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We introduce Port-Based State Preparation (PBSP), a teleportation task
where Alice holds a complete classical description of the target state and Bob’s
correction operations are restricted to only tracing out registers. We show
a protocol that implements PBSP with error decreasing exponentially in the
number of ports, in contrast to the polynomial trade-off for the related task of
Port-Based Teleportation, and we prove that this is optimal when a maximally
entangled resource state is used.

As an application, we introduce approximate Universal Programmable Hy-
brid Processors (UPHP). Here the goal is to encode a unitary as a quantum
state, and the UPHP can apply this unitary to a quantum state when knowing
its classical description. We give a construction that needs strictly less memory
in terms of dimension than the optimal approximate Universal Programmable
Quantum Processor achieving the same error. Additionally, we provide lower
bounds for the optimal trade-off between memory and error of UPHPs.

1 Introduction
Quantum teleportation [Ben+93] is a fundamental task in quantum information process-
ing: Two parties, Alice and Bob, can implement a quantum channel by means of a clas-
sical channel and one entangled quantum bit shared between the two parties. Although
an infinitely-precise description of a quantum state would require an infinite number of
classical bits to describe, quantum teleportation allows an observer who cannot access the
infinite information in a quantum state to send this information only with 2-bits of classical
communication and an entangled qubit.

Standard teleportation is a protocol where the transmitted quantum state is unknown,
but what if Alice knows which quantum state she would like to transmit? Of course, she
could first create the state and then use a standard teleportation protocol, but it might
open up the option for other protocols. This variant of teleportation is called remote state
preparation (RSP) [Ben+01], and can indeed be performed more efficiently; for instance,
asymptotically only one bit of classical communication is necessary to transmit a qubit.

Port-based teleportation [IH08] (PBT) is a variant of teleportation where the receiver’s
correction operation is very simple; after receiving classical information from Alice, Bob
simply picks one of the subsystems, or ports, and traces out the rest of his part of the
entangled resource state. This form of the correction operation allows Bob to perform
quantum operations on the output of the protocol before receiving the correct port – this
property makes PBT a useful primitive for various tasks in quantum information, includ-
ing proving bounds on channel discrimination [Pir+19], universal programmable quantum
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processors [NC97; YRC20], constructing protocols for instantaneous non-local quantum
computation [BK11], transposing and inverting unitary operations [Qui+19a; Qui+19b],
storage and retrieval of unitary channels [SBZ19] and communication complexity and Bell
nonlocality [Buh+16].

The primitive PBT is powerful but not very efficient, requiring a number of ports
scaling polynomially with the dimension of the transmitted state (i.e., exponential in the
number of qubits transmitted) and the tolerated error. Given that knowing the teleported
quantum state makes RSP more efficient than standard teleportation, we will study the
following question:

What is the complexity of port-based teleportation of a known state?
And what would be the uses of such primitive?

Our contributions. In this work, we introduce and study a variant of quantum telepor-
tation, Port-Based State Preparation (PBSP); where the target qubit is known to Alice,
but is still unknown to Bob, and Bob cannot perform any correction operation other than
discarding ports. We can consider probabilistic and deterministic variants of PBSP, where
the former either constructs the desired state perfectly or signals a failure, and the latter
always constructs a (necessarily approximate) state. A protocol for this task is present
in the RSP literature, denoted as the ‘column method’ [Ben+05], but as far as we are
aware we are the first ones describing the general task explicitly and studying the relations
between the dimension of the entangled resource state, the number of ports and the error
of the outcome state.

Since Alice knows the state she intends to send, her measurement can depend on it,
which turns out to be enough for the error to scale inverse-exponentially in the number of
ports, both for the deterministic and the probabilistic PBSP. Moreover, given a d dimen-
sional input state, when N independent maximally entangled states are taken as resource
states, we design measurements in Section 3 that achieve the same success probability p
and worst-case fidelity Fwc,

p = Fwc = 1 −
(

1 − 1
d

)N
, (1)

for the probabilistic and deterministic PBSP respectively. Moreover, in Section 5 we show
that this is the optimal achievable error for both the probabilistic and deterministic PBSP
when maximally entangled states are used as resource.

Motivated by the multiple applications of PBT, we also introduce and study a known-
state variant of a Universal Programmable Processor [NC97], which we call Universal
Programmable Hybrid Processor (UPHP); a quantum machine that given a description of
a quantum state, outputs a state approximately close to the state with a chosen unitary
applied to it. The name is meant to evoke a combination between classical and quantum
universal processors; classical computers can compute any function on input data by pro-
gramming a universal gate array, and similarly we can program quantum gate arrays to
perform arbitrary unitary operations on quantum data.

