] for
details.

As illustrated in Figures 6.11 and 6.12, Push-Down Parallelism improves lane uti-
lization and reduces the overall number of iterations needed to complete the query.
Lane Refill and Push-Down Parallelism complement one another, and Figure 6.9 shows
an example where both flavors of divergence co-exist. Another typical occurrence of
expansion divergence is the processing of variable-length data, strings in particular. If
possible, DogQC will parallelize the processing of strings across warp lanes to improve
resource utilization.

6.2 Processor-Specific Code Transformation | 269

◁▷

Γ

1

wbuf: 0 4 0 6 0 28 3 0

a = 2

Broadcast(2, tbuf , 4, sbuf)

2

wbuf: 0 0 0 6 0 28 3 0

a = 4

Broadcast(4, tbuf , 6, sbuf)

3

wbuf: 0 0 0 0 0 28 3 0

a = 6

Broadcast(6, tbuf , 28, sbuf)

4

wbuf: 0 0 0 0 0 0 3 0

a = 7

Broadcast(7, tbuf , 3, sbuf)

wbuf: 0 0 0 0 0 0 0 0

Fig. 6.10: Illustration of push-down parallelism that expands the join matches of four warp lanes.

1 2 3 4 5 6 7 8 9 32
0

0.5

1

1.5 ·105

... ...

Number of Active Lanes

W
ar
p
Ite
ra
tio

ns

Fig. 6.11: Lane activity with expansion divergence.

270 | 6 Hardware-Aware Execution

1 2 3 4 5 6 7 8 9 32
0

0.5

1

1.5 ·105

... ...

Number of Active Lanes

W
ar
p
Ite
ra
tio

ns

Fig. 6.12: Lane activity profile with push-down parallelism to consolidate expansion divergence.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

3.0

6.0

9.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
0.0

0.2

0.4

0.6

N /
A

N/
A

N/
A

N /
A

N/
A

N/
A

N/
A

N /
A

N/
A

TPC-H Query

Ex
ec
ut
io
n
Ti
m
e
s

OmniSci

Total time
GPU part

DogQC naive

Processing
DogQC opt

Processing

Fig. 6.13: Execution times of DogQC for TPC-H benchmark queries (scale factor 25). The divergence
optimizations improve query performance.

6.2.4 Evaluation

With DogQC, we provide a query compiler with a wide range of SQL functionality,
sufficient to support all queries from the TPC-H benchmark set. Here we use DogQC
and the database domain to illustrate the aforementioned anti-divergence mechanisms,
which could equally be applied to other data-intensive tasks, including those related to
machine learning.

6.2.4.1 TPC-H Performance
To assess the benefits of measures to contain divergence, we performed a series of
measurements with the TPC-H benchmark set. Our measurements were based on an
NVIDIA RTX2080 GPU with 46 Streaming Multiprocessors and 8GB GPU memory,
installed in a host system with an Intel i7-9800X GPU and 32GB of main memory. As a
reference, we compared DogQC with the hybrid CPU/GPU system OmniSci [545].

Our benchmark results are depicted in Figure 6.13. For each of the 22 TPC-H queries,
the bars indicate the query execution time assuming that the dataset is resident in GPU
memory.

6.2 Processor-Specific Code Transformation | 271

For OmniSci, we report the total wall clock time needed to execute the query as well
as the amount of time spent on GPU processing. OmniSci is a hybrid execution engine
in which both CPU and GPU will be used to jointly answer the query. As can be seen
in Figure 6.13, several queries can, in fact, not benefit much from GPU in OmniSci.
Also note that OmniSci could successfully execute only 13 of the 22 TPC-H benchmark
queries. DogQC, by contrast, can run all 22 TPC-H queries entirely on the GPU, with
execution times that are up to 86× faster than those of OmniSci.

6.2.5 Summary

In this research, we put the processing capabilities of data-parallel co-processors for
non-uniform, data-intensive workloads to the test. DogQC introduces techniques that
allow us to gracefully align parallel processing units with work items, even when
problems are heavily skewed. We observe that Lane Refill and Push-Down Parallelism
are able to increase processing efficiency for these non-uniform workloads, sometimes
with dramatic effects on processing throughput.

Existing query coprocessors typically avoid imbalances by working on a uniform
surrogate (such as dictionary keys or materialization barriers). This has led to the
perception that GPUs have limited capabilities of processing irregular problems. DogQC
avoids the overhead ofmaintaining such additional data structures and instead restores
balance during non-uniform processing.

Here we showcase Lane Refill and Push-Down Parallelism based on an application
to database query processing. Compared with state-of-the-art platforms, our prototype
DogQC achieves better resource utilization, a bigger functionality range, and better
runtime performance on realistic benchmarks. Looking ahead, our anti-divergence
measures could be applicable to many machine learning scenarios, especially when
the problems involved are heavily skewed and/or depend on non-linear computations.

272 | 6 Hardware-Aware Execution

6.3 Extreme Multicore Classification

Erik Schultheis
Rohit Babbar

Abstract: There are classification problems, such as assigning categories to a Wikipedia
article, where the possible set of labels is very large, numbering in the millions. Some-
what surprisingly, these so-called Extreme-Multilabel Classification (XMC) problems
can be solved quite successfully by applying a linear classifier to each label individually.
This decomposition into binary problems is called a one-vs-rest reduction. As these
problems are completely independent, the reduced task is embarrassingly parallel and
can be trivially spread across multiple cores and nodes. After training, the model can
be sparsified by culling small weights to only require a fraction of the memory and
computational power for prediction on new samples.

6.3.1 Introduction to Extreme Multilabel Classification

ExtremeMulti-label Classification (XMC) refers to supervised learningwith a large target
label set where each training/test instance is labeled with a small subset of relevant
labels. Machine learning problems consisting of hundreds of thousands of labels are
common in various domains such as annotating web-scale encyclopedias [585], hash-
tag suggestion in social media [171], and image-classification [168]. For instance, all
Wikipedia pages are taggedwith a small set of relevant labels that are chosen frommore
than amillion possible tags in the collection. It has been demonstrated that, in addition
to automatic labelling, the framework of XMC can be leveraged to effectively address
learning problems arising in recommendation systems, ranking, andweb-advertising [9,
585].

Notation and Setup Let the training data D :=
{︁
(x(1), y(1)), . . . , (x(N), y(N))

}︁
consist

of input feature vectors x(i) ∈ X ⊆ Rd and respective output vectors y(i) ∈ Y := {0, 1}m

such that y(i)l = 1 iff the l-th label belongs to the training instance x(i). The feature
vectors form the rows of the feature matrix X. In XMC settings, the cardinality m of the
set of target labels, the dimension of the input d, and the size of the dataset N can all
be of the order of hundreds of thousands or even millions.

For text data, the input can be represented by term-frequency inverse-document-
frequency (tf-idf) features. In that case, the dimensionality of the feature space is
determined by the size of the vocabulary, and for each text x ∈ X the feature xj is
nonzero only if the corresponding word appears in the text. As a result, the input
features are highly sparse. The magnitude of the feature is determined by how often

6.3 Extreme Multicore Classification | 273

101 103 105

Label Frequency Rank

100

101

102

103

104

105

Tr
ai

ni
ng

 E
xa

m
pl

es
Eurlex-4K
AmazonCat-13K
Wiki10-31K
DeliciousLarge-200K
WikiLSHTC-325K
WikipediaLarge-500K
Amazon-670K
Amazon-3M

Fig. 6.14: Label frequency in XMLC datasets. X-axis shows the label rank when sorted by the fre-
quency of positive instances and Y-axis gives the number.

the word appears in the document and in the entire corpus. For details on tf-idf, see,
e.g., Manning, Raghavan, and Schütze [463].

Similarly, for any given instancex(i) only a small subset of the labelswill be relevant,
‖y(i)‖1 ≪ m. Additionally, the number of instances for which a label is relevant is very
imbalanced: Few labels will be relevant to many instances, but most labels will apply
only to an extremely small fraction. This gives rise to a long-tailed label distribution,
as shown in Figure 6.14. The labels with very few positives are called tail labels. The
characteristics of well-known benchmark datasets in XMC are presented in Table 6.4.

In traditional multi-label classification, the goal is to learn a multi-label classifier
in the form of a vector-valued output function h : Rd ↦→ {0, 1}m. In XMC, one often
wants to restrict the classifier to predict a fixed number of labels because, say, a web
interface might have a fixed number of slots in which to suggest related searches. This
leads to classification functions hk : Rd ↦→ Yk := {y ∈ Y : ‖y‖1 = k}. Such a function is
typically constructed by first learning a score function r : Rd ↦→ Rm, and then taking
the k highest-scoring labels as the prediction.

Evaluation Metrics Due to the extreme sparsity in the label vector, metrics such as
accuracy are not informative in the case of XMC. Instead, one typically uses metrics that

274 | 6 Hardware-Aware Execution

Tab. 6.4:Multi-label datasets from XMC repository [50]. APpL and ALpP represent average points per
label and average labels per point, respectively.

Dataset #Training #Features #Labels APpL ALpP

AmazonCat-13K 1 186 239 203 882 13 330 448.6 5.0
AmazonCat-14K 4 398 050 597 540 14 588 1 330.1 3.5
Amazon-670K 490 449 135 909 670 091 4.0 5.5
Wiki10-31K 14 146 101 938 30 938 8.5 18.6
Delicious-200K 196 606 782 585 205 443 72.3 75.5
WikiLSHTC-325K 1 778 351 1 617 899 325 056 17.5 3.2
Wikipedia-500K 1 813 391 2 381 304 501 070 24.8 4.8

focus on the k predicted labels. Most commonly used are precision at k, denoted P@k,
and normalized Discounted Cumulative Gain, denoted nDCG@k [50]. Let Rm ∋ ŷ = r(x)
be the predicted scores for an instance with corresponding label vector y. These metrics
are defined by

P@k(y, ŷ) := 1
k

∑︁

l∈rankk(ŷ)
yl (6.4)

nDCG@k(y, ŷ) :=
∑︁

l∈rankk(ŷ)

yl
log(Rl(ŷ) + 1)

⧸︁min(k,‖y‖1)∑︁

l=1

1
log(l + 1) , (6.5)

where rankk(y) returns the k largest indices of y ranked in descending order, and Rl
gives the ordering of the l’th index. Note that unlike P@k, nDCG@k takes into account
the ranking of the correctly predicted labels. For instance, if there is only one of the
five labels that is correctly predicted, then P@5 gives the same score if the correctly
predicted label is at rank 1 or rank 5. By contrast, nDCG@5 gives a higher score if it is
predicted at rank 1 and the lowest non-zero score at rank 5.

6.3.2 Parallel Training of Linear One-vs-Rest Models

The P@k (Equation 6.4) and nDCG@k (Equation 6.5) metrics introduced above are
non-differentiable and thus not directly usable in typical gradient-based empirical-risk-
minimization procedures. However, it can be shown that in order to achieve optimal
predictions for precision at k, one only needs to train the scoring function r in such
a way that the scores are strictly monotone transformations of the labels’ marginals
[486]. Therefore, one can train the classifier by independently applying a classification-
calibrated² loss ℓBC, such as binary cross entropy or (squared) hinge loss, to each label

2 See e.g. Bartlett, Jordan, and McAuliffe [44]. Intuitively, this means that a classifier that minimizes
ℓBC also minimizes the binary 0-1 loss.

6.3 Extreme Multicore Classification | 275

individually. Therefore, the training objective is given by

min.
r

N∑︁

i=1

m∑︁

l=1
ℓBC
(︁
y(i)l , rl

(︁
x

(i)
)︁)︁

. (6.6)

Such a decomposition is called the One-vs-Rest (or One-vs-All) reduction.

Objective Functions for Linear One-vs-Rest This expression becomes particularly
favorable if the scoring function r is linear. In that case, the minimization task decom-
poses into m completely independent subtasks

∀l ∈ [m] : min.
w

(l)∈Rd

N∑︁

i=1
ℓBC
(︁
y(i)l , x

(i)T
w

(l)
)︁
. (6.7)

Due to the embarrassingly parallel nature of the training tasks, the computation can
easily scale to use thousands of compute cores. A scalable implementation of this
method yielding state-of-the-art prediction performance was demonstrated via the
DiSMEC algorithm [30], which is a multi-label wrapper around the Liblinear solver [210].
In DiSMEC, the underlying binary loss is the squared hinge loss with an additional l2
regularization term. Its objective is

∀l ∈ [m] : min.
w

(l)∈Rd

(︃
‖w(l)‖22 + c

N∑︁

i=1

(︁
max(0, 1 − s(i)l x

(i)T
w

(l))
)︁2
)︃
, (6.8)

where c ∈ R>0 is the parameter to control the trade-off between empirical error and the
model complexity and s(i)l := 2y(i)l − 1 is the label represented as {+1, −1}.

A similar method is ProXML [29], which switches the l2 regularization for l1 regu-
larization in order to induce robustness to l∞ perturbations in the input samples. This
robustness is particularly helpful for tail labels, which have very few positive training
instances. The objective of ProXML thus is

∀l ∈ [m] : min.
w

(l)∈Rd

(︃
‖w(l)‖1 + c

N∑︁

i=1

(︁
max(0, 1 − s(i)l x

(i)T
w

(l))
)︁2
)︃
. (6.9)

Suppose for now that we have a methodA : (X, s) ↦→ w

(l)
* available to solve these indi-

vidual problems efficiently in a single thread. (This will be discussed in Section 6.3.3).
Then the following framework can be used to scale the training process to multiple
cores and nodes:

Two-Level Parallelization The distributed training for the optimization problems
defined by equations (6.8) and (6.9) is implemented using a two-layer parallelization
architecture. At the top level, labels are separated into batches of, say,M = 1000, which
can be processed independently in parallel on available compute nodes, or sequentially

276 | 6 Hardware-Aware Execution

if the number of batches exceeds the number of nodes. On each node, training of a
batch of M labels is parallelized using multiple threads, which forms the second layer
of parallelization.

After eachw(l)
* is trained, weights of small magnitude are pruned to reduce overall

model size drastically, often by more than 99%. Since this can be performed as soon as
w

(l)
* has been computed, there is no need to store the complete dense model, even for a

single batch, which reduces the RAM requirements for the algorithm. Unfortunately,
in typical sparse matrix formats such as compressed sparse row/column matrices,
insertion of new values cannot be done bymultiple threads in parallel, because it might
require reallocation and the shifting of data in other parts of the matrix. For this reason,
we represent the sparse weight matrix as an array of independently allocated sparse
vectors that can be written to independently.

The two-layer distributed training framework is summarized in Algorithm 4.

Algorithm 4: Framework for hardware-aware embarrassingly parallel train-
ing in DiSMEC and ProXML solvers. The iterations of both loops are indepen-
dent and can thus be run in parallel.
Input: Training data D = {(x(1), y(1)) . . . (x(N), y(N))} in sparse representation,

input dimensionality d, label set {1 . . . m}, batch size M
Output: Learnt matrixW ∈ Rd×m in sparse format
// 1st parallelization; independent nodes

1 for {b = 0; b <
⌊︀m
M
⌋︀
+ 1; b++} do

2 Load single copy of feature matrix X into main memory
3 Prepare arrayWb of M sparse vectors

// 2nd parallelization; independent threads

4 for {l = b ×M; l ≤ (b + 1) ×M; l++} do
5 Generate binary sign vector s(ℓ) = {+1, −1}Ni=1
6 train weight vectorw(l)

* on a single core usingA(X, s(l)),
7 Prune small weights inw(l)

8 return Wd,M
9 returnW

An advantage of the two-level parallelization over just running m instances of an off-
the-shelf solver for binary problems is that the feature matrix X can be shared for all
training jobs running on the same node. This allows us to keep the entire dataset, which
may be several gigabytes in size, in main memory. However, on modern CPUs with a
large number of cores, or on nodes with a two-socket configuration, this might cause
problems due to Non-Uniform Memory Access (NUMA). In such a system, the overall
RAM is partitioned into regions, called NUMA domains. Even though all cores in the

6.3 Extreme Multicore Classification | 277

Fig. 6.15: NUMA memory in a dual-socket 64-core AMD Rome 7H12 system. Each CCD contains 8
cores, and each core has fastest access only to the memory within its own NUMA domain, marked
with dashed lines. Image by CSC - IT Center for Science under CC-BY-4.0.

system can access the entirety of the memory, access latencies to the different domains
vary depending on the distance of the core to the domain. An example of a NUMA setup
is given in Figure 6.15.

In such a setup, a single copy of the feature matrix would be accessed by all cores
on the system, quickly bottlenecking the memory bus and preventing the program from
making efficient use of the available CPU cores. This can bemitigated by pinning threads
to their CPU cores and replicating the feature matrix once per NUMA domain. In this
way, each thread can read the feature matrix from its local domain, reducing latency,
and the memory reads are spread out across different memory modules, improving
throughput. In order to achieve this, the outer parallelization layer has to be performed
not over physical nodes but over NUMA domains.

6.3.3 Second-Order Optimization Using Conjugate Gradients

The objective Equation 6.8 can be minimized in batch mode using second-order opti-
mization. Compared with the popular (stochastic) gradient descent strategy, second-
order optimization can take the curvature of the loss landscape into account and thus
converges to theminimum inmuch fewer iterations.However, the computations for each
single iteration are much more involved, as the second-order information is encoded in
the potentially very large Hessian matrix. Fortunately, it is possible to implement this
procedure without ever actually forming the Hessian, as will be described below.

https://github.com/CSCfi/csc-user-guide/blob/fe8263a94437cb4a1d300917a9cc234dd2ea84c6/docs/img/mahti_node.png
https://github.com/CSCfi/csc-user-guide
https://github.com/CSCfi/csc-user-guide/blob/master/LICENSE.txt

278 | 6 Hardware-Aware Execution

Dropping the label index, we can write

RD[w] = w

T
w + c

N∑︁

i=1
ℓSH
(︁
six(i)Tw

)︁
, (6.10)

where ℓSH is the squared hinge loss

ℓSH(r) = max(0, 1 − r)2. (6.11)

Note that this objective function is convex. As a consequence, the optimizer will con-
verge to the global optimum regardless of the starting point.

Determining the Descent Direction The main idea of second-order optimization is
to approximate the objective locally using its quadratic Taylor approximation

RD[w + δ] ≈ RD[w] +∇RD[w]δ + 0.5δT∇2 RD[w]δ. (6.12)

Therefore, the step δ*, which is ideal, i.e. which leads to the minimum, in this approxi-
mation can be calculated by solving the linear system

∇2 RD[w]δ* = −∇RD[w]. (6.13)

For Equation 6.8, the gradient and Hessian have a simple structural form [239, 368]

∇RD[w] = 2w + c
N∑︁

i=1
ℓ′SH

(︁
six(i)Tw

)︁
six (6.14)

∇2RD[w] = 2I + cXT
DX, (6.15)

where I is the identity matrix, X = [x(1), . . . , x(N)]T is the data matrix, and D is diagonal
with entries Dii = ℓ′′SH(six(i)Tw).

The Hessian matrix has size N × N, and thus would be far too large to be stored in
memory. Fortunately, Equation 6.13 can be solved using a conjugate-gradient procedure,
which requires onlyHessian-vector products. These canbe calculated efficiently through

∇2 RD[w]δ = 2δ + cXT
DXδ, (6.16)

becauseX is a very sparsematrix. In practice, Equation 6.13 is only solved approximately,
drastically reducing the number of conjugate-gradient iterations, and thus Hessian-
vector products, that need to be calculated.

Determining the Step-Size The resulting step vector δ might be outside the region
in which the quadratic approximation (see Equation 6.13) accurately models the true
risk landscape RD[w]. Therefore, a step-size mechanism is needed usually either by
using a trust region or by doing a line search.

6.3 Extreme Multicore Classification | 279

Due to the linear nature of the ranking function r(x;w) = x

T
w, the line search can be

implemented efficiently by using

r(x;w + λδ) = x

T
w + λwTδ (6.17)

‖w + λδ‖22 = ‖w‖22 + 2λwTδ + λ2δTδ. (6.18)

By caching the values of ‖w‖22,wTδ, δTδ, xTw and xTδ, the cost of evaluating the loss
for any value of λ after the first evaluation drops to O(N) evaluations of ℓSH and the
corresponding additions and multiplications of the cached values in Equations 6.17
and 6.18.

Implicit Hard-Instance Mining in Hinge Losses When using the squared hinge
loss (see Equation 6.11) for ℓSH, the loss and all its derivatives become zero once the
sample is classified correctly with a sufficient margin³ sxTw > 1. Consequently, the
corresponding entries in the diagonal matrix D in Equation 6.16 become zero. This
means that in the product XT

DX, the feature matrix X can be replaced with a much
smaller matrix X̃ that contains only the examples that are not classified correctly with
a margin. Denote with E := {i ∈ [N] : six(i)Tw ≤ 1} the set of indices of examples with
nonzero loss (the hard instances), then X̃ = [x(i) : i ∈ E]T.

As a consequence, the full feature matrix X is only needed once per step to deter-
mine the gradient∇RD[w], D, and the hard examples E. Afterwards, each CG iteration
only requires the reduced matrix X̃. This can be interpreted as an implicit hard instance
mining step that is performed at the beginning of each step. As the weight vector w
approaches the optimal weightsw*, most instances will have sufficient margin, and
only few hard instances remain, |E| ≪ N (cf. Figure 6.16). Therefore, later iterations
require significantly less computation time than earlier ones. In fact, by using an initial
vectorw0 for which the hard-example setA is already small can speed up the overall
computation time tremendously, as discussed below.

6.3.4 Further Performance Improvements

Mean-Separating Initialization A simple attempt to improve the initial weight vector
is to chose a hyperplane that separates the means of the positive and negative instances
for that label. Denote P := {x(i) : i ∈ [N], y(i) = 1} and x̄ := N−1

∑︀N
i=1 x

(i), then the
means are

p̄ := 1
|P|
∑︁

x∈P

x , n̄ := Nx̄ − |P|p̄N − |P| . (6.19)

3 The margin of an instance denotes how far its score is from the classification boundary. An instance
with a margin of 0 is classified correctly, but the slightest perturbation of its features or the classifier’s
weights could change the classification.

280 | 6 Hardware-Aware Execution

0 2 4 6 8 10 12 14

10−1

100

101

102

Iteration

% nonzeros

w0 = 0

w0 = wmsi

0 2 4 6 8 10 12 14

500

1 000

1 500

Iteration

Duration [ms]

w0 = 0

w0 = wmsi

Fig. 6.16: Sparsity of the Hessian calculation |E|/N (left) and average duration of each optimization
iteration (right) over the index of the iteration for zero and mean-separating initialization.

As x̄ only need be calculated once for the dataset, and p̄ can be computed quickly due
to the data imbalance |P| ≪ N, these values can be computed efficiently.

This procedure can be viewed as an extreme case of data summarization (cf. Chap-
ter 3), in which the entire dataset is reduced to just two instances. The idea is now to
solve this very small classification problem, and use its solution as the starting point for
solving the full problem. This will be particularly useful if the simple solution already
classifies many of the easy negative instances correctly, as the set of hard examples E
will be small in such a case.

For two data points, the classification problem can be solved explicitly, and we
call its result the mean-separating initialization (msi) vector wmsi. This vector is the
minimum-norm vector that attains pre-specified margins μ± for classifying the two data
points. As a consequence, it lies in the plane spanned by x̄ and p̄, and is characterized
by the following equations:

wmsi = αx̄ + βp̄ , (6.20)

p̄

T
wmsi = μ+ , n̄

T
wmsi = μ− . (6.21)

Heuristically, values μ+ = +1, μ− = −2work well, and are based on the rationale that
negative samples cover a larger volume in the instance space, and thus the initial
decision boundary should be closer to the mean of the positives than to the mean of
the negatives.

The efficacy of this method can be seen from Figure 6.16, which evaluates the two
initialization strategies on the AmazonCat-13k [478] dataset using an AMD Rome 7H12
CPU.⁴ The data shows that
– starting from a zero initial vector, the fraction of nonzeros starts at 100% and

decreases as the training progresses;

4 Computational resources provided by CSC – IT Center for Science, Finland.

6.3 Extreme Multicore Classification | 281

– starting from a mean-separating initial vector, the sparsity is already high in the
beginning; and

– increased sparsity translates to significant reductions in computation time and
corresponding energy savings.

In terms of wall-clock training duration twc, the speedup that can be achieved by
switching from 0 towmsi, defined as twc(0)/twc(wmsi), lies between 150% and 500%
as shown in Table 6.5.

Feature-Sorting A large portion of the computation time is spent on calculating the
initial margins XT

w at the beginning of each iteration. Because X is a sparse matrix,
this computation has low arithmetic density, and because the feature dimension is
typically very large, the vectorw does not fit into the L2-cache. These two properties
mean that this operation is severely memory-bound.

The caching behavior of w can be improved significantly by making use of the
dataset characteristic – in particular the fact that typical XMC tf-idf datasets have a long-
tailed distribution in the feature vector,meaning that some features have a large amount
of non-zero entries, but most features have few non-zeros[29]. By sorting the feature
indices according to the frequency of their occurrence, the corresponding entries inw
are brought closer together in the address space, thus improving the caching behaviour.

While this has no effect on the scaling of the performance with the thread count, it
does induce an absolute speedup, as indicated by the dashed lines in Figure 6.17.

The Memory-Bottleneck On machines with many cores, the performance of the
computations presented here is memory-bound. This can be seen in Figure 6.17, where
despite the embarrassingly parallel nature of the computations, the performance scales
sublinearly once a certain core count is exceeded.

In the specific case of running the computations on a 2-socket AMD Rome 7H12 (64
cores per CPU, cf. Figure 6.15) machine, Figure 6.17 shows almost perfect scaling from 8
threads, corresponding to 1 thread per NUMA node, up to 32 threads, corresponding to
one thread per L3 cache. For higher thread counts, the speedup saturates and in some
cases more threads may even be disadvantageous to performance.

In addition to the memory bottleneck, there will be a thermal/power bottleneck
involved. The used CPU has a base clock of 2.6 GHz, but if only a few cores are used
the clock frequency may be increased up to 3.3 GHz.⁵ This indicates that even without
the memory bottleneck, the expected performance increase of 128 cores over 16 cores
would be less than 16×. This shows that the sublinear scaling cannot be explained by

5 Given that the computations are memory-bound, even when running with 128 cores the execution
ports of the CPUwill be idle for a significant amount of time. Onlymoderate downclocking to ≈ 3.18GHz
occurred in our setup.

282 | 6 Hardware-Aware Execution

8 16 32 64 128
1

2

4

Cores

Original
Reordered

8 16 32 64 128
1

2

4

Cores

Original
Reordered

Fig. 6.17: Relative speedup for increasing thread counts using both original and reordered features
for the first 10,000 labels of the Wikipedia-500k [50] dataset (left) and for the AmazonCat-13 [478]
dataset (right). The dashed line shows the speedup of reordered features, normalized to the com-
putation time with original features. The dotted line indicates perfect scaling. The (non-parallel)
portion of the program run-time that is spent parsing the input dataset has been subtracted from the
timings presented here.

Tab. 6.5: Training time (in hours) for zero and mean-separating initialization, as well as the number
of non-zero weights (NNZ) after pruning (in millions) and their fraction. The experiments were run on
a two-socket AMD Rome 7H12 machine.

Dataset Zero MSI Speedup NNZ Fraction

Wiki10-31k 0.05 0.03 164% 114 3.62%
Amazoncat-13k 0.33 0.09 353% 75 2.78%
Amazoncat-14k 1.31 0.39 339% 110 1.26%
WikiTitles-500k 5.34 1.19 451% 83 0.09%
Amazon-670k 6.82 1.36 503% 405 0.44%
Delicious-200k 7.84 4.73 166% 1 175 0.73%
WikiLSHTC-350k 18.52 5.17 358% 434 0.08%

6.3 Extreme Multicore Classification | 283

Tab. 6.6: Results of DiSMEC in comparison with the state-of-the art results as reported in March 2022
in Bhatia, Dahiya, Jain, Prabhu, and Varma [50], for selected XMC datasets.

Dataset/Metric DiSMEC SOTA Method SOTA

Amazon-670K — — —
P@1 44.7 LightXML 49.1
P@3 39.7 LightXML 43.8
P@5 36.1 LightXML 39.9

AmazonCat-13K — — —
P@1 93.4 LightXML 96.8
P@3 79.1 LightXML 84.0
P@5 64.1 LightXML 68.7

Wikipedia-500K — — —
P@1 70.2 AttentionXML 82.7
P@3 50.6 AttentionXML 63.8
P@5 39.7 AttentionXML 50.4

EURLex-4K — — —
P@1 82.4 APLC-XLNet 87.7
P@3 68.5 APLC-XLNet 74.6
P@5 57.7 APLC-XLNet 62.3

reduced clock frequencies alone; rather, another resource, such as memory bandwidth,
is also limiting performance.

6.3.4.1 Comparison With Deep Learning Methods
As shown in Table 6.6, the DiSMEC instantiation of the embarrassingly parallelizable
one-vs-rest framework described in Algorithm 4 can be a competitive baseline. Its per-
formance is not significantly worse in comparison to the state-of-the-art deep learning
methods, which typically employ transformers encoders [174]. Unlike the deep learning
models that require careful hyper-parameter tuning, the linear binary classification
underlying DiSMEC is more readily interpretable and well-understood from a theoreti-
cal viewpoint. For sparse tf-idf data representation, linear XMC classifiers also work at
par with tree-based approaches [371, 584] and those involving dense low-dimensional
label embeddings [51, 279].

6.3.5 Summary and Outlook

In this section we presented linear classification algorithms for extreme multi-label
classification. The linear model makes the training parallelize perfectly across different
labels, though in practice the scaling levels out with too many cores in a single node.
This is because even though the training itself does not require any communication

284 | 6 Hardware-Aware Execution

or synchronization between the threads, the different cores within a machine still
compete for resources such as memory access. By placing a copy of the feature matrix
in each NUMA domain, it can be ensured that each CPU can read its data from a part
of the memory that it has fastest access to, and the load on the memory interface
is spread out across the different NUMA domains. Additionally, by reordering the
columns in the sparse feature matrix, data locality and, accordingly, cache efficacy
can be improved. An implementation that combines techniques can be found at https:
//doi.org/10.5281/zenodo.6699587. For further discussion on the interaction between
machine learning and the memory hierarchy, see Chapter 7.

The amount of work required to train the linear classifier for the highly imbalanced
data typical for XMC can be drastically reduced by starting the weights from a good
initialization. One way to find such a weight vector is to reduce the dataset to just
two training instances, the centers of masses of the positive and negative training
points in the original dataset, which can be calculated efficiently. By initializing the
full training procedure with a weight vector that separates this summarized data, one
can capitalize on the speedup of the conjugate-gradient optimizer due to implicit hard-
instance mining of the hinge loss. This procedure can be seen as a variation of the
sketch-and-solve principle introduced in Section 3.2. The main difference is that here
the solution based on the sketch is used to initialize the full training, and thus no
compromise in accuracy is made.

The presentation in the book is focused on the computational and implementation
challenges of XMC problems. However, the scale of the label space also leads to interest-
ing statistical consequences such as a long-tailed label distribution and corresponding
data-scarcity for tail labels, as well as incomplete training data with missing labels. For
a discussion of these issues, see the works of Babbar and Schölkopf [29], Jain, Prabhu,
and Varma [336], and Qaraei, Schultheis, Gupta, and Babbar [587].

https://doi.org/10.5281/zenodo.6699587
https://doi.org/10.5281/zenodo.6699587

6.4 Optimization of ML on Modern Multicore Systems | 285

6.4 Optimization of ML on Modern Multicore Systems

Helena Kotthaus
Peter Marwedel

Abstract: This section demonstrates how the integration of knowledge about underlying
hardware platforms and learning algorithms can provide results that would not be
feasible by using the knowledge of only one type. In particular, this section presents
the optimization of ML algorithms on multicore systems, and in this way addresses
the same type of architectures as in Section 6.3. The optimization is based on resource-
aware scheduling strategies for parallel machine learning algorithms. The focus is on
Model-Based Optimization (MBO), also known as Bayesian optimization, which is an
ML algorithm with huge resource demands, including a large number of computational
jobs. Execution times of these jobs are estimated in order to enable their scheduling
on parallel processors. The section demonstrates that this scheduling enables the
processing of larger problem sizes within a given time budget and reduces the end-to-
end wall-clock time for a constant problem size.

6.4.1 Motivation

The notion of resource-constrained systems is typically associated with small, inte-
grated, and special-purpose devices exhibiting limitations with respect to, say, compu-
tational power, size, or battery life in embedded and cyber-physical systems. However,
reducing the understanding of resource restriction to systems of this kind is not sensi-
ble. In fact, even high-performance computers and clusters can suffer from resource
constraints when solving highly challenging problems that require massive amounts of
resources [166, 666]. Therefore, it makes sense to consider resource constraints also for
applications typically executed on larger systems.

Here, this is shown for the case of parallelMBO. MBO is a state-of-the-art global
optimization method for black-box functions that are expensive to evaluate. To reduce
the number of necessary evaluations of the black-box function, conventional MBO
uses an iteratively refined regression model on a set of already evaluated configura-
tions to approximate the objective function. However, such approaches neglect the
heterogeneous resource requirements for evaluating different configurations in the
model space, which often leads to inefficient resource utilization. This calls for new
resource-aware scheduling strategies to efficientlymap configurations to the underlying
parallel architecture in accordance with their resource demands. In contrast to classical
scheduling problems, the scheduling for MBO needs to interact with the configura-

286 | 6 Hardware-Aware Execution

tion proposal mechanism to select configurations with suitable resource demands for
parallel evaluation.

The fundamentals and related approaches of parallel MBO are presented in Sec-
tion 6.4.2. An overview of the RAMBO (Resource-Aware MBO) framework including the
resource-aware scheduling strategies, as well as the corresponding evaluation results
on homogeneous multiprocessor cluster systems, is given in Section 6.4.3. Section 6.4.4
proposes a concept for resource-aware scheduling strategies on heterogeneous embed-
ded systems. The results are shown in Section 6.4.5.

6.4.2 Fundamentals and State of the Art for Parallel MBO

Inmachine learning, selecting the best algorithms for a given optimization problem and
simultaneously tuning the corresponding hyperparameters of these algorithms can be
very computationally intensive. Many strategies for hyperparameter optimization have
been developed. (For an overview see, e.g., [55]). Hyperparameter optimization refers
to finding the best configuration θ of a model, e.g., for a prediction problem a model
with high predictive performance on an independent test set. When the evaluation of a
single configuration already requires high resources, e.g., a very long runtime, then
very wasteful optimization methods like evolutionary algorithms are not applicable. A
popular approach for algorithm selection is F-racing [448], where a population of con-
figurations is racing against each other and underperforming candidates are iteratively
eliminated. This approach also requires many evaluations, at least in the early stage of
the algorithm.

An established alternative in the situation of expensive time constraints is Model-
Based Optimization (MBO), also known as Bayesian optimization, a state-of-the-art
technique for expensive black-box optimization. In this optimization process, an un-
known function, say, a machine learning algorithm, is evaluated to find the parameter
configuration with the highest quality of the output measured by a given performance
criterion within a limited time budget. This process is computationally challenging due
to the huge parameter space that needs to be contemplated, and can result in extremely
long response times. For this reason it is desirable to reduce the optimization time
while maintaining the prediction quality, i.e., θ* := argminθ∈Θ f (θ) for a search space
Θ and an evaluation f (θ) of the black-box with input θ ∈ Θ [348]. Aiming to reduce
the number of evaluations of f required to find the best configuration θ*, we used an
iteratively refined and updated regression model (surrogate model), which attempts to
approximate the black-box function by predicting f (θ) based on previous evaluations
of f . During each iteration, a so-called infill criterion (acquisition function) proposes
new promising configurations for evaluation.

In its original formulation, theMBO algorithm operates purely sequentially, propos-
ing one configuration to be evaluated after the other [348]. For applications such as
hyperparameter tuning for machine learning algorithms or computer simulations, the

6.4 Optimization of ML on Modern Multicore Systems | 287

parallelization of MBO has become of an increasingly interesting approach to reduce
the overall execution time [288]. In order to propose multiple points (configurations)
simultaneously in a parallel MBO setting, several modifications to the infill criteria or
the general technique have been suggested. The modifications result in multiple config-
urations being proposed in each iteration [54, 254, 328]. The number of simultaneously
proposed configurations is typically chosen tomatch the number of available CPU cores.
However, these modifications in general neglect the heterogeneous resource require-
ments for evaluating different configurations in parallel. Depending on the parameter
configuration of the applied machine learning algorithm, resource requirements such
as CPU utilization or memory footprint usage can vary heavily [666].

The most important parallel extensions of MBO update the regression model either
synchronously or asynchronously. Both variants are based on different infill criteria
and have different advantages and drawbacks.

Synchronous Execution To allow for parallelization with a synchronous model
update, infill criteria and techniques that propose multiple configurations in each
iteration (constant liar, Kriging believer, qEI [254], qLCB [328], MOI-MBO [54]) have been
suggested.Multi-point proposals are able to derive q configuration proposals x*1, . . . , x*q
simultaneously instead of only proposing one configuration x* from a surrogate model.
Here, themodel is updated after all evaluations within one iteration are finished. Hutter
et al. [328] introduced the qLCB criterion, which is an extension of the single-point LCB
criterion using an exponentially distributed random variable to generate q different
candidate proposals by drawing random values of λj ∼ Exp(λ) (j = 1, ..., q) from the
exponential distribution:

qLCB(x, λj) = μ̂(x) − λj ŝ(x) with λj ∼ Exp(λ). (6.22)

The λ variable guides the exploration-exploitation trade-off. Samplingmultiple different
λj might result in different “good” configurations by varying the impact of the standard
deviation term.

Another popular multi-point infill criterion is the qEI criterion [254], which directly
optimizes the single-point EI criterion over q points. As the computation of EI uses
Monte Carlo sampling, it is quite expensive [136]. Therefore, a less expensive alternative,
the Kriging believer approach [254], is often chosen. Here, the first configuration is
proposed based on the standard single-point EI criterion. Its posterior mean value is
treated as a real value of f to refit the surrogate, penalizing the surrounding region with
a lower standard deviation for the next point proposal using EI again. This is repeated
until q proposals are generated.

The above mentioned multi-point infill criteria can cause inefficient resource uti-
lization when the parallel executed evaluations have heterogeneous execution times.
Before new configurations are proposed, the results of all evaluations within one it-
eration are gathered to update the model. Thus the slowest evaluation becomes the

288 | 6 Hardware-Aware Execution

bottleneck, and all other parallel worker processes idle after finishing their evaluation
before a new MBO iteration can start. However, performing the model updates only
once per MBO iteration also leads to less computation overhead. Varying the execution
times of parallel evaluations have already been addressed by Snoek et al. [635], who
suggest that these be modelled with an additional surrogate, leading to an “expected
improvement per second” favoring less expensive configurations. The resource-aware
scheduling strategies for parallel MBO presented in this section also use regression
models to estimate resource requirements, but instead of adapting the infill criterion,
they use them to guide the scheduling of parallel evaluations. The goal is to guide MBO
to interesting regions in a faster and resource-efficient way without directly favoring
less expensive configurations.

Asynchronous Execution To avoid CPU idling, asynchronous execution replaces
the evaluation of multiple configurations in batches, and the synchronous refitting of
the model by refitting the model after each evaluation. Here, the number of worker
processes equals the number of available CPU cores, but each worker proposes the
next point for evaluation independently, even if configurations xbusy are currently
under evaluation on other CPU cores. The main challenge is to avoid evaluations of
very similar configurations by modifying the infill criterion to deal with points that are
currently under evaluation. The fast Kriging believer approach [254], which is based on
EI (also used for multi-point proposals), can be applied to block these regions.

Another approach assessing pending values is the Expected EI (EEI) [253, 339, 635].
Here, the unknown value of f (xbusy) is integrated out by calculating the expected value
of ybusy via Monte Carlo sampling, which is, similar to qEI, computationally demanding.
For each Monte Carlo iteration, values y1,busy, . . . , yμ,busy are drawn from the posterior
distribution of the surrogate regression model at x1,busy, . . . , xμ,busy, with μ denoting
the number of pending evaluations. These values are combined with the set of already
known evaluations and used to fit the surrogate model. The EEI can then simply be
calculated by averaging the individual expected improvement values, which are formed
by each Monte Carlo sample (nsim denotes the number of Monte Carlo iterations):

ÊEI(x) = 1
nsim

nsim∑︁

i=1
EIi(x) (6.23)

Besides the advantage of an increased CPU utilization, asynchronous execution can
also cause additional runtime overhead due to the higher number of model updates
and the computational costs for new point proposals, especially when the number
of available CPU cores increases. Furthermore, the heterogeneous execution times of
job configurations can lead to very similar point proposals due to model updates that
are based on similar histories. Instead of using asynchronous execution to efficiently
utilize parallel computer architectures, the new approach presented in this section
uses the synchronous execution combined with resource-aware scheduling. The next

6.4 Optimization of ML on Modern Multicore Systems | 289

section includes a comparison of this approach (RAMBO) [385, 389, 390, 666] with the
synchronous and asynchronous parallel variants of MBO described above.

6.4.3 Resource-Aware Scheduling Strategies

To enable the interaction between resource-aware scheduling strategies and the general
MBO process, the RAMBO framework is proposed. Its foundations are based on the
mlrMBO library [53]. The framework shown in Figure 6.18 aims to resource-efficiently
reduce the end-to-end wall clock time needed by parallel MBO, and thus converge to
the optimal configuration more rapidly. RAMBO consists of three main steps:

Fig. 6.18: Key steps (shown in blue) in the Resource-Aware Model-Based Optimization Framework
[385]: building a regression model, selection of evaluation jobs, and job scheduling. Asynchronous
execution (dashed line) and synchronous execution (solid lines) are possible.

First, a previously initialized regression model is built by theMBO method. Simulta-
neously, a job utility estimator creates profiles for the evaluations of configurations
(jobs) by means of an additional regression model. These job profiles include runtime
estimates, which are used as an input for the respective scheduling strategy later on. In
conventional synchronous MBO approaches, such runtime estimates are not available.
Hence, the slowest evaluation becomes a bottleneck within one MBO iteration, and the
already finished parallel worker processes remain idle. As a consequence, the feedback
of all idling processes and hence the model update is delayed.

The second step, i.e., the job selection, follows the MBO principles for configuration
proposals. Typically, an infill criterion such as qLCB in equation (6.22) is used to propose
configurations offering a proper compromise between the predicted outputs (exploit)
and the uncertainty about the search space region (explore), i.e., that have a high
potential to optimize the quality of the regression model. To this end, RAMBO provides
mechanisms to interact with the job proposal mechanism by postponing or skipping
suggested configurations that are deemed to be insufficiently promising or exhibit

290 | 6 Hardware-Aware Execution

unsuitable job profiles. As part of this process, a knapsack-based heuristic can be
applied to select the most promising and suitable configurations.

Finally, a configurable scheduling strategy allocates the jobs to the available re-
sources (system description) according to their particular resource demands. In addi-
tion, an execution priority based on the infill criterion is required to ensure that the
model is updated i) with the most promising configurations and ii) as soon as possible.
This model update follows the synchronous approach, i.e., it is performed when the
results of all jobs executed within one MBO iteration are gathered. In a nutshell, the
regression model is iteratively updated based on the results of all previous iterations
until the runtime budget is exhausted.

Priorities for Job Selection To model the usefulness of a candidate for the objective
function, Kriging is used as a surrogate regression model, and qLCB (6.22) is used as a
multi-point infill criterion to generate a set of job proposals. Compared with the multi-
point proposal qEI [254], the qLCB criterion is more suitable since it is able to propose
a set of independent candidates. qLCB can simultaneously generate q candidates by
drawing q random values of λj ∼ Exp(λ) (j = 1, . . . , q) from the exponential distribu-
tion. Each λj results in a different trade-off between exploitation (λj ↓) and exploration
(λj ↑), and thus leads to a different optimal configuration x*j after solving

x

*
j := argmin

x

[︀
LCB(x, λj)

]︀
= argmin

x

[︀
ŷ(x) − λj ŝ(x)

]︀
, (6.24)

where ŷ(x) denotes the posterior mean and ŝ(x) denotes the root of the posterior stan-
dard deviation of the surrogate model at point x.

Since the set of proposed candidates x*j cannot be directly ordered by how promis-
ing a candidate is, an additional order is introduced to guide the search for the best
candidate towards more promising areas. Therefore, the highest priority is given to the
candidate xj that was proposed using the smallest value of λj and is thus closest to the
optimum (exploitation). The priority for each job is defined as pj := −λj.

However, qLCB does not include a penalty for the proximity of selected configu-
rations, which might become a problem if the number of parallel evaluations is high.
Therefore, the Euclidean distance is used to reprioritize pj to p̃j, encouraging the selec-
tion of configurations that are more scattered in the domain space.

First, a set of q > m configurations is sampled from the qLCB criterion. These
configurations are then hierarchically clustered by their distance in the domain space
of the objective function using the complete linkage method. The procedure starts with
the configuration that has previously been assigned the highest priority and assigns
it to the first position in the list of selected jobs J̃. For each following step i ≥ 2, all
candidates are split into i clusters according to the hierarchical clustering. Of these i
clusters the i − 1 clusters that already contain candidates with assigned positions are
discarded, leaving one cluster. The position i in J̃ is assigned to the job with the highest
priority within this cluster. This goes on until all q candidates have assigned positions.

6.4 Optimization of ML on Modern Multicore Systems | 291

Thereby an ordering following the hierarchy induced by the clustering is generated.
Finally, new priorities p̃j are assigned based on the order of J̃, i.e. the first job in J̃ gets
the highest priority q and the last job gets the priority 1.

As a result, the set of candidates contains batches of jobs with similar priority,
which are spread in the domain space. The priorities serve as input for the scheduling,
which groups the q jobs to m CPU cores using the runtime estimates t̂.

Resource Utility Estimation The runtime estimates of the set of jobs proposed in
each MBO iteration are needed for the scheduling to avoid the execution of jobs with
high runtime variances and thus to reduce idlingworker processes. This is accomplished
by using an additional regression model. As for the MBO algorithm itself, the runtime
of a job is predicted in each iteration based on the runtimes of all previously evaluated
jobs to build the runtime model of the black-box function. For the model, Kriging is
used for homogeneous CPU systems since the runtime is expected to be a continuous
function. For parallel architectures with heterogeneous CPUs, Random Forest is used
for the model instead. Here, the runtime of a job is estimated for different CPU types
(as described in Section 6.4.4). The accuracy of the runtime estimation also influences
the scheduling decision. Therefore the runtime estimation quality is also included in
the evaluation results.

Knapsack-Based Scheduling Strategy The goal of the knapsack-based scheduling
strategy is also to reduce the CPU idle time on the workers while acquiring the feedback
of the workers in the shortest possible time to avoid model update delay. Here the qLCB
multi-point infill criterion is used to form a set of jobs J = {1, . . . , q} that should be
executed on the available CPU cores K = {1, . . . ,m}. The estimated runtime is given
by t̂j and the corresponding priority by pj for each job proposal. The time bound for
each MBO iteration (deadline) is defined by the runtime of the highest prioritized job.
The goal is to maximize the profit, given by the priorities, of parallel job executions
within each MBO iteration. To solve this problem, we apply the 0 − 1multiple knapsack
algorithm for global optimization routines [62]. Here, the knapsacks are the available
CPU cores and their capacity is the maximally allowed computing time, defined by
the runtime of the job with the highest priority. The items are the jobs J, their weights
are the estimated runtimes t̂j, and their values are the priorities pj. Accordingsly, the
capacity for each CPU core is t̂j* , with j* := argmaxj pj. To select the best subset of jobs,
the algorithm maximizes the profit Q:

Q =
∑︁

j∈J

∑︁

k∈K
pjckj , (6.25)

It is the sum of priorities of the selected jobs, under the restriction of the capacity

t̂j* ≥
∑︁

j∈J
t̂jckj ∀k ∈ K (6.26)

292 | 6 Hardware-Aware Execution

per CPU. The restriction with the decision variable ckj ∈ {0, 1} s.t.

1 ≥
∑︁

k∈K
ckj ∀j ∈ J, ckj ∈ {0, 1} (6.27)

ensures that a job j is at most mapped to one CPU.
The job with the highest priority defines the time bound (deadline) t̂j* and is thus

mapped to the first CPU core k = 1 exclusively, while single jobs with higher execution
times are directly discarded (discarded jobs will be proposed again in the next MBO
iteration if they are promising enough). Then, the knapsack algorithm is applied to
assign the remaining candidates in J to the remainingm−1 CPU cores. This leads to the
best subset of J that can be run in parallel, minimizing the delay of the model update.
If a CPU core is left without a job, the regression model can be optionally queried for
a job with an estimated runtime smaller or equal to t̂j* to fill the gaps. Jobs having
an estimated runtime shorter than the deadline, however, can lead to idle times if no
other job can be executed within the time remaining until the next model update. The
idle time resulting from suboptimal resource usage can be additionally exploited by
enabling preemption and migration. More precisely, allowing jobs to be preempted and
migrated to other cores provides the opportunity to fill unused time slots within an
MBO iteration with high-priority jobs that would be skipped otherwise. Thus a larger
set of jobs can be executed. The details of RAMBO’s flexible migration mechanisms are
described in [389].

Evaluation To evaluate the resource-aware MBO scheduling strategies included in
the RAMBO framework, a comparison with different synchronous and asynchronous
parallelMBOapproacheswas performed. The comparison included two asynchronously
executed MBO strategies [253, 338] aiming to use all available CPU time to solve the
optimization problem in parallel. Both of them used Kriging as a surrogate, with the
EEI criterion 6.23 [339] and the Kriging believer [254] criterion. In Kotthaus et al. [390],
RAMBO was also compared with a third asynchronous execution strategy, which is
included in the SMAC (Sequential Model-based Algorithm Configuration) tool [329],
using a random forest surrogate. The results showed that RAMBO and the two other
asynchronous execution strategies always converged faster to the optimum compared
to SMAC, which is why SMAC is not included in the following presentation. Besides
the comparison with the asynchronous strategies, the following presentation also
includes two synchronously executed MBO approaches. One of them used the qLCB
multi-point infill criterion 6.22 and the other used the qEI criterion [254]. All parallel
MBO approaches including the new RAMBO approach were evaluated on a set of
established continuous synthetic functions combined with simulated execution times
to ensure a fair and disturbance-free environment.

The usage of synthetic functions ruled out technical problems emerging on multi-
user systems (swapping, network congestion, CPU cycle stealing, other users occupying

6.4 Optimization of ML on Modern Multicore Systems | 293

fast caches, etc.). Furthermore, synthetic functions eased the evaluation of MBO ap-
proaches on different difficulty levels. Two different categories of objective functions
(implemented in the R library smoof [66]) were considered:
1. Functions with a smooth surface: rosenbrock(d) and bohachevsky(d) with dimen-

sion d = 2, 5, 10, which are likely to be fitted well by MBO.
2. Highlymultimodal functions: ackley(d) and rastrigin(d) (d = 2, 5, 10), forwhich

MBO is expected to have problems achieving good results.

For each objective function, a 2-, 5- and 10-dimensional version were used, each of
which was optimized using 4 and 16 CPU cores in parallel to investigate scalability.
Figure 6.19 visualizes the synthetic test functions for d = 2 [385].

x1 x2

y

(a) Bohachevsky

x1 x2

y

(b) Rosenbrock

x1 x2

y

(c) Ackley

x1 x2

y

(d) Rastrigin

Fig. 6.19: Synthetic test functions used for the evaluation for d = 2. (a) and (b) show a smooth
surface; (c) and (d) are highly multimodal [385].

Since synthetic functions are illustrative test functions, they have no significant
runtime. Therefore, these functions were also used to simulate different runtime
behaviors. For each benchmark two different synthetic functions were combined. One
determines the number of seconds it would take to calculate the objective value of
the other function. For example, for the combination rastrigin(2).rosenbrock(2)
it would require rosenbrock(2)(x) seconds to retrieve the desired objective value
rastrigin(2)(x) for an arbitrary proposed configuration x. Technically, the benchmark

294 | 6 Hardware-Aware Execution

sleeps rosenbrock(2)(x) seconds before returning the objective value. The runtime was
simulated with either rosenbrock(d) or rastrigin(d), and all combinations of the four
objective functions were analyzed except where the objective and the time function
were identical. For the unification of the input space, values from the input space of
the objective function were mapped to the input space of the function that simulated
the runtime behavior. The output of the runtime functions were scaled to return values
between 5minutes to 60minutes.

To examine how fast the parallel approaches converge to the optima of the bench-
mark functions within a limited time budget, the distance between the best found
configuration at time t and a predefined target value (optimal configuration) was mea-
sured. This measurement reflects the accuracy of the receptive MBO approach within
the given time budget. To make this measurement comparable for all objective func-
tions, the function values were scaled to [0, 1]. Here, 0 is the target value, defined as
the best configuration y reached by any optimization approach within the given time
budget. The upper bound 1 is the best y found in the initial set of already evaluated
configurations, and is identical for all approaches per given benchmark. Both values
were averaged over 10 repetitions. If an optimization needs 2 hours to reach an accuracy
of 0.5, this means that within 2 hours half of the way to the best configuration 0 has
been accomplished, after starting at 1. The differences between the approaches were
compared at the three accuracy levels 0.5, 0.1, and 0.01. The optimizations were re-
peated 10 times and conducted onm = 4 andm = 16 CPUs to examine scalability. Time
budgets were 4 hours for 4 CPU cores and 2 hours for 16 CPU cores in total, including
all computational overhead and CPU idling. All experiments were executed on a Docker
Swarm cluster using the R library batchtools [415]. The initial set was generated by
latin hypercube sampling [481] with n = 4 · d configurations, and all of the following
optimizations start with the same initial set in all 10 repetitions:
– rs: Random search, served as a base-line.
– qLCB: Synchronously executedMBO using qLCBwhere in eachMBO iteration q = m

configurations were proposed.
– ei.bel: Synchronously executed approach using Kriging believer where in each

MBO iteration m configuration were proposed.
– asyn.ei.bel: Asynchronously executed MBO using Kriging believer.
– asyn.eei: Asynchronously executed MBO using EEI (100 Monte Carlo iterations).
– rambo: New synchronously executed MBO using qLCB with job priority refinement

and the knapsack-based resource-aware scheduling strategy, q = 8 · m candidates
proposed in each iteration.

Optimizations qLCB and ei.bel are implemented in the R library mlrMBO [53]. Opti-
mizations asyn.eei, asyn.ei.bel and rambo are also based on mlrMBO. For all MBO ap-
proaches, a Krigingmodel was used from the library DiceKriging [605] with aMatern 5

2 -
kernel [474] and a nugget effect of 10−8 · Var(y), where y denotes the vector of all
observed function outcomes.

6.4 Optimization of ML on Modern Multicore Systems | 295

The quality of resource-aware scheduling depends on the accuracy of the resource
estimation. Without reliable runtime predictions, the scheduler is unable to optimize
for efficient utilization. The runtime for all benchmarks was simulated with either
rosenbrock(d) or rastrigin(d). Figure 6.20 shows an example where the runtime
estimation for the rosenbrock(5) time function works well (left part). Here, the residual
values for the runtime estimation of the evaluated configurations decrease over time.
However, the runtime prediction for rastrigin(5) (right part) is imprecise. For the 2-
and 10-dimensional versions, the results are similar.

bohachevsky.rosenbrock_5d bohachevsky.rastrigin_5d

0 1 2 3 4 0 1 2 3 4
−1500

−1000

−500

0

500

1000

Hours

P
re

di
ct

io
n

−
 R

un
tim

e
(s

ec
on

ds
)

Fig. 6.20: Residuals of the runtime estimation over time for the rosenbrock(5) and rastrigin(5) time
functions on 4 CPU cores combined with bohachevsky(5) as the objective function. Positive values
indicate an overestimated runtime and negative values indicate an underestimation [385].

This encourages us to consider separate scenarios where runtime estimation has a high
quality (rosenbrock(·)), and scenarios where runtime estimation is usually error-prone
(rastrigin(·))s. In the following, we will focus on the scenario with high resource
estimation quality. The evaluation results of the scenario with low runtime estima-
tion quality can be found in [385] and are further optimized by a flexible scheduling
mechanism [389].

Box plots for the time required to reach the three different accuracy levels in 10 rep-
etitions within a budget of 4 hours on 4 CPU cores are shown in Figure 6.21, and within
a budget of 2 hours on 16 CPU cores in Figure 6.22. The faster an approach reaches the
desired accuracy level, the lower the box and the better the approach. If an approach
was unable to reach an accuracy level within the given time budget, the respective time
budget plus a penalty of 1 000 s is entered. Table 6.7 lists the aggregated ranks over all
objective functions, grouped by approach, accuracy level, and number of CPU cores.
For this computation, the approaches are ranked with regard to their performance for
each repetition and benchmark before they are aggregated with the mean. If there are
ties in Figures 6.21 and 6.21 (e.g., if an accuracy level was not reached), all values are
assigned the worst possible rank. The benchmarks indicate an overall advantage of the
new resource-aware MBO algorithm rambo. On average, rambo is always fastest. rambo

296 | 6 Hardware-Aware Execution

●

●

● ●●
●
●

●

●●

●
●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●●

●

●

●

●

●●

●
●

●
●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●●

●
●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●● ●

●

●

●

●

●

●

bohachevsky.rosenbrock ackley.rosenbrock rastrigin.rosenbrock

10d (4 C
P

U
s)

5d (4 C
P

U
s)

2d (4 C
P

U
s)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0

1

2

3

4

0

1

2

3

4

0

1

2

3

4

Accuracy Level

H
ou

rs

Algorithm asyn.eei asyn.ei.bel RAMBO ei.bel qLCB rs

Fig. 6.21: Execution times on 4 cores as a function of the accuracy level for different objective func-
tions using the time function rosenbrock(·) [385]. Execution times are low for moderate accuracy
levels and favourable for RAMBO (shown in blue).

is closely followed by the asynchronous MBO variant asyn.ei.bel for accuracy levels
0.5 and 0.1 on 4 CPU cores but the lead becomes more clear on 16 CPU cores, especially
for the highest accuracy level 0.01.

In comparison with the conventional synchronous MBO approaches ei.bel and
qLCB, rambo, asyn.eei, and asyn.ei.bel reach the given accuracy levels in shorter
time on 16 CPU cores. This is especially true for objective functions that are highly
multimodal and thus hard to model (ackley(·), rastrigin(·)) by the surrogate, as seen
in Figure 6.22.

Table 6.7 shows that the less expensive asyn.ei.bel approach performs better than
the computationally demanding asyn.eei on 16 CPUs. On 4 CPUs the synchronous
qLCB approach is faster than the asynchronous approaches for the highest accuracy
level 0.01. This result is influenced by the good performance of qLCB on functions with
a smooth surface, as can be seen in Figure 6.21 in the 5− and 10-dimensional version of
the bohachevsky(·)benchmark.When comparing the performance of the approaches for
the 2-dimensional versus the 10-dimensional versions of the benchmarks, Figure 6.22
shows that the rambo approach outperforms all other approaches at higher dimensional
problems compared with lower dimensions.

6.4 Optimization of ML on Modern Multicore Systems | 297

●●
●●●●

●
● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●
●

●
●

●●

●

●●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●
●

●

bohachevsky.rosenbrock ackley.rosenbrock rastrigin.rosenbrock

10d (16 C
P

U
s)

5d (16 C
P

U
s)

2d (16 C
P

U
s)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

0.0

0.5

1.0

1.5

2.0

Accuracy level

H
ou

rs
Algorithm asyn.eei asyn.ei.bel RAMBO ei.bel qLCB rs

Fig. 6.22: Execution times on 16 cores as a function of the accuracy level for different objective
functions using the time function rosenbrock(·) [385].

Figure 6.23 exemplarily visualizes themapping of the parallel configuration evaluations
(jobs) for all MBO approaches on 16 CPU cores for the 5d versions of the benchmarks.
Each gray box represents the execution time of a job on the respective CPU. The gaps
represent CPU idle time. For the synchronously executed MBO approaches rambo, qLCB,
and ei.bel, the vertical lines represent the end of an MBO iteration. Red boxes indicate
that the CPU is busy with a point proposal.

The necessity of a resource estimation for jobs with varying runtimes is obvious
because the synchronous variants qLCB and ei.bel can cause long idle times byqueuing
jobs togetherwith large runtime differences. The scheduling in rambomanages to reduce
this idle time. This effect of efficient resource utilization increases with the number of
CPUs. rambo reaches nearly the same effective resource utilization as the asynchronous
approaches and at the same time reaches the accuracy level fastest. The Monte Carlo
approach asyn.eei generates a high computational overhead as indicated by the red
boxes, which reduces the effective number of evaluations. Here, the overhead for a
new point proposal sometimes needs the same amount of time as the job evaluation.
Idling occurs because the calculation of the EEI is encouraged to wait for ongoing EEI
calculations to include their proposals. This overhead also increases with the number
of evaluated points. By contrast, asyn.ei.bel has comparably low overhead and thus
basically no idle time. This seems to be an advantage for asyn.ei.bel on 16 CPU cores,

298 | 6 Hardware-Aware Execution

Tab. 6.7: Execution times for accuracy levels 0.5, 0.1, 0.01 averaged over all benchmarks with the
rosenbrock(·) time function on 4 and 16 CPU cores with a time budget of 4 hours and 2 hours, respec-
tively [385]. Relative ranks within a column are included in parentheses.

4 CPUs 16 CPUs
Algorithm 0.5 0.1 0.01 0.5 0.1 0.01

asyn.eei 3.53 (3) 3.91 (3) 4.91 (3) 3.64 (3) 4.30 (3) 5.30 (3)
asyn.ei.bel 3.21 (2) 3.66 (2) 5.04 (4) 2.93 (2) 3.31 (2) 4.48 (2)
rambo 2.47 (1) 3.40 (1) 4.23 (1) 2.54 (1) 2.98 (1) 3.72 (1)
ei.bel 3.64 (4) 4.36 (5) 5.31 (5) 3.81 (4) 4.57 (4) 5.70 (5)
qLCB 4.02 (5) 4.24 (4) 4.83 (2) 4.27 (5) 5.04 (5) 5.40 (4)
rs 5.57 (6) 5.89 (6) 5.89 (6) 5.17 (6) 5.71 (6) 5.82 (6)

where on average it performs better on all accuracy levels than the computationally
demanding asyn.eei, especially for higher dimensional problems.

Observations rambo outperforms the conventional synchronous MBO. The resource
utilization obtained by the scheduling in rambo leads to faster and better results, es-
pecially when it comes to increasing problem dimensions (configurable parameters)
and increasing numbers of available CPU cores. On average, rambo converges faster to
the optimum than all considered asynchronous approaches. This indicates that the
resource utilization obtained by the RAMBO approach improves MBO, especially when
the number of available CPU cores increases. Predictable runtimes can be assumed
for real applications like hyperparameter optimization for machine learning methods,
even if the runtime estimation quality is difficult to determine in advance. The results
also suggest that, on some setups, the choice of the infill criterion determines the
parallelization strategy for better performance.

6.4.4 Scheduling Strategies for Heterogeneous Architectures

As described in Section 6.4.3, the resource-aware scheduling for MBO uses two inputs:
the estimated resource utilization and the priority of the proposed candidates.While the
priority of a candidate is computed as described above, the estimation of the resource
utilization needs to be enhanced for heterogeneous systems.

Resource Estimation for Heterogeneous Systems The regression model used to
estimate the execution times of the candidates was previously based on Kriging; now
Random Forest is applied instead. Random Forest is more suitable for heterogeneous
systems since the job execution times build up a discontinuous model due to the
additional categorical variable that represents the processor type. The regressionmodel
now needs to estimate the runtime t̂j for each candidate in the proposed set of jobs J =

6.4 Optimization of ML on Modern Multicore Systems | 299

bohachevsky.rosenbrock_5d ackley.rosenbrock_5d rastrigin.rosenbrock_5d

asyn.eei
asyn.ei.bel

R
A

M
B

O
ei.bel

qLC
B

0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

0
4
8

12
16

Hours

C
P

U

Fig. 6.23: Scheduling of MBO algorithms: Time shown on x-axis and mapping of candidates to
m = 16 CPU cores on y-axis. Each gray box is a job. Each red box represents the overhead of the
point proposal. The gaps represent CPU idle time [385].

{1, . . . , q} and for each available CPU core K = {1, . . . ,m}. This is required since the
execution of a job is processor-dependent. If the underlying heterogeneous architecture
is known, the number of runtime estimates per job can be reduced to the number of
different processor types. Thus the runtime of a job j ∈ J is predicted for each available
processor type k ∈ K in each MBO iteration based on the runtime of all previously
evaluated jobs to build the runtime model of the black-box function and is therefore
denoted as t̂kj.

Knapsack-Based Scheduling To apply the 0 − 1multiple knapsack algorithm for
scheduling on heterogeneous architectures, the original formulation from Section 6.4.3
needs to be extended. Now the items representing the jobs J have different weights, rep-
resented by the different runtime estimates t̂jk per processor type k. Since the capacity
of the CPU cores is now heterogeneous, a reformulation is needed. For this purpose, a
ratio variable representing an approximated ratio of the runtime differences produced
by the different processor types is introduced.

To minimize the delay of the model update with the results of the most promising
candidate, the job with the highest priority j* := argmaxj pj is now always placed on
the CPU core k* := argmink t̂kj* leading to the shortest estimated runtime for j*. The
capacity for the remaining CPUs, and thus the time bound for each MBO iteration, is
accordingly defined by the shortest estimated runtime of the highest prioritized job
t̂k* j* . We introduce the ratio variable t̂k* j* / t̂kj* representing the runtime difference of the
highest prioritized job on the remaining k CPU cores.

300 | 6 Hardware-Aware Execution

The assumption that runtimes on different CPU types differ by a constant factor goes
back to the uniform processor model described by Pinedo, which is a simplified model
of real hardware [579]. For example, one CPU might offer vector instructions that some
jobs benefit from, whereas others make no use of them. Instead of relying on statically
precomputed ratios (such as those derived from the ratio of CPU frequencies), the
selected job j* is used as the “benchmark” for comparing CPU speeds in a given MBO
iteration, under the assumption that in this iteration the speed on CPU k differs from
k* by a factor of t̂k* j* / t̂kj* . The formulation of the restriction of the capacities for the
remaining CPU cores is thus as follows,while the rest of the knapsack algorithm remains
as described in Section 6.4.3:

t̂k* j*
t̂k* j*
t̂kj*

≥
∑︁

j∈J
t̂k* jckj ∀k ∈ K. (6.28)

Here, the estimated execution times of the remaining candidates on the fastest CPU
core t̂k* j on the right-hand side of equation 6.28 is expected to be approximately similar
to the estimated runtime of a job on the remaining CPU cores t̂kj, multiplied by the ratio
variable:

t̂k* j ≈ t̂kj
t̂k* j*
t̂kj*

∀k ∈ K, ∀j ∈ J. (6.29)

This formulation is needed to reduce the number of weights (number of runtime es-
timates per CPU type) per item j to a single weight t̂k* j in order to apply the original
knapsack algorithm.

Evaluation The effectiveness of the heterogeneous RAMBO approach is evaluated by
targeting the ARM big.LITTLE architecture⁶ of the Odroid-XU3 platform,⁷ which is also
commonly found in mobile devices. This platform is equipped with four “big” Cortex
A15 CPUs (quad-core) with a frequency that can be scaled up to 2.0GHz and four “little”
Cortex A7 CPUs that have about half the processor speed (1.4 GHz). The Odroid-XU3
platform also includes a Mali-T628 GPU (not considered here) and 2GB of mainmemory.
For the evaluation of RAMBO on heterogeneous processing architectures, not only the
runtime that is needed to find the best possible configuration is examined but also the
energy consumption. This is accomplished by reading from the power measurement
sensors INA231 offered by the Odroid-XU3 platform, which report energy consumption
for both processor types as well as for the RAM and the GPU. Tomeasure the energy and
power consumption of the resource-aware scheduling strategy and its competing MBO
approaches, a so-called Relay Reader [526] is used to read out the sensor data in regular

6 ARM big.LITTLE Technology: https://developer.arm.com/technologies/big-little (accessed Feb. 22nd,
2022).
7 Odroid-XU3: https://developer.arm.com/graphics/development-platforms/odroid-xu3 (accessed Feb.
22nd, 2022).

https://developer.arm.com/technologies/big-little
https://developer.arm.com/graphics/development-platforms/odroid-xu3

6.4 Optimization of ML on Modern Multicore Systems | 301

intervals of approximately one second via threads for both CPU types. These threads
are executed on separate CPUs and do not influence the runtime measurements.

The experimental setup consists of a subset of the setup described in Section 6.4.3.
RAMBO is compared with the conventional synchronous MBO approach using the qLCB
multi-point infill criterion and with the asynchronous MBO approach, which aims to ex-
ploit all available CPU time to solve the optimization problem in parallel and using the
Kriging believer criterion [254]. All MBO approaches are evaluated on the 2-dimensional
versions of the synthetic functions and executed on 4 CPU cores. The runtime of the ob-
jective functions was previously simulated by sleeping for a given time, determined via
an additional synthetic function that represented the runtime behavior of the respective
objective function. For the power consumption measurements, a real computation is
needed. This is accomplished by repeatedly executing a function that draws random
numbers. The runtime of this real computation is still controlled via an additional
synthetic function that defines the number of repetitions and simulates the time that is
needed for calculating the objective value. For the synthetic function that simulates the
runtime of the objective functions, the rosenbrock(d) function is used, since it delivers
a more reliable runtime estimation than rastrigin(d) (see Figure 6.20). The output of
the rosenbrock(2) function is scaled to return values from 5min to 50min. The MBO
approaches run for 2 hours on m = 4 CPU cores, and include all computation overhead
and CPU idling. The initial set is generated as with the homogeneous experiments by
using the latin hypercube sampling [481] with n = 4 * d configurations. All approaches
start with the same initial set in all 10 repetitions.

Tab. 6.8: Ranking for accuracy levels 0.5, 0.1, 0.01 averaged over all problems with rosenbrock(2)
time function on 4 CPU cores with a time budget of 2 hours [385].

Algorithm 0.5 0.1 0.01

rambo 1.90 (1) 1.77 (1) 1.90 (1)
asyn.ei.bel 2.07 (2) 2.43 (2) 2.63 (2)
qLCB 2.67 (3) 2.63 (3) 2.70 (3)

Table 6.8 lists the aggregated ranks over all 2-dimensional objective functions, grouped
by accuracy level. As described in Section 6.4.3, the approaches are ranked with regard
to their performance for each of the 10 repetitions and for each benchmark before they
are aggregated into the mean. Figure 6.24 shows the corresponding box plots for the
time required to reach the three different accuracy levels, as described in Section 6.4.3.
The faster an approach reaches the desired accuracy level, the lower the displayed box
and the better the approach.

The benchmarks indicate an overall advantage of the new knapsack-based algo-
rithm for heterogeneous systems, especially for the highest accuracy level 0.01. On

302 | 6 Hardware-Aware Execution

● ●

●

●

●

●

●

●

● ●
●

● ●
●

bohachevsky.rosenbrock ackley.rosenbrock rastrigin.rosenbrock

2d (4 C
P

U
s)

0.5 0.1 0.01 0.5 0.1 0.01 0.5 0.1 0.01

0.0

0.5

1.0

1.5

2.0

Accuracy level

H
ou

rs

Algorithm asyn.ei.bel RAMBO qLCB

Fig. 6.24: Execution time as a function of the accuracy level for the 2-dimensional objective functions
using time function rosenbrock(2) (lower is better) [385].

average, rambo is always fastest in reaching each of the three accuracy levels, and thus
converges faster to the optimum in the time budget of 2 hours. In comparison with
rambo, the conventional synchronous MBO approach qLCB is unable to reach the accu-
racy level 0.01 for the rastrigin(2) and ackley(2) functions in all 10 repetitions (see
Figure 6.24). The same can be said about the asynchronous MBO approach asy.ei.bel

for the bohachevsky(2) and rastrigin(2) functions.
Figure 6.25 shows the box plots for the energy consumption over all 10 repetitions

for each benchmark on each CPU type (upper part, Cortex A7, and Cortex A15) and over
all CPUs (lower part, combined). Low boxes indicate a small energy consumption. The
results indicate that rambo consumesmore energy than the default qLCB approach on the
“slow” Cortex A7 CPU cores, while it consumes less energy on the “fast” Cortex A15 CPU
cores. In comparison with the asy.ei.bel approach, rambomanages to consume less
energy on the “slow”Cortex A7CPUcores. The reason for the higher energy consumption
of rambo compared with the synchronous qLCB approach on the “slow” Cortex A7 cores
(see upper part of Figure 6.25) lies in the resource-aware scheduling strategy, which is
able to utilize the less energy consuming A7 CPU cores more efficiently by mapping jobs
to specific cores. Furthermore, only jobs with a runtime smaller or equal to the job with
the highest priority are executed within one MBO iteration. Accordingly, longer running
jobs with a lower optimization potential are discarded and more MBO iterations can
be performed in the given time budget. By contrast, qLCB is not able to map jobs to
specific CPU cores; it starts four jobs on the 4 available CPU cores that were proposed
by the infill criterion in each MBO iteration, without respect to the heterogeneity of the
underlying architecture and the job execution times.

Another contributing factor to the higher energy consumption of the qLCB approach
is that it executes more jobs on the more energy-consuming A15 CPU cores due to
the OS scheduling. Within one MBO iteration, the OS scheduler migrates jobs from a
“slow” A7 CPU to a “fast” A15 CPU for cases where a job on a fast CPU finishes earlier
than a job on a slow CPU. This speeds up computation and thus executes more MBO-

6.4 Optimization of ML on Modern Multicore Systems | 303

●

● ● ●

bohachevsky.rosenbrock ackley.rosenbrock rastrigin.rosenbrock

A
7

asyn.ei.bel RAMBO qLCB asyn.ei.bel RAMBO qLCB asyn.ei.bel RAMBO qLCB

2.0

2.5

3.0

3.5

4.0

E
ne

rg
y

(k
J)

Algorithm asyn.ei.bel RAMBO qLCB

●

●

bohachevsky.rosenbrock ackley.rosenbrock rastrigin.rosenbrock

A
15

asyn.ei.bel RAMBO qLCB asyn.ei.bel RAMBO qLCB asyn.ei.bel RAMBO qLCB
11

12

13

14

15

E
ne

rg
y

(k
J)

Algorithm asyn.ei.bel RAMBO qLCB

●

●

●

bohachevsky.rosenbrock ackley.rosenbrock rastrigin.rosenbrock

com
bined

asyn.ei.bel RAMBO qLCB asyn.ei.bel RAMBO qLCB asyn.ei.bel RAMBO qLCB

15

16

17

18

E
ne

rg
y

(k
J)

Algorithm asyn.ei.bel RAMBO qLCB

Fig. 6.25: Energy consumption in kJ on the two A15 CPUs (2.0GHz), the two A7 CPUs (1.4 GHz), and
combined consumption on both CPU types across all 10 repetitions for each objective function, with
rosenbrock(2) time function and a time budget of 2 hours (lower is better) [385].

iterations. Hence, qLCB has nearly no idle time on the A15 CPU cores. However, the
conventional synchronous approach only performs approximately half as many MBO
iterations as rambo. In general, rambo executed more job evaluations in the given time
than both competing MBO approaches. However, the combined energy consumption on
all four CPU cores depicted in the lower part of Figure 6.25 shows that rambo consumes
approximately the same amount of energy as qLCB, while it consumes less energy than
asy.ei.bel for the bohachevsky(2) and ackley(2) benchmark functions.

The asynchronous asy.ei.bel approach in most cases consumes more energy
than rambo since it has nearly no CPU idle time. However, it still converges more slowly
to the optimum. The reason for this is that rambo selects more promising candidates
with shorter runtimes since it executes only jobs with a runtime shorter than or equal

304 | 6 Hardware-Aware Execution

to the most promising candidate, and thus aims to find the cheapest way of evaluations
through the model.

Overall, the results show that the resource utilization obtained by the scheduling
for heterogeneous architectures in rambo enablesMBO to converge faster to the optimum
without consuming more energy resources than the competing approaches.

6.4.5 Summary: Resource-Aware Scheduling for ML on Multicores

We presented resource-aware scheduling strategies for parallel machine learning algo-
rithms on multicore systems. The resource-aware model-based optimization framework
RAMBO was introduced and evaluated. RAMBO can fully use the potential of parallel
architectures. This was accomplished with an estimation model for the runtimes of
each evaluation of a black-box function to guide the scheduling of configurations to
available resources. In addition, an execution priority reflecting the estimated profit
of a black-box evaluation was used to guide MBO to interesting regions in a faster,
resource-efficient way without directly favoring less expensive configurations. The eval-
uation results showed that RAMBO converged faster to the optimum than the existing
parallel approaches. RAMBO was especially efficient for complex high-dimensional
problems, and strongly improved upon the existing approaches in terms of scalability
when the number of available CPU cores was increased. Overall, it was shown that
the integration of knowledge from the theory of using the underlying hardware (like
scheduling) with knowledge about machine learning algorithms achieved results that
would not have been feasible without crossing the boundaries of traditional knowledge
areas.

6.4.6 Conclusion

The advantage of linking information on underlying hardware platforms with algorith-
mic knowledge is assumed to exist not only in this particular case. Lowering the walls
between disciplines is likely to provide benefits in other cases as well.

7 Memory Awareness
Due to the involvement of massive data and the growing size of trained models, most
machine learning techniques are memory intensive. As one of essential components
in the von Neumann architectures widely used nowadays, memory is a well-known
bottleneck on the execution time, particularly due to the “Memory Wall” problem. That
is to say, the access time of memory is way larger than the processor cycle time. In
addition, the energy and power consumption required by the memory are known to be
significant in the overall system. On embedded systems, which is the focus of this book,
such design constraints are amplified and impose great challenges formachine learning
techniques. Although the emerging non-volatile memories appear to be promising
because of their attractive features, e.g., low leakage power, high density, and low
unit costs, they also bring up new design constraints like higher error rates, which
might degrade the performance of machine learning techniques. To this end, several
optimization and architecture-aware approaches have been proposed to improve the
usage of memory and enhance the reliability of learning algorithms.

In this chapter, several techniques are briefly introduced to tackle some of the afore-
mentioned issues related to memory. By leveraging the application-specific knowledge,
we demonstrate that the memory footprint can be effectively reduced (see Section 7.1).
Given learning models, we can further optimize the memory layout proactively in the
model implementation to favor the underlying cache memories with a probabilistic
perspective (see Section 7.3). Last but not the least, learningmodels can be reliable with
unreliable memories if we take bit errors into account during the training phase (see
Section 7.2). Overall, this chapter tends to suggest that the design constraints of underly-
ing memory can be handled in a post-optimization fashion, within the implementation
of learning models, or even earlier at the training phase. The insights presented in this
chapter should remain highly relevant in upcoming years, and become more important
for future applications along with emerging memory technologies and their new design
constraints.

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-007

306 | 7 Memory Awareness

7.1 Efficient Memory Footprint Reduction

Helena Kotthaus
Peter Marwedel

Abstract: This section discusses optimization approaches for the efficient memory
footprint reduction of machine learning algorithms that are written in the GNU R pro-
gramming language. The presented optimization strategies target the memory manage-
ment layer between the R interpreter and the operating system and reduce the memory
overhead for large data structures by ensuring that memory will only be allocated for
memory pages that are definitely required. The proposed approaches use additional
information from the runtime environment, e.g., the short-term usage pattern of a
memory block, to guide optimization. The evaluation is based on statistical machine
learning algorithms. When the memory consumption hits the point that the OS starts to
swap out memory, optimization strategies are able to speed up computation by several
orders of magnitude.

7.1.1 Motivation

In order to execute machine learning algorithms on resource-constrained devices, it is
important to make efficient use of the available resources. These resources include pro-
cessors (including runtime), memories, communication bandwidth, and energy. This
book includes sample optimization algorithms aiming to achieve resource efficiency.
In particular, Chapters 6 to 9 present such sample optimizations. The current section
demonstrates the optimization potential memories as resources. Ideally, memories
have an infinite capacity, but their size can have a relevant impact on the applicabil-
ity of certain techniques. This is especially true for resource-constrained embedded
systems. The current section focuses on the efficient use of memories for machine learn-
ing algorithms written in the R language. The R language is used for many machine
learning applications and, therefore, it is considered here. As shown in [387, 503], the
R environment has several drawbacks leading to slow and memory-inefficient program
execution. In R programs, most data structures are vectors. When the size of a vector
is above a certain threshold, the R interpreter allocates a large vector. For each large
vector, a dedicated block of memory is allocated, potentially spanning multiple pages.
These pages, even when unused, take up memory. When the amount of memory re-
quired for computations exceeds the physical memory available to the application, the
execution is drastically slowed by frequent page swaps that require I/O, a phenomenon
also known as “thrashing”. The performance penalty due to thrashing might render
complex computations entirely infeasible.

7.1 Efficient Memory Footprint Reduction | 307

The current contribution is based on the work of Kotthaus et al. [383, 385, 386]. Sec-
tion 7.1.2 provides a survey of relatedwork and explains the fundamentals of R’smemory
management. Section 7.1.3 discusses the page-sharing strategies for efficient memory
utilization of R machine learning algorithms. Finally, Section 7.1.4 presents the evalua-
tion results and concludes with a summary.

7.1.2 Related Work and Fundamentals: Memory Footprint Reduction and the R
Environment

RelatedWork -Memory Footprint Reduction Thememory optimizations presented
in Section 7.1.3 work on a layer between the R interpreter environment and the OS.
This enables the optimization of arbitrary R applications, especially memory-hungry
machine learning applications, with only small modifications to the R interpreter and
without requiring application changes. Thus in the following, the related system-level
approaches for reducing memory utilization will be discussed.

In general, related work on utilizing main memory more efficiently can be catego-
rized into two groups:memory compression approaches, often influenced by embedded
systems resource constraints, and memory deduplication, which is mostly used in vir-
tualization.

Memory compression tries to reduce the swapping activity of a system by compress-
ing memory contents instead of swapping pages to the secondary storage. Compression
approaches share the drawback that a significant amount of processor time is spent on
compressing and decompressing memory contents.

By contrast, memory deduplication reduces the memory overhead by mapping
virtual pages with identical contents to a single physical page. This is often beneficial
in virtualized environments where large amounts of read-only memory, such as shared
libraries, are used in multiple virtual machines [626]. However, deduplication can
introduce significant computational overhead, since the contents of pages have to be
scanned periodically in order to identify pages with identical content. An often used
implementation of deduplication that has been the subject of multiple improvements
is available in Linux as the Kernel Samepage Merging (KSM) [22]. KSM has also been
optimized in [133] by introducing a classification schemebasedonaccess characteristics,
comparing only pages within the same class to reduce the overhead of page scanning. A
memory trace-based evaluation of different deduplication and compression approaches
is presented by Deng et al. [169], showing that deduplication yields better results than
memory compression.

Sharing memory pages within a single process appears to be a rarely-used concept:
on Linux, it is automatically used to map a set of newly allocated virtual pages to a
single physical page filled with null bytes. This can cause performance issues in high-
performance environments since each write to any newly allocated page will trigger
a page fault. Here, an enhancement by Valat et al. [678] was proposed that avoids

308 | 7 Memory Awareness

unnecessary page removal when the application knows that it will overwrite a page in
the near future. A language-level version of this copy-on-write technique, operating on
objects instead of memory pages, is sometimes implemented using reference counters
[665]. The R language also implements a copy-on-write scheme. Here, the complete
object (potentially spanning multiple pages) is copied when it is modified, resulting in
page duplications for partial modifications.

OS level optimizations lack knowledge about the specific memory behavior of the
runtime environment. Although some information can be used to improve the time
needed to detect duplicates, the application-specific knowledge of why the data was
copied in the first place is ignored. By contrast, the memory optimization presented
in Section 7.1.3 employs specific knowledge about the interpreter state to reduce the
number of pages that need to be scanned for identical content and proactively avoids
the main sources of identical-content pages from object allocation and duplication by
optimizing the copy-on-write mechanism for partial object modification.

Fundamentals – The R Environment The lifecycle of an object, (e.g., a vector data
structure) in the R runtime environment starts with its allocation. In R, vectors are
assumed to consist of a contiguous block of (virtual) memory. Depending on the size of
the object, the R interpreter uses a system of multiple memory pools for vector objects
with a data size of up to 128 B. For larger vectors, memory is allocated directly via the
malloc C library function instead of pooling the allocations. This reduces the memory
fragmentation whenmany small objects are created and some of them are released. The
R language does not require the programmer to explicitly manage memory; a garbage
collection is needed to automatically free memory. The garbage collector in R is a mark-
and-sweep, non-moving, generational collector. It can be manually triggered, but it
also starts automatically when the interpreter is in danger of running out of heap space.

The R interpreter ensures that an allocated object is always initialized—either by
explicit initialization or implicitly by writing the results of a computation to it. After
the object is allocated and initialized, it can be used as input for various R functions
such as the plus operator. The fact that functions can modify an object, in conjunction
with R implementing call-by-value semantics, means that objects need to be copied
when being passed to a function. However, at this point a copy-on-write optimization
is triggered: copying an object is done by merely sharing the reference; the actual copy
is delayed until the object is modified (if at all). The interpreter now has two references
to the same object, which may be modified later. When this modification happens, the
copy process is triggered and a full copy of the affected object, potentially spanning
multiple pages, is created using the interpreter-internal duplicate function. This is
illustrated in Figure 7.1.

On the left-hand side, a large R vector object consisting of a headerH and four pages
A to D is shown both in virtual memory on the top (marked with dotted lines) and its
corresponding allocated physical memory on the bottom (solid lines). On the right-hand

7.1 Efficient Memory Footprint Reduction | 309

H A B DC

H A B DC H A B DC H’ A B DX

H A B DC A B DXH’

R-Object
virtual

memory

physical
memory

duplicate + write

unnecessary duplication

Fig. 7.1: Example of the copy-on-write mechanism in the R interpreter. R copies (duplicates) at object
level instead of page level granularity [385].

side, the situation after a duplication that was triggered by a write access is shown. Now
there are two R objects, shown in the virtual memory on top and their corresponding
physical memory on the bottom. In one of the copies, page C was modified and is
now marked as X, and the copy has its own header H’. Although unmodified, the R
interpreter needs to use additional memory to create duplicates of pages A, B, and D
(marked in gray) since it assumes that objects are organized as contiguous blocks of
memory and thus it has to duplicate at object-level granularity.

The memory optimization presented in this contribution has the goal of reducing
this memory overhead by copying only parts of the object, sharing the same mem-
ory pages between multiple objects as long as they are not modified. This scheme is
transparent to the interpreter’s memory management including the garbage collec-
tion, requiring only small changes in memory allocation and freeing, as well as in the
duplicate function. This optimization will be presented in the next section.

7.1.3 Memory Footprint Reduction via Page Sharing Strategies

Different optimization strategies are combined for the efficient memory footprint reduc-
tion of machine learning algorithms implemented in the R language. The first strategy
that proactively avoids the duplication of memory pages is based on optimizing the
allocation and duplication mechanisms of the R interpreter. This approach is further
refined by a second strategy using static annotations to reduce the optimization over-
head and by dynamic refinement using a page content analysis for page deduplication
to increase the amount of shared memory.

Page Duplication Avoidance As shown in the previous section, the R interpreter can
only allocate complete objects that potentially span multiple pages. The first part of the
memory optimization is based on the object allocation mechanism of R. To enable the
allocation and thus the sharing of memory at page-level granularity instead of object
granularity, a custom memory allocator is employed when a large vector has to be allo-
cated, as shown in Figure 7.2. When the internal function of the R interpreter allocVector

310 | 7 Memory Awareness

is called to allocate a large vector, the optimized interpreter selects between the custom
allocator to share memory on page granularity or the default malloc function if this
is not required. In both cases, the allocated memory is accessible within the address
space of the R interpreter. The custom allocator uses a memory management scheme

allocVector

custom
alloc

custom
heap

standard
heap

default
malloc R

In
te

rp
re

te
r

ad
re

ss
 s

pa
ce

Fig. 7.2:Memory allocation scheme for dynamic page sharing [385].

similar to standard virtual memory schemes commonly used in Operating System (OS)
kernels. For ease of implementation, it is completely implemented in the user space.
The downside of such a user-space implementation is that it needs to replicate certain
data structures that are already present in the OS (e.g., for mapping virtual to physical
memory) because those OS kernel data structures are not sufficiently exposed to user
space. This replication could be avoided by implementing the optimization in the Oper-
ating system kernel (cf. [383]), but this is significantly more invasive and not applicable
in many environments where the user has no control over the Operating system kernel.
Since the user space has no direct access to physical memory, a single file located on a
RAM disk (see custom heap in Figure 7.2) is used.

The allocation of physical memory from this file is realized via a simple free-bitmap
based allocator. The file can be dynamically enlarged if needed.Mapping physical pages
into the virtual address space of the R interpreter can be accomplished by utilizing
the mmap Unix system call. For changing the access permissions of these physical
pages, the mprotect system call that modifies the settings of the memory management
unit of the processor is employed. Besides these system calls, an additional page table
is needed to enable the mapping from a virtual address to a physical address. For
simplicity reasons a hierarchical page table with the same four-level structure as used
by the processor is implemented. To enable the sharing of pages, the user spacememory
management system needs to map the same physical page to multiple locations in
virtual memory. Therefore, a reference counter is required for each physical page. A
reference counter greater than 1 indicates that the page is shared between multiple
objects or multiple times within one object.

To avoid the zero-initialization of allocated large vector objects, a global shared
zeroed page is utilized. This also ensures that memory is only allocated for pages that
are actually written to at a later time. Figure 7.3 illustrates an example for this optimized
R object allocation. Here, the custom memory allocator was asked to allocate an object
with a total size of five pages. While the object has the requested size of five pages in

7.1 Efficient Memory Footprint Reduction | 311

H 0 0 00

H 0

virtual
memory

physical
memory

write
H X 0 00

H X 0

1 4 1 1 3

Fig. 7.3: Optimized object allocation via sharing a global zeroed page [385].

virtual memory (dotted, left upper part), physically it only consists of two pages (left
lower part). Those two pages are a single non-shared page, marked with H for header
in the beginning, followed by a shared page, marked with 0, called the global zeroed
page. The numbers in small print below the physical pages are the reference counters.
The zeroed page has a reference counter of 4 since it is shared four times within the
allocated object (mapped four times into virtual memory). The shared zeroed page is
filled with zero-bytes. The concept of prepared zeroed pages is already implemented in
OS kernels. However, the standard R interpreter does not benefit from this concept since
it immediately writes to all memory that it allocates for initialization. The non-shared
initial page H is required as it will contain not just data but also the object header. The
R interpreter writes this object header to the front of the allocation area. Since it will be
updated frequently (e.g., during garbage collection), it is not shared between multiple
objects. Since the header page H is mapped only once, its reference count is 1.

The R interpreter now has the illusion that it has allocated five pages of memory,
even though only two pages are allocated physically. To sustain this illusion, the op-
timized allocation mechanism has to ensure that any write access to a virtual page
that points to a shared physical page can be detected and handled. If such a write
access is not handled correctly, it affects not only the intended virtual page but also all
virtual addresses where the same physical page is shared. Therefore, all pages with a
reference counter greater than 1 are marked as read-only, ensuring that a write access
triggers a segmentation fault. This fault is caught by a signal handler that performs the
unsharing of the affected page. To determine the affected physical page the handler
uses the virtual address of the write access. It then allocates a new page, copies the
contents of the original page to it, and replaces the page that caused the segmentation
fault with the new one. The resulting situation is shown on the right side of Figure 7.3:
one of the instances of the zeroed page that was written to was replaced with a new
page marked with X. This updates the reference count of both the zeroed page and the
newly allocated page. Since the new page is only mapped once, it can now be marked
as read-write so that further access no longer requires special handling.

As noted, the R interpreter can only copy on the object level. Thus, if an object
consists of multiple pages, parts of the copy may end up with the same content as
the original (see Figure 7.1). To avoid this, the duplicate mechanism of the interpreter
is optimized by improving the granularity of the copy from object level to page level.

312 | 7 Memory Awareness

While the allocation optimization avoids the immediate allocation of pages by using
the global zeroed page, the duplicate optimization allows the reuse of already-allocated
pages of the original object instead of allocating newpages. An example of the duplicate
optimization is shown in Figure 7.4.

H A B 00

H A 0B

H A B 00

H’ A B 00

virtual
memory

virtual
memory

physical
memory

duplicate

HH’ A 0B

1 1 1 2 11 2 2 4

original

copy

Fig. 7.4: Optimized copy mechanism on page-level instead of object-level granularity via page
sharing [385].

The left side shows the situation before the duplication is shown: an object occupies
five virtual pages, two of which reference the global zeroed page. Unlike the original R
interpreter that would need to allocate five new pages for the copy of this object, the
optimized version reduces this to a single allocated physical page. This is shown on
the right side with the original object at the top and its copy at the bottom. Here, a
virtual-only copy of the first page that contains the object header is not created, since
the header of the copy is updated immediately by the R interpreter after the duplication.
This would otherwise trigger an unsharing of this page. To avoid the overhead of this
event, the optimized duplication immediately creates a physical copy of the header
page. Most of the pages of the original object are now mapped twice in virtual memory
and their reference counters are updated. Both the original and copy are marked as
read-only to allow for unsharing on write access.

Overall, the finer copy granularity of the optimization enables storing both the
original and copied objects from the example in just five pages of memory. By contrast,
the original R interpreter would need ten pages of memory to store the same objects.
Although themechanisms of sharing pages during allocation and duplication described
above always result in a valid view onmemory for the interpreter, there are cases where
additional overhead is caused that can be avoided by further refinements described in
the next subsection.

Static Refinement via Annotations To reduce the runtime overhead caused by
proactively avoiding page duplications, a static refinement consisting of two kinds of
annotations is applied. The first annotation is based on the expected utilization of an

7.1 Efficient Memory Footprint Reduction | 313

object immediately after allocation and the second annotation is based on the size of
the allocated object.

The optimized memory allocation (see Figure 7.3) reduces the memory footprint
by using a global zeroed page, assuming that not all pages of the allocated object will
be written to immediately. However, this assumption is not always valid. For instance,
(built-in) vector arithmetic functions in the R interpreter allocate a new object and
immediatelywrite to all pages of it to store their results. Thiswould cause a segmentation
fault for the first write of every page, triggering the memory allocation for all pages of
the object. These segmentation faults cause runtime overhead that would not occur
when allocating an object with non-shared pages.

To avoid this overhead, annotations are placed in the C source code of the R in-
terpreter built-in functions where newly allocated memory is completely overwritten
directly after allocation. Here, the custom allocator returns an object where every virtual
page references a new physical page, so no segmentation faults will be triggered by
write accesses. Although these R objects do not save memory on allocation, they still
have the opportunity for later optimizations, e.g., when they are duplicated. Currently,
the annotations for these “full-overwrite” functions need to be manually placed in the
R interpreter’s C source code by locating calls to allocVector, followed by loop struc-
tures that write to every element of the newly-allocated object. Those manually placed
annotations could also be automated by a static code analysis checking for allocation
calls followed by loops writing to the newly-allocated object.

The second annotation for reducing the runtime overhead incurred by the optimiza-
tion relates to the size of the allocated object. The R interpreter can allocate objects with
a variety of sizes, not all of which span multiple pages. The optimized custom allocator
is therefore enabled only for object sizes that indicate a potential for page sharing. Here,
the potential is limited for smaller objects. The first page of an object stores not just
data but also the frequently modified object header that is therefore never shared. Thus
R objects smaller than two pages of memory are passed to the standard, non-sharing
memory allocator. This size limit could also be used as a tunable parameter to select a
trade-off between memory savings and runtime overhead.

Dynamic Refinement via Page Contents In addition to the above-described static
refinements, an additional dynamic refinement for increasing the number of shared
pages is applied. During the execution of an R program, allocated objects are updated
with the results of calculations. Those updates can result in multiple distinct pages
with the same contents, which opens up the opportunity for sharing those pages. The
general idea of locating identical objects in a system and saving memory footprint by
reducing them to a single object is known as deduplication.

The memory optimization employs a restricted version of locating identical con-
tents. Here, the content scan only checks for pages identical to the already existing
global zeroed page. The deduplication of zeroed pages is illustrated in Figure 7.5. On the

314 | 7 Memory Awareness

H A 0 0B

H A 0 0B

virtual
memory

physical
memory

content
check

H A 0 0B

H A 0B

1 1 1 1 1 1 1 1 2

Fig. 7.5: Deduplication optimization for zeroed pages [385].

left side, the situation before the page content scan is shown where an object contains
two identical zero pages. One of those pages is already mapped to the global zeroed
page (shown in bold), while the other uses a separate physical page. On the right side,
the situation after deduplication is shown. Here, the content check has detected the sep-
arate copy and mapped its virtual page to the global zeroed page, freeing the memory
used for the unnecessary duplicate.

Although a general scan that is able to detect duplicated pages with arbitrary
content could be applied, such a scan would incur a significant runtime overhead (e.g.,
due to the calculation of hash values) compared to scanning just for zeroed pages.
While a scan for zeroed pages can use an early abort condition as soon as a non-zero
element is found, a scan for arbitrary content would need to check the full content of
all pages in the system. The overhead incurred by deduplication of zeroed pages is
influenced by the frequency of the content check and by the number of pages that need
to be scanned. To reduce this overhead, the scan is only activated after the completion
of a garbage collection in the interpreter. This avoids scanning the pages that would
soon be discarded and also provides a natural regulation mechanism for the frequency
of content checks, as the frequency of garbage collection depends on the memory
requirements of the executed program.

With the deduplication optimization, pages that were previously excluded from
sharing the global zeroed page, in arithmetic vector operations, say, can now be dy-
namically shared. Thus, both the static and the dynamic refinements of the memory
optimization complement each other. Details on the interaction of the refinement strate-
gies and the general page duplication avoidance strategy can be found in a separate
publication [384].

7.1.4 Evaluation: Memory Footprint Reduction Strategies

The results obtained by applying the proposed memory optimization strategies for R
to real-world machine learning benchmarks are presented in this section. Both, the
evaluation results related to the memory consumption and the runtime effects of the
page sharing optimization strategies will be discussed.

7.1 Efficient Memory Footprint Reduction | 315

Experimental Setup For the following experiments, a computer equipped with a
2.67 GHz Intel Core i5 M480 CPU and 6GB of RAM, using a 64-bit version of Debian
Linux 7.0 as the operating system is used. On this system, memory pages have a size
of 4096 bytes. Although a larger page size than the system page size could be used
for the memory optimization, the same size was chosen as it is expected to maximize
the amount of memory that can be shared (using a smaller page size than the system
size is inefficient since the optimization relies on the hardware Memory Management
Unit (MMU) for efficient page access protection). To evaluate the proposed memory
optimization approach, the memory usage and runtime of the R interpreter including
the described optimizations is compared to the standard GNU R interpreter. Both the
standard as well as the optimized interpreter are compiled using GCC version 4.7.2 with
the default flags (-O2) selected by the build system of R version 3.1.0.

The standard memory measurement functions for user space functions in Linux
measure only the virtual memory of a process. Since the optimization approach maps
the same physical page multiple times into virtual memory, these functions are not
sufficient for the evaluation. They are not able to measure the amount of physical
memory saved since they only count every virtual instance of a shared physical page.
Therefore, a separate memory measurement function was created. To measure the
amount of memory allocated by the default allocator, the standard allocation functions
such as malloc are overwritten with versions that track the current total amount of
memory allocated and the original functions are called afterwards. For the optimized
custom allocator, the number of physical pages that need to be reserved is directly
tracked along with the size of the memory management data structures. With these
mechanisms, the allocated physical memory can be measured accurately.

For the evaluation of the optimization, two different benchmark sets are applied.
The first set is a shorter-running set of benchmarks, selected from the R benchmark
2.5 suite [274], which was originally developed to measure the performance of various
configurations of the R interpreter (in the following denoted by GU) plus one additional
benchmark, as listed in Table 7.1. The R benchmark 2.5 suite was also applied in other
optimization approaches that focus on dynamic compilation for R [353]. To analyze if
the memory optimization is also beneficial for algorithms that already try to reduce the
memory footprint by using application-specific knowledge, the additional benchmark
glmnet is included. This benchmark utilizes an existing sparse matrix optimization
implemented as an R package. For accurate measurements, the iteration counts for the
outer loop of each benchmark were scaled to result in a runtime of approximately 1
minute with the standard R interpreter.

The second set of benchmarks is based on a set of publicly available long-running
real-world machine learning benchmarks [384], listed in Table 7.2. The choice of these
classification algorithms is based on the method’s popularity and the availability of its
implementation. The default parameters or, if available, the implementation’s internal
auto-tuning process was used to configure the algorithm parameters. The input dataset
is a 2-class classification problem and has a sufficiently large number of observations

316 | 7 Memory Awareness

Tab. 7.1:Misc Benchmark Set.

Benchmark Description

GU/08a-1 Linear regression over a 3000 × 3000matrix
GU/08a-2 FFT of 2 400 000 random values
GU/08a-3 Inverse of a 1600 × 1600 random matrix
GU/08a-4 Greatest common divisors of 400 000 pairs (recursive)
glmnet Regression using glmnet on a sparse 20 000 × 1000matrix

Tab. 7.2:Machine learning benchmark set.

Benchmark Description

ada Boosting of classification trees
gbm Gradient boosting machine
kknn k-nearest neighbour classification
lda Linear discriminant analysis
logreg Logistic regression (binary classification

decision derived using a probability cutpoint of 0.5)
lssvm Least-squares support vector machine
naiveBayes Naive Bayes classification
randomForest Random classification forest
rda Regularized discriminant analysis
rpart Recursive partitioning for classification trees

to achieve accurate results. The machine learning benchmarks were configured to
use a 20-fold cross-validation. The size of the input dataset (15 000 samples with 200
numeric features) was chosen to ensure that the runtime of the fastest algorithms is
approximately one minute on the standard interpreter. To allow for a better comparison
of the memory requirements, the same dataset was applied to all machine learning
algorithms.

Each benchmark was executed 10 times with the standard and the optimized
version of the R interpreter. The results are given as the arithmetic mean of these 10
executions. To make the results reproducible, the random number seed is selected as a
fixed value placed as the first statement in each of the benchmarks. Each repetition
was started in a fresh interpreter process; hence initialization costs are included in
the measurements (an expected overhead on the order of one second or less). The R
interpreter does not use adaptive optimizations. All system services that might interfere
with themeasurements were disabled. Both runtime andmemory usage were measured
simultaneously. For these measurements, we calculated a 95% confidence interval and
the ratio of the means using the percentile bootstrap method. We use geometric means
here to reduce the influence of outliers.

7.1 Efficient Memory Footprint Reduction | 317

Memory Consumption To analyze the benefits of the page sharing optimization tech-
niques with regard to the memory consumption we evaluate the global peak memory
usage and the average memory usage of each benchmarks. The Peak usage represents
the maximum amount of memory that was consumed during execution of a bench-
mark. However, the peak memory consumption does not represent information about
changing memory usage over time, since the peak memory usage may occur only for an
instant of time depending on the benchmark. To gain a complete view of the memory
consumption the short-term peak usage is measured in intervals of 1 second, resulting
in a memory-over-time profile. The Average usage of memory is calculated as the arith-
metic mean of these 1 second measurements and used as a second indicator to allow
easier comparisons of the memory behavior.

Figure 7.6 shows the peak (Peak usage) and average (Average usage) memory con-
sumption of each benchmark running with the page-sharing optimization. The 100%
baseline represents the standard R interpreter without optimizations. Values below
this baseline indicate relative memory savings realized by the page sharing strategies.
Error bars have been omitted as the confidence intervals were smaller than 0.5% for all
values. The detailed values are presented in Table 7.3, including the number of pages
identified as shareable by the content check. They indicate the optimization potential
of the dynamic refinement (deduplication of zero pages).

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

b2
5-

1

b2
5-

2

b2
5-

3

b2
5-

4

gl
m

ne
t

ad
a

gb
m

kk
nn ld

a

lo
gr

eg

lss
vm

na
iv
eB

ay
es

ra
nd

om
Fo

re
st rd

a
rp

ar
tre

la
ti

v
e
 m

e
m

o
ry

 u
sa

g
e
 [

%
]

(s
td

.
R

 =
 1

0
0

)

Peak usage
Average usage

Fig. 7.6: Relative memory usage with page-sharing optimization compared with standard R (lower is
better). The 100% baseline represents the standard R interpreter without optimizations. Geometric
means for the memory savings are 13.6% for peak and 18.0% for average memory usage [385].

The gain for reducing the peak memory usage (GainP) of the standard R interpreter
(StdPeak) ranges from−0.9% for gbm to 53.8% for lssvm.However, the negative values in
the columns GainP and GainA of Table 7.3 indicate that the page-sharing optimizations
do not gain memory savings for three of the benchmarks. Here, the peak memory

318 | 7 Memory Awareness

Tab. 7.3:Memory Optimization Results: StdPeak – peak memory usage by the standard R interpreter;
OptPeak – peak memory usage by optimized interpreter; GainP – relative peak memory reduction
achieved by optimization; StdAvg – average memory usage by the standard interpreter; OptAvg
– average memory usage by optimized interpreter; GainA – relative average memory reduction
achieved by optimization; ZPG – number of zero pages found by the content check [385].

Benchmark StdPeak OptPeak GainP StdAvg OptAvg GainA ZPG
[MB] [MB] [%] [MB] [MB] [%] [#]

GU/08a-1 296.2 228.1 23.0 259.6 192.2 25.9 13
GU/08a-2 131.1 131.4 -0.2 128.8 128.0 0.6 13
GU/08a-3 197.2 164.8 16.4 157.7 112.6 28.6 37919
GU/08a-4 134.2 119.7 10.8 127.2 114.6 9.9 194892
glmnet 354.9 332.8 6.2 249.5 246.0 1.4 46877
ada 187.2 170.1 9.1 156.0 126.2 19.1 2 031992
gbm 191.5 193.2 -0.9 147.7 136.0 7.9 464
kknn 316.5 287.6 9.1 274.0 231.0 15.7 421
lda 216.2 208.2 3.7 184.8 175.1 5.3 20447
logreg 213.0 186.7 12.3 184.7 162.8 11.9 955
lssvm 1365.1 631.0 53.8 820.2 381.1 53.5 3 972699
naiveBayes 143.6 126.2 12.1 80.8 81.3 -0.6 78
randomForest 565.5 520.4 8.0 390.8 242.7 37.9 1 130650
rda 254.1 227.7 10.4 197.0 177.3 10.0 707
rpart 144.5 125.8 12.9 130.7 103.3 20.9 56214

consumption for two of the benchmarks (gbm, GU/08a-2) and the average memory
consumption for one benchmark (naiveBayes) increase slightly. This is caused by the
additional data structures that are needed for the internal handling of memory pages.

For gbm, a reduction of the average memory usage by 7.9% (GainA) is achieved. For
naiveBayes the situation is reversed: the optimization saves 12.1% of its peak memory
usage while its average memory usage (−0.6%) is slightly increased. Since the number
of pages recovered by deduplication (see column ZPG) is low (78), the savings of the
peak memory usage are assumed to be induced by the proactive avoidance of page
duplicates via the optimized allocation and duplication strategies. For GU/08a-2, the
optimization was not able to save memory for peak memory usage and no meaningful
amount for the average memory usage was saved (GainA). The reason why GU/08a-2
does not gain from the optimization is that even though it uses large vectors with 2.4
million elements, it allocates a vector that is immediately filled with random numbers.
Thus, it does not profit from the optimized allocation and the content check can only
recover a low number of zero pages as shown column ZPG (13). GU/08a-2 does not use
any object duplication. Therefore, the optimized duplication has no potential for saving
memory.

Even though the page-sharing optimization results in a slight increase of peak or
average memory usage for the three benchmarks described above, all of the twelve
other benchmarks benefit from the optimization with savings in both peak and aver-

7.1 Efficient Memory Footprint Reduction | 319

age memory usage. We compute the geometric mean over all 15 benchmarks, thereby
avoiding the impact of outliers on the geometric mean. The result is a reduction of peak
memory usage by 13.6% and a reduction of average memory usage by 18.0%. Here,
the highest amount of memory that could be saved occurs in the lssvm benchmark
with 53.8% for peak usage and in randomForest with 37.9% for the average memory
usage. Both of these benchmarks have a high number of zero pages recovered by the
content check. Thus for those benchmarks, the reduction of the memory footprint is not
just triggered by the allocation and duplication optimization but also by the dynamic
refinement that deduplicates zero pages.

Table 7.3 shows summarized values for thememory consumption over the complete
runtimes of all benchmarks. To gain additional insights into the memory consumption
behavior, the complete profile of the memory usage over runtime will be also analyzed.
The four most interesting memory consumption profiles for the benchmarks (glmnet,
gbm, randomForest, and naiveBayes) are shown in Figure 7.7. For each benchmark, the
run with the execution time closest to the average of its 10 executions is selected. The
confidence intervals over all 10 runs of each benchmark are less than 1%, thus the
figure shows only the data from a single run. The x-axis represents the runtime in
seconds while the y-axis represents the corresponding memory consumption of the
benchmark. Both the profile for the standard R interpreter (yellow curves) and the
interpreter including the page-sharing optimizations (green curves) are presented. The
straight lines at the top indicate the peak memory usage, while the dotted lines mark
the average memory usage.
glmnet As mentioned, the glmnet benchmark utilizes an already-existing memory

optimization for sparse matrices. It is included in the evaluation to determine if the
page-sharing optimization can offer additional memory savings in the presence of
an optimization that applies specialized application knowledge. In the top left of
Figure 7.7 the memory-over-time behavior of this benchmark is illustrated. While
there is only a small improvement for the average memory usage (see dotted green
line), 6.2% of the peak memory consumption is saved (see lines on the top). The
memory consumption curves show that at all local memory peaks the optimized
version of the R interpreter saves a small amount of memory while the memory
consumption during the remaining parts of the execution is largely unaffected.
This results in only a minor reduction of the average memory consumption. Still,
even in the presence of a very specific optimization for sparse matrices the page
sharing optimization can offer additional memory savings. As can be seen from
column ZPG (Table 7.3), savings are triggered by a large number of pages recovered
by deduplication (46 877).

gbm Not all benchmarks benefit from the content checks, though. For example, Ta-
ble 7.3 shows that in gbm only 464 zero pages are recovered. This benchmark bene-
fits more from the optimizations in allocation and duplication. The corresponding
memory-over-time behavior is shown in the top right of Figure 7.7. Here, the op-
timization does not reduce the peaks of the memory consumption, but there is a

320 | 7 Memory Awareness

Fig. 7.7:Memory consumption over time profiles for benchmarks with different memory behavior for
the standard R interpreter vs. the interpreter with the page-sharing optimization. Lines at the top
indicate the peak memory usage; dotted lines mark the average memory usage [385].

marked reduction of memory usage in the valleys between the peaks, reducing the
average memory consumption by 7.9%.

naiveBayes Another benchmark that does not benefit from the content checks is
naiveBayes with just 78 zeroed pages recovered. Its memory-over-time profile is
illustrated in the bottom left of Figure 7.7. In naiveBayes only the peak memory
usage is reduced by the optimization (large distance between the straight lines at
the top), but the average memory usage (small distance between the dotted lines)
is not affected. The profile also shows that naiveBayes has much smaller peaks
compared with gbm. Thus, the large reduction of memory usage at those peaks
results only in a small effect on the average memory consumption.

randomForest Finally, randomForest in the bottom right of Figure 7.7 represents one
of the benchmarkswhere the recovery of zeroed pages triggers highmemory savings.
Here, the content checking reclaims 1 130 650 pages, which corresponds to slightly
more than 4GB of memory. The randomForest profile shows a saw-tooth curve for
the optimized interpreter (see green curve). This indicates that the benchmark uses
large blocks of memory that are slowly written to. For the page sharing optimiza-
tions, this represents an ideal memory usage pattern, as the allocation ofmemory is
delayed until the benchmark writes data to it. This results in a 37.9% improvement
of the average memory consumption (large distance between dotted lines)—the
average time during which the benchmark has a high memory consumption is thus
reduced.

7.1 Efficient Memory Footprint Reduction | 321

Looking back at the profile of glmnet (top left), the green curve that shows the profile for
the optimized interpreter is longer than the yellow curve for the standard interpreter and
there is an increasing shift between the peaks of both curves over time. The reason for
this lies in the additional CPU time needed to provide the page-sharing optimizations.
The runtime overhead induced by the memory optimization will be referred to in the
next paragraph.

Runtime Overhead There are multiple reasons for the runtime overhead caused by
the optimizations. For the 15 benchmarks shown so far, 4 have a runtime overhead of ≤
1%, an additional 6 have an overhead ≤ 5%, an additional 2 have an overhead around
8%, and the remaining 3 have an overhead between 13% and 17%. More details on
the overhead are available in a separate publication [385].

Runtime Reduction In all previous measurements, the RAM available in the system
was sufficient to hold all data used by the benchmark. If this is not the case, runtime
overhead can become insignificant. This will be illustrated in the following. When the
amount of RAM in the system is too small to hold all data required, there are situations
where the proposed memory optimization is also able to reduce the runtime of the
benchmark instead of adding overhead. This is due to frequent page swaps requiring
I/O when the total capacity of RAM is exceeded, also known as “thrashing”. To analyze
this situation, two benchmarks are considered. The first one is the lssvm benchmark
where the optimization provides a large reduction in memory consumption. The second
benchmark is an instance of logreg where the optimization provides only smaller
memory gains.

For the analysis, the memory requirements of the benchmarks need to be increased
beyond the capacity of the RAM in the system. Instead of increasing the dataset size
of both benchmarks, the system is limited to just 1 GB of RAM, since the runtimes of
the benchmarks do not scale linearly with the dataset size, leading to excessively high
execution times. However, since the logreg benchmark has a much smaller memory
consumption than 1GB, the dataset size for logreg is increased to 70 000 samples with
300 numeric features. This increases the memory requirements of this benchmark to
approximately the same level as lssvm. This still results in acceptable execution times
for logreg.

Table 7.4 shows the results for the previous 6GB system configuration and the
limited 1 GB RAM configuration for both benchmarks. The logreg benchmark is now
shown as logreg-2 because it was executed with the previously described larger dataset.
In the 1 GB configuration, the system had to swap for both the standard and optimized
interpreters, resulting in a large increase in runtime compared with the 6 GB configura-
tion. The peak memory usage for the interpreters is identical in both configurations
while the average memory usage differs because this value is time-dependent and thus
influenced by swapping. This swapping also increases the variability in the runtime

322 | 7 Memory Awareness

Tab. 7.4: Evaluation results with two configurations of RAM; Std – standard R interpreter; Opt – opti-
mized R interpreter; Gain – relative gain; Speedup: runtime speedup factor (Std / Opt). Confidence
intervals (C) for runtime are shown; others are ≤ 0.8% [385].

Benchmark Std Opt Gain Std Opt Gain
Peak [MB] Peak [MB] Peak [%] Avg [MB] Avg [MB] Avg [%]

logreg-2, 1GB 1228.2 1094.8 10.9 965.7 789.6 18.2
logreg-2, 6GB 1228.2 1094.8 10.9 967.8 823.2 14.9
lssvm, 1GB 1365.1 631.1 53.8 970.0 381.3 60.7
lssvm, 6GB 1365.1 631.0 53.8 820.2 381.1 53.5

Benchmark Std [s] Opt [s] Speedup (CI)

logreg-2 1GB 6395.5 5785.6 1.1051.1441.071

logreg-2, 6GB 579.8 598.5 0.9690.9710.967

lssvm, 1GB 3080.3 593.8 5.1885.3505.029

lssvm, 6GB 530.5 601.2 0.8820.8850.880

measurements, thus the confidence intervals for the speedup factors are also included
(see lower part of Table 7.4).

Reducing the available memory from 6GB to 1 GB drastically increases the runtime
for both versions, the standard R interpreter (Std) and the interpreter including the
memory optimization (Opt). Still, the reduction in memory consumption for logreg-2
has turned the slowdown (factor 0.969) in its 6 GB configuration into a small speedup
(factor 1.105) when the RAM is limited to 1 GB. Depending on the benchmark and its
memory usage pattern, a different situation could also happen. In the worst case, the
content check of the optimized interpreter touches a large number of pages, forcing
them to be swapped in. This additional swap activity can increase the runtime so
that the gains from a reduced memory footprint may become irrelevant. The second
benchmark lssvm shows something closer to the best case for the optimization: Here,
the page-sharing optimization manages to save enough memory to avoid swapping. In
this case, significant speedups are gained, as shown in the lower part of Table 7.4 for
the 1 GB configuration of lssvm.

Similar to logreg-2, memory usage does not vary much between both configu-
rations (see upper part of Table 7.4). Considering the runtime results, the optimized
interpreter Opt only needs 593.8 seconds to run the lssvm benchmark. This is almost
unchanged from the 6GB configuration (601.2 seconds). By contrast, the standard
interpreter Std has now increased its runtime to 3080.3 seconds (51.3 min.) when
limited to 1 GB of RAM. This makes the overhead of the memory optimization irrelevant
because the time gained by avoiding page I/Os is much larger. The page-sharing opti-
mization enables a speed up by a factor of 5.2 for llsvm by reducing the peak memory
consumption by 53.8%. This speed up is also illustrated in Figure 7.8. It shows the

7.1 Efficient Memory Footprint Reduction | 323

Fig. 7.8:Memory consumption over time profile for the lssvm benchmark. Speed-up reaches a factor
of 5.2 on a system with 1GB of RAM. Solid lines indicate the peak memory and dotted lines mark the
average memory usage [385].

memory consumption profile for one exemplary execution of the lssvm benchmark.
This demonstrates that reducing the memory consumption with the page-sharing opti-
mization can significantly improve the runtime for memory-hungry benchmarks if the
available RAM is constrained. In turn, this can enable the processing of larger datasets.

7.1.5 Summary

The R interpreter induces a large memory overhead in the machine learning appli-
cations, due to wasteful memory allocation [387]. The goal of the presented memory
optimizations was to enable efficient memory utilization, especially for memory-hungry
R applications like machine learning algorithms. To accomplish this goal, this contri-
bution presented an application-transparent memory optimization employing page
sharing at a memory management layer between the R interpreter and the operating
system’s memory management. The optimization benefits a large number of applica-
tions since it preserves compatibility with the available software libraries that most R
programs are based on, and covers one of the most important resource bottlenecks of
machine learning algorithms. By concentrating on the most rewarding optimizations—
the sharing of zero-filled pages and deduplicating at the page level instead of the object
level—the overhead of more general OS level memory optimization approaches such as
deduplication and compression is avoided. With the proposed optimization, consider-
able reductions of the memory consumption for a large number of typical real-world
benchmarks have been achieved. This is an important step towards processing larger
input sizes. It also significantly speeds up the computation in cases where previously
pages had to be swapped out due to insufficient main memory.

324 | 7 Memory Awareness

7.1.6 Conclusion

Designers of machine learning applications should be allowed to focus on the function-
ality of their algorithms. In order to execute these on resource-constrained embedded
systems, possible optimizations of the implementation should be performed. The pre-
sented work demonstrates the benefits of such optimizations for the case of memory
resources. In addition to the other optimizations in this contribution, we conjecture that
more memory-oriented optimizations exist and propose that they should be exploited
in order to execute machine learning algorithms in particular on hardware with limited
amounts of memory.

7.2 Machine Learning Based on Emerging Memories | 325

7.2 Machine Learning Based on Emerging Memories

Mikail Yayla
Sebastian Buschjäger

Hussam Amrouch

Abstract: Due to the exceptional recent developments in deep learning, many fields
have benefited from the application of Artificial Neural Networks (ANNs). One of the
biggest challenges in ANNs, however, is the resource demand. To achieve high accuracy,
ANNs rely on deep architectures and a massive amount of parameters. Due to this, the
memory sub-system is one of the most significant bottlenecks in ANNs.
Toovercome thememorybottleneck, recent studies haveproposedusing approximate

memory in which the supply voltage and access latency parameters are tuned for lower
energy consumption and for faster access times. However, these approximate memories
frequently exhibit bit errors during the read process. Typical software solutions that
monitor and correct these errors require a large processing overhead that can negate the
performance gains of executing ANNs on these devices. Hence, error-tolerant ANNs that
work well under uncorrected errors are required to prevent performance degradation
in terms of accuracy and processing speed.
In this contribution, we review the available and emerging memories that can be

used with ANNs, with a focus on approximate memories, and then present methods
to optimize ANNs for error tolerance. For memories, we survey existing memory tech-
nologies such as Static Random-Access Memory (SRAM) and Dynamic Random Access
Memory (DRAM), but also present emerging memory technologies such as Ferroelectric
FET (FeFET), and explain how the modeling on the device level needs to be performed
for error tolerance evaluations with ANNs. Since most approximate memories have
similar error models, we assume a general error model and use it for the optimization
and evaluation of the error tolerance in ANNs. We use a novel hinge loss based on
margins in ANNs for error tolerance optimization and compare it with the traditional
flip regularization. We focus on Binarized Neural Networks (BNNs), which are one of
the most resource-efficient variants of ANNs.

7.2.1 Introduction

Artificial neural networks have been applied successfully in numerous fields, and are
being executed on a variety of systems ranging from large computing clusters to small,
battery-driven embedded systems. In most cases, state-of-the-art neural network mod-
els rely on a large number of parameters to achieve high performance. This leads to an
expensive, slow, and energy-consumingmemory bottleneck. On neural network acceler-

326 | 7 Memory Awareness

atorswith SRAM, the energy consumption of the memory makes up the largest fraction
of system energy, while advances in memory bandwidth are significantly slower than
processing speed. Hence, improving the memory consumption of ANNs and improving
the memory sub-systems is imperative to further push the applications of ANNs. One
design paradigm to improve the memory sub-system is to use approximate memory in
which resource efficiency is achieved by allowing for bit errors during the read and/or
write process. Likewise, reducing the memory consumption of ANNs is an established
part of deep learning research. Here, arguably, the most extreme form is to use Bina-
rized Neural Networks (BNNs) that only use binary weights {0, 1} leading to a potential
32 times memory reduction as high as 32 times that of their floating-point siblings.
Interestingly, it has been shown that BNNs can be trained to tolerate bit errors by bit
flip injections during training. However, this method has a large overhead and does
not scale well with model size and higher bit error rates .

In this contribution, we first summarize the currently available and emerging
memories that are possible to be used with neural network inference systems. Here,
we focus on approximate memories, which are unreliable due to bit errors and for
which countermeasures are necessary. One of the most promising emerging memory
components is the FeFET, which has high speed, and low energy consumption, but
faces reliability issues. We explain how FeFET can be used as approximate memory
for neural networks despite the bit errors caused by temperature and read voltage.
Finally, we present results on how bit error tolerance in ANNs is achieved without
bit flip injections based on margin-maximization and compare it to the traditional
methods for bit error tolerance optimization of ANNs. This contribution was previously
published as a conference paper in [113].

7.2.2 Emerging Memories

Recent studies on efficient ANN-based inference systems have explored the use of
approximate memory, which has been realized by reducing the memory supply voltage
and tuning latency parameters with the goal of lower power consumption and faster
access. If these methods are pushed to the limit, high Bit Error Rates (BERs) can occur.
Before discussing bit errors and how to deal with them in more detail we will quickly
survey volatile memories (SRAM, DRAM) and other emerging non-volatile memories
(FeFET, Resistive Random Access Memory (RRAM), Spin Transfer Torque Random
Access Memory (STT-RAM) or Magnetoresistive Random Access Memory (MRAM)) here.

SRAM For ANN inference systems using on-chip SRAM, the works in the literature
mainly employ scaling of various device parameters. To reduce energy consumption,
the SRAM voltage is scaled in [306, 652]. Yang et al. [717] separately tune the weight and
activation values of BNNs to achieve fine-grained control over the energy consumption.
Sun et al. [652] propose similar techniques for ternary ANNs. A similar approach is

7.2 Machine Learning Based on Emerging Memories | 327

employed by Henwood et al. [306], in which layer-wise the best energy-accuracy trade-
off for SRAM is chosen.

DRAM For DRAM, the study by Koppula et al. [381] provides an overview of studies
related to ANNs that use different DRAM technologies and proposes a framework for
evaluating ANN accuracy when using approximate DRAM in various different settings
and inference systems. Specifically, the study shows that DRAM parameters can be
tuned such that energy and performance are optimized to achieve significant improve-
ments, whereas the ANN accuracy drop stays negligible due to the ANNs’ adaptations
in retraining. Other studies, e.g. [532, 672], also optimize the refresh rate of DRAM to
achieve energy savings.

RRAM Hirtzlin et al. [316] propose computing BNN operations with RRAM that fea-
tures in-memory processing capabilities. They set the write energy of RRAM low and
show that BNNs can tolerate the resulting errors by error tolerance training. This low-
energy setting also increases the RRAM cell lifetime since low-energy writes stress the
cells less. The work by Yu et al. [727] also uses RRAM to implement on-chip BNNs. They
show that under limited bit yield, BNNs can still operate with satisfying accuracy. Sun et
al. [651] propose an RRAM synaptic array to deploy BNNs. They investigate the accuracy
impact of errors from sense amplifiers that have offsets due to process variation.

MRAM or STT-RAM Another branch in the literature is about ANNs on STT-RAM
or MRAM. Hirtzlin et al. [315] propose deploying BNNs on MRAM with a low-energy
programming setting that causes relatively low error rates, and no significant accuracy
drop, but decreases write energy by a factor of two. Tzoufras et al. [675] also propose
operating BNNs on MRAM with reduced voltage with similar results. They test a wide
range of error rates and discuss the implications of BNN bit error tolerance on the
lifetime, performance, and density of MRAM. Pan et al. [549] take a different approach
for energy reduction and investigate the benefits of multi-level cell MRAM for the in-
memory acceleration of BNNs. For more general ANN models, Vincent et al. [686]
propose tunable STT-RAM to save resources.

FeFET FeFET is considered to be one of the most promising memory technologies.
The reason why FeFET store logic ‘0’ and logic ‘1’ lies in the available dipoles inside
the FE. The directions of these dipoles can switch if a sufficiently strong electric field is
applied. This state is non-volatile because the dipoles retain their direction when the
field is turned off. The logic ‘0’ and logic ‘1’ can be read out from the FeFET based on
the intensity of the current returned (e.g. high or low), which can be converted into the
digital domain with sensing circuits.
The three main advantages of FeFET over other non-volatile memories are as follows:

328 | 7 Memory Awareness

bit flip

no bit flip

Error Evaluation
FeFET simulation
w/ temperature

Bit error
model

Fig. 7.9: Errors due to temperature, stemming from underlying FeFET devices, are modeled and then
injected during the ANN inference [720].

1. FeFET is fully CMOS-compatible, which means that it can be fabricated us-
ing current manufacturing processes. This has been demonstrated by Global-
Foundries [668].

2. FeFET-based memories can perform read operations within 1ns latency. This re-
duces the differences to traditional SRAM technology, while the energy usage of
FeFET is significantly lower [668].

3. FeFET memory has the potential to enable extremely low-density memory since
the core cell consists merely of a single transistor.

One of themajor disadvantages of FeFETs is error susceptibility. Manufacturing variabil-
ity (i.e. process variation during production) and temperature fluctuations at run-time
can cause variations in the FeFET properties. This shrinks available noise margins and
may cause errors. To still employ FeFETs despite the errors in, say, on-chip memory for
Binarized Neural Networks (BNNs) inference systems, it is necessary to extract the error
models for the stored bits. With the error model, the impact of the temperature-induced
bit errors on the inference accuracy of BNNs can be evaluated.

In Figure 7.9, the steps for extracting the temperature-dependent error model of
FeFET transistors are shown. The entire FeFET device has been implemented and
modeled in the Technology CAD (TCAD) framework (Synopsys Sentaurus [656]). The
variation in the underlying transistor and the added ferroelectric layer are considered.
After incorporating the temperature and variation effects in the calibrated TCADmodels,
Monte-Carlo simulations for the entire FeFET device are performed. Then the probability
of error is extracted for a certain read voltage, i.e. the probability that logic ‘0’ is read
as logic ‘1’ and a logic ‘1’ is read as logic ‘0’. Details on device physics modeling and
reliability analysis for FeFET under the effects of temperature variability (runtime) and
manufacturing (design-time) variability can be found in [280] and [534], respectively.

7.2.3 Binarized Neural Networks

Traditional neural networks use floating-point (e.g., 32 bits) or integer values (e.g., 8
bits) to represent the ANN parameters (i.e., weights, activations, inputs, etc.) . In such

7.2 Machine Learning Based on Emerging Memories | 329

a case, the position of the occurred bit error (i.e., the bit flip in the value) does matter.
Specifically, in floating-point ANNs, a one-bit error in one weight can cause the pre-
diction of the ANN to become useless (see e.g. [381]). This typically occurs when a bit
flip in the exponent of the floating-point representation occurs leading to an error with
an unacceptable magnitude. As mentioned before, BNNs are resource-efficient neural
networks that are ideally suited for small devices. Additionally, they can be trained
to be resilient against bit errors, which makes them ideal candidates for approximate
memories. In BNNs each weight (and possibly each activation) is stored in a single
bit {0, 1}. Hence, a bit error in a binary weight or binary input causes a change of the
computation result by merely 1, reducing its overall impact. In addition to the reduced
impact of bit errors and reducedmemory footprint due to smaller weights the execution
of BNNs also becomes simpler. Consider, for example, the output of the fully connected
l-layer with activation σ and weightsW l

f l(X) = σ(W lX) (7.1)

In regular floating-point neural networks, the execution of this layer requires the re-
peated computation of matrix-vector productsW lX as well as the application of σ. In a
BNN this operation becomes

2popcount(XNOR(W l , X)) − B > T (7.2)

where popcount counts the number of 1s in the XNOR-result, B is the number of bits in
the XNOR operands, and T is a learnable threshold parameter if batch normalization
layers are used, whose comparison produces binary values (representing a shifted
binarization function) [325, 609].

A common method of training ANNs is to apply stochastic gradient descent (SGD)
with mini-batches. LetD = {(x1, y1), . . . , (xI , yI)} be the training data with xi ∈ X as
the inputs, yi ∈ Y as the labels, and ℓ : Y×Y → R as the loss function.W = (W1, . . . ,WL)
are the weight tensors of layer 1 . . . L and fW (x) is the output of the ANN. The goal is to
find a solution for the optimization problem

argmin
W

1
I
∑︁

(x,y)∈D

ℓ(fW (x), y) (7.3)

with a mini-batch SGD strategy that computes gradients using backpropagation.
To train BNNs, Hubara et al. [325] proposes to deterministically binarize the weights

and activations during the forward pass. For backpropagation, the floating-point num-
bers are used for parameter updates. This leads to training times similar regular ANNs
but assumes binary values during the forward pass. More formally, let b : R → {−1, +1}
be a binarization function with

b(x) =
{︃
1 x > 0
−1 else

(7.4)

330 | 7 Memory Awareness

and let B(W) denote the element-wise application of b to a tensorW. Now we simply
apply B during the forward pass to each weight tensor. During the backward pass,
the authors propose using full floating point precision, whereas during the backward-
pass they replace the gradient of b with the straight-through estimator. Consider the
forward computation Y = B(X). Let ∇Yℓ denote the gradient with respect to Y. The
straight-through estimator approximates

∇Xℓ := ∇Yℓ, (7.5)

essentially pretending that B is the identity function. Algorithm 5 summarizes this
approach.

Algorithm 5: Binarized forward pass for a network with L layers, each with
weight tensorsW l performing a generic operation ∘l (e.g. a convolution).
1 for l ∈ {1, . . . , L} do
2 x ← B(B(W l) ∘l x)

7.2.3.1 Flip Regularization
To make BNNs bit error-tolerant, the state-of-the-art method is bit flip injections in
the binarized values during the forward pass, as proposed by Hirtzlin et al. [316]. The
idea is simple: To make BNNs robust against bit errors, we simulate the errors already
during training time. During each forward pass computation, we generate a random
bit-flip mask and apply it to the binary weights.

Let M denote a random bit-flip mask with entries ±1 of the same size asW that we
multiply component-wise to the binarized weights. We first consider computing the
bit-flip operation as H = (B(W) · M) ∘ X where ∘ denotes the application of the ANN
to the input X. Standard backpropagation on a loss ℓ that is a function of H yields the
following gradient of ℓ with respect to B(W)

∇B(W)ℓ = M ·∇B(W)·Mℓ (7.6)

which for fully connected layers amounts to a gradient update

∇B(W)ℓ = M · (∇Hℓ XT). (7.7)

We see that an update computed this way accounts for the bit-flips that were performed.
We propose instead using a special flip-operator with straight-through gradient approx-
imation. We denote by ep the bit error function that flips its input with probability p
and let Ep denote its component-wise version. During training, we change the forward
pass such that it computes

Xl+1 := B(Ep(B(W l)) ∘ Xl). (7.8)

7.2 Machine Learning Based on Emerging Memories | 331

We replace the gradient of Ep with a straight-through approximation. This way, in
the example above we now have H = Ep(B(W)) ∘ X with gradient updates ∇B(W)ℓ =
∇Ep(B(W))ℓ which for fully connected layers yields the update

∇B(W)ℓ = ∇Hℓ XT (7.9)

which is unaware of bit flips and just uses the corrupted outputs H.
The original bit-flip regularization proposed in [316] reports extreme overfitting to

the flip probability used during training. As we will see later in the experiments, we
do not report such an overfitting. We believe that the approach using straight-through
gradient approximation is superior and that the extreme overfitting is attributable to
the use of the naive gradient.

7.2.3.2 Margin-Maximization for Bit Error Tolerance Optimization
Bit-flip regularization improves the error tolerance of the network by simulating bit
errors during the forward pass. This introduces two objectives to the training: Given a
set of labeled input data, train a BNN for high accuracy and for high bit error tolerance.
Hence, another approach is to combine high accuracy and high bit error tolerance
into a single loss function directly so that both objectives are jointly optimized during
training. To do so, we now introduce a margin-based neuron-level bit error tolerance
metric for BNNs that is then extended to formulate a bit error tolerance metric for the
output layer.

In the following, we use a notation describing the properties of neurons in convolu-
tional layers, but our considerations also apply to neurons in fully connected layers. Let
n be the index of one neuron in a ANN, and x ∈ X an input to the ANN. The output of a
neuron in a convolutional layer is a featuremapwithheightU andwidthV. Let hx,n,u,v ∈
Z be the pre-activation value of neuron n at place (u, v) ∈ {0, . . . , U} × {0, . . . , V},
before applying the activation function. For BNNs, the pre-activation values of a neuron
are computed by a weighted sum of inputs and weights that are ±1. Therefore, one bit
flip in one weight changes the pre-activation value by 2.

Theorem 25. Let n ∈ {0, . . . , N} be the index of one neuron. Furthermore, let q be the
number of bit flips induced in the weights of neuron n. The pre-activation of neuron n at
place (u, v) after induction of these bit flips is in the interval [hx,n,u,v − 2q, hx,n,u,v + 2q].

The proof can be found in [113].
A detailed analysis of the error tolerance for hidden-layer neurons has been con-

ducted in [114], but the use of Theorem 25 for optimizing bit error tolerance on the
neuron-level has been reported to be unsuccessful. We hypothesize that bit flips of
neuron outputs can only affect the BNN prediction if the effect of bit flips reaches the
output layer and leads to a change in the predicted class. Therefore, we now shift our
focus on applying the notion of margin to the output layer, i.e., to neurons with index
in NO.

332 | 7 Memory Awareness

Each neuron in the output layer has only one output value hx,n,1,1 which is one entry
in the vector of predictions ŷ. No activation function is applied to the output value of
these neurons. There are as many values in ŷ as there are neurons in the last layer. The
index of the entry with the maximum value in ŷ determines the class prediction, where
we assume that ties are broken arbitrarily.

If bit errors modify the output values in the output layer such that another neuron
provides the highest output value, then the class prediction changes. Let hx,n′ ,1,1 and
hx,n′′ ,1,1 with n′, n′′ ∈ NO be the highest and the second-highest output value of neurons
in the output layer. The following corollary shows that the margin

m := hx,n′ ,1,1 − hx,n′′ ,1,1 (7.10)

serves as a bit error tolerance metric for the output layer.

Corollary 26. If m > 0, then the output layer of the BNN toleratesmax(0,
⌊︀m
2
⌋︀
− 1) bit

flips.

The proof can be found in [113].
We now focus on constructing a loss function based on Corollary 26 and the hinge

loss known from Support Vector Machines (SVMs). The hinge loss [602] for maximum
margin classification is defined as

ℓ(y, f) = max(0, 1 − y · f), (7.11)

with the ground truth prediction y = ±1 and the prediction f ∈ R. This loss becomes
small if the predictions have the same sign as the predicted class and are close to 1 in
magnitude. For predicted values larger than 1, the loss becomes 0. The “1” in the loss
forces the classifier to maximize the margin between two class predictions.

For BER tolerance of the last layer, the margin m as introduced in Equation 7.10
needs to be large so that themaximumnumber of bit flips the output layer can tolerate is
high. The margin can be directly computed by subtracting the second-highest entry ŷc′′
of the output vector ŷ from the highest entry ŷc′ , i.e.,m = ŷc′ − ŷc′′ . However, optimizing
with respect to m without considering the other entries ŷc of ŷ may not exhaust the full
potential of the margin between ŷc′ and the output of the other classes ŷc. The larger
the margin between ŷc′ and ŷc of other classes c, i.e. mc = ŷc′ − ŷc, the more bit errors
can be tolerated in the neuron that calculates ŷc without a change in the prediction. To
put it concisely, for a bit error tolerant output layer, ŷc′ needs to be as large as possible,
while the other ŷc need to be as small as possible.

In the case of BNNs for multi-class problems, however, the version of the hinge loss
in Equation 7.11 cannot be directly used. To extend the hinge loss to multiple classes,
we define yenc as a one-hot vector with elements in {−1, 1}, which has a +1 at the index
with the ground truth, else −1. yenc has the same number of elements as ŷ. Then the
element-wise product yenc · ŷ is computed. In this product, in case of correct predictions,
positive predictions in the correct class will stay positive, and negative predictions that

7.2 Machine Learning Based on Emerging Memories | 333

Tab. 7.5: Datasets used for experiments.

Name # Train # Test # Dim # classes

FashionMNIST 60000 10000 (1,28,28) 10
CIFAR10 50000 10000 (3,32,32) 10

Tab. 7.6: Parameters used for experiments.

Parameter Range

Fashion FCNN In → FC 2048 → FC 2048 → 10
Fashion CNN In → C64 →MP 2 → C64 →MP 2

→ FC2048 → 10
CIFAR10 CNN In → C128 → C128 →MP 2 → C256 → C256

→MP 2 → C256 → C256 →MP 2
→ FC 2048 → 10

should be as negative as possible become positive. In case of wrong predictions, i.e.
high negative values for the correct class and high positive values for the wrong class,
the values become negative. For a high penalty in thewrong case and a small penalty for
the correct case, we subtract the product yenc · ŷ from a parameter b, and get (b−yenc · ŷ).
Since we do not demand higher prediction values than b, we set negative values to zero
with the max function, and denote the Modified Hinge Loss (MHL):

ℓMHL(ŷ, yenc) = max{0, (b − yenc · ŷ)}. (7.12)

7.2.4 Experiments

We evaluate fully connected binarized neural networks (FCBNNs) and convolutional
binarized neural networks (CBNNs) in the configurations shown in Table 7.6 for the
datasets FashionMNIST and CIFAR10 (see Table 7.5). In all experiments, we run the
Adam optimizer for 100 epochs for FashionMNIST and 250 epochs for CIFAR10. We
use a batch size of 128 and an initial learning rate of 10−3. To stabilize training, we
exponentially decrease the learning rate every 25 epochs by 50%. In the following,
we compare the margin-based methods (MHL) to Flip Regularization (FR). FR uses
the Cross-Entropy Loss (CEL) by default. We first compare MHL without FR to FR. In a
second step, we compare MHL without FR to MHL in combination with FR.

7.2.4.1 MHL Only vs. FR
Figure 7.10 presents the experimental results of different BNNs with respect to the
accuracy over BER (from 0% to up to 15% in Figure 7.10(a) and (b), and from 0% to up

334 | 7 Memory Awareness

to 5% in Figure(c)). For each dataset, five BNNs were conducted using MHLwithout any
FR and FR with different BERs for bit-flip injections. Moreover, for all BNNs trained with
MHL, we employed a parameter search for b, testing powers of two, up to two times
the maximum value the neurons in the output layer can compute (maximum output
value of a neuron in the output layer is the number of neurons in the layer before the
output layer). Among these configurations of b, the best one was chosen. We observe
that BNNs trained with the MHL without FR have better accuracy over BER than the
BNNs trained with FR, i.e., in Figure(a) and (b) up to 10%, and in Figure(c) up to 5%.
The BNNs trained with FR suffer from a significant accuracy drop for lower BERs, when
the BER during training is high, e.g., CEL 20% and/or CEL 30% at low BER. The BNNs
trained with MHL, however, do not suffer from this accuracy drop. Although the BNNs
trained with FR 20% and bit-flip injections have better accuracy for Fashion CBNN in
Figure 7.10(b) when the error rate is higher than 10%, the accuracy of the BNNs drops
by a significant amount, which may be unacceptable. Below, we thus present further
investigations.

7.2.4.2 MHL Combined With FR
We evaluate BNNs trained with the MHL and FR under different BERs. In addition, the
BNNs trained with the MHL without FR (i.e., those BNNs generated using the MHL in
Figure 7.11 under 0% BER) are included here as the baseline in this subsection. For
all configurations, we employed the same parameter search for b as in the previous
section. Figure 7.11 presents the experimental results of different BNNs with respect to
the accuracy over BER (from 0% to up to 30% in Figure 7.11(a) and (b) and from 0% to
up to 6% in (c)). In all experiments, we observe that the accuracy over the BER of the
BNNs trained under MHL and FR is significantly higher than that of the baseline trained
by only MHL. For example, for Fashion in Figure 7.11, the BER at which the accuracy
degrades significantly is extended from 5% (baseline, green curve) to 20% and 15%,
respectively, with a small trade-off in the accuracy at 0% BER. If more accuracy at low
error bit rates is traded, the BER at which accuracy degrades steeply can be shifted even
further. For CIFAR10 in Figure 7.11, this breaking point can also be increased. However,
more accuracy has to be traded compared with previous cases. If b is higher than the
ones shown, the accuracy for lower BERs suffers similarly to how it would using CEL
with high BERs. If b is lower, there will be no significant change compared with CEL
with 0% BER. We only show the results with the best b.

7.2.5 Conclusion

Deep learning is notoriously memory hungry and hence new memory sub-systems
must be developed to push the application of ANNs to small devices. Likewise, new
ANN architectures can help to reduce memory consumption and offer a more resource-

7.2 Machine Learning Based on Emerging Memories | 335

friendly execution of deep networks. Non-volatile memories such as Ferroelectric FET
(FeFET) are a promising technology for new memory sub-systems. FeFET enables faster
and more energy-efficient read/write operations but it introduces bit errors into the
execution. While standard software solutions can monitor and correct bit errors, they
negate the advantages of non-volatile memories by introducing further processing
overhead. Neural networks that are resilient to random bit errors by design, on the
other hand, can retain the advantages of non-volatile memories leading to potentially
faster and more energy-efficient solutions. BNNs are a novel class of small, resource-
efficient neural nets that are ideally suited for such a setting. In BNNs each weight
consists of weights {0, 1} so that they require 32 times less memory than their floating-
point counterpart while being more resilient to random bit flips. In this contribution,
we provided an in-depth discussion of the bit errors in BNNs and derived a novel
max-margin optimization from it. Our approach offers a better accuracy across most
error rates while preventing the overfitting of the BNN to a specific error rate. Hence,
our approach allows the deployment of BNNs on a variety of different devices with
unknown and varying error rates.

336 | 7 Memory Awareness

0 2 4 6 8 10 12 14
50

60

70

80

90

Bit error rate (%)

A
cc
u
ra
cy

(%
)

FASHION FCBNN

FR 0%

FR 10%

FR 20%

FR 30%
MHL b1024

(a) Fashion FCBNN

0 2 4 6 8 10 12 14
50

60

70

80

90

Bit error rate (%)

FASHION CBNN

FR 0%

FR 5%

FR 10%

FR 20%
MHL b128

(b) Fashion CBNN

0 1 2 3 4 5
50

60

70

80

90

Bit error rate (%)

CIFAR10 CBNN

FR 0%

FR 5%

FR 10%

FR 20%
MHL b128

(c) CIFAR10 CBNN

Fig. 7.10: Accuracy over bit error rate for BNNs trained with FR under a given bit flip injection rate
(specified in the legend, 0%, 5%, 10%, etc.) and BNNs trained with MHL without FR for a specified b
in Equation 7.12.

7.2 Machine Learning Based on Emerging Memories | 337

0 10 20 30

10

20

30

40

50

60

70

80

90

Bit error rate (%)

A
cc
u
ra
cy

(%
)

FASHION FCBNN

MHL b1024

MHL+FR 10%b512

MHL+FR 20%b256

MHL+FR 30%b128

(a) Fashion FCBNN

0 5 10 15 20 25 30

10

20

30

40

50

60

70

80

90

Bit error rate (%)

FASHION CBNN

MHL b128

MHL+FR 5%b128

MHL+FR 10%b128

MHL+FR 20%b128

(b) Fashion CBNN

0 2 4 6

10

20

30

40

50

60

70

80

90

Bit error rate (%)

CIFAR10 CBNN

MHL b128

MHL+FR 1%b128

MHL+FR 2.5%b128

MHL+FR 5%b128

(c) CIFAR10 CBNN

Fig. 7.11: Accuracy over bit error rate for BNNs trained with MHL and FR (denoted as FR 0%, 1%, etc).
The number after the b is the value to which the parameter b in the MHL is set during training (see
Equation (7.12)).

338 | 7 Memory Awareness

7.3 Cache-Friendly Execution of Tree Ensembles

Sebastian Buschjäger
Kuan-Hsun Chen

Abstract: Ensembles of decision trees are among the most used classifiers in machine
learning and regularly achieve state-of-the-art performance in many real-world applica-
tions, e.g., in the classification of celestial objects in astrophysics, pedestrian detection,
etc. Machine learning practitioners are often concernedwithmodel training, re-training
different models again and again to achieve the best performance. Nevertheless, once a
learnedmodel is trained and validated, the executing cost of its continuous application
might become the major concern.
Applying decision trees for inferences is very efficient in run-time, but it requires

many memory accesses to retrieve nodes. For example, it is common to train several
thousand trees, e.g., each with depth 15 leading to 215 = 32768 nodes per tree. This
leads tomillions of decision nodes that must be stored inmemory and processed. Cache
memory is commonly adopted to hide the long latency between the main memory and
the processor. However, an improper memory layout might bring up additional cache
misses, leading to performance degradation. Thus, designing a suitable memory layout
of tree ensembles is of key importance to achieve efficient inference over tree ensembles.
In this contribution, we discuss the deployment of tree ensembles on different hard-

ware architectures. Given a pre-trained decision tree ensemble, we first present different
realization techniques commonly used in the literature. Afterwards, we study different
layout strategies to optimize the node placement in the memory, focusing on the caches
available on different hardware architectures. Finally, we present the evaluation results
over different configurations and combine all approaches into a single framework that
automatically generates the optimized realization for a target hardware architecture.

7.3.1 Introduction

Efficient learning has always been the focus of research, but the demand for the efficient
application of learned models has emerged only recently. Consider, for example, self-
driving cars. Current prototypes use machine learning (ML) for image recognition and
fundamental steering.¹ Thus, the ML model must not only be applied continuously, but
it also must react on time. As a second example, consider search engines that utilize ML

1 ,https://towardsdatascience.com/teslas-deep-learning-at-scale-7eed85b235d3.

https://towardsdatascience.com/teslas-deep-learning-at-scale-7eed85b235d3

7.3 Cache-Friendly Execution of Tree Ensembles | 339

models such as Gradient Boosted Trees² to rank search results. These engines routinely
process roughly 12 billion search queries a month worldwide.³ The 4 480 287 queries
per second they process demand fast model application.

While deep learning is excellent for unstructured image data, tree ensembles are
often referred to as one of the best black-boxmethods available for structured data. They
offer high accuracy with only a few parameters to tune [120, 223] and frequently place
among the top methods in data science competitions.⁴ For real-time application, tree
ensembles have become important in many domains, e.g., the real-time classification
of celestial objects in astrophysics [115], real-time pedestrian detection [466], real-time
3D face analysis [211]), the real-time classification of noise signals [608], nano-particle
sensors [439].

However, these trees are usually stored in the main memory and processed directly
out of the memory. The runtime of such a memory-intensive application is mainly de-
termined by the use of the various caches of the CPU. Surprisingly, as the line between
realizational details and algorithmic contributions becomes blurry on modern comput-
ing systems, caching behavior determines the performance of implemented algorithms
evenmore than algorithmic differences [615]. For tree ensembles, we can foresee that an
analytical approach to an efficient layout of thememory is desirable. Given a pre-trained
tree ensemble, we present several cache-aware approaches to optimize the memory
layout (so-called tree-framing), while preserving the original ensembles’ accuracy. The
proposed approaches are wrapped in a code generator that automatically adapts to
underlying architectures to produce optimized code segments. Overall, we present the
following contributions:
Cache-aware tree-framing approaches We analyze the source of cache misses on

two common tree realizations, i.e., native and if-else trees, and discuss several
approaches at the application level to optimize the memory layout by artificially
creating instruction/data locality .