Since there are no correction operations, the PBSP protocol allows the receiver to apply
any quantum operation in their registers before receiving the classical message from the
sender. We show in Theorem 4.1 that the memory dimension m needed for the UPHP
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Existence Optimality
PBT

Det. f ≥ 1 − d(d−1)
N [IH08] f∗ ≤ 1 − d(d−1)

8N2 +O
(

1
N3

)
[Chr+21]

f∗ ≤ K log(d)
d

(
2N + 2

3

)
[KPP19]

Prob. p = N
N−1+d2 [Stu+17] p∗ ≤ N

N−1+d2 [Pit13; Moz+18]
PBSP

Det. Fwc = 1 −
(
1 − 1

d

)N
Theorem 3.2 1 − h(

√
1 − F ∗

wc) ≤ log(d)
d 4N Theorem 5.2

F ∗
wc,EPR ≤ 1 −

(
1 − 1

d

)N
Theorem 5.4

Prob. p = 1 −
(
1 − 1

d

)N
Theorem 3.1 p∗

EPR ≤ 1 −
(
1 − 1

d

)N
Theorem 5.3

Table 1: Probability p, average fidelity f (see Definition 2.3) and worst-case fidelity (see Definition 2.2)
of teleporting a qudit with N ports for PBT and PBSP.

processor build from PBSP scales in terms of relative error ε as:

m ≤
(1
ε

)4d ln(d)
. (2)

Once again, this shows an exponential separation between the classical-quantum hybrid
and fully-quantum universal processors. Finally, in Theorem 5.1 we bound the optimal
achievable memory dimension for UPHPs by

m ≥ 2
(1−h(ε))

2 d, (3)

which follows from the impossibility of Quantum Random Access Codes (QRACs) coming
from Nayak’s bound, see Theorem 2.1.

Relation to the literature. Our results show a fundamental difference between having
an unknown versus known state on Alice’s side. The PBSP protocol achieves an exponential
scaling of the error in terms of the number of ports, in contrast to the PBT results, where
linear upper bounds exist for optimal scaling for any resource state, see Table 1. For deter-
ministic PBT it is known that the Pretty Good Measurement (PGM) achieves the optimal
fidelity both for maximally entangled resource states and when the resource states are op-
timized [Led22], but this is not the case for probabilistic PBT [Pit13; Moz+18]. Although
probabilistic and deterministic PBT behave differently not only in terms of achievable error
but also the measurements involved, for both PBSP tasks we obtain exponentially decreas-
ing error with maximally mixed resource states and practically the same measurement. We
include a summary of the comparison between PBT and PBSP results in Table 1, note
that the optimality for PBSP is only discussed for maximally entangled resources, which
we denote by an EPR subscript.

Along with the definition of UPQPs Nielsen and Chuang proved that they are impos-
sible to perform perfectly [NC97], and many have afterwards worked on closing the gap
between existence and impossibility results from different directions; e.g. studying the pos-
sible overlap between two program states [HZB06], through epsilon-nets [Maj18], or with
type constants of Banach spaces [KPP19]. Finally, a recent result by Yang, Renner and
Chiribella [YRC20] closed the gap with a tight bound on the memory dimension, which
scales d2-inverse-exponentially with the error, where d is the dimension of the unitary
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Upper bounds Lower bounds

UPQP
(

1
ε

)d2

[KPP19] 2
(1−ε)

12 d− 2
3 log(d) [KPP19]

(1−ε)
4 d if unitary processor(

1
ε

) d2−1
2 [YRC20]

(
1
ε

) d2−1
2 −α

, ∀α > 0 [YRC20]

UPHP
(

1
ε

)4d ln(d)
Theorem 4.1 2

d
2 (1−h(2ε)) Theorem 5.1

Table 2: Memory dimension m necessary for universally programming any unitary in d dimensions, the
set U(d), with UPQPs and UPHPs up to error ε.

operation. In this regard, the existence result of UPHP we provide scales d log(d)-inverse-
exponentially with the error, implying that UPHPs are an exponentially easier task to
perform than UPQPs. Moreover, our lower bound obtained using the well known Nayak’s
bound for QRACs also works for UPQPs and although weaker than the optimal one, it im-
proves on the previous best known one by Kubicki, Palazuelos and Perez-García [KPP19].
We include a summary of the comparison between UPQPs and UPHPs results in Table 2.