Architecture-aware code generator We present a code generator that exploits the
analytical insights for generating optimized realizations of a given tree ensem-
ble. The code generator is publicly available at https://github.com/sbuschjaeger/
fastinference.

Empirical evaluation We perform 1800 experiments across three different computer
architectures and show that our approaches offer a speed-up factor at 2 − 4 on
average without changing the prediction accuracy of the given trained model.

This contribution was previously published as a conference paper in [108] and was
later expanded in a dissertation in [107].

2 https://www.seroundtable.com/bing-core-ranking-algorithm-machine-learning-27040.html.
3 Numbers are for 2019, see https://www.statista.com/topics/4294/bing/.
4 https://www.kdnuggets.com/2016/01/anthony-goldbloom-secret-winning-kaggle-competitions.
html.

https://github.com/sbuschjaeger/fastinference
https://github.com/sbuschjaeger/fastinference
https://www.seroundtable.com/bing-core-ranking-algorithm-machine-learning-27040.html
https://www.statista.com/topics/4294/bing/
https://www.kdnuggets.com/2016/01/anthony-goldbloom-secret-winning-kaggle-competitions.html
https://www.kdnuggets.com/2016/01/anthony-goldbloom-secret-winning-kaggle-competitions.html

340 | 7 Memory Awareness

7.3.2 Related Work

Tree ensembles are some of the most used machine learning algorithms and, as such,
have been studied extensively in the literature. In the context of model application and
fast inference, there are two principled approaches. The first set of methods changes the
training procedure for Decision tree (DT) ensembles to produce more resource-friendly
models. This can be beneficial to achieve the highest accuracy given the computational
resources provided, but often result in longer training times and more evolved training
procedures. Common examples for this approach are pre- and post-pruning rules for
trees (see, e.g. [43]) or the pruning of entire ensemble members [347, 449, 589, 739].

The second set of methods studies the realization of a given DT ensemble and its
execution. This approach uses the ensemble as-is and, as such, does not affect the train-
ing. We will focus on this methodology in this contribution. Note that bothmethods can
also be combined. For example, Van Essen et al. present in [679] a comprehensive study
of different architectures for implementing Random Forests (RFs) on CPUs, FPGAs, and
GPUs. Based on the CATE algorithm [586], the authors train an RF with DTs constrained
by a fixed height. By fixing the tree-depth, the authors show a practical pipelining
approach for executing DTs on CPUs, FPGAs, and GPUs.

Asadi et al. introduce different realization schemes of tree-based models in the
context of learning-to-rank tasks [26]. They introduce two different realization schemes,
which will be discussed in more detail later: the first one uses a while-loop to iterate
over individual nodes of the tree, whereas the second approach decomposes each tree
into its if-else structure. For the first realization, the authors also consider a continuous
data layout (i.e., an array of structs) to increase data locality but do not directly optimize
each realization. Also note that the authors mainly consider gradient-boosted trees.
There, the individual trees are usually “weak” in a sense, that they are comparably
small, as opposed to larger trees in RFs.

Also in the context of ranking models, Lucchese et al. present the QuickScorer
algorithm for gradient boosted trees [162, 450]. In this approach, the authors discard
the tree structure and decompose each tree into its comparisons. Then, they sort the
comparisons of the entire ensemble according to the feature value and perform them
one after another instead of traversing trees in a classical sense. To do so, they introduce
a 2∆-dimensional bit vector, where ∆ is the height of a tree in which the most significant
bit (MSB) signifies the prediction leaf node of that tree. This way, the algorithm can
reuse comparisons across all ensemble members while minimizing cache misses. In
[452] the authors further enhance their method by adding vectorization over multiple
examples for more efficient batch-processing. To mitigate the limitations of a fixed
height, Ye et al. propose in [721] using an encoding scheme called epitome that decodes
the bitvectors on the fly while preserving vectorization. We note that, while these
methods usually offer a tremendous speed-up, they execute all possible comparisons
in the entire ensemble in the worst case. Thus, they are especially effective for large
ensembles of smaller trees commonly produced by gradient boosting algorithms.

7.3 Cache-Friendly Execution of Tree Ensembles | 341

Kim et al. present in [373] a realization for binary search trees using vectorization units
on Intel CPUs and compare their realization against a GPU realization. The authors
provide insight on how to tailor the realization to Intel CPUs by taking into account
register sizes, cache sizes, and page sizes. Their work is specialized for Intel CPUs,
and thus, it is not directly applicable for different CPU architectures. Lucchese and
colleagues have already noticed, that many nodes are seldom visited [450]. Buschjäger
and Morik formalize this observation in [110] by estimating the probabilities of specific
paths during tree traversal. Based on this probabilistic view of model execution or
inference, the authors consider different realization schemes for tree traversal and
theoretically analyze their runtime. Note, however, that this model of computation
remains at the software level and does not include the memory layout. Buschjäger et al.
enhance this model in [108] by including the memory layout in their model. They show
how to minimize cache misses and how different realizations affect the instruction and
data cache differently for executing ensembles of large trees commonly found in RFs.
We will now discuss this paper in more detail.

7.3.3 A Probabilistic View of DT Execution

We consider supervised learning problems, in which we infer a model f : Rd → Y from
labeled training data {(xi , yi)|i = 1, . . . , N} to predict the value f (x) of new, unseen
observations. For Y = R, we have a regression problem, for Y = {0, 1, . . . }, we have a
classification problem.

Tree ensembles train a set of individual trees and combine their predictions to
establish a joint model. In the classical Random Forest (RF) approach by Breiman [72],
K DTs are trained using different samples of input features. Other RFs variations have
been explored, such as those that train trees on samples of data (bagging) [71] or those
that randomly generate splits for training [250]. Boosting [610] also frequently uses
decision trees as their weak base learners, but trains them sequentially to correct each
other.

A decision tree is a simple, tree-structured model that consists of inner nodes with
two children and leaf nodes. Each inner node compares the feature value xf of the
current sample x against a threshold t where f and t are computed during tree training.
Depending on the outcome of this comparison, either the left or the right child of this
node is used until a leaf node is found. The leaf node stores a constant prediction value
(e.g. the estimated class probabilities that fall into the leaf) which is then returned.

Our goal is to analyze the probability of performing a certain comparison while
traversing a DT. Based on this analysis, we can decide for each tree, which realization
and which data layout is best. Our notation is the following: each node receives a
unique identifier (e.g., in breath-first order) i. We denote the left child of i with l(i) and
the right child with r(i). Note that every observation takes exactly one path π(x) from
the root node to one leaf. To lighten the notation, we drop the argument x, if we are not

342 | 7 Memory Awareness

n0

n1 n2

n3 n4 n5 n6

20% 80%

50% 50% 10% 90%

Fig. 7.12: Decision tree with probabilities of the path.

interested in the path of a specific observation. As established in [110], we model each
comparison at node i as a Bernoulli experiment in which we take the path towards
the left child with probability p(i → l(i)) and towards the right child with p(i → r(i)). It
holds that p(i → l(i)) = 1 − p(i → r(i)). An example can be found in Figure 7.12.

The probabilities p(i → l(i)) and p(i → r(i)) can be estimated with the training
data by counting the number of samples at each node i taking the left and right path.
Assume a path of length L with π = (i1, i2, . . . , iL), where ij+1 is either the left or
the right child of the jth node on the path. Following this path consists of a series of
Bernoulli experiments, each with probability p(ij → ij+1). Let P denote the set of all
paths in the tree. The probability of taking path π ∈ P is given by

p(π) = p(i0 → i1) · . . . · p(iL−1 → iL) =
L∏︁

j=0
p(ij → ij+1) (7.13)

Again, let i be a node, there is exactly one path π = (0, . . . , i) ending in node i. We
call the probability of the path leading to node i the probability of that node, that is
p(i) = p((0, . . . , i)). Let T be the set of all nodes in the tree. We define the probability
for every subset of nodes T ⊆ T as:

p(T) =
∑︁

i∈T
p(i) (7.14)

7.3.4 Memory Locality and Tree Realization

As mentioned, tree ensembles can consist of millions of nodes that must be stored and
managed in themainmemory. Hence, thememory layout of tree ensembles is one of the
most crucial aspects of efficient tree traversal. In order to mitigate the performance gap
between the main memory and the processor, smaller and faster memory subsystems
are often introduced in modern computer architectures to hide the long read/write
latency, in the forms of cache and scratchpad memories. Here we focus on the cache
memory, which is commonly equipped in modern computing systems.

The cache memory basically acts as a buffer between the main memory and the
CPU and stores the data and instructions that the CPU uses more frequently. This way,

7.3 Cache-Friendly Execution of Tree Ensembles | 343

frequently accessed parts of the memory can be loaded from the smaller, but much
faster cache memory to reduce the latency of memory accesses. However, any misuse of
cachememorymight be evenworse than no cache in thememory hierarchy because one
cache miss triggers two loading instructions, one from the main memory to the cache
and one from the cache to the processor. There are three types of cache misses [183]:
Compulsory misses are due to the first access to a memory block that the cache did

not yet have a chance to buffer.
Capacity misses occur when somememory blocks are discarded from the cachemem-

ory due to the limited capacity, i.e., the program is working on more data than the
cache capacity.

Conflict misses occur in set-associative or direct-mapped caches when several blocks
are mapped to the same cache set.

The basic assumption of a cache is that ofmemory localities:
Temporal locality Recent data will be accessed in the near future, say, in small pro-

gram loops.
Spatial locality Data at addresses close to the addresses of recently accessed data will

be accessed in the near future, say, in sequential accesses to elements of an array.

These are the general assumptions for cache design, but please note that knowing how
the caches exactly behave is difficult or even impossible. Caches are manufactured
as parts of the closed IP of CPU manufacturers and hence the exact design of caches
is unknown. Additionally, due to the fact that there are often competing processes
running on a single CPU it is difficult to predict the cache behavior deterministically. In
this contribution we suppose that the design of cache behaviors cannot be changed.
The question we address is this: How to realize a cache-friendly execution while

preserving the functional behaviors of a given DT?

First, we analyze the memory usage of two common realizations of DT, i.e., native
Tree and If-else Tree that do not exploit the memory locality during the execution over
the structure of DT. Then we discuss how we can make these two realizations more
cache-friendly.

Native Tree The native tree implementation uses a while-loop to iterate over the
individual tree nodes that are stored within a continuous data structure, say, in a
one-dimensional array. An example code can be found in Listing 7.1. Although the
usage of the simple loop with a few lines of codes preserves the temporal locality,
the accesses over the nodes of a DT do not have spatial locality. The nodes are often
allocated sequentially according to the indexes, whereas such indexes might not take
the execution of the DT into consideration, e.g., the nodes on one path might not be
allocated sequentially. In addition, if the distance between each node of the path is
greater than the number of nodes that can be hosted into a cache set, some nodes will

344 | 7 Memory Awareness

be loaded into caches but not used at all, leading to much capacity and conflict cache
misses.

Listing 7.1: Example for native tree structure in C++.

struct Node {

bool isLeaf;

unsigned int prediction; // Predicted label

unsigned char feature; // Targeted feature

float split; // Threshold

unsigned short leftChild, rightChild;

};

Node tree[] = {{0,0,0,8191,1,2},{0,0,1,2048,3,4},..]}

bool predict(short const x[3]){

unsigned int i = 0;

While(!tree[i].isLeaf) {

if (x[tree[i].feature] <= tree[i].split) {

i = tree[i].leftChild;

} else {

i = tree[i].rightChild;

}

}

return tree[i].prediction;

}

If-Else Tree An alternative is the if-else tree, which statically encodes the split values
of nodes in the instructions. This realization essentially avoids the indirect memory
accesses required by the native tree and usually improves the runtime efficiency sig-
nificantly. An example code can be found in Listing 7.2. However, the advantage of
the temporal locality in the instruction cache might be completely abandoned. Since
DTs are naturally composed of many branches, some encoded instructions might be
prefetched into the instruction cache but not used. Additionally, if the size of the instruc-
tions for one DT is greater than the size of the instruction cache, the cached instructions
may be evicted out by loading other instructions due to the capacity and conflict cache
misses.

7.3 Cache-Friendly Execution of Tree Ensembles | 345

Listing 7.2: Example for if-else trees in C++.

bool predict(short const x[3]){

if(x[0] <= 8191){

if(x[1] <= 2048){

return true;

} else {

return false;

}

} else {

if(x[2] <= 512){

return true;

} else {

return false;

}

}

}

7.3.5 Memory Layout Optimization

In the following, we analyze the caching behaviors of the two different realizations and
present our tree-framing algorithms to optimize the memory layout at the application
layer accordingly.

Native Tree As shown in Listing 7.1, a DT can be realized by allocating the tree nodes
sequentially in an 1-D array, and a simple loop can access them according to the com-
parison between the feature and the split value. We first observe that, in fact, half of
the nodes in a tree are leaf nodes storing a prediction value. This naive realization, how-
ever, assumes the same data type for each node, incurring unnecessary memory usage.
Second, the access pattern of a DT forms a unique path from the root to a leaf for each
input data, but the nodes are typically sequentially allocated in the array according to
Breadth-First Search (BFS).⁵ The distance between each accessed node becomes larger
when the accessed nodes are placed deeper in the DT. The proposed optimization is
twofold: 1) reducing compulsory cache misses by encoding the predicted label into the
field of children, and 2) reducing capacity and conflict cache misses by allocating as
many nodes as possible from the same path into the same cache set.

When a node is loaded, the following nodes in the array are prefetched into the
data cache sequentially. If the size of memory for each node can be reduced, more
nodes can be loaded into the cache at once so that overall compulsory cache misses
can be reduced. To reduce memory consumption we can completely remove the isLeaf

5 Please note that the problem is not limited to BFS. Here we point out the demand of considering the
access pattern when allocating nodes to memory.

346 | 7 Memory Awareness

and prediction fields, and store the predicted labels of the children directly in the
respective fields by encoding the node type with an indicator field, i.e., removing one
Boolean variable and two unsigned shorts by adding one unsigned short.

Asmentioned earlier, the sequence of stored nodes is not consistent with the access
pattern over the execution of the tree, so the benefit of caching cannot be utilized
properly. A sensible solution is to leverage the probabilistic view on DT execution
to identify nodes that were likely executed consecutively and place them in memory
accordingly. Let τ be the cache set size and A be the array in which we place all nodes
of T. Furthermore, let C be the candidate list of nodes in T that have not been placed
in A yet and let S denote the nodes that should be placed in the same cache set. For
each node, we greedily choose a child that has the highest probability on the current
path and place it in S. Once S contains τ − 1 elements (and hence is full), we append
all nodes from S to the array A, clean up S, and repeat the above procedure for the next
set. The details are summarized in Algorithm 6.

Algorithm 6: Optimized path layout
Data: Tree-nodes T, maximum nodes per set τ
Result: A data array A with the path-oriented layout

1 A = []
2 C ← {0}
3 while C ̸= ∅ do
4 i ← argmaxj∈C{p(π(j))}
5 C ← C \ {i}
6 S ← {i}
7 while |S| ̸= τ do
8 if i is leaf-node and C ̸= ∅ then
9 i ← argmaxj∈C{p(π(j))}
10 C ← C \ {i}
11 else

12 C ← C ∪ argmin{p(i → l(i)), p(i → r(i))}
13 i ← argmax{p(i → l(i)), p(i → r(i))}
14 if |S| = τ − 1 then
15 C ← C ∪ {l(i), r(i)}
16 S ← S ∪ {i}
17 A.append(S)

Please note that adding a new node to S (Line 7) has two possible actions for the
encoding procedure:

7.3 Cache-Friendly Execution of Tree Ensembles | 347

– The current node is a split node. The algorithm picks the next node based on the
children’s probabilities and puts a more probable child in S and the other children
into the candidate list C.

– The checked node is a leaf node, i.e., the end of the path. The algorithm picks a
sub-root with the highest probability from the candidate list C as long as it is not
empty. The traversal starts again until S is full.

If the current S is full, but a path is not finished yet (Line 14), two children of the current
node are returned to the candidate list C (Line 16). A sub-root that has the highest
probability is picked from C for the next new set S. The algorithm outputs the optimized
memory layout over nodes in which path-oriented sets are sequentially allocated to the
array.

If-Else Tree As shown in Listing 7.2, a DT can be realized by unrolling the comparisons
of a DT into conditional statements with the if-else blocks. This version avoids the
indirect memory accesses and does not consider the execution pattern of a DT. The
proposedoptimization is also twofold: 1) reducing compulsory cachemisses by reducing
the branch executions, and 2) reducing capacity and conflict cache misses by grouping
those nodes used most of the time, e.g., the root node.

When a compulsory cache miss takes place, several consecutive instructions are
fetched into the instruction cache, even though some of them might not be executed
due to branches. An analysis of the corresponding assembly code reveals that only the
branches for else statements are generated in general. In order to increase the chance of
using prefetched instructions, the possibility of branch executions should be reduced.
Towards this, we propose traversing all paths in the DT and swapping the children of
every node i when p(i → l(i)) ≥ p(i → r(i)).

Furthermore, unlike the native tree, the positions of unrolled nodes cannot be freely
allocated. The size of nodes from a DT is likely greater than the size of the instruction
cache. Because of the capacity and conflict cache misses the cached instructions may
be evicted by fetching other instructions. We propose partitioning nodes into different
computation kernel functions, and leveraging goto statements to break the tie between
if-else blocks so that we can put probable nodes together.

LetK denote the kernel function and let s(i) be a mapping function returning the
instruction size of node i. We formulate the following optimization problem:

K = argmax
{︀
p(T)

⃒⃒
⃒T ⊆ Ts.t.

∑︁

i∈T
s(i) ≤ β

}︀
, (7.15)

where β is a given budget related to the size of the instruction cache on the targeted
architecture. GivenK, these nodes likely remain in the cache once they are fetched,
whereas the remaining nodes L = P \Kmay be evicted more often. In order to avoid
iterating over all possible subsets of T, which might be computationally inefficient, we
propose a greedy algorithm to partition nodes in a path-wise manner, summarized in

348 | 7 Memory Awareness

Algorithm 7. At first, the algorithm swaps the children according to their probabilities,

Algorithm 7: Optimized if-else tree
Data: Tree T, Paths P = {π1, . . . , πM}
Result: KernelK, Label L

1 swapChildren(T)

2 P ← sortByProbabilities(P)

3 b ← 0
4 for π ∈ P do

5 for i ∈ π do
6 if b + s(i) > B then

7 Add i to L
8 else

9 Add i toK
10 b ← b + s(i)

and sorts all paths in the tree by their probabilities. Afterwards, the approach greedily
appends nodes one by one into K until the accumulated size of the added nodes b
is greater than the given budgetB. The rest of the nodes are all added to L. Once the
nodes are grouped intoK and L, we can use goto statements to break the sequential
generation of if-else blocks. First, we generate if-else blocks for all nodes inK. Once
the left/right child of one of those nodes is in L, a goto statement is generated at the
same position to replace the original if-else statement. Then, the corresponding if-else
statements of this node and its children are all generated into a label block at the end,
which is branched from the goto statement. Listing 7.3 shows an example based on
Listing 7.2 by applying Algorithm 7.

7.3 Cache-Friendly Execution of Tree Ensembles | 349

Listing 7.3: If-else structure in C++ with goto statements.

bool predict(short const x[3]){

if(x[0] > 8191){

if(x[2] <= 512){

return true;

} else {

return false;

}

} else {

goto Label0;

}

Label0:

{

if(x[1] <= 2048){

return true;

} else {

return false;

}

}

}

The remaining question is how to estimate the instruction size s(·) of each node. In
general, the instruction set size differs for two different types of nodes:
Split nodes require three types of instructions. First, the values of the target feature

and the corresponding threshold are loaded into registers. Second, the values
inside the registers are compared against constant values. Last, a jump out of the
current block is performed based on the comparison.

Leaf nodes need two types of instructions. First, the return value of the prediction
is stored in a register, and second, a jump back to the caller of the if-else tree is
performed.

Therefore, we can estimate s(·) by counting the number of generated instructions for a
tree node. Table 7.7 summarizes the expected size of instructions for ARM, X86 (Intel),
and PPC in an isolated example.⁶ Please note that in a real application, the actual
number of instructions depends on the adopted compilation tool-chains and the actual
realization. An advanced automation can be further explored by exploiting compiler
features, e.g., annotations on the source code, to enforce the executing patterns. By
doing so, the number of generated instructions can be firmed in the proposal algorithm
as for example done in ongoing research such as [132].

6 We adopted GNU C++ (g++) compiler version 4.8.3 for ARM, version 4.9.2 for PPC, and version 5.4.0
for Intel with -O0 option.

350 | 7 Memory Awareness

Tab. 7.7: The expected size of instructions for a split node and a leaf node in a decision tree on ARM
(Raspberry PI 2), PPC (NXP T4240 processors) and Intel (Intel Core i7-6700) processors.

ARM [Bytes] PPC [Bytes] Intel [Bytes]

Type Int Float Int Float Int Float
Split 20 32 20 48 28 17
Leaf 8 8 8 8 10 10

7.3.6 Architecture-Aware Code Generator

As noted earlier, for each combination of tree ensembles and target hardware architec-
ture a different implementation might offer the best inferencing solution. Hence, we
implement the discussed tree-framing methods in a single code-generator framework
that generates the optimized realizations for a given forest and target platform. Fig-
ure 7.13 gives an overview of the whole workflow. First, the pre-trained forest (in a JSON
format) is loaded. Afterwards, the corresponding intermediate representation of the
ML model is generated, and the proposed optimizations are performed, e.g., branch
swapping, node re-indexing, etc. Finally, we provide a set of C-style templates that
represent the specific implementation types (e.g. native or if-else). Several auxiliary
scripts scripts are provided to automate the above procedures, e.g., selecting corre-
sponding cross-compilers. Per default sci-kit learn models are targets [561] but other
model definitions, in, say, the ONNX format are also supported. More details can be
found at https://github.com/sbuschjaeger/fastinference.

JSON

Read File

Decision Tree

Ensemble

...

Optimize
Model

Tree Framing

Choose
Target

Architecture

X86

ARM

PPC

Generate
Code

if-else

native

...

Fig. 7.13:Workflow of our code generator. The model configuration is loaded into an internal repre-
sentation. If selected, optimizations are performed on the model before code generation. Afterwards,
the target architecture and the appropriate templates are selected for final code generation.

https://github.com/sbuschjaeger/fastinference

7.3 Cache-Friendly Execution of Tree Ensembles | 351

7.3.7 Experimental Evaluation

We have performed 1800 different experiments by training Decision Trees (DT) [73],
Random Forests (RF), [72] and Extremely randomized Trees (ET) [250] on 12 different
datasets with varying tree-depths to generate the aforementioned realizations for dif-
ferent architectures, i.e., X86, PPC, and ARM CPUs. Table 7.8 shows the datasets we
used during the experiments. All datasets are available in the UCI Machine Learning
Repository [31] except for MNIST [420], IMDB [456], and FACT [17]. In addition to the
number of features and the number of examples during test time, we also report the
range of accuracy for the three different models DT, RF, and ET. In all experiments we
used the CART algorithm with the Gini score criterion for node-splitting and trained
models using the sklearn package[561]. For RF and ET, we used 25 trees. If the respec-
tive dataset comes with a pre-computed train/test split, we use this. Otherwise, we use
75% of the data for training and 25% of the data for testing. DTs often do not achieve
high accuracy, whereas RF and ET perform best with large trees. We did not perform
any hyperparameter optimization with respect to the classification accuracy and report
the accuracy here to validate our code generator.

Since sklearn is arguably one of the most-used machine learning libraries we also
compared its performance against our implementation. We found that, our realization
is on average 500 − 1500 times faster than sklearn. However, we admit that this com-
parison is biased, because large parts of sklearn are written in Python and optimized
for batch execution. Thus, we excluded these comparisons in the following discussion.
For space reasons, we focus our evaluation on RF models, but found that DT and ET
result in similar behaviors across all systems. We use the naive native realization as
the baseline for all experiments, and measure the average speed-up for each dataset of
each optimization against this realization. To minimize unfairness due to caching, we
classify all samples in the test set twice, but only report the runtime of the second run.
We repeat the whole process 50 times and report the average speed-up across these 50
repetitions.

For native optimizations, we choose τ = 25 on X86, τ = 8 on ARM, and τ = 8 for
the PPC CPU. For if-else optimizations, we use an instruction-cache size β = 128000
bytes on X86, β = 32000 bytes on ARM, and β = 32000 bytes on the PPC CPU. The
experiments were performed on an Intel Core i7-6700 desktop machine with 16GB
RAM for X86. For PPC, we use a NXP Reference Design Board with T4240 processors

and 6GB RAM. For ARM, we use an Raspberry PI 2 with an ARMv7 CPU and 1GB RAM.

Experiments on the X86 CPU Architecture Figure 7.14 depicts the average speed-up
of the four different optimizations on Intel. First we note, that the if-else trees are the
fastest on Intel and offer a speed-up of around three across all tree depths. For smaller
tree depths from 1 − 10, we see that optimizing if-else trees only offers marginal speed-
up. However, for larger tree depths of around 15 and 20, we can see that optimized

352 | 7 Memory Awareness

Tab. 7.8: Summary of datasets for our experiments based on UCI datasets [31], IMDB [456],
MNIST [420], FACT [17].

Dataset # Examples # Features Accuracy

adult 8141 64 0.76 - 0.86
bank 10297 59 0.86 - 0.90
covertype 145253 54 0.51 - 0.88
fact 369450 16 0.81 - 0.87
imdb 25000 10000 0.54 - 0.80
letter 5000 16 0.06 - 0.95
magic 4755 10 0.64 - 0.87
mnist 10 000 784 0.17 - 0.96
satlog 2000 36 0.40 - 0.90
sensorless 14628 48 0.10 - 0.99
wearable 41 409 17 0.57 - 0.99
wine-quality 1625 11 0.49 - 0.68

if-else trees can retain their speed-up and outperform unoptimized if-else trees with a
speed-up factor larger than 3.

Native trees do not perform as well as if-else trees on Intel CPUs. Overall, the speed-
up compared with naive native trees is only marginal for smaller trees below depth 15.
Here, both versions, i.e., the StandardNativeTree and the OptimizedNativeTree, offer a
speed-up of 1.5 at most. Interestingly, for larger trees around depth 15 and more, we
again notice that our optimizations improve performance.

Experiments on the PPC CPU architecture Figure 7.15 depicts the average speed-
up of the four different optimizations on PPC. We can observe that the results here
are similar to Figure 7.14, in which if-else trees always outperform native trees with a
speed-up in the range from 2 − 5. Along with the increment of tree depth, the speed-up
from both if-else tree versions drops. Un-optimized if-else trees suffer especially from
degraded performance, dropping to almost 2, whereas the optimized version can retain
a speed-up of around 3.5.

Similar to X86 CPU, the native realization does not seem to be the best choice
as it provides a speed-up under 2 in all cases. However, with increasing tree depths,
optimizations are more important. It is worth noting, that we can observe cases where
the native trees outperform if-else trees when tree depth is larger than 15.

Experiments on the ARM CPU Architecture Figure 7.16 depicts the average speed-
up of the four different optimizations on ARM. We observe that the situation on ARM is
more fragmented than that of X86 and PPC. In general, we are able to achieve a speed-up
of around 4 for small trees, which drops to around 2−3 for larger trees. Both realizations
roughly start with the same speed-up factor for small trees, but then quickly diverge for
tree depth from around 5−15. In this range of tree depth, we see that if-else trees are the

7.3 Cache-Friendly Execution of Tree Ensembles | 353

6 8 10 12 14 16 18 20
Tree depth

1.0

1.5

2.0

2.5

3.0

3.5

Sp
ee

du
p

Speedup over the naive native implementation on X86

if-else native optimized if-else optimized native

Fig. 7.14: Average speed-up factor for real-time execution compared with the naive native realization
on Intel for tree depths from 1 − 20.

6 8 10 12 14 16 18 20
Tree depth

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Sp
ee

du
p

Speedup over the naive native implementation on PPC

if-else native optimized if-else optimized native

Fig. 7.15: Average speed-up factor for real-time execution compared to the naive native realization on
PPC for tree depths from 1 − 20.

354 | 7 Memory Awareness

6 8 10 12 14 16 18 20
Tree depth

1.0

1.5

2.0

2.5

3.0

3.5

4.0
Sp

ee
du

p

Speedup over the naive native implementation on ARM

if-else native optimized if-else optimized native

Fig. 7.16: Average speed-up factor for real-time execution compared with the naive native realization
on ARM for tree depths from 1 − 20.

fastest choice on ARM. Additionally, we notice that with increasing tree depths cache
optimizations become more important and consistently outperform their un-optimized
counterpart. Once trees are sufficiently large, we see that the native trees match again
the performance of if-else trees and even outperform them for tree depths of 15 and 20
in some cases. In this sense, the results are similar to what we have seen on the PPC
architecture.

7.3.8 Discussion of the Experiments

The experiments show differences and similarities across the three architectures. Here,
we want to discuss these phenomena in terms of the properties of the specific architec-
tures, as well as the particular CPU models used for experiments. We note that one of
the main architectural differences between X86, ARM, and PPC are the available instruc-
tions. Since native trees only use a small amount of hot-code, the differences between
CPU architectures will likely not matter much here. However, while looking at if-else
trees, we can expect a larger difference. To further investigate the interplay between

7.3 Cache-Friendly Execution of Tree Ensembles | 355

CPU architectures and code size, we consider Table 7.9, ⁷ which depicts the instruction
size of a tree kernel function for varying tree depths over the FACT dataset (containing
floating-point features) and the covertype dataset (containing integer features) under
the standard if-else tree realization. For Intel CPUs, as shown in Figure 7.14, we notice

Tab. 7.9: The actual size of instructions for if-else tree executing kernel functions on different archi-
tectures with the O3 option.

(a) Kernel size with integer features for covertype dataset

DateType DT-1 DT-5 DT-10 DT-15 DT-20

Intel 224 575 8185 51005 167644
PPC 232 604 7732 51840 170772
ARM 204 604 9040 55012 180628

(b) Kernel size with floating point features for fact dataset

DateType DT-1 DT-5 DT-10 DT-15 DT-20

Intel 96 415 17023 127330 404722
PPC 96 556 20996 169696 577952
ARM 88 428 18436 154992 542020

that if-else trees are the best choice. There are mainly two reasons. First, X86 CPUs
are Complex Instruction Set Computers (CISC) offering a very rich set of instructions
that include all sorts of specialized operations. Since if-else trees unroll the complete
tree structure into instructions, they give the compiler the opportunity to utilize this
multitude of instructions to the fullest by encoding larger parts of the tree in single
instructions. From Table 7.9 we can also see that the Intel CPU almost always requires
the fewest instructions per decision tree. Second, in our experimental setting, the Intel
Core i7-6700 CPU has a comparably large instruction cache of 256 KiB combined with
two larger shared caches of 1MiB (L2 Cache) and 8MiB (L3 Cache). Thus, by encoding a
single tree in only a few instructions, it is likely to fit it into the larger instruction cache.
By contrast, native trees do not benefit from the CISC architecture and require additional
space in the data cache by encoding the tree nodes as data instead of instructions.

As with the X86 architecture, we have seen that if-else trees perform very well on
the PPC architecture, but to a lesser extent. The PPC CPU architecture is a Reduced
Instruction Set Computer (RISC) with performance enhancement for high performance
computing. RISC does not offer instructions for specialized operations as CISC does.

7 Although the instructions generated by the compiler may differ due to aggressive compiler optimiza-
tion (O3) compared with the presented node sizes (O0 optimization) in Table 7.7, the code generator at
the end selects the O3 option to accelerate the realizations as much as possible.

356 | 7 Memory Awareness

Thus, the compiler must largely rely on the combination of (comparably) simple
instructions to implement if-else trees. This, in turn, results in larger code that is less
likely to fit into the instruction cache. Comparing the instruction size of PPC with
X86 in Table 7.9 we see that the PPC architecture indeed requires more instructions
than with X86. Interestingly, this case is less severe for integer features, due to the
enhancements in this instruction set architecture. Considering the cache sizes of the
T4240 processors used in the experiments, we see that it only has a 32 KiB instruction
cache, but also comes with a 2MiB shared L2 cache, which is even larger than the Intel
Core i7-6700 CPU. For smaller trees of around 5 − 10, the cache sizes are still large
enough to hold all trees, and thus if-else trees are still the fastest choice. If trees become
large (depth 10 or more), the instruction cache is not enough to hold all trees and we
must rely on the larger L2 cache. However, this cache is slower, which in combination
with the larger code size explains the performance drop for larger trees.

Finally, we discuss the fragmented behavior of the ARM architecture. Much like its PPC
counterpart, ARM also uses a RISC architecture. However, ARM’s RISC does not come with
specialized instructions for high-performance computing, and thus the compiler has to
completely rely on the combination of simple instructions for if-else realization. This in
turn results in even larger code for integer features, which is less likely to fit into the
instruction cache as shown in Table 7.9. Interestingly, for floating-point features, we see
that the ARM CPU uses fewer instructions than the PPC CPU, which is attributable to the
specific CPU model used during experiments. The T4240 processors are optimized for
high-performance computing in a low-power embedded computing setting, such as
networking applications, and thus are optimized for integer operations. By contrast,
the ARMv7 CPU of the Raspberry PI 2 is a general-purpose CPU aimed at the needs
of the average user, and thus it places a larger emphasis on floating-point operations
compared with the T4240 processors. It has a 32 KiB instruction cache in combination
with a significantly smaller 512 KiB L2 shared cache. Compared with the other CPUs,
this means that the ARM CPU has 2 − 16 times less L2/L3 cache available. For smaller
trees around a depth of 5−10, the cache sizes are still enough to hold all trees, and thus
if-else trees are still the fastest choice. For larger tree depths, however, the instruction
cache is not enough and native structures using the data cache become faster. However,
since the data cache is also small, both caches are filled quickly to their maximum.
Interestingly, if we optimize both if-else and native trees, we end up with roughly the
same performance.

7.3.9 Conclusion

DTs form one of the building blocks of modern machine learning and ensembles of
decision trees are one of the most successful classifiers regularly achieving state-of-
the-art performance in real-world applications. DTs are generally regarded as ‘simple’

7.3 Cache-Friendly Execution of Tree Ensembles | 357

classifiers that can be executed even on the tiniest of hardware. However, a tree easily
contains up to millions of decision nodes that must be stored and managed which can
be a challenge even for large server hardware. Cache memory is commonly adopted
in today’s von-Neumann computing architecture to hide the long latency between
the main memory and the processor. Hence, an efficient realization of a given tree
ensemble must respect this memory hierarchy and provide a suitable memory layout of
the decision nodes for optimal performance. In every modern programming language
there are at least two ways to implement a DT: either one decomposes the tree into its
if-else structure or one uses a while-loop to iterate over a continuous array of nodes.
Both approaches offer different caching behaviours that can be further enhanced by
the tree-framing methods discussed in this contribution. At the core of these methods
lies the fact that DTs do not have a deterministic runtime, but its execution time may
vary depending on the current sample. Hence, a probabilistic view of DT execution
estimates themost probable paths of the tree and frames the tree so that these paths are
likely to remain in the cache. The experimental evaluation shows a speed-up around
2 − 4 across three different hardware architectures on a variety of datasets without any
loss in accuracy occurs.

8 Communication Awareness
The ubiquity of connected devices and parallel computing platforms challenges ef-
ficient and reliable execution of machine learning algorithms. If machine learning
workloads are executed merely locally, a system does not always have sufficient re-
sources at its disposal to perform the necessary operations fast enough. Furthermore,
at a smaller scale, multiple hardware components these days are interconnected via
on-chip or off-chip networks to create many-core systems. Communication, synchro-
nization, and offloading have thus become essential in designing embedded systems
under communication and resource constraints.

This chapter presents (1) the timing predictability of embedded systems and (2) the
communication architecture in heterogeneous CPU/GPU environments. Synchroniza-
tion with resource sharing, communication with potential failures, and probabilistic
timing information are presented in Section 8.1. Bandwidth limitations of different exe-
cution models and coprocessor-accelerated optimization are presented in Section 8.2.

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-008

360 | 8 Communication Awareness

8.1 Timing-Predictable Learning and Multiprocessor
Synchronization

Kuan-Hsun Chen
Junjie Shi

Abstract:With the increasing demand for time-predictable machine learning applica-
tions, e.g., object detection in autonomous driving systems, such a trend poses several
new challenges for resource synchronization in real-time systems, especially when
hardware accelerators like Graphics Processing Units (GPUs) are considered as shared
resources. When the shared resources have relatively high utilization, conventional
synchronization mechanisms might result in performance downgrade.
We thus propose the emerging Dependency Graph Approach (DGA), where the prece-

dence constraints of all the computation segments are pre-proceeded. Such a non-work-
conserving approach can schedule long critical sections, which may be even longer
than the period of another task. This is not the case in all the other work-conserving
protocols typically in use. Throughout numerical experiments, we show that DGA out-
performs all the other conventional protocols in all the evaluated configurations when
shared resources are highly utilized.
Additionally, a system does not always have sufficient resources at its disposal to per-

form the necessary operations fast enough if machine learning workloads are executed
merely locally. One sound approach is to offload heavy workload to powerful remote
servers and expect the inference outcome can be received in time. However, since this
approach highly depends on network connectivity and responsiveness, typically only
non-critical tasks are offloaded, whose timing requirements are less strict than those of
critical tasks. Against such a pessimistic design, we present two novel offloading proto-
cols that offload both critical and non-critical tasks. They handle uncertain connections
while providing certain timing guarantees.
To achieve a timing-predictable design, typical timing analyses always consider the

worst-case execution pattern to derive timing guarantees. But this approach is often
too restrictive for some machine learning applications with soft timing constraints.
To mitigate the pessimism, we develop several timing analyses of the probability of
deadline misses and the deadline miss rate, two important metrics considered in the
literature to quantify timeliness.

8.1 Timing-Predictable Learning and Multiprocessor Synchronization | 361

8.1.1 Introduction

Under the von Neumann programming model, shared resources that require mutually
exclusive accesses, e.g., shared files, data structures, etc., have to be protected by apply-
ing synchronization (e.g., binary semaphores) or locking (e.g.,mutex locks)mechanisms.
Protected code segments that have to access shared resource(s) mutually exclusively
are called critical sections. For uni-processor real-time systems, longstanding protocols
developed in the 90s, are the current state of the art. These are namely the Priority
Inheritance Protocol (PIP) and the Priority Ceiling Protocol (PCP) by Sha et al. [623], as
well as the Stack Resource Policy (SRP) by Baker [37].

Along with the development of multiprocessor platforms, multiprocessor resource
synchronization and locking protocols have been proposed and extensively studied.
These include Distributed-PCP (DPCP) [592], Multiprocessor PCP (MPCP) [591], Mul-
tiprocessor SRP (MSRP) [238], Flexible Multiprocessor Locking Protocol (FMLP) [58],
O(m) Locking Protocol (OMLP) [69], and Multiprocessor resource sharing Protocol
(MrsP) [101].

However, the performance of aforementioned protocols highly depends on 1) how
the tasks are partitioned and prioritized, 2) how the resources are shared locally and
globally, and 3) whether a job/task being blocked should spin or suspend itself. In
the literature, conventional synchronization mechanisms might result in performance
downgrade, since most of them are designed for sporadic tasks with relatively low
utilization for critical sections, which are often not able to represent emerging heavy-
loaded machine learning applications. We thus propose a novel concept called DGA,
which can serve high utilization of critical sections well.

Moreover, when the workload of a critical section, e.g., a machine learning work-
load on GPU, is extremely high, a system does not always have sufficient resources at
its disposal to perform the necessary operations fast enough. A sound solution is to
offload heavy workload to powerful remote servers and wait for the outcome of the
inference processes. However, the performance and stability of this approach highly de-
pends on the quality of the network. To improve flexibility, we propose several adaptive
protocols to ensure that the timing requirements of safety- and mission-critical tasks
are not violated even in the case of connectivity issues while obtaining the benefits of
offloading computation shares.

Last but not least, to achieve a timing-predictable design, conventional timing
analyses always focus on the worst-case execution pattern to derive hard timing guaran-
tees. However, such analyses are sometimes too pessimistic when systems can accept
rare deadline misses, e.g., for soft real-time systems. Limited deadline misses on many
machine learning applications might only lead to performance degradation, e.g., for
image and voice recognition on smart edge devices. Some end users might only feel
inconvenienced without further serious consequences. However, people might still
wonder how resilient the considered system is with respect to deadline misses in a
probabilistic argument. To obtain the probability of deadline misses, we innovate a

362 | 8 Communication Awareness

well-known convolution-based approach based onmultinomial distribution, and adopt
several concentration inequalities to derive analytical upper bounds to further improve
the efficiency of calculation.

Overall, the presented contributions in this chapter are as follows:
Dependency Graph Approach (DGA) We propose a novel method for periodic real-

time task systems, which predestines the sequence where tasks can access re-
sources. The conducted numerical simulations show that DGA outperforms all
state-of-the-art approaches in most evaluated configurations, especially when
utilization of critical sections is relatively high.

Offloading protocols for unreliable connection We present two offloading proto-
cols that offload both critical and non-critical tasks. They deal with uncertain
connections while providing certain timing guarantees. A case study on a robotic
system demonstrates the applicability of the proposed protocols under various
configurations.

Deadline-miss analyses A novel approach based on the multinomial distribution is
proposed that calculates the deadlinemiss probability with drastically better analy-
sis runtime without any precision loss. Furthermore, we propose several analytical
bounds based on various concentration inequalities. The evaluation shows that
our approaches are applicable for significantly larger task sets while preserving
the quality of derived results, compared with conventional convolutional-based
approaches.

8.1.2 Related Work

For multiprocessor systems, many resource synchronization and locking protocols are
extensions of these aforementioned well-known uni-processor protocols. For example,
Rajkummar et al. [592] proposed DPCP, where each resource is assigned on a processor
statically, and critical sections are executed on the corresponding processor where the
requested resource is assigned on. The extension MPCP [591] enables tasks to execute
their critical section locally. In order to minimize the usage of stack memory in real-
time systems, Gai et al. [238] proposed MSRP. Block et al. [58] introduced FMLP, where
resources are divided into two groups, i.e., long and short. For short resources, critical
sections are executed in a non-preemptable manner and tasks spin on their processors
while waiting for resources. For long resources, tasks suspend themselves into a First
In First Out (FIFO) queue while waiting. Brandenburg and Anderson [69] proposed
OMLP, which ensures O(m)maximum pi-blocking for any task set. Burns et al. [101]
proposed MrsP, which allows tasks to progress other tasks that have occupied the same
requested resource, in order to reduce the blocking time. A comprehensive survey of
multiprocessor real-time locking protocols can be found in [68].

8.1 Timing-Predictable Learning and Multiprocessor Synchronization | 363

Besides fully relying on local computational power, offloading computation to remote
servers is a reasonable solution to ease the pressure of resource constraints on em-
bedded systems. In 2012, a cloud-assisted system for autonomous driving was firstly
studied by Kumar et al. [406]. In 2015, Esen et al. [203] presented a software architecture
named Control as a Service in which all control functions are completely moved to
the cloud. In 2018, Adiththan et al. [4] proposed an adaptive offloading technique for
control applications that makes all offloading decisions online based on a network
performance monitor. Recently, Al Maruf and Azim [469] proposed a strategy for task of-
floading in multiprocessor mixed-criticality systems with dynamic scheduling policies
under overload conditions. For real-time systems that allow offloading, one concept for
modeling this particular local system view is self-suspension [127]. One of the state-of-
the-art models can be applied such as the dynamic self-suspension model (e.g. [324],
[442]), the segmented self-suspension model (e.g. [611]), or a hybrid model, e.g. [84].
For a detailed overview, see [127, 128].

To safely derive probabilistic timing guarantees, which enable a tradeoff between
system safety and hardware costs, several techniques have been developed in the
literature. Diaz et al. [177] developed a framework for calculating the deadline miss
probability based on convolution for periodic task systems. In addition, Tanasa et
al. [657] used the Weierstrass Approximation to approximate any arbitrary execution
time distributions and applied a customized decomposition procedure to search all the
possible combinations. However, the two approaches can derive only the probability
of deadline misses with 7 and 25 jobs in the hyper-period, respectively. For sporadic
real-time task systems, inwhich two consecutive jobs of a task do not have to be released
periodically, Axer et al. [27] proposed evaluating the response-time distribution and
iterating over the activations of job releases for non-preemptive fixed-priority schedul-
ing. Maxim et al. [476] provided a probabilistic response time analysis by assuming a
probabilistic minimum inter-arrival as well as probabilistic worst-case execution times
(WCETs) for the fixed-priority scheduling policy. Ben-Amor et al. [46] extended the
probabilistic response time analysis in [476] by considering precedence-constrained
tasks. These convolution-based approaches are in general not scalable due to the huge
number of jobs in the interval of interest.

8.1.3 Dependency Graph Approach

In this subsection, the dependency graph approach is presented in detail, including
the primary design of DGA, the extension for supporting periodic task systems, and the
corresponding scheduling algorithms.

364 | 8 Communication Awareness

8.1.3.1 Primary Design of DGA
We consider a set of n frame-based real-time tasks T ={τ1, . . . , τn} that is sched-
uled on M identical (homogeneous) processors. Each task is described by τi =
((Ci,1, Ai,1, Ci,2), Ti , Di). The given tasks release their jobs at the same time and have
the same period and relative deadline. Specifically, each task τi releases a job (at time
0 for notational brevity) with the following properties:
– Ci,1 is the execution time of the first non-critical section of the job.
– Ai,1 is the execution time of the (first) non-nested critical section of the job, in

which a binary semaphore or a mutex σ(τi,1) is used to control the access to the
critical section.

– Ci,2 is the execution time of the second non-critical section of the job.

A sub-job is a critical section or a non-critical section. Therefore, each job of task τi
has three sub-jobs. We assume the task set T is given and a constrained deadline is
considered, i.e., Di ≤ Ti. We also make the following assumptions:
– For each task τi in T, Ci,1 ≥ 0, Ci,2 ≥ 0, and Ai,1 ≥ 0.
– The execution of the critical sections guarded by one binary semaphore s must

be sequentially executed under a total order. That is, if two tasks share the same
semaphore, their critical sections must be executed one after another without any
interleaving.

– The execution of a job cannot be parallelized, i.e., a job must be sequentially
executed in the order of Ci,1, Ai,1, Ci,2.

– There are in total Z binary semaphores.

The dependency graph approach consists of the following two steps:
– In the first step, a directed graph G = (V , E) is constructed. A subjob (i.e., a critical

or a non-critical section) is a vertex in V and the edges in E describe the precedence
constraints of these jobs. The subjob Ci,1 is a predecessor of the subjob Ai,1, and
Ai,1 is a predecessor of the subjob Ci,2. If two jobs of τi and τj share the same binary
semaphore, i.e., σ(τi,1) = σ(τj,1), then either the subjob Ai,1 is the predecessor of
Aj,1 or the subjob Aj,1 is the predecessor of Ai,1. All the critical sections guarded by
a binary semaphore form a chain in G, i.e., the critical sections of the same binary
semaphore follow a total order. Therefore, we have the following properties in set
E:
– The two directed edges (Ci,1, Ai,1) and (Ai,1, Ci,2) are in E.
– Suppose that Tk is the set of tasks that require the same binary semaphore sk.

Then, the |Tk| tasks in Tk follow a certain total order π such that (Ai,1, Aj,1) is
a directed edge in E when π(τi) = π(τj) − 1.

Figure 8.1 provides an example of a task dependency graph with one binary
semaphore. Since there are Z binary semaphores in the task set, the task depen-
dency graph G has in total Z connected subgraphs, denoted as G1, G2, . . . , Gz. In

8.1 Timing-Predictable Learning and Multiprocessor Synchronization | 365

C1,1

A1,1

C1,2

C2,1

A2,1

C2,2

Ci,1

Ai,1

Ci,2

Fig. 8.1: A task dependency graph for a task set with one binary semaphore.

each connected subgraph Gℓ, the corresponding critical sections of the tasks that
request critical sections guarded by the same semaphore form a chain and have to
be executed sequentially. For example, in Figure 8.1, the dependency graph forces
the scheduler to execute the critical section A1,1 prior to any of the other three
critical sections.

– In the second step, a corresponding schedule of G on M processors is generated.
The schedule can be based on system restrictions or user preferences, i.e., it can
be based on either preemptive or non-preemptive schedules, or on either global,
semi-partitioned, or partitioned schedules.

Algorithms toConstructG The objective of constructing dependency graph, i.e.,G, is
tominimize themakespan, i.e., the latest finishing time of all tasks,with the assumption
that the number of virtual processors is the same as the number of tasks, based on
uni-processor non-preemptive scheduling. For each task, Ci,1 is considered as release
time ri, and Ci,2 is considered as delivery time. There are several existing algorithms to
derive good approximations of G*, where G* is the graph with the optimal makespan:
1) the extended Jackson’s rule [289], which is a polynomial-time algorithm with 2-
approximation [377]; 2) the Potts [583], which is a polynomial-time 1.5-approximation
algorithm [289]; 3) and the improvement of the approximation ratio to 4/3 by Hall and
Shmoys [289].

8.1.3.2 Extension to Periodic Task Systems
To increase the applicability, we extend the DGA to handle multiprocessor synchroniza-
tion for periodic real-time task systems. That is, we unroll the jobs of all the tasks in
one hyper-period and then construct a dependency graph of these jobs. Suppose that
the hyper-period H of a task set is the least common multiple (LCM) of the periods of
all the tasks in this set. For each task τi that requests (at least) one resource, we create
H/Ti jobs of task τi. For the ℓ-th job of task τi, we set its release time to (ℓ − 1)Ti and its
absolute deadline must be no later than (ℓ−1)Ti +Di. Since the jobs for one task should
not have any execution overlap with each other, we only need one virtual processor or

366 | 8 Communication Awareness

dedicated shop for them, but the release time constraint is added for each job. The three
methods in Section 8.1.3.1 can still be applied by adding the release time constraint
for each job. Afterward, a dependency graph for all the jobs in one hyper-period is
generated. In the end, the schedules are generated offline. And the generated schedules
will be repeated in the upcoming hyper-periods.

Please note that such an extension can be applied to any periodic real-time task
system but that it comes at the cost of space and computation, due to the increasing
number of jobs in one hyper-period.

8.1.3.3 Scheduling Algorithms
In the following, we show three scheduling algorithms for the same dependency
graph(s) under different system specifications.

List-EDF Here, we show how to schedule the unrolled dependency graphs over the
hyper-period. For the ℓ-th job of τi, Jℓi has three subjobs Jℓi,1, Jℓi,2, Jℓi,3 that represent the
related subjobs Ci,1, Ai,1, Ci,2, respectively. The release time of the first subjob is Jℓi,1 is
(ℓ−1)Ti, and the absolute deadline of the last subjob Jℓi,3 is (ℓ−1)Ti +Di. Regarding the
release times of the second and third subjob, we initially set the earliest possible time
the jobmay be released based on theWCETs of the other subjobs. Meanwhile, regarding
the deadline of the first and second subjob, we initially assign the latest possible time
the subjob can finish while still allowing schedulability. To be precise, the release time
of Jℓi,2 is set to (ℓ − 1)Ti + Ci,1, the release time of Jℓi,3 is set to (ℓ − 1)Ti + Ci,1 + Ai,1, the
absolute deadline of Jℓi,2 is set to (ℓ − 1)Ti + Di − Ci,2, and the absolute time of Jℓi,1 is set
to (ℓ − 1)Ti + Di − Ci,2 − Ai,1.

We assume that each dependency graphGs for a binary semaphore s is constructed
for the corresponding jobs released (strictly) within one hyper-period H. If Hs < H,
then H

Hs copies of Gs are applied in a consecutive order to represent the precedence
constraints of the critical sections. For notational brevity, we denote rℓi,j as the release
time of the subjob Jℓi,j and dℓi,j as the absolute deadline of Jℓi,j. If the absolute deadline of
an immediate predecessor of Jℓi,j, denoted as IPre(Jℓi,j), is larger than dℓi,j, the absolute
deadline of the immediate predecessor should be reassigned to dℓi,j minus the WCET
of Jℓi,j. This is a standard procedure for scheduling jobs subject to release dates and
precedence constraints. Details can be found in [36].

We assume that the absolute deadline assignment is adjusted accordingly so that
dℓi,j for the subjob Jℓi,j is always greater than the absolute deadline of IPre(Jℓi,j). Schedul-
ing G1,G2, . . . ,Gz on M homogeneous (identical) processors is a special case of the
classical scheduling problem P|prec; rj|Lmax, i.e., scheduling a set of jobs with speci-
fied release times and precedence constraints on M identical processors, minimizing
the maximum lateness. One possible scheduling strategy is to use the List scheduling
developed by Graham [269] in combination with Earliest Deadline First scheduling
(EDF). A List schedule works as follows: Whenever a processor idles and there are

8.1 Timing-Predictable Learning and Multiprocessor Synchronization | 367

subjobs eligible to be executed (i.e., all of their predecessors in the dependency graph
have finished), one of the eligible subjobs is executed on the processor. If more subjobs
than processors are available, we prioritize the subjobs that have the earlier absolute
deadlines. If two subjobs have the same absolute deadline, the one with the larger
remaining workload has a higher priority. We call this scheduling algorithm List-EDF.

Federated-Based Partitioning Algorithm Federated scheduling was proposed by
Li et al. [430] in order to schedule parallel real-time task systems with internal prece-
dence constraints that can be modeled as a Directed-Acyclic Graph (DAG). The foremost
intention of this scheduling algorithm is to provide provably good approximations
with respect to an optimal scheduling algorithm while considering implementation
constraints, e.g., cache hit-rates and memory accesses during runtime. The idea of
federated scheduling is to assign DAGs (in our case the DAGs resulting from the de-
pendency graph construction) that need to utilize more than one processor (so-called
heavy graphs) to those processors exclusively. Analogously, the graphs that can be
feasibly scheduled on a single processor are denoted as light graphs and are scheduled
jointly on the remaining processors, i.e., non-exclusively allocated processors. After
this initial partition, the actual scheduling is done by a work-conserving scheduler on
the assigned processors. If the graphs in both the heavy group and the light group can
be scheduled feasibly, the corresponding partition is returned. Otherwise, there is no
feasible partition.

Worst Fit-Based Heuristic In addition, a worst-fit heuristic is proposed in which
the tasks are partitioned one by one. The tasks are first sorted according to a sorting
strategy. After that, they are partitioned to the available processors using a worst-fit
strategy, i.e., each task is assigned to the processor with the currently lowest utilization.
Again, Partitioned-EDF (P-EDF) scheduling is applied to verify whether the resulting
partition on M processors is feasible.

We proposed two sorting strategies: 1) sort all the tasks decreasingly with regard
to the tasks’ utilization, no matter which resources they request; 2) sort the graphs
decreasingly with regard to the graph utilization and then sort the tasks inside each
graph decreasingly with regard to the task utilization. In our proposed heuristic, both
sorting strategies are applied. If the partition P generated by the first sorting strategy
is not applicable, i.e., if the task set is not schedulable on M processors based on the
current partition P using P-EDF, the second sorting strategy and the resulting partition
P′ are considered, and P-EDF is applied to verify the new partition P′ once again. The
algorithm only returns infeasible when both aforementioned sorting strategies cannot
generate a schedulable partition. Otherwise, the task set is schedulable and the partition
is returned. Again, if a time-driven schedule is created, the schedule can be returned as
well.

368 | 8 Communication Awareness

8.1.3.4 Evaluation
We randomly generated task sets based on the number of processors M, shared re-
sources Z, and relative utilization of the critical sections H as parameters. In our evalu-
ation, we considered M ∈ {4, 8, 16}, Z ∈ {4, 8, 16}, and H ∈ {[5% − 10%], [10% −
40%], [40% − 50%]}.

For a given configuration of M, Z, and H, we generated task sets with 10 × M
tasks for each total utilization value

∑︀
τi∈T Uτi ∈ [0,M]with a step 5%, applying the

RandFixedSummethod [199]. We enforced the total utilization Uτi ≤ 0.5 for each task
τi. To determine the subtask utilization of one task, i.e., UCi,1 , UCi,2 , and UAi,1 , we first
decided the utilization of the critical section UAi,1 by randomly drawing a percentage of
the task’s total utilization Uτi based on the parameter H. Next, the remaining utilization
UCi was split by drawing UCi,1 randomly uniform from [0, UCi] and setting UCi,2 to
UCi − UCi,1 . The resource that each critical section of a task requests was selected
randomly from all the available resources. In addition, we generated two kinds of task
sets according to their settings of available periods:
Periodic task sets with semi-harmonic periods The task periods Ti are selected

randomly from a set of semi-harmonic periods, i.e., Ti ∈ {1, 2, 5, 10}, which is a
subset of the periods used in automotive systems [86, 290, 392, 606, 662].

Frame-based task sets As a special case of periodic task sets, all the tasks have the
common period 1. Hence, i.e., Ci,1 = UCi,1 , Ai,1 = UAi,1 , and Ci,2 = UCi,2 .

For each of these setting of periods, 54 configurations are considered in total. For each
of the utilization step values, 1000 task sets were randomly generated.

Evaluated Approaches To construct the dependency graphs, POTTS [583] is applied.
Other evaluated methods to schedule the tasks sets were: 1) FED-P-EDF: the algorithm
based on federated scheduling; 2) WF-P-EDF: the algorithm based on global worst-
fit partitioning; 3) LIST-EDF: the List schedule based approach; 4) ROP-FP: Resource-
Oriented Partitioned under Fixed-Priority [82]; 5) ROP-EDF: ROP under Dynamic-priority;
6) LP-GFP-FMLP [58]; 7) LP-GFP-PIP [194]; and 8) GS-MSRP [704].

Evaluation Results Only a subset of the results is presented, as the other results
show similar trends. The evaluation results for periodic task systems are shown in
Figure 8.2. If the workload of the critical sections is increased (Figure 8.2-(a) to (c)),
the performance of all methods is reduced, and the difference between methods is
decreased as well. The reason is that, when β = [40% − 50%], the execution time of
the critical section for tasks with period 10 time units can be large, i.e., longer than 2
time units. Therefore, tasks with period 1 time unit directly miss the deadline by default
for all other approaches, no matter what kind of partitioning algorithm is applied. The
performance drops down quickly when the utilization is increased and the critical
section workload is large, as shown in Figure 8.2 (c).

8.1 Timing-Predictable Learning and Multiprocessor Synchronization | 369

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%) / M

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ep
ta

nc
e

R
at

io
(%

)

40 50 60 70 80 90 100
0

20

40

60

80

100
(a) M=8, Z=8, H=[5%-10%]

FED-P-EDF

WF-P-EDF

LIST-EDF

GS-MSRP

ROP-EDF

ROP-FP

LP-GFP-FMLP

LP-GFP-PIP

40 50 60 70 80 90 100
0

20

40

60

80

100
(b) M=8, Z=8, H=[10%-40%]

40 50 60 70 80 90 100
0

20

40

60

80

100
(c) M=8, Z=8, H=[40%-50%]

40 50 60 70 80 90 100
0

20

40

60

80

100
(d) M=4, Z=4, H=[10%-40%]

40 50 60 70 80 90 100
0

20

40

60

80

100
(e) M=8, Z=16, H=[10%-40%]

40 50 60 70 80 90 100
0

20

40

60

80

100
(f) M=16, Z=16, H=[10%-40%]

Fig. 8.2: Schedulability of different approaches for periodic task sets.

The evaluation results for frame-based task systems are shown in Figure 8.3. The pro-
posed worst-fit heuristic WF-P-EDF outperforms ROP-EDF and other partitioned schedul-
ing methods significantly. Furthermore, Figure 8.3 shows that WF-P-EDF has a good
performance compared with LIST-EDF. In most cases, both LIST-EDF and WF-P-EDF can
reach a 100% acceptance ratio even with a 95% utilization per processor.

8.1.4 Offloading Protocols for Unreliable Connection

In this subsection, two offloading protocols are presented in detail, addressing two
system requirements: 1) the service protocol, which provides as much service for non-
critical tasks as possible at any point in time, and 2) the return protocol, which allows
a fast return to normal system behavior in the case of an unsuccessful offloading
operation.

8.1.4.1 System Model
We consider a cyber-physical system comprising a set of tasks T that can be divided
into two subsets with different requirements, namely, the set of critical tasks Tcrit,
and the set of non-critical tasks Tnon, such that T = Tcrit ∪ Tnon and Tcrit ∩ Tnon = ∅.
While for each τk ∈ Tcrit timing constraints must be satisfied at any point in time, for
each τk ∈ Tnon timing violations may be unpleasant but not hazardous. According to
the classification of tasks into two subsets, we specify two different system execution
behaviors, i.e., normal and local execution behavior. When the system exhibits normal

370 | 8 Communication Awareness

0.0 0.2 0.4 0.6 0.8 1.0

Utilization (%) / M

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ep

ta
nc

e
R

at
io

(%
)

40 50 60 70 80 90 100
0

20

40

60

80

100
(a) M=8, Z=8, H=[5%-10%]

FED-P-EDF

WF-P-EDF

LIST-EDF

GS-MSRP

ROP-EDF

ROP-FP

LP-GFP-FMLP

LP-GFP-PIP

40 50 60 70 80 90 100
0

20

40

60

80

100
(b) M=8, Z=8, H=[10%-40%]

40 50 60 70 80 90 100
0

20

40

60

80

100
(c) M=8, Z=8, H=[40%-50%]

40 50 60 70 80 90 100
0

20

40

60

80

100
(d) M=4, Z=4, H=[10%-40%]

40 50 60 70 80 90 100
0

20

40

60

80

100
(e) M=8, Z=16, H=[10%-40%]

40 50 60 70 80 90 100
0

20

40

60

80

100
(f) M=16, Z=16, H=[10%-40%]

Fig. 8.3: Schedulability of different approaches for frame-based task sets(1).

execution behavior, all timing requirements of all tasks are satisfied at any point in
time, whereas, if the system exhibits local execution behavior, timing guarantees can
only be given for all critical tasks τk ∈ Tcrit.

Each recurrent real-time task τk ∈ T is assumed to have a sporadic arrival pattern
and is characterized by a tuple

(︀
Ck,1, Ck,s , Ck,2, Sk , pk , qk , Dk , Tk

)︀
:

– Each τk releases an infinite number of task instances denoted as jobs. Tk indicates
the minimum inter-arrival time of τk.

– Dk describes the relative deadline of τk. A constrained-deadline task system is
considered, in which Dk ≤ Tk for each task τk.

– Ck,1 and Ck,2 denote the WCETs of the first and second computation segments,
respectively.

– Ck,s is theWCET of the typically offloaded task share if executed on the local system.
– pk and qk are the WCETs of the pre- and post-processing routines, which are exe-

cuted before and after the offloading operation of a job of task τk, respectively.
– Sk is the offloading or suspension time of τk.

We assume that Tk ≥ Dk > 0 and Ck,1, Ck,s , Ck,2, Sk , pk , qk ≥ 0. Moreover, we assume
that WCET of pre- and post-processing routines are less than or equal to the WCET
of local execution, i.e., pk + qk ≤ Ck,s. Furthermore, the WCET of a job of task τk
under any possible execution scenario is greater than 0, i.e., Ck,1 + Ck,s + Ck,2 > 0 and
Ck,1 + pk + qk + Ck,2 > 0. For notational brevity, we denote C♯k = Ck,1 + Ck,s + Ck,2 and
C♭k = Ck,1 + pk + qk + Ck,2.
In addition, we assume that the local cyber-physical real-time system, termed local
system, is a uniprocessor system, inwhich tasks are scheduled according to apreemptive

8.1 Timing-Predictable Learning and Multiprocessor Synchronization | 371

rk rk + Dk

Ck,1 Ck,s Ck,2

Fig. 8.4: A job of task τk is executed locally (local execution behavior).

rk rk + Dk

Ck,1 pk Sk qk Ck,2

Fig. 8.5: An offloading operation of a job of task τk is performed successfully (normal execution
behavior).

fixed-priority policy. More precisely, each task is assigned a unique priority, i.e., all
jobs of task τk have the same priority. If at any point in time multiple jobs are ready,
i.e., eligible for being executed on the local system, the job having the highest priority
is executed. For each task τk, the unique set of the higher-priority tasks is denoted as
hp(τk).

For a job of task τk arriving at time rk the following execution scenarios are possible:
– The job is executed locally (Figure 8.4). In this case, the WCET of the job released at

time rk is Ck,1 + Ck,s + Ck,2, i.e., C♯k.
– The job is offloaded. In this case, the job is first executed locally for up to Ck,1

execution time units and thereon enters the pre-processing routine for up to pk
execution time units. Suppose that the first computation segment as well as the pre-
processing routine are finished at time ρ. Then, the considered job is offloaded to
the remote systemat time ρ. The actual offloading operation can be either successful
or unsuccessful:
– Offloading is successful if the computation result or offloading response is re-

turned to the local system until time ρ+Sk. In this case, the offloading response
is post-processed for up to qk time units and the second computation segment
is executed for up to Ck,2 time units (Figure 8.5). Accordingly, the execution
time of the job of τk on the local system is at most C♭k.

– Offloading is unsuccessful otherwise. In this case, at time ρ + Sk, a local re-
execution of the offloaded task share is performed for up to Ck,s time units
followed by the execution of the second computation segment for up to Ck,2
time units. In this case, the execution time of the job of τk on the local system
is at most C♯k + pk.

8.1.4.2 Recovery Protocols
Cyber-physical systems are applied throughout a broad range of areas, each exhibiting
individual requirements and thus a need for situationally appropriate system behav-

372 | 8 Communication Awareness

ior. For safety-critical cyber-physical systems, the timeliness of critical tasks must be
guaranteed under any circumstances - even in the event of an unsuccessful offload-
ing operation. Since in this case a larger amount of local resources is required, less
resources remain to serve the non-critical tasks, as we explained in Section 8.1.4.1. How-
ever, depending on the actual system characteristics, timing constraints for non-critical
tasks tend to be less strict. For instance, it is possible that a non-critical task misses its
deadline, but that the results are still useful up to a certain degree [83, 87]. Nevertheless,
it may be desirable to return to the normal execution behavior and to re-establish timing
guarantees for both critical and non-critical tasks as soon as possible, especially since
a non-critical task is not necessarily unimportant and thus should provide functionally
and temporally correct results most of the time. Further discussion on the relation
between criticality and importance can be found in [204].

Against this backdrop, we propose two recovery protocols allowing the system
to satisfy its requirements under local execution behavior and to return to normal
execution behavior:
– The service protocol aims to provide as much service as possible for non-critical

tasks, even under local execution behavior.
– The return protocol aims to minimize the amount of time, in which the system

exhibits local execution behavior after an unsuccessful offloading operation.

Independent of the actual protocol, we assume that the local system exhibits normal
execution behavior at time 0, such that offloading is enabled for all tasks in T. The
schedule considers the execution of all tasks until the first moment γ1,↘ in which the
offloading operation of a certain task τk is unsuccessful. That is, a job of task τk, which
has offloaded its computation at time γ1,↘−Sk, does not receive the offloading response
until time γ1,↘ (Figure 8.6). Immediately after γ1,↘, the local system exhibits local
execution behavior. Until time γ1,↘, three scenarios are possible for each incomplete
job of all critical tasks τi in Tcrit:
– The job of τi has not been offloaded: In this case, no offloading operation will be

performed for this job, but it is executed locally instead. Since it is possible that
the pre-processing routine for offloading is already active at time γ1,↘, the WCET of
this job is upper-bounded by Ci,1 + pi + Ci,s + Ci,2, i.e., C♯i + pi.

– The job of τi is already offloaded, but no offloading response was received until time
γ1,↘: In this case, the offloading process is aborted and the job is executed locally as
of time γ1,↘. Therefore, theWCETof this job is upper-boundedby Ci,1+pi+Ci,s+Ci,2,
i.e., C♯i + pi.

– The job of τi is already offloaded and the offloading response has been received
prior to time γ1,↘: In this case, the job continues its final processing. Therefore, the
WCET of this job is upper-bounded by Ci,1 + pi + qi + Ci,2, i.e., C♭i .

After γ1,↘, timing guarantees are provided only for Tcrit. Moreover, offloading is in-
hibited for all critical tasks in the near future of γ1,↘ due to the currently unreliable

8.1 Timing-Predictable Learning and Multiprocessor Synchronization | 373

rk γ1,↘

Ck,1 pk Sk Ck,s Ck,2

Fig. 8.6: An unsuccessful offloading operation of τk resulting in the transition to the local system
behavior at time γ1,↘.

connection leading to the missing offloading response. The offloading decision for
non-critical tasks, however, depends on the applied recovery protocol:
Service Protocol Under the service protocol, offloading is inhibited for all instances

of all tasks that are active as long as the system exhibits local execution behavior.
The task share of each τi ∈ T that is offloaded under normal execution behavior
is executed locally within Ci,s units of execution time. Since this leads to a higher
workload on the local system, timeliness cannot be guaranteed for any non-critical
task. Nevertheless, no non-critical task is aborted.

Return Protocol The return protocol does not inhibit offloading for all tasks, only for
critical ones under local execution behavior. Non-critical tasks, by contrast, are
offloaded regardless, but neither a re-execution nor a re-transmission is performed
if an offloading response is not received in time. More precisely, the second subtask
of τi is executed only if an offloading response is received, and aborted otherwise.
Moreover, a job of τi in Tnon is aborted whenever it misses its deadline.

As of time γ1,↘, the local system exhibits local execution behavior until the point in time
γ1,↗, in which timing guarantees can be given again for all tasks in T. In the proposed
protocols, two options are considered for the transit from local to normal execution
behavior. They should be chosen based on the actual system requirements:
Abort-Transit This option aims to re-establish the normal system execution behavior

as quickly as possible. Suppose that γ1,↗ is the earliest moment (after γ1,↘) in
which there is no incomplete job from Tcrit at γ1,↗. All released but not yet finished
instances of non-critical tasks are discarded.

Idle-Transit This option re-establishes the normal system execution behavior at the
earliest moment γ1,↗ (after γ1,↘) in which there is no incomplete job from T at γ1,↗.

We note that the above transitions arewell-defined and the local system exhibits normal
and local execution behavior in an interleaving manner.

8.1.4.3 Evaluation
In this subsection, we perform a case study on a robotic system to compare the accep-
tance ratio of schedulability over different protocols. More comprehensive numerical
simulations can be found in the original paper [612].

374 | 8 Communication Awareness

Tab. 8.1: Periodic, implicit-deadline tasks; measurements of a Robotnik RB-1 Base robot platform.
Note that the frequency of task τlaser is 15.5 Hz.

Task WCET [ms] Period [ms]

τlaser 6.732 64.516
τodom 1.046 60.0
τtf 0.333 60.0

0.01 0.05 0.1 0.5 1
(1/ms)

0.0

0.1

0.2

0.3

0.4

Lo
ca

l E
xe

cu
tio

n
Be

ha
vi

or
 (%

)

Service Protocol, 40% offloaded

0.01 0.05 0.1 0.5 1
(1/ms)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Lo
ca

l E
xe

cu
tio

n
Be

ha
vi

or
 (%

)

Return Protocol, 40% offloaded

Fig. 8.7: The percentage of time the robot exhibits local execution behavior during the simulation for
different probabilities of unsuccessful offloading operations and different percentages of offloaded
workload under the service and the return protocol with 40% offloaded workload per task.

Case Study on aRobotic System Weadopt a Robotnik RB-1 Base robot platform [598],
which uses the well-known Robot Operating System (ROS) [601]. We simulated the nav-
igation of the robot in a virtual map and measured the timing data of the move_base
node during a time frame of 60 seconds by using the Real-Time Scheduling Framework
for ROS (ROSCH) [607] and RESCH [362]. We obtained three periodic, implicit-deadline
tasks, as shown in Table 8.1, which are transformed into self-suspending tasks anal-
ogously to the tasks in experiment 1), and we considered the cases that 40%, and
60% of the task workload are offloaded. Moreover, we assume that Tcrit = {τodom}
and Tnon =

{︀
τlaser , τtf

}︀
. We simulate the system behavior using the event-based miss

rate simulator from experiments 1) with λ = 0.1 · 1
ms . For each offloading case, the

simulation was repeated 100 times.
Under the return protocol, Figure 8.8 shows that the amount of offloaded workload

has no significant impact on the time that the system exhibits local execution behavior.
Under the service protocol, we can observe that the time that the system exhibits local
executionbehavior is increased alongwith the increasing amount of offloadedworkload.
Overall, the derived results suggest that the amount of offloaded workload per task has
a strong impact on the system execution behavior under the service protocol and thus
should be taken into consideration at system design time.

8.1 Timing-Predictable Learning and Multiprocessor Synchronization | 375

0.01 0.05 0.1 0.5 1
(1/ms)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ca

l E
xe

cu
tio

n
Be

ha
vi

or
 (%

)

Service Protocol, 60% offloaded

0.01 0.05 0.1 0.5 1
(1/ms)

0.00

0.01

0.02

0.03

0.04

0.05

Lo
ca

l E
xe

cu
tio

n
Be

ha
vi

or
 (%

)

Return Protocol, 60% offloaded

Fig. 8.8: The percentage of time the robot exhibits local execution behavior during the simulation for
different probabilities of unsuccessful offloading operations and different percentages of offloaded
workload under the service and the return protocol with 40% and 60% offloaded workload per task.

8.1.5 Probability-Based Timing Analysis

In this subsection, we present a multinomial-based approach to efficiently calculate
the deadline miss probability. Additionally, three analytical approaches are presented,
i.e., Chernoff bound, Hoeffding’s inequality, and Bernstein’s inequality.

8.1.5.1 System Model and Notation
Weconsider a given set of n independent periodic (or sporadic) tasks Γ = {τ1, τ2, · · · , τn}
in a uniprocessor system. Each task τi releases an infinite number of task instances,
called jobs, and is defined by a tuple ((Ci,1, ..., Ci,h), Di , Ti), where Di is the relative
deadline of τi and Ti is its minimum interarrival time. In addition, each task has a set
of h distinct execution modesM and each mode j with j ∈ {1, ..., h} is associated with
a different WCET Ci,j. We assume those execution modes to be ordered increasingly
according to their WCETs, i.e., Ci,m ≤ Ci,m+1 ∀m ∈ {1, ..., h − 1}. Furthermore, we
assume that each job of τi is executed in one of those distinct execution modes. To
fulfill its timing requirements in the jth execution mode, a job of τi that is released at
time ta must be able to execute Ci,j units of time before ta + Di. The next job of τi must
be released at ta + Ti for a periodic task and for a sporadic task the next job is released
at or after ta + Ti. In this work, we focus on implicit-deadline task sets, i.e., Di = Ti for
all tasks, and constrained-deadline task sets, i.e., Di ≤ Ti for all tasks. We assume that a
job execution is aborted as soon as the absolute deadline is reached, to ensure that
there is no ’domino effect’ to jeopardize the execution of the other jobs.