Open questions. Since Port-Based Teleportation has attracted so much attention and
found so many applications, it is natural to ask which of these are relevant with the
knowledge of the state on Alice’s side, and if they become easier to perform. We include
some questions explicitly:

1. Exact formulas for the fully optimized measurement and resource exist for both prob-
abilistic and deterministic PBT derived using graphical algebra [Stu+17; Moz+18],
and asymptotic term expressions derived from these are discussed in [Chr+21; Pit13;
Moz+18]. Here we only prove optimal achievable error of PBSP when maximally en-
tangled states are used as a resource, but can such an analysis for the fully-optimized
case be performed for PBSP?

2. Recently some efficient algorithms for computing PBT were presented which exploit
the symmetry of the task [GBO23; FTH23]. Can we also exploit the symmetry of
PBSP to provide efficient algorithms for its implementation?

3. Note that do not close the gap between the upper and lower bound in the memory
dimension for UPHP. In fact, even though we produce scaling in the dimension which
is close to tight, we were unable to reproduce the known lower-bound results for
UPQP which show that the dimension blows up as the error ε tends to zero, which
should intuitively hold for UPHP as well.

4. From the perspective of high-order physics, it turns out that for probabilistic exact
unitary transformations, [Qui+19a] showed that the maximal success probability
can always be obtained by probabilistic PBT, whilst this is not the case for the
deterministic case. What happens in the case of a known state?
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2 Preliminaries
2.1 Notation
We use D(Hd) to denote states in a d-level system, called ‘qudits’, i.e. trace-one positive
semidefinite matrices in a d-dimensional Hilbert spaces

D(Hd) := {ρ ∈ PSD(H) : Tr[ρ] = 1}. (4)

The single-use distinguishability between two quantum channels is often quantified by the
diamond norm, given Φ : L(HA) → L(HB),

∥Φ∥⋄ := sup
k≥1

ρ∈D(Ck⊗HA)

∥(ICk ⊗ ΦA→B)ρ∥1. (5)

As is standard in computer science, we will use log to denote the base 2 logarithm. The
binary entropy function is denoted by h, i.e. h(p) := −p log(p) − (1 −p) log(1 − p). We call
‘maximally entangled’ qudits to

∣∣∣ϕ+
d

〉
:= 1√

d

d∑
x=1

|x⟩ ⊗ |x⟩ . (6)

We denote the set of integers from 1 to n ∈ N by [n] := {1, 2, . . . , n}. Given A := A1 . . . An,
and x ∈ [N ], we denote by Ax̄ all the elements in A other than the x-th, this is, Ax̄ :=
A1, . . . , Ax−1, Ax+1, . . . , AN .

While we denote a pure quantum state by |ψ⟩, we use ψ to denote its classical descrip-
tion. Because our results are of information-theoretic nature, we will assume the classical
description to be of arbitrarily-high precision representation of |ψ⟩ unless specified other-
wise.

We denote by F (ρ, σ) the fidelity between two states

F (ρ, σ) =
∥∥√ρ√

σ
∥∥2

1 = Tr
[√√

ρσ
√
ρ

]2
. (7)

If one of the states is pure, e.g. ρ = |ψ⟩⟨ψ|, then the fidelity is the overlap of the states

F (ρ, σ) = Tr
[√

|ψ⟩⟨ψ|σ |ψ⟩⟨ψ|
]2

= ⟨ψ|σ |ψ⟩ . (8)

Moreover, by the Fuchs-van de Graaf inequalities we have the following relation between
the fidelity and distance between two states,

1 −
√
F (ρ, σ) ≤ 1

2∥ρ− σ∥1 ≤
√

1 − F (ρ, σ). (9)

Definition 2.1 (Entanglement fidelity). Given two channels Φ1
A,Φ2

A ∈ CPTP (HA), we
define their entanglement fidelity as

F (Φ1
A,Φ2

A) := F ((Φ1
A ⊗ IB)

∣∣∣ϕ+
AB

〉〈
ϕ+
AB

∣∣∣ , (Φ2
A ⊗ IB)

∣∣∣ϕ+
AB

〉〈
ϕ+
AB

∣∣∣). (10)

Definition 2.2 (Worst-case fidelity). Given two channels Φ1
A,Φ2

A ∈ CPTP (HA), we
define their worst-case fidelity as

Fwc(Φ1
A,Φ2

A) := inf
|ψ⟩
F ((Φ1

A ⊗ IB) |ψAB⟩⟨ψAB| , (Φ2
A ⊗ IB) |ψAB⟩⟨ψAB|). (11)
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We denote by F ∗(Φ, I) (respectively F ∗
wc(Φ, I)) the optimal achievable entanglement

(respectively worst-case) fidelity between a channel Φ and the identity channel I, we will
call this the entanglement (respectively worst-case) fidelity of the channel Φ and denote it
by F ∗ (respectively F ∗

wc) if the protocol we are talking about is clear from the context.

Definition 2.3 (Average fidelity). Given a channel Φ ∈ CPTP (HA), we define its average
fidelity as

f(Φ) :=
∫
ψ

⟨ψ| Φ(|ψ⟩⟨ψ|) |ψ⟩ dψ. (12)

We denote by f∗(Φ) the optimal achievable average of the channel Φ, and denote it by
f∗ if the protocol we are talking about is clear from the context. There is a well-known
relation between average fidelity and entanglement fidelity of any channel, see [HHH99,
Proposition 1]:

f(Φ) = F (Φ, I)d+ 1
d+ 1 . (13)

2.2 Quantum Random Access Codes
A fundamental impossibility result of quantum information theory is Holevo’s theorem, i.e.,
no more than n bits of accessible information can be transmitted by transferring n qubits.
Intuitively, Holevo’s bound comes from the necessity of choosing a measurement, which will
possibly destroy the information that could have been obtained by another measurement.
Quantum Random Access Codes (QRACs) were introduced by Ambainis, Nayak, Ta-Shma,
and Vazirani [Amb+99] with the hope of circumventing Holevo’s theorem. The idea was
to hand some measurements to the receiver – as many measurements as bits – such that
each measurement would reveal at least one of the bits with a certain fixed probability of
success. Note that the existence of QRACs would not immediately violate Holevo’s bound:
as the measurements do not commute, they cannot be applied subsequently with the same
success probability.

Definition 2.4 (QRAC). A (n,m, p)-quantum random access code (QRAC) is a map-
ping of n classical bits into m qubits (f : {0, 1}n → C2m

, x 7→ ρx), along with a set of
measurements (M0

1 ,M
1
1 ), . . . , (M0

n,M
1
n) satisfying, for all x ∈ {0, 1}n and i ∈ [n],

Tr(Mxi
i f(x)) ≥ p.

Unfortunately, QRACs do not improve much on Holevo’s bound, as shown in [Nay99].
In particular, although an n-qubit quantum state is a vector in a 2n-dimensional complex
space, it – perhaps surprisingly – cannot encode an amount of information that is more
than linear in n; or at least not in an accessible way.

Theorem 2.1 (Nayak’s bound). Any (n,m, p)-QRAC must satisfy

m ≥ n(1 − h(p)),

where h is the binary entropy function.

2.3 Port-Based Teleportation
On the other side of the story, we can ask if the converse of such a statement is true, that
is, what the number of bits we need to specify a qubit is. Intuitively, since we can only
approximate a complex number with a finite number of bits, this should be impossible, but
teleportation tasks circumvent this limitation by making use of entanglement as a resource.
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Here we are interested in a particular teleportation task called Port-Based Teleportation
(PBT), introduced by Ishizaka and Hiroshima [IH08], where Bob’s computational power
is restricted to tracing out registers. Note that in this situation the only meaningful
classical communication is communicating a port, thus the classical communication cost
is completely determined by the number of registers that Bob holds, in other words, the
dimension of Bob’s part of the resource state.

Protocol 1 (d,N, p) Probabilistic Port-Based Teleportation
Setting. Both Alice and Bob each have N qudits in A1, A2, . . . , AN and B1, B2, . . . , BN
respectively, which are denoted by A and B as a whole. They share an arbitrary entangled
resource in AB, and Alice holds an additional input register A0. There is a single round
of classical communication from Alice to Bob. Bob’s correction operations are restricted
to tracing out registers.
Inputs. A d-dimensional quantum state in Alice’s register A0.
Goal. Alice’s input state to be teleported to an arbitrary output port of Bob, with prob-
ability of success p.
The protocol:

1: Alice performs a N+1 outcome POVM measurement on her d-dimensional input state
and her half of the N shared resource states.