We assume a preemptive fixed-priority scheduling policy is used in the considered
system. The tasks are indexed according to their priority, i.e., τ1 has the highest and τn
has the lowest priority. In addition, hp(τk) denotes the set of tasks with higher priority
than τk and hep(τk) is hp(τk) ∪ {τk}. Pi(j) denotes the probability that a job of task τi
is executed in mode j with related WCET Ci,j and we assume that each job is executed

376 | 8 Communication Awareness

in exactly one of these distinct execution modes, i.e.,
∑︀h

j=1 Pi(j) = 1. In addition, we
assume that these probabilities are independent from each other according to the
following definition:

Definition 27 (Independent Random Variables). Two random variables are (proba-
bilistically) independent if the realization of one does not have any impact on the
probability of the other.

Particularly, for a newly arriving job the probability of the execution modes is indepen-
dent from the execution mode of the jobs of previous jobs.

8.1.5.2 Definition of Deadline Miss Probability
To derive the probability of deadline misses, we look for the probability that the accu-
mulated workload St over an interval of length t is at most t, where St can be calculated
by the sum of random variables, i.e., the sum of probabilistic WCETs from all tasks
τi ∈ hep(τk) over. That is, the situation where St is larger than t for an interval of
length t and hence P(St > t) is the overload probability at time t. To upper bound the
probability that this test fails, the minimum probability among all time points at which
the test could fail should be derived. Hence, the probability of a deadline miss Φk can
be upper bounded by

Φk = min
0<t≤Dk

P(St > t) (8.1)

When analytical bounds are in use, we seek P(St ≥ t) instead of P(St > t). By definition
P(St ≥ t) ≥ P(St > t), so these values can be used directly when looking for an upper
bound of P(St > t).

8.1.5.3 A Multinomial-Based Approach
Conventionally, the probability of deadline misses can be derived from convolution-
based approaches [476]. In such approaches, the underlying randomvariable represents
the execution mode of each single job. This state space in fact can be transformed
into an equivalent space that describes the states on a task-based level by proving the
invariancewhen considering equivalence classes for each task. As a result, we introduce
a novel approach that is based on the multinomial distribution. For the simplicity of
presentation, we only highlight the insight of the aforementioned transformation.
The traditional convolution-based approach determines the overload probability by
successively calculating the probability for all other points of interest in the analysis
interval. However, the probability for t is evaluated based on the resulting states after all
jobs in the analysis interval are convoluted.With respect to t, the intermediate states are
not considered. By utilizing this insight, we can merge the states to efficiently calculate
the vector representing the possible states at time t. If the number of jobs for a task
is known, all possible combinations and the related probabilities can be calculated

8.1 Timing-Predictable Learning and Multiprocessor Synchronization | 377

directly using the multinomial distribution. The rationale is to construct a tree based
on the tasks, which means that the number of children on each level depends on the
number of jobs the related task releases.

8.1.5.4 Analytical Upper Bounds
In the following, we demonstrate how common concentration inequalities used in
machine learning, statistics, and discrete-mathematics can be used to derive analytical
bounds on P(St ≥ t).

Chernoff Bound can be exploited to over-approximate the probability that a random
variable exceeds a given value. This statement is summarized in the following lemma:

Lemma 28 (Lemma 1 from Chen and Chen [131]). Suppose that St is the sum of the ex-
ecution times of the ρk,t +

∑︀
τi∈hp(τk) ρi,t jobs in hep(τk) at time t. In this case

P(St ≥ t) ≤ mins>0

(︃∏︀
τi∈hep(τk)(mgfi(s))

ρi,t

exp(s · t)

)︃
(8.2)

It is in general pessimistic and there is no guarantee for the quality of the approximation.
To find the optimal value of s to minimize the right-hand side in Equation 8.2, it has
been proven as a log-convex optimization problem [129].

Hoeffding’s Inequality derives the targeted probability that the sum of independent
random variables exceeds a given value. For completeness, we present the original
theorem here:

Theorem 29 (Theorem 2 from [319]). Suppose that we are givenM independent random
variables, i.e., X1, X2, . . . , XM . Let S =

∑︀M
i=1 Xi, X̄ = S/M and μ = E[X̄] = E[S/M]. If

ai ≤ Xi ≤ bi , i = 1, 2, . . . ,M, then for s > 0,

P(X̄ − μ ≥ s) ≤ exp
(︃
− 2M2s2
∑︀M

i=1 (bi − ai)
2

)︃
(8.3)

Let s′ = sM, i.e, s = s′/M. Hoeffding’s Inequality can also be stated with respect to S:

P(S − E[S] ≥ s′) ≤ exp
(︃
− 2s′2
∑︀M

i=1 (bi − ai)
2

)︃
(8.4)

By adopting Theorem 29, we can derive the probability that the sum of the execution
times of the jobs in hep(τk) from time 0 to time t is no less than t. The detailed proof
can be found in [85].

Bernstein’s Inequality generalizes the Chernoff bound and the related inequality by
Hoeffding and Azuma. The original corollary is also stated here:

378 | 8 Communication Awareness

Theorem 30 (Corollary 7.31 from [232]). Suppose that we are given L independent ran-
dom variables, i.e., X1, X2, . . . , XL, each with zero mean, such that |Xi| ≤ K almost surely
for
i = 1, 2, . . . , L and some constant K > 0. Let S =

∑︀L
i=1 Xi. Furthermore, assume that

E[X2i] ≤ θ2i for a constant θi > 0. Then for s > 0,

P(S ≥ s) ≤ exp
(︃
− s2/2∑︀L

i=1 θ2i + Ks/3

)︃
(8.5)

The proof can be found in [232]. Note, however, that the result in [232] is stated for the
two-sided inequality, i.e., as upper bound on P(|S| ≥ s). Here, the one-sided result,
which is a direct consequence of the proof in [232] (page 198), is tighter. Similarly, it
can also be used to derive the probability of deadline misses. The detailed proof can
also be found in [85].

Final Remark Considering the required runtime and the accuracy of different ap-
proaches,whenagiven task set needs to be analyzed,we suggest first runningChernoff’s,
Hoeffding’s, and Bernstein’s bounds. If a sufficiently low deadline miss probability can-
not be guaranteed from these analytical bounds, we propose running the multinomial-
based approach with equivalence class union in parallel on multiple machines by
partitioning the time points equally.

8.1.6 Summary

In this section,we showedanovel resource-sharingprotocol formultiprocessors, named
DGA, that can serve a high utilization of critical sections while guaranteeing the given
hard real-time constraints. In addition, we presented adaptive protocols for compu-
tation offloading that are able to countermeasure the unreliable connection. Unlike
conventional analyses for hard real-time systems, our innovated convolution-based
approach is able to efficiently derive safe upper bounds for the probability of deadline
misses under soft real-time constraints.

8.2 Communication Architecture for Heterogeneous Hardware | 379

8.2 Communication Architecture for Heterogeneous Hardware

Henning Funke
Jens Teubner

Abstract: In this section, we look at distributed processing on a smaller scale. Even a
single-machine system today internally looks—and behaves—like a distributed system:
multiple processing modules of different flavors (e.g., CPUs, GPUs, FPGAs) interact with
memory modules, which are scattered over the system, through an interconnect that is
comprised of, say, QPI, PCIe, or “real” network links. In such environments, communi-
cation quickly becomes the limiting factor—not only for observable performance, but
also for other system aspects, such as energy consumption.
We specifically look at communication patterns in heterogeneous CPU/GPU environ-

ments, and we illustrate how novel processing models can minimize communication
overhead in such systems, which in turn results in significant performance improve-
ments for real-world settings.
In GPU-accelerated, data-intensive systems, the PCIe link is often perceived as the

limiting factor. Oftentimes, successions of fine-granular GPU kernel invocations amplify
the problem, since they tend to cause multiple round-trips over the bandwidth-limited
link. As we see in this section, unnecessary round-trips can be avoided by fusing fine-
granular kernels into larger work units that can hide costly PCIe transfer times (query
compilation can be a device to implement kernel fusion).
Eliminating the PCIe bottleneck, however, only exposes the GPU’s on-chip communi-

cation as the new bottleneck to GPU-assisted data processing. Here, the data-parallel
processing modes of graphics processors and the synchronization between parallel
units are the cause for redundant round-trips over the precious on-chip communication
interfaces. These bottlenecks can be avoided when processing models are deliberately
designed to be communication aware. A specific example is a novel combination of
pipelining/streaming processing models with the data-parallel nature of GPUs, which
aligns particularly well with the semantics of database query execution. For real-world
settings, this results in a reduction of memory access volumes by factors of up to 7.5×
and shorter GPU kernel execution times by factors of up to 9.5×.

8.2.1 Introduction

Graphics Processing Units (GPUs) are frequently used as powerful accelerators for
database query processing. As the arithmetic throughput of the coprocessor peaks in
the teraflop range, it becomes a challenge to provision enough data. For this reason,

380 | 8 Communication Awareness

Fig. 8.9: The path of a tuple through the memory levels of a coprocessor environment.

hardware vendors equip graphics cards with high-bandwidth memory that has read
and write rates of hundreds of GB/s. Still, memory intensive applications such as
query processing fall behind regarding the cost of data movement for different reasons.
Figure 8.9 shows the path of relational data through the hierarchical memory levels in a
typical coprocessor system. Along the path, several bandwidth and capacity constraints
need to be considered to achieve scalability and performance:

PCIe /OpenCAPI /NVLink A widely-acknowledged problem is the data transfer
bottleneck between the host system and the coprocessor [270], typically via PCIe. Due
to the coprocessor’s limited memory capacity, data transfers are necessary during
computations. With an order of magnitude between internal and external memory
bandwidth, database developers are challenged with data locality-aware algorithms
that efficiently use inter-processor communication. Recent technologies, i.e., OpenCAPI
and NVLink, increase the bandwidth over PCIe, shifting the bottleneck toward GPU
global memory.

GPU Global Memory The fine-grained data parallelism of a GPU typically requires
that kernels perform additional passes over the data. Performing multiple passes,
however, can significantly inflate memory loads and can cause a bandwidth bottleneck
especially for randommemory accesses.

MainMemory IntegratedGPU-style coprocessors are a recent development to directly
access the memory of the host CPU. Such an Accelerated Processing Unit (APU) allows
the use of massively parallel processing without additional data transfers. However,
the available memory bandwidth is lower than that of a dedicated GPU (30GB/s vs.
hundreds of GB/s).

8.2 Communication Architecture for Heterogeneous Hardware | 381

Scratchpad Memory¹ Scratchpad memory is located on-chip and placed next to
each compute unit of a GPU. It can be controlled as an explicit cache for low-level
computations and offers a very high bandwidth. However, the capacity is limited to
16 kB–96 kB per core, which makes it challenging to use it for large-scale computations.

8.2.2 Contributions

With HorseQC, we developed a database query compiler that accounts for the hierar-
chical memory structure of modern coprocessor environments and for their inherent
bandwidth limitations. In this section, we elaborate on the key building blocks of
HorseQC, which can serve as a poster child in bandwidth-aware systems for other
application contexts as well.

Specifically, we (a) analyze the bandwidth limitations in different database execu-
tion models; (b) demonstrate a query compiler for a coprocessor-accelerated database
engine; (c) show how database sub-tasks can be realized in a single pass over the data
(thus avoiding expensive memory round-trips); and (d) integrate these contributions
in a fully working system that we use to evaluate our work.

Coprocessor-enabled database engines are typically classified by themacro exe-
cution model that they use to orchestrate the processing of query plans. Orthogonally,
we devise a micro execution model that can be paired with different existing macro
execution models, enhancing their communication- and resource-awareness.

8.2.3 Macro Execution Model

We begin by looking at macro execution models that have been employed in the past.
To evaluate a relational query operator, state-of-the-art systems will select a number
of primitives and execute the corresponding kernel sequence on the GPU. To feed
the kernels with data, the macro execution model defines how data transfers will be
interleaved with kernel executions. Here, the data movement from kernel to kernel
may result in additional bandwidth demand compared with conventional systems. To
understand the effect, we study the implications that existing macro execution models
have on the use of bandwidth at multiple levels (PCIe, GPU global memory, etc.). We
profiled the execution of Query 3.1 as a poster child from the star schema benchmark
(SSB) [543]. The query was executed at scale factor 10 with CoGaDB [74] on a NVIDIA

1 We use the term scratchpad memory to disambiguate shared memory for CUDA and local memory for
OpenCL.

382 | 8 Communication Awareness

GTX970 GPU.² In the following, we discuss three macro execution models: run-to-finish,
kernel-at-a-time, and batch processing.
Algorithm 8: Run-to-finish execution of two successive kernels.
1 Run-to-finish – input: R, output: P
2 move R Host→ GPU

3 tmp← op1(R) /* invoke first GPU kernel */

4 P← op2(tmp) /* invoke second GPU kernel */

5 move P GPU→ Host

8.2.3.1 Run-To-Finish (Not Scalable)
A straightforward way to execute a sequence of kernels is to first transfer all input,
execute the kernels, and finally transfer all output. The approach, illustrated in Al-
gorithm 8, has the advantage that intermediate data remains in GPU global memory
in-between kernel executions and no significant PCIe transfers are necessary. However,
run-to-finish has the disadvantage that it works only if all input, output, and interme-
diate data is small enough to fit in GPU memory. Run-to-finish macro execution models
are used, e.g., by Ocelot [302], CoGaDB [74], and others. The lack of scalability leads us
to evaluate the following execution models.
Algorithm 9: Kernel-at-a-time achieves scalability by transferring I/O for
each kernel through PCIe.
1 Kernel-at-a-time – input: R, output: P
2 foreach ri in R=r1 ∪ · · · ∪ rm do

3 move ri Host→ GPU

4 mi ← op1(ri) /* invoke first GPU kernel */

5 move mi GPU→ Host (assemble into M)

6 foreach mj in M=m1 ∪ · · · ∪mn do

7 move mj Host→ GPU

8 pj ← op2(mj) /* invoke second GPU kernel */

9 move pj GPU→ Host (assemble into P)

8.2.3.2 Kernel-At-A-Time
To process large data on coprocessors, we can execute each kernel on blocks of data.
The pseudocode of this approach is shown in Algorithm 9. Processing blocks of data
requires algorithm choices that can deal with partitioned inputs. Joins or aggregations,
for instance, can be processed in this mode only if their internal state (e.g. a hash table)
can fit in GPU global memory.

2 Wemeasured 146.1 GB/s GPU global memory bandwidth in a host system with 16GB/s bidirectional
PCIe bandwidth.

8.2 Communication Architecture for Heterogeneous Hardware | 383

build

GPU MEMMEM CORES

probe

gather

prefix sum

0.6 GB

probe
0.4 GB

probeprobe

1.5 GB

1.0 GB

2.2 GB

1.0 GB

prefix sum

1.0 GB

0.7 GB

0.6 GB

1.5 GB

2.2 GB

1.0 GB

1.0 GB

0.7 GB

PCIe Transfers
8 GB ~Ä 50 ms
PCIe Transfers
8 GB ~Ä 50 ms

GPU Global Memory
8.4 GB ~58 ms

1.0 GB

(a) Kernel-At-A-Time

0.9 GB

< 0.01 GB

build

GPU MEMMEM CORES

probe

gather

prefix sum

build 0.6 GB

0.4 GB

probeprobe1.5 GB

1.0 GB

gathergather 2.2 GB

1.0 GB

prefix sumprefix sum
1.0 GB

0.7 GB

PCIe Transfers
0.9 GB ~56 ms0.9 GB ~56 ms

GPU Global Memory
8.4 GB ~58 ms

(b) Batch Processing

Fig. 8.10: Data movement for processing SSB Query 3.1. While the throughput of a is limited by PCIe
transfers, b exposes GPU global memory access as the next bottleneck.

We analyze the data movement of kernel-at-a-time for SSB Query 3.1. Blocks are first
moved via PCIe from the host to the coprocessor and then read by the kernel from GPU
global memory (output passes both levels vice-versa). In this way, the data volumes for
GPU global memory accesses equal the data volume transferred via PCIe, plus the cost
to build up the hash tables in GPU global memory (0.4 GB here). Figure 8.10a shows
the resulting data movement.

In the figure, the arrows annotated with data volumes represent PCIe transfers and
GPU global memory accesses. We aggregated the data volumes by kernel types (e.g.
scan, gather) and show only the most important kernels responsible for 88.2% of the
memory traffic. Given a PCIe bandwidth of 16 GB/s, all PCIe transfers together require
at least 350ms to complete. This exceeds the aggregate time for GPU global memory
access by a factor of 5.8×. For kernel-at-a-time processing the PCIe link is clearly the
bottleneck.

384 | 8 Communication Awareness

Kernel-at-a-time processing is used to scale out individual operators [358]. Unified
Virtual Addressing (UVA) produces the same low-level access pattern, though it is
transparent to the system developer.

8.2.3.3 Batch Processing
We can alleviate PCIe bandwidth limitations by rearranging the operations of kernel-at-
a-time. Instead of running kernels until a column is processed, we can short-circuit the
transfer of intermediate results to the host. Batch processing achieves this by reusing
the output of the previous operation (op1) as input for the next operation (op2) instead
of transferring to the host. This is applicable whenever intermediate batch results
can be kept within GPU global memory. The corresponding pseudocode is shown in
Algorithm 10.
Algorithm 10: Batch processing executes multiple kernels for each block that
is transferred via PCIe.
1 Batch Processing – input: R, output: P
2 foreach ri in R=r1 ∪ · · · ∪ rm do

3 move ri Host→ GPU

4 tmpi ← op1(ri) /* invoke first GPU kernel */

5 pi ← op2(tmpi) /* invoke second GPU kernel */

6 move pi GPU→ Host (assemble into P)

We analyze the data movement cost with the example of SSB Query 3.1. The GPU global
memory load is the same as for kernel-at-a-time processing, because each kernel reads
andwrites I/O to GPU globalmemory.We obtain the PCIe transfer cost using the transfer
volumes of the input columns of the query and the output of the final result. Figure 8.10b
shows the resulting data movement cost. Batch processing reduces the amount of PCIe
transfers by a factor of 8.8×. This shows that transferring data in blocks and performing
multiple operators per block allows scalability and increases the efficiency compared
to kernel-at-a-time.

Batch processing macro execution models have been used for coprocessing by
GPUDB [728] and Hetero-DB [735]. Wu et al. [711] described the concept as kernel fission
and identify opportunities to omit PCIe transfers automatically.

Limitations The lower amount of PCIe traffic can expose GPU global memory band-
width as the next limitation. Batch processing reduces the PCIe transfer cost, but the
amount of GPU global memory accesses remains unaffected. The memory access vol-
ume inside the device is now an order of magnitude larger. Despite the high bandwidth,
this takes longer to process than the PCIe bus transfers (Figure 8.10b). For this reason,
batch processing SSB Query 3.1 is not limited by PCIe transfers, but by accesses to the
(high-speed) GPU global memory. Since in typical query plans, I/O and hashing opera-

8.2 Communication Architecture for Heterogeneous Hardware | 385

tions both address the same GPU global memory, the situation may arise frequently in
real-world workloads.

Tab. 8.2: Number of passes over the input data for benchmark queries. Out of 25 queries, 9 are
definitely limited by GPU global memory.

Query Passes Query Passes Query Passes

ssb11 7.5 ssb34 2.2 tpch5 7.2
ssb12 6.9 ssb41 7.4 tpch6 6.2
ssb13 6.7 ssb42 3.9 tpch7 9.0
ssb21 9.6 ssb43 3.5 tpch9 9.0
ssb22 9.2 tpch1 15.5 tpch10 5.8
ssb23 9.1 tpch2 14.5 tpch15 6.3
ssb31 11.0 tpch3 5.2 tpch18 38.5
ssb32 7.9 tpch4 6.6 tpch20 10.5
ssb33 7.5

8.2.4 Micro Execution Model

Tuning the macro level helps to remove the main bottleneck for scalability: data trans-
fers over PCIe. However, the macro level change exposes a new bottleneck: the memory
bandwidth of GPU global memory. To utilize the GPU global memory bandwidth more
efficiently, we need to apply additional micro-level optimizations usingmicro execu-
tion models and combine them with the macro execution model (batch processing) to
achieve scalability and performance.

Existing micro-level optimizations such as vector-at-a-time processing [749] and
query compilation [529] utilizememory bandwidthmore efficiently by leveraging pipelin-
ing in on-chip processor caches. Therefore, both techniques are promising candidates
for opening up the bottleneck of limited GPU global memory bandwidth. However,
vector-at-a-time processing and query compilation are designed in the context of CPUs.
While it is highly desirable to apply both techniques in the context of GPUs, mapping
the techniques from CPU to GPU is challenging, as we discuss below.

Vector-At-A-Time To mediate the interpretation overhead of Volcano and the materi-
alization overhead of operator-at-a-time, vector-at-a-time uses batches that fit in the
processor caches. First, this reduces the number of getNext() calls from one per tuple
to one per batch. Second, this makes materialization cheap because operators pick up
the cached results of previous operators. On CPUs, vector-at-a-time benefits from batch
sizes that are large enough to limit the function call overhead and small enough to fit
in the CPU caches.

386 | 8 Communication Awareness

On GPUs, the compromise between tuple-at-a-time and full materialization strategies is
not a sweet spot, however. Kernel invocations are an order ofmagnitudemore expensive
than CPU function calls. Furthermore, GPUs need much larger batch sizes to facilitate
over-subscription and out-of-order execution. This leads to the problem that batches,
which fit in the GPU caches, are too small to be processed efficiently. Alternatively, more
recent GPUs support pipes to move a local execution context from one kernel to another.
This has been used by GPL [557] for query processing. However, this technique still
introduces an overhead for switching the execution context. In addition, it is limited to
a depth of 2–32 kernels depending on the microarchitecture.

Query Compilation Query compilation is a common tool for avoiding excessive mem-
ory transfers during query processing. Compiling code for incoming queries becomes
feasible with low-level code generation and achieves performance close to hand-written
code. The compilation strategy of Neumann [529] keeps intermediate results in CPU
registers and passes data between operators without accessing memory at all. The
generated code processes full relations or blocks of tuples using a sequential tight loop.

To use query compilation on GPUs, wemust integrate fine-grained data parallelism
into compiled queries. The parallelization strategy of HyPer [425], however, uses a
coarse-grained approach, so that it does not breakwith the concept of tight loops. In fact,
HyPer does not use SIMD instructions [529] and thus omits fine-grained data parallelism.
Even on CPUs with a moderate degree of parallelism in SIMD instructions, database
researches are challenged by integrating query compilation and SIMD instructions
[487, 639].

In summary, using a micro-level technique for efficient on-chip pipelining on GPUs
remains a challenge. Applying any of the commonplace techniques makes it necessary
to combine at least three things that are hardly compatible: fine-grained data-parallel
processing, extensive out-of-order execution, and deep operator pipelines. To achieve
our goal of mitigating the GPU global memory bottleneck, we need to develop a new
micro execution model.

8.2.5 Data-Parallel Query Compilation

In the following, we show a micro-level execution strategy that reduces GPU global
memory access volumes by means of pipelining in on-chip memory. To this end, we
show the approach of our query compilerHorseQC and its integration with the operator-
at-a-time execution engine of CoGaDB [74].

8.2.5.1 Fusion Operators
HorseQC extends the operator-at-a-time approach with the concept of fusion operators,
operators that embrace multiple relational operations. A fusion operator replaces a

8.2 Communication Architecture for Heterogeneous Hardware | 387

select

prefix sum

aligned write

hash

prefix sum

aligned write

project

prefix sum

aligned write

aligned write

prefix sum

join probe

opop1

opop2 opop3

opop4

Fig. 8.11: Operator-at-a-time.

sequence of conventional operators in the physical execution plan with a micro-level-
optimized pipeline. The data movement within a fusion operator can be improved by
applying different micro level execution models.

8.2.5.2 Micro-Level Pipeline Layout
To keep matters simple, we first apply query compilation with the operator-at-a-time
primitives described by He et al. [300]. This choice is not limiting as other data-parallel
primitives may be used instead. However, a commonality of different primitive sets is
that they use relational primitiveswith relational functionality (e.g. select) and threading
primitives with thread coordination functionality (e.g., map, prefix sum, gather).

State Of The Art We look at a query with two input tables and a total of four rela-
tional operators op1, · · · , op4. Operator-at-a-time runs three primitives per operator
(cf. Figure 8.11 on the right): The first pass executes the relational primitive (e.g., select,
project) and counts the number of outputs of each thread. The second pass computes
a prefix sum to obtain unique per-thread write positions. The third pass performs an
aligned write. This means that the output values are written into a dense array and
may include executing the relational primitive for a second time to produce the output
values. Thus, the query is processed in twelve operations with separate GPU global
memory I/O.

388 | 8 Communication Awareness

fusion
operator 1

fusion
operator 2

select /
hash

prefix
sum

aligned
write

prefix
sum

aligned write

project /
join probe

Fig. 8.12:Multi-pass QC.

Multi-Pass Query Compilation By grouping operations that are applied to the same
input table, the query may be processed with two fusion operators. Within each fusion
operator, we apply the following query compilation strategy (cf. Figure 8.12): We extract
the prefix sum from the operators and execute it only once between all relational
primitives and all aligned writes. The relational primitives are then compiled into one
kernel called count, which is executed before the prefix sum. The aligned writes are
compiled into one kernel called write, which is executed after the prefix sum. In this
way, we apply kernel fusion [689] to the four relational primitives and to the four aligned
writes. The same query is processed with six operations and the operations in compiled
kernels communicate through on-chip memory instead of GPU global memory.

8.2.6 Memory Access and Limitations

In Figure 8.13, we illustrate the bandwidth characteristics of our example querywhenus-
ing code generation with three phases. The figure shows the behavior of the three-phase
micro execution model described above with the batch processing macro execution
model. To analyze the implications of forwarding intermediate results in the generated
kernels through registers and scratchpad memory, we extended the illustration with an
additional GPU-internal layer of memory.

GPU global memory access has previously been the bottleneck for query execution.
Here the count kernel accesses 1.7 GB in GPU global memory, the prefix sum compu-
tation accesses 0.8 GB in GPU global memory, and the write kernel accesses 1.9 GB
in GPU global memory. This is a reduction by a factor of 1.9× compared with batch

8.2 Communication Architecture for Heterogeneous Hardware | 389

0.9 GB

0.1 GB

PCIe Transfers
0.9 GB ~56 ms

GPU Global Memory
4.4 GB ~31 ms

< 0.01 GB

count kernel

input: 0.7 GB 4.3 GB

write kernel

0.5 GB

0.1 GB
prefix sumprefix sumprefix sum

0.3 GB

0.5 GB

0.3 GB

probe: 0.9 GB

2.4 GB

< 0.01 GB

input: 1.0 GB 4.6 GB

probe: 0.9 GB

2.3 GB

On-Chip Memory
14.4 GB ~12 ms

GPU
MEMMEM CORES

SCRATCHPAD MEM/
REGISTERS/CACHE

Fig. 8.13: Data movement for data-parallel query compilation with three phases.

processing. In the generated kernels, a substantial amount of memory traffic hasmoved
to on-chip memory. In on-chip memory, the access volume of 14.4 GB is not a limiting
factor due to the extremely high bandwidth of 1.2 TB/s of scratchpad memory.

Although the reduced GPU global memory traffic may suggest that the approach
eliminates the bottleneck, real-world queries still experience limitations. In fact, Sec-
tion 8.2.10.6 shows that compilation with three phases can still not saturate PCIe for 9
out of 12 SSB queries. This is because the query complexity prevents the strategy from
utilizing the full GPU global memory bandwidth. Therefore, we investigate ways to
further increase the processing efficiency in the next section.

8.2.7 Processing Pipelines in One Pass

The previous execution model relied on a typical programming concept of GPUs that
executes operations with multiple kernels. The kernels that execute the actual work for
the operations are interleaved with kernels that execute prefix sum computations. To
further improve the processing efficiency, we have to break with this concept. With a
new micro execution model, we avoid round trips to GPU global memory, which are
caused by multi-pass implementations. This enables us to radically reduce GPU global
memory traffic and lift the bandwidth bottleneck.

390 | 8 Communication Awareness

fusion
operator 1

fusion
operator 2

aligned
write

select /
hash

prefix
sum

aligned write

prefix
sum

project /
join probe

Fig. 8.14: Compound kernel.

Compound Kernel Kernel fusion brought reduction operations (e.g. prefix sum)
as boundaries into the spotlight. Previously, we computed the prefix sum between
two generated kernels to obtain write positions. Instead of two separate kernels, we
now generate only one compound kernel that integrates the prefix sum computation
(cf. Figure 8.14), which eliminates multiple passes. Computing write positions within a
generated kernelmakes it possible to process pipelines in one passwithout intermediate
materialization. In this way, each fusion operator is executed by a single compound
kernel. In the following, we look at implementation strategies for reduction operations
that enable fully pipelined processing.

Atomic Prefix Sum The separation into multiple reduction kernels with intermediate
materialization impedes pipelining. To introduce a pipelined implementation, let us
first look at a very simple sequential prefix sum:

for(i=0; i<n; i++)

if(flags[i]) prefix_sum[i] = sum++;

The sequential prefix sum loops through the array flagswhilewriting and incrementing
sum for every valid entry. Figure 8.15a illustrates the use of the prefix sum for a dense
write of selected input elements. When parallelizing the for-loop, this implementation
runs into the issue of many threads trying to increment sum at the same time. To resolve
this parallel dependency, atomic operations canbeused to isolate parallelmodifications
of the same memory address. Atomic operations ensure a consistent state, yet are
executed in an undefined order. The following code executes an atomic prefix sum to
compute unordered, dense write positions:

8.2 Communication Architecture for Heterogeneous Hardware | 391

1

0

1

0

0

1

1

0

0

1

2

3

a

a

a

a

a

a

a

a

1

2

0

3

a

b

a

b

b

a

a

b

a

b

a

b

b

a

a

b

input flags prefix
sum

result

input atomic
prefix
sum

result

on
e

ke
rn

el

(a) (b)

if(v==‘a’)
 atom_add(,1)

sum

...

... ...

...

...

...

1 execution order

 atom_add(3

2

1

4

Fig. 8.15: The computation of a prefix sum for writing selected elements to a dense array (a) can be
parallelized using atomic operations (b).

if(is_selected) wp = atom_add(&sum, 1);

Threads contribute an offset of 1 to the sum at address &sum by executing the expression
conditionally. Each atomic_add(..) returns the previous state of sum. Thus, threads
immediately obtain a unique global write offset as wp in register. This is illustrated in
Figure 8.15b.

The use of atomic operations causes a break with the semantic of the prefix sum
because the result has no defined order. For the relational semantic, however, only the
uniqueness of output positions is critical. Output permutations lead to non-aligned
GPU global memory access where adjacent threads do not write to adjacent memory
addresses. The impact on write throughput, however, is limited, because the filter
semantics lead to non-aligned access for separate prefix sums as well.

8.2.7.1 Memory Access and Limitations
The compound kernel micro execution model further reduces GPU global memory
access by a factor of 2.4× to 1.8 GB (see Figures 8.13 and 8.16). Compared with operator-
at-a-time, this is a reduction by a factor of 4.7×. Pipelining the prefix sum avoids round
trips to GPU global memory that are necessary in the three-phase micro execution
model. The compound kernel has only a minimal GPU global memory access volume
for input, output, and hash-table access. Now the on-chip traffic is balanced with
the GPU global memory traffic when relating each memory volume to the available
bandwidth.

The described approach heavily relies on atomic operations. This has the disadvan-
tage of causing limitations for parallelism. Although the execution order is undefined,
the operations are sequentialized and reducing n values takes O(n) parallel steps. How-
ever, Egielski et al. [195] showed that recent hardware support makes atomic operations
competitive with parallel algorithms. Still, the integrated prefix sum puts significant
pressure on the atomic functional units, which prevents pipeline kernels from utilizing

392 | 8 Communication Awareness

4.3 GB

0.5 GB

0.3 GB

2.4 GB

3.7 GB

2.3 GB

0.5 GB

0.9 GB

< 0.01 GB

input: 0.9 GB

probe: 0.9 GB

< 0.01 GB

Fig. 8.16: Data movement for query compilation with one pass. The compound kernel reduces data
movement by 4.7×.

full GPU global memory bandwidth. In the following, we address this issue and show
how the efficiency of parallel reductions in compound kernels can be increased.

8.2.8 Efficient Pipelined Reductions

We have showed a way to pipeline reductions in generated kernels using atomic opera-
tions. This benefits the memory efficiency, but also reveals the atomic functional units
of a GPU to be a bottleneck. This is especially critical because several operations that
are combined in the compound kernel rely on atomic isolation as well. Specifically, the
state-of-the-art implementations of hash joins and hash aggregations [358] use atomic
operations to isolate hash table inserts.

This section addresses performance bottlenecks that occur when utilizing atomic
reductions to pipeline relational operators. We show a new technique called local
resolution, global propagation, that is used by HorseQC to pipeline prefix sums, single
tuple aggregation, and grouped aggregation efficiently. The approach reduces the
pressure on atomic functional units and offers tunability regarding hardware and
thread-group granularity. We describe the approach in the following.

8.2 Communication Architecture for Heterogeneous Hardware | 393

atom_add(...)

sum

2

3

1

5

... +8

+5

+10

+0

...

cta prefix sum

local
offsets
local

offsetsoffsets
input

5
total

global
offsets

2
1

cta prefix sum

0
22

1

0.
.
.

3
2

3
0

33
2

3
0.

.
.

1
0

0
11

0

0.
.
.

local

5
totaltotaltotal4

0
555

totaltotaltotal4444

0.
.
.

write
positions

9

8

9

8.
.
.

7

5

7

5.
.
.

10

10

10

10.
.
.

write
4

0

44

0.
.
.

cta prefix sum
Local Resolution

atomic add atomic add
Global Propagation

sum
... ...

... ...

1

4

2

3

1 execution order

Fig. 8.17: Computing write positions with local resolution (local offset), global propagation (global
offset).

8.2.8.1 Local Resolution, Global Propagation
Like other efficient GPU implementations such as in CUB [489], local resolution with
global propagation consists of two levels of reductions. In contrast to other techniques,
however, it always uses pipelined techniques on both levels. Local resolution is an
additional pre-reduction step, computed by a local thread group, whereas global prop-
agation is the same atomic reduction as described in Section 8.2.7. We use the term
Collaborative Thread Array (CTA) for the thread groups in local resolution. CTAs can
either match the workgroup (AMD) or thread-block (NVIDIA) size of the GPU kernel or
work on a finer granularity.

The following code, illustrated in Figure 8.17, executes an atomic prefix sum using
local resolution, global propagation:

l_os = cta_prfx,(flags, &cta_total); //local res.

if,(cta_thread_idx == 0)

g_os = atom_add,(&sum, cta_total); //global prop.

wp = l_os + g_os;

First, each CTA executes cta_prfx to compute a local prefix sum on flags. This is the
local resolution step. We implement cta_prfx with SIMD reductions (cf. Intra-Warp
Scan Algorithm by Sengupta et al. [622]). The function returns the local offset l_os and
the sum of all flags assigned to the CTA cta_total. Second, one thread of each CTA
adds cta_total atomically to a global counter sum. This is the global propagation step.

394 | 8 Communication Awareness

atomic
reduce

atomic
hash aggregatehash aggregate

k

hash aggregatehash aggregate

v

xx xxx xxxxxxx xxx xxxxxxx xxx xxxxx

xx xxx xxxxx

k v
xx xxx xxxxx

xx xxx xxxxx

atomic
reduce

(a) (b) (c)

Fig. 8.18: Local resolution mechanisms: (a) Work-efficient reduction (b) SIMD reduction (c) seg-
mented reduction.

The call to atom_add returns the global offsets g_os. Finally, the write position wp is the
sum of l_os and g_os.

Comparedwith the simple atomic prefix sum,we now add pre-aggregates instead of
1/0 flags to sum. Accordingly, each atomic add obtains ranges of output indices instead
of a single index. The process is analogous to allocating segments of output memory
to CTAs. The order of the allocations is undefined, however. (See the execution order
in Figure 8.17.) This leads to an output that is ordered within segments and permuted
between segments. Further investigation reveals that, due to the GPUs streamprocessing
engine, the permutations exhibit locality, leading to semi-ordered output data.

Local Resolution Mechanisms The mechanisms used for local resolution are in-
terchangeable. This makes it possible to tune pipelined reductions and to apply them
in different operations. Figure 8.18a and 8.18b show the integration of work-efficient
reductions [56] and SIMD reductions [622]. Both techniques have different thread group
granularities and we can choose between them to adapt to the hardware parallelism of
different processors. Figure 8.18c shows the use of pipelined segmented reductions for
grouping. First, segmented reductions compute pre-aggregates in scratchpad memory.
Second, global propagation inserts the pre-aggregates into a hash table with an atomic
operation. The ability to control scratchpad memory opens up a new design space
for grouping algorithms in pipelined computations (e.g. handling frequent items). A
similar approach PLAT [722] aggregates frequent grouping keys in a table local to each
CPU core.

8.2.9 DBMS Integration

We integrated our query compiler HorseQC into the open source DBMS CoGaDB, lever-
aging the built-in code generator Hawk [75]. The DBMS uses a columnar data layout

8.2 Communication Architecture for Heterogeneous Hardware | 395

and processes full columns operator-at-a-time on GPUs and CPUs. We use the front-end
and the storage layer of CoGaDB; HorseQC adds a compiler-based execution engine.

We added two components to the DBMS: 1. a query compiler that compiles fusion
operators to GPU code (cf. Section 8.2.4); and 2. a translation layer that identifies fusion
operators and drives the query compiler. Currently, there are two different workflows
for the translation layer:
1. CoGaDBparses the SQL code for a query and generates a query plan. The translation

layer applies the produce/consume model [529] to the query plan to determine
fusion operators. We use this approach for the SSB queries and TPC-H Q6.

2. The translation layer parses a JSON file that describes the query plan including the
fusion operators. This enables us to process queries when (1) cannot handle the
queries via SQL (e.g. correlated subqueries or automatic unnesting). This is used
for the other TPC-H queries.

When the fusion operators are defined, the translation layer drives the query compiler
to compile and execute. Finally, the decompression of dictionary compressed columns
and sorting are executed by CoGaDB’s original execution engine.

8.2.10 Evaluation

Section 8.2.3.1 showed that query coprocessing in existing macro execution models is
sensitive tomemory bandwidth bottlenecks on various hierarchical levels. We proposed
several micro execution models that allow to remove memory indirections to achieve
a more efficient use of bandwidth. In this section, we evaluate our approaches and
carefully assess bandwidth and throughput in identifying several benefits.

The experimental study is structured as follows. First, we evaluate themicro exe-
cution models and we execute specific queries to analyze the reduction performance
of the proposed techniques in Experiments 1 and 2. Then, we evaluate the micro exe-
cution models for the SSB and TPC-H benchmarks in Experiments 3 and 4. Next, we
analyze the integration of our micro execution model with the batch processingmacro
execution model. In doing so, we analyze the real-world benefits of our approach with a
comparison of end-to-end performance in Experiment 5 and a scalability analysis in
Experiment 6. Note that all experiments, except for Experiment 6, were executed with
scale factor 10.

8.2.10.1 Processing Techniques
This section describes three micro execution models built into HorseQC. The goal is
to use them within macro execution models to improve performance. Therefore, it is
crucial to achieve a higher throughput than PCIe when executing queries. We show
the benefit of our approaches by comparing them with an operator-at-a-time micro

396 | 8 Communication Awareness

Tab. 8.3: Coprocessors used in the evaluation.

Model Type Archi- Cores Scratch B/W
tecture pad (KB) (GB/s)

GTX970 (NV) GPU Maxwell 13 96 146.1
GTX770 (NV) GPU Kepler 8 48 167.6
RX480 (AMD) GPU Ellesmere 32 32 104.9
A10 (AMD) APU Godavari 8 32 18.7

execution model. In this way, we analyze the benefit of moving data transfers between
relational operators to the on-chip level.
Multi-pass The first approach separates reductions from the generated kernels, which

leads to an execution in multiple passes (Section 8.2.5). Each reduction is executed
on materialized data using the boost::compute library.

Pipelined The second approach integrates reductions into a fully pipelined kernel
using atomic operations (Section 8.2.7). By using atomic operations for each reduc-
tion input, the approach is an instance of local resolution, global propagation that
has no local resolution step.

Resolution The third approach increases the efficiency of pipelined reductions with
local resolution methods such as pre-aggregation (Section 8.2.8). We differenti-
ate between local resolution implementations using Resolution:SIMD for SIMD
reductions and Resolution:WE for work-efficient reductions.

Operator-at-a-time We use CoGaDB 0.4.1, which processes full columns of data in
each operator with CUDA kernels. It features a run-to-finishmacro executionmodel
and an operator-at-a-time micro execution model.

8.2.10.2 Baselines
PCIE transfer The PCIe transfer time is the time it takes to transfer input and output

data between the host’s main-memory and GPU global memory. It is the target time
used by micro execution models for balancing throughput and PCIe bandwidth.
The PCIe transfer time is shown in each graph with a dashed line ().

Memory bound The GPU global memory bound execution time is the time it takes to
access the data. As each approach has to read the input columns and write the
output columns, the baseline is a lower bound on the kernel execution time. We
indicate it with a solid line () in each graph.

Listing 8.1: Query 1 is a simple selection and projection query inspired by the star schema bench-
mark.

SELECT lo_extprice * lo_discount + lo_tax AS revenue

FROM lineorder

WHERE lo_quantity BETWEEN 25 - x AND 25 + x

8.2 Communication Architecture for Heterogeneous Hardware | 397

8.2.10.3 System Configuration
For the experiments, we use three dedicated GPUs with PCIe gen 3.0 links and one APU
that accesses main-memory directly. Table 8.3 specifies the GPU models and shows
hardware properties. The amount of scratchpad is available per core. The reported
bandwidth refers to GPU global memory for the GPUs and to main-memory for the APU.
It was measured using on-GPU memcpy of 1 GB data. We measured bidirectional PCIe
transfers between CPU and GPU as 12.1 GB/s.
Both NVIDIA GPUs GTX770 and GTX970 run in a system with an Intel Xeon E5-1607
CPU. We use the NVIDIA 364.19 driver and CUDA Toolkit 7.5 with OpenCL drivers. The
AMD RX480 GPU is placed in a separate system with the A10-7890K APU. We use the
AMDGPU-Pro 16.40 driver for the GPU and the fglrx 15.201 driver for the APU. Each
system is running Ubuntu 14.04 and uses the boost library 1.61.

We used the profiling tools nvprof 2.0.28 for NVIDIA hardware and CodeXLGpu-

Profiler V4.0.511 for AMD hardware to measure kernel execution times, PCIe trans-
fers, and GPU global memory access. For the measurements of kernel execution times,
we used both tools to profile individual kernels and sum up the kernel execution times
when multiple kernels were involved.

8.2.10.4 Experiment 1: Pipelined Prefix Sum
We compare several pipelined prefix sum techniques with one non-pipelined technique
for a query that filters and projects one table. This allows us to analyze the benefit
of integrating prefix sum computations into single-pass kernels. We execute Query 1,
shown in Listing 8.1, and vary the selectivity in the range [0, 1] using x. By running the
experiment on four GPUs, we aim to assess the best local resolution mechanisms for a
given hardware. Figure 8.19 shows the results.

Observations Pipelined techniques perform better thanMulti-pass in most cases.
Integrating the prefix sum computation into single-pass kernels reduces the kernel
execution times by a factor of up to 6.3×. While processing withMulti-pass takes up
to 328.6% of the PCIe time, Resolution:SIMD uses only 101.3% of the PCIe time in
the worst case (selectivity 1.0, RX480). This shows that the approach can saturate the
bus bandwidth for a variety of configurations. On the A10 there are no PCIe transfers
and Resolution:SIMD increases the overall throughput by factors of up to 1.6× over
Multi-pass.

The results show that the local resolution step reduces the performance impact
of atomic operations. This becomes visible for higher selectivity factors. Pipelined
has higher executions times because the strategy executes one atomic addition per
output. However, Resolution:SIMD and Resolution:WE show good performance across
all selectivities due to local resolution.

Resolution:SIMD achieves the shortest kernel execution times in most cases and
allows memory bound processing on the GTX970. On the GTX770, lowering the output

398 | 8 Communication Awareness

0 0.5 1
0

20

40

GTX970

0 0.5 1
0

20

40

60
GTX770

0 0.5 1
0

50

100

150

Selectivity

Ke
rn
el
Ti
m
e
[m

s]

RX480

0 0.5 1
0

200

400

A10

Multi-pass (A1)
Pipelined (A2)

Resolution:WE (A3)
Resolution:SIMD (A3)

PCIe transfer
Memory bound

Fig. 8.19: Projection query executed with different approaches. Integrating prefix sums into kernels
allows fastest execution.

size down to 0 does not affect the execution time. We conclude that the GTX770 is
compute-bound earlier than the GTX970. The higher memory bandwidth of the GTX770
leads to an increased throughput for atomic operations and Pipelined can outperform
Resolution:SIMD for selectivities below 10%. On the RX480 and on the A10 there is no
definite advantage for one of the reduction techniques. In the following, we use only
Resolution:SIMD and skip the other techniques for a clear presentation.

8.2.10.5 Experiment 2: Pipelined GROUP BY

We evaluate the effect of pipelined GROUP BY aggregations using Operator-at-a-time,
Pipelined, and Resolution. The query groups all tuples of lineorder according to
the computed attribute lo_orderkey%x into sums. We vary the number of groups by
increasing x from 2 to 16384. We show the results of the experiment on a GTX970 GPU
in Figure 8.20.

Observations The execution times of Operator-at-a-time do not depend on the group
size. The main cost factor is sorting the input columns. Pipelined shows up to 11.1×
lower execution times but only for larger group sizes. For group sizes below 64, we
observe high execution times. This is caused by the heavy contention of parallel aggre-
gation hash-table inserts.

The bottleneck is resolved by Resolution which uses pre-aggregations to reduce
the contention. The results show that execution times reduce by a factor of up to 126×.
However, the local pre-aggregations have a limited effect on larger group numbers. This

8.2 Communication Architecture for Heterogeneous Hardware | 399

22 24 26 28 210 212 214

101

102

103

104

105

PCIe
transfer

Memory
bound

Number of Groups

Ke
rn
el
Ti
m
e
[m

s]
Op.-at-a-time
Pipelined (C2)
Resolution (C3)

Fig. 8.20: Performance of grouped aggregations.

Q11 Q12 Q13 Q21 Q23 Q31 Q32 Q33 Q34 Q41 Q42 Q43
0

50

100

150

200

250
PCIe transfer
Memory bound

K e
rn
el
Ti
m
e
[m

s] HorseQC: Fully pipelined
HorseQC: Multi-pass
Operator-at-a-time

Fig. 8.21: Performance of SSB queries.

explains the spike at 128 groups, where both pre-aggregation and contention have an
effect. While the approaches cannot saturate PCIe when aggregating a full table, filters
reduce the cost of grouping for real-world queries.

8.2.10.6 Experiment 3: Star Schema Benchmark
The previous experiments showed that pipelining specific reduction operations helps
to increase the throughput of query processing. In this experiment, we analyze whether
this behavior carries over to real-world situations. To this end, we execute the SSB
Queries³ on the GTX970 GPU.

We use Operator-at-a-time and two variants of our query compiler. HorseQC: Multi-
pass uses pipeline breaking implementations for reductions (A1, B1 and C1). HorseQC:
Fully pipelined integrates all pipeline operations in one kernel (using A3, B3 and C2).
We show the results of the experiment in Figure 8.21.

3 We could not process SSB Query 2.2 as we do not yet support range predicates on dictionary com-
pressed columns.

400 | 8 Communication Awareness

Q1 Q4 Q5 Q6 Q7 Q9 Q13 Q17 Q18 Q19 Q21
0

200

400
K e
rn
el
Ti
m
e
[m

s]

Fig. 8.22: Performance of TPC-H queries.

Observations The bandwidth analysis in Section 8.2.3.1 showed that 4 out of 12
queries are limited by GPU global memory access in operator-at-a-time processing.
– The kernel execution times of Operator-at-a-time show that compute and latencies

make the problemworse. While PCIe would allow execution times between 60.6ms
to 90.9ms, the kernel execution times take longer for 10 out 12 queries with up to
295.5%.

– HorseQC: Multi-pass improves over Operator-at-a-time and uses only 50.5% of the
PCIe bandwidth transfer time in the best case and 215.5% in the worst case. This
shows that without efficient pipelining of reduction operations, the benefit of query
compilation is limited.

– HorseQC: Fully pipelined lowers all kernel execution times to a level that is consis-
tently lower than PCIe transfer times. This shows that compiling pipelines into one
kernel with local resolution, global propagation provides an execution approach
with sufficient throughput. Processing takes 9.7% of the PCIe transfer time in the
best case and 78.1% in the worst case. For Queries 1.1, 1.2, and 1.3, kernel execution
is memory bound by GPU global memory access.

8.2.10.7 Experiment 4: TPC-H Queries
We execute and profile queries from the TPC-H benchmark to show the effect when
relaxing the specific assumptions of the star schema benchmark (e.g. using one cen-
tralized table). We select a subset of queries based on the work by Boncz et al. [61] to
capture challenging aspects of the TPC-H benchmark: Q1, Q4, Q13, and Q21 contain
heavy aggregation; Q9 and Q18 contain heavy joins; and Q4, Q19, and Q21 contain
parallelism bottlenecks. We modified 4 queries, because HorseQC currently does not
support all operations, e.g., like expressions. The results of the experiment are shown
in Figure 8.22. For Q1, there is no result for HorseQC: Multi-pass, because the strategy
ran out of GPU memory. The results shown for Operator-at-a-time are for all TPC-H
queries supported by the DBMS.

8.2 Communication Architecture for Heterogeneous Hardware | 401

Observations The PCIe and memory-bound baselines show larger variations than
for the SSB benchmark. This is mainly caused by the join structure, e.g., Q13 joins three
small tables, while Q17, Q18, and Q21 join multiple instances of the largest lineitem
table.
The kernel execution times show that HorseQC can improve over operator-at-a-time by
factors of up to 8.6×. For Q1, Q4, and Q9, there are cases where Operator-at-a-time has
shorter kernel execution times than compiled strategies. Further investigation showed
that in these cases Operator-at-a-timemoves some operators to the CPU, which means
that the measurements cover a limited amount of operations.

Comparing the variants of the query compiler, we observe that HorseQC: Fully
pipelined consistently improves over HorseQC: Multi-pass by a factor of up to 5.4×.
HorseQC: Fully pipelined achieves lower execution times than PCIe transfer times for 8
out of 11 queries. For Q1, Q13, and Q18, the PCIe bandwidth cannot be fully saturated.
This is because the queries contain grouped aggregations of unfiltered columns (cf.
Experiment 2). The execution times of HorseQC: Fully pipelined take 5.6% of the PCIe
transfer time in the best case and 268.1% in the worst case.

8.2.10.8 Experiment 5: Scalability
Due to the deeply integrated storage layer implementations of the host DBMS CoGaDB,
we were unable to build a fully scalable version ofHorseQC. For this reason, we perform
a separate experiment that integrates the Resolutionmicro execution model with the
batchprocessingmacro executionmodel for the star join fromSSBQuery 3.1. Decoupling
this experiment allows us to apply the rules for coprocessor data management by
Yuan et al. [728] and to measure end-to-end performance for larger datasets.

The star join recombines three dimension tables and one fact table with an overall
selectivity of 3.4%.We build hash tables for the dimension tables in GPU globalmemory.
The fact table resides in pinned hostmemory and each column is partitioned into blocks
of 0.5MB, 2MB, or 8MB. The blocks are transferred asynchronously via PCIe into an
inner kernel that computes the star join by probing each dimension hash table.

Figure 8.23 shows the end-to-end execution times for each block size when exe-
cuting the experiment. We observe that execution times grow linearly with increasing
scale factors and that block sizes larger than 2MB can saturate the PCIe bandwidth. The
computation does not become a bottleneck for the examined scale factors. With a block
size of 4MB and scale factor 300, the size of intermediate data in GPU global memory is
only 473MB. Therefore, we expect the approach to scale to even larger databases with
linear performance.

8.2.10.9 Experiment 6: End-to-End Performance
To make a comparison with other database systems, we execute the TPC-H queries
with different database systems and measure end-to-end performance. We compare
MonetDB5 Dec2016-SP3 executed on CPUs, and CoGaDB 0.41 and HorseQC executed

402 | 8 Communication Awareness

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0

1

2

3
block size

21.6 GB
input size

Scale Factor

Ex
ec
ut
io
n
Ti
m
e
s

0.5MB
2MB
8MB
PCIe

Fig. 8.23: End-to-end performance of star join computation for different scale factors.

Q1 Q4 Q5 Q6 Q7 Q9 Q13 Q17 Q18 Q19 Q21
0

1

2

Ex
ec
ut
io
n
Ti
m
e
s MonetDB

CoGaDB
HorseQC

Fig. 8.24: End-to-end performance of TPC-H queries.

on GPUs. Both competitors feature an operator-at-a-time approach. We perform the
measurements with warm caches. MonetDB runs on a workstation-class system with
an Intel Xeon E5-1607 CPU and 32GB RAM. CoGaDB and HorseQC run on the GTX970.
The results are shown in Figure 8.24.

Observations For the supported queries, HorseQC is up to 5.8× faster than CoGaDB.
While CoGaDB uses GPU global memory as a cache for frequently used columns,
HorseQC does not cache data between queries. This shows that HorseQC uses memory
and interconnects more efficiently. For Q6 there is no improvement, because query
execution is PCIe bound.

HorseQChas lower execution times thanMonetDBbya factor of up to26.9×. Despite
moving data through the PCIe bottleneck, the additional bandwidth resources of GPU
global memory offer an acceleration. For Q19, MonetDB has a lower execution time
than HorseQC. This shows that for queries with a low complexity, it is more effective to
process data directly than moving it over PCIe.

8.2 Communication Architecture for Heterogeneous Hardware | 403

8.2.11 Discussion

In the previous experiments, we evaluated our new approaches for querying compi-
lation on coprocessors. Across all experiments, we were able to show improvements
of query compilation over operator-at-a-time processing. Operator-at-a-time has a low
memory efficiency due to largematerialization volumes and repetitive operations. There-
fore, the approach cannot efficiently utilize the memory systems surrounding the co-
processor.

While naive compilation techniques increase the memory efficiency, reductions
and prefix sums split operator pipelines into multiple passes. In this way, the approach
inherits the drawbacks of operator-at-a-time. This becomes visible because kernel
execution times frequently exceed PCIe transfer times.

We demonstrated a query compilation technique that merges the operators of a
pipeline into one compound kernel. When combined with efficient reduction tech-
niques, the compound kernel achieves substantial advantages over other processing
approaches. With upcoming OpenCAPI and NVLink interconnects, these improvements
to GPU-local processing are essential in order to take advantage of the increased band-
width of the new hardware. In the evaluation setting, the PCIe bandwidth can be
saturated for all SSB queries. For the TPC-H benchmark, the approach is an improve-
ment over operator-at-a-time and naive compilation, but saturates PCIe in only 8 out of
11 queries. We conclude that the compound kernel works particularly well with star
join queries.

8.2.12 Summary

In this section, we showed query processing techniques that help to balance the data
movement cost and compute throughput on GPU-style coprocessors. We measure the
data transfer volumes in different scalable processing approaches to assess bandwidth
bottlenecks. While naive scalable execution techniques are limited by PCIe bandwidth,
batch processing is limited by GPU-local throughput. To address the bottleneck, we
propose micro execution models that benefit from on-chip pipelining. Naive query
compilation techniques allow simple code generation but inherit the memory-intensity
of operator-at-a-time. We introduce compound kernels that merge several pipeline
phases into one efficient kernel.

9 Energy Awareness
Energy is a fundamental resource constraint that is present almost everywhere in life.
Many of the previous chapters indirectly discuss the energy demand of cyber-physical
systems and machine learning. Taking a broader view of cyber-physical systems, we
see that the total amount of energy required to solve a specific problem is (for constant
P)

W = P · t

where P is the power to run the hardware and t the amount of time this hardware needs
to execute a given software. Hence the energy consumption is typically determined by
1. the hardware used (that is P)
2. the algorithm that is run on the hardware (this can influence P and t)
3. the time the hardware executes the implemented algorithm (that is t)

In practice there is often a trade-off between these quantities. Hardware that has great
processing power can execute software very quickly, but often also requires much more
energy. Similarly, less powerful hardwaremay take longer to execute a software pipeline
while the overall energy consumption is smaller since it requires less power. Last, certain
implementations might use specific hardware features (e.g. a GPU) that influences both
the energy and time required for execution. With the ongoing integration of Machine
Learning (ML) into cyber-physical systems, two research directions must be explored.

First, in order to apply and train Machine Learning models on small devices, the
energy consumption of the ML algorithm itself must be reduced. Needed is a holistic
approach that takes all steps of theMLpipeline into account, starting from its theoretical
model down to its specific implementation on a specific hardware platform.

Second, the application of ML models to reduce the energy consumption of other
parts of the cyber-physical system must be explored. Here, a cross-domain approach
that combines domain-specific knowledge with ML for the right problems is necessary.

This chapter performs an exemplary discussion of both approaches. Section 9.1
discusses how probabilistic undirected models can be rephrased with integer-only
operations such that floating-point co-processors are no longer required. It introduces
Bit-Length Propagation (BL-Prop) and combines it with a novel IntGD algorithm for
numerical optimization with integrality constraints. The resulting algorithm enables
the training and inference of Markov random fields on small devices using integer-only
arithmetics.

Section 9.2 discusses how ML models can be integrated into the wireless commu-
nication of cyber-physical systems. More specifically, methods for modeling power
consumption for different communication technologies are discussed including LTE,
LTE-A, and NB-IoT. The integration of ML models in the User Equipment (UE) for esti-
mating transmission uplink power under external influences (e.g., signal strength or
signal quality) is further explored and discussed in a real-world context.

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the
Creative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-009

406 | 9 Energy Awareness

9.1 Integer Exponential Families

Nico Piatkowski

Abstract: In this contribution, we study how knowledge about the underlying compute
architecture can be incorporated directly into the learning problem. More precisely, we
consider the arithmetic limitations of Ultra-Low Power (ULP) Micro-Controller Units
(MCU). Such systems do not contain arithmetic co-processors, which implies that most
arithmetic computations must be emulated via integer logic. However, this creates
a large performance penalty for any machine learning method that relies heavily on
floating-point arithmetic. To mitigate this issue, we show how the model itself can be
rephrased with integer-only operations such that floating point co-processors are no
longer required. We exemplify this procedure with probabilistic undirected models,
so-called Markov random fields. All steps of learning and inference are discussed.
An approximate but integer-only probabilistic inference procedure called bit-length
propagation (BL-Prop) is presented. BL-Prop is based on belief propagation, where
instead of the full messages, only their bit-length is propagated along the models’
conditional independence structure. We analyze the algorithm and show what factors
have the largest influence on the approximation quality.
Furthermore,we derive IntGD—anumerical optimizationmethod for convex objective

functions with integrality constraints. The method is based on an accelerated proxi-
mal algorithm for non-smooth and non-convex penalty terms. For integer gradients
computed via BL-Prop, IntGD is guaranteed to deliver an integer learning procedure in
which the final parameter vector as well as all intermediate results are integers. Numer-
ical experiments on benchmark data show that integer models allow us to achieve a
competitive prediction quality on low-end hardware while maintaining a large speedup
compared with its double precision counterpart—thus, completely mitigating the per-
formance penalty that arose from the missing floating point unit.

9.1.1 Introduction

Big data analytics for streaming sensor data challenges the resource efficiency of algo-
rithms in several ways. Running data mining methods in resource-constrained com-
putational environments generates challenges in terms of execution time and energy
consumption. Fortunately, optimizations that reduce the number of cycles in which the
CPU is busy also save energy consumption. When reviewing the specifications of pro-
cessing units, one finds that integer arithmetic is usually cheaper in terms of instruction
latency, i.e., it needs a smaller number of clock cycles until the result of an arithmetic
instruction is ready. Table 9.1 shows the latencies of arithmetic instructions measured

9.1 Integer Exponential Families | 407

in terms of clock cycles for Intel CPUs and ARM CPUs and for Nvidia GPUs. Note that
transcendental functions are composed of multiple instructions and therefore may take
substantially more cycles than the ones reported in Table 9.1. This motivates reducing
the number of cycles in which code is executed when designing new, resource-aware
learning algorithms.

Nowadays, big data arises in social media, industry, and basically all scientific
research areas. Data sets grow in size because they are increasingly being gathered
by ubiquitous information-sensing mobile devices. The joint prediction of various
unknowns based on multiple observed inputs is a ubiquitous subtask in real-world
problems from various domains, including computational biology, computer vision,
and natural language processing. Probabilistic graphical models are well-suited for
such tasks, but they suffer from the high complexity of probabilistic inference. Many
approximate approaches to probabilistic inference based on Belief Propagation (BP)
[404, 560] were proposed in the last decade, e.g., Counting BP [369], Lifted BP [10],
Stochastic BP [539], Tree-reweighted BP [691], Tree Block Coordinate Descent [642], and
Particle BP [331]. Quadrature-based methods [572, 573] deliver promising results, but
are not well-suited for embedded or resource-constrained environments. In contrast to
these approaches, the underlying model class here is restricted to the integers, which
results in a reduced runtime and energy savings, while maintaining good performance.
Asymptotically, the new approach has the same complexity as the vanilla BP, but it
uses cheaper operations.

This new approach should not be confused with models that are designed for
integer state spaces, in which case the state space X is a subset of the natural numbers
or, more generally, is a metric space. Here, the state space may be a random discrete
space without any additional constraints.

Estimation in discrete parameter models was recently investigated by Chaorat
and Seri [140]. They discuss consistency, asymptotic distribution theory, information
inequalities, and their relations with efficiency and super-efficiency for a general class
of m-estimators. Unfortunately, we do not consider the case when the true estimator
is not included in the search space and therefore, their analysis cannot be used to
estimate the error when the optimizer has to be approximated.

Bayesian network classifiers with reduced precision parameters were presented by
Tschiatschek et al. [671]. They evaluate empirically the classification performance when
reducing the precision of Bayesian networks probability parameters. After learning
the parameters as usual in R (represented as 64-bit double-precision floating-point
numbers), they varied the bit-width of mantissa and exponent, and reported the predic-
tion accuracy in terms of the normalized number of correctly classified test instances.
They found that after learning, the parameters may be multiplied by a sufficiently large
integer constant (109) to convert the probabilities into integer numbers. However, Tschi-
atschek et al. missed an important point, namely that real value probability parameters
are necessary only for Bayesian networks.

408 | 9 Energy Awareness

Tab. 9.1: Instruction latencies (in clock cycles) of Floating-Point (FP) and integer (INT) scalar arith-
metic operations for three processing architectures [24, 334, 542]. x/y means that latency is x for
32-bit and y for 64-bit operands. A single value indicates that both latencies are the same or, in case
of ARM and GPU, that 64-bit integer arithmetic is not supported. For GPU, the values are based on
the operation throughput. Cycles of Intel Sandy Bridge integer division and ARM11 integer multiplica-
tion depend on the lengths of their operands.

Sandy Bridge ARM GPU

FP INT FP INT32 FP INT32
Addition 3 1 8 1 3/7 3
Multiplication 5 3 8/9 4-5 3/7 14
Division 14/22 13-25 19/33 - 7/- -
Bit shift - 3 - 2 - 7
Square root 14/22 - 19/33 - 14/- -

For undirected graphical models, this is not the case. As a result, the general framework
of undirected graphical models [692] may be mapped to the integer domain. A new
optimization scheme is proposed, that allows the resource-constrained learning of
integer parameters without the need for floating-point computation. This opens up the
opportunity of running data mining tasks on resource-constrained devices. To be more
precise, based only on integers, it is possible to compute approximations to the
– the marginal probabilities,
– the Maximum-A-Posteriori (MAP) assignment of the model,
– the Maximum Likelihood Estimate (MLE) either via an approximate closed form

solution or an integer variant of stochastic gradient descent.

In this contribution, algorithms for integer models are derived. It turns out that the
integer approximations do deliver a reasonable quality and are around twice as fast as
their floating-point counterparts. This contribution is based on [574] and [567], and is
organized as follows. A short introduction to probabilistic graphical models is given in
Section 9.1.2. In Section 9.1.3, the intuition behind integer undirected graphical models
is explained, and the corresponding algorithms are derived. Furthermore, a bound on
the training error is presented. Two instances of the integer framework, Integer Markov
random fields and Integer Conditional Random Fields, are evaluated in Section 9.1.4 for
synthetic and real world data.

9.1.2 Probabilistic Graphical Models

In the following, the basic notation and concepts of probabilistic graphical models are
introduced. Let G = (V , E) be a graph with |V| = n andNv := {w ∈ V : (v, w) ∈ E} the

9.1 Integer Exponential Families | 409

neighbors of vertex v ∈ V. Each vertex v ∈ V corresponds to a random variable (RV)
Xv with realization xv and domain Xv. Consider the n-dimensional RV X = (Xv)v∈V
with realization x ∈ X = ⊗v∈VXv. The probability of the event {X = x} is denoted by
p(X = x). p(x) is used as a shortcut for p(X = x) in the remainder of this report. For a set
of vertices A ⊆ V, XA addresses the components of X that correspond to the vertices in
A. For ease of notation, Xv and X{v} are regarded as the same. For undirected graphical
models, the joint probability mass function of X is given by

pθ(x) =
1
Z(θ)

∏︁

C∈C(G)
ψC(xC) (9.1)

Z(θ) =
∑︁

x∈X

∏︁

C∈C(G)
ψC(xC) (9.2)

where C(G) is the set of all cliques¹ in G and Z(θ) is the normalization constant (since it
does not depend on x). Let C be a clique of G andXC the corresponding joint domain of
all vertices in C. The parameter vector θ ∈ Θ = Ωd contains |XC|weights for each clique
C ∈ C(G), i.e., θ = (θC)C∈C(G), which results in d =

∑︀
C∈C(G) |XC|. The compatibility

functions ψC (also known as factors) are typically chosen to be

ψC(xC) = exp(
⟨︀
θC , ϕC(x)

⟩︀
)

since this ensures the positivity of pθ and leads to a canonical form of the corresponding
exponential family member.

pθ(x) = exp(
⟨︀
θ, ϕ(x)

⟩︀
− A(θ))

The functionϕ is a sufficient statistic for x andmay be understood as transformation of x
into a binary valued feature space ϕ : X → {0, 1}d. For convenience, the components of
θ andϕ are indexed by C to denote the subvector ofweights or features that corresponds
to a clique C. To address a certain component of θ or ϕ, the corresponding event
{XC = xC} is used as an index, i.e., θXC=xC or even θC=xC . If the parameters θ are known,
the maximum a posteriori prediction of the most likely joint state of all vertices can be
computed by

x* = argmax
x∈X

pθ(x) = argmax
x∈X

⟨︀
θ, ϕ(x)

⟩︀
. (9.3)

Parameter Estimation A common choice for learning the parameters θ of an undi-
rected model is the maximum likelihood estimation, where the likelihood

L(θ | D) =
∏︁

x∈D

pθ(x) (9.4)

1 A clique corresponds to a fully connected subgraph.

410 | 9 Energy Awareness

of the parameters θ for given i.i.d. data²D is maximized. The MLE θ*, i.e., the solution
that maximizesL, has a closed form, if and only if the underlying graphical structure is
a tree or a triangulated graph. In this case, θ* is induced by the empirical expectation
of the sufficient statistics

θ*v=x = logED

[︀
ϕv=x(x)

]︀
,

θ*vu=xy = log
ED

[︀
ϕvu=xy(x)

]︀

ED

[︀
ϕv=x(x)

]︀
ED

[︀
ϕu=y(x)

]︀ . (9.5)

The MLE θ* for partially observed data and certain classes of graphical models like
Conditional Random Fields (CRF) [655] can be found with gradient-based methods.
Taking the logarithm of Equation 9.4, dividing by |D|, and substituting Equation 9.1
for p(x | θ) yields the average log-likelihood (see Equation 9.6). Since the logarithm
is monotonic, maximizing ℓ will reveal the same optimizer as L. Since ED

[︀
ϕ(x)

]︀
=

1
|D|
∑︀

x∈D ϕ(x), ℓ is given by

ℓ(θ | D) =
⟨︀
θ, ED

[︀
ϕ(x)

]︀⟩︀
− ln Z(θ). (9.6)

Taking the natural logarithm to form the log-likelihood is a random choice that may be
replacedwith anyother logb if desired. Since the second term is the cumulant generating
function of pθ, its partial derivative is the expected sufficient statistic for a given θ. This
is plugged into the partial derivative of ℓ with regard to θxC=xC (Equation 9.6) to obtain

∂ℓ(θ | D)
∂θxC=xC

= ED[ϕxC=xC (x)] − Eθ[ϕxC=xC (x)] . (9.7)

Here, ED[ϕxC=xC (x)] denotes the empirical expectation of ϕxC=xC (x), i.e., its average
value in D. By using Equation 9.7, the model parameters θ can be estimated by any
first-order optimization technique.

Inference: In the following, it is explained shortly how Eθ[ϕxC=xC (x)] is computed
with Belief Propagation (BP). From now on, assume that the underlying graphical
structure is a tree. The maximum clique size is thus 2. The message update rule is

mv→u(xu) =
∑︁

xv∈Xv

ψv,u(xv , xu)ψv(xv)
∏︁

w∈Nv\{u}
mw→v(xv). (9.8)

The messagesmv→u(xu) are computed for all pairs of vertex v ∈ V and neighbor u ∈ Nv
until convergence. Converged messages are denoted by m*v→u(xu). The product of all
incoming messages of a vertex is given by Mv(x) :=

∏︀
u∈Nv

mu→v(x). After convergence,
the vertex marginal probabilities pv(xv) that are implied by θ can be computed with

pv(xv) =
ψv(xv)M*v(xv)∑︀
x∈Xv

ψv(xv)M*v(x)
, (9.9)

2 It is assumed that every training instance inD is fully observed.

9.1 Integer Exponential Families | 411

whereas M*v(x) is the product of converged messages m*v→u(xu). In case of non-tree-
structured graphs, BP performs multiple passes over all vertices until the convergence
of messages is reached. The convergence depends on the dynamic range of the poten-
tials. For trees and triangulated graphs, efficient orderings of message computations
(schedulings) are known that have polynomial runtime O(mdeg(G)|X|2) and result in
the exact marginal probabilities. We refer to [404] for discussions on belief-propagation
and related algorithms.

9.1.3 The Integer Approximation

In their fundamental book on graphical models, Wainwright and Jordan [692] write:
“It is important to understand that for a general undirected graph the compatibility
functions ψC need not have any obvious or direct relation to marginal or conditional
distributions defined over the graph cliques. This property should be contrasted with
the directed factorization,where the factors correspond to conditional probabilities over
the child-parent sets.” This explains why it might be possible to have an undirected
graphical model that is parametrized by integers. But the identification of integer
parameters is not enough for excluding every floating-point computation. Moreover,
the computations that are required for training and prediction have to be based on
integer arithmetic. Last, the integer approximation should still deliver a reasonable
quality in terms of training error and test error.

The first step is directly related to the above statement. The potential function

ψC(xC) := 2⟨θC ,ϕC(x)⟩ = exp
(︀
ln(2)

⟨︀
θC , ϕC(x)

⟩︀)︀
(9.10)

is defined in a way, that yields only integer values as long as the parameters are positive
integers. It is easy to see that replacing ψC(xC) with ψC(xC) does not alter the marginal
probabilities as long as the parameters are scaled by 1/ ln 2. It is possible to convert
parameters that are estimatedwithψC(xC) toψC(xC) and vice versa without altering the
resulting probabilities. Notice that ψC(xC) can be computed by a logical bit shift to the
left, which consumes less clock cycles than the corresponding transcendental function.
As already mentioned above, it requires that θ ∈ Nd for ψC(xC) is an integer and the
product of compatibility functions and the normalization constant (see Equation 9.2)
are computable by means of non-negative integer arithmetic. This restricts p(x) and
its marginals to [0, 1] ∩ Q. Although the computation of a probability would require
floating-point division, its actual value is not required for estimating the integer model
parameters.

Inference Recalling the message update Equation 9.8, one sees that all messages are
integer valued, if ψC(xC) is replaced by ψC(xC) and the initial messages are set to 1.
Thus, the whole message computation and propagation procedure is already stated
without floating-point computation. Nevertheless, recall that a CPU’s integer width is

412 | 9 Energy Awareness

constrained by its wordsize ω. mv→u(x)may exceed the machines’ integer precision 2ω

quite easily. Thus, many overflows could occur during message computations, which
destroy the semantics of the messages and the resulting beliefs are no longer usable.

Initial attempts to make the computation more robust against overflows relied on
the fact that messagesmv→u(x)may be scaled arbitrarily without changing the resulting
marginal probabilities as long as the same scale is used for all x. Nevertheless, the

p θ
(X

C
=
x C
)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p̂θ(XC = xC)

Fig. 9.1: Estimates of edge marginal probabilities for 50 random trees with 50 nodes and 2 states per
node. Marginals are computed by the bit-length approximation (p̂) and vanilla BP (p) on the same
parameter vector θ.

messages cannot be simply divided by their sum as with floating-point arithmetic,
since integer division will pin all messages down to 0. Numerous attempts to scale the
integer messages by bit-shift operations have only worked on relatively small graphical
structures, but all those approaches suffered from the loss of information that occurred
whenever too many bits had to be shifted out in order to prevent overflows.

As a solution to this problem, new messages are defined. Instead of computing
the original sum-product messages, we propose computing an approximation to the
integer message bit length. The approximate bit length βvu (y) and the corresponding
message m̂vu (y) are given by

βvu (y) := maxx θvu=xy + θv=x + θu=y (9.11)
+
∑︀

w∈Nv\{u} βwv (x) ,
(9.12)

m̂vu (y) := 2βvu(y) (9.13)
= maxx ψvu (x, y)

∏︀
w∈Nv\{u} m̂wu (x) . (9.14)

9.1 Integer Exponential Families | 413

How m and m̂ are related to each other is a natural question. The messages m̂ that
result from the bit-length approximation resemble max-product messages [404]. Their
magnitude is related to the original messages m through the following lemma.

Lemma 1. Let (v, u) ∈ E be an edge of G = (V , E), hv := |Xv| the size of vs state
space, and nv := |Nv| the number of its neighbors. If hv ≥ 2 ∧ ∀y ∈ Xu : ∃x ∈ Xv :
θvu=xy + θv=x + θu=y > 0, then

m̂vu (x) < mvu (x) ≤ m̂hv
vu (x) .