2: Alice communicates either a port x ∈ [N ] or abort x = 0 to Bob with log(N + 1) bits
of classical communication.

3: If x = 0 Bob aborts, else he traces out all but register Bx.

We can distinguish two types of PBT tasks; probabilistic and deterministic ones. In
the probabilistic case, Alice performs a N + 1 outcome POVM M = {Mx}Nx=0 such that
only outcomes x = 1, . . . , N refer to a successful transmission of the state, in this case the
state in port x has perfect fidelity with respect to the state intended, and outcome x = 0
refers to a failure in the transmission, therefore Bob aborts. In this setting it is natural
to study the performance of the protocol by studying the success probability. To avoid
confusion, we will denote these as (d,N, p)-PBT protocols, where p denotes the probability
of success of the protocol.

Deterministic PBT does not consider the option of failure, instead Alice performs a N
outcome POVM, and always transmits a port. It is clear that such a protocol must be
approximate, meaning that the outcome state cannot always have perfect fidelity with the
intended one, hence we study the performance of the protocol in terms of the entanglement
fidelity of the channel.

For protocols with a covariance property, as is the case of PBT, both the entanglement
fidelity F and the diamond norm ε are equivalent [YRC20, Appendix B, Lemma 2],

F = 1 − ε

2 , (14)

In the rest of this work we will talk about probability of success and entanglement fidelity
as measures of accuracy.

In particular, any probabilistic (d,N, p)-PBT can be used to construct a deterministic
one, just by Alice transmitting a random register index whenever the measurement outcome
is failure, i.e. x = 0. The achieved entanglement fidelity is

F ≥ p+ 1 − p

d2 . (15)
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Protocol 2 (d,N, F ) Deterministic Port-Based Teleportation
Setting. Both Alice and Bob each have N qudits in A1, A2, . . . , AN and B1, B2, . . . , BN
respectively, which are denoted by A and B as a whole. They share an arbitrary entangled
resource in AB, and Alice holds an additional input register A0. There is a single round
of classical communication from Alice to Bob. Bob’s correction operations are restricted
to tracing out registers.
Inputs. A d-dimensional quantum state in Alice’s register A0.
Goal. Alice’s input state to be teleported to an arbitrary output port of Bob, with fidelity
F .
The protocol:

1: Alice performs a N outcome POVM measurement on her d-dimensional input state
and her half of the N shared resource states.

2: Alice always communicates a port x ∈ [N ] to Bob with log(N) bits of classical com-
munication.

3: Bob traces out all but register Bx.

There are some known trade-offs between the dimension of the input state d, the number
of ports N , and the accuracy of the protocol, depending on the resource states, for both
the probabilistic and the deterministic PBT. As all these parameters can be optimized
independently, in order to simplify the analysis it is standard in the literature to consider
N independent maximally entangled resource states (one per port) and the Pretty Good
Measurement (PGM), in this case we call the protocol standard. We include the known
results between resource trade-offs (as far as we are aware) in Table 3.

Existence Optimality
Det. F sta ≥ 1 − d2−1

N [IH08] F ∗ ≤ 1 − 1
4(d−1)N2 +O

(
1
N3

)
[Ish15]

εsta ≤ 4d2
√
N

[BK11] F ∗ ≤ 1 − d2−1
8N2 +O

(
1
N3

)
[Chr+21]

F ≥ 1 − d2(d2−2)−1
d2(d2+N−1) Eq. (15) F ∗ ≤ K log(d)

d

(
2N + 2

3

)
[KPP19]

Prob. p = N
N−1+d2 [Stu+17] p∗ ≤ N

N−1+d2 [Pit13; Moz+18]

Table 3: Probability p and entanglement fidelity F (see Definition 2.1) of teleporting a qudit with N
ports for PBT.

2.4 Universal Programmable Quantum Processors
An interesting application of PBT is of Universal Programmable Quantum Processors
(UPQPs). We ideally want to build quantum computers as we do with the classical ones,
by building a universal processor independent of the data and programs that we insert,
only that now both these elements can be quantum states or unitary. Informally the task
is the following: Given a unitary, we are asked to apply it in an unknown state, but only
after losing access to the unitaries. Therefore, we want to find a way to store the unitary
in a quantum memory.

Definition 2.5 (UPQP). A channel P ∈ CPTP (HD⊗HM ) is a d-dimensional Universal
Programmable Quantum Processor if for every unitary U ∈ U(HD), there exists a unit
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Upper bounds Lower bounds

Error dep.
(

1
ε

)d2

[KPP19] d2

ε [Maj18](
1
ε

) d2−1
2 [YRC20]

(
1
ε

) d2−1
2 −α

, ∀α > 0 [YRC20]
Dimension dep. d2 log(1/ε) [KPP19] (1−ε)

12 d− 2
3 log(d) [KPP19]

log power (1−ε)
4 d if unitary processor

d2 log(1/ε)
2 [YRC20] d2 log(1/ε)

2 − β, ∀β > log(1/ε)
2 [YRC20]

Table 4: Performance of d-dimensional ε-UPQP in terms of memory dimension m.

vector |ϕU ⟩ ∈ D(HM ) such that

TrM [P(ρD ⊗ |ϕU ⟩⟨ϕU |M )] = UρDU
†, for all ρD ∈ D(HD). (16)

Along their introduction, Nielsen and Chuang [NC97] proved the impossibility of per-
fectly implementing UPQPs. The basic idea is that for every unitary we desire to apply,
there needs to be an orthogonal memory state, and since for any given dimension there
are infinitely many possible unitaries, we need an infinite dimensional memory space to
store them. However, the proof does not hold if we relax the previous definition; that
is, for approximate UPQPs, where we only want to implement the desired unitary with
approximate accuracy (or with certain probability of success).

Definition 2.6 (Approximate UPQP). A channel P ∈ CPTP (HD⊗HM ) is a d-dimensional
ε-Universal Programmable Quantum Processor, if for every unitary U ∈ U(HD) there ex-
ists a unit vector |ϕU ⟩ ∈ D(HM ) such that

1
2

∥∥∥TrM [P(· ⊗ |ϕU ⟩⟨ϕU |M )] − U(·)U †
∥∥∥

⋄
≤ ε. (17)

However, we cannot do much better for approximate UPQPs. Yang, Renner, and
Chiribella [YRC20] showed tight upper and lower bounds for the memory dimension that
both blows up inverse polynomially with small error ε, and exponentially when increasing
the dimension of the input state d, closing a long-lasting open question. We include the
known results between resource trade-offs (as far as we are aware) in Table 4.

3 Port-Based State Preparation
Here we introduce a classical-quantum hybrid communication task where Alice holds a
complete classical description of a quantum state, and her goal is for Bob to end up with
the quantum state whose description she holds in one of his ports. In order to achieve this,
both parties share a finite amount of entangled resources, Alice performs a measurement
on her part of the shared resources and Bob’s actions are restricted to tracing out his side
of the resources, or ‘ports’. We call this Port-Based State Preparation (PBSP).

In a way, the task is a hybrid between Remote State Preparation (RSP) tasks introduced
in the seminal paper by Bennett, DiVicenzo, Shor, Smolin, Terhal, and Wootters [Ben+01],
and Port-Based Teleportation. Recall that RSP achieves asymptotic rates of one qubit
transmission per bit by allowing Bob to perform any operation on his side, and we are
interested in knowing what happens if we restrict Bob to covariant classical operations, as
in the case of PBT.
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∣∣∣ϕ+
d

〉
...∣∣∣ϕ+
d

〉

M

ψd

TrBx

x ∈ {0, 1}∗

= |ψd⟩

Alice

Bob

Figure 1: Port-Based State Preparation protocol.

We can distinguish between probabilistic and deterministic PBSP tasks. Assuming
that both parties share N entangled states, in probabilistic PBSP (Protocol 3), Alice’s
measurement has N + 1 possible outcomes; one per port, after which Bob’s register will
be exactly in the desired state, and one for the failure probability. Naturally we use the
protocol’s success probability as an accuracy measure.

Protocol 3 (d,N, p) Probabilistic Port-Based State Preparation.
Setting. Both Alice and Bob each have N qudits in A1, A2, . . . , AN and B1, B2, . . . , BN
respectively, which are denoted by A and B as a whole. They share an arbitrary entangled
resource in AB. There is a single round of classical communication from Alice to Bob.
Bob’s correction operations are restricted to tracing out registers.
Inputs. Alice receives the classical description of a d-dimensional quantum state.
Goal. Alice’s input state to be prepared in an arbitrary output port of Bob, with proba-
bility of success p.
The protocol:

1: Alice performs a N + 1 outcome POVM measurement on her half of the N shared
resource states, which can depend on the classical description of her state.