This statement can be proven by induction over the vertex degree. Note, that this implies
Mv (y) =

∏︀
w∈nv mwv (x) ≤

∏︀
w∈nv m̂

hv
wv (x) = M̂hv

v (y). When it comes to the point-wise
estimates of the marginal probabilities, one finds that due to the approximate messages
some marginals probabilities simply cannot be present. Figure 9.1 shows edge marginal
probabilities for random parameters that are generated withm and m̂, respectively. One
clearly sees how the probability space is discretized by the approximate messages. One
can also see that there is an error in the approximate marginal probabilities computed
with m̂, since in case of zero error all points would lie on the diagonal.

The previous lemma helps to derive an estimate of the distance between the true
outcome of the inference and the one that results from themessage update Equation 9.14.

Theorem 1. Let β*v := maxymaxu βuv (y) be the maximum incoming bit length at v and
assume that the preconditions of Lemma 1 hold, then

D
(︀
pv‖p̂v

)︀
∈ O

(︁
nvhvβ*v

)︁
,

where D
(︀
pv‖p̂v

)︀
denotes the Kullback-Leibler (KL) divergence between the marginal

probability mass function of pv, computed with the message update mvu (y), and p̂v,
computed with m̂vu (y).

This result can be derived by plugging the BPmarginals (Equation 9.9) into the definition
of the KL divergence and applying Lemma 1 two times. The KL is still unbounded, since
there is no bound on β*v. Nevertheless, it indicates a dependence of the KL of pv and p̂v
on the state space size |Xv| and the neighborhood size |Nv|. This relation can also be
observed in the numerical experiments in Section 9.1.4. A comprehensive discussion of
how message errors generally affect the result of belief propagation can be found in
[332].

9.1.3.1 Parameter Estimation
In the following, an integer parameter estimation method based on the closed form
solution to the MLE is derived. Recall that ED

[︀
ϕ(x)

]︀
= 1

|D|
∑︀

x∈D ϕ(x) and let f :=∑︀
x∈D ϕ(x) and bl(a) = ⌊log2 a⌋ + 1 the bit length of a. With this, an integer upper

414 | 9 Energy Awareness

bound on the optimal parameters can be found.

log2 ED

[︀
ϕv=x(x)

]︀
= log2 fv=x − log2 |D| (9.15)

≤ bl fv=x − bl |D| =: ˜θv=x (9.16)

log2 ED

[︀
ϕvu=xy(x)

]︀
≤ bl fvu=xy (9.17)
− bl fv=x − bl fvu=xy + bl |D| (9.18)

=: ˜θvu=xy

Unfortunately, most of those estimates are negative which is not allowed due to the
integer restriction. Let s := max1≤i≤d − ˜θi be the negative component of ˜θwith the largest
magnitude. Now, consider the weights

˜θ+v=x := s + ˜θv=x , ˜θ+vu=xy := s + ˜θvu=xy

with s := (s, s, . . . , s)⊤ ∈ Rd. Clearly, an error is induced into ˜θ by replacing log2 with
bl. The following lemma shows that shifting ˜θ by s introduces no new error.

Lemma 2. Let s := (s, s, . . . , s)⊤ ∈ Rd and ϕ be an overcomplete sufficient statistic,
then ℓ(θ + s) = ℓ(θ).

Proof: Since ϕ is overcomplete, it holds that
⟨︀
s, ϕ(x)

⟩︀
= const, ∀x and hence:

ℓ(θ) − ℓ(θ + s) (9.19)

= 1D
∑︁

x∈D

log
∑︀

y∈X exp
⟨︀
θ + s, ϕ(y)

⟩︀

exp
⟨︀
s, ϕ(x)

⟩︀∑︀
y′∈X exp

⟨︀
θ, ϕ(y′)

⟩︀ = 0.

ϕ as defined in Section 9.1.2 is actually overcomplete. This can now be used to bind the
training error of the shifted integer parameters ˜θ+.

Theorem 2. Let −s be the smallest value in the vector ED

[︀
ϕ(x)

]︀
. Furthermore, let θ*i :=

s + logED

[︀
ϕi(x)

]︀
and ˜θ+i := s + blED

[︀
ϕi(x)

]︀
then

ℓ(θ*) − ℓ(˜θ+) ≤ ‖∇f (˜θ+)‖1.

The result follows from the previous lemma, convexity, and the Cauchy-Schwarz in-
equality. Since each component of the gradient is a difference of two probabilities, its
magnitude cannot be greater than 1. Hence, the gradient norm can be at most d. In the
following section, the magnitude of the gradient relative to d is evaluated numerically.

Either due to restrictions inwordsizeω or for enlarging the number of representable
marginal probabilities, a final scaling of the parameters might be desired. To allow an
appropriate integer scaling, the parameter K is introduced. Let s := max1≤i≤d − ˜θi be
the negative component of ˜θ with the largest magnitude and m := max1≤i≤d ˜θi be the

9.1 Integer Exponential Families | 415

positive component of ˜θ with the largest magnitude. The final integer parameters are
computed by

¯θv=x :=
⌊︂

K
s + m

˜θ+v=x
⌋︂
, ¯θvu=xy :=

⌊︂
K

s + m
˜θ+vu=xy

⌋︂
. (9.20)

Thus, ˜θ+ is rescaled such that ¯θ ∈ {0, 1, . . . , K}d, which may also be interpreted as
implicit base change. Note, that unless K = (s+m), the parameter vector is scaled and an
additional error is added to the gradient. Hence, the impact of K is empirically evaluated
in Section 9.1.4. Themethod of choosing parameters according to Equation 9.20 is called
direct integer estimation.

Gradient-Based Estimation As already mentioned in Section 9.1.2, in certain situ-
ations, it might be desired to estimate the parameters with gradient-based methods.
Unfortunately, the partial derivatives from Equation 9.7 are not integers. Hence, the
expression must be rearranged to obtain an integer form. Let f :=

∑︀
x∈D ϕ(x), so that

⎡
⎣∑︁

x∈Xv

M̂*v(x)

⎤
⎦ |D|∂ℓ(θ | D)

∂θXv=xv
(9.21)

=

⎡
⎣∑︁

x∈Xv

M̂*v(x)

⎤
⎦ fv=x − |D| M̂*v(xv).

This scaled version of the partial derivative is an integer expression that can be com-
puted by using only integer addition, multiplication, and binary bit shift. The common
gradient descent update makes use of a step size η to determine how far the current
weight vector should move in the direction of the gradient. The smallest possible step
size in integer space is 1. This means that any parameter can either be increased or
decreased by 1. Therefore, in the beginning of an integer gradient-based optimization,
all the model parameters are 0 and the gradient will tend to increase a large number
of parameters. This results in a rather slow convergence, since due to the fixed step
size of 1, most of the parameters are worse than before the update. To compensate,
we suggest updating, for each clique only the parameter for which the corresponding
partial derivative has the largest magnitude. This method is used when estimating the
CRF parameters in the following section.

9.1.4 Numerical Results

The previous sections pointed to various factors that may have an influence on the
training error, test performance, or runtime of the integer approximation. In order to
show that integer undirected models are a general approach for approximate learning
in discrete state spaces, generative and discriminative variants of undirected models

416 | 9 Energy Awareness

are evaluated on synthetic data and real-world data. We consider in particular the
following methods:
RealMRF The classic generative undirected model as described in Section 9.1.2.
RealCRF The discriminative classifier as it is defined in [407, 655].
IntMRF The integer approximation of generative undirected models as described in

Section 9.1.3.
IntCRF The integer approximation of discriminative undirectedmodels. Further details

are explained in Section 9.1.4.5.

Both real variants are based on floating-point arithmetic. In the MRF experiments,
the model parameters are estimated from the empirical expectations by Equations 9.5
and 9.20. Parameters of discriminative models are estimated by stochastic gradient
methods [655]. Each MRF experiment was repeated 100 times on random input distri-
butions and graphs. In most cases, only the average is reported, since the standard
deviation is too small to be visualized in a plot. Whenever MAP accuracy is reported,
it corresponds to the percentage of correctly labeled vertices, where the prediction is
computed with Equation 9.3.

Of course, the implementations of the above-mentioned methods are equally ef-
ficient, e.g. the message computation (and therefore the probability computation)
executes exactly the same code for all methods, except for the arithmetic instructions.
A subsets of the results is presented below. Unless otherwise explicitly stated, the
experiments are done on an Intel Core i7-2600K 3.4GHz (Sandy Bridge architecture, Ta-
ble 9.1) with 16GB 1 333MHz DDR3mainmemory. An implementation of integer Markov
random fieldsis available as part of the Python package pxpy.³

Synthetic Data In order to achieve robust results that capture the average behavior
of the integer approximation, a synthetic data generator has been implemented that
samples random empirical marginals with corresponding MAP states. Therefore, a
sequential algorithm for random trees with given degrees [57] generates random tree
structured graphs. For a random graph, the weights θ*i ∼ N(0, 1) are sampled from
a Gaussian distribution. Additionally, for each vertex, a random state is selected that
gets a constant extra amount of weight, thus enforcing low entropy. The weights are
then used to generate marginals and MAP states with the double precision floating-
point variant of belief propagation. The so generated marginals provide empirical input
distribution. The MAP state is then compared with the MAP state that is estimated by
IntMRF and RealMRF for the given empirical marginals.

CoNLL-2000 Data This dataset was proposed for the shared task at the Conference
on Computational Natural Language Learning in 2000. The train and test data consist

3 https://pypi.org/project/pxpy.

https://pypi.org/project/pxpy

9.1 Integer Exponential Families | 417

of three columns separated by spaces. Each word has been put on a separate line and
there is an empty line after each sentence. The first column contains the current word,
the second contains its part-of-speech tag as derived by the Brill tagger, and the third
contains its chunk tag as derived from the Wall Street Journal corpus. The chunk tags
contain the name of the chunk type—I-NP for noun phrase words and I-VP for verb
phrase words, say. Most chunk types have two types of chunk tags, B-CHUNK for the
first word of the chunk and I-CHUNK for each other word in the chunk. In total, there are
22 chunk tags that correspond to the vertex states, i.e., |X| = 22. For the computation of
per chunk F1-score, a chunk is treated as correct if and only if all consecutive tags that
belong to the same chunk are correct. The dataset contains 8, 936 training instances
and 2, 012 test instances. For each word, the surrounding words and part-of-speech
tags are used as features. Because of the inherent dependency between neighboring
vertex states, this dataset is especially well suited for evaluation if the dependency
structure between vertices is preserved by the integer approximation.

9.1.4.1 The Impact of |X| and |Nv | on Quality and Runtime
In Section 9.1.3 an estimate of the error in marginal probabilities that are computed
with bit length BP indicates that the size of a vertex state space |Xv| and the degree
|Nv| have an impact on the training error. Figure 9.2 shows the training error in terms
of normalized negative log-likelihood, the testing error in terms of MAP accuracy, and
the runtime in seconds for various values of |Xv| and |Nv| for an increasing number of
vertices on the synthetic data. Each curve is the average over 100 random trees with
random parameters and K = 8. The results with varying |Xv| are generated with a
maximum degree of 8 and the ones for varying |Nv| are generated with |Xv| = 4.

In terms of training error, the top-left plot shows a clear offset between integer
and floating-point estimates for the same number of states. In terms of varying degrees
(center-left), the training error of the integer model shows a response to different neigh-
borhood sizes, whereas the likelihood of the floating-point model is invariant against
the degrees. A similar picture is drawn for the dependence of the test accuracy with
|X| and |Nv| (top-right, top-center). The floating-point MAP estimate is not changed by
an increasing number of states and neighbors, whereas the integer MRF shows a clear
response. The accuracy of the integer MRF actually increases with increasing degrees.
In general, the quality of the models seems to be independent of the number of vertices
in the graph.

The floating-point model outperforms the approximate integer model in terms of
the MAP accuracy and negative log-likelihood. However, the two plots at the bottom
of Figure 9.2 show that the resource consumption in terms of clock cycles is largely
reduced by the integer model. Time is measured for estimating parameters, computing
the likelihood, and performing a MAP prediction. Since both algorithms (RealMRF and
IntMRF) share exactly the same asymptotic complexity for these procedures, the sub-

418 | 9 Energy Awareness

stantial reduction in runtime that is shown by the results must be due to the reduction
in clock cycles.

−ℓ
(θ
)/
(|V

|+
|E
|)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 10 100 1000

M
AP

Ac
cu
ra
cy

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000

Int, |X|=2
Int, |X|=4
Int, |X|=8

Int, |X|=16
Real, |X|=2
Real, |X|=4
Real, |X|=8

Real, |X|=16

−ℓ
(θ
)/
(|V

|+
|E
|)

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 10 100 1000

M
AP

A c
cu
ra
cy

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 10 100 1000

Int, deg=4
Int, deg=8

Int, deg=16
Real, deg=4
Real, deg=8

Real, deg=16

Se
c o
nd

s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1000 2000 3000 4000 5000 6000 7000 8000

Int, |X|=2
Int, |X|=4
Int, |X|=8

Int, |X|=16
Real, |X|=2
Real, |X|=4
Real, |X|=8

Real, |X|=16

Se
co
nd

s

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 1000 2000 3000 4000 5000 6000 7000 8000

Int, deg=4
Int, deg=8

Int, deg=16
Real, deg=4
Real, deg=8

Real, deg=16

Fig. 9.2:MRF training error, test accuracy, and runtime in seconds for different choices of the state
space size (X) and maximum degree as a function of the number of vertices. Each of the top two rows
shares legends and has an x-axis in logarithmic scale.

9.1.4.2 The Contribution of K to Quality
It might be convenient to scale the integer parameters such that the resulting parameter
vector ¯θ is in the set {0, 1, . . . , K}.We illustrate the effect of such scalingby the response
of the integer model in terms of training quality and test error, as shown in the two

9.1 Integer Exponential Families | 419

plots on the top of Figure 9.3. The training error seems to be a smooth function of K
whereas the MAP accuracy is sensitive to the choices of K. This is what we expected,
since a large K basically means that a larger number of marginal probabilities can be
represented. One can also see that, as soon as K is large enough (i.e., K = 8 in the right
plot at the top of Figure 9.3), a further increase does not show any significant impact on
either training error and test accuracy. Both results where generated on graphs with a
maximum degree of 8, but as already known from the previous experiment, the effect of
different degrees on the model’s quality is negligible. The bottom-left plot in Figure 9.3
shows the width of the intrinsic parameter space, i.e., the sum of the smallest and the
largest integer parameter before rescaling is performed. It turns out, that the width of
the parameter space is naturally bounded, since s + m seems to converge on the same
value for various configurations of n and X. Plotting s and m separately shows that the
dynamics in s + m are mainly influenced by the smallest parameter s, i.e., the width of
the parameter space must increase in order to represent smaller probabilities.

9.1.4.3 The Impact of K on the Gradient Norm
As indicated by the analysis of the training error in Section 9.1.3, the distance between
the maximum likelihood estimate and the result of the direct integer parameter esti-
mation is basically bounded by the gradient norm of the integer parameters ¯θ. Since
the components of the gradient cannot exceed 1, a trivial upper bound for the gradient
norm is d, the dimension of the parameter vector. A very strong observation can be
made in the rightmost picture which shows the relative gradient norm for an increasing
number of vertices and various values K. This result suggests that there exists a bound
on the relative gradient norm that is independent of the number of vertices and that
this bound decreases with increasing K.

9.1.4.4 Integer Models on Resource-Constrained Devices
The motivation for the integer model was to save resources in terms of clock cycles.
We can now demonstrate that the impact of this reduction is larger, if the underlying
architecture is weaker, i.e., has slower floating-point arithmetic. The two bar charts
in Figure 9.4 show a runtime comparison of the integer MRF on two different CPU
architectures. One is Sandy Bridge, which has also been the platform for all the other
experiments; the other is a Raspberry Pi device with ARM11 architecture. As expected,
the integer model actually speeds up the execution on the Pi device more than on the
other architecture, i.e., the Raspberry Pi gains a speedup of 2.56× and Sandy Bridge a
speedup of 2.34×. In terms of standard deviation, the ARM11 architecture is more stable
than the Sandy Bridge, which might be a result of a more sophisticated out-of-order
instruction execution in the latter architecture.

420 | 9 Energy Awareness

−ℓ
(θ
)/
(|V

|+
|E
|)

 0

 0.5

 1

 1.5

 2

 2.5

 2 4 6 8 10 12 14 16

Int, |X|=2
Int, |X|=4
Int, |X|=8

Int, |X|=16

M
AP

Ac
cu
ra
cy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 2 4 6 8 10 12 14 16

Int, |X|=2
Int, |X|=4
Int, |X|=8

Int, |X|=16

s+
m

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 10 100 1000

Int, |X|=2
Int, |X|=4
Int, |X|=8

Int, |X|=16

‖∇
ℓ(
θ)
‖ 1
/d

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 10 100 1000

Int, K=1
Int, K=2
Int, K=3
Int, K=4
Int, K=5
Int, K=6
Int, K=7
Int, K=8
Int, K=9

Int, K=10

Fig. 9.3: Top: negative log-likelihood and MAP accuracy of MRF as a function of K. Bottom: the left
plot shows how the width of the parameter space behaves as a function of the number of vertices (in
log-scale) for different state space sizes, whereas −s is the smallest and m the largest element of the
corresponding estimated parameter vector. The relative norm of the gradient for various values of K
is shown on the right.

9.1.4.5 Training Integer CRF with Stochastic Integer Gradient Descent
In the last evaluation, the randomized stochastic gradient training of discriminative
models is investigated. An integer linear-chain CRF is constructed and trained by a
stochastic gradient-descent algorithm. In case of the integer CRF, the parameter updates
are computed by means of the scaled integer gradient (cf. the end of Section 9.1.3). Both
algorithms perform 20 passes over the training data, each pass looping through the
training instances in random order. This was repeated 50 times in order to compute an
estimate of the expected quality of the randomized training procedure. The parameter
update for the floating-point CRF is computed with the step size η = 10−1. The ratio
of quality per runtime is presented in Figure 9.4, where the negative log-likelihood is
averaged over all training instances and the accuracy is computed with regard to the
chunk tags. Chunk type precision, recall, and F1-score are shown in Table 9.2, whereby
the overall F1-score for a model with θ = 0 is ≈ 26%. As desired, the performance of the
integer approximation is reasonable. Except for one chunk type (INTJ), precision, recall,
and F1-score have a relatively small standard deviation of about 2%. The precision is
three times better using integer CRF; the recall and F1-score are one time better using
integer CRF than real CRF. IntCRF is substantially worse than RealCRF only for the

9.1 Integer Exponential Families | 421

Se
co
nd

s

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2 4 8 16

Int
Real

Se
co
nd

s

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

2 4 8 16

Int
Real

−ℓ
(θ
)

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300 350 400

Int, K=2
Int, K=4
Int, K=6

Real

M
AP

A c
cu
ra
cy

 0.92

 0.925

 0.93

 0.935

 0.94

 0.945

 0.95

 0.955

 0.96

 0 50 100 150 200 250 300 350 400

Int, K=2
Int, K=4
Int, K=6

Real

Fig. 9.4: Top: Runtime comparison of integer and floating-point MRF on two architectures for a
varying number of states. Left: Raspberry PI @ 700MHz (ARM11). Right: Intel Core i7-2600K@
3.4GHz (Sandy Bridge). Bottom: progress of stochastic gradient training in terms of training error
and test accuracy of the CRFs over running seconds.

verb phrase (VP). For many real-world applications, this is a price that can be paid for
IntCRF being about twice as fast as RealCRF.

9.1.5 Conclusion

In this contribution, integer undirected graphical models have been introduced, to-
gether with algorithms for probabilistic inference and parameter estimation that rely
only on integer arithmetic. Generative and discriminative models have been evaluated
in terms of prediction quality and runtime. We learned that optimal integer model
parameters typically take values with small magnitude, reducing the storage require-
ment when compared with 64-bit double precision numbers. This allows us to sample
from high-dimensional generative models and to use structured discriminative classi-
fiers, even on computational devices without or with a slow floating-point unit, or in
situations where energy has to be saved.

422 | 9 Energy Awareness

Tab. 9.2: The difference of RealCRF and IntCRF precision (Prec), recall (Rec), and F1-score (F1) aver-
aged over 50 repetitions on the CoNLL-2000 dataset. Values are in percentage, i.e., a value of −0.29
means that the integer CRF was on average 0.29% better at the corresponding measure than its
floating-point counterpart.

ADJP ADVP CONJP INTJ LST NP PP PRT SBAR VP Overall

Prec −0.29 −0.46 4.81 −15.56 0 1.11 0.33 3.78 1.15 6.09 0.73
Rec 1.61 2.69 −3.55 0 0 0.34 0.13 1.82 1.78 6.31 0.48
F1 0.74 1.17 1.60 −4.03 0 0.73 0.23 2.85 1.50 6.20 0.61

9.2 Power Consumption Analysis and Uplink Transmission Power | 423

9.2 Power Consumption Analysis and Uplink Transmission Power

Robert Falkenberg

Abstract: The penetration of wireless communication systems in industrial and private
environments is constantly increasing due to their flexible and mobile application
possibilities. Wearables, smartphones, or industrial systems for tagging, tracking, and
sensing are only a few examples from the tremendous variety of such systems. However,
unleashing these systems from the power grid also means that the available energy is a
limited resource that must be conserved and managed prudently.
The estimation of energy consumption by the communication system differs signifi-

cantly from the other components, as it is strongly dependent on external influences.
These include the quality of the radio channel, the channel access scheme, and the
utilization of the shared transmission medium by other participants, who are often not
part of the actual system. Data transmissions can last longer, require a higher transmis-
sion power, or fail due to collisions, so that they have to be repeated. The consequence
is a longer activity time of the transceiver and a shorter dwell time in the efficient power
saving mode. Therefore, realistic simulation models are required at design time, which
take into account the properties of the communication interface as well as the external
environment.
In the following, methods for modeling power consumption for different commu-

nication technologies are discussed. This includes decentralized narrow-band com-
munication in the Short Range Devices (SRD) band and the comprehensive modeling
of cellular technologies such as Long Term Evolution (LTE), LTE-Advanced (LTE-A)
and Narrow Band Internet of Things (NB-IoT) by a Context-Aware Power Consumption
Model (CoPoMo).
It is shown that a decentralized channel access with brisk activity on the radio

channel leads to an increased power consumption of all waiting subscribers, if the
channel occupancy is to be tracked continuously to keep the transmission latency
as low as possible. Conversely, in centrally organized cellular radio networks, the
energy consumption of the User Equipment (UE) is dominated by uplink transmissions,
especially when high transmission power is required. The proportion for reception,
however, depends mainly on the duration of the transmission. In fact, adding an
additional reception path via Carrier Aggregation (CA) not only increases the data rate,
but also reduces the energy consumption of the UE .
Since the knowledge of the transmit power is essential for the estimation of the

power consumption, but most UEs do not provide this information to the application
layer, a Machine Learning (ML)-based method for estimating the transmit power from

424 | 9 Energy Awareness

Access Point

Transport
Robot

PhyNodes
Smart Containers

Broadcasts

Massive
Replies

Fig. 9.5:Warehouse scenario.©[2018] IEEE. Reprinted, with permission, from [206].

the available parameters such as strength and quality of the received signal, is also
presented.

9.2.1 Introduction

Instead of treating inventory items as static resources, future intelligent warehouses
will turn containers to become Cyber Physical Systems (CPSs) that actively and au-
tonomously participate in the optimization of the logistical processes. Consequently,
new challenges that are system-immanent for the massive Internet of Things (IoT), such
as channel access in a shared communication medium, have to be addressed.

An example of such a warehouse scenario is shown schematically in Figure 9.5. A
wide variety of autonomous transport systems are used to transport goods into or out
of the warehouse. The individual goods are stored in smart containers that can provide
information about their current contents and the goods they contain at any time by
radio. Energy supply is a particular challenge for the embedded systems used for this
purpose. Mains and battery operation are ruled out due to the size of the location, so
that the platforms must obtain their energy for operation and communication through
energy harvesting, using photovoltaic, say, and must manage it extremely efficiently.

To fetch a specific inventory, distributed Access Points (APs) transmit inventory
queries to the warehouse. These are answered by containers with matching contents,
specifying the quantity contained. Subsequently, the transport systems bring the re-
quested quantity to a picking point for further use.

Since such requests can lead to massive replies depending on the distribution of
goods and inventory, channel access must be coordinated to avoid collisions during
transmission. Distributed channel access methods quickly reach their capacity limits
and increase the energy consumption of network subscribers due to collisions, multiple
transmissions, and prolongedwaiting for a free channel. In this area, CRC 876 has devel-
oped and brought together innovativemethods for recording, analyzing, and optimizing
energy consumption [206, 209], which are discussed in the following subsections.

9.2 Power Consumption Analysis and Uplink Transmission Power | 425

This contrasts with mobile communications networks that have centrally organized
channel access, which are discussed later in this section. If we accept the restriction of
operating only one specific technology on a frequency band, higher spectral efficiency
can be achieved in return. Techniques such as central power control or inter-cell inter-
ference coordination enable resource-efficient transmission even at high subscriber
density. Numerous studies of the CRC 876 have shown that the energy consumption
of current mobile radio terminals (UE) is dominated by the transmission of data, es-
pecially at high transmission power. The specially developed CoPoMo enables a wide
variety of trade-offs, e.g., between transmission time, energy consumption, and spectral
resource requirements, for different frequency ranges, building densities, and mobil-
ity profiles. Section 9.2.4 introduces the basic concepts of CoPoMo and presents two
studies, one dealing with a trade-off between transmission bandwidth and energy con-
sumption, and the other presenting an ML-based method for the UE-based estimation
of transmission power using available quality indicators.

9.2.2 Power Consumption with Distributed Channel Access

In unlicensed bands, a distributed channel access method is often used to enable fair
coexistence of different technologies. These bands include the Industrial Scientific
Medical (ISM) band at 2.4 GHz and the SRD band at 868MHz. The latter is used for
the communication of the PhyNode. Distributed channel access is based on the Listen
Before Talk (LBT) principle, which is known in a similar form as Carrier Sense Multiple
Access Collision Avoidance (CSMA/CA) for WLAN and ZigBee networks. For the SRD
band, channel access is specified by European Telecommunications Standards Institute
(ETSI), which is shown schematically in Figure 9.6. Stations with a transmission intent
hold back their transmission until the transmission channel is free. When the channel
becomes free, the system waits an additional backoff time tL = tF + tPS with tF = 5ms.
Thereby tPS is randomly selected for each startup in the interval 0ms to 5ms. If the
channel is still free after tL has elapsed, the transmission is carried out. Otherwise,
the system waits again for a free channel including a newly selected backoff time tL.
For acceleration in case of low channel utilization, a station can set tPS to 0ms for
the first transmission attempt if the channel is continuously free between the initial
transmission request and the expiration of tF .

Figure 9.7 shows the channel occupation by three stations in the radio spectrum.
At the beginning of the recording, the channel is continuously occupied by a jammer.
The three stations already have a transmission intent and hold back their transmission
for the time being. After switching off the jammer, the three stations transmit one after
the other according to the access scheme and the random backoff intervals.

However, short s result in low channel utilization and thus in reduced spectral
efficiency due to the relatively long waiting times. In addition, the channel access
method requires continuous monitoring of the radio channel between the arrival of the

426 | 9 Energy Awareness

time
Device A

Device B

Radio Channel

tF TXtPS

tF tPS tF tPS TX

A attempts
transmission

No activity for 5 ms,
set tPS=0 ms, start TX

B attempts
transmission

B detects activity,
stops backoff timer

B restarts
backoff timer

tF was interrupted,
hence wait tPS , too

Fig. 9.6: Timeline of the LBT access scheme. Dashed blocks represent back-off intervals and solid
blocks indicate an occupied channel by a transmission over the air.©[2017] IEEE. Reprinted, with
permission, from [209].

transmission intent and the actual execution of the transmission. The duration of this
monitoring increases with the utilization of the channel. Since the receive circuits must
be active during this time, the power consumption of all competing stations increases
significantly.

Figure 9.8 shows the distribution of the transceiver’s energy consumption as a
function of the number of simultaneously active devices responding to 10 product
requests in the warehouse scenario (cf. Figure 9.5). The energy accounting is obtained
from an energy-aware driver model. The measurement includes the constant part for
the reception of the 10 requests and an additional message to terminate the measure-
ment after 11.75 s, as well as the variable energy consumption for sending the replies.
Compared with the empty channel, the energy consumption increases by up to a factor
of 10 in case of more than 30 stations.

To enable an optimization of energy consumption given the scarce resource, a
simulative hardware-in-the-loop design space exploration framework was developed,
which is discussed in more detail in the following section.

9.2.3 Simulative Access-Scheme Optimization

In this section, we present a multi-methodological system model that brings together
testbed experiments for measuring real hardware properties and simulative evaluations
for large-scale considerations [206]. As a case study, we focus on parametrization of
the 802.15.4-based radio communication system, which has to be energy-efficient due
to the scarce amount of harvested energy, but avoid latencies for the maintenance of
scalability of the overlaying warehouse system. The results show that a modification of

9.2 Power Consumption Analysis and Uplink Transmission Power | 427

time

fr
eq

u
en

cy

6 ms 5.5 ms 7.5 ms

Jamming
signal

Transmissions from
different devices

Backoff intervals

Fig. 9.7: Spectral view of LBT scheme in action. Three stations organize their pending transmissions
when the channel becomes free (simulated by disabling a jamming signal).

the initial backoff time can lead to both energy and time savings in the order of 50%
compared with the standard.

Figure 9.9 shows the underlyingmodeling principle. On the right side is the physical
system in the form of the PhyNetLab, in which a field evaluation can be performed [206].
The left side comprises the OMNeT++ simulation system, which models the communi-
cation system including the application layer in the form of a simulation. For a given
system scenario with information on energy consumption and dwell time of individual
operating states, data volume, available energy, and the number of network subscribers,
a simulative optimization of the communication system is carried out that enables a
trade-off between conflicting target variables, e.g. latency and energy consumption.
This configuration is transferred to the physical testbed and evaluated in field experi-
ments.

The energy consumption of the communication system of the PhyNode is modeled
in the simulation as a state machine with four states (cf. Figure 9.10). In the LISTEN state,
the device periodically listens on the channel for preambles that indicate the beginning
of a new packet for reception. When this occurs, the transceiver enters receive mode
(RX) to receive the packet and then returns to LISTEN. If a packet is to be transmitted, it
enters the BACKOFF state with repeated short dwelling times in the RXmode to wait
for the free channel. After the backoff timer expires, it finally sends the packet in TX
mode. The consumption values of the individual energy states can be automatically
captured and fed into the simulation using the hardware-in-the-loop approach and the
energy-aware driver models.

Based on the presented framework, the channel access procedure can be optimized
for a given warehouse scenario. One of the most common processes in a self-inventory

428 | 9 Energy Awareness

0 5 10 15 20 25 30 35 40
0

500

1,000

Number of Replying PhyNodes

E
n
er
g
y
C
o
n
s.

p
er

T
ra
n
sc
ei
ve
r
[m

J]

Fig. 9.8: Energy consumption of the radio transceiver for receiving 11 packets (queries) and trans-
mitting 10 replies in a constant interval of 11.75s.©[2017] IEEE. Reprinted, with permission, from
[209].

warehouse is the request for specific products in a required quantity. For this purpose,
a request is sent out as a broadcast and answered by matching containers, i.e. the com-
munication systems located on them. Depending on the equipment of the warehouse
and the usually requested quantity, only a fraction of the responses is sufficient to fulfill
the requested product quantity. This value is called the MinimumQuery Response Ratio
(QRRmin ∈ [0, 1]).

The issued requests cause a large number of participants to attempt to send their
responses at the same time. They select a random backoff and then send their packets.
However, if the backoff can take on only a few discrete values compared with the
number of subscribers, collisions inevitably occur, so that transmissions have to be
repeated and the response time until QRRmin is reached is increased as a result. To
resolve such collisions, the 802.15.4 standard defines an exponential increase of the
backoff window in the form of a backoff exponent BE, which is successively increased
in case of collisions and then reset to the initial value BE0. The minimum backoff
exponent BE0 is an optimization parameter that has to be chosen depending on the
expected number of participants and the permitted delay in case of a smaller number
of participants.

Figure 9.11 shows the exemplary application of the framework to optimize the initial
backoff exponent BE0 for different QRRmin.

The results show that for QRRmin = 0.8, an initial BE0 = 8 compared with BE0 = 3
for 420 responding nodes reduces the energy consumption by 49% while reducing the
time to fulfill the request by 56%. However, even with smaller numbers of nodes, choos-
ing a larger BE0 has a positive effect on both objectives. However, at lower QRRmin = 0.2,
a larger BE0 leads to higher energy consumption in favor of reduced response time.

9.2 Power Consumption Analysis and Uplink Transmission Power | 429

OMNeT++ PhyNetLab

Design Space
Exploration

Simulation
Model

Simulation
Results

Simulation
Parameters

Model
Refinement

Testbed
Deployment

Trail Run
Results

Testbed
Parameters

Software
Synthesis

Power cons.
Timings
Sensor Data
Avail. Energy
· · ·

Channel Access
Cell Size
· · ·

Fig. 9.9: System model for design-space exploration.©[2018] IEEE. Reprinted, with permission, from
[206].

BACKOFF TX

RX LISTEN

receive

receive
done

CCA
success

send
done

CCA
failed

(retry)
CCA attempt

send

State Avg. Power

BACKOFF 1.5 µW
LISTEN 4.5mW
RX 70mW
TX 138mW

Fig. 9.10: State machine model of the transceiver.©[2018] IEEE. Reprinted, with permission, from
[206].

9.2.4 Power Consumption in Cellular Networks

Due to the increasing spread and popularity of cellular radio networks for networking
the smallest mobile devices, the analysis and optimization of energy efficiency is also
gaining importance in this domain. Centralized control by static infrastructure, i.e. by
the base station and backhaul, enables resource optimization without the intervention
of the end devices. For example, it can be considered whether distant stations with
poor channel conditions receive a greater short-term pensum of spectral resources to
perform their transmission than stations with good channel conditions that can still
achieve high data rates using lower transmit powers.

Optimizations of power consumption, however, require precise power consumption
models that on the one hand provide accurate estimates and yet can be calculated
efficiently. For this purpose, CRC 876 has contributed the CoPoMo [192], a Markovian
power consumption model for calculating the power consumption of current LTE and
LTE-A terminals. The calculation takes into account device-specific consumption char-

430 | 9 Energy Awareness

0 50 100 150 200 250 300 350 400 450

Number of Replying Nodes

0

1000

2000

3000

4000

5000

6000

7000

A
v
e
ra

g
e
 E

n
e
rg

y
 C

o
n
s
u
m

p
ti
o

n
 p

e
r

N
o
d
e
 [

m
W

s
] QRR

min
=0.8, BE

0
=3

QRR
min

=0.8, BE
0
=6

QRR
min

=0.8, BE
0
=8

QRR
min

=0.2, BE
0
=3

QRR
min

=0.2, BE
0
=6

QRR
min

=0.2, BE
0
=8

-49%

in
cr

ea
se

b
a

ck
o

ff

-44%

QRRm
in
=
0.
8

QRRmin
= 0.2

0 50 100 150 200 250 300 350 400 450

Number of Replying Nodes

0

20

40

60

80

100

120

Q
u
e
ry

 R
e
s
p
o
n
s
e
 T

im
e
 [
s
]

QRR
min

=0.8, BE
0
=3

QRR
min

=0.8, BE
0
=6

QRR
min

=0.8, BE
0
=8

QRR
min

=0.2, BE
0
=3

QRR
min

=0.2, BE
0
=6

QRR
min

=0.2, BE
0
=8

-56%

la
rg

e
b

a
ck

o
ff

sa
ve

s
ti

m
e

-63%

QRRm
in
=
0.
8

QRRmin
= 0.2

Fig. 9.11: Simulation results of the energy consumption (left) and query response time (right) as
a function of the number of concurrently replying nodes for different backoff configurations and
minimum query response ratio.©[2018] IEEE. Reprinted, with permission, from [206].

acteristics as well as spectral resource utilization, the frequency range used, mobility,
built environment, and the type of data traffic.

The following sections introduce the basic concepts of CoPoMo, and then present
extensions and case studies for resource optimization.

9.2.4.1 Context-Aware Power Consumption Modeling
This section introduces the basic concepts of CoPoMo [192]. As in all communication
systems, the power consumption of a UE depends on the current operating state, which
in turn is influenced by numerous context and system parameters. The power con-
sumption is caused by the digital signal processing and the operation of the High
Frequency (HF) components for receiving and transmitting the radio signals. Due to the
use of Application-Specific Integrated Circuits (ASICs), the signal processing is charac-
terized by a relatively low power consumption, which scales only insignificantly with
the effective data throughput, and can thus be assumed to be constant in many cases
during an ongoing transmission. The consumption by the HF receiver is also usually
not influenced by the received field strength and the effective data throughput, and thus
also assumes a constant value for the respective frequency band during reception [191].

The power consumption of the UE is dominated by the consumption of the power
amplifier for the transmission ofmessages in the uplink, especially at high transmission
powers for overcoming a high path loss [191]. Figure 9.12 shows the average power
consumption of a smartphone as a function of the transmit power of the power amplifier.
The measurement covers the entire system, i.e. including the main processor, display,
signal processing and all active HF components. Background activities and display
brightness were reduced to a constant minimum.

A small increase in power at low transmitting powers and a steep increase in power
consumption at high transmitting powers can be observed. The reason for this is the

9.2 Power Consumption Analysis and Uplink Transmission Power | 431

−10 −5 0 5 10 15 20
0.5

1

1.5

2

γ

P̄2 P̄3

P̄4

Transmission Power [dBm]

P
ow

er
C
on

s.
[W

]

Measured
Linear Model

Fig. 9.12: Power consumption of a Samsung Galaxy S5 smartphone at 800MHz in relation to trans-
mission power.©[2017] IEEE. Reprinted, with permission, from [208].

1
Idle

2
Low

3
High

4
Max

λ2 λ3 λ4

µ2 µ3 µ4

Fig. 9.13:Markovian power state model of LTE User Equipment (UE).©[2017] IEEE. Reprinted, with
permission, from [208].

typical use of two different power amplifiers with different operating ranges, which
are switched to increase efficiency depending on a threshold value γ. Since the power
consumption within the respective operating ranges is approximately linear, CoPoMo
uses two linear models for power estimation, consisting of the respective slopes α, the y-
intercept β, and the switching point γ, which are determined by empirical measurement
series for each system and frequency band.

Further investigation has shown that the power consumption can be accurately
estimated using four reference points of the linear model P̄1, P̄2, P̄3 and P̄4, so that
the power consumption of an LTE UE can be described by a state model consisting
of four corresponding states [190]. The state model is shown in Figure 9.13. State 1
represents the power consumption in idle state without outgoing data transmission.
State 2 represents transmission with low transmit power (the point at 0 dB), state 3
represents transmission with high transmit power (midpoint between γ and maximum
transmit power), and state 4 represents transmission with maximum transmit power of
23 dBm.

Transitions between states are given in terms of transition probabilities λi and
μi and always lead over state 1, since state 2, 3, and 4 present states with outgoing
transmission, duringwhich the UE remains in this current state and is not able to switch
into a different transmission-related power state. The state transitions are obtained

432 | 9 Energy Awareness

Context Parameters

System Parameters

Arrival
Rate𝜆

Cell
Environment𝜅

Filesize𝐷 Mobility 𝜌

UL Tx Power
𝑃𝑇𝑥(𝑖)

UE Params
𝛼, 𝛽, 𝛾

Num. Of
PRBs 𝑀(𝑖)

MCS 𝐼𝐷(𝑖) Carrier
Freq.𝑓𝑐

Empirical Model Measurement Ray-Tracing

CCDF Evaluation

𝜇𝑖 =
𝑅𝑖
𝐷

𝜆𝑖 = 𝜆 ∙ 𝜗𝑖

𝑃Σ =

𝑖

ത𝑃𝑖 ∙ 𝑝𝑖

Average Power
Consumption of UE

Markovian Model

CCDF (𝑃𝑇𝑥)

𝜗𝑖

State Proabability 𝑝𝑖

State Dependent
Power Consumptionഥ𝑃𝑖

Fig. 9.14: Overview of CoPoMo.©[2013] IEEE. Reprinted, with permission, from [192].

from the augmented overall model, which is shown in Figure 9.14. λi is calculated as
λi = λ · ϑi, where 1

λ corresponds to the arrival rate of outgoing data transmissions and ϑi
with

∑︀4
i=2 ϑi = 1 indicates the distribution of the residence time in states 2, 3, and 4. The

latter depends on the cell environment κ, mobility ρ, and carrier frequency fc, and can
be determined, say, by ray-tracing analysis and the statistical evaluation of path loss.
μi is the inverse of the service rate and is calculated as μi = Ri

D with average file size D
and the average uplink data rate Ri achieved in state i. The data rate in turn depends on
the number of allocated RBs M(i) and the Modulation and Coding Scheme (MCS) ID(i),
which are dynamically allocated according to the base station’s scheduling strategy.

Finally, state probabilities can be determined from the transition probabilities,
which then describe the average residence time in each state. The average power con-
sumption of the UE can be determined together with the state-specific power consump-
tion.

9.2 Power Consumption Analysis and Uplink Transmission Power | 433

Hidden System Parameters,
Full PHY-Layer Simulation

Exposed Parameters,
System-Level Simulations

System
Internals
Scheduling
MCS
Target SINR
PL-Estimate

Power Control
Algorithm

TX-power

Passive
Indicators
RSRP
RSRQ
SINR
Velocity v

TX-power
Unknown

Proposed
Model

TX-power
Estimate

Machine
Learning

Estimation of Uplink Power Consumption

P
ath

Loss
(P

L
)

v

Offline Estimation Online Estimation: Missing Link

Fig. 9.15: Uplink power control of UE and its underlying system parameters are typically hidden to
the application layers. However, this knowledge is crucial for predictions and estimations of the
involved power consumption in energy-aware applications and system-level simulations. The pro-
posed model derives this information from passive connectivity indicators.©[2018] IEEE. Reprinted,
with permission, from [207].

9.2.5 Uplink Power Prediction with Machine Learning

This section summarizes the work on ML-based uplink power prediction according
to [207]. Energy-aware system design is an important optimization task for static and
mobile IoT-based sensor nodes, especially for highly resource-constrained vehicles
such as mobile robotic systems. For 4G/5G-based cellular communication systems,
the effective transmission power of uplink data transmissions is of crucial importance
for the overall system power consumption. Unfortunately, this information is usually
hidden within off-the-shelf modems and mobile handsets and can therefore not be
exploited for green communications. Moreover, the dynamic transmission power con-
trol behavior of the mobile device is not explicitly modeled in most of the established
simulation frameworks.

In order to close this gap, we present a novel machine learning-based approach for
forecasting the uplink transmission power used for data transmissions based on avail-
able passive network quality indicators and application-level information. A schematic
illustration of the proposed solution approach is shown in Figure 9.15. The key idea is
to leverage an SDR (Software-Defined Radio)-based measurement setup—capable of
simultaneously determining the uplink transmission power PTX and different network
context indicators—in order to derive a machine learning-based prediction model that
infers PTX from the context measurements. This model can then be deployed to other
platforms that are not capable of determining PTX on their own.

The requiredmachine learningmodel is derived from comprehensive fieldmeasure-
ments of drive tests performed in a public cellular network and can be parameterized
for integrating all measurements that a given target platform is able to provide for the

434 | 9 Energy Awareness

Fig. 9.16: Road map with locations of all data samples of the measurement campaign between two
larger cities in Germany. Each blue point represents an intermediate status logging of all measured
variables (cf. Table 9.3) during ongoing uplink transmissions. (Map:©OpenStreetMap contributors,
CC BY-SA).©[2018] IEEE. Reprinted, with permission, from [207].

prediction process. Figure 9.16 shows a road map of the measurement points along a
vehicular trajectory that covers urban, suburban, and rural environments. In total, 6172
have been acquired during the real world measurements. In focusing on the platform’s
sensing capabilities, we considered four different variants of feature sets. A summary
of the feature sets and the implied impact factors of the contained features is given in
Table 9.3.

For performing the actual prediction task, different regression models are consid-
ered:
Random Forest with 64 trees and a maximum depth of 32.
Deep Learning with three fully connected hidden layers, 64 neurons per layer, and

Rectified Linear Unit (ReLU) activation function.
Ridge Regression with 12 model parameters (one per feature plus one bias term).

The results of the 10-fold cross validation are summarized in Figure 9.17. While the
differences between the feature set variants are comparably small, larger differences
between the machine learning models can be observed. The Random-Forest models
thoroughly performed best with a mean average error of 3.166 dB. It can also be seen
that the standard deviation between the different cross validation runs is small, which
indicates a good model fit to unknown and independent data.

9.2 Power Consumption Analysis and Uplink Transmission Power | 435

Tab. 9.3: Captured features and association with application-specific prediction models based
on full-feature set F, practical sets P1/P2, and simulation set S.©[2018] IEEE. Reprinted, with
permission, from [207].

Parameter Model Indicated Influences(s)

Velocity F,P1,P2,S Distortions by fast fading
Upload size F,P1,P2,S Influence of TCP slow start
RSRP F,P1,P2,S Signal strength, distance
RSRQ, SINR F,P1,P2 Signal clarity, interference
Datarate F,P1 Signal strength, allocated RBs M
RSSI F Signal strength, distance
Frequency band F Environment [349]
Number of neighbor cells (in-
tra/inter freq.)

F Environment, cell density, interference

Cell bandwidth F Exhaustion of TX-power headroom

F P1 P2 S
0

2

4

6

8

Model/Feature Subset

M
ea
n
A
b
so
lu
te

E
rr
or

[d
B
]

F P1 P2 S
0

2

4

6

8

Model/Feature Subset

R
o
o
t
M
ea
n
S
q
u
ar
ed

E
rr
or

[d
B
]

Random Forest Deep Learning Ridge Regression

Fig. 9.17: Cross-validated error of trained prediction models for each feature subset (F, P1, P2, S)
and each machine learning method (Random Forest, Deep Learning, Ridge Regression) in terms
of Root Mean Squared Error (RMSE) (left) and Mean Absolute Error (MAE) (right). Lower is better.
©[2018] IEEE. Reprinted, with permission, from [207].

Bibliography
[1] D. J. Abadi et al. “Aurora: A New Model and Architecture for Data Stream Management”. In:

The VLDB Journal – The Int. Journal on Very Large Data Bases 12.2 (Aug. 2003), pp. 120–139
(cit. on p. 21).

[2] M. R. Ackermann, J. Blömer, and C. Sohler. “Clustering for Metric and Nonmetric Distance
Measures”. In: ACM Transactions on Algorithms 6.4 (2010). Previously appeared in the Procs.
of the Symposium on Discrete Algorithms 2008, 59:1–59:26 (cit. on pp. 201, 203, 204).

[3] C. Adam-Bourdarios, G. Cowan, C. Germain, I. Guyon, B. Kégl, and D. Rousseau. “The Higgs
boson machine learning challenge”. In: Advances in Neural Information Processing Systems:
Procs. of the Workshop on High-energy Physics and Machine Learning 2015. 2015, pp. 19–55
(cit. on p. 250).

[4] A. Adiththan, S. Ramesh, and S. Samii. “Cloud-assisted control of ground vehicles using
adaptive computation offloading techniques”. In: Procs. of the Design, Automation and Test
in Europe Conference 2018. Mar. 2018, pp. 589–592 (cit. on p. 363).

[5] P. K. Agarwal, R. Ben Avraham, H. Kaplan, and M. Sharir. “Computing the Discrete Fréchet
Distance in Subquadratic Time”. In: SIAM Journal on Computing 43.2 (2014). Previously
appeared in the Procs. of the Symposium on Discrete Algorithms 2013, pp. 429–449 (cit. on
p. 199).

[6] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. “Approximating extent measures of
points”. In: Journal of the Association for Computing Machinery 51.4 (2004), pp. 606–635
(cit. on pp. 87, 88).

[7] P. K. Agarwal and R. Sharathkumar. “Streaming Algorithms for Extent Problems in High
Dimensions”. In: Algorithmica 72.1 (2015), pp. 83–98 (cit. on p. 87).

[8] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy. “X-SRAM: Enabling In-Memory Boolean Compu-
tations in CMOS Static Random Access Memories”. In: IEEE Transactions on Circuits and
Systems I: Regular Papers 65.12 (2018) (cit. on p. 4).

[9] R. Agrawal, A. Gupta, Y. Prabhu, and M. Varma. “Multi-label learning with millions of labels:
Recommending advertiser bid phrases for web pages”. In: Procs. of the Int. Conference on
World Wide Web 2013. 2013, pp. 13–24 (cit. on p. 272).

[10] B. Ahmadi, K. Kersting, and S. Natarajan. “Lifted Online Training of Relational Models with
Stochastic Gradient Methods”. In: Procs. of the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases 2012. Ed. by P. Flach,
T. D. Bie, and N. Cristianini. Vol. 7523. Bristol, UK: Springer, Sept. 2012, pp. 585–600. url:
http://link.springer.com/chapter/10.1007/978-3-642-33460-3_43 (cit. on p. 407).

[11] R. Ahmed, B. Buchli, S. Draskovic, L. Sigrist, P. Kumar, and L. Thiele. “Optimal Power Man-
agement with Guaranteed Minimum Energy Utilization for Solar Energy Harvesting Systems”.
In: ACM Transactions on Embedded Computing Systems 18.4 (2019), pp. 1–26 (cit. on p. 47).

[12] H.-K. Ahn, H. Alt, M. Buchin, E. Oh, L. Scharf, and C. Wenk. “Middle curves based on dis-
crete Fréchet distance”. In: Computational Geometry: Theory and Applications 89 (2020).
Previously appeared in LATIN 2016, p. 101621 (cit. on pp. 197, 201, 202, 204, 205).

[13] Y. Akhremtsev, P. Sanders, and C. Schulz. “High-Quality Shared-Memory Graph Partitioning”.
In: IEEE Transactions on Parallel and Distributed Systems 31.11 (2020), pp. 2710–2722 (cit.
on p. 152).

[14] H. Alt and M. Godau. “Computing the Fréchet distance between two polygonal curves”. In:
Int. Journal of Computational Geometry and Applications 5 (1995), pp. 75–91 (cit. on pp. 199,
211).

Open Access.© 2023 the author(s), published by De Gruyter. This work is licensed under the Cre-
ative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-010

http://link.springer.com/chapter/10.1007/978-3-642-33460-3_43

438 | Bibliography

[15] F. Álvaro Muñoz, J. Sánchez Peiró, and J. Benedí Ruiz. “Recognition of On-line Handwritten
Mathematical Expressions Using 2D Stochastic Context-Free Grammars and Hidden Markov
Models”. In: Pattern Recognition Letters (2014), pp. 58–67 (cit. on p. 162).

[16] M. R. Anderberg. Cluster analysis for applications. Academic Press, 1973 (cit. on pp. 218,
222).

[17] H. Anderhub et al. “Design and operation of FACT - the first G-APD Cherenkov telescope”. In:
Journal of Instrumentation 8.06 (June 2013), P06008. url: http://iopscience.iop.org/1748-
0221/8/06/P06008/ (cit. on pp. 351, 352).

[18] A. Andrae and T. Edler. “On Global Electricity Usage of Communication Technology: Trends to
2030”. In: Challenges 6.1 (2015), pp. 117–157 (cit. on p. 2).

[19] S. I. Ao et al. “CLUSTAG: hierarchical clustering and graph methods for selecting tag SNPs”.
In: Bioinformatics 21.8 (2005), pp. 1735–1736 (cit. on p. 216).

[20] A. Arasu, S. Babu, and J. Widom. “The CQL Continuous Query Language: Semantic Founda-
tions and Query Execution”. In: The VLDB Journal – The Int. Journal on Very Large Data Bases
15.2 (June 2006), pp. 121–142 (cit. on p. 21).

[21] A. Arasu et al. STREAM: The Stanford Data Stream Management System. Tech. rep. 2004-20.
Stanford InfoLab, 2004. url: http://ilpubs.stanford.edu:8090/641/ (cit. on p. 24).

[22] A. Arcangeli, I. Eidus, and C. Wright. “Increasing memory density by using KSM”. In: Procs.
of the Ottawa Linux Symposium 2009. 2009, pp. 19–28 (cit. on p. 307).

[23] M. Arjovsky, S. Chintala, and L. Bottou. “Wasserstein Generative Adversarial Networks”.
In: Procs. of the Int. Conference on Machine Learning 2017. 2017, pp. 214–223. url: http:
//proceedings.mlr.press/v70/arjovsky17a.html (cit. on p. 260).

[24] ARM Limited. Introducing NEON - Development Article. url: https://developer.arm.com/
documentation/dht0002/a/ (cit. on p. 408).

[25] D. Arthur and S. Vassilvitskii. “k-means++: The advantages of careful seeding”. In: Procs.
of the ACM-SIAM Symposium on Discrete Algorithms 2007. Association for Computing
Machinery, 2007, pp. 1027–1035 (cit. on p. 188).

[26] N. Asadi, J. Lin, and A. P. De Vries. “Runtime optimizations for tree-based machine learning
models”. In: IEEE Transactions on Knowledge and Data Engineering 26.9 (2014), pp. 2281–
2292 (cit. on p. 340).

[27] P. Axer and R. Ernst. “Stochastic response-time guarantee for non-preemptive, fixed-priority
scheduling under errors”. In: Procs. of the Design Automation Conference 2013. 2013, 172:1–
172:7 (cit. on p. 363).

[28] B. Weisfeiler and A. Leman. “The reduction of a graph to canonical form and the algebra
which appears therein”. In: Nauchno-Technicheskaya Informatsia 2.9 (1968). English transla-
tion by G. Ryabov is available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.
pdf, pp. 12–16 (cit. on pp. 117, 118).

[29] R. Babbar and B. Schölkopf. “Data scarcity, robustness and extreme multi-label classifica-
tion”. In:Machine Learning 108.8 (2019), pp. 1329–1351 (cit. on pp. 275, 281, 284).

[30] R. Babbar and B. Schölkopf. “Dismec: Distributed sparse machines for extreme multi-label
classification”. In: Procs. of the ACM Int. Conference on Web Search and Data Mining 2017.
2017, pp. 721–729 (cit. on p. 275).

[31] K. Bache and M. Lichman. UCI Machine Learning Repository. 2013. url: http://archive.ics.
uci.edu/ml (cit. on pp. 351, 352).

[32] A. Badanidiyuru, B. Mirzasoleiman, A. Karbasi, and A. Krause. “Streaming submodular maxi-
mization: Massive data summarization on the fly”. In: Procs. of the ACM SIGKDD Conference
on Knowledge Discovery and Data Mining 2014. 2014 (cit. on pp. 76, 77).

[33] M. Badoiu and K. L. Clarkson. “Optimal core-sets for balls”. In: Computational Geometry:
Theory and Applications 40.1 (May 2008), pp. 14–22 (cit. on p. 87).

http://iopscience.iop.org/1748-0221/8/06/P06008/
http://iopscience.iop.org/1748-0221/8/06/P06008/
http://ilpubs.stanford.edu:8090/641/
http://proceedings.mlr.press/v70/arjovsky17a.html
http://proceedings.mlr.press/v70/arjovsky17a.html
https://developer.arm.com/documentation/dht0002/a/
https://developer.arm.com/documentation/dht0002/a/
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml

Bibliography | 439

[34] M. Badoiu and K. L. Clarkson. “Smaller core-sets for balls”. In: Procs. of the Symposium on
Discrete Algorithms 2003. 2003, pp. 801–802 (cit. on p. 87).

[35] M. Badoiu, S. Har-Peled, and P. Indyk. “Approximate clustering via core-sets”. In: Procs. of
the ACM Symposium on Theory of Computing 2002. 2002, pp. 250–257 (cit. on pp. 86, 87).

[36] K. R. Baker, E. L. Lawler, J. K. Lenstra, and A. H. G. R. Kan. “Preemptive Scheduling of a
Single Machine to Minimize Maximum Cost Subject to Release Dates and Precedence Con-
straints”. In: Operations Research 31.2 (1983), pp. 381–386. doi: https://doi.org/10.1287/
opre.31.2.381 (cit. on p. 366).

[37] T. P. Baker. “Stack-based Scheduling of Realtime Processes”. In: Real-Time Systems 1 (1991),
pp. 67–99 (cit. on p. 361).

[38] V. Balntas, E. Riba, D. Ponsa, and K. Mikolajczyk. “Learning local feature descriptors with
triplets and shallow convolutional neural networks”. In: Procs. of the British Machine Vision
Conference 2016. Ed. by R. C. Wilson, E. R. Hancock, and W. A. P. Smith. BMVA Press, 2016,
pp. 119.1–119.11 (cit. on p. 168).

[39] D. Balsamo, A. S. Weddell, G. V. Merrett, B. M. Al-hashimi, D. Brunelli, and L. Benini. “Hiber-
nus : Sustaining Computation during Intermittent Supply for Energy-Harvesting Systems”.
In: IEEE Embedded Systems Letters 7.1 (2015) (cit. on p. 53).

[40] A.-L. Barabasi and Z. N. Oltvai. “Network biology: Understanding the cell’s functional organi-
zation”. In: Nature Reviews Genetics 5.2 (2004), pp. 101–113 (cit. on pp. 116, 144).

[41] A. Barbalace, A. Iliopoulos, H. Rauchfuss, and G. Brasche. “It’s Time to Think About an
Operating System for Near Data Processing Architectures”. In: Procs. of the Workshop on Hot
Topics in Operating Systems 2017. HotOS ’17. New York, NY, USA: Association for Computing
Machinery, 2017, pp. 56–61. doi: https://doi.org/10.1145/3102980.3102990 (cit. on p. 17).

[42] A. Barbalace, J. Picorel, and P. Bhatotia. “ExtOS: Data-Centric Extensible OS”. In: Procs. of
the ACM SIGOPS Asia-Pacific Workshop on Systems 2019. APSys ’19. New York, NY, USA:
Association for Computing Machinery, 2019, pp. 31–39. doi: https://doi.org/10.1145/
3343737.3343742 (cit. on p. 17).

[43] R. C. Barros, A. C. P. L. F. de Carvalho, and A. A. Freitas. “Decision-Tree Induction”. In: Auto-
matic Design of Decision-Tree Induction Algorithms. Springer International Publishing, 2015,
pp. 7–45 (cit. on p. 340).

[44] P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. “Convexity, classification, and risk bounds”. In:
Journal of the American Statistical Association 101.473 (2006), pp. 138–156 (cit. on p. 274).

[45] L. Becchetti, M. Bury, V. Cohen-Addad, F. Grandoni, and C. Schwiegelshohn. “Oblivious di-
mension reduction for k-means: beyond subspaces and the Johnson-Lindenstrauss lemma”.
In: Procs. of the ACM SIGACT Symposium on Theory of Computing 2019. Ed. by M. Charikar
and E. Cohen. ACM, 2019, pp. 1039–1050. doi: 10. 1145/3313276.3316318. url: https :
//doi.org/10.1145/3313276.3316318 (cit. on p. 213).

[46] S. Ben-Amor, D. Maxim, and L. Cucu-Grosjean. “Schedulability analysis of dependent proba-
bilistic real-time tasks”. In: Procs. of the Int. Conference on Real-Time Networks and Systems
2016. 2016, pp. 99–107 (cit. on p. 363).

[47] J. L. Bentley and J. B. Saxe. “Decomposable Searching Problems I: Static-to-Dynamic Trans-
formation”. In: Journal of Algorithms 1.4 (1980), pp. 301–358 (cit. on p. 87).

[48] E. Bernhardsson. Annoy: Approximate Nearest Neighbors in C++/Python. Python package
version 1.13.0. 2018. url: https://pypi.org/project/annoy/ (cit. on pp. 174, 175).

[49] N. Bertram, J. Ellert, and J. Fischer. “A Parallel Framework for Approximate Max-Dicut in
Partitionable Graphs”. In: Procs. of the Int. Symposium on Experimental Algorithms 2022. Ed.
by C. Schulz and B. Uçar. Vol. 233. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022, 10:1–10:15. doi: 10.4230/LIPIcs.SEA.2022.10. url: https://doi.org/10.4230/LIPIcs.
SEA.2022.10 (cit. on p. 145).

https://doi.org/https://doi.org/10.1287/opre.31.2.381
https://doi.org/https://doi.org/10.1287/opre.31.2.381
https://doi.org/https://doi.org/10.1145/3102980.3102990
https://doi.org/https://doi.org/10.1145/3343737.3343742
https://doi.org/https://doi.org/10.1145/3343737.3343742
https://doi.org/10.1145/3313276.3316318
https://doi.org/10.1145/3313276.3316318
https://doi.org/10.1145/3313276.3316318
https://pypi.org/project/annoy/
https://doi.org/10.4230/LIPIcs.SEA.2022.10
https://doi.org/10.4230/LIPIcs.SEA.2022.10
https://doi.org/10.4230/LIPIcs.SEA.2022.10

440 | Bibliography

[50] K. Bhatia, K. Dahiya, H. Jain, Y. Prabhu, and M. Varma. The Extreme Classification Repository:
Multi-label Datasets and Code. 2016. url: http : //manikvarma . org /downloads /XC/
XMLRepository.html (cit. on pp. 274, 282, 283).

[51] K. Bhatia, H. Jain, P. Kar, M. Varma, and P. Jain. “Sparse Local Embeddings for Extreme Multi-
Label Classification”. In: Procs. of the Int. Conference on Neural Information Processing
Systems 2015. NIPS’15. Montreal, Canada: MIT Press, 2015, pp. 730–738 (cit. on p. 283).

[52] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi. “Graph Neural Networks with Convolutional
ARMA Filters”. In: arXiv: Computing Research Repository (2019). doi: arXiv :1901.01343
(cit. on p. 136).

[53] B. Bischl, J. Bossek, D. Horn, and M. Lang.Model-Based Optimization for mlr. 2014. url:
https://github.com/berndbischl/mlrMBO (cit. on pp. 289, 294).

[54] B. Bischl, S. Wessing, N. Bauer, K. Friedrichs, and C. Weihs. “MOI-MBO: Multiobjective
Infill for Parallel Model-Based Optimization”. In: Procs. of the Learning and Intelligent
Optimization Conference 2014. 2014 (cit. on p. 287).

[55] B. Bischl et al. “Hyperparameter Optimization: Foundations, Algorithms, Best Practices
and Open Challenges”. In: arXiv: Computing Research Repository (2021). doi: arXiv:2107.
05847v2 (cit. on p. 286). SFB876-A3

[56] G. E. Blelloch. Prefix Sums and Their Applications. Tech. rep. Carnegie Mellon University,
1990 (cit. on p. 394).

[57] J. Blitzstein and P. Diaconis. “A sequential importance sampling algorithm for generating
random graphs with prescribed degrees.” In: Internet Mathematics 6.4 (2011), pp. 489–522
(cit. on p. 416).

[58] A. Block, H. Leontyev, B. Brandenburg, and J. Anderson. “A Flexible Real-Time Locking
Protocol for Multiprocessors”. In: Procs. of the IEEE Int. Conference on Embedded and Real-
Time Computing Systems and Applications 2007. 2007 (cit. on pp. 361, 362, 368).

[59] S. Boettcher and A. G. Percus. “Extremal Optimization: Methods Derived from Co-Evolution”.
In: Procs. of the Conference on Genetic and Evolutionary Computation 1999. GECCO’99. San
Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1999, pp. 825–832 (cit. on p. 145).

[60] J. Bolte, S. Sabach, and M. Teboulle. “Proximal alternating linearized minimization for
nonconvex and nonsmooth problems”. In:Mathematical Programming 146.1-2 (2014),
pp. 459–494 (cit. on pp. 233, 234).

[61] P. Boncz, T. Neumann, and O. Erling. “TPC-H Analyzed: Hidden Messages and Lessons
Learned from an Influential Benchmark”. In: Procs. of the Technology Conference on Perfor-
mance Evaluation and Benchmarking 2018. Springer, 2018, pp. 61–76 (cit. on p. 400).

[62] H. Borchers. adagio: Discrete and Global Optimization Routines. R package version 0.6.5.
2016. url: https://CRAN.R-project.org/package=adagio (cit. on p. 291).

[63] C. Borchert, D. Lohmann, and O. Spinczyk. “CiAO/IP: A Highly Configurable Aspect-Oriented
IP Stack”. In: Procs. of the Int. Conference on Mobile Systems, Applications, and Services
2012. New York, NY, USA: ACM, June 2012, pp. 435–448. doi: http://doi.acm.org/10.1145/
2307636.2307676 (cit. on p. 40). SFB876-A1, SFB876-A4

[64] K. M. Borgwardt, C. S. Ong, S. Schönauer, S. Vishwanathan, A. J. Smola, and H.-P. Kriegel.
“Protein function prediction via graph kernels.” In: Bioinformatics 21 Suppl 1 (2005), pp. i47–
i56 (cit. on p. 116).

[65] K. Borgwardt and H.-P. Kriegel. “Shortest-Path Kernels on Graphs”. In: Procs. of the IEEE Int.
Conference on Data Mining 2005. 2005, pp. 74–81 (cit. on p. 124).

[66] J. Bossek. smoof: Single and Multi-Objective Optimization Test Functions. R package version
1.4. 2016. url: https://CRAN.R-project.org/package=smoof (cit. on p. 293).

http://manikvarma.org/downloads/XC/XMLRepository.html
http://manikvarma.org/downloads/XC/XMLRepository.html
https://doi.org/arXiv:1901.01343
https://github.com/berndbischl/mlrMBO
https://doi.org/arXiv:2107.05847v2
https://doi.org/arXiv:2107.05847v2
https://CRAN.R-project.org/package=adagio
https://doi.org/http://doi.acm.org/10.1145/2307636.2307676
https://doi.org/http://doi.acm.org/10.1145/2307636.2307676
https://CRAN.R-project.org/package=smoof

Bibliography | 441

[67] G. Bouritsas, F. Frasca, S. Zafeiriou, and M. M. Bronstein. “Improving Graph Neural Network
Expressivity via Subgraph Isomorphism Counting”. In: Procs. of the Int. Conference on
Machine Learning 2020. 2020 (cit. on p. 132).

[68] B. B. Brandenburg. “Multiprocessor Real-Time Locking Protocols: A Systematic Review”. In:
arXiv: Computing Research Repository (2019). doi: arXiv:1909.09600 (cit. on p. 362).

[69] B. B. Brandenburg and J. H. Anderson. “Optimality Results for Multiprocessor Real-Time
Locking”. In: Procs. of the IEEE Real-Time Systems Symposium 2010. 2010, pp. 49–60. doi:
http://dx.doi.org/10.1109/RTSS.2010.17 (cit. on pp. 361, 362).

[70] V. Braverman, G. Frahling, H. Lang, C. Sohler, and L. F. Yang. “Clustering High Dimensional
Dynamic Data Streams”. In: Procs. of the Int. Conference on Machine Learning 2017. Ed. by
D. Precup and Y. W. Teh. PMLR, 2017, pp. 576–585. url: http://proceedings.mlr.press/v70/
braverman17a.html (cit. on pp. 10, 213). SFB876-A2

[71] L. Breiman. “Bagging Predictors”. In:Machine Learning 24.2 (Aug. 1996), pp. 123–140. doi:
https://doi.org/10.1023/A:1018054314350 (cit. on p. 341).

[72] L. Breiman. “Random Forests”. In:Machine Learning 45.1 (Oct. 2001), pp. 5–32 (cit. on
pp. 341, 351).

[73] L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees.
Belmont, CA: Wadsworth, 1984 (cit. on p. 351).

[74] S. Breß, H. Funke, and J. Teubner. “Robust Query Processing in Co-Processor-Accelerated
Databases”. In: Procs. of the ACM SIGMOD Conference on Management of Data 2016. San
Francisco, CA, USA: ACM, June 2016 (cit. on pp. 381, 382, 386). SFB876-C5

[75] S. Breß, B. Köcher, H. Funke, S. Zeuch, T. Rabl, and V. Markl. “Generating Custom Code for
Efficient Query Execution on Heterogeneous Processors”. In: The VLDB Journal – The Int.
Journal on Very Large Data Bases 27.6 (Dec. 2018), pp. 797–822 (cit. on p. 394). SFB876-A2

[76] M. Brill, T. Fluschnik, V. Froese, B. J. Jain, R. Niedermeier, and D. Schultz. “Exact mean
computation in dynamic time warping spaces”. In: Data Mining and Knowledge Discovery
33.1 (2019), pp. 252–291. doi: https://doi.org/10.1007/s10618-018-0604-8 (cit. on p. 204).

[77] K. Bringmann. “Why walking the dog takes time: Fréchet distance has no strongly sub-
quadratic algorithms unless SETH fails”. In: Procs. of the IEEE Symposium on Foundations of
Computer Science 2014. 2014, pp. 661–670 (cit. on p. 199).

[78] K. Bringmann, A. Driemel, A. Nusser, and I. Psarros. “Tight Bounds for Approximate Near
Neighbor Searching for Time Series under the Fréchet Distance”. In: Procs. of the Sympo-
sium on Discrete Algorithms 2022. SIAM, 2022, pp. 517–550. doi: 10.1137/1.9781611977073.
25 (cit. on p. 203).

[79] K. Bringmann and W. Mulzer. “Approximability of the discrete Fréchet distance”. In: Journal
of Computational Geometry 7.2 (2016). Previously appeared in Procs. of the Int. Symposium
on Computational Geometry 2015, pp. 46–76. url: http://jocg.org/index.php/jocg/article/
view/261 (cit. on p. 200).

[80] E. Brochu, V. M. Cora, and N. De Freitas. “A tutorial on Bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement
learning”. In: arXiv: Computing Research Repository (2010). doi: arXiv:1012.2599 (cit. on
p. 95).

[81] L. D. Brown, T. T. Cai, and A. DasGupta. “Interval estimation for a binomial proportion”. In:
Statistical Science (2001), pp. 101–117 (cit. on p. 79).

[82] G. von der Brüggen, J.-J. Chen, W.-H. Huang, and M. Yang. “Release Enforcement in Resource-
Oriented Partitioned Scheduling for Multiprocessor Systems”. In: Procs. of the Int. Confer-
ence on Real-Time Networks and Systems 2017. 2017 (cit. on p. 368). SFB876-B2

https://doi.org/arXiv:1909.09600
https://doi.org/http://dx.doi.org/10.1109/RTSS.2010.17
http://proceedings.mlr.press/v70/braverman17a.html
http://proceedings.mlr.press/v70/braverman17a.html
https://doi.org/https://doi.org/10.1023/A:1018054314350
https://doi.org/https://doi.org/10.1007/s10618-018-0604-8
https://doi.org/10.1137/1.9781611977073.25
https://doi.org/10.1137/1.9781611977073.25
http://jocg.org/index.php/jocg/article/view/261
http://jocg.org/index.php/jocg/article/view/261
https://doi.org/arXiv:1012.2599

442 | Bibliography

[83] G. von der Brüggen, K.-H. Chen, W.-H. Huang, and J.-J. Chen. “Systems with Dynamic Real-
Time Guarantees in Uncertain and Faulty Execution Environments”. In: Procs. of the IEEE
Real-Time Systems Symposium 2016. IEEE, 2016, pp. 303–314 (cit. on p. 372). SFB876-A1

[84] G. von der Brüggen, W.-H. Huang, and J.-J. Chen. “Hybrid self-suspension models in real-
time embedded systems”. In: Procs. of the IEEE Int. Conference on Embedded and Real-Time
Computing Systems and Applications 2017. IEEE, 2017, pp. 1–9. doi: http://dx.doi.org/10.
1109/RTCSA.2017.8046328 (cit. on p. 363). SFB876-B2

[85] G. von der Brüggen, N. Piatkowski, K.-H. Chen, J.-J. Chen, and K. Morik. “Efficiently Approxi-
mating the Probability of Deadline Misses in Real-Time Systems”. In: Procs. of the Euromicro
Conference on Real-Time Systems 2018. LIPIcs, 2018 (cit. on pp. 377, 378). SFB876-A1,
SFB876-B2

[86] G. von der Brüggen, N. Ueter, J. Chen, and M. Freier. “Parametric utilization bounds for
implicit-deadline periodic tasks in automotive systems”. In: Procs. of the Int. Conference on
Real-Time Networks and Systems 2017. 2017, pp. 108–117 (cit. on p. 368).

[87] G. v. d. Brüggen, L. Schönberger, and J.-J. Chen. “Do Nothing, but Carefully: Fault Tolerance
with Timing Guarantees for Multiprocessor Systems devoid of Online Adaptation”. In: Procs.
of the IEEE Pacific Rim Int. Symposium on Dependable Computing 2018. Taipei, Taiwan, Dec.
2018. url: https://ieeexplore.ieee.org/document/8639554 (cit. on p. 372).

[88] N. Bruno and S. Chaudhuri. “Physical design refinement: The ’merge-reduce’ approach”. In:
ACM Transactions on Database Systems 32.4 (2007), p. 28 (cit. on p. 88).

[89] M. Bruynooghe. “Méthodes nouvelles en classification automatique de données taxi-
nomiques nombreuses”. In: Statistique et analyse des données 2.3 (1977), pp. 24–42. url:
https://www.numdam.org/item/SAD_1977__2_3_24_0/ (cit. on pp. 218, 222).

[90] N. Buchbinder, M. Feldman, J. Naor, and R. Schwartz. “A Tight Linear Time (1/2)-Approximation
for Unconstrained Submodular Maximization”. In: Procs. of the IEEE Symposium on Founda-
tions of Computer Science 2012. 2012, pp. 649–658 (cit. on pp. 145, 153).

[91] N. Buchbinder, M. Feldman, and R. Schwartz. “Online submodular maximization with pre-
emption”. In: Procs. of the ACM-SIAM Symposium on Discrete Algorithms 2015. Society for
Industrial and Applied Mathematics. 2015, pp. 1202–1216 (cit. on p. 76).

[92] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. “Four Soviets Walk the Dog: Improved
Bounds for Computing the Fréchet Distance”. In: Discrete & Computational Geometry 58.1
(2017). Previously appeared in Symposium on Discrete Algorithms 2014, pp. 180–216. doi:
https://doi.org/10.1007/s00454-017-9878-7 (cit. on p. 199).

[93] K. Buchin, A. Driemel, and M. Struijs. “On the Hardness of Computing an Average Curve”. In:
Procs. of the Scandinavian Symposium and Workshops on Algorithm Theory 2020. Ed. by S.
Albers. Vol. 162. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 19:1–19:19 (cit. on
pp. 197, 202–205).

[94] K. Buchin, T. Ophelders, and B. Speckmann. “SETH Says: Weak Fréchet Distance is Faster,
but only if it is Continuous and in One Dimension”. In: Procs. of the ACM-SIAM Symposium
on Discrete Algorithms 2019. Ed. by T. M. Chan. SIAM, 2019, pp. 2887–2901. doi: https:
//doi.org/10.1137/1.9781611975482.179 (cit. on p. 200).