2: Alice communicates either a port x ∈ [N ] or abort x = 0 to Bob with log(N + 1) bits
of classical communication.

3: If x = 0 Bob aborts. Else he traces out all but register Bx.

In deterministic PBSP (Protocol 4), Alice’s measurement has N possible outcomes, one
per port, but in this case it is impossible for Bob’s register after tracing out to be exactly
Alice’s intended state for all the inputs. In this case, we use the fidelity of the outcome
state with respect to the input as a measure of success of the protocol.

Remark 3.1. Conventional channel fidelity definitions consider purifications of a given
state with respect to a reference space and apply the channel to half of it, as is the case
in Definitions 2.1 and 2.2. Nevertheless the input of our PBSP protocol is a classical
description of the state we intend to send, thus it is not clear what it would mean to apply
our classical-to-quantum map to half of it. We could instead consider average fidelity as a
figure of merit, see Definition 2.3, this is

f(Φ) :=
∫
ψ

⟨ψ| Φ(ψ) |ψ⟩ dψ. (18)
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However, this integral is not necessarily well defined. Instead, we define the worst-case
fidelity of a classical-to-quantum map as

Fwc(Φ) := inf
|ψ⟩∈H

F (Φ(ψ), |ψ⟩). (19)

Intuitively the covariance-like property of PBSP makes the worst-case fidelity compara-
ble to average fidelity. Clearly, Fwc(Φ) ≤ f(Φ). Moreover, given a map Φ : {0, 1}∗ → Hd,
there exists a map Φ̂ : {0, 1}∗ → Hd such that Fwc(Φ̂) ≥ f(Φ). For example, we can define
the map Φ̂ by Alice and Bob first agreeing to a random d-dimensional unitary U ∼ µd
sampled with respect to the Haar-measure, then performing the protocol ψ 7→ Φ(UψU †),
and finally Bob uncomputing the unitary U . The new protocol has the desired fidelity

Fwc(Φ̂) = inf
|ψ⟩∈Hd

∫
U

⟨ψ|U †Φ(UψU †)U |ψ⟩ dU = inf
|ψ⟩∈Hd

∫
ϕ

⟨ϕ| Φ(ϕ) |ϕ⟩ dϕ = f(Φ). (20)

We stress again that this is only an intuitive check to justify the use of the worst-case
fidelity as a figure of merit, but the above integrals over classical-to-quantum maps are not
well defined.

Protocol 4 (d,N, F ) Deterministic Port-Based State Preparation.
Setting. Both Alice and Bob each have N qudits in A1, A2, . . . , AN and B1, B2, . . . , BN
respectively, which are denoted by A and B as a whole. They share an arbitrary entangled
resource in AB. There is a single round of classical communication from Alice to Bob.
Bob’s correction operations are restricted to tracing out registers.
Inputs. Alice receives the classical description of a d-dimensional quantum state.
Goal. Alice’s input state to be prepared in an arbitrary output port of Bob, with fidelity
F .
The protocol:

1: Alice performs a N outcome POVM measurement on her half of the N shared resource
states, which can depend on the classical description of her state.

2: Alice always communicates a port x ∈ [N ] to Bob with log(N) bits of classical com-
munication.

3: Bob traces out all but register Bx.

As mentioned earlier, Alice holding the complete classical description of the desired
state allows her to construct a measurement that depends on it. In particular, this allows
her to perform independent measurement operations in each port, which turns out to
be enough to obtain a probability of success that exponentially increases in terms of the
number of ports. Intuitively, this is equivalent to independent coin tossing, something that
we are not allowed in the original Port-Based Teleportation tasks.

Theorem 3.1. There exists a (d,N, p) probabilistic PBSP protocol with probability of
success

p = 1 −
(

1 − 1
d

)N
. (21)

Proof. Let us assume that Alice and Bob share N independent maximally entangled qu-
dits as a resource. Given a description of a d-dimensional state |ψ⟩, denoted ψ, Alice’s
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measurement will consist of checking if the state is in any port. This can be done by just
projecting to the conjugate |ψ∗⟩, because for every register i ∈ [N ] we have

TrAi

[
(|ψ∗⟩⟨ψ∗|Ai

⊗ IBi)
∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]
= 1
d

|ψ⟩⟨ψ|Bi
, (22)

TrAi

[
((I − |ψ∗⟩⟨ψ∗|Ai

) ⊗ IBi)
∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]
= 1
d

(I − |ψ⟩⟨ψ|)Bi . (23)