[95] K. Buchin et al. “Approximating (k, ℓ)-center clustering for curves”. In: Procs. of the Sympo-
sium on Discrete Algorithms 2019. Ed. by T. M. Chan. ACM-SIAM, 2019, pp. 2922–2938. doi:
https://doi.org/10.1137/1.9781611975482.181 (cit. on pp. 197, 202–205, 210).

[96] K. Buchin et al. “Median Trajectories”. In: Algorithmica 66.3 (2013). Previously appeared in
ESA 2010, pp. 595–614 (cit. on p. 202).

[97] M. Buchin, A. Driemel, and D. Rohde. “Approximating (k, ℓ)-Median Clustering for Polygonal
Curves”. In: Procs. of the Symposium on Discrete Algorithms 2021. Ed. by D. Marx. ACM-

https://doi.org/http://dx.doi.org/10.1109/RTCSA.2017.8046328
https://doi.org/http://dx.doi.org/10.1109/RTCSA.2017.8046328
https://ieeexplore.ieee.org/document/8639554
https://www.numdam.org/item/SAD_1977__2_3_24_0/
https://doi.org/https://doi.org/10.1007/s00454-017-9878-7
https://doi.org/https://doi.org/10.1137/1.9781611975482.179
https://doi.org/https://doi.org/10.1137/1.9781611975482.179
https://doi.org/https://doi.org/10.1137/1.9781611975482.181

Bibliography | 443

SIAM, 2021, pp. 2697–2717. doi: https://doi.org/10.1137/1.9781611976465.160 (cit. on
pp. 199, 203, 204).

[98] M. Buchin, N. Funk, and A. Krivošija. “On the complexity of the middle curve problem”.
In: arXiv: Computing Research Repository (2020). Presented in EuroCG 2020. doi: arXiv:
2001.10298 (cit. on pp. 197, 205). SFB876-A2

[99] M. Buchin, A. Krivošija, and A. Neuhaus. “Computing the Fréchet distance of trees and
graphs of bounded tree width”. In: arXiv: Computing Research Repository (2020). Presented
in EuroCG 2020. doi: arXiv:2001.10502 (cit. on p. 212). SFB876-A2

[100] A. Buluç, H. Meyerhenke, I. Safro, P. Sanders, and C. Schulz. “Recent Advances in Graph
Partitioning”. In: Algorithm Engineering: Selected Results and Surveys. Ed. by P. Kliemann
Lasseand Sanders. Cham: Springer Int. Publishing, 2016, pp. 117–158 (cit. on p. 145).

[101] A. Burns and A. J. Wellings. “A Schedulability Compatible Multiprocessor Resource Sharing
Protocol - MrsP”. In: Procs. of the Euromicro Conference on Real-Time Systems 2013. 2013,
pp. 282–291. doi: http://dx.doi.org/10.1109/ECRTS.2013.37 (cit. on pp. 361, 362).

[102] M. Bury and C. Schwiegelshohn. “On Finding the Jaccard Center”. In: Procs. of the Int. Col-
loquium on Automata, Languages and Programming 2017. Ed. by P. Indyk, F. Kuhn, and A.
Muscholl. 2017 (cit. on p. 212). SFB876-A2

[103] M. Bury, C. Schwiegelshohn, and M. Sorella. “Sketch ’Em All: Approximate Similarity Search
for Dynamic Data Streams”. In: Procs. of the ACM Int. Conference on Web Search and Data
Mining 2018. Ed. by Y. Maarek and Y. Liu. ACM, 2018 (cit. on p. 10). SFB876-A2

[104] M. Buschhoff. “Energy-Aware Design of Hardware and Software for Ultra-Low-Power Sys-
tems”. PhD thesis. Dortmund: TU Dortmund University, 2019. doi: http://dx.doi.org/10.
17877/DE290R-20241 (cit. on pp. 35, 42, 43).

[105] M. Buschhoff, R. Falkenberg, and O. Spinczyk. “Energy-Aware Device Drivers for Embedded
Operating Systems”. In: SIGBED Review 16.3 (Nov. 2019), pp. 8–13. doi: https://doi.org/10.
1145/3373400.3373401 (cit. on pp. 6, 41). SFB876-A4

[106] M. Buschhoff, D. Friesel, and O. Spinczyk. “Energy Models in the Loop”. In: Procedia Com-
puter Science 130 (2018), pp. 1063–1068 (cit. on pp. 6, 43, 44). SFB876-A4

[107] S. Buschjäger. “Ensemble Learning with Discrete Classifiers on Small Devices”. PhD thesis.
TU Dortmund University, 2022 (cit. on p. 339).

[108] S. Buschjäger, K.-h. Chen, J.-j. Chen, and K. Morik. “Realization of Random Forest for Real-
Time Evaluation through Tree Framing”. In: 2018. url: https : // ieeexplore . ieee . org /
document/8594826 (cit. on pp. 339, 341). SFB876-A1, SFB876-B2, SFB876-C3

[109] S. Buschjäger, P.-J. Honysz, L. Pfahler, and K. Morik. “Very Fast Streaming Submodular
Function Maximization”. In: Procs. of the European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases 2021. Berlin, Heidelberg:
Springer-Verlag, 2021, pp. 151–166. doi: https://doi.org/10.1007/978-3-030-86523-8_10.
url: https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_178.pdf (cit. on
pp. 74–76, 80, 81). SFB876-A1

[110] S. Buschjäger and K. Morik. “Decision Tree and Random Forest Implementations for Fast
Filtering of Sensor Data”. In: IEEE Transactions on Circuits and Systems I: Regular Papers
65-I.1 (Jan. 2018), pp. 209–222. doi: https://doi.org/10.1109/TCSI.2017.2710627 (cit. on
pp. 7, 341, 342).

[111] S. Buschjäger, K. Morik, and M. Schmidt. “Summary Extraction on Data Streams in Em-
bedded Systems”. In: Procs. of the ECML Workshop on IoT Large Scale Learning From Data
Streams 2017. 2017. url: http://ceur-ws.org/Vol-1958/IOTSTREAMING3.pdf (cit. on p. 81).
SFB876-A1

[112] S. Buschjäger, L. Pfahler, J. Buss, K. Morik, and W. Rhode. “On-Site Gamma-Hadron Sep-
aration with Deep Learning on FPGAs”. In: Procs. of the Joint European Conference on Ma-

https://doi.org/https://doi.org/10.1137/1.9781611976465.160
https://doi.org/arXiv:2001.10298
https://doi.org/arXiv:2001.10298
https://doi.org/arXiv:2001.10502
https://doi.org/http://dx.doi.org/10.1109/ECRTS.2013.37
https://doi.org/http://dx.doi.org/10.17877/DE290R-20241
https://doi.org/http://dx.doi.org/10.17877/DE290R-20241
https://doi.org/https://doi.org/10.1145/3373400.3373401
https://doi.org/https://doi.org/10.1145/3373400.3373401
https://ieeexplore.ieee.org/document/8594826
https://ieeexplore.ieee.org/document/8594826
https://doi.org/https://doi.org/10.1007/978-3-030-86523-8_10
https://2021.ecmlpkdd.org/wp-content/uploads/2021/07/sub_178.pdf
https://doi.org/https://doi.org/10.1109/TCSI.2017.2710627
http://ceur-ws.org/Vol-1958/IOTSTREAMING3.pdf

444 | Bibliography

chine Learning and Knowledge Discovery in Databases 2020. Springer, 2020. url: https:
//link.springer.com/content/pdf/10.1007%5C%2F978-3-030-67667-4_29.pdf (cit. on p. 10).
SFB876-A1, SFB876-C3

[113] S. Buschjäger et al. “Margin-Maximization in Binarized Neural Networks for Optimizing Bit
Error Tolerance”. In: Procs. of the Design, Automation and Test in Europe Conference 2021.
2021. url: https://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/
downloads/2021dateyayla.pdf (cit. on pp. 10, 326, 331, 332). SFB876-A1

[114] S. Buschjäger et al. Towards Explainable Bit Error Tolerance of Resistive RAM-Based
Binarized Neural Networks. 2020. url: https : // www - ai . cs . tu - dortmund . de /
PublicPublicationFiles/buschjaeger_etal_2020b.pdf (cit. on p. 331). SFB876-A1

[115] J. Buss, C. Bockermann, K. Morik, W. Rhode, and T. Ruhe. “FACT-Tools – Processing High-
Volume Telescope Data”. In: Procs. of the Astronomical Data Analysis Software and Systems
Conference 2019. Ed. by M. Molinaro, K. Shortridge, and F. Pasian. Vol. 521. Astronomical
Society of the Pacific, 2019, p. 584. url: http://www.aspbooks.org/a/volumes/article_
details/?paper_id=39082 (cit. on p. 339). SFB876-C3

[116] J. Byrka, T. Pensyl, B. Rybicki, A. Srinivasan, and K. Trinh. “An Improved Approximation for
k-Median and Positive Correlation in Budgeted Optimization”. In: ACM Transactions on
Algorithms 13.2 (2017), 23:1–23:31. doi: https://doi.org/10.1145/2981561 (cit. on p. 201).

[117] J. Cai, M. Fürer, and N. Immerman. “An optimal lower bound on the number of variables for
graph identifications”. In: Combinatorica 12.4 (1992), pp. 389–410 (cit. on p. 120).

[118] C. Cangea, P. Veličković, N. Jovanović, T. N. Kipf, and P. Liò. “Towards Sparse Hierarchical
Graph Classifiers”. In: Advances in Neural Information Processing Systems 31: Procs. of the
2018 Conference. 2018 (cit. on p. 135).

[119] B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal. “Dynamic instrumentation of produc-
tion systems”. In: Procs. of the Conference on USENIX Annual Technical Conference 2004.
Berkeley, CA, USA: USENIX Association, 2004, pp. 2–2 (cit. on pp. 17, 18).

[120] R. Caruana, N. Karampatziakis, and A. Yessenalina. “An empirical evaluation of supervised
learning in high dimensions”. In: Procs. of the Int. Conference on Machine Learning 2008.
ACM. 2008, pp. 96–103 (cit. on p. 339).

[121] A. Chakrabarti and S. Kale. “Submodular Maximization Meets Streaming: Matchings, Ma-
troids, and More”. In: arXiv: Computing Research Repository (2013). doi: arXiv:1309.2038
(cit. on p. 76).

[122] I. Chami, S. Abu-El-Haija, B. Perozzi, C. Ré, and K. Murphy. “Machine Learning on Graphs:
A Model and Comprehensive Taxonomy”. In: arXiv: Computing Research Repository (2020).
doi: arXiv:2005.03675 (cit. on p. 116).

[123] M. Charikar, K. Chen, and M. Farach-Colton. “Finding frequent items in data streams”. In:
Theoretical Computer Science 312.1 (2004), pp. 3–15 (cit. on p. 88).

[124] C. Chekuri, S. Gupta, and K. Quanrud. “Streaming algorithms for submodular function
maximization”. In: arXiv: Computing Research Repository (2015). doi: arXiv:1504.08024
(cit. on p. 76).

[125] F. Chen, J. Deng, Z. Pang, M. Baghaei Nejad, H. Yang, and G. Yang. “Finger angle-based hand
gesture recognition for smart infrastructure using wearable wrist-worn camera”. In: Applied
Sciences 8.3 (2018), p. 369 (cit. on p. 61).

[126] J. Chen, J. Zhu, and L. Song. “Stochastic Training of Graph Convolutional Networks with
Variance Reduction”. In: Procs. of the Int. Conference on Machine Learning 2018. 2018 (cit.
on pp. 136, 137, 139).

[127] J.-J. Chen, G. von der Brüggen, W.-H. Huang, and C. Liu. “State of the art for scheduling and
analyzing self-suspending sporadic real-time tasks”. In: Procs. of the IEEE Int. Conference on

https://link.springer.com/content/pdf/10.1007%5C%2F978-3-030-67667-4_29.pdf
https://link.springer.com/content/pdf/10.1007%5C%2F978-3-030-67667-4_29.pdf
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2021dateyayla.pdf
https://ls12-www.cs.tu-dortmund.de/daes/media/documents/publications/downloads/2021dateyayla.pdf
https://www-ai.cs.tu-dortmund.de/PublicPublicationFiles/buschjaeger_etal_2020b.pdf
https://www-ai.cs.tu-dortmund.de/PublicPublicationFiles/buschjaeger_etal_2020b.pdf
http://www.aspbooks.org/a/volumes/article_details/?paper_id=39082
http://www.aspbooks.org/a/volumes/article_details/?paper_id=39082
https://doi.org/https://doi.org/10.1145/2981561
https://doi.org/arXiv:1309.2038
https://doi.org/arXiv:2005.03675
https://doi.org/arXiv:1504.08024

Bibliography | 445

Embedded and Real-Time Computing Systems and Applications 2017. (invited paper). IEEE,
2017, pp. 1–10. url: 10.1109/RTCSA.2017.8046321 (cit. on p. 363). SFB876-B2

[128] J.-J. Chen et al. “Many suspensions, many problems: a review of self-suspending tasks in
real-time systems”. In: Real-Time Systems (2018). preprint. url: https://link.springer.com/
article/10.1007%5C%2Fs11241-018-9316-9 (cit. on p. 363). SFB876-B2

[129] K. Chen, N. Ueter, G. v. der Brüggen, and J. Chen. “Efficient Computation of Deadline-Miss
Probability and Potential Pitfalls”. In: Procs. of the Design, Automation and Test in Europe
Conference 2019. 2019, pp. 896–901 (cit. on p. 377).

[130] K. Chen. “On Coresets for k-Median and k-Means Clustering in Metric and Euclidean Spaces
and Their Applications”. In: SIAM Journal on Computing 39.3 (Aug. 2009). Previously ap-
peared in Symposium on Discrete Algorithms 2006, pp. 923–947. url: http://link.aip.org/
link/?SMJ/39/923/1 (cit. on p. 201).

[131] K.-H. Chen and J.-J. Chen. “Probabilistic schedulability tests for uniprocessor fixed-priority
scheduling under soft errors”. In: Procs. of the IEEE Int. Symposium on Industrial Embedded
Systems 2017. 2017, pp. 1–8. doi: https://doi.org/10.1109/SIES.2017.7993392 (cit. on
p. 377). SFB876-B2

[132] K.-H. Chen et al. “Efficient Realization of Decision Trees for Real-Time Inference (to appear,
accepted)”. In: ACM Transactions on Embedded Computing Systems (2022) (cit. on p. 349).
SFB876-A1

[133] L. Chen, Z. Wei, Z. Cui, M. Chen, H. Pan, and Y. Bao. “CMD: Classification-based Memory
Deduplication Through Page Access Characteristics”. In: Procs. of the ACM SIGPLAN/SIGOPS
Int. Conference on Virtual Execution Environments 2014. VEE ’14. ACM, 2014, pp. 65–76 (cit.
on p. 307).

[134] M. Chen, Z. Wei, Z. Huang, B. Ding, and Y. Li. “Simple and Deep Graph Convolutional Net-
works”. In: Procs. of the Int. Conference on Machine Learning 2020. 2020 (cit. on pp. 130,
132, 175).

[135] Y. Cheng and G. M. Church. “Biclustering of expression data.” In: Procs. of the Int. Confer-
ence on Intelligent Systems for Molecular Biology 2000. Vol. 8. 2000, pp. 93–103 (cit. on
p. 233).

[136] C. Chevalier and D. Ginsbourger. “Fast Computation of the Multi-Points Expected Improve-
ment with Applications in Batch Selection”. In: Learning and Intelligent Optimization. Ed. by
G. Nicosia and P. Pardalos. Springer, 2013, pp. 59–69 (cit. on p. 287).

[137] W. L. Chiang, X. Liu, S. Si, Y. Li, S. Bengio, and C. J. Hsieh. “Cluster-GCN: An Efficient Algo-
rithm for Training Deep and Large Graph Convolutional Networks”. In: Procs. of the ACM
SIGKDD Conference on Knowledge Discovery and Data Mining 2019. SIGKDD. 2019 (cit. on
pp. 136, 141).

[138] Y.-D. Chih et al. “An 89TOPS/W and 16.3 TOPS/mm 2 All-Digital SRAM-Based Full-Precision
Compute-In Memory Macro in 22nm for Machine-Learning Edge Applications”. In: Procs. of
the IEEE Int. Solid-State Circuits Conference 2021. Vol. 64. IEEE. 2021, pp. 252–254 (cit. on
p. 4).

[139] H. Cho, I. S. Dhillon, Y. Guan, and S. Sra. “Minimum sum-squared residue co-clustering of
gene expression data”. In: Procs. of the SIAM Int. Conference on Data Mining 2004. SIAM.
2004, pp. 114–125 (cit. on p. 232).

[140] C. Choirat and R. Seri. “Estimation in Discrete Parameter Models”. In: Statistical Science
27.2 (2012), pp. 278–293 (cit. on p. 407).

[141] K. L. Clarkson. “Subgradient and sampling algorithms for ℓ1 regression”. In: Procs. of the
ACM-SIAM Symposium on Discrete Algorithms 2005. 2005, pp. 257–266 (cit. on pp. 87, 90).

[142] K. L. Clarkson, P. Drineas, M. Magdon-Ismail, M. W. Mahoney, X. Meng, and D. P. Woodruff.
“The Fast Cauchy Transform and Faster Robust Linear Regression”. In: SIAM Journal on

10.1109/RTCSA.2017.8046321
https://link.springer.com/article/10.1007%5C%2Fs11241-018-9316-9
https://link.springer.com/article/10.1007%5C%2Fs11241-018-9316-9
http://link.aip.org/link/?SMJ/39/923/1
http://link.aip.org/link/?SMJ/39/923/1
https://doi.org/https://doi.org/10.1109/SIES.2017.7993392

446 | Bibliography

Computing 45.3 (2016), pp. 763–810. doi: https://doi.org/10.1137/140963698 (cit. on
pp. 87, 90).

[143] K. L. Clarkson, R. Wang, and D. P. Woodruff. “Dimensionality Reduction for Tukey Regres-
sion”. In: Procs. of the Int. Conference on Machine Learning 2019. 2019, pp. 1262–1271 (cit.
on p. 90).

[144] K. L. Clarkson and D. P. Woodruff. “Input Sparsity and Hardness for Robust Subspace Approx-
imation”. In: Procs. of the IEEE Symposium on Foundations of Computer Science 2015. 2015,
pp. 310–329. doi: https://doi.org/10.1109/FOCS.2015.27 (cit. on pp. 87, 90).

[145] K. L. Clarkson and D. P. Woodruff. “Numerical linear algebra in the streaming model”. In:
Procs. of the ACM Symposium on Theory of Computing 2009. 2009, pp. 205–214 (cit. on
pp. 89, 93, 94).

[146] K. L. Clarkson and D. P. Woodruff. “Sketching forM-Estimators: A Unified Approach to Ro-
bust Regression”. In: Procs. of the ACM-SIAM Symposium on Discrete Algorithms 2015. 2015,
pp. 921–939. doi: https://doi.org/10.1137/1.9781611973730.63 (cit. on pp. 87, 90).

[147] M. B. Cohen, Y. T. Lee, C. Musco, C. Musco, R. Peng, and A. Sidford. “Uniform Sampling for
Matrix Approximation”. In: Procs. of the Conference on Innovations in Theoretical Computer
Science 2015. 2015, pp. 181–190 (cit. on p. 87).

[148] V. Cohen-Addad, K. G. Larsen, D. Saulpic, and C. Schwiegelshohn. “Towards optimal lower
bounds for k-median and k-means coresets”. In: Procs. of the ACM SIGACT Symposium on
Theory of Computing 2022. Ed. by S. Leonardi and A. Gupta. ACM, 2022, pp. 1038–1051. doi:
10.1145/3519935.3519946. url: https://doi.org/10.1145/3519935.3519946 (cit. on p. 212).

[149] V. Cohen-Addad, D. Saulpic, and C. Schwiegelshohn. “A new coreset framework for cluster-
ing”. In: Procs. of the Symposium on Theory of Computing 2021. Ed. by S. Khuller and V. Vas-
silevska Williams. ACM, 2021, pp. 169–182. doi: https://doi.org/10.1145/3406325.3451022
(cit. on p. 212).

[150] V. Cohen-Addad and C. Schwiegelshohn. “On the Local Structure of Stable Clustering In-
stances”. In: Procs. of the IEEE Symposium on Foundations of Computer Science 2017. Ed. by
C. Umans. 2017 (cit. on p. 213). SFB876-A2

[151] V. Cohen-Addad, C. Schwiegelshohn, and C. Sohler. “Diameter and k-Center in Sliding
Windows”. In: Procs. of the Int. Colloquium on Automata, Languages, and Programming
2016. Ed. by M. Mitzenmacher, Y. Rabani, and D. Sangiorgi. Vol. 55. 2016, 19:1–19:12. doi:
https://doi.org/10.4230/LIPIcs.ICALP.2016.19 (cit. on p. 213). SFB876-A2

[152] A. Colin, E. Ruppel, and B. Lucia. “A reconfigurable energy storage architecture for energy-
harvesting devices”. In: Procs. of the Int. Conference on Architectural Support for Program-
ming Languages and Operating Systems 2018. ACM, 2018 (cit. on pp. 53, 57).

[153] W. Cong, R. Forsati, M. Kandemir, and M. Mahdavi. “Minimal Variance Sampling with Prov-
able Guarantees for Fast Training of Graph Neural Networks”. In: Procs. of the ACM SIGKDD
Conference on Knowledge Discovery and Data Mining 2020. 2020 (cit. on p. 137).

[154] G. Cormode and S. Muthukrishnan. “An improved data stream summary: The Count-Min
sketch and its applications”. In: Journal of Algorithms 55 (2004), pp. 29–38 (cit. on p. 88).

[155] G. Corso, L. Cavalleri, D. Beaini, P. Liò, and P. Veličković. “Principal Neighbourhood Aggrega-
tion for Graph Nets”. In: Advances in Neural Information Processing Systems 33: Procs. of
the 2020 Conference. 2020 (cit. on pp. 132, 133, 139).

[156] M. Cucuringu, J. Puente, and D. Shue.Model Selection in Undirected Graphical Models with
the Elastic Net. 2011 (cit. on p. 105).

[157] A. Dal Pozzolo, O. Caelen, R. A. Johnson, and G. Bontempi. “Calibrating probability with
undersampling for unbalanced classification”. In: Procs. of the IEEE Symposium Series on
Computational Intelligence 2015. IEEE. 2015, pp. 159–166. url: https://www.kaggle.com/
mlg-ulb/creditcardfraud (cit. on p. 81).

https://doi.org/https://doi.org/10.1137/140963698
https://doi.org/https://doi.org/10.1109/FOCS.2015.27
https://doi.org/https://doi.org/10.1137/1.9781611973730.63
https://doi.org/10.1145/3519935.3519946
https://doi.org/10.1145/3519935.3519946
https://doi.org/https://doi.org/10.1145/3406325.3451022
https://doi.org/https://doi.org/10.4230/LIPIcs.ICALP.2016.19
https://www.kaggle.com/mlg-ulb/creditcardfraud
https://www.kaggle.com/mlg-ulb/creditcardfraud

Bibliography | 447

[158] E. Dallago, A. Barnabei, A. Liberale, P. Malcovati, and G. Venchi. “An Interface Circuit for Low-
Voltage Low-Current Energy Harvesting Systems”. In: IEEE Transactions on Power Electronics
30.3 (2015) (cit. on p. 53).

[159] E. Dallago, A. Lazzarini Barnabei, A. Liberale, G. Torelli, and G. Venchi. “A 300 mV Low-Power
Management System For Energy Harvesting Applications”. In: IEEE Transactions on Power
Electronics PP.99 (2015) (cit. on p. 53).

[160] J. N. Darroch and D. Ratcliff. “Generalized iterative scaling for log-linear models”. In: The
Annals of Mathematical Statistics 43.5 (1972), pp. 1470–1480 (cit. on p. 105).

[161] A. Dasgupta, P. Drineas, B. Harb, and R. K. and Michael W. Mahoney. “Sampling algorithms
and coresets for ℓp-regression”. In: SIAM Journal on Computing 38.5 (2009), pp. 2060–2078
(cit. on pp. 87, 90).

[162] D. Dato et al. “Fast ranking with additive ensembles of oblivious and non-oblivious regres-
sion trees”. In: ACM Transactions on Information Systems (2016) (cit. on p. 340).

[163] D. Davis, B. Edmunds, and M. Udell. “The Sound of APALM Clapping: Faster Nonsmooth
Nonconvex Optimization with Stochastic Asynchronous PALM”. In: Advances in Neural
Information Processing Systems 29: Procs. of the 2016 Conference. Vol. 29. 2016 (cit. on
p. 247).

[164] M. Defferrard, X. Bresson, and P. Vandergheynst. “Convolutional Neural Networks on Graphs
with Fast Localized Spectral Filtering”. In: Advances in Neural Information Processing Sys-
tems 29: Procs. of the 2016 Conference. 2016, pp. 3844–3852 (cit. on p. 136).

[165] N. Del Buono and G. Pio. “Non-negative Matrix Tri-Factorization for co-clustering: An analysis
of the block matrix”. In: Information Sciences 301 (2015), pp. 13–26 (cit. on pp. 232, 238,
239).

[166] C. Delimitrou and C. Kozyrakis. “Quasar: Resource-efficient and QoS-aware Cluster Man-
agement”. In: Procs. of the Int. Conference on Architectural Support for Programming Lan-
guages and Operating Systems 2014. ACM, 2014, pp. 127–144 (cit. on p. 285).

[167] H. Dell, M. Grohe, and G. Rattan. “Lovász Meets Weisfeiler and Leman”. In: Procs. of the Int.
Colloquium on Automata, Languages, and Programming 2018. 2018, 40:1–40:14 (cit. on
p. 125).

[168] J. Deng, A. C. Berg, K. Li, and L. Fei-Fei. “What does classifying more than 10,000 image cat-
egories tell us?” In: Procs. of the European Conference on Computer Vision 2010. Springer,
2010, pp. 71–84 (cit. on p. 272).

[169] Y. Deng, L. Song, and X. Huang. “Evaluating Memory Compression and Deduplication”.
In: Procs. of the IEEE Int. Conference on Networking, Architecture and Storage 2013. IEEE
Computer Society, 2013, pp. 282–286 (cit. on p. 307).

[170] Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush. “Image-to-Markup Generation with Coarse-to-
Fine Attention”. In: Procs. of the Int. Conference on Machine Learning 2017. 2017, pp. 980–
989 (cit. on p. 162).

[171] E. Denton, J. Weston, M. Paluri, L. Bourdev, and R. Fergus. “User Conditional Hashtag Predic-
tion for Images”. In: Procs. of the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining 2015. 2015 (cit. on p. 272).

[172] M. Desnoyers and M. R. Dagenais. “The LTTng tracer: A low impact performance and behav-
ior monitor for GNU/Linux”. In: Procs. of the Ottawa Linux Symposium 2006. 2006, pp. 209–
224 (cit. on p. 17).

[173] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding”. In: Procs. of Conference of the North American
Chapter of the Association for Computational Linguistics 2019. Association for Computa-
tional Linguistics, 2019, pp. 4171–4186. doi: arXiv:1810.04805 (cit. on pp. 163, 166, 167,
169).

https://doi.org/arXiv:1810.04805

448 | Bibliography

[174] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. “Bert: Pre-training of deep bidirectional
transformers for language understanding”. In: arXiv: Computing Research Repository (2018).
doi: arXiv:1810.04805 (cit. on p. 283).

[175] I. S. Dhillon, Y. Guan, and B. Kulis. “Weighted Graph Cuts without Eigenvectors: A Multilevel
Approach”. In: 2007, pp. 1944–1957 (cit. on pp. 135, 140).

[176] I. S. Dhillon. “Co-clustering documents and words using bipartite spectral graph partition-
ing”. In: Procs. of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining
2001. ACM. 2001, pp. 269–274 (cit. on p. 232).

[177] J. L. Díaz et al. “Stochastic Analysis of Periodic Real-Time Systems”. In: Procs. of the IEEE
Real-Time Systems Symposium 2002. 2002, pp. 289–300 (cit. on p. 363).

[178] C. Ding, T. Li, W. Peng, and H. Park. “Orthogonal nonnegative matrix t-factorizations for
clustering”. In: Procs. of the ACM SIGKDD Conference on Knowledge Discovery and Data
Mining 2006. ACM. 2006, pp. 126–135 (cit. on p. 232).

[179] S. Ding, L. Lin, G. Wang, and H. Chao. “Deep feature learning with relative distance com-
parison for person re-identification”. In: Pattern Recognition 48.10 (2015), pp. 2993–3003
(cit. on p. 166).

[180] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda. “Indriya: A Low-Cost, 3D Wireless Sen-
sor Network Testbed”. In: Testbeds and Research Infrastructure. Development of Networks
and Communities. Ed. by T. Korakis, H. Li, P. Tran-Gia, and H.-S. Park. Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecommunications Engineering.
Springer, 2012, pp. 302–316 (cit. on p. 35).

[181] W. Dong, L. Yang, R. Gravina, and G. Fortino. “Soft wrist-worn multi-functional sensor array
for real-time hand gesture recognition”. In: IEEE Sensors Journal (2021) (cit. on p. 61).

[182] B. Douillard, D. Fox, and F. T. Ramos. “A spatio-temporal probabilistic model for multi-sensor
object recognition”. In: Procs. of the IEEE/RSJ Int. Conference on Intelligent Robots and
Systems 2007. 2007, pp. 2402–2408 (cit. on p. 102).

[183] U. Drepper.What Every Programmer Should Know About Memory. 2007 (cit. on p. 343).
[184] A. Driemel and A. Krivošija. “Probabilistic embeddings of the Fréchet distance”. In: Procs.

of the Int. Workshop on Approximation and Online Algorithms 2018. Ed. by L. Epstein and T.
Erlebach. Vol. 11312. LNCS. Springer, 2018, pp. 218–237. doi: https://doi.org/10.1007/978-
3-030-04693-4_14 (cit. on p. 212). SFB876-A2

[185] A. Driemel, A. Krivošija, and C. Sohler. “Clustering time series under the Fréchet distance”.
In: Procs. of the Symposium on Discrete Algorithms 2016. Ed. by R. Krauthgamer. SIAM,
2016, pp. 766–785. url: http://epubs.siam.org/doi/10.1137/1.9781611974331.ch55 (cit. on
pp. 197, 201–204). SFB876-A2

[186] A. Driemel and I. Psarros. “ANN for Time Series Under the Fréchet Distance”. In: Procs.
of the Int. Symposium on Algorithms and Data Structures 2021. Ed. by A. Lubiw and M. R.
Salavatipour. Vol. 12808. Lecture Notes in Computer Science. Springer, 2021, pp. 315–328.
doi: https://doi.org/10.1007/978-3-030-83508-8_23 (cit. on p. 203).

[187] D. Driggs, J. Tang, M. Davies, and C.-B. Schönlieb. “SPRING: A fast stochastic proximal al-
ternating method for non-smooth non-convex optimization”. In: arXiv: Computing Research
Repository (2020). doi: arXiv:2002.12266 (cit. on pp. 238, 247).

[188] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. “Relative-Error CUR Matrix Decomposi-
tions”. In: SIAM Journal on Matrix Analysis and Applications 30.2 (2008), pp. 844–881. doi:
https://doi.org/10.1137/07070471X (cit. on pp. 87, 90, 92).

[189] P. Drineas, M. W. Mahoney, and S. Muthukrishnan. “Sampling algorithms for ℓ2 regression
and applications”. In: Procs. of the ACM-SIAM Symposium on Discrete Algorithms 2006.
2006, pp. 1127–1136 (cit. on pp. 87, 90).

https://doi.org/arXiv:1810.04805
https://doi.org/https://doi.org/10.1007/978-3-030-04693-4_14
https://doi.org/https://doi.org/10.1007/978-3-030-04693-4_14
http://epubs.siam.org/doi/10.1137/1.9781611974331.ch55
https://doi.org/https://doi.org/10.1007/978-3-030-83508-8_23
https://doi.org/arXiv:2002.12266
https://doi.org/https://doi.org/10.1137/07070471X

Bibliography | 449

[190] B. Dusza. “Context-Aware Power Consumption Modeling for Energy Efficient Mobile Commu-
nication Services”. PhD thesis. TU Dortmund University, 2014. url: http://www.shaker.de/
de/content/catalogue/index.asp?lang=de%5C&ID=8%5C&ISBN=978-3-8440-2683-2
(cit. on p. 431). SFB876-A4

[191] B. Dusza, C. Ide, L. Cheng, and C. Wietfeld. “An Accurate Measurement-Based Power Con-
sumption Model for LTE Uplink Transmissions”. In: Procs. of IEEE INFOCOM 2013. Turin, Italy:
IEEE, Apr. 2013 (cit. on p. 430). SFB876-A4, SFB876-B4

[192] B. Dusza, C. Ide, L. Cheng, and C. Wietfeld. “CoPoMo: A Context-Aware Power Consumption
Model for LTE User Equipment”. In: Transactions on Emerging Telecommunications Technolo-
gies 24.6 (Oct. 2013), pp. 615–632. url: http://onlinelibrary.wiley.com/doi/10.1002/ett.
2702/full (cit. on pp. 429, 430, 432). SFB876-A4, SFB876-B4

[193] D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About A Highly
Connected World. Cambridge University Press, July 2010 (cit. on pp. 116, 144).

[194] A. Easwaran and B. Andersson. “Resource Sharing in Global Fixed-Priority Preemptive
Multiprocessor Scheduling”. In: Procs. of the IEEE Real-Time Systems Symposium 2009.
2009, pp. 377–386. doi: http://dx.doi.org/10.1109/RTSS.2009.37 (cit. on p. 368).

[195] I. J. Egielski, J. Huang, and E. Z. Zhang. “Massive Atomics for Massive Parallelism on GPUs”.
In: ACM SIGPLAN Notices 49.11 (2015), pp. 93–103 (cit. on p. 391).

[196] F. C. Eigler et al. Architecture of systemtap: a Linux trace/probe tool. 2005. url: http://www.
cs.ucsb.edu/~grze/papers/profile/eigler05systemtap.bib (cit. on pp. 16, 18).

[197] T. Eiter and H. Mannila. Computing discrete Fréchet distance. Tech. rep. CD-TR 94/64. Chris-
tian Doppler Laboratory, 1994 (cit. on pp. 199, 211).

[198] J. G. Eldredge and B. L. Hutchings. “Density enhancement of a neural network using FP-
GAs and run-time reconfiguration”. In: Procs. of the IEEE Workshop on FPGAs for Custom
Computing Machines 1994. IEEE. 1994, pp. 180–188 (cit. on pp. 253, 255).

[199] P. Emberson, R. Stafford, and R. I. Davis. “Techniques for the synthesis of multiprocessor
tasksets”. In: Procs. of the Int. Workshop on Analysis Tools and Methodologies for Embed-
ded and Real-time Systems 2010. 2010, pp. 6–11 (cit. on p. 368).

[200] T. A. Ensslin, M. Frommert, and F. S. Kitaura. “Information field theory for cosmological
perturbation reconstruction and nonlinear signal analysis”. In: Physical Review D 80 (2009).
doi: http://dx.doi.org/10.1103/PhysRevD.80.105005 (cit. on p. 160).

[201] D. Eriksson, M. Pearce, R. Gardner Jacob R. and Turner, and M. Poloczek. “Scalable Global
Optimization via Local Bayesian Optimization”. In: Procs. of the Conference on Neural
Information Processing Systems 2019. 2019, pp. 5497–5508 (cit. on p. 96).

[202] Ú. Erlingsson, M. Peinado, S. Peter, M. Budiu, and G. Mainar-Ruiz. “Fay: Extensible Dis-
tributed Tracing from Kernels to Clusters”. In: ACM Transactions on Computer Systems 30.4
(Nov. 2012), 13:1–13:35 (cit. on p. 18).

[203] H. Esen, M. Adachi, D. Bernardini, A. Bemporad, D. Rost, and J. Knodel. “Control as a Service
(CaaS): Cloud-Based Software Architecture for Automotive Control Applications”. In: Procs.
of the Int. Workshop on the Swarm at the Edge of the Cloud 2015. Swarm at the Edge of the
Cloud 2015. New York, NY, USA: Association for Computing Machinery, 2015, pp. 13–18. doi:
https://doi.org/10.1145/2756755.2756758 (cit. on p. 363).

[204] A. Esper, G. Nelissen, V. Nélis, and E. Tovar. “How Realistic is the Mixed-Criticality Real-
Time System Model?” In: Procs. of the Int. Conference on Real Time and Networks Systems
2015. Real Time and Networks Systems 2015. New York, NY, USA: Association for Computing
Machinery, 2015, pp. 139–148. doi: https://doi.org/10.1145/2834848.2834869 (cit. on
p. 372).

http://www.shaker.de/de/content/catalogue/index.asp?lang=de%5C&ID=8%5C&ISBN=978-3-8440-2683-2
http://www.shaker.de/de/content/catalogue/index.asp?lang=de%5C&ID=8%5C&ISBN=978-3-8440-2683-2
http://onlinelibrary.wiley.com/doi/10.1002/ett.2702/full
http://onlinelibrary.wiley.com/doi/10.1002/ett.2702/full
https://doi.org/http://dx.doi.org/10.1109/RTSS.2009.37
http://www.cs.ucsb.edu/~grze/papers/profile/eigler05systemtap.bib
http://www.cs.ucsb.edu/~grze/papers/profile/eigler05systemtap.bib
https://doi.org/http://dx.doi.org/10.1103/PhysRevD.80.105005
https://doi.org/https://doi.org/10.1145/2756755.2756758
https://doi.org/https://doi.org/10.1145/2834848.2834869

450 | Bibliography

[205] B. O. Fagginger Auer and R. H. Bisseling. “A GPU Algorithm for Greedy Graph Matching”. In:
Facing the Multicore - Challenge II - Aspects of New Paradigms and Technologies in Parallel
Computing. 2011 (cit. on p. 135).

[206] R. Falkenberg, J. Drenhaus, B. Sliwa, and C. Wietfeld. “System-in-the-loop Design Space
Exploration for Efficient Communication in Large-scale IoT-based Warehouse Systems”. In:
Procs. of the IEEE Int. Systems Conference 2018. Vancouver, Canada: IEEE, Apr. 2018 (cit. on
pp. 424, 426, 427, 429, 430). SFB876-A4

[207] R. Falkenberg, B. Sliwa, N. Piatkowski, and C. Wietfeld. “Machine Learning Based Uplink
Transmission Power Prediction for LTE and Upcoming 5G Networks using Passive Downlink
Indicators”. In: Procs. of the IEEE Vehicular Technology Conference 2018. Chicago, USA, Aug.
2018 (cit. on pp. 433–435). SFB876-A4, SFB876-B4, SFB876-A1

[208] R. Falkenberg, B. Sliwa, and C. Wietfeld. “Rushing Full Speed with LTE-Advanced is Economi-
cal - A Power Consumption Analysis”. In: Procs. of the IEEE Vehicular Technology Conference
2017. June 2017, pp. 1–7 (cit. on p. 431). SFB876-A4

[209] R. Falkenberg et al. “PhyNetLab: An IoT-based warehouse testbed”. In: Procs. of the Fed-
erated Conference on Computer Science and Information Systems 2017. Sept. 2017 (cit. on
pp. 35, 424, 426, 428). SFB876-A4

[210] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin. “LIBLINEAR: A library for large
linear classification”. In: Journal of Machine Learning Research 9 (2008), pp. 1871–1874
(cit. on p. 275).

[211] G. Fanelli, M. Dantone, J. Gall, A. Fossati, and L. J. V. Gool. “Random Forests for Real Time 3D
Face Analysis”. In: Int. Journal of Computer Vision 101.3 (2013), pp. 437–458 (cit. on p. 339).

[212] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. “CNP: An FPGA-based processor for convolu-
tional networks”. In: Procs. of the Int. Conference on Field Programmable Logic and Applica-
tions 2009. IEEE. 2009, pp. 32–37 (cit. on p. 254).

[213] T. Feder and D. Greene. “Optimal algorithms for approximate clustering”. In: Procs. of the
Symposium on Theory of Computing 1988. ACM, 1988, pp. 434–444 (cit. on p. 200).

[214] U. Feige. “A Threshold of Ln N for Approximating Set Cover”. In: Journal of the Association
for Computing Machinery 45.4 (July 1998), pp. 634–652. doi: http://doi.acm.org/10.1145/
285055.285059 (cit. on p. 75).

[215] U. Feige, V. S. Mirrokni, and J. Vondrák. “Maximizing non-monotone submodular functions”.
In: SIAM Journal on Computing 40.4 (2011), pp. 1133–1153 (cit. on p. 76).

[216] D. Feldman, M. Faulkner, and A. Krause. “Scalable Training of Mixture Models via Coresets”.
In: Advances in Neural Information Processing Systems 24: Procs. of the 2011 Conference.
2011, pp. 2142–2150. url: http://papers.nips.cc/paper/4363-scalable-training-of-mixture-
models-via-coresets (cit. on p. 87).

[217] D. Feldman and M. Langberg. “A unified framework for approximating and clustering data”.
In: Procs. of the ACM Symposium on Theory of Computing 2011. Ed. by L. Fortnow and S. P.
Vadhan. ACM, 2011, pp. 569–578. doi: http://doi.acm.org/10.1145/1993636.1993712 (cit. on
p. 212).

[218] D. Feldman, A. Munteanu, and C. Sohler. “Smallest enclosing ball for probabilistic data”. In:
Procs. of the Symposium on Computational Geometry 2014. 2014, p. 214 (cit. on pp. 87, 212).

[219] D. Feldman, M. Schmidt, and C. Sohler. “Turning Big Data Into Tiny Data: Constant-Size
Coresets for k-Means, PCA, and Projective Clustering”. In: SIAM Journal of Computing 49.3
(2020), pp. 601–657 (cit. on pp. 87, 91, 212). SFB876-A2

[220] M. Feldman, A. Norouzi-Fard, O. Svensson, and R. Zenklusen. “The one-way communication
complexity of submodular maximization with applications to streaming and robustness”. In:
Procs. of the ACM SIGACT Symposium on Theory of Computing 2020. 2020, pp. 1363–1374
(cit. on pp. 74, 75, 77).

https://doi.org/http://doi.acm.org/10.1145/285055.285059
https://doi.org/http://doi.acm.org/10.1145/285055.285059
http://papers.nips.cc/paper/4363-scalable-training-of-mixture-models-via-coresets
http://papers.nips.cc/paper/4363-scalable-training-of-mixture-models-via-coresets
https://doi.org/http://doi.acm.org/10.1145/1993636.1993712

Bibliography | 451

[221] X. Feng, Y. Zhang, and J. Glass. “Speech feature denoising and dereverberation via deep au-
toencoders for noisy reverberant speech recognition”. In: Procs. of the IEEE Int. Conference
on Acoustics, Speech and Signal Processing 2014. IEEE. 2014, pp. 1759–1763 (cit. on p. 260).

[222] A. Feragen, N. Kasenburg, J. Petersen, M. de Bruijne, and K. Borgwardt. “Scalable kernels for
graphs with continuous attributes”. In: Advances in Neural Information Processing Systems
26: Procs. of the 2013 Conference. Erratum available at http://image.diku.dk/aasa/papers/
graphkernels_nips_erratum.pdf. 2013, pp. 216–224 (cit. on p. 124).

[223] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim. “Do we need hundreds of
classifiers to solve real world classification problems?” In: Journal of Machine Learning
Research 15.1 (2014), pp. 3133–3181 (cit. on p. 339).

[224] M. Fey, J. E. Lenssen, F. Weichert, and J. Leskovec. “GNNAutoScale: Scalable And Expressive
Graph Neural Networks via Historical Embeddings”. In: Procs. of the Int. Conference on
Machine Learning 2021. 2021 (cit. on pp. 130, 137, 139, 140, 142). SFB876-A6

[225] M. Fey and J. E. Lenssen. “Fast Graph Representation Learning with PyTorch Geometric”.
In: Procs. of the ICLR Workshop on Representation Learning on Graphs and Manifolds 2019.
2019. doi: arXiv:1903.02428 (cit. on pp. 126, 130, 131, 134). SFB876-A6,SFB876-B2

[226] M. Fey, J. E. Lenssen, F. Weichert, and H. Müller. “SplineCNN: Fast Geometric Deep Learning
with Continuous B-Spline Kernels”. In: Procs. of the IEEE Conference on Computer Vision and
Pattern Recognition 2018. 2018. doi: arXiv:1711.08920 (cit. on pp. 130, 133). SFB876-B2,
SFB876-A6

[227] M. Fey, J.-G. Yuen, and F. Weichert. “Hierarchical Inter-Message Passing for Learning on
Molecular Graphs”. In: Procs. of the ICML Graph Representation Learning and Beyond (GRL+)
Workhop 2020. 2020 (cit. on p. 132).

[228] H. Fichtenberger, M. Gillé, M. Schmidt, C. Schwiegelshohn, and C. Sohler. “BICO: Birch
meets Coresets for k-means”. In: Procs. of the European Symposium on Algorithms 2013.
Ed. by H. L. Bodlaender and G. F. Italiano. Springer, 2013. url: http://link.springer.com/
chapter/10.1007%5C%2F978-3-642-40450-4_41 (cit. on p. 213). SFB876-A2

[229] R. Fischer, N. Piatkowski, C. Pelletier, G. Webb, F. Petitjean, and K. Morik. “No Cloud on
the Horizon: Probabilistic Gap Filling in Satellite Image Series”. In: Procs. of the IEEE Int.
Conference on Data Science and Advanced Analytics 2020. Ed. by G. Webb, L. Cao, Z. Zhang,
V. S. Tseng, G. Williams, and M. Vlachos. Environmental and Geo-spatial Data Analytics. The
Institute of Electrical and Electronics Engineers, Inc. (IEEE), Oct. 2020, pp. 546–555. url:
https://ieeexplore.ieee.org/document/9260084 (cit. on p. 101).

[230] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. “An analysis of approximations for maximiz-
ing submodular set functions—II”. In: Polyhedral combinatorics (1978), pp. 73–87 (cit. on
pp. 75, 76).

[231] FIT consortium. FIT IoT-LAB. FIT IoT-LAB, 2021. url: https://iot-lab.info/ (cit. on p. 35).
[232] S. Foucart and H. Rauhut. A Mathematical Introduction to Compressive Sensing. Springer

New York, 2013 (cit. on p. 378).
[233] M. Fragkoulis, D. Spinellis, P. Louridas, and A. Bilas. “Relational Access to Unix Kernel Data

Structures”. In: Procs. of the European Conference on Computer Systems 2014. EuroSys ’14.
New York, NY, USA: Association for Computing Machinery, 2014. doi: https://doi.org/10.
1145/2592798.2592802 (cit. on pp. 17, 19).

[234] F. Frasca, E. Rossi, D. Eynard, B. Chamberlain, M. M. Bronstein, and F. Monti. “SIGN: Scalable
Inception Graph Neural Networks”. In: Procs. of the Int. Conference on Machine Learning
2020. 2020 (cit. on pp. 130, 137).

[235] P. I. Frazier. “A tutorial on Bayesian optimization”. In: arXiv: Computing Research Repository
(2018). doi: arXiv:1807.02811 (cit. on pp. 95, 96).

http://image.diku.dk/aasa/papers/graphkernels_nips_erratum.pdf
http://image.diku.dk/aasa/papers/graphkernels_nips_erratum.pdf
https://doi.org/arXiv:1903.02428
https://doi.org/arXiv:1711.08920
http://link.springer.com/chapter/10.1007%5C%2F978-3-642-40450-4_41
http://link.springer.com/chapter/10.1007%5C%2F978-3-642-40450-4_41
https://ieeexplore.ieee.org/document/9260084
https://iot-lab.info/
https://doi.org/https://doi.org/10.1145/2592798.2592802
https://doi.org/https://doi.org/10.1145/2592798.2592802
https://doi.org/arXiv:1807.02811

452 | Bibliography

[236] H. Fröhlich, J. K. Wegner, F. Sieker, and A. Zell. “Optimal Assignment Kernels for Attributed
Molecular Graphs”. In: Procs. of the Int. Conference on Machine Learning 2005. 2005,
pp. 225–232 (cit. on p. 121).

[237] H. Funke and J. Teubner. “Data-Parallel Query Processing on Non-Uniform Data”. In: Procs. of
the VLDB Endowment (2020) (cit. on pp. 265, 268). SFB876-A2

[238] P. Gai, G. Lipari, and M. D. Natale. “Minimizing Memory Utilization of Real-Time Task Sets
in Single and Multi-Processor Systems-on-a-Chip”. In: Procs. of the IEEE Real-Time Systems
Symposium 2001. 2001, pp. 73–83. doi: http://dx.doi.org/10.1109/REAL.2001.990598
(cit. on pp. 361, 362).

[239] L. Galli and C.-J. Lin. “A Study on Truncated Newton Methods for Linear Classification”. In:
IEEE Transactions on Neural Networks and Learning Systems (2021) (cit. on p. 278).

[240] P. R. Gankidi and J. Thangavelautham. “FPGA architecture for deep learning and its appli-
cation to planetary robotics”. In: Procs. of the IEEE Aerospace Conference 2017. Mar. 2017,
pp. 1–9 (cit. on p. 254).

[241] H. Gao and S. Ji. “Graph U-Net”. In: Procs. of the Int. Conference on Machine Learning 2019.
2019 (cit. on p. 135).

[242] Y. Gao et al. “Estimating gpu memory consumption of deep learning models”. In: Procs.
ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering 2020. 2020, pp. 1342–1352. url: https : //www .
microsoft.com/en-us/research/uploads/prod/2020/09/dnnmem.pdf (cit. on p. 9).

[243] W. Gaul and M. Schader. “A new algorithm for two-mode clustering”. In: Data Analysis and
Information Systems. Springer, 1996, pp. 15–23 (cit. on p. 231).

[244] F. Geerts, B. Goethals, and T. Mielikäinen. “Tiling databases”. In: Procs. of the Int. Confer-
ence on Discovery Science 2004. Springer. 2004, pp. 278–289 (cit. on p. 233).

[245] L. N. Geppert, K. Ickstadt, A. Munteanu, J. Quedenfeld, and C. Sohler. “Random projections
for Bayesian regression”. In: Statistics and Computing 27.1 (2017), pp. 79–101. doi: http:
//doi.org/10.1007/s11222-015-9608-z (cit. on pp. 86, 89, 93, 94). SFB876-C4

[246] L. N. Geppert, K. Ickstadt, A. Munteanu, and C. Sohler. “Streaming statistical models via
Merge & Reduce”. In: Int. Journal of Data Science and Analytics 10.4 (2020), pp. 331–347.
doi: https://doi.org/10.1007/s41060-020-00226-0 (cit. on pp. 87, 88, 90). SFB876-C4

[247] L. N. Geppert. “Bayesian and Frequentist Regression Approaches for Very Large Data Sets”.
PhD thesis. TU Dortmund University, 2018. doi: http://dx.doi.org/10.17877/DE290R-19931
(cit. on pp. 89, 94, 95).

[248] L. Gerhorst, B. Herzog, S. Reif, W. Schröder-Preikschat, and T. Hönig. “AnyCall: Fast and
Flexible System-Call Aggregation”. In: Procs. of the Workshop on Programming Languages
and Operating Systems 2021. New York, NY, USA: Association for Computing Machinery,
2021, pp. 1–8. doi: https://doi.org/10.1145/3477113.3487267 (cit. on p. 17).

[249] F. Gessert, W. Wingerath, S. Friedrich, and N. Ritter. “NoSQL database systems: a survey
and decision guidance”. In: Computer Science - Research and Development 32.3-4 (2017),
pp. 353–365 (cit. on p. 89).

[250] P. Geurts, D. Ernst, and L. Wehenkel. “Extremely randomized trees”. In:Machine Learning
63.1 (2006), pp. 3–42 (cit. on pp. 341, 351).

[251] S. Gidaris, P. Singh, and N. Komodakis. “Unsupervised Representation Learning by Predict-
ing Image Rotations”. In: Procs. of the Int. Conference on Learning Representations 2018.
2018, pp. 1–16 (cit. on p. 163).

[252] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. “Neural Message Passing
for Quantum Chemistry”. In: Procs. of the Int. Conference on Machine Learning 2017. 2017,
pp. 1263–1272 (cit. on pp. 116, 125, 126, 130–132).

https://doi.org/http://dx.doi.org/10.1109/REAL.2001.990598
https://www.microsoft.com/en-us/research/uploads/prod/2020/09/dnnmem.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2020/09/dnnmem.pdf
https://doi.org/http://doi.org/10.1007/s11222-015-9608-z
https://doi.org/http://doi.org/10.1007/s11222-015-9608-z
https://doi.org/https://doi.org/10.1007/s41060-020-00226-0
https://doi.org/http://dx.doi.org/10.17877/DE290R-19931
https://doi.org/https://doi.org/10.1145/3477113.3487267

Bibliography | 453

[253] D. Ginsbourger, J. Janusevskis, and R. Le Riche. Dealing with asynchronicity in parallel
Gaussian Process based global optimization. Tech. rep. 2011. url: https://hal.archives-
ouvertes.fr/hal-00507632 (cit. on pp. 288, 292).

[254] D. Ginsbourger, R. Le Riche, and L. Carraro. “Kriging is Well-Suited to Parallelize Optimiza-
tion”. In: Computational Intelligence in Expensive Optimization Problems. Springer, 2010,
pp. 131–162 (cit. on pp. 287, 288, 290, 292, 301).

[255] X. Glorot, A. Bordes, and Y. Bengio. “Deep sparse rectifier neural networks”. In: Procs. of
the Int. Conference on Artificial Intelligence and Statistics 2011. 2011, pp. 315–323 (cit. on
p. 261).

[256] M. X. Goemans and D. P. Williamson. “Improved Approximation Algorithms for Maximum Cut
and Satisfiability Problems Using Semidefinite Programming”. In: Journal of the Association
for Computing Machinery 42.6 (1995), pp. 1115–1145 (cit. on pp. 145, 147, 148, 153).

[257] G. H. Golub and C. F. Van Loan.Matrix Computations. The Johns Hopkins University Press,
1983 (cit. on p. 150).

[258] R. Gomes and A. Krause. “Budgeted Nonparametric Learning from Data Streams”. In: Procs.
of the Int. Conference on Machine Learning 2010. Vol. 1. 2010, p. 3 (cit. on p. 76).

[259] A. Gomez, L. Sigrist, M. Magno, L. Benini, and L. Thiele. “Dynamic Energy Burst Scaling
for Transiently Powered Systems”. In: Procs. of the Design, Automation and Test in Europe
Conference 2016. DATE ’16. San Jose, CA, USA: EDA Consortium, 2016, pp. 349–354. url:
http://dl.acm.org/citation.cfm?id=2971808.2971888 (cit. on pp. 49, 57).

[260] A. Gomez. “On-demand communication with the batteryless MiroCard: demo abstract”. In:
Procs. of the Conference on Embedded Networked Sensor Systems 2020. 2020 (cit. on p. 57).

[261] A. Gomez, L. Sigrist, T. Schalch, L. Benini, and L. Thiele. “Efficient, Long-Term Logging of
Rich Data Sensors Using Transient Sensor Nodes”. In: ACM Transactions on Embedded
Computing Systems 17.1 (2017), 4:1–4:23 (cit. on p. 47).

[262] A. Gomez, A. Tretter, P. A. Hager, P. Sanmugarajah, L. Benini, and L. Thiele. “Data-Flow
Driven Partitioning of Machine Learning Applications for Optimal Energy Use in Batteryless
Systems”. In: ACM Transactions on Embedded Computing Systems (Feb. 2022). doi: https:
//doi.org/10.1145/3520135 (cit. on p. 54).

[263] X. Gong and F. Wang. “Three Improvements on KNN-NPR for Traffic Flow Forecasting”. In:
Procs. of the Int. Conference on Intelligent Transportation Systems 2002. 2002, pp. 736–740
(cit. on p. 102).

[264] T. F. Gonzalez. “Clustering to Minimize the Maximum Intercluster Distance”. In: Theoretical
Computer Science 38 (1985), pp. 293–306 (cit. on pp. 200, 203).

[265] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. url: http://www.
deeplearningbook.org (cit. on p. XI).

[266] I. Goodfellow et al. “Generative Adversarial Nets”. In: Advances in Neural Information
Processing Systems 27: Procs. of the 2014 Conference. 2014, pp. 2672–2680. url: http :
//papers.nips.cc/paper/5423-generative-adversarial-nets.pdf (cit. on p. 250).

[267] M. Gorlatova, A. Wallwater, and G. Zussman. “Networking Low-Power Energy Harvesting
Devices: Measurements and Algorithms”. In: IEEE Transactions on Mobile Computing 12.9
(2013), pp. 1853–1865 (cit. on p. 47).

[268] A. B. Graf and S. Borer. “Normalization in support vector machines”. In: Pattern Recognition:
Procs. of the German Association for Pattern Recognition Symposium 2001. Springer. 2001,
p. 277 (cit. on p. 81).

[269] R. L. Graham. “Bounds on Multiprocessing Timing Anomalies”. In: SIAM Journal of Applied
Mathematics 17.2 (1969), pp. 416–429 (cit. on p. 366).

https://hal.archives-ouvertes.fr/hal-00507632
https://hal.archives-ouvertes.fr/hal-00507632
http://dl.acm.org/citation.cfm?id=2971808.2971888
https://doi.org/https://doi.org/10.1145/3520135
https://doi.org/https://doi.org/10.1145/3520135
http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

454 | Bibliography

[270] C. Gregg and K. Hazelwood. “Where Is the Data? Why You Cannot Debate CPU vs. GPU Perfor-
mance Without the Answer”. In: Procs. of the IEEE Int. Symposium on Performance Analysis
of Systems and Software 2011. IEEE Press, 2011, pp. 134–144 (cit. on p. 380).

[271] M. Grohe. Descriptive Complexity, Canonisation, and Definable Graph Structure Theory.
Lecture Notes in Logic. Cambridge University Press, 2017 (cit. on p. 117).

[272] M. Grohe. “Word2vec, Node2vec, Graph2vec, X2vec: Towards a Theory of Vector Embeddings
of Structured Data”. In: arXiv: Computing Research Repository (2020). doi: arXiv :2003.
12590 (cit. on p. 116).

[273] M. Grohe, K. Kersting, M. Mladenov, and A. E. Selman. “Dimension Reduction via Colour
Refinement”. In: Procs. of the European Symposium on Algorithms 2014. 2014. url: http:
//link.springer.com/chapter/10.1007/978-3-662-44777-2_42 (cit. on p. 118).

[274] P. Grosjean and S. Urbanek. R Benchmark 2.5 Suite. 2008. url: http://r.research.att.com/
benchmarks/R-benchmark-25.R (cit. on p. 315).

[275] S. Gu and Y. Yang. “A Deep Learning Algorithm for the Max-Cut Problem Based on Pointer
Network Structure with Supervised Learning and Reinforcement Learning Strategies”. In:
Mathematics 8.2 (2020) (cit. on p. 145).

[276] S. Gu, T. Lillicrap, I. Sutskever, and S. Levine. “Continuous deep Q-learning with model-
based acceleration”. In: Procs. of the Int. Conference on Machine Learning 2016. 2016,
pp. 2829–2838 (cit. on p. 259).

[277] F. Guidi and C. Sacerdoti Coen. “A survey on retrieval of mathematical knowledge”. In: Procs.
of the Int. Conference on Intelligent Computer Mathematics 2015. Springer, 2015, pp. 296–
315 (cit. on p. 161).

[278] C. Guo, W. Luk, and W. Xu. “Non-linear function evaluation reusing matrix-vector multipliers”.
In: Procs. of the IEEE Int. Conference on ASIC 2019. IEEE, pp. 1–4 (cit. on pp. 251, 256).

[279] C. Guo et al. “Breaking the glass ceiling for embedding-based classifiers for large output
spaces”. In: Advances in Neural Information Processing Systems 32: Procs. of the 2019
Conference. Vol. 32. 2019 (cit. on p. 283).

[280] A. Gupta, K. Ni, O. Prakash, X. S. Hu, and H. Amrouch. “Temperature Dependence and
Temperature-Aware Sensing in Ferroelectric FET”. In: Procs. of the IEEE Int. Reliability Physics
Symposium 2020. 2020 (cit. on p. 328).

[281] A. Gupta, R. Krauthgamer, and J. R. Lee. “Bounded Geometries, Fractals, and Low-Distortion
Embeddings”. In: Procs. of the IEEE Symposium on Foundations of Computer Science 2003.
IEEE. 2003, pp. 534–543. doi: 10.1109/SFCS.2003.1238226 (cit. on p. 201).

[282] U. Gupta et al. “Chasing Carbon: The Elusive Environmental Footprint of Computing”. In:
Procs. of the IEEE Int. Symposium on High-Performance Computer Architecture 2021. 2021,
pp. 854–867. doi: https://doi.org/10.1109/HPCA51647.2021.00076 (cit. on p. 3).

[283] B. Haasdonk and C. Bahlmann. “Learning with Distance Substitution Kernels”. In: Pattern
Recognition. Vol. 3175. Lecture Notes in Computer Science. Springer Berlin Heidelberg,
2004, pp. 220–227 (cit. on p. 123).

[284] L. Habel, A. Molina, T. Zaksek, K. Kersting, and M. Schreckenberg. “Traffic simulations with
empirical data – How to replace missing traffic flows?” In: Traffic and Granular Flow ’15. Ed.
by V. L. Knoop and W. Daamen. Springer, May 2016, pp. 491–498. doi: http://dx.doi.org/10.
1007/978-3-319-33482-0_62 (cit. on p. 92). SFB876-B4

[285] Haci Bayhan, Dietmar Ebel, Timo Erler, Lorenz Kiebler, Kira Schmeltzpfenning, and Robert
Schulze Forsthövel. Logistik IT im Wandel: Einbindung dezentraler IT-Strukturen am Beispiel
eines Cyberphysischen Produktionssystems (CPPS). 2021. url: https://leistungszentrum-
logistik-it.de/wp-content/uploads/2021/02/Whitepaper_Logistik-IT-im-Wandel.pdf (cit. on
p. 45).

https://doi.org/arXiv:2003.12590
https://doi.org/arXiv:2003.12590
http://link.springer.com/chapter/10.1007/978-3-662-44777-2_42
http://link.springer.com/chapter/10.1007/978-3-662-44777-2_42
http://r.research.att.com/benchmarks/R-benchmark-25.R
http://r.research.att.com/benchmarks/R-benchmark-25.R
https://doi.org/10.1109/SFCS.2003.1238226
https://doi.org/https://doi.org/10.1109/HPCA51647.2021.00076
https://doi.org/http://dx.doi.org/10.1007/978-3-319-33482-0_62
https://doi.org/http://dx.doi.org/10.1007/978-3-319-33482-0_62
https://leistungszentrum-logistik-it.de/wp-content/uploads/2021/02/Whitepaper_Logistik-IT-im-Wandel.pdf
https://leistungszentrum-logistik-it.de/wp-content/uploads/2021/02/Whitepaper_Logistik-IT-im-Wandel.pdf

Bibliography | 455

[286] F. Hadiji, A. Molina, S. Natarajan, and K. Kersting. “Poisson Dependency Networks: Gradient
Boosted Models for Multivariate Count Data”. In:Machine Learning Journal 100.2 (2015),
pp. 477–507. doi: http://dx.doi.org/10.1007/s10994-015-5506-z (cit. on p. 92). SFB876-B4

[287] S. F. Hafstein, R. Chrobok, A. Pottmeier, and M. S. and F. Mazur. “A High-Resolution Cellular
Automata Traffic Simulation Model with Application in a Freeway Traffic Information System”.
In: Computer-Aided Civil and Infrastructure Engineering 19.5 (2004), pp. 338–350 (cit. on
p. 101).

[288] R. T. Haftka, D. Villanueva, and A. Chaudhuri. “Parallel surrogate-assisted global optimiza-
tion with expensive functions – a survey”. In: Structural and Multidisciplinary Optimization
54.1 (2016), pp. 3–13 (cit. on p. 287).

[289] L. A. Hall and D. B. Shmoys. “Jackson’s Rule for Single-Machine Scheduling: Making a
Good Heuristic Better”. In:Mathematics of Operations Research 17.1 (1992), pp. 22–35. doi:
https://doi.org/10.1287/moor.17.1.22 (cit. on p. 365).

[290] A. Hamann, D. Dasari, S. Kramer, M. Pressler, and F. Wurst. “Communication Centric Design
in Complex Automotive Embedded Systems”. In: Procs. of the Euromicro Conference on
Real-Time Systems 2017. 2017, 10:1–10:20 (cit. on p. 368).

[291] W. L. Hamilton. “Graph Representation Learning”. In: Synthesis Lectures on Artificial Intelli-
gence and Machine Learning 14.3 (2020), pp. 1–159 (cit. on pp. 130, 145).

[292] W. L. Hamilton, R. Ying, and J. Leskovec. “Inductive Representation Learning on Large
Graphs”. In: arXiv: Computing Research Repository (2017). doi: arXiv : 1706 .02216 (cit.
on pp. 125, 126, 130, 132, 136, 141).

[293] J. Han, K. Song, F. Nie, and X. Li. “Bilateral k-Means Algorithm for Fast Co-Clustering.” In:
Procs. of the AAAI Conference on Artificial Intelligence 2017. 2017, pp. 1969–1975 (cit. on
p. 232).

[294] S. Har-Peled. “A Simple Algorithm for MaximumMargin Classification, Revisited”. In: arXiv:
Computing Research Repository (2015). doi: arXiv:1507.01563 (cit. on p. 87).

[295] S. Har-Peled and S. Mazumdar. “On coresets for k-means and k-median clustering”. In:
Procs. of the ACM Symposium on Theory of Computing 2004. ACM, 2004, pp. 291–300 (cit.
on pp. 86–88).

[296] S. Har-Peled and B. Raichel. “The Fréchet Distance Revisited and Extended”. In: ACM Trans-
actions on Algorithms 10.1 (2014). Previously appeared in Procs. of the Int. Symposium on
Computational Geometry 2011, 3:1–3:22. doi: http://doi.acm.org/10.1145/2532646 (cit. on
p. 202).

[297] S. Har-Peled, D. Roth, and D. Zimak. “MaximumMargin Coresets for Active and Noise Tol-
erant Learning”. In: Procs. of the Int. Joint Conference on Artificial Intelligence 2007. 2007,
pp. 836–841 (cit. on p. 87).

[298] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference and Prediction. 2nd. Statistics. Springer, 2009 (cit. on p. XI).

[299] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer series in statistics. New York, USA: Springer, 2001 (cit.
on p. 184).

[300] B. He et al. “Relational Joins on Graphics Processors”. In: Procs. of the ACM SIGMOD Int.
Conference on Management of Data 2008. Vancouver, BC, Canada, June 2008, pp. 511–524
(cit. on p. 387).

[301] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. M. Kadie. “Dependency
Networks for Collaborative Filtering and Data Visualization”. In: Procs. of the Conference on
Uncertainty in Artificial Intelligence 2000. 2000, pp. 264–273. url: https://dslpitt.org/uai/
displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article_id=31%5C&proceeding_id=16
(cit. on p. 92).

https://doi.org/http://dx.doi.org/10.1007/s10994-015-5506-z
https://doi.org/https://doi.org/10.1287/moor.17.1.22
https://doi.org/arXiv:1706.02216
https://doi.org/arXiv:1507.01563
https://doi.org/http://doi.acm.org/10.1145/2532646
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article_id=31%5C&proceeding_id=16
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1%5C&smnu=2%5C&article_id=31%5C&proceeding_id=16

456 | Bibliography

[302] M. Heimel, M. Saecker, H. Pirk, S. Manegold, and V. Markl. “Hardware-Oblivious Parallelism
for In-Memory Column-Stores”. In: Procs. of the VLDB Endowment 6.9 (2013), pp. 709–720
(cit. on p. 382).

[303] M. Heinrich, A. Munteanu, and C. Sohler. “Asymptotically exact streaming algorithms”. In:
arXiv: Computing Research Repository (2014). doi: arXiv:1408.1847 (cit. on p. 90).

[304] H. Hellbrück, M. Pagel, A. Köller, D. Bimschas, D. Pfisterer, and S. Fischer. “Using and
Operating Wireless Sensor Network Testbeds with WISEBED”. In: Procs. of the IFIP Annual
Mediterranean Ad Hoc Networking Workshop 2011. 2011, pp. 171–178 (cit. on p. 35).

[305] P. Henderson, J. Hu, J. Romoff, E. Brunskill, D. Jurafsky, and J. Pineau. “Towards the Sys-
tematic Reporting of the Energy and Carbon Footprints of Machine Learning”. In: Journal of
Machine Learning Research 21.248 (2020), pp. 1–43. url: http://jmlr.org/papers/v21/20-
312.html (cit. on p. 6).

[306] S. Henwood, F. Leduc-Primeau, and Y. Savaria. “Layerwise Noise Maximisation to Train
Low-Energy Deep Neural Networks”. In: arXiv: Computing Research Repository (2019). doi:
arXiv:1912.10764 (cit. on pp. 326, 327).

[307] D. Herr, Q. Han, S. Lohmann, and T. Ertl. “Visual Clutter Reduction through Hierarchy-based
Projection of High-dimensional Labeled Data”. In: Procs. of the Graphics Interface Confer-
ence 2016. 2016, pp. 109–116 (cit. on p. 216).

[308] S. Hess, W. Duivesteijn, P.-J. Honysz, and K. Morik. “The SpectACl of Nonconvex Clustering:
a Spectral Approach to Density-Based Clustering”. In: Procs. of the AAAI Conference on
Artificial Intelligence 2019. 2019 (cit. on p. 231). SFB876-C1

[309] S. Hess and K. Morik. “C-SALT: Mining Class-Specific ALTerations in Boolean Matrix Factor-
ization”. In: Procs. of the Joint European Conference on Machine Learning and Knowledge
Discovery in Databases 2017. Springer, 2017. url: https://link.springer.com/content/pdf/10.
1007/978-3-319-71249-9_33.pdf (cit. on pp. 228, 238). SFB876-C1

[310] S. Hess, K. Morik, and N. Piatkowski. “The PRIMPING routine—Tiling through proximal
alternating linearized minimization”. In: Data Mining and Knowledge Discovery 31.4 (July
2017), pp. 1090–1131. doi: https://doi.org/10.1007/s10618-017-0508-z (cit. on pp. 228,
234, 237–239, 246). SFB876-A1, SFB876-C1

[311] S. Hess, N. Piatkowski, and K. Morik. “The Trustworthy Pal: Controlling the False Discovery
Rate in Boolean Matrix Factorization”. In: Procs. of the 2018 SIAM Int. Conference on Data
Mining 2018. SIAM. 2018, pp. 405–413. doi: https://doi.org/10.1137/1.9781611975321.46
(cit. on pp. 228, 237, 238). SFB876-A1, SFB876-C1

[312] S. Hess, G. Pio, M. Hochstenbach, and M. Ceci. “BROCCOLI: overlapping and outlier-robust
biclustering through proximal stochastic gradient descent”. In: Data Mining and Knowledge
Discovery (2021), pp. 1–35 (cit. on pp. 228, 238, 244, 246).

[313] J. Hester and J. Sorber. “Flicker: Rapid prototyping for the batteryless internet-of-things”. In:
Procs. of the SenSys Conference 2017. ACM, 2017 (cit. on p. 57).

[314] S. Hido and H. Kashima. “A Linear-Time Graph Kernel”. In: Procs. of the IEEE Int. Conference
on Data Mining 2009. 2009, pp. 179–188 (cit. on p. 125).

[315] T. Hirtzlin et al. “Implementing Binarized Neural Networks with Magnetoresistive RAM
without Error Correction”. In: arXiv: Computing Research Repository (2019). doi: arXiv :
1908.04085 (cit. on p. 327).

[316] T. Hirtzlin et al. “Outstanding Bit Error Tolerance of Resistive RAM-Based Binarized Neural
Networks”. In: Procs. of the Int. Conference on Artificial Intelligence Circuits and Systems
2019. 2019 (cit. on pp. 327, 330, 331).

[317] D. S. Hochbaum and D. B. Shmoys. “A best possible heuristic for the k-center problem”. In:
Mathematics of Operations Research 10.2 (1985), pp. 180–184 (cit. on p. 200).

https://doi.org/arXiv:1408.1847
http://jmlr.org/papers/v21/20-312.html
http://jmlr.org/papers/v21/20-312.html
https://doi.org/arXiv:1912.10764
https://link.springer.com/content/pdf/10.1007/978-3-319-71249-9_33.pdf
https://link.springer.com/content/pdf/10.1007/978-3-319-71249-9_33.pdf
https://doi.org/https://doi.org/10.1007/s10618-017-0508-z
https://doi.org/https://doi.org/10.1137/1.9781611975321.46
https://doi.org/arXiv:1908.04085
https://doi.org/arXiv:1908.04085

Bibliography | 457

[318] S. Hochreiter et al. “FABIA: Factor Analysis for Bicluster Acquisition”. In: Bioinformatics
(Oxford, England) 26 (Apr. 2010), pp. 1520–7 (cit. on p. 239).

[319] W. Hoeffding. “Probability inequalities for sums of bounded random variables”. In: Journal
of the American Statistical Association 58.301 (1963), pp. 13–30 (cit. on p. 377).

[320] W. Hu et al. “Open Graph Benchmark: Datasets for Machine Learning on Graphs”. In: arXiv:
Computing Research Repository (2020). doi: arXiv : 2005 . 00687 (cit. on pp. 129, 141).
SFB876-A6

[321] Q. Huang, H. He, A. Singh, S. N. Lim, and A. R. Benson. “Combining Label Propagation and
Simple Models Out-performs Graph Neural Networks”. In: Procs. of the Int. Conference on
Learning Representations 2021. 2021 (cit. on pp. 130, 137).

[322] R. Huang, V. Pavlovic, and D. Metaxas. “A New Spatio-Temporal MRF Framework for Video-
based Object Segmentation”. In: Procs. of the Int. Workshop on Machine Learning for Vision-
based Motion Analysis 2008. Marseille, France, 2008 (cit. on p. 102).

[323] W. Huang, T. Zhang, Y. Rong, and J. Huang. “Adaptive Sampling Towards Fast Graph Repre-
sentation Learning”. In: Advances in Neural Information Processing Systems 31: Procs. of the
2018 Conference. 2018 (cit. on p. 136).

[324] W.-H. Huang, J.-J. Chen, H. Zhou, and C. Liu. “PASS: Priority Assignment of Real-Time Tasks
with Dynamic Suspending Behavior under Fixed-Priority Scheduling”. In: Procs. of the
Design Automation Conference 2015. 2015 (cit. on p. 363). SFB876-B2

[325] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. “Binarized Neural Net-
works”. In: Advances in Neural Information Processing Systems 29: Procs. of the 2016 Con-
ference. 2016, pp. 4107–4115 (cit. on pp. 10, 329).

[326] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio. “Quantized Neural Net-
works: Training Neural Networks with Low Precision Weights and Activations”. In: Journal of
Machine Learning Research 18 (2018) (cit. on p. 253).

[327] J. H. Huggins, T. Campbell, and T. Broderick. “Coresets for Scalable Bayesian Logistic Re-
gression”. In: Advances in Neural Information Processing Systems 29: Procs. of the 2016
Conference. 2016, pp. 4080–4088. url: http://papers.nips.cc/paper/6486-coresets-for-
scalable-bayesian-logistic-regression (cit. on pp. 87, 90, 91).

[328] F. Hutter, H. H. Hoos, and K. Leyton-Brown. “Parallel Algorithm Configuration”. In: Learning
and Intelligent Optimization. Ed. by Y. Hamadi and M. Schoenauer. Lecture Notes in Com-
puter Science 7219. Springer Berlin Heidelberg, 2012, pp. 55–70. url: http://link.springer.
com/chapter/10.1007/978-3-642-34413-8_5 (cit. on p. 287).

[329] F. Hutter, H. H. Hoos, and K. Leyton-Brown. “Sequential Model-Based Optimization for
General Algorithm Configuration”. In: Learning and Intelligent Optimization. Ed. by C. A.
Coello. Lecture Notes in Computer Science 6683. Springer Berlin Heidelberg, 2011, pp. 507–
523. url: http://link.springer.com/chapter/10.1007/978-3-642-25566-3_40 (cit. on p. 292).

[330] T. I. “Longest Common Extensions with Recompression”. In: Procs. of the Symposium on
Combinatorial Pattern Matching 2017. Ed. by J. Kärkkäinen, J. Radoszewski, and W. Ryt-
ter. Vol. 78. Leibniz Int. Proceedings in Informatics (LIPIcs). Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2017, 18:1–18:15 (cit. on p. 157).

[331] A. Ihler and D. McAllester. “Particle Belief Propagation”. In: Procs. of the Int. Conference on
Artificial Intelligence and Statistics 2009. Ed. by D. van Dyk and M. Welling. 2009, pp. 256–
263 (cit. on p. 407).

[332] A. T. Ihler, J. W. Fischer III, and A. S. Willsky. “Loopy Belief Propagation: Convergence and
Effects of Message Errors”. In: Journal of Machine Learning Research 6 (Dec. 2005), pp. 905–
936 (cit. on p. 413).

[333] P. Indyk. “High-dimensional Computational Geometry”. PhD thesis. Stanford University,
2000 (cit. on p. 201).

https://doi.org/arXiv:2005.00687
http://papers.nips.cc/paper/6486-coresets-for-scalable-bayesian-logistic-regression
http://papers.nips.cc/paper/6486-coresets-for-scalable-bayesian-logistic-regression
http://link.springer.com/chapter/10.1007/978-3-642-34413-8_5
http://link.springer.com/chapter/10.1007/978-3-642-34413-8_5
http://link.springer.com/chapter/10.1007/978-3-642-25566-3_40

458 | Bibliography

[334] Intel Corporation. Intel 64 and IA-32 Architectures Optimization Reference Manual. 2016.
url: http://www.intel.de/content/www/de/de/architecture-and-technology/64-ia-32-
architectures-optimization-manual.html (cit. on p. 408).

[335] S. Ioffe and C. Szegedy. “Batch Normalization: Accelerating Deep Network Training by
Reducing Internal Covariate Shift”. In: Procs. of the Int. Conference on Machine Learning
2015. 2015, pp. 448–456. url: http://jmlr.org/proceedings/papers/v37/ioffe15.html (cit. on
p. 166).

[336] H. Jain, Y. Prabhu, and M. Varma. “Extreme multi-label loss functions for recommendation,
tagging, ranking & other missing label applications”. In: Procs. of the ACM SIGKDD Confer-
ence on Knowledge Discovery and Data Mining 2016. 2016, pp. 935–944 (cit. on p. 284).

[337] K. Jain, M. Mahdian, and A. Saberi. “A New Greedy Approach for Facility Location Problems”.
In: Procs. of the Symposium on Theory of Computing 2002. ACM, 2002, pp. 731–740. doi:
http://doi.acm.org/10.1145/509907.510012 (cit. on p. 200).

[338] J. Janusevskis, R. Le Riche, and D. Ginsbourger. Parallel Expected Improvements for Global
Optimization: Summary, Bounds and Speed-Up. Tech. rep. 2011, pp. 1–21. url: https://hal.
archives-ouvertes.fr/hal-00613971 (cit. on p. 292).

[339] J. Janusevskis, R. Le Riche, D. Ginsbourger, and R. Girdziusas. “Expected Improvements
for the Asynchronous Parallel Global Optimization of Expensive Functions: Potentials and
challenges”. In: Learning and Intelligent Optimization. Springer, 2012, pp. 413–418 (cit. on
pp. 288, 292).

[340] K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. “What is the best multi-stage architec-
ture for object recognition?” In: Procs. of the IEEE Int. Conference on Computer Vision 2009.
IEEE Computer Society, 2009, pp. 2146–2153 (cit. on p. 242).

[341] H. Jayakumar, A. Raha, and V. Raghunathan. “QUICKRECALL: A Low Overhead HW/SW Ap-
proach for Enabling Computations across Power Cycles in Transiently Powered Computers”.
In: Procs. of the Int. Conference on VLSI Design 2014 (2014) (cit. on p. 53).

[342] A. Jez. “Recompression: A Simple and Powerful Technique for Word Equations”. In: Journal of
the Association for Computing Machinery 63.1 (Feb. 2016) (cit. on pp. 154, 157).

[343] H. Jiang, T. Kathuria, Y. T. Lee, S. Padmanabhan, and Z. Song. “A Faster Interior Point Method
for Semidefinite Programming”. In: Procs. of the IEEE Symposium on Foundations of Com-
puter Science 2020. 2020, pp. 910–918 (cit. on p. 150).

[344] W. Jiang and S. G. Kong. “Block-based neural networks for personalized ECG signal clas-
sification”. In: IEEE Transactions on Neural Networks 18.6 (2007), pp. 1750–1761 (cit. on
p. 254).

[345] W. Jiang, S. G. Kong, and G. D. Peterson. “Continuous heartbeat monitoring using evolvable
block-based neural networks”. In: Procs. of the IEEE Int. Joint Conference on Neural Networks
2006. IEEE. 2006, pp. 1950–1957 (cit. on p. 254).

[346] W. Jiang, S. G. Kong, and G. D. Peterson. “ECG signal classification using block-based neural
networks”. In: Procs. of the IEEE Int. Joint Conference on Neural Networks 2005. Vol. 1. IEEE.
2005, pp. 326–331 (cit. on p. 254).

[347] Z. Jiang, H. Liu, B. Fu, and Z. Wu. “Generalized ambiguity decompositions for classification
with applications in active learning and unsupervised ensemble pruning”. In: Procs. of the
AAAI Conference on Artificial Intelligence 2017. 2017, pp. 2073–2079 (cit. on p. 340).

[348] D. R. Jones, M. Schonlau, and W. J. Welch. “Efficient Global Optimization of Expensive Black-
Box Functions”. In: Journal of Global Optimization 13.4 (1998), 455–492. url: http://link.
springer.com/article/10.1023/A:1008306431147 (cit. on p. 286).

[349] P. Joshi, D. Colombi, B. Thors, L. E. Larsson, and C. Törnevik. “Output Power Levels of 4G
User Equipment and Implications on Realistic RF EMF Exposure Assessments”. In: IEEE
Access 5 (2017), pp. 4545–4550 (cit. on p. 435).

http://www.intel.de/content/www/de/de/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://www.intel.de/content/www/de/de/architecture-and-technology/64-ia-32-architectures-optimization-manual.html
http://jmlr.org/proceedings/papers/v37/ioffe15.html
https://doi.org/http://doi.acm.org/10.1145/509907.510012
https://hal.archives-ouvertes.fr/hal-00613971
https://hal.archives-ouvertes.fr/hal-00613971
http://link.springer.com/article/10.1023/A:1008306431147
http://link.springer.com/article/10.1023/A:1008306431147

Bibliography | 459

[350] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov. “Bag of Tricks for Efficient Text Classifica-
tion”. In: Procs. of the Conference of the European Chapter of the Association for Computa-
tional Linguistics 2017. 2017, pp. 1–55. doi: arXiv:1511.09249 (cit. on pp. 175, 176).

[351] B. D. Jovanovic and P. S. Levy. “A Look at the Rule of Three”. In: The American Statistician
51.2 (1997), pp. 137–139. url: https://www.tandfonline.com/doi/abs/10.1080/00031305.
1997.10473947 (cit. on p. 79).

[352] S. Jung et al. “A crossbar array of magnetoresistive memory devices for in-memory comput-
ing”. In: Nature 601.7892 (2022), pp. 211–216 (cit. on p. 4).

[353] T. Kalibera, P. Maj, F. Morandat, and J. Vitek. “A Fast Abstract Syntax Tree Interpreter for R”.
In: Procs. of the ACM SIGPLAN/SIGOPS Int. Conference on Virtual Execution Environments
2014. VEE ’14. ACM, 2014, pp. 89–102 (cit. on p. 315).

[354] R. Kannan, S. Vempala, and D. P. Woodruff. “Principal Component Analysis and Higher
Correlations for Distributed Data”. In: Procs. of the Conference on Learning Theory 2014.
2014, pp. 1040–1057 (cit. on p. 89).

[355] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman, and A. Y. Wu. “A local
search approximation algorithm for k-means clustering”. In: Computational Geometry:
Theory and Applications 28.2-3 (2004). Previously appeared in Procs. of the Int. Symposium
on Computational Geometry 2002, pp. 89–112 (cit. on p. 184).

[356] S. Karaev, P. Miettinen, and J. Vreeken. “Getting to know the unknown unknowns:
Destructive-noise resistant Boolean matrix factorization”. In: Procs. of the SIAM Int.
Conference on Data Mining 2015. SIAM. 2015, pp. 325–333 (cit. on p. 239).

[357] O. Kariv and S. Hakimi. “An Algorithmic Approach to Network Location Problems. II: The
p-Medians”. In: SIAM Journal on Applied Mathematics 37.3 (1979), pp. 539–560 (cit. on
p. 183).

[358] T. Karnagel, R. Mueller, and G. M. Lohman. “Optimizing GPU-Accelerated Group-By and
Aggregation”. In: Procs. of the Int. Workshop on Accelerating Data Management Systems at
the Int. Conference on Very Large Data Bases 2015. 2015, pp. 13–24 (cit. on pp. 384, 392).

[359] R. M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity of Computer
Computations: Proceedings of a symposium on the Complexity of Computer Computations.
Springer US, 1972, pp. 85–103 (cit. on p. 144).

[360] V. Kartsch, S. Benatti, M. Mancini, M. Magno, and L. Benini. “Smart wearable wristband for
EMG based gesture recognition powered by solar energy harvester”. In: Procs. of the Int.
Symposium on Computer Architecture 2018. IEEE. 2018, pp. 1–5 (cit. on p. 61).

[361] G. Karypis and V. Kumar. “A Fast and High Quality Multilevel Scheme for Partitioning Irreg-
ular Graphs”. In: SIAM Journal on Scientific Computing 20.1 (1998), pp. 359–392 (cit. on
p. 140).

[362] S. Kato, R. Rajkumar, and Y. Ishikawa. “A loadable real-time scheduler suite for multicore
platforms”. In: Technical Report CMU-ECE-TR09-12 (2009) (cit. on p. 374).

[363] L. Kaufman and P. J. Rousseeuw. “Clustering by means of medoids”. In: Statistical Data
Analysis Based on the L1 Norm and Related Methods. Ed. by Y. Dodge. North-Holland, 1987,
pp. 405–416 (cit. on pp. 182, 188).

[364] L. Kaufman and P. J. Rousseeuw. Finding Groups in Data: An Introduction to Cluster Analysis.
John Wiley & Sons, 1990 (cit. on pp. 215, 218).

[365] L. Kaufman and P. J. Rousseeuw. “Partitioning Around Medoids (Program PAM)”. In: Finding
Groups in Data. John Wiley&Sons, 1990. Chap. 2, pp. 68–125 (cit. on pp. 182, 188).

[366] J. Kays, A. Seack, T. Smirek, F. Westkamp, and C. Rehtanz. “The Generation of Distribution
Grid Models on the Basis of Public Available Data”. In: 32.3 (2017), pp. 2346–2353 (cit. on
p. 185).

https://doi.org/arXiv:1511.09249
https://www.tandfonline.com/doi/abs/10.1080/00031305.1997.10473947
https://www.tandfonline.com/doi/abs/10.1080/00031305.1997.10473947

460 | Bibliography

[367] E. Kazemi, M. Mitrovic, M. Zadimoghaddam, S. Lattanzi, and A. Karbasi. “Submodular
Streaming in All Its Glory: Tight Approximation, MinimumMemory and Low Adaptive Com-
plexity”. In: Procs. of the Int. Conference on Machine Learning 2019. 2019, pp. 3311–3320.
url: http://proceedings.mlr.press/v97/kazemi19a.html (cit. on pp. 76, 77).

[368] S. S. Keerthi, D. DeCoste, and T. Joachims. “A modified finite Newton method for fast solu-
tion of large scale linear SVMs.” In: Journal of Machine Learning Research 6.3 (2005) (cit. on
p. 278).

[369] K. Kersting, B. Ahmadi, and S. Natarajan. “Counting belief propagation”. In: Procs. of the
Conference on Uncertainty in Artificial Intelligence 2009. 2009, pp. 277–284 (cit. on p. 407).

[370] A. H. Khan. “Lightweight Neural Networks”. In: arXiv: Computing Research Repository (2017).
doi: arXiv:1712.05695 (cit. on p. 61).

[371] S. Khandagale, H. Xiao, and R. Babbar. “Bonsai: diverse and shallow trees for extreme
multi-label classification”. In:Machine Learning Journal 109.11 (2020) (cit. on p. 283).

[372] S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. “Optimal Inapproximability Results for
MAX-CUT and Other 2-Variable CSPs?” In: SIAM Journal on Computing (SICOMP) 37.1 (2007),
pp. 319–357 (cit. on p. 145).

[373] C. Kim et al. “FAST: Fast architecture sensitive tree search on modern CPUs and GPUs”.
In: Procs. of the ACM SIGMOD Int. Conference on Management of Data 2010. ACM. 2010,
pp. 339–350 (cit. on p. 341).

[374] D. Kim, T. Na, S. Yalamanchili, and S. Mukhopadhyay. “DeepTrain: A Programmable Embed-
ded Platform for Training Deep Neural Networks”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 37.11 (2018), pp. 2360–2370 (cit. on pp. 251, 253).

[375] T. N. Kipf and M. Welling. “Semi-Supervised Classification with Graph Convolutional Net-
works”. In: Procs. of the Int. Conference on Learning Representations 2017. 2017 (cit. on
pp. 125, 130, 132, 136, 141).

[376] T. Kipf, E. Fetaya, K.-C. Wang, M. Welling, and R. Zemel. “Neural Relational Inference for
Interacting Systems”. In: Procs. of the Int. Conference on Machine Learning 2018. Ed. by J. Dy
and A. Krause. Vol. 80. Procs. of Machine Learning Research. PMLR, June 2018, pp. 2688–
2697 (cit. on p. 99).

[377] H. Kise, T. Ibaraki, and H. Mine. “Performance Analysis of six Approximation Algorithms for
the One-Machine Maximum Lateness Scheduling Problem with Ready Times”. In: Journal of
the Operations Research Society of Japan 22.3 (1979), pp. 205–224 (cit. on p. 365).

[378] J. Klicpera, A. Bojchevski, and S. Günnemann. “Predict then Propagate: Graph Neural Net-
works meet Personalized PageRank”. In: Procs. of the Int. Conference on Learning Represen-
tations 2019. 2019 (cit. on pp. 130, 132, 136, 137).

[379] O. Koch, N. M. Kriege, and L. Humbeck. “Chemical Similarity and Substructure Searches”.
In: Encyclopedia of Bioinformatics and Computational Biology - Volume 2. Ed. by S. Ran-
ganathan, M. Gribskov, K. Nakai, and C. Schönbach. Elsevier, 2019, pp. 640–649. doi:
https://doi.org/10.1016/b978-0-12-809633-8.20195-7 (cit. on p. 116).

[380] P. Koch, M. Dreier, M. Maass, M. Böhme, H. Phan, and A. Mertins. “A recurrent neural net-
work for hand gesture recognition based on accelerometer data”. In: Procs. of the Int. Con-
ference of the IEEE Engineering in Medicine and Biology Society 2019. IEEE. 2019, pp. 5088–
5091 (cit. on p. 61).

[381] S. Koppula et al. “EDEN: Enabling Energy-Efficient, High-Performance Deep Neural Network
Inference Using Approximate DRAM”. In: Procs. of the Int. Symposium on Microarchitecture
2019. 2019 (cit. on pp. 327, 329).

[382] A. Kopytov. SysBench: a system performance benchmark. 2004. url: https://github.com/
akopytov/sysbench (cit. on p. 28).

http://proceedings.mlr.press/v97/kazemi19a.html
https://doi.org/arXiv:1712.05695
https://doi.org/https://doi.org/10.1016/b978-0-12-809633-8.20195-7
https://github.com/akopytov/sysbench
https://github.com/akopytov/sysbench

Bibliography | 461

[383] I. Korb, H. Kotthaus, and P. Marwedel. “mmapcopy: Efficient Memory Footprint Reduction
using Application-Knowledge”. In: Procs. of the ACM Symposium on Applied Computing
2016. 2016. doi: https://dl.acm.org/doi/pdf/10.1145/2851613.2851736 (cit. on pp. 307, 310).
SFB876-A3

[384] H. Kotthaus and M. Lang. BenchR: Set of Benchmark of R. TU Dortmund University. 2018. url:
https://github.com/allr/benchR (cit. on pp. 314, 315).

[385] H. Kotthaus. “Methods for Efficient Resource Utilization in Statistical Machine Learning
Algorithms”. PhD thesis. Dortmund: TU Dortmund University, 2018. doi: http://dx.doi.org/
10.17877/DE290R-18928 (cit. on pp. 289, 293, 295–299, 301–303, 307, 309–312, 314, 317,
318, 320–323). SFB876-A3

[386] H. Kotthaus, I. Korb, M. Engel, and P. Marwedel. “Dynamic Page Sharing Optimization for the
R Language”. In: Procs. of the Symposium on Dynamic Languages 2014. DLS ’14. Portland,
Oregon, USA: ACM, 2014, pp. 79–90. doi: https://dl .acm.org/doi/10.1145/2661088.
2661094 (cit. on p. 307). SFB876-A3

[387] H. Kotthaus, I. Korb, M. Lang, B. Bischl, J. Rahnenführer, and P. Marwedel. “Runtime and
Memory Consumption Analyses for Machine Learning R Programs”. In: Journal of Statistical
Computation and Simulation 85.1 (2014), pp. 14–29. url: http://www.tandfonline.com/
eprint/T3mgYXAWdY4kWuDeSv2A/full (cit. on pp. 306, 323). SFB876-A3

[388] H. Kotthaus, J. Richter, A. Lang, M. Lang, and P. Marwedel. Resource-Aware Scheduling
Strategies for Parallel Machine Learning R Programs through RAMBO. Stanford University,
Palo Alto, California, July 2016, p. 195. url: http://user2016.r- project .org/files/abs-
book.pdf (cit. on p. 11).

[389] H. Kotthaus, L. Schönberger, A. Lang, J.-J. Chen, and P. Marwedel. “Can Flexible Multi-Core
Scheduling Help to Execute Machine Learning Algorithms Resource-Efficiently?” In: Procs. of
the Int. Workshop on Software and Compilers for Embedded Systems 2019. SCOPES ’19. ACM,
2019, pp. 59–62. doi: https://dl.acm.org/doi/10.1145/3323439.3323986 (cit. on pp. 289,
292, 295). SFB876-A3, SFB876-C5

[390] H. Kotthaus et al. “RAMBO: Resource-Aware Model-Based Optimization with Scheduling
for Heterogeneous Runtimes and a Comparison with Asynchronous Model-Based Optimiza-
tion”. In: Procs. of the Int. Conference on Learning and Intelligent Optimization 2017. 2017,
pp. 180–195. url: https://www.springerprofessional.de/en/rambo-resource-aware-model-
based-optimization-with-scheduling-fo/15164982 (cit. on pp. 289, 292). SFB876-A3

[391] M. Koyutürk and A. Grama. “PROXIMUS: a framework for analyzing very high dimensional
discrete-attributed datasets”. In: Procs. of the ACM SIGKDD Conference on Knowledge
Discovery and Data Mining 2003. ACM. 2003, pp. 147–156 (cit. on pp. 232, 233).

[392] S. Kramer, D. Ziegenbein, and A. Hamann. “Real world automotive benchmark for free”.
In: Procs. of the Int. Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems 2015. 2015 (cit. on p. 368).

[393] A. Krause and D. Golovin. Submodular function maximization. 2014. url: http://www.cs.cmu.
edu/afs/.cs.cmu.edu/Web/People/dgolovin/papers/submodular_survey12.pdf (cit. on
p. 76).

[394] N. Kriege and P. Mutzel. “Subgraph Matching Kernels for Attributed Graphs”. In: Procs. of
the Int. Conference on Machine Learning 2012. Omnipress, 2012 (cit. on p. 124).

[395] N. Kriege, P. Giscard, and R. C. Wilson. “On Valid Optimal Assignment Kernels and Appli-
cations to Graph Classification”. In: arXiv: Computing Research Repository (2016). doi:
arXiv:1606.01141 (cit. on pp. 121, 122). SFB876-A6

[396] N. M. Kriege. “Deep Weisfeiler-Lehman Assignment Kernels via Multiple Kernel Learning”. In:
Procs. of the European Symposium on Artificial Neural Networks 2019. 2019 (cit. on p. 122).
SFB876-A6

https://doi.org/https://dl.acm.org/doi/pdf/10.1145/2851613.2851736
https://github.com/allr/benchR
https://doi.org/http://dx.doi.org/10.17877/DE290R-18928
https://doi.org/http://dx.doi.org/10.17877/DE290R-18928
https://doi.org/https://dl.acm.org/doi/10.1145/2661088.2661094
https://doi.org/https://dl.acm.org/doi/10.1145/2661088.2661094
http://www.tandfonline.com/eprint/T3mgYXAWdY4kWuDeSv2A/full
http://www.tandfonline.com/eprint/T3mgYXAWdY4kWuDeSv2A/full
http://user2016.r-project.org/files/abs-book.pdf
http://user2016.r-project.org/files/abs-book.pdf
https://doi.org/https://dl.acm.org/doi/10.1145/3323439.3323986
https://www.springerprofessional.de/en/rambo-resource-aware-model-based-optimization-with-scheduling-fo/15164982
https://www.springerprofessional.de/en/rambo-resource-aware-model-based-optimization-with-scheduling-fo/15164982
http://www.cs.cmu.edu/afs/.cs.cmu.edu/Web/People/dgolovin/papers/submodular_survey12.pdf
http://www.cs.cmu.edu/afs/.cs.cmu.edu/Web/People/dgolovin/papers/submodular_survey12.pdf
https://doi.org/arXiv:1606.01141

462 | Bibliography

[397] N. M. Kriege, P.-L. Giscard, F. Bause, and R. C. Wilson. “Computing Optimal Assignments in
Linear Time for Approximate Graph Matching”. In: Procs. of the IEEE Int. Conference on Data
Mining 2019. 2019 (cit. on p. 117). SFB876-A6

[398] N. M. Kriege, F. D. Johansson, and C. Morris. “A Survey on Graph Kernels”. In: Applied
Network Science 5.1 (2020), p. 6. doi: https://doi .org/10.1007/s41109- 019- 0195- 3
(cit. on p. 116). SFB876-A6

[399] H. Kriegel, E. Schubert, and A. Zimek. “The (black) art of runtime evaluation: Are we compar-
ing algorithms or implementations?” In: Knowledge and Information Systems (KAIS) 52.2
(2017). Online first 2016, paginated 2017, pp. 341–378. doi: https://doi.org/10.1007/s10115-
016-1004-2 (cit. on pp. 192, 223).

[400] R. Krishnakumar. “Kernel Korner: Kprobes – a Kernel Debugger”. In: Linux Journal 2005.133
(May 2005), p. 11 (cit. on pp. 17, 18).

[401] A. Krivošija. “On clustering and related problems on curves under the Fréchet distance”.
PhD thesis. TU Dortmund University, 2021. doi: http://dx.doi.org/10.17877/DE290R-22055
(cit. on p. 204).

[402] A. Krivošija and A. Munteanu. “Probabilistic smallest enclosing ball in high dimensions via
subgradient sampling”. In: Procs. of the Int. Symposium on Computational Geometry 2019.
Ed. by G. Barequet and Y. Wang. Vol. 129. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum fuer
Informatik, 2019, 47:1–47:14. doi: https://doi.org/10.4230/LIPIcs.SoCG.2019.47 (cit. on
pp. 87, 212). SFB876-A2, SFB876-C4

[403] A. Krizhevsky, I. Sutskever, and G. E. Hinton. “ImageNet Classification with Deep Convolu-
tional Neural Networks”. In: Advances in Neural Information Processing Systems 25: Procs.
of the 2012 Conference. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger.
Curran Associates, Inc., 2012, pp. 1097–1105 (cit. on p. 254).

[404] F. Kschischang, S. Member, B. J. Frey, and H.-a. Loeliger. “Factor Graphs and the Sum-
Product Algorithm”. In: IEEE Transactions on Information Theory 47.2 (2001), pp. 498–519
(cit. on pp. 105, 407, 411, 413).

[405] M. Kumar, R. Ghani, and Z.-S. Mei. “Data mining to predict and prevent errors in health
insurance claims processing”. In: Procs. of the ACM SIGKDD Conference on Knowledge
Discovery and Data Mining 2010. ACM. 2010, pp. 65–74 (cit. on pp. 201, 212).

[406] S. Kumar, S. Gollakota, and D. Katabi. “A Cloud-Assisted Design for Autonomous Driving”.
In: Procs. of the MCC Workshop on Mobile Cloud Computing 2012. MCC ’12. New York, NY,
USA: Association for Computing Machinery, 2012, pp. 41–46. doi: https://doi.org/10.1145/
2342509.2342519 (cit. on p. 363).

[407] J. D. Lafferty, A. McCallum, and F. C. N. Pereira. “Conditional Random Fields: Probabilistic
Models for Segmenting and Labeling Sequence Data”. In: Procs. of the Int. Conference on
Machine Learning 2001. Ed. by C. E. Brodley and A. P. Danyluk. Morgan Kaufmann, 2001,
pp. 282–289 (cit. on pp. 106, 416).

[408] K. P. Lakshmi and M. Subadra. “A survey on FPGA based MLP realization for on-chip learn-
ing”. In: International Journal of Scientific & Engineering Research 4.1 (2013), pp. 1–9 (cit. on
p. 253).

[409] W. H. K. Lam, Y. F. Tang, and M. Tam. “Comparison of two non-parametric models for daily
traffic forecasting in Hong Kong”. In: Journal of Forecasting 25.3 (2006), pp. 173–192 (cit. on
p. 102).

[410] P. Lancaster and M. Tismenetsky. The Theory of Matrices. Academic Press, 1985 (cit. on
p. 150).

[411] G. N. Lance and W. T. Williams. “A General Theory of Classificatory Sorting Strategies: 1.
Hierarchical Systems”. In: The Computer Journal 9.4 (Feb. 1967), pp. 373–380. doi: https:
//doi.org/10.1093/comjnl/9.4.373 (cit. on pp. 215, 216).

https://doi.org/https://doi.org/10.1007/s41109-019-0195-3
https://doi.org/https://doi.org/10.1007/s10115-016-1004-2
https://doi.org/https://doi.org/10.1007/s10115-016-1004-2
https://doi.org/http://dx.doi.org/10.17877/DE290R-22055
https://doi.org/https://doi.org/10.4230/LIPIcs.SoCG.2019.47
https://doi.org/https://doi.org/10.1145/2342509.2342519
https://doi.org/https://doi.org/10.1145/2342509.2342519
https://doi.org/https://doi.org/10.1093/comjnl/9.4.373
https://doi.org/https://doi.org/10.1093/comjnl/9.4.373

Bibliography | 463

[412] G. N. Lance and W. T. Williams. “A Generalized Sorting Strategy for Computer Classifica-
tions”. In: Nature 212.5058 (Oct. 1966), pp. 218–218. doi: https : //doi . org/ 10 . 1038/
212218a0 (cit. on pp. 215, 216).

[413] A. Lang and E. Schubert. “BETULA: Fast Clustering of Large Data with Improved BIRCH CF-
Trees”. In: Information Systems (2021). doi: https://doi.org/10.1016/j.is.2021.101918 (cit. on
pp. 216, 219–221). SFB876-A2

[414] A. Lang and E. Schubert. “BETULA: Numerically Stable CF-Trees for BIRCH Clustering”. In:
Procs. of the Int. Conference on Similarity Search and Applications 2020. best paper candi-
date. 2020, pp. 281–296. doi: https://doi.org/10.1007/978-3-030-60936-8_22 (cit. on
pp. 216, 219, 220). SFB876-A2

[415] M. Lang, B. Bischl, and D. Surmann. “batchtools: Tools for R to Work on Batch Systems”. In:
The Journal of Open Source Software 2.10 (2017) (cit. on p. 294).

[416] M. Langberg and L. J. Schulman. “Universal ϵ-approximators for Integrals”. In: Procs. of the
ACM-SIAM Symposium on Discrete Algorithms 2010. 2010, pp. 598–607 (cit. on p. 91).

[417] M. Langhammer and B. Pasca. “Activation Function Architectures for FPGAs”. In: Procs. of
the Int. Conference on Field Programmable Logic and Applications 2017. IEEE. 2017, pp. 1–6
(cit. on p. 253).

[418] J. Lässig, K. Kersting, and K. Morik. Computational Sustainability. Ed. by J. Lässig, K. Kerst-
ing, and K. Morik. Springer, 2016. url: http://link.springer.com/book/10.1007/978-3-319-
31858-5 (cit. on p. 6).

[419] L. Lazzeroni and A. Owen. “Plaid models for gene expression data”. In: Statistica sinica
(2002), pp. 61–86 (cit. on p. 233).

[420] Y. LeCun. “The MNIST database of handwritten digits”. In: http://yann. lecun. com/exdb/m-
nist/ (1998) (cit. on pp. 351, 352).

[421] Y. LeCun, Y. Bengio, and G. Hinton. “Deep learning”. In: Nature 521.7553 (2015), pp. 436–444
(cit. on pp. 253, 255).

[422] Y. A. LeCun, L. Bottou, G. B. Orr, and K.-R. Müller. “Efficient backprop”. In: Neural networks:
Tricks of the trade. Springer, 2012, pp. 9–48 (cit. on p. 252).

[423] D. D. Lee and H. S. Seung. “Learning the parts of objects by non-negative matrix factoriza-
tion”. In: Nature 401.6755 (1999), pp. 788–791 (cit. on p. 229).

[424] H. G. Lee and N. Chang. “Powering the IoT: Storage-less and converter-less energy harvest-
ing”. In: Procs. of the Asia and South Pacific Design Automation Conference 2015. Jan. 2015,
pp. 124–129 (cit. on p. 53).

[425] V. Leis, P. Boncz, A. Kemper, and T. Neumann. “Morsel-Driven Parallelism: A NUMA-Aware
Query Evaluation Framework for the Many-Core Age”. In: Procs. of the SIGMOD Int. Confer-
ence on the Management of Data 2014. ACM, 2014, pp. 743–754 (cit. on p. 386).

[426] M. Lewin, D. Livnat, and U. Zwick. “Improved Rounding Techniques for the MAX 2-SAT and
MAX DI-CUT Problems”. In: Procs. of the Int. Conference on Integer Programming and Combi-
natorial Optimization 2002. Ed. by W. J. Cook and A. S. Schulz. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2002, pp. 67–82 (cit. on pp. 145, 147).

[427] H. Li and Z. Lin. “Accelerated proximal gradient methods for nonconvex programming”. In:
Advances in Neural Information Processing Systems 28: Procs. of the 2015 Conference. 2015,
pp. 379–387 (cit. on p. 247).

[428] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang. “A High Performance FPGA-based Accel-
erator for Large-Scale Convolutional Neural Networks”. In: Procs. of the Int. Conference on
Field-Programmable Logic and Applications 2016. 2016 (cit. on p. 254).

[429] H. L. Li Yi and Nguyen and D. P. Woodruff. “Turnstile streaming algorithms might as well be
linear sketches”. In: Procs. of the Symposium on Theory of Computing 2014. 2014, pp. 174–
183 (cit. on p. 89).

https://doi.org/https://doi.org/10.1038/212218a0
https://doi.org/https://doi.org/10.1038/212218a0
https://doi.org/https://doi.org/10.1016/j.is.2021.101918
https://doi.org/https://doi.org/10.1007/978-3-030-60936-8_22
http://link.springer.com/book/10.1007/978-3-319-31858-5
http://link.springer.com/book/10.1007/978-3-319-31858-5

464 | Bibliography

[430] J. Li, J.-J. Chen, K. Agrawal, C. Lu, C. D. Gill, and A. Saifullah. “Analysis of Federated and
Global Scheduling for Parallel Real-Time Tasks”. In: Procs. of the Euromicro Conference on
Real-Time Systems 2014. 2014, pp. 85–96 (cit. on p. 367).

[431] J. Li, T. Luong, and D. Jurafsky. “A Hierarchical Neural Autoencoder for Paragraphs and
Documents”. In: Procs. of the Meeting of the Association for Computational Linguistics and
the Int. Joint Conference on Natural Language Processing 2015. Vol. 1. 2015, pp. 1106–1115
(cit. on p. 251).

[432] M. Li, G. L. Miller, and R. Peng. “Iterative Row Sampling”. In: Procs. of the IEEE Symposium
on Foundations of Computer Science 2013. 2013, pp. 127–136 (cit. on p. 87).

[433] S. Li and O. Svensson. “Approximating k-Median via Pseudo-Approximation”. In: SIAM
Journal on Computing 45.2 (2016). Previously appeared in the Procs. of the Symposium on
Theory of Computing 2013, pp. 530–547. doi: https://doi.org/10.1137/130938645 (cit. on
p. 201).

[434] T. Li. “A general model for clustering binary data”. In: Procs. of the ACM SIGKDD Conference
on Knowledge Discovery and Data Mining 2005. ACM. 2005, pp. 188–197 (cit. on p. 232).

[435] Y. Li, D. Tarlow, M. Brockschmidt, and R. Zemel. “Gated Graph Sequence Neural Networks”.
In: Procs. of the Int. Conference on Learning Representation 2016. 2016 (cit. on p. 135).

[436] Y. Li, T. Li, R. A. Patel, X.-D. Yang, and X. Zhou. “Self-powered gesture recognition with
ambient light”. In: Procs. of the ACM Symposium on User Interface Software and Technology
2018. 2018, pp. 595–608 (cit. on p. 61).

[437] Y. Li and A. Pedram. “CATERPILLAR: Coarse Grain Reconfigurable Architecture for Accelerat-
ing the Training of Deep Neural Networks”. In: Procs. of the Int. Conference on Application-
specific Systems, Architectures and Processors 2017. IEEE. 2017, pp. 1–10 (cit. on pp. 253,
255).

[438] F. Liang, C. Liu, and N. Wang. “A robust sequential Bayesian method for identification of
differentially expressed genes”. In: Statistica Sinica (2007), pp. 571–597 (cit. on p. 95).

[439] P. Libuschewski. “Exploration of Cyber-Physical Systems for GPGPU Computer Vision-Based
Detection of Biological Viruses”. PhD thesis. Dortmund, Germany: TU Dortmund University,
2017. doi: http://dx.doi.org/10.17877/DE290R-17952 (cit. on p. 339). SFB876-B2

[440] T. Liebig, Z. Xu, M. May, and S. Wrobel. “Pedestrian Quantity Estimation with Trajectory
Patterns”. In: Procs. of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases 2012. Springer, 2012, pp. 629–643. url:
http://link.springer.com/chapter/10.1007%5C%2F978-3-642-33486-3_40 (cit. on p. 102).

[441] M. Lippi, M. Bertini, and P. Frasconi. “Collective Traffic Forecasting”. In:Machine Learning
and Knowledge Discovery in Databases. Ed. by J. L. Balcázar, F. Bonchi, A. Gionis, and M.
Sebag. Vol. 6322. LNCS. Springer, 2010, pp. 259–273 (cit. on p. 101).

[442] C. Liu and J.-J. Chen. “Bursty-interference analysis techniques for analyzing complex real-
time task models”. In: Procs. of the IEEE Real-Time Systems Symposium 2014. IEEE. 2014,
pp. 173–183 (cit. on p. 363).

[443] F. T. Liu, K. M. Ting, and Z. Zhou. “Isolation Forest”. In: Procs. of the IEEE Int. Conference on
Data Mining 2008. Dec. 2008, pp. 413–422 (cit. on p. 81).

[444] S. P. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on Information
Theory 28.2 (Mar. 1982), pp. 129–137 (cit. on p. 231).

[445] A. Lochmann, F. Bruckner, and O. Spinczyk. “Reproducible Load Tests for Android Systems
with Trace-based Benchmarks”. In: Procs. of the ACM/SPEC on Int. Conference on Perfor-
mance Engineering Companion 2017. ICPE ’17 Companion. New York, NY, USA: ACM Press,
2017, pp. 73–76 (cit. on p. 32). SFB876-A1

https://doi.org/https://doi.org/10.1137/130938645
https://doi.org/http://dx.doi.org/10.17877/DE290R-17952
http://link.springer.com/chapter/10.1007%5C%2F978-3-642-33486-3_40

Bibliography | 465

[446] A. Lochmann, H. Schirmeier, H. Borghorst, and O. Spinczyk. “LockDoc: Trace-Based Analysis
of Locking in the Linux Kernel”. In: Procs. of the ACM SIGOPS/EuroSys European Conference
on Computer Systems 2019. 2019 (cit. on p. 33). SFB876-A1

[447] B. Long, Z. (Zhang, and P. S. Yu. “Co-Clustering by Block Value Decomposition”. In: Procs. of
the ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2005. KDD ’05. New
York, NY, USA: Association for Computing Machinery, 2005, pp. 635–640 (cit. on p. 238).

[448] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, M. Birattari, and T. Stützle. “The irace
package: Iterated racing for automatic algorithm configuration”. In: Operations Research
Perspectives 3 (2016), pp. 43–58. doi: https://doi.org/10.1016/j.orp.2016.09.002 (cit. on
p. 286).

[449] Z. Lu, X. Wu, X. Zhu, and J. Bongard. “Ensemble pruning via individual contribution order-
ing”. In: Procs. of the ACM SIGKDD Conference on Knowledge Discovery and Data Mining
2010 (2010), pp. 871–880 (cit. on p. 340).

[450] C. Lucchese, F. M. Nardini, S. Orlando, R. Perego, N. Tonellotto, and R. Venturini. “Quickscorer:
A fast algorithm to rank documents with additive ensembles of regression trees”. In: Procs.
of the Int. ACM SIGIR Conference on Research and Development in Information Retrieval 2015.
ACM. 2015, pp. 73–82 (cit. on pp. 340, 341).

[451] C. Lucchese, S. Orlando, and R. Perego. “A Unifying Framework for Mining Approximate Top-
k Binary Patterns”. In: IEEE Transactions on Knowledge and Data Engineering 26.12 (2014),
pp. 2900–2913 (cit. on p. 239).

[452] C. Lucchese, R. Perego, F. M. Nardini, N. Tonellotto, S. Orlando, and R. Venturini. “Exploiting
CPU SIMD extensions to speed-up document scoring with tree ensembles”. In: Procs. of the
Int. ACM SIGIR Conference on Research and Development in Information Retrieval 2016. 2016
(cit. on p. 340).

[453] M. Lucic, O. Bachem, and A. Krause. “Strong Coresets for Hard and Soft Bregman Cluster-
ing with Applications to Exponential Family Mixtures”. In: Procs. of the Int. Conference on
Artificial Intelligence and Statistics 2016. 2016, pp. 1–9 (cit. on p. 87).

[454] Y. Lv, Y. Duan, W. Kang, Z. Li, F.-Y. Wang, et al. “Traffic flow prediction with big data: A deep
learning approach.” In: IEEE Trans. Intelligent Transportation Systems 16.2 (2015), pp. 865–
873 (cit. on p. 260).

[455] Y. Ma and J. Tang. Deep Learning on Graphs. Cambridge University Press, 2020 (cit. on pp. 9,
130, 136).

[456] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. “Learning Word Vectors
for Sentiment Analysis”. In: Procs. of the Meeting of the Association for Computational
Linguistics: Human Language Technologies 2011. Portland, Oregon, USA: Association for
Computational Linguistics, June 2011, pp. 142–150. url: http://www.aclweb.org/anthology/
P11-1015 (cit. on pp. 351, 352).

[457] Y. Maeda, H. Hirano, and Y. Kanata. “A learning rule of neural networks via simultaneous
perturbation and its hardware implementation”. In: Neural Networks 8.2 (1995), pp. 251–259
(cit. on p. 254).

[458] Y. Maeda and T. Tada. “FPGA implementation of a pulse density neural network with learning
ability using simultaneous perturbation”. In: IEEE Transactions on Neural Networks 14.3
(2003), pp. 688–695 (cit. on p. 254).

[459] S. Mahajan and H. Ramesh. “Derandomizing Approximation Algorithms Based on Semidef-
inite Programming”. In: SIAM Journal on Computing 28.5 (1999), pp. 1641–1663 (cit. on
p. 145).

[460] M. Mahdavi, R. Zanibbi, H. Mouch, and C. Viard-gaudin. “ICDAR 2019 CROHME + TFD : Com-
petition on Recognition of Handwritten Mathematical Expressions and Typeset Formula

https://doi.org/https://doi.org/10.1016/j.orp.2016.09.002
http://www.aclweb.org/anthology/P11-1015
http://www.aclweb.org/anthology/P11-1015

466 | Bibliography

Detection”. In: Procs. of the IAPR Int. Conference on Document Analysis and Recognition
2019. 2019 (cit. on p. 162).

[461] M. W. Mahoney. “Randomized Algorithms for Matrices and Data”. In: Foundations and
Trends in Machine Learning 3.2 (2011), pp. 123–224. doi: https : // doi . org / 10 . 1561 /
2200000035 (cit. on p. 93).

[462] T. Mai, C. Musco, and A. Rao. “Coresets for Classification - Simplified and Strengthened”. In:
Advances in Neural Information Processing Systems 34: Procs. of the 2021 Conference. 2021,
pp. 11643–11654 (cit. on p. 91).

[463] C. Manning, P. Raghavan, and H. Schütze. “Introduction to information retrieval”. In: Natural
Language Engineering 16.1 (2010), pp. 100–103 (cit. on p. 273).

[464] B. Mansouri, D. W. Oard, C. L. Giles, and R. Zanibbi. “Tangent-CFT : An Embedding Model for
Mathematical Formulas”. In: Procs. of the ACM SIGIR Int. Conference on Theory of Informa-
tion Retrieval 2019. 2019 (cit. on pp. 162, 174, 175).

[465] F. E. Maranzana. “On the Location of Supply Points to Minimize Transportation Costs”. In:
IBM Systems Journal 2.2 (1963), pp. 129–135 (cit. on p. 184).

[466] J. Marín, D. Vázquez, A. M. López, J. Amores, and B. Leibe. “Random Forests of Local Experts
for Pedestrian Detection”. In: Procs. of the IEEE Int. Conference on Computer Vision 2013.
2013, pp. 2592–2599 (cit. on p. 339).

[467] S. F. Marinosson, R. Chrobok, A. Pottmeier, J. Wahle, and M. Schreckenberg. “Simulation
Framework for the Autobahn Traffic in North Rhine-Westphalia”. In: Cellular Automata –
Procs. of the Int. Conf. on Cellular Automata for Research and Industry 2002. Springer, 2002,
pp. 2977–2980 (cit. on p. 101).

[468] H. Maron, H. Ben-Hamu, H. Serviansky, and Y. Lipman. “Provably Powerful Graph Networks”.
In: Advances in Neural Information Processing Systems 32: Procs. of the 2019 Conference.
2019 (cit. on pp. 127, 132).

[469] M. A. Maruf and A. Azim. “Extending resources for avoiding overloads of mixed-criticality
tasks in cyber-physical systems”. In: IET Cyber-Physical Systems: Theory Applications 5.1
(2020), pp. 60–70 (cit. on p. 363).

[470] P. Marwedel. Embedded System Design - Embedded Systems Foundations of Cyber-Physical
Systems, and the Internet of Things. 4th ed. Springer, 2021. url: https://link.springer.com/
book/10.1007/978-3-030-60910-8 (cit. on p. XI). SFB876-A3

[471] M. Masoudinejad. “Modeling Energy Supply Unit of Ultra-Low Power Devices with Indoor
Photovoltaic Harvesting”. PhD Thesis. TU Dortmund University, 2020. url: https://eldorado.
tu-dortmund.de/handle/2003/39765 (cit. on p. 35). SFB876-A4

[472] M. Masoudinejad, A. K. Ramachandran Venkatapathy, J. Emmerich, and A. Riesner. “Procs.
of the Int. Conference on Sensor Systems and Software 2016”. In: Sensor Systems and
Software. Springer, 2016. Chap. 4, pp. 41–52 (cit. on p. 35). SFB876-A4

[473] M. Masoudinejad, K. A. Venkatapathy Ramachandran, D. Tondorf, D. Heinrich, R. Falkenberg,
and M. Buschhoff. “Machine Learning Based Indoor Localisation using Environmental data
in PhyNetLab Warehouse”. In: Procs. of the SysTech European Conference on Smart Objects,
Systems and Technologies 2018. June 2018 (cit. on p. 45). SFB876-A4

[474] B. Matérn. “Spatial Variation: Stochastic Models and their Application to some Problems in
Forest Surveys and other Sampling Investigations”. In:Meddelanden fran Statens Skogs-
forskningsinstitut 49.5 (1960), p. 144 (cit. on p. 294).

[475] V. Maurizio. “Double k-means clustering for simultaneous classification of objects and
variables”. In: Advances in Classification and Data Analysis. Springer, 2001, pp. 43–52 (cit.
on p. 232).

https://doi.org/https://doi.org/10.1561/2200000035
https://doi.org/https://doi.org/10.1561/2200000035
https://link.springer.com/book/10.1007/978-3-030-60910-8
https://link.springer.com/book/10.1007/978-3-030-60910-8
https://eldorado.tu-dortmund.de/handle/2003/39765
https://eldorado.tu-dortmund.de/handle/2003/39765

Bibliography | 467

[476] D. Maxim and L. Cucu-Grosjean. “Response Time Analysis for Fixed-Priority Tasks with
Multiple Probabilistic Parameters”. In: Procs. of the IEEE Real-Time Systems Symposium
2013. 2013, pp. 224–235 (cit. on pp. 363, 376).

[477] M. May, D. Hecker, C. Körner, S. Scheider, and D. Schulz. “A Vector-Geometry Based Spatial
kNN-Algorithm for Traffic Frequency Predictions”. In: Procs. of the IEEE Int. Conference on
Data Mining 2008. IEEE Computer Society, 2008, pp. 442–447 (cit. on p. 102).

[478] J. McAuley and J. Leskovec. “Hidden Factors and Hidden Topics: Understanding Rating
Dimensions with Review Text”. In: Procs. of the ACM Conference on Recommender Systems
2013. Vol. 7. RecSys ’13. New York, NY, USA: ACM, 2013, pp. 165–172 (cit. on pp. 280, 282).

[479] P. McCullagh and J. Nelder. Generalized linear models. 2nd ed. Chapman and Hall/CRC, Boca
Raton, 1989 (cit. on pp. 90, 92).

[480] B. D. McKay and A. Piperno. “Practical graph isomorphism, II”. In: Journal of Symbolic
Computation 60 (2014), pp. 94–112. doi: https://doi.org/10.1016/j.jsc.2013.09.003 (cit. on
p. 117).

[481] M. D. McKay, R. J. Beckman, and W. J. Conover. “A Comparison of Three Methods for Select-
ing Values of Input Variables in the Analysis of Output from a Computer Code”. In: Techno-
metrics 42.1 (2000), pp. 55–61 (cit. on pp. 294, 301).

[482] L. L. McQuitty. “Elementary Linkage Analysis for Isolating Orthogonal and Oblique Types and
Typal Relevancies”. In: Educational and Psychological Measurement 17.2 (1957), pp. 207–
229. doi: https://doi.org/10.1177/001316445701700204 (cit. on pp. 216, 217).

[483] N. Megiddo and K. J. Supowit. “On the Complexity of Some Common Geometric Location
Problems”. In: SIAM Journal on Computing 13.1 (1984), pp. 182–196 (cit. on p. 200).

[484] N. Meinshausen and P. Bühlmann. “High-dimensional graphs and variable selection with the
Lasso”. In: Annals of Statistics 34.3 (2006), pp. 1436–1462 (cit. on p. 105).

[485] S. Meintrup, A. Munteanu, and D. Rohde. “Random projections and sampling algorithms
for clustering of high-dimensional polygonal curves”. In: Advances in Neural Information
Processing Systems 32: Procs. of the 2019 Conference. 2019, pp. 12807–12817. url: https:
//papers.nips.cc/paper/9443-random-projections-and-sampling-algorithms-for-clustering-
of-high-dimensional-polygonal-curves (cit. on pp. 75, 87, 203, 204). SFB876-A2, SFB876-C4

[486] A. K. Menon, A. S. Rawat, S. Reddi, and S. Kumar. “Multilabel reductions: what is my loss
optimising?” In: Advances in Neural Information Processing Systems 32: Procs. of the 2019
Conference. Vol. 32. 2019 (cit. on p. 274).

[487] P. Menon et al. “Relaxed Operator Fusion for In-Memory Databases: Making Compilation,
Vectorization, and Prefetching Work Together At Last”. In: Procs. of the VLDB Endowment 11.1
(2017) (cit. on p. 386).

[488] S. G. Merchant and G. D. Peterson. “Evolvable block-based neural network design for ap-
plications in dynamic environments”. In: VLSI Design 2010 (2010), p. 4 (cit. on pp. 253,
254).

[489] D. Merrill. CUB v1.7.0: CUDA Unbound, a Library of Warp-Wide, Block-Wide, and Device-Wide
GPU Parallel Primitives. 2017 (cit. on p. 393).

[490] R. Michalski, J. Carbonell, and T. Mitchell.Machine Learning: An artificial intelligence ap-
proach. Kaufman Publishers Inc., 1983 (cit. on p. XI).

[491] P. Miettinen, T. Mielikainen, A. Gionis, G. Das, and H. Mannila. “The discrete basis problem”.
In: Knowledge and Data Engineering, IEEE Transactions on 20.10 (2008), pp. 1348–1362
(cit. on pp. 233, 235).

[492] P. Miettinen and J. Vreeken. “MDL4BMF: Minimum description length for Boolean matrix
factorization”. In: ACM Transactions on Knowledge Discovery from Data 2014 8.4 (2014),
p. 18 (cit. on p. 239).

https://doi.org/https://doi.org/10.1016/j.jsc.2013.09.003
https://doi.org/https://doi.org/10.1177/001316445701700204
https://papers.nips.cc/paper/9443-random-projections-and-sampling-algorithms-for-clustering-of-high-dimensional-polygonal-curves
https://papers.nips.cc/paper/9443-random-projections-and-sampling-algorithms-for-clustering-of-high-dimensional-polygonal-curves
https://papers.nips.cc/paper/9443-random-projections-and-sampling-algorithms-for-clustering-of-high-dimensional-polygonal-curves

468 | Bibliography

[493] T. Mikolov, K. Chen, G. Corrado, and J. Dean. “Efficient Estimation of Word Representations
in Vector Space”. In: arXiv: Computing Research Repository (2013). doi: arXiv:1301.3781
(cit. on p. 167).

[494] B. Mirkin, P. Arabie, and L. J. Hubert. “Additive two-mode clustering: the error-variance
approach revisited”. In: Journal of classification 12.2 (1995), pp. 243–263 (cit. on p. 231).

[495] B. Mirzasoleiman, S. Jegelka, and A. Krause. “Streaming Non-Monotone Submodular Maxi-
mization: Personalized Video Summarization on the Fly”. In: Procs. of the AAAI Conference
on Artificial Intelligence 2018. 2018. url: https://www.aaai.org/ocs/index.php/AAAI/
AAAI18/paper/view/17014/15832 (cit. on p. 10).

[496] I. Misra and L. v. d. Maaten. “Self-supervised learning of pretext-invariant representations”.
In: Procs. of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
2020, pp. 6707–6717 (cit. on p. 175).

[497] J. Misra and I. Saha. “Artificial neural networks in hardware: A survey of two decades of
progress”. In: Neurocomputing 74.1 (2010), pp. 239–255 (cit. on p. 253).

[498] S. Mitra and T. Acharya. “Gesture recognition: A survey”. In: IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews) 37.3 (2007), pp. 311–324 (cit. on
p. 60).

[499] S. Miyamoto, Y. Kaizu, and Y. Endo. “Hierarchical and Non-Hierarchical Medoid Clustering
Using Asymmetric Similarity Measures”. In: Procs. of the Int. Symposium on Soft Computing
and Intelligent Systems 2016. 2016, pp. 400–403 (cit. on p. 216).

[500] P. Moerland and E. Fiesler. Neural network adaptations to hardware implementations. Tech.
rep. The Idiap Research Institute, Switzerland, 1997 (cit. on p. 253).

[501] A. Molina, A. Munteanu, and K. Kersting. “Core Dependency Networks”. In: Procs. of the
AAAI Conference on Artificial Intelligence 2018. 2018. url: https://www.aaai.org/ocs/index.
php/AAAI/AAAI18/paper/view/16847 (cit. on pp. 87, 89, 92, 93). SFB876-B4, SFB876-C4

[502] S.-W. Moon and S.-G. Kong. “Block-based neural networks”. In: IEEE Transactions on Neural
Networks 12.2 (2001), pp. 307–317 (cit. on p. 254).

[503] F. Morandat, B. Hill, L. Osvald, and J. Vitek. “Evaluating the design of the R language: objects
and functions for data analysis”. In: Procs. of the European Conference on Object-Oriented
Programming 2012. Springer-Verlag, 2012, pp. 104–131 (cit. on p. 306).

[504] C. Morris, G. Rattan, and P. Mutzel. “Weisfeiler and Leman Go Sparse: Towards Scalable
Higher-Order Graph Embeddings”. In: Procs. of the Int. Conference on Machine Learning
2020. 2020 (cit. on pp. 123, 127, 128, 132).

[505] C. Morris, M. Fey, and N. M. Kriege. “The Power of the Weisfeiler-Leman Algorithm for Ma-
chine Learning with Graphs”. In: Procs. of the Int. Joint Conferences on Artifical Intelligence
2021. 2021 (cit. on p. 128). SFB876-A6

[506] C. Morris, K. Kersting, and P. Mutzel. “Glocalized Weisfeiler-Lehman Graph Kernels: Global-
Local Feature Maps of Graphs”. In: Procs. of the IEEE Int. Conference on Data Mining 2017.
2017, pp. 327–336 (cit. on p. 123). SFB876-A6

[507] C. Morris, N. Kriege, K. Kersting, and P. Mutzel. “Faster Kernels for Graphs with Continuous
Attributes via Hashing”. In: Procs. of the IEEE Int. Conference on Data Mining 2016. 2016,
pp. 1095–1100 (cit. on p. 124). SFB876-A6

[508] C. Morris, N. M. Kriege, F. Bause, K. Kersting, P. Mutzel, and M. Neumann. “TUDataset: A
collection of benchmark datasets for learning with graphs”. In: Procs. of the Int. Conference
on Machine Learning Workshop on Graph Representation Learning and Beyond 2020. 2020.
url: www.graphlearning.io (cit. on pp. 124, 128). SFB876-A6

[509] C. Morris et al. “Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks”. In:
Procs. of the AAAI Conference on Artificial Intelligence 2019. 2019. doi: arXiv:1810.02244
(cit. on pp. 117, 127, 130, 132, 137, 139). SFB876-A6

https://doi.org/arXiv:1301.3781
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17014/15832
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/17014/15832
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16847
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16847
www.graphlearning.io
https://doi.org/arXiv:1810.02244

Bibliography | 469

[510] S. Muecke, N. Piatkowski, and K. Morik. “Hardware Accelerated Learning at the Edge”.
In: Procs. of Decentralized Machine Learning at the Edge 2019. Ed. by M. Kamp, D. Paurat,
and Y. Krishnamurthy. Springer, 2019. url: https://dmle. iais . fraunhofer.de/papers/
muecke2019hardware.pdf (cit. on p. 7).

[511] A. Munteanu. “On large-scale probabilistic and statistical data analysis”. PhD thesis. TU
Dortmund University, 2018. doi: http://dx.doi.org/10.17877/DE290R-19112 (cit. on pp. 90,
95).

[512] A. Munteanu, A. Nayebi, and M. Poloczek. “A Framework for Bayesian Optimization in
Embedded Subspaces”. In: Procs. of the Int. Conference on Machine Learning 2019. Ed.
by K. Chaudhuri and R. Salakhutdinov. Vol. 97. Procs. of Machine Learning Research. Long
Beach, California, USA: PMLR, June 2019, pp. 4752–4761. url: http://proceedings.mlr.press/
v97/nayebi19a.html (cit. on pp. 90, 96). SFB876-C4

[513] A. Munteanu, S. Omlor, and C. Peters. “p-Generalized Probit Regression and Scalable Maxi-
mum Likelihood Estimation via Sketching and Coresets”. In: Procs. of the Int. Conference on
Artificial Intelligence and Statistics 2022. 2022 (cit. on pp. 89, 90, 95). SFB876-C4

[514] A. Munteanu, S. Omlor, Z. Song, and D. P. Woodruff. “Bounding the Width of Neural Net-
works via Coupled Initialization - A Worst Case Analysis”. In: Procs. of the Int. Conference on
Machine Learning 2022. 2022 (cit. on p. 90). SFB876-C4

[515] A. Munteanu, S. Omlor, and D. P. Woodruff. “Oblivious Sketching for Logistic Regression”. In:
Procs. of the Int. Conference on Machine Learning 2021. 2021. url: https://proceedings.mlr.
press/v139/munteanu21a.html (cit. on pp. 89–92). SFB876-C4

[516] A. Munteanu and C. Schwiegelshohn. “Coresets - Methods and History: A Theoreticians
Design Pattern for Approximation and Streaming Algorithms”. In: KI - Künstliche Intelligenz
32.1 (2018). KI special issue on ’Algorithmic Challenges and Opportunities of Big Data’,
pp. 37–53. doi: https://doi.org/10.1007/s13218-017-0519-3 (cit. on pp. 10, 86, 87, 200).
SFB876-A2, SFB876-C4

[517] A. Munteanu, C. Schwiegelshohn, C. Sohler, and D. P. Woodruff. “On Coresets for Logistic
Regression”. In: Advances in Neural Information Processing Systems 31: Procs. of the 2018
Conference. 2018. url: http://papers.nips.cc/paper/7891- on- coresets- for- logistic-
regression (cit. on pp. 75, 87, 89–91). SFB876-A2, SFB876-C4

[518] A. Munteanu and M. Wornowizki. “Correcting statistical models via empirical distribution
functions”. In: Computational Statistics 31.2 (June 2016), pp. 465–495. url: http://doi.org/
10.1007/s00180-015-0607-5 (cit. on p. 95). SFB876-C3, SFB876-C4

[519] R. L. Murphy, B. Srinivasan, V. Rao, and B. Ribeiro. “Relational Pooling for Graph Representa-
tions”. In: Procs. of the Int. Conference on Machine Learning 2019. 2019 (cit. on p. 132).

[520] F. Murtagh. “A Survey of Recent Advances in Hierarchical Clustering Algorithms”. In: The
Computer Journal 26.4 (Nov. 1983), pp. 354–359. doi: https://doi.org/10.1093/comjnl/26.4.
354 (cit. on p. 222).

[521] F. Murtagh and P. Legendre. “Ward’s Hierarchical Agglomerative Clustering Method: Which
Algorithms Implement Ward’s Criterion?” In: Journal of Classification 31.3 (2014), pp. 274–
295. doi: https://doi.org/10.1007/s00357-014-9161-z (cit. on p. 216).

[522] S. Murugan, K. P. Lakshmi, J. Sundar, and K. MathiVathani. “Design and Implementation
of Multilayer Perceptron with On-chip Learning in Virtex-E”. In: AASRI Procedia 6 (2014),
pp. 82–88 (cit. on pp. 253, 262).

[523] S. Muthukrishnan. “Data Streams: Algorithms and Applications”. In: Foundations and
Trends in Theoretical Computer Science 1.2 (2005) (cit. on pp. 71, 89).

[524] S. Naderiparizi, A. N. Parks, Z. Kapetanovic, B. Ransford, and J. R. Smith. “WISPCam : A
Battery-Free RFID Camera”. In: Procs. of the IEEE Int. Conference on RFID 2015. 2015 (cit. on
p. 53).

https://dmle.iais.fraunhofer.de/papers/muecke2019hardware.pdf
https://dmle.iais.fraunhofer.de/papers/muecke2019hardware.pdf
https://doi.org/http://dx.doi.org/10.17877/DE290R-19112
http://proceedings.mlr.press/v97/nayebi19a.html
http://proceedings.mlr.press/v97/nayebi19a.html
https://proceedings.mlr.press/v139/munteanu21a.html
https://proceedings.mlr.press/v139/munteanu21a.html
https://doi.org/https://doi.org/10.1007/s13218-017-0519-3
http://papers.nips.cc/paper/7891-on-coresets-for-logistic-regression
http://papers.nips.cc/paper/7891-on-coresets-for-logistic-regression
http://doi.org/10.1007/s00180-015-0607-5
http://doi.org/10.1007/s00180-015-0607-5
https://doi.org/https://doi.org/10.1093/comjnl/26.4.354
https://doi.org/https://doi.org/10.1093/comjnl/26.4.354
https://doi.org/https://doi.org/10.1007/s00357-014-9161-z

470 | Bibliography

[525] A. Nath and E. Taylor. “k-Median Clustering Under Discrete Fréchet and Hausdorff Dis-
tances”. In: Procs. of the Int. Symposium on Computational Geometry 2020. Ed. by S. Ca-
bello and D. Z. Chen. Vol. 164. Leibniz Int. Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum für Informatik, 2020, 58:1–58:15 (cit. on pp. 203, 204).

[526] O. Neugebauer. Energy Measurement made Simple on Embedded Systems. Technical Report
No. 2 for Collaborative Research Center SFB 876 - Graduate School. 2017. url: https : //
sfb876.tu-dortmund.de/auto?self=%5C%24egw1pio6bk (cit. on p. 300).

[527] J. von Neumann. “First Draft of a Report on the EDVAC”. In: 1945 (cit. on p. 2).
[528] M. Neumann, R. Garnett, C. Bauckhage, and K. Kersting. “Propagation Kernels: Efficient

Graph Kernels from Propagated Information”. In:Machine Learning 102.2 (Feb. 2016),
pp. 209–245 (cit. on p. 125). SFB876-A6

[529] T. Neumann. “Efficiently Compiling Efficient Query Plans for Modern Hardware”. In: Procs. of
the VLDB Endowment 4.9 (2011), pp. 539–550. url: http://www.vldb.org/pvldb/vol4/p539-
neumann.pdf (cit. on pp. 263, 385, 386, 395).

[530] J. Newling and F. Fleuret. “A Sub-Quadratic Exact Medoid Algorithm”. In: Procs. of the Int.
Conference on Artificial Intelligence and Statistics 2017. 2017, pp. 185–193. url: http://
proceedings.mlr.press/v54/newling17a.html (cit. on p. 184).

[531] A. Y. Ng and M. I. Jordan. “On discriminative vs. generative classifiers: A comparison of
logistic regression and naive bayes”. In: Advances in Neural Information Processing Systems
14: Procs. of the 2001 Conference. Ed. by S. B. T. G. Dietterich and Z. Ghahramani. Vol. 14.
Cambridge, MA: MIT Press., 2002, pp. 841–848 (cit. on p. 102).

[532] D. Nguyen, N. Ho, and I. Chang. “St-DRC: Stretchable DRAM Refresh Controller with No
Parity-overhead Error Correction Scheme for Energy-efficient DNNs”. In: Procs. of the Design
Automation Conference 2019. 2019, pp. 1–6 (cit. on p. 327).

[533] H. Nguyen and T. Maehara. “Graph Homomorphism Convolution”. In: Procs. of the Int. Con-
ference on Machine Learning 2020. 2020, pp. 7306–7316 (cit. on p. 125).

[534] K. Ni, A. Gupta, O. Prakash, S. Thomann, X. S. Hu, and H. Amrouch. “Impact of Extrinsic
Variation Sources on the Device-to-Device Variation in Ferroelectric FET”. In: Procs. of the
IEEE Int. Reliability Physics Symposium 2020. 2020 (cit. on p. 328).

[535] K. Ni et al. “Ferroelectric ternary content-addressable memory for one-shot learning”. In:
Nature Electronics 2.11 (2019), pp. 521–529 (cit. on p. 4).

[536] F. Nie, X. Wang, C. Deng, and H. Huang. “Learning a structured optimal bipartite graph for
co-clustering”. In: Advances in Neural Information Processing Systems 30: Procs. of the 2017
Conference. 2017, pp. 4129–4138 (cit. on p. 232).

[537] G. Nikolentzos, P. Meladianos, and M. Vazirgiannis. “Matching Node Embeddings for Graph
Similarity”. In: Procs. of the AAAI Conference on Artificial Intelligence 2017. 2017, pp. 2429–
2435 (cit. on p. 125).

[538] J. Nocedal and S. J. Wright. Numerical Optimization. Second. Springer Series in Operations
Research and Financial Engineering. Springer, 2006. url: https://books.google.de/books?
id=epc5fX0lqRIC (cit. on p. 105).

[539] N. Noorshams and M. Wainwright. “Stochastic belief propagation: Low-complexity message-
passing with guarantees”. In: Procs. of the Allerton Conference on Communication, Control,
and Computing 2011. 2011, pp. 269–276 (cit. on p. 407).

[540] A. Norouzi-Fard, J. Tarnawski, S. Mitrovic, A. Zandieh, A. Mousavifar, and O. Svensson.
“Beyond 1/2-Approximation for Submodular Maximization on Massive Data Streams”. In:
Procs. of the Int. Conference on Machine Learning 2018. July 2018, pp. 3829–3838. url:
http://proceedings.mlr.press/v80/norouzi-fard18a.html (cit. on pp. 76, 77).

https://sfb876.tu-dortmund.de/auto?self=%5C%24egw1pio6bk
https://sfb876.tu-dortmund.de/auto?self=%5C%24egw1pio6bk
http://www.vldb.org/pvldb/vol4/p539-neumann.pdf
http://www.vldb.org/pvldb/vol4/p539-neumann.pdf
http://proceedings.mlr.press/v54/newling17a.html
http://proceedings.mlr.press/v54/newling17a.html
https://books.google.de/books?id=epc5fX0lqRIC
https://books.google.de/books?id=epc5fX0lqRIC
http://proceedings.mlr.press/v80/norouzi-fard18a.html

Bibliography | 471

[541] E. Nurvitadhi et al. “Can FPGAs beat GPUs in accelerating next-generation deep neural
networks?” In: Procs. of the ACM/SIGDA Int. Symposium on Field-Programmable Gate Arrays
2017. ACM. 2017, pp. 5–14 (cit. on p. 253).

[542] NVIDIA Corp. CUDA Toolkit Documentation v8.0, CUDA C Programming Guide. 2016 (cit. on
p. 408).

[543] P. E. O’Neil, E. J. O’Neil, and X. Chen. “The star schema benchmark (SSB)”. In: Polymers for
Advanced Technologies 200.0 (2007), p. 50 (cit. on p. 381).

[544] L. Oettershagen, N. M. Kriege, C. Morris, and P. Mutzel. “Temporal Graph Kernels for Classi-
fying Dissemination Processes”. In: Procs. of the SIAM Int. Conference on Data Mining 2020.
2020 (cit. on p. 128). SFB876-A6

[545] OmniSci Incorporated. OmniSciDB. https://www.omnisci.com/. 2019. url: https://www.
omnisci.com/platform/omniscidb (cit. on p. 270).

[546] A. Omondi and J. Rajapakse. FPGA implementations of neural networks. Springer, 2006
(cit. on p. 253).

[547] A. V. D. Oord, Y. Li, and O. Vinyals. Representation Learning with Contrastive Predictive
Coding. Tech. rep. 2018. doi: arXiv:1807.03748 (cit. on p. 175).

[548] P. Paatero and U. Tapper. “Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values”. In: Environmetrics 5.2 (1994), pp. 111–
126 (cit. on p. 229).

[549] Y. Pan et al. “A Multilevel Cell STT-MRAM-Based Computing In-Memory Accelerator for Binary
Convolutional Neural Network”. In: IEEE Transactions on Magnetics 54 (2018), pp. 1–5 (cit.
on p. 327).

[550] C. H. Papadimitriou. “Worst-case and probabilistic analysis of a geometric location prob-
lem”. In: SIAM Journal on Computing 10.3 (1981), pp. 542–557 (cit. on p. 200).

[551] R. Parada and J. Melia-Segui. “Gesture detection using passive RFID tags to enable people-
centric IoT applications”. In: IEEE Communications Magazine 55.2 (2017), pp. 56–61 (cit. on
p. 61).

[552] N. Parikh and S. Boyd. “Proximal Algorithms”. In: Foundations and Trends in Optimization
1.3 (Jan. 2014), pp. 127–239. doi: http://dx.doi.org/10.1561/2400000003 (cit. on p. 234).

[553] H. Park and C. Jun. “A simple and fast algorithm for K-medoids clustering”. In: Expert Sys-
tems With Applications 36.2 (2009), pp. 3336–3341 (cit. on p. 184).

[554] T. Park and G. Casella. “The Bayesian Lasso”. In: Journal of the American Statistical Associa-
tion 103 (2008), pp. 681–686 (cit. on p. 95).

[555] A. Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”. In:
Advances in Neural Information Processing Systems 32: Procs. of the 2019 Conference. 2019
(cit. on p. 134).

[556] D. Patterson et al. Carbon Emissions and Large Neural Network Training. arXiv. 2021. doi:
10.48550/arXiv.2104.10350 (cit. on p. 6).

[557] J. Paul, J. He, and B. He. “GPL: A GPU-Based Pipelined Query Processing Engine”. In: Procs.
of the ACM SIGMOD Int. Conference on Management of Data 2016. 2016, pp. 1935–1950
(cit. on p. 386).

[558] K. Paul and S. Rajopadhye. “Back-propagation algorithm achieving 5 GOPs on the Virtex-E”.
In: FPGA Implementations of Neural Networks. Springer, 2006, pp. 137–165 (cit. on pp. 253,
262).

[559] N. D. Pearce and M. P. Wand. “Penalized Splines and Reproducing Kernel Methods”. In: The
American Statistician 60.3 (2006), pp. 233–240 (cit. on p. 105).

[560] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. 1st.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1988 (cit. on pp. 105, 407).

https://www.omnisci.com/platform/omniscidb
https://www.omnisci.com/platform/omniscidb
https://doi.org/arXiv:1807.03748
https://doi.org/http://dx.doi.org/10.1561/2400000003
https://doi.org/10.48550/arXiv.2104.10350

472 | Bibliography

[561] F. Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: Journal of Machine Learn-
ing Research 12 (2011), pp. 2825–2830 (cit. on pp. 350, 351).

[562] L. Pfahler. “Some Representation Learning Tasks and the Inspection of Their Models”. PhD
thesis. TU Dortmund University, 2022 (cit. on p. 160). SFB876-A1

[563] L. Pfahler and K. Morik. “Semantic Search in Millions of Equations”. In: Procs. of the ACM
SIGKDD Conference on Knowledge Discovery and Data Mining 2020. ACM, 2020. doi: https:
//dl.acm.org/doi/pdf/10.1145/3394486.3403056 (cit. on pp. 160, 162, 174, 176). SFB876-A1

[564] L. Pfahler, J. Schill, and K. Morik. “The Search for Equations - Learning to Identify Simi-
larities between Mathematical Expressions”. In: Procs. of the Joint European Conference
on Machine Learning and Knowledge Discovery in Databases 2019. Springer, 2019. url:
https://link.springer.com/chapter/10.1007/978-3-030-46133-1_42 (cit. on pp. 162, 167,
168, 170–172, 174). SFB876-A1

[565] J. M. Phillips. “Coresets and sketches”. In: Handbook of Discrete and Computational Geome-
try. Chapman and Hall/CRC, 2017 (cit. on pp. 85, 87).

[566] N. Piatkowski, S. Lee, and K. Morik. “Spatio-temporal random fields: compressible repre-
sentation and distributed estimation”. In:Machine Learning 93.1 (2013), pp. 115–139. url:
http://link.springer.com/article/10.1007%5C%2Fs10994-013-5399-7 (cit. on pp. 101, 112).
SFB876-A1

[567] N. Piatkowski. “Exponential Families on Resource-Constrained Systems”. PhD thesis. Dort-
mund: TU Dortmund University, 2018. url: https://eldorado.tu-dortmund.de/handle/2003/
36877 (cit. on pp. 9, 101, 111, 112, 408).

[568] N. Piatkowski. “Hyper-Parameter-Free Generative Modelling with Deep Boltzmann Trees”. In:
Procs. of the European Conference on Machine Learning 2019. Springer, 2019 (cit. on p. 100).

[569] N. Piatkowski. “iST-MRF: Interactive Spatio-Temporal Probabilistic Models for Sensor Net-
works”. In: Procs. of the Int. Workshop at ECML PKDD 2012 on Instant Interactive Data Mining
2012. 2012 (cit. on p. 105). SFB876-A1

[570] N. Piatkowski, S. Lee, and K. Morik. “Integer undirected graphical models for resource-
constrained systems”. In: Neurocomputing 173.1 (Jan. 2016), pp. 9–23. url: http://www.
sciencedirect .com/science/article/pii/S0925231215010449 (cit. on p. 9). SFB876-A1,
SFB876-C1

[571] N. Piatkowski, S. Lee, and K. Morik. “Spatio-Temporal Models For Sustainability”. In: Procs.
of the SustKDD Workshop within ACM SIGKDD Conference on Knowledge Discovery and Data
Mining 2012. Ed. by M. Marwah, N. Ramakrishnan, M. Berges, and Z. Kolter. ACM, 2012. url:
http://wan.poly.edu/KDD2012/forms/workshop/SustKDD12/doc/SustKDD12_1.pdf (cit. on
p. 105). SFB876-A1, SFB876-C1

[572] N. Piatkowski and K. Morik. “Fast Stochastic Quadrature for Approximate Maximum-
Likelihood Estimation”. In: Procs. of the Conference on Uncertainty in Artificial Intelligence
2018. 2018 (cit. on pp. 105, 407). SFB876-A1

[573] N. Piatkowski and K. Morik. “Stochastic Discrete Clenshaw-Curtis Quadrature”. In: Procs.
of the Int. Conference on Machine Learning 2016. JMLR: W&CP. JMLR.org, June 2016. url:
http : // jmlr .org/proceedings/papers/v48/piatkowski16 .html (cit. on pp. 105, 407).
SFB876-A1

[574] N. Piatkowski, L. Sangkyun, and K. Morik. “The Integer Approximation of Undirected Graphi-
cal Models”. In: Procs. of the Int. Conference on Pattern Recognition Applications and Meth-
ods 2014. Ed. by M. De Marsico, A. Tabbone, and A. Fred. SciTePress, 2014, pp. 296–304.
url: http://www-ai.cs.uni-dortmund.de/PublicPublicationFiles/piatkowski_etal_2014a.pdf
(cit. on p. 408). SFB876-A1, SFB876-C1

[575] N. Piatkowski and F. Schnitzler. “Compressible Reparametrization of Time-Variant Linear
Dynamical Systems”. In: Solving Large Scale Learning Tasks. Challenges and Algorithms -

https://doi.org/https://dl.acm.org/doi/pdf/10.1145/3394486.3403056
https://doi.org/https://dl.acm.org/doi/pdf/10.1145/3394486.3403056
https://link.springer.com/chapter/10.1007/978-3-030-46133-1_42
http://link.springer.com/article/10.1007%5C%2Fs10994-013-5399-7
https://eldorado.tu-dortmund.de/handle/2003/36877
https://eldorado.tu-dortmund.de/handle/2003/36877
http://www.sciencedirect.com/science/article/pii/S0925231215010449
http://www.sciencedirect.com/science/article/pii/S0925231215010449
http://wan.poly.edu/KDD2012/forms/workshop/SustKDD12/doc/SustKDD12_1.pdf
http://jmlr.org/proceedings/papers/v48/piatkowski16.html
http://www-ai.cs.uni-dortmund.de/PublicPublicationFiles/piatkowski_etal_2014a.pdf

Bibliography | 473

Essays Dedicated to Katharina Morik on the Occasion of Her 60th Birthday. 2016, pp. 234–
250. doi: http://dx.doi.org/10.1007/978-3-319-41706-6_12 (cit. on p. 11). SFB876-A1

[576] N. Piatkowski, J. Streicher, S. Olaf, and K. Morik. “Open Smartphone Data for Structured
Mobility and Utilization Analysis in Ubiquitous Systems”. In:Mining, Modeling and Recom-
mending Things in Social Media. Ed. by M. Atzmueller, A. Chin, C. Scholz, and C. Trattner.
Vol. 8940. Lecture Notes in Computer Science. Springer, 2014. Chap. Open Smartphone Data
for Structured Mobility and Utilization Analysis in Ubiquitous Systems, pp. 116–130. url:
http://link.springer.com/chapter/10.1007%5C%2F978-3-319-14723-9_7 (cit. on p. 32).
SFB876-A1

[577] N. Piatkowski et al. “Generative Machine Learning for Resource-Aware 5G and IoT Systems”.
In: Procs. of the IEEE Int. Conference on Communications 2021. 2021, pp. 1–6. url: https:
//doi.org/10.1109/ICCWorkshops50388.2021.9473625 (cit. on p. 101).

[578] K. Pietrzak. “On the parameterized complexity of the fixed alphabet shortest common
supersequence and longest common subsequence problems”. In: Journal of Computer and
System Sciences 67.4 (2003), pp. 757–771. url: http://www.sciencedirect.com/science/
article/pii/S0022000003000783 (cit. on p. 205).

[579] M. L. Pinedo. Scheduling: Theory, Algorithms, and Systems. 3rd. Springer Publishing Com-
pany, Incorporated, 2008 (cit. on p. 300).

[580] G. Pio, M. Ceci, D. Malerba, and D. D’Elia. “ComiRNet: a web-based system for the analysis of
miRNA-gene regulatory networks”. In: BMC Bioinformatics 16.S-9 (2015), S7 (cit. on p. 228).

[581] T. Pock and S. Sabach. “Inertial proximal alternating linearized minimization (iPALM) for
nonconvex and nonsmooth problems”. In: SIAM journal on imaging sciences 9.4 (2016),
pp. 1756–1787 (cit. on p. 247).

[582] J. Podani. “New combinatorial clustering methods”. In: Numerical syntaxonomy. Ed. by M. B.
Mucina L.and Dale. Dordrecht: Springer Netherlands, 1989, pp. 61–77 (cit. on p. 219).

[583] C. N. Potts. “Analysis of a Heuristic for One Machine Sequencing with Release Dates and
Delivery Times”. In: Operations Research 28.6 (1980), pp. 1436–1441 (cit. on pp. 365, 368).

[584] Y. Prabhu, A. Kag, S. Harsola, R. Agrawal, and M. Varma. “Parabel: Partitioned label trees
for extreme classification with application to dynamic search advertising”. In: Procs. of the
World Wide Web Conference 2018. 2018, pp. 993–1002 (cit. on p. 283).

[585] Y. Prabhu and M. Varma. “Fastxml: A fast, accurate and stable tree-classifier for extreme
multi-label learning”. In: Procs. of the ACM SIGKDD Conference on Knowledge Discovery and
Data Mining 2014. ACM. 2014, pp. 263–272 (cit. on p. 272).

[586] R. Prenger, B. Chen, T. Marlatt, and D. Merl. Fast map search for compact additive tree
ensembles (cate). Tech. rep. Lawrence Livermore National Laboratory (LLNL), Livermore, CA,
2013 (cit. on p. 340).

[587] M. Qaraei, E. Schultheis, P. Gupta, and R. Babbar. “Convex Surrogates for Unbiased Loss
Functions in Extreme Classification With Missing Labels”. In: Procs. of the World Wide Web
Conference 2021. 2021, pp. 3711–3720 (cit. on p. 284).

[588] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. “PointNet++: Deep Hierarchical Feature Learning on
Point Sets in a Metric Space”. In: Advances in Neural Information Processing Systems 30:
Procs. of the 2017 Conference. 2017 (cit. on pp. 130, 132, 135).

[589] C. Qian, Y. Yu, and Z. H. Zhou. “Pareto ensemble pruning”. In: Procs. of the National Confer-
ence on Artificial Intelligence 4 (2015), pp. 2935–2941. url: https://cs.nju.edu.cn/zhouzh/
zhouzh.files/publication/aaai15prun.pdf (cit. on p. 340).

[590] P. Raghavan. “Probabilistic construction of deterministic algorithms: Approximating packing
integer programs”. In: Journal of Computer and System Sciences 37.2 (1988), pp. 130–143
(cit. on pp. 145, 147).

https://doi.org/http://dx.doi.org/10.1007/978-3-319-41706-6_12
http://link.springer.com/chapter/10.1007%5C%2F978-3-319-14723-9_7
https://doi.org/10.1109/ICCWorkshops50388.2021.9473625
https://doi.org/10.1109/ICCWorkshops50388.2021.9473625
http://www.sciencedirect.com/science/article/pii/S0022000003000783
http://www.sciencedirect.com/science/article/pii/S0022000003000783
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/aaai15prun.pdf
https://cs.nju.edu.cn/zhouzh/zhouzh.files/publication/aaai15prun.pdf

474 | Bibliography

[591] R. Rajkumar. “Real-time synchronization protocols for shared memory multiprocessors”. In:
Procs. of the Int. Conference on Distributed Computing Systems 1990. 1990, pp. 116–123.
doi: http://dx.doi.org/10.1109/icdcs.1990.89257 (cit. on pp. 361, 362).

[592] R. Rajkumar, L. Sha, and J. P. Lehoczky. “Real-Time Synchronization Protocols for Multipro-
cessors”. In: Procs. of the IEEE Real-Time Systems Symposium 1988. 1988, pp. 259–269
(cit. on pp. 361, 362).

[593] Y. K. Ramadass et al. “A batteryless thermoelectric energy-harvesting interface circuit with
35mV startup voltage”. In: IEEE J Solid-State Circuits (2010) (cit. on p. 57).

[594] S. J. Reddi, B. Póczos, and A. J. Smola. “Communication Efficient Coresets for Empirical Loss
Minimization”. In: Procs. of the Conference on Uncertainty in Artificial Intelligence 2015.
2015, pp. 752–761. url: http://auai.org/uai2015/proceedings/papers/141.pdf (cit. on
p. 87).

[595] A. P. Reynolds, G. Richards, B. de la Iglesia, and V. J. Rayward-Smith. “Clustering Rules: A
Comparison of Partitioning and Hierarchical Clustering Algorithms”. In: Journal of Mathemat-
ical Modelling and Algorithms 5.4 (2006), pp. 475–504 (cit. on p. 184).

[596] J. Richter, H. Kotthaus, B. Bischl, P. Marwedel, J. Rahnenführer, and M. Lang. “Faster Model-
Based Optimization through Resource-Aware Scheduling Strategies”. In: Procs. of the
Int. Conference: Learning and Intelligent Optimization 2016. Vol. 10079. Lecture Notes in
Computer Science (LNCS). Springer Int. Publishing, 2016, pp. 267–273. url: http://link.
springer.com/chapter/10.1007/978-3-319-50349-3_22 (cit. on p. 11). SFB876-A3

[597] B. Rieck, C. Bock, and K. M. Borgwardt. “A Persistent Weisfeiler-Lehman Procedure for Graph
Classification”. In: Procs. of the Int. Conference on Machine Learning 2019. 2019, pp. 5448–
5458 (cit. on p. 125).

[598] Robotnik.Mobile Robot RB-1 Base. 2021. url: https://www.robotnik.eu/mobile-robots/rb-1-
base-2/ (cit. on p. 374).

[599] M. Roidl et al. “Performance Availability Evaluation of Smart Devices in Materials Handling
Systems”. In: Procs. of the IEEE ICCC Workshops on Internet of Things 2014. Shanghai, China,
Oct. 2014 (cit. on p. 35).

[600] Y. Rong, W. Huang, T. Xu, and J. Huang. “DropEdge: Towards Deep Graph Convolutional Net-
works on Node Classification”. In: Procs. of the Int. Conference on Learning Representation
2020. 2020 (cit. on pp. 130, 136).

[601] ROS. Robot Operating System (ROS). 2021. url: https://www.ros.org/ (cit. on p. 374).
[602] L. Rosasco, E. De, V. A. Caponnetto, M. Piana, and A. Verri. “Are loss functions all the same”.

In: Neural Computation 15 (2004), p. 2004 (cit. on p. 332).
[603] K. E. Rosing, E. L. Hillsman, and H. Rosing-Vogelaar. “A Note Comparing Optimal and Heuris-

tic Solutions To the p-Median Problem”. In: Geographical Analysis 11.1 (1979), pp. 86–89
(cit. on p. 184).

[604] R. A. Rossi and N. K. Ahmed. “The Network Data Repository with Interactive Graph Analytics
and Visualization”. In: Procs. of the AAAI Conference on Artificial Intelligence 2015. 2015.
url: http://networkrepository.com (cit. on p. 154).

[605] O. Roustant, D. Ginsbourger, and Y. Deville. “DiceKriging, DiceOptim: Two R packages for the
Analysis of Computer Experiments by Kriging-based Metamodeling and Optimization”. In:
Journal of Statistical Software 51.1 (2012), pp. 1–55 (cit. on p. 294).

[606] A. Sailer, S. Schmidhuber, M. Deubzer, M. Alfranseder, M. Mucha, and J. Mottok. “Optimiz-
ing the task allocation step for multi-core processors within AUTOSAR”. In: Procs. of the Int.
Conference on Applied Electronics 2013. Sept. 2013, pp. 1–6 (cit. on p. 368).

[607] Y. Saito, F. Sato, T. Azumi, S. Kato, and N. Nishio. “ROSCH:Real-Time Scheduling Framework
for ROS”. In: Procs. of the IEEE Int. Conference on Embedded and Real-Time Computing
Systems and Applications 2018. Aug. 2018, pp. 52–58 (cit. on p. 374).

https://doi.org/http://dx.doi.org/10.1109/icdcs.1990.89257
http://auai.org/uai2015/proceedings/papers/141.pdf
http://link.springer.com/chapter/10.1007/978-3-319-50349-3_22
http://link.springer.com/chapter/10.1007/978-3-319-50349-3_22
https://www.robotnik.eu/mobile-robots/rb-1-base-2/
https://www.robotnik.eu/mobile-robots/rb-1-base-2/
https://www.ros.org/
http://networkrepository.com

Bibliography | 475

[608] F. Saki, A. Sehgal, I. M. S. Panahi, and N. Kehtarnavaz. “Smartphone-based real-time classi-
fication of noise signals using subband features and random forest classifier”. In: Procs. of
the Int. Conference on Acoustics, Speech and Signal Processing 2016. 2016, pp. 2204–2208
(cit. on p. 339).

[609] E. Sari, M. Belbahri, and V. P. Nia. “How Does Batch Normalization Help Binary Training?” In:
arXiv: Computing Research Repository (2019). doi: arXiv:1909.09139 (cit. on p. 329).

[610] R. E. Schapire and Y. Freund. “Boosting: Foundations and algorithms”. In: Kybernetes (2012)
(cit. on p. 341).

[611] L. Schönberger, W.-H. Huang, G. v. d. Brüggen, K.-H. Chen, and J.-J. Chen. “Schedulability
Analysis and Priority Assignment for Segmented Self-Suspending Tasks”. In: Procs. of the
IEEE Int. Conference on Embedded and Real-Time Computing Systems and Applications 2018.
Hakodate, Japan, Aug. 2018 (cit. on p. 363). SFB876-B2

[612] L. Schönberger et al. “Offloading Safety- and Mission-Critical Tasks via Unreliable Connec-
tions”. In: Procs. of the Euromicro Conference on Real-Time Systems 2020. 2020 (cit. on
p. 373). SFB876-A1, SFB876-A3, SFB876-A4, SFB876-B4

[613] E. Schubert. “HACAM: Hierarchical Agglomerative Clustering Around Medoids – and its
Limitations”. In: Procs. of the Lernen.Wissen.Daten.Analysen Workshops: FGWM, KDML,
FGWI-BIA, and FGIR 2021. Ed. by T. Seidl, M. Fromm, and S. Obermeier. Vol. 2993. CEUR
Workshop Proceedings. CEUR-WS.org, 2021, pp. 191–204. url: http://ceur-ws.org/Vol-
2993/paper-19.pdf (cit. on pp. 216, 219).

[614] E. Schubert and M. Gertz. “Numerically Stable Parallel Computation of (Co-)Variance”.
In: Procs. of the Int. Conference on Scientific and Statistical Database Management 2018.
SSDBM 2018 best paper award. 2018, 10:1–10:12. doi: https://doi.org/10.1145/3221269.
3223036 (cit. on p. 220).

[615] E. Schubert, H.-P. Kriegel, and A. Zimek. “The (black) art of runtime evaluation: Are we
comparing algorithms or implementations?” In: Knowledge and Information Systems 52.2
(2017), pp. 341–3778 (cit. on p. 339).

[616] E. Schubert and P. J. Rousseeuw. “Fast and Eager k-Medoids Clustering: O(k) Runtime Im-
provement of the PAM, CLARA, and CLARANS Algorithms”. In: Information Systems 101
(2021), p. 101804. doi: https://doi.org/10.1016/j.is.2021.101804 (cit. on pp. 184, 188, 189,
191). SFB876-A2

[617] E. Schubert and P. J. Rousseeuw. “Faster k-Medoids Clustering: Improving the PAM, CLARA,
and CLARANS Algorithms”. In: Procs. of the Int. Conference on Similarity Search and Applica-
tions 2019. 2019, pp. 171–187. doi: https://doi.org/10.1007/978-3-030-32047-8_16 (cit. on
pp. 184, 188, 189).

[618] E. Schubert and A. Zimek. “ELKI: A large open-source library for data analysis - ELKI Release
0.7.5 "Heidelberg"”. In: arXiv: Computing Research Repository (2019). doi: arXiv:1902.03616
(cit. on pp. 192, 223).

[619] M. Seeger. Greedy forward selection in the informative vector machine. Tech. rep. Technical
report, University of California at Berkeley, 2004 (cit. on p. 81).

[620] T. K. Sellis. “Multiple-Query Optimization”. In: ACM Transactions on Database Systems 13.1
(1988), pp. 23–52 (cit. on p. 31).

[621] G. Sen, G. Namata, M. Bilgic, and L. Getoor. “Collective Classification in Network Data”. In:
AI Magazine 29 (2008) (cit. on p. 136).

[622] S. Sengupta, M. Harris, and M. Garland. Efficient Parallel Scan Algorithms for GPUs. Tech.
Rep. NVR-2008-003. NVIDIA, Santa Clara, CA, 2008 (cit. on pp. 393, 394).

[623] L. Sha, R. Rajkumar, and J. P. Lehoczky. “Priority Inheritance Protocols: An Approach to Real-
Time Synchronization”. In: IEEE Transactions on Computers 39.9 (1990), pp. 1175–1185. doi:
http://dx.doi.org/10.1109/12.57058 (cit. on p. 361).

https://doi.org/arXiv:1909.09139
http://ceur-ws.org/Vol-2993/paper-19.pdf
http://ceur-ws.org/Vol-2993/paper-19.pdf
https://doi.org/https://doi.org/10.1145/3221269.3223036
https://doi.org/https://doi.org/10.1145/3221269.3223036
https://doi.org/https://doi.org/10.1016/j.is.2021.101804
https://doi.org/https://doi.org/10.1007/978-3-030-32047-8_16
https://doi.org/arXiv:1902.03616
https://doi.org/http://dx.doi.org/10.1109/12.57058

476 | Bibliography

[624] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas. “Taking the Human Out
of the Loop: A Review of Bayesian Optimization”. In: Procs. of the IEEE 104.1 (Jan. 2016),
pp. 148–175 (cit. on p. 95).

[625] S. Shao and W. Luk. “Customised pearlmutter propagation: A hardware architecture for trust
region policy optimisation”. In: Procs. of the Int. Conference on Field Programmable Logic
and Applications 2017. IEEE. 2017, pp. 1–6 (cit. on p. 254).

[626] P. Sharma and P. Kulkarni. “Singleton: System-wide Page Deduplication in Virtual Environ-
ments”. In: Procs. of the Int. Symposium on High-Performance Parallel and Distributed
Computing 2012. HPDC ’12. ACM, 2012, pp. 15–26 (cit. on p. 307).

[627] N. Shervashidze, P. Schweitzer, E. van Leeuwen, K. Mehlhorn, and K. Borgwardt. “Weisfeiler–
Lehman Graph Kernels”. In: Journal of Machine Learning Research 12 (2011), pp. 2539–2561
(cit. on pp. 117, 120, 121, 124).

[628] A. Siddiqa, A. Karim, and A. Gani. “Big Data storage technologies: A survey”. In: Frontiers of
Information Technology & Electronic Engineering 18.8 (2017), pp. 1040–1070 (cit. on p. 89).

[629] L. Sigrist et al. “Environment and Application Testbed for Low-Power Energy Harvesting
System Design”. In: IEEE Transactions on Industrial Electronics (2020) (cit. on p. 59).

[630] L. Sigrist, R. Ahmed, A. Gomez, and L. Thiele. “Harvesting-aware optimal communication
scheme for infrastructure-less sensing”. In: ACM Transactions on Internet of Things (2020)
(cit. on pp. 54, 57, 59).

[631] L. Sigrist, A. Gomez, R. Lim, S. Lippuner, M. Leubin, and L. Thiele. “Measurement and Vali-
dation of Energy Harvesting IoT Devices”. In: Procs. of the Design, Automation and Test in
Europe Conference 2017. 2017, pp. 1159–1164 (cit. on pp. 48, 50, 58).

[632] L. Sigrist, A. Gomez, and L. Thiele. Long-Term Tracing of Indoor Solar Harvesting. Aug. 2019.
doi: https://doi.org/10.5281/zenodo.3363925 (cit. on pp. 47, 49, 51).

[633] M. Simonovsky and N. Komodakis. “Dynamic Edge-Conditioned Filters in Convolutional
Neural Networks on Graphs”. In: Procs. of the Conference on Computer Vision and Pattern
Recognition 2017. 2017 (cit. on pp. 116, 135).

[634] P. H. A. Sneath. “The Application of Computers to Taxonomy”. In: Journal of General Microbi-
ology 17.1 (Aug. 1957), pp. 201–226 (cit. on pp. 216, 217).

[635] J. Snoek, H. Larochelle, and R. P. Adams. “Practical Bayesian Optimization of Machine
Learning Algorithms”. In: Advances in Neural Information Processing Systems 25: Procs.
of the 2012 Conference. Ed. by F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger.
Curran Associates, Inc., 2012, pp. 2951–2959. url: http://papers.nips.cc/paper/4522-
practical-bayesian-optimization-of-machine-learning-algorithms.pdf (cit. on p. 288).

[636] C. Sohler and D. P. Woodruff. “Strong Coresets for k-Median and Subspace Approximation:
Goodbye Dimension”. In: Procs. of the IEEE Symposium on Foundations of Computer Science
2018. Ed. by M. Thorup. IEEE Computer Society, 2018, pp. 802–813. doi: https://doi.org/10.
1109/FOCS.2018.00081 (cit. on p. 212). SFB876-A2

[637] C. Sohler and D. P. Woodruff. “Subspace embeddings for the L1-norm with applications”.
In: Procs. of the ACM Symposium on Theory of Computing 2011. Ed. by L. Fortnow and S. P.
Vadhan. ACM, 2011, pp. 755–764 (cit. on pp. 87, 90, 95). SFB876-C4

[638] R. Sokal and P. Sneath. Principles of Numerical Taxonomy. Books in biology. W. H. Freeman,
1963 (cit. on pp. 216, 217).

[639] J. Sompolski, M. Zukowski, and P. A. Boncz. “Vectorization vs. Compilation in Query Execu-
tion”. In: Procs. of the Int. Workshop on Data Management on New Hardware 2011. Athens,
Greece, June 2011, pp. 33–40 (cit. on p. 386).

[640] K. Song, X. Yao, F. Nie, X. Li, and M. Xu. “Weighted Bilateral K-means Algorithm for Fast Co-
clustering and Fast Spectral Clustering”. In: Pattern Recognition (2020), p. 107560 (cit. on
p. 232).

https://doi.org/https://doi.org/10.5281/zenodo.3363925
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
http://papers.nips.cc/paper/4522-practical-bayesian-optimization-of-machine-learning-algorithms.pdf
https://doi.org/https://doi.org/10.1109/FOCS.2018.00081
https://doi.org/https://doi.org/10.1109/FOCS.2018.00081

Bibliography | 477

[641] S. Song, D. Yan, and Y. Xie. “Design of control system based on hand gesture recognition”.
In: Procs. of the IEEE Int. Conference on Networking, Sensing and Control 2018. IEEE. 2018,
pp. 1–4 (cit. on p. 61).

[642] D. Sontag and T. Jaakkola. “Tree Block Coordinate Descent for MAP in Graphical Models”.
In: Procs. of the Int. Conference on Artificial Intelligence and Statistics 2009. Vol. 8. 2009,
pp. 544–551 (cit. on p. 407).

[643] J. Spencer. Ten Lectures on the Probabilistic Method. 2nd Edition. Society for Industrial and
Applied Mathematics, 1994 (cit. on pp. 145, 147).

[644] O. Spinczyk, A. Gal, and W. Schröder-Preikschat. “AspectC++: An Aspect-Oriented Extension
to C++”. In: Procs. of the Int. Conference on Technology of Object-Oriented Languages and
Systems 2002. Sydney, Australia, Feb. 2002, pp. 53–60 (cit. on p. 40).

[645] O. Spinczyk and D. Lohmann. “The Design and Implementation of AspectC++”. In:
Knowledge-Based Systems, Special Issue on Techniques to Produce Intelligent Secure
Software 20.7 (2007), pp. 636–651 (cit. on p. 40).

[646] B. K. Stöcker, T. Schäfer, P. Mutzel, J. Köster, N. M. Kriege, and S. Rahmann. “Protein Com-
plex Similarity Based on Weisfeiler-Lehman Labeling”. In: Procs. of the Int. Conference
on Similarity Search and Applications 2019. Ed. by G. Amato, C. Gennaro, V. Oria, and M.
Radovanovic. Cham: Springer Int. Publishing, 2019, pp. 308–322 (cit. on pp. 116, 117).
SFB876-A6, SFB876-C1

[647] J. Stokes et al. “A Deep Learning Approach to Antibiotic Discovery”. In: Cell 180 (Feb. 2020),
688–702.e13 (cit. on p. 116).

[648] M. Stolpe, K. Bhaduri, K. Das, and K. Morik. “Anomaly Detection in Vertically Partitioned
Data by Distributed Core Vector Machines”. In: Procs. of the European Conference on Ma-
chine Learning and Knowledge Discovery in Databases 2013. Ed. by H. Blockeel, K. Kersting,
S. Nijssen, and F. Železný. Springer, 2013, pp. 321–336 (cit. on p. 89). SFB876-B3

[649] J. Streicher. Data Modeling of Ubiquitous System Software. Tech. rep. 7. TU Dortmund Univer-
sity, Aug. 2014 (cit. on p. 32). SFB876-A1

[650] E. Strubell, A. Ganesh, and A. McCallum. “Energy and Policy Considerations for Modern
Deep Learning Research”. In: Procs. of the AAAI Conference on Artificial Intelligence 2020,
The Innovative Applications of Artificial Intelligence Conference 2020, The AAAI Symposium
on Educational Advances in Artificial Intelligence 2020. AAAI Press, 2020, pp. 13693–13696.
url: https://aaai.org/ojs/index.php/AAAI/article/view/7123 (cit. on p. 6).

[651] X. Sun, X. Peng, P. Chen, R. Liu, J. Seo, and S. Yu. “Binary neural network with 16 Mb RRAM
macro chip for classification and online training”. In: Procs. of the Asia and South Pacific
Design Automation Conference 2018. 2018, pp. 574–579 (cit. on p. 327).

[652] X. Sun et al. “Low-VDD Operation of SRAM Synaptic Array for Implementing Ternary Neural
Network”. In: Procs. of IEEE Transactions on Very Large Scale Integration Systems 2017 25.10
(2017), pp. 2962–2965 (cit. on p. 326).

[653] Y. Sun, Y. Zhang, and G. Xue. “SmartWheelTag: Flexible and Battery-less User Interface for
Drivers”. In: Procs. of the IEEE Vehicular Networking Conference 2018. IEEE. 2018, pp. 1–2
(cit. on p. 61).

[654] C. Sutton and A. McCallum. “An Introduction to Conditional Random Fields for Relational
Learning”. In: Introduction to Statistical Relational Learning. Ed. by L. Getoor and B. Taskar.
MIT Press, 2007. url: http://www.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf (cit. on
p. 106).

[655] C. Sutton and A. McCallum. “An Introduction to Conditional Random Fields”. In: Foundations
and Trends in Machine Learning 4.4 (2012), pp. 267–373 (cit. on pp. 410, 416).

[656] Synopsys, Inc. https://www.synopsys.com/silicon/tcad.html. 2022 (cit. on p. 328).

https://aaai.org/ojs/index.php/AAAI/article/view/7123
http://www.cs.umass.edu/~mccallum/papers/crf-tutorial.pdf

478 | Bibliography

[657] B. Tanasa, U. D. Bordoloi, P. Eles, and Z. Peng. “Probabilistic Response Time and Joint
Analysis of Periodic Tasks”. In: Procs. of the Euromicro Conference on Real-Time Systems
2015. 2015, pp. 235–246 (cit. on p. 363).

[658] M. B. Teitz and P. Bart. “Heuristic Methods for Estimating the Generalized Vertex Median of a
Weighted Graph”. In: Operations Research 16.5 (1968), pp. 955–961 (cit. on p. 184).

[659] M. Thorup. “Quick k-Median, k-Center, and Facility Location for Sparse Graphs”. In: SIAM
Journal on Computing 34.2 (2005), pp. 405–432 (cit. on p. 201).

[660] R. Tibshirani. “Regression Shrinkage and Selection via the Lasso”. In: Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 58.1 (1996), pp. 267–288 (cit. on
p. 105).

[661] R. M. Timoney. OpenMath LaTeX to OpenMath Converter. Tech. rep. 1999, pp. 1–9. url:
https://www.maths.tcd.ie/%7B~%7Drichardt/openmath/ml2om.pdf (cit. on p. 162).

[662] S. Tobuschat, R. Ernst, A. Hamann, and D. Ziegenbein. “System-level timing feasibility test
for cyber-physical automotive systems”. In: Procs. of the IEEE Symposium on Industrial
Embedded Systems 2016. May 2016, pp. 1–10 (cit. on p. 368).

[663] M. Togninalli, E. Ghisu, F. Llinares-López, B. Rieck, and K. M. Borgwardt. “Wasserstein
Weisfeiler-Lehman Graph Kernels”. In: Advances in Neural Information Processing Systems
32: Procs. of the 2019 Conference. 2019, pp. 6436–6446 (cit. on p. 123).

[664] E. Tolochinsky and D. Feldman. “Coresets For Monotonic Functions with Applications to Deep
Learning”. In: arXiv: Computing Research Repository (2018). doi: arXiv:1802.07382 (cit. on
p. 87).

[665] A. Tozawa, M. Tatsubori, T. Onodera, and Y. Minamide. “Copy-on-write in the PHP Language”.
In: Procs. of the ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
2009. POPL ’09. ACM, 2009, pp. 200–212 (cit. on p. 308).

[666] P. Tözün and H. Kotthaus. “Scheduling Data-Intensive Tasks on Heterogeneous Many Cores”.
In: IEEE Data Engineering Bulletin 42.1 (2019), pp. 61–72. url: http://sites.computer.org/
debull/A19mar/p61.pdf (cit. on pp. 285, 287, 289). SFB876-A3, SFB876-C5

[667] D.-S. Tran, N.-H. Ho, H.-J. Yang, E.-T. Baek, S.-H. Kim, and G. Lee. “Real-time hand gesture
spotting and recognition using RGB-D camera and 3D convolutional neural network”. In:
Applied Sciences 10.2 (2020), p. 722 (cit. on p. 61).

[668] M. Trentzsch et al. “A 28nm HKMG super low power embedded NVM technology based on
ferroelectric FETs”. In: Procs. of the IEEE Int. Electron Devices Meeting 2016. IEEE. 2016,
pp. 11–5 (cit. on p. 328).

[669] T. H. Trinh, M.-t. Luong, Q. V. Le, and G. Brain. “Selfie : Self-supervised Pretraining for Image
Embedding”. In: (2019) (cit. on p. 163).

[670] H. Truong et al. “Capband: Battery-free successive capacitance sensing wristband for hand
gesture recognition”. In: Procs. of the ACM Conference on Embedded Networked Sensor
Systems 2018. 2018, pp. 54–67 (cit. on p. 61).

[671] S. Tschiatschek, P. Reinprecht, M. Mücke, and F. Pernkopf. “Bayesian Network Classifiers
with Reduced Precision Parameters”. In: Procs. of the European Conference on Machine
Learning and Principles and Practice of Knowledge Discovery in Databases 2012. 2012 (cit.
on p. 407).

[672] F. Tu, W. Wu, S. Yin, L. Liu, and S. Wei. “RANA: Towards Efficient Neural Acceleration with
Refresh-Optimized Embedded DRAM”. In: Procs. of the Int. Symposium on Computer Archi-
tecture 2018. 2018, pp. 340–352 (cit. on p. 327).

[673] A. Turing. “Computing Machinery and Intelligence”. In:Mind. New Series 59.236 (1950),
pp. 433–460. url: http://www.jstor.org/stable/2251299 (cit. on p. 5).

https://www.maths.tcd.ie/%7B~%7Drichardt/openmath/ml2om.pdf
https://doi.org/arXiv:1802.07382
http://sites.computer.org/debull/A19mar/p61.pdf
http://sites.computer.org/debull/A19mar/p61.pdf
http://www.jstor.org/stable/2251299

Bibliography | 479

[674] H. Turner, T. Bailey, and W. Krzanowski. “Improved biclustering of microarray data demon-
strated through systematic performance tests”. In: Computational Statistics & Data Analysis
48.2 (2005), pp. 235–254 (cit. on p. 233).

[675] M. Tzoufras, M. Gajek, and A. Walker. “Magnetoresistive RAM for error resilient XNOR-Nets”.
In: arXiv: Computing Research Repository (2019). doi: arXiv:1905.10927 (cit. on p. 327).

[676] E. Ustinova and V. Lempitsky. “Learning Deep Embeddings with Histogram Loss”. In: Ad-
vances in Neural Information Processing Systems 29: Procs. of the 2016 Conference. 2016
(cit. on p. 168).

[677] O. Vaidya, S. Gandhe, A. Sharma, A. Bhate, V. Bhosale, and R. Mahale. “Design and Develop-
ment of Hand Gesture based Communication Device for Deaf and Mute People”. In: Procs. of
the IEEE Bombay Section Signature Conference 2020. IEEE. 2020, pp. 102–106 (cit. on p. 61).

[678] S. Valat, M. Pérache, and W. Jalby. “Introducing Kernel-level Page Reuse for High Perfor-
mance Computing”. In: Procs. of the ACM SIGPLAN Workshop on Memory Systems Perfor-
mance and Correctness 2013. MSPC ’13. ACM, 2013, 3:1–3:9 (cit. on p. 307).

[679] B. Van Essen, C. Macaraeg, M. Gokhale, and R. Prenger. “Accelerating a random forest
classifier: Multi-core, GP-GPU, or FPGA?” In: Procs. of the IEEE Int. Symposium on Field-
Programmable Custom Computing Machines 2012. IEEE. 2012, pp. 232–239 (cit. on p. 340).

[680] V. N. Vapnik. The Nature of Statistical Learning Theory. New York: Springer, 1995 (cit. on
p. 10).

[681] A. Vaswani et al. “Attention is All you Need”. In: Advances in Neural Information Pro-
cessing Systems 30: Procs. of the 2017 Conference. Ed. by I. Guyon et al. Vol. 30. Curran
Associates, Inc., 2017. url: https : // proceedings . neurips . cc / paper / 2017 / file /
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (cit. on pp. 163, 165, 166).

[682] S. A. Vavasis. “On the complexity of nonnegative matrix factorization”. In: SIAM journal on
optimization 20.3 (2009), pp. 1364–1377 (cit. on p. 229).

[683] P. Veličković, G. Cucurull, A. Casanova, A. Romero, and Y. B. Liò. “Graph Attention Networks”.
In: Procs. of the Int. Conference on Learning Representation 2018. 2018 (cit. on pp. 130, 132,
136).

[684] S. I. Venieris and C.-S. Bouganis. “fpgaConvNet: A Framework for Mapping Convolutional
Neural Networks on FPGAs”. In: Procs. of the Int. Symposium on Field-Programmable Custom
Computing Machines 2016. 2016 (cit. on p. 254).

[685] J.-P. Vert. “The optimal assignment kernel is not positive definite”. In: arXiv: Computing
Research Repository (2008). url: arXiv:0801.4061 (cit. on p. 121).

[686] A. F. Vincent et al. “Spin-Transfer Torque Magnetic Memory as a Stochastic Memristive
Synapse for Neuromorphic Systems”. In: Transactions on Biomedical Circuits and Systems 9
(2015), pp. 166–174 (cit. on p. 327).

[687] O. Vinyals, S. Bengio, and M. Kudlur. “Order Matters: Sequence to Sequence for Sets”. In:
Procs. of the Int. Conference on Learning Representation 2016. 2016 (cit. on p. 135).

[688] J. S. Vitter. “Random sampling with a reservoir”. In: ACM Transactions on Mathematical
Software (TOMS) 11.1 (1985), pp. 37–57 (cit. on p. 76).

[689] M. Wahib and N. Maruyama. “Scalable Kernel Fusion for Memory-Bound GPU Applications”.
In: Procs. of the Int. Conference for High Performance Computing, Networking, Storage and
Analysis 2014. IEEE Press, 2014, pp. 191–202 (cit. on p. 388).

[690] M. Wainwright, T. Jaakkola, and A. Willsky. “A new class of upper bounds on the log partition
function”. In: IEEE Transactions on Information Theory 51.7 (2005), pp. 2313–2335 (cit. on
p. 105).

[691] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky. “Tree-reweighted belief propagation
algorithms and approximate ML estimation by pseudo-moment matching”. In: Procs. of the
Int. Conference on Artificial Intelligence and Statistics 2003. 2003 (cit. on p. 407).

https://doi.org/arXiv:1905.10927
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
arXiv:0801.4061

480 | Bibliography

[692] M. J. Wainwright and M. I. Jordan. “Graphical Models, Exponential Families, and Variational
Inference”. In: Foundations and Trends in Machine Learning 1.1–2 (2008), pp. 1–305. doi:
http://dx.doi.org/10.1561/2200000001 (cit. on pp. 103, 105, 110, 408, 411).

[693] A. X. Wang, C. Tran, N. Desai, D. Lobell, and S. Ermon. “Deep Transfer Learning for Crop
Yield Prediction with Remote Sensing Data”. In: Procs. of the ACM SIGCAS Conference on
Computing and Sustainable Societies 2018. COMPASS ’18. New York, NY, USA: ACM, 2018,
50:1–50:5. doi: http://doi.acm.org/10.1145/3209811.3212707 (cit. on p. 162).

[694] H. Wang, F. Nie, H. Huang, and F. Makedon. “Fast nonnegative matrix tri-factorization for
large-scale data co-clustering”. In: Procs. of the Int. Joint Conference on Artificial Intelligence
2011. 2011, p. 1553 (cit. on p. 232).

[695] J. Wang, T. Jebara, and S.-F. Chang. “Semi-supervised learning using greedy max-cut”. In:
The Journal of Machine Learning Research 14.1 (2013), pp. 771–800 (cit. on p. 145).

[696] M. Wang et al. “Deep Graph Library: Towards Efficient and Scalable Deep Learning on
Graphs”. In: Int. Conference on Learning Representations Workshop on Representation
Learning on Graphs and Manifolds (2019). url: https://arxiv.org/abs/1909.01315 (cit. on
p. 126).

[697] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein, and J. M. Solomon. “Dynamic Graph
CNN for Learning on Point Clouds”. In: ACM Transactions on Graphics (TOG) (2019) (cit. on
pp. 130, 132, 135).

[698] Y. Wang et al. “Storage-less and Converter-less Photovoltaic Energy Harvesting with Maxi-
mum Power Point Tracking for Internet of Things”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems PP.99 (2015) (cit. on p. 53).

[699] S. Weber, A. Gelman, D. Lee, M. Betancourt, A. Vehtari, and A. Racine-Poon. “Bayesian
aggregation of average data: An application in drug development”. In: Annals of Applied
Statistics (2018) (cit. on p. 94).

[700] B. Weisfeiler. On Construction and Identification of Graphs. Lecture Notes in Mathematics,
Vol. 558. Springer, 1976 (cit. on p. 118).

[701] B. Weisfeiler and A. A. Lehman. “A Reduction of a Graph to a Canonical Form and an Algebra
Arising During this Reduction”. In: Nauchno-Technicheskaya Informatsia 2.9 (1968) (cit. on
pp. 132, 137).

[702] G. Werner-Allen, P. Swieskowski, and M. Welsh. “MoteLab: A Wireless Sensor Network
Testbed”. In: Procs. of the Int. Symposium on Information Processing in Sensor Networks
2005. IPSN ’05. IEEE Press, 2005. url: http://dl.acm.org/citation.cfm?id=1147685.1147769
(cit. on p. 35).

[703] J. Whittaker, S. Garside, and K. Lindveld. “Tracking and predicting a network traffic process”.
In: Int. Journal of Forecasting 13.1 (Mar. 1997), pp. 51–61. url: http://www.sciencedirect.
com/science/article/B6V92-3SWXN18-6/2/97477ccea59869520e0f7a0fcd1c19bc (cit. on
p. 101).

[704] A. Wieder and B. B. Brandenburg. “Efficient partitioning of sporadic real-time tasks with
shared resources and spin locks”. In: Procs. of the Int. Symposium on Industrial Embedded
Systems 2013. 2013, pp. 49–58. doi: http://dx.doi.org/10.1109/SIES.2013.6601470 (cit. on
p. 368).

[705] B. Williams and L. Hoel. “Modeling and Forecasting Vehicular Traffic Flow as a Seasonal
ARIMA Process: Theoretical Basis and Empirical Results.” In: Journal of Transportation
Engineering 129.6 (2003), pp. 664–672 (cit. on p. 101).

[706] R. Winkelmann. Econometric Analysis of Count Data. 5th ed. Springer, 2008 (cit. on pp. 92,
93).

[707] D. Wishart. “256. Note: An Algorithm for Hierarchical Classifications”. In: Biometrics 25.1
(1969), pp. 165–170. url: http://www.jstor.org/stable/2528688 (cit. on pp. 216, 218).

https://doi.org/http://dx.doi.org/10.1561/2200000001
https://doi.org/http://doi.acm.org/10.1145/3209811.3212707
https://arxiv.org/abs/1909.01315
http://dl.acm.org/citation.cfm?id=1147685.1147769
http://www.sciencedirect.com/science/article/B6V92-3SWXN18-6/2/97477ccea59869520e0f7a0fcd1c19bc
http://www.sciencedirect.com/science/article/B6V92-3SWXN18-6/2/97477ccea59869520e0f7a0fcd1c19bc
https://doi.org/http://dx.doi.org/10.1109/SIES.2013.6601470
http://www.jstor.org/stable/2528688

Bibliography | 481

[708] D. P. Woodruff. “Sketching as a Tool for Numerical Linear Algebra”. In: Foundations and
Trends in Theoretical Computer Science 10.1-2 (2014), pp. 1–157 (cit. on p. 89).

[709] D. P. Woodruff and Q. Zhang. “Subspace Embeddings and ℓp-Regression Using Exponential
Random Variables”. In: Procs. of the Conference on Learning Theory 2013. 2013, pp. 546–567
(cit. on pp. 87, 89, 90, 95).

[710] F. Wu, T. Zhang, A. H. de Souza Jr., C. Fifty, T. Yu, and K. Q. Weinberger. “Simplifying Graph
Convolutional Networks”. In: Procs. of the Int. Conference on Machine Learning 2019. 2019
(cit. on pp. 130, 136, 137).

[711] H. Wu, G. Diamos, J. Wang, S. Cadambi, S. Yalamanchili, and S. Chakradhar. “Optimizing
Data Warehousing Applications for GPUs Using Kernel Fusion/Fission”. In: Procs. of the
Parallel and Distributed Processing Symposium Workshops and PhD Forum 2012. IEEE, 2012,
pp. 2433–2442 (cit. on p. 384).

[712] J. Xie and J. Yang. “A survey of join processing in data streams”. In: Data Streams: Models
and Algorithms. Ed. by C. C. Aggarwal. Springer, Jan. 2007, pp. 209–236 (cit. on p. 20).

[713] J. Xu et al. “Stacked sparse autoencoder (SSAE) for nuclei detection on breast cancer
histopathology images”. In: IEEE transactions on medical imaging 35.1 (2016), pp. 119–
130 (cit. on p. 260).

[714] K. Xu, W. Hu, J. Leskovec, and S. Jegelka. “How Powerful are Graph Neural Networks?” In:
Procs. of the Int. Conference on Learning Representation 2019. 2019 (cit. on pp. 117, 127, 130,
132, 133, 137, 139).

[715] K. Xu, C. Li, Y. Tian, T. Sonobe, K. Kawarabayashi, and S. Jegelka. “Representation Learning
on Graphs with Jumping Knowledge Networks”. In: Procs. of the Int. Conference on Machine
Learning 2018. 2018 (cit. on p. 130).

[716] J. Yang, H. Wang, W. Wang, and P. Yu. “An Improved Biclustering Method for Analyzing Gene
Expression Profiles”. In: Int. Journal on Artificial Intelligence Tools 14 (Oct. 2005), pp. 771–
790 (cit. on p. 239).

[717] L. Yang, D. Bankman, B. Moons, M. Verhelst, and B. Murmann. “Bit Error Tolerance of a
CIFAR-10 Binarized Convolutional Neural Network Processor”. In: Procs. of the Int. Sympo-
sium on Computer Architecture 2018. 2018, pp. 1–5 (cit. on p. 326).

[718] Z. Yang, W. Cohen, and R. Salakhutdinov. “Revisiting Semi-supervised Learning with Graph
Embeddings”. In: Procs. of the Int. Conference on Machine Learning 2016. 2016 (cit. on
p. 136).

[719] W. Yao, A. S. Bandeira, and S. Villar. “Experimental performance of graph neural networks
on random instances of max-cut”. In: Procs. of the SPIE Optical Engineering + Application
Conference, Wavelets and Sparsity XVIII, 2019. Ed. by D. V. D. Ville, M. Papadakis, and Y. M.
Lu. Vol. 11138. Int. Society for Optics and Photonics. SPIE, 2019, pp. 242–251 (cit. on p. 145).

[720] M. Yayla et al. “FeFET-based Binarized Neural Networks Under Temperature-dependent Bit
Errors”. In: IEEE Transactions on Computers (2021). doi: 10.1109/TC.2021.3104736. url:
https://ieeexplore.ieee.org/document/9513530 (cit. on p. 328). SFB876-A1

[721] T. Ye, H. Zhou, W. Y. Zou, B. Gao, and R. Zhang. “RapidScorer: Fast tree ensemble evaluation
by maximizing compactness in data level parallelization”. In: Procs. of the ACM SIGKDD
Conference on Knowledge Discovery and Data Mining 2018. 2018 (cit. on p. 340).

[722] Y. Ye, K. A. Ross, and N. Vesdapunt. “Scalable Aggregation on Multicore Processors”. In:
Procs. of the Int. Workshop on Data Management on New Hardware 2011. 2011, pp. 1–11
(cit. on p. 394).

[723] Z. Yin and R. Collins. “Belief Propagation in a 3D Spatio-temporal MRF for Moving Object
Detection”. In: IEEE Computer Vision and Pattern Recognition (CVPR) (June 2007) (cit. on
p. 102).

https://doi.org/10.1109/TC.2021.3104736
https://ieeexplore.ieee.org/document/9513530

482 | Bibliography

[724] R. Ying, J. You, C. Morris, X. Ren, W. L. Hamilton, and J. Leskovec. “Hierarchical Graph Repre-
sentation Learning with Differentiable Pooling”. In: Advances in Neural Information Process-
ing Systems 31: Procs. of the 2018 Conference. 2018 (cit. on pp. 126, 135). SFB876-A6

[725] J. Yoo and S. Choi. “Orthogonal nonnegative matrix tri-factorization for co-clustering: mul-
tiplicative updates on Stiefel manifolds”. In: Information processing & management 46.5
(2010), pp. 559–570 (cit. on pp. 232, 239).

[726] L. Yu, J. Shen, J. Li, and A. Lerer. “Scalable Graph Neural Networks for Heterogeneous
Graphs”. In: arXiv: Computing Research Repository (2020). doi: arXiv :2011 .09679 (cit.
on pp. 130, 137).

[727] S. Yu et al. “Binary neural network with 16 Mb RRAMmacro chip for classification and online
training”. In: Procs. of the Int. Electron Devices Meeting 2016. 2016, pp. 16.2.1–16.2.4 (cit. on
p. 327).

[728] Y. Yuan, R. Lee, and X. Zhang. “The Yin and Yang of processing data warehousing queries on
GPU devices”. In: Procs. of the VLDB Endowment 6.10 (2013), pp. 817–828 (cit. on pp. 384,
401).

[729] R. Zanibbi, G. Topi, M. Kohlhase, and K. Davila. “NTCIR-12 MathIR Task Overview”. In: Procs.
of the NTCIR Conference on Evaluation of Information Access Technologies 2016. Tokyo,
Japan, 2016 (cit. on pp. 162, 172).

[730] F. Zeidler. Beitrag zur Selbststeuerung cyberphysischer Produktionssysteme in der auftrags-
bezogenen Fertigung. Praxiswissen Service, 2019 (cit. on p. 45).

[731] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna. “GraphSAINT: Graph Sampling
Based Inductive Learning Method”. In: Procs. of the Int. Conference on Learning Representa-
tion 2020. 2020 (cit. on pp. 136, 141).

[732] H. Zeng et al. “Deep Graph Neural Networks with Shallow Subgraph Samplers”. In: arXiv:
Computing Research Repository (2020). doi: arXiv:2012.01.380 (cit. on p. 137).

[733] H. Zha, X. He, C. Ding, H. Simon, and M. Gu. “Bipartite graph partitioning and data clus-
tering”. In: Procs. of the Int. Conference on Information and Knowledge Management 2001.
ACM. 2001, pp. 25–32 (cit. on p. 232).

[734] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong. “Optimizing FPGA-based accelerator de-
sign for deep convolutional neural networks”. In: Procs. of the ACM/SIGDA Int. Symposium
on Field-Programmable Gate Arrays 2015. ACM. 2015, pp. 161–170 (cit. on p. 254).

[735] K. Zhang et al. “Hetero-DB: Next Generation High-Performance Database Systems by Best
Utilizing Heterogeneous Computing and Storage Resources”. In: Journal of Computer Sci-
ence and Technology 30.4 (2015), pp. 657–678 (cit. on p. 384).

[736] M. Zhang, Z. Cui, M. Neumann, and Y. Chen. “An End-to-End Deep Learning Architecture for
Graph Classification”. In: Procs. of the AAAI Conference on Artificial Intelligence 2018. 2018
(cit. on pp. 126, 135).

[737] T. Zhang, R. Ramakrishnan, and M. Livny. “Birch: A new data clustering algorithm and its
applications”. In: Data Mining and Knowledge Discovery 1.2 (June 1997), pp. 141–182. url:
http://www.ece.nwu.edu/~harsha/Clustering/newkbspaper.ps (cit. on pp. 215, 219, 220).

[738] T. Zhang, R. Ramakrishnan, and M. Livny. “BIRCH: An Efficient Data Clustering Method for
Very Large Databases”. In: Procs. of the ACM SIGMOD Int. Conference on Management of
Data 1996. 1996, pp. 103–114. url: http : //www.ece .nwu.edu/~harsha/Clustering/
sigmodpaper.ps (cit. on pp. 215, 219, 220).

[739] Y. Zhang, S. Burer, and W. N. Street. “Ensemble pruning via semi-definite programming”. In:
Journal of Machine Learning Research 7 (2006), pp. 1315–1338. url: http://www.jmlr.org/
papers/volume7/zhang06a/zhang06a.pdf (cit. on p. 340).

https://doi.org/arXiv:2011.09679
https://doi.org/arXiv:2012.01.380
http://www.ece.nwu.edu/~harsha/Clustering/newkbspaper.ps
http://www.ece.nwu.edu/~harsha/Clustering/sigmodpaper.ps
http://www.ece.nwu.edu/~harsha/Clustering/sigmodpaper.ps
http://www.jmlr.org/papers/volume7/zhang06a/zhang06a.pdf
http://www.jmlr.org/papers/volume7/zhang06a/zhang06a.pdf

Bibliography | 483

[740] Z.-Y. Zhang, T. Li, C. Ding, X.-W. Ren, and X.-S. Zhang. “Binary matrix factorization for analyz-
ing gene expression data”. In: Data Mining and Knowledge Discovery 20.1 (2010), pp. 28–52
(cit. on p. 232).

[741] Z.-Y. Zhang, Y. Wang, and Y.-Y. Ahn. “Overlapping community detection in complex networks
using symmetric binary matrix factorization”. In: Physical Review E 87.6 (2013), p. 062803
(cit. on p. 232).

[742] Z. Zhang, C. Ding, T. Li, and X. Zhang. “Binary matrix factorization with applications”. In:
Procs. of the IEEE Int. Conference on Data Mining 2007. IEEE. 2007, pp. 391–400 (cit. on
p. 232).

[743] F. Zhao and N. Park. “Using Geographically Weighted Regression Models to Estimate Annual
Average Daily Traffic”. In: Journal of the Transportation Research Board 1879.12 (2004),
pp. 99–107 (cit. on p. 102).

[744] W. Zhao et al. “An FPGA-based Framework for Training Convolutional Neural Networks”. In:
Procs. of the Int. Conference on Application-specific Systems, Architectures and Processors
2016. 2016 (cit. on pp. 254, 255).

[745] W. Zhong and R. Zanibbi. “Structural similarity search for formulas using leaf-root paths
in operator subtrees”. In: Procs. of the European Conference on Information Retrieval 2019.
Springer, 2019, pp. 116–129 (cit. on pp. 161, 162).

[746] J. Ziv and A. Lempel. “A universal algorithm for sequential data compression”. In: IEEE
Transactions on Information Theory 23.3 (1977), pp. 337–343 (cit. on p. 157).

[747] D. Zou, Z. Hu, Y. Wang, S. Jiang, Y. Sun, and Q. Gu. “Layer-Dependent Importance Sampling
for Training Deep and Large Graph Convolutional Networks”. In: Advances in Neural Informa-
tion Processing Systems 32: Procs. of the 2019 Conference. 2019 (cit. on p. 136).

[748] H. Zou and T. Hastie. “Regularization and variable selection via the Elastic Net”. In: Journal
of the Royal Statistical Society B 67 (2005), pp. 301–320 (cit. on p. 105).

[749] M. Zukowski, P. A. Boncz, N. Nes, and S. Héman. “MonetDB/X100–A DBMS In The CPU
Cache”. In: IEEE Data Engineering Bulletin 28.2 (2005), pp. 17–22 (cit. on p. 385).

[750] U. Zwick. “Analyzing the MAX 2-SAT and MAX DI-CUT approximation algorithms of Feige and
Goemans”. In: (2000) (cit. on p. 145).

Index

5G, 433

Accelerated Processing
Unit (APU), 380

Acceleration, 253
Accelerator, 2, 263, 360
Application-Specific

Integrated Circuit
(ASIC), 4

Backpropagation, 139,
250, 256, 329, 330

Bagging, 341
Battery-powered device,

37, 46, 48, 52
Bayes
–naive Bayes classifier,

45, 316
–optimization, 8, 95
Bayesian network, 407
Belief propagation, 407,

410, 411, 413
Bernoulli experiment, 342
Bidirectional Encoder

Representations
(BER), 163, 166, 167,
169, 174–176

Bit
– Error Rate (BER), 326,

330–334
–flip, 10, 329–332, 334
Boosting, 339, 340

Cellular network, 433
Central Processing Unit

(CPU), 2, 26, 28, 31,
40, 41, 53, 259, 263,
264, 270, 271, 276,
277, 280, 281, 284,
287, 288, 291–304,
315, 340–343, 351,
352, 354–356, 406,
411, 419

–architecture, 351

Channel
–distributed channel

access, 425
Classification, 5, 7, 81, 87,

174
–multi-label, 272
Classification And

Regression Tree
(CART), 351

Cluster Feature Tree
(CF-Tree), 219, 220,
222

Clustering, 8, 10, 86, 87,
186, 187, 197, 228,
230, 290, 291

– (k,l), 202
–biclustering, 228
–graph, 140
–hierarchical, 215, 221
–k-means, 200, 204, 212
–k-medoids, 182, 185
Code generation, 263, 350
Communication
–awareness, 74
–network, 7, 425, 430
– technologies, 423
Compression, 11, 111,

112, 114, 145,
157–159

Confidence interval, 79
Coprocessor, 4, 271, 380
Coresets, 10, 86–92, 95,

200, 212, 213
Covariance, 94
Cyber-physical system, 3,

45, 89, 285, 369, 370

Data
–acquisition, 16–20, 28,

49, 62, 66
–packet, 52, 425
–parallelism, 257
– stream, 8, 10, 71, 74, 80,

85, 87, 88, 406

– stream algorithms, 5, 10,
71, 74, 88, 89, 213

– summary, 74, 86, 89
– volume, 272, 427
Deadlines, 291, 292, 367
Decision tree, 7, 11, 45,

341, 343, 344, 350,
355

Dependency Graph
Approach (DGA), 360,
362

Design space exploration,
426

Directed-Acyclic Graph
(DAG), 367

Dynamic Power
Management (DPM),
52

Dynamic voltage scaling,
57

Embedded system, 2–8,
15, 38, 47, 52, 60,
74, 89, 101, 285,
286, 363, 424

Energy
–awareness, 34, 35, 39,

41, 47, 48, 52, 54,
55, 59, 65, 66

– consumption, 3–10, 32,
34, 37, 39–46, 48,
52–59, 61, 65, 66,
68, 74, 249, 281,
300, 302–304, 326,
327, 406, 407,
424–429

–efficiency, 2, 6, 34,
36–38, 41, 45, 46,
48, 49, 56, 62, 67, 68

–harvesting, 34, 37,
47–59, 61, 65–68,
424

–measurement, 6, 40, 43,
50, 52

This work is licensed under the Cre-Open Access. © 2023 the author(s), published by De Gruyter.
ative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-011

486 | Index

Ensembles, 11, 339–342
– tree, 11
Error measure, 188
–accuracy, 294, 295
–mean average precision,

173
–precision, 173
Euclidean distance, 123,

216, 218, 220, 222,
290

Event streams, 15, 19, 20,
26

Evolutionary algorithms, 7,
286

Exponential families, 9,
11, 90, 104, 409

Ferroelectric Field-Effect
Transistors (FeFET),
326–328

Field-Programmable Gate
Array (FPGA), 7, 8, 10,
249, 250, 340

Finite State Machine
(FSM), 41, 42, 65

Floating point arithmetic,
328

Gradient descent, 232,
415

– stochastic, 329, 420
Graph partitioning, 145,

152, 155
Graphical models, 89, 92,

103, 106, 408, 411,
416

–probabilistic, 408
Graphics Processing Unit

(GPU), 2, 8, 9, 140,
249, 253, 263–265,
270, 271, 300, 340,
341, 360, 361, 379,
407

Heterogeneous
processors, 300

Idle state, 431
Indicator function, 103

Inference, 10, 11, 108,
137, 139, 166, 340,
341, 350

–probabilistic, 105, 407,
410, 411, 413

–quadrature-based, 105
– variational, 105
Instrumentation, 16, 17,

19, 26, 42
Internet of Things (IoT), 3,

6, 38, 46–50, 74, 85,
423, 433

k-nearest Neighbor (kNN),
45, 102, 316

Kalman filter, 101
Kernel functions, 5, 81, 96,

102, 118, 121–123,
294, 347, 355

–graph, 116, 118, 120,
124, 125

–hash graph, 124
–RBF, 81
– triangular, 168
–Weisfeiler Leman graph,

120–125, 127
Knowledge, 304
–a priori, 93, 161
–background, 239

L1 norm, 95, 105, 111,
113

L2 norm, 94, 105, 111,
113

Latency, 30, 31, 277, 342,
343, 427

Learning
– contrastive, 174, 175
–embeddings, 161, 162,

167
– self-supervised, 161,

163, 167
– supervised, 42, 272, 341
–unsupervised, 10, 102
Learning tasks, 5, 9, 81,

96, 100, 163
–masking tasks, 163
Leave-one-out, 171
Light, 57, 59, 61, 68

Linkage
– centroid, 216–218
– complete, 216, 290
–median, 216–218
–single, 216
–Ward, 216
Locking protocol, 361
Log-likelihood, 105, 113
Long Term Evolution (LTE),

423

Markov Random Fields
(MRFs), 9, 11, 102,
112–114, 408, 416,
420, 421

Matrix factorization, 11
–binary, 234
–Boolean, 235
–nonnegative, 229
–objectives, 230
Max-Cut, 144
Maximum a posteriori,

105, 408, 409, 417,
420

Maximum likelihood, 93,
105, 408, 409, 413,
419

McQuitty’s Weighted
Pair-Group Method
with Arithmetic mean
(WPGMA), 216, 217,
222

Memory, 9, 10, 74–78, 82,
83, 136, 157, 184,
222, 307, 308, 313,
327, 344, 347

–allocation, 277, 284,
309–313

–architecture, 276, 277,
342

–bottleneck, 3, 277, 281,
284

– cache, 3, 281, 284,
340–345, 347

– capacity, 3
– footprint, 108, 110, 111,

137, 138, 140, 307,
309, 313, 314, 329

Index | 487

–hierarchy, 3, 276, 281,
284, 343

– layout, 27, 313, 341,
342, 345

– locality, 276, 277, 342
–Magnetoresistive

Random Access
Memory (MRAM), 4

–Non-Uniform Memory
Access (NUMA), 276

–non-volatile, 10, 326
–physical, 308, 309
– scratchpad, 3, 381
– shared, 145, 152, 158,

310, 381
–Static Random-Access

Memory (SRAM), 4,
67, 326, 328

– virtual, 308–311
Merge & Reduce, 87, 88
Message passing, 8, 10,

105, 125, 130–132,
143, 410, 412, 413

Model execution, 341
Monte Carlo, 287, 288,

294, 297
Multicore, 4, 8, 33, 249,

275, 285, 296, 304
Multilayer perceptrons, 8,

137, 250

Nearest-neighbor chain
algorithm, 222

Nearest-neighbor search,
174

Neural Network
–Binarized Neural

Networks (BNN), 10,
326, 328–333

–Convolutional Neural
Networks (CNN), 62,
130, 162, 163, 333

–Deep Neural Networks
(DNN), 15, 61, 328,
434

–Graph Neural Networks
(GNN), 8–10, 116,
117, 125–128,

130–135, 137–141,
161–163, 165

Neural network
–Convolutional Neural

Networks (CNN), 254

Offloading, 4, 369, 378
One-vs-Rest Classification,

274
Operating system kernel,

17–20, 22, 23,
27–30, 32, 33, 310

–data, 17, 22

Parallelism, 8, 249, 275,
287, 386

Partition function, 104
Peripheral Component

Interconnect express
(PCIe), 380

Permission, 32, 61, 310
Poisson dependency

network, 92
Potential function, 105,

411
Power
– consumption, 2, 3, 6, 7,

48, 55, 58, 64, 65,
256, 300, 301, 426,
429–433

–measurement, 42, 45,
47, 49, 50, 58, 59,
300, 301

Probability density
function (pdf), 95,
104

Processor utilization, 288
Proximal Optimization,

233
Pruning, 340

Quantization, 10
Query compilation, 386

Radio, 49, 425, 433
–mobile radio networks,

429
–Software-Defined Radio

(SDR), 433

Random forest, 45, 341,
434

Real-time system, 34, 360,
361, 370, 378

Regression, 5, 6, 10, 43,
85–87, 90, 102,
285–292, 298, 316,
341, 434, 435

–Bayesian, 89, 93, 94
–generalized linear

regression models,
89, 90, 92

–hierarchical, 94
– LASSO, 95
– linear, 6, 10, 86, 89, 90,

92, 93
– logistic, 90–92, 316
–ordinary least squares,

92
–Poisson, 92
–probit, 90, 95
Regularization, 5, 11, 93,

103, 105, 110–114,
234, 236–238, 275,
331, 333

Representation
– Term-frequency inverse-

document-frequency
(Tf-idf), 272

Representation learning,
129, 130, 167, 174,
176

Resource
–awareness, 288, 289,

292
–efficiency, 227, 286
–efficient transmission,

425
–optimization, 429, 430
– synchronization, 361
–utilization, 16, 263, 268,

285, 287, 297, 298,
304, 430

Resource Block (RB), 432
Resource-constrained, 47,

61
Resource-constrained

learning, 101, 102,

488 | Index

108, 110, 111, 113,
136

Rule of Three, 79, 80
Runtime
–estimation, 289, 291

Sampling, 5, 6, 9, 10, 48,
64, 67, 85, 90–92,
130, 136, 139, 167,
168, 201, 203, 240,
287, 288, 294, 301

– importance, 86, 89, 91,
93, 136

– layer-wise, 136
–node-wise, 136
– reservoir, 76
– sub-sampling, 137, 139
– subgraph, 136
–uniform, 93
Scalability, 10, 87, 108,

130, 137, 140, 143,
223, 224, 293, 294,
304, 426

Scheduling, 8, 9, 26, 27,
39, 285, 286,
288–292, 294, 295,
297–300, 302, 304,
366, 411, 432

–Earliest Deadline First
(EDF), 366

– federated, 367
– List-Earliest Deadline

First (List-EDF), 366
–non-preemptive

fixed-priority, 363
–Partitioned Earliest-

Deadline-First
(P-EDF), 367

–preemptive fixed-priority,
375

–Worst-Fit Partitioned
Earliest-Deadline-
First (WF-P-EDF), 368

Security, 31, 68
Sensor network, 6, 15, 34,

74, 101, 106
Shannon entropy, 104
Signal
– digital processing, 430
–Received Signal Strength

Indicator (RSSI), 45
Similarity measure, 117,

121, 162, 197, 198,
200, 204

– cosine, 162, 174, 175
–dynamic time warping,

199
– Fréchet distance, 198,

199
Single Instruction,

Multiple Data (SIMD),
386

Sketches, 10, 85, 86,
88–91, 93, 284

Spatio-temporal state
prediction, 100, 102,
103, 106, 111, 113,
114

Spectral efficiency, 425
Speedup, 184, 223, 279,

281, 282, 322
Star Schema Benchmark

(SSB), 381
Submodular functions, 10,

74–77, 80, 84
Sufficient statistics, 103,

104, 409, 410

Support vector data
description, 212

Support Vector Machine
(SVM), 10, 45, 316,
332

Synchronization, 4, 140,
284

Task period, 368
Tensor Processing Unit

(TPU), 2
Test bed, 34–38, 40, 45
Thread parallelism, 275
Tiling, 214
Time series data, 62, 65,

101, 197, 198
Transformer, 163, 165,

166, 176, 283
Transmission power, 44,

425, 430, 433

Ultra-low power device, 9
Ultra-low power state, 44,

52, 59, 67
Uplink power, 433
User Equipment (UE), 423,

425, 430, 431

Variance, 96, 139, 291
von Neumann architecture,

2, 3

Wasserstein distance, 94,
122, 123

Wireless Sensor Network
(WSN), 35, 36

Worst Case Execution Time
(WCET), 363, 370

Worst-Fit Heuristic, 367

List of Contributors

Editors

Morik, Katharina, Prof. Dr. TU Dortmund University, Department of Computer Science, Head of the
chair for Artificial Intelligence & Speaker of the Collaborative Research Center 876 on Providing
Information by Resource-Constrained Data Analysis, katharina.morik@tu-dortmund.de

Marwedel, Peter, Prof. Dr. TU Dortmund University, Department of Computer Science, CRC876,
peter.marwedel@tu-dortmund.de

Contributors

Amrouch, Hussam, Jun.-Prof. Dr.-Ing. Universität Stuttgart, amrouch@iti.uni-stuttgart.de

Babbar, Rohit, Ph.D. Aalto University, Assistant Professor Department of Computer Science,
rohit.babbar@aalto.fi

Bertram, Nico, M. Sc. TU Dortmund University, Department of Computer Science, CRC876,
nico.bertram@tu-dortmund.de

Borchert, Christoph, Dr.-Ing. Osnabrück University, Institute of Computer Science, CRC876,
christoph.borchert@uni-osnabrueck.de

Buschhoff, Markus, Dr.-Ing. TU Dortmund University, Department of Computer Science, Design Au-
tomation for Embedded Systems Group, CRC876, markus.buschhoff@tu-dortmund.de

Buschjäger, Sebastian, M. Sc. TU Dortmund University, Department of Computer Science, Artificial In-
telligence Group, CRC876, sebastian.buschjaeger@tu-dortmund.de

Chen, Jian-Jia, Prof. Dr. TU Dortmund University, Department of Computer Sciences, Head of the chair
for Design Automation for Embedded Systems, CRC876, jian-jia.chen@cs.uni-dortmund.de

Chen, Kuan-Hsun, Dr.-Ing. University of Twente, Faculty of Electrical Engineering, Mathematics and
Computer Science, CRC876, k.h.chen@utwente.nl

Ellert, Jonas, M. Sc. TU Dortmund University, Department of Computer Science, Chair 11 Algorithm
Engineering, CRC876, jonas.ellert@tu-dortmund.de

Falkenberg, Robert, M. Sc. TU Dortmund University, Communications Networks Institute, CRC876,
robert.falkenberg@tu-dortmund.de

Fey, Matthias, M. Sc. TU Dortmund University, Department of Computer Science, Computer Graphics
Lab, CRC876, matthias.fey@tu-dortmund.de

Fischer, Johannes, Prof. Dr. TU Dortmund University, Department of Computer Science, Chair 11 Algo-
rithm Engineering, CRC876, johannes.fischer@cs.tu-dortmund.de

Open Access.©2023 the author(s), published by De Gruyter. This work is licensed under the Cre-
ative Commons Attribution 4.0 International License.
https://doi.org/10.1515/9783110785944-012

490 | List of Contributors

Funke, Henning, M. Sc. TU Dortmund University, Department of Computer Science, Databases and In-
formation Systems Group, CRC876, henning.funke@cs.tu-dortmund.de

Gómez, Andrés, Ph.D. University of St.Gallen, Interaction- andCommunication-basedSystemsGroup,
andres.gomez@unisg.ch

Guo, Ce, Professor Imperial College London, Faculty of Engineering, Department of Computing,
c.guo@imperial.ac.uk

Hess, Sibylle, Dr. Eindhoven University of Technology, Assistant Professor, Mathematics and Com-
puter Science, Data Mining, CRC876, s.c.hess@tue.nl

Kotthaus, Helena, Dr. TU Dortmund University, Department of Computer Science, Artificial Intelli-
gence Group, CRC876, helena.kotthaus@cs.tu-dortmund.de

Kriege, Nils M., Prof. Dr. University of Vienna, Faculty of Computer Science, DataMining andMachine
Learning (DM), CRC876, nils.kriege@univie.ac.at

Krivošija, Amer, Dr. TU Dortmund University, Department of Statistics, Mathematical Statistics with
Applications in Biometrics, Projekt FAIR, CRC876, amer.krivosija@tu-dortmund.de

Lang, Andreas, M. Sc. TU Dortmund University, Department of Computer Science, Artificial Intelli-
gence Group, CRC876, andreas.lang@tu-dortmund.de

Lenssen, Lars, M. Sc. TUDortmundUniversity, Department of Computer Science, Artificial Intelligence
Group, CRC876, lars.lenssen@tu-dortmund.de

Lochmann, Alexander, M. Sc. TU Dortmund University, Department of Computer Science, Embedded
System Software Group, CRC876, alexander.lochmann@tu-dortmund.de

Luk, Wayne, Prof. Dr. Imperial College London, Faculty of Engineering, Department of Computing,
w.luk@imperial.ac.uk

Masoudinejad, Mojtaba, Dr.-Ing. TU Dortmund University, Department of Computer Science, Design
Automation for Embedded Systems Group, CRC876, mojtaba.masoudinejad@tu-dortmund.de

Mayer, Simon, Prof. Dr. University of St. Gallen, Interaction- and Communication-based Systems
Group, simon.mayer@unisg.ch

Morris, Christopher, Dr. RWTH Aachen, Faculty of Electrical Engineering and Information Technology,
CRC876, christopher.morris@tu-dortmund.de

Munteanu, Alexander, Dr. TU Dortmund University, Dortmund Data Science Center, Faculties of Statis-
tics and Computer Science, CRC876, alexander.munteanu@tu-dortmund.de

Pfahler, Lukas, M. Sc. TU Dortmund University, Department of Computer Science, Artificial Intelli-
gence Group, CRC876, lukas.pfahler@tu-dortmund.de

Piatkowski, Nico, Dr. Fraunhofer Institute for Intelligent Analysis and Information Systems, CRC876,
nico.piatkowski@iais.fraunhofer.de

List of Contributors | 491

Schubert, Erich, Prof. Dr. TU Dortmund University, Department of Computer Science, Artificial Intelli-
gence Group, CRC876, erich.schubert@cs.tu-dortmund.de

Schultheis, Erik, M. Sc. Aalto University, Department of Computer Science, erik.schultheis@aalto.fi

Shi, Junjie, M. Sc. TU Dortmund University, Department of Computer Science, Design Automation for
Embedded Systems Group, CRC876, junjie.shi@tu-dortmund.de

Sliwa, Benjamin, Dr.-Ing. TUDortmundUniversity, Senior researcher CommunicationsNetworks Insti-
tute, CRC876, benjamin.sliwa@tu-dortmund.de

Spinczyk, Olaf, Prof. Dr.-Ing. Osnabrück University, Department for Mathematics and Computer Sci-
ence, Leader of the Embedded Software Systems Group, CRC876, olaf@uos.de

Streicher, Jochen, Dipl.-Inf. TU Dortmund University, Department of Computer Science, Embedded
System Software Group, CRC876, jochen.streicher@tu-dortmund.de

Suter, Lars, M.A. University of St.Gallen, Interaction- and Communication-based Systems Group,
larskai.suter@student.unisg.ch

Teubner, Jens, Prof. Dr. TU Dortmund University, Department of Computer Science, Databases and In-
formation Systems Group, CRC876, jens.teubner@cs.tu-dortmund.de

Weichert, Frank, Priv.-Doz. Dr. TU Dortmund University, Department of Computer Science, Intelligent
Sensing in Computer Graphics, CRC876, frank.weichert@tu-dortmund.de

Yayla, Mikail, M. Sc. TU Dortmund University, Department of Computer Science, Design Automation
for Embedded Systems Group, CRC876, mikail.yayla@tu-dortmund.de

Technical Editors

Becker, Andreas, Dr. TU Dortmund University, Department of Computer Science, CRC876,
andreas3.becker@tu-dortmund.de

Buß, Jens, Dr. TU Dortmund University, Department of Computer Science, Managing Director of the
Collaborative Research Center 876, jens.buss@tu-dortmund.de

Acknowledgment
Part of the work on this book is the result of research of the Collaborative Research Center 876 "Pro-
viding Information by Resource-Constrained Analysis", which was funded from 2011–2022 by the
Deutsche Forschungsgemeinschaft (DFG) under DFG project number 124020371, see: https://gepris.
dfg.de/gepris/projekt/124020371?language=en.

https://gepris.dfg.de/gepris/projekt/124020371?language=en
https://gepris.dfg.de/gepris/projekt/124020371?language=en

	Contents
	Preface
	1 Introduction
	Data Gathering and Resource Measuring
	3 Streaming Data, Small Devices
	4 Structured Data
	5 Cluster Analysis
	6 Hardware-Aware Execution
	7 Memory Awareness
	8 Communication Awareness
	9 Energy Awareness
	Bibliography
	Index
	List of Contributors