Alice’s partial measurement can be normalized to obtain the POVM M = {Mx(ψ)}Nx=0
with elements

M0(ψ) :=
N⊗
i=1

(I − |ψ∗⟩⟨ψ∗|)Ai ,

Mx(ψ) :=
∑
S⊆[N ]
s.t.x∈S

 1
|S|

⊗
i∈S

|ψ∗⟩⟨ψ∗|Ai
⊗
⊗
i ̸∈S

(I − |ψ∗⟩⟨ψ∗|)Ai

 , for x ∈ [N ].
(24)

Outcome x = 0 means that the state has not been found in any port, and thus the protocol
has failed. After any other outcome x ∈ [N ], Bob’s system in register Bx will be in the
desired state

ρBx =
TrABx̄

[
Mx(ψ)

⊗N
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]
Tr
[
Mx(ψ)

⊗N
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]
= dTrAx

[
(|ψ∗⟩⟨ψ∗|Ax

⊗ IBx)
∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AxBx

]
= |ψ⟩⟨ψ|Bx

.

(25)

Given this measurement, the probability of success of the protocol can be calculated easily
as we have a closed expression for the failing measurement

p = 1 − Tr
[
M0(ψ)

N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]
= 1 −

(
1 − 1

d

)N
. (26)

We can always construct a deterministic PBSP protocol from a probabilistic PBSP by
just outputting a random port when a failure is measured. Although in the PBT protocol
this construction gives us a greater fidelity than the probability of success, see Equa-
tion (15), for the PBSP case this is not necessarily true. For example, in the measurement
we described above the extra bit is always orthogonal to the desired state, thus the deter-
ministic PBSP obtained from spreading the failure evenly among the ports leads to the
same channel fidelity as the probability of success of the probabilistic protocol described
in Theorem 3.1.

Theorem 3.2. There exists a (d,N, F ) deterministic PBSP protocol with channel fidelity

Fwc = 1 −
(

1 − 1
d

)N
. (27)
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Proof. Let us assume that Alice and Bob share N independent maximally entangled qu-
dits as a resource. Given a description of a d-dimensional state |ψ⟩, denoted ψ, Alice’s
measurement will consist of checking if the state is in any port via the measurements

M ′
x(ψ) = Mx(ψ) + 1

N

N⊗
i=1

(I − |ψ∗⟩⟨ψ∗|)Ai , for x ∈ [N ], (28)

where the Mx(ψ)’s are the same as in Equation (24). Any of the outcomes x ∈ [N ] will
now occur with equal probability

px = Tr
[
(M ′

x(ψ) ⊗ IB)
N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]

= 1
d

N−1∑
i=0

(N−1
i

)
i+ 1

(1
d

)i (
1 − 1

d

)(N−1)−i
+ 1
N

(
1 − 1

d

)N
,

(29)

and after outcome x ∈ [N ] the state in Bob’s register Bx will be

ρBx = 1
px

(
1
d

|ψ⟩⟨ψ|Bx

N−1∑
i=0

(N−1
i

)
i+ 1

(1
d

)i (
1 − 1

d

)(N−1)−i

+ 1
Nd

(I − |ψ⟩⟨ψ|)Bx

(
1 − 1

d

)N−1
)
. (30)

From the above expression we can see that for every input ψ the fidelity between the
outcome of the protocol Φ(ψ) and the desired state |ψ⟩ will be equivalent to the probability
of success p, as the latest term is orthogonal to |ψ⟩Bx

and thus will not contribute to the
overlap between the states. Formally,

F (Φ(ψ), |ψ⟩) =
N∑
x=1

px ⟨ψ|Bx
ρBx |ψ⟩Bx

= N

d

N−1∑
i=0

(N−1
i

)
i+ 1

(1
d

)i (
1 − 1

d

)(N−1)−i

= 1 −
(

1 − 1
d

)N
.

(31)

Note that the accuracy of PBSP scales exponentially in terms of the number of ports,
both for the probabilistic and the deterministic case. This contrasts the PBT case; where
the upper bound for both terms is linear in terms of number of ports. In other words,
having the classical description of the state gives the sender enough power to go from
linear to exponential accuracy in the number of ports; or that PBSP is a strictly easier
task to perform than PBT.

4 Universal Programmable Hybrid Processors
Quantum computers have the ability to perform arbitrary unitary operations in two-level
systems, i.e., we can decompose any unitary acting on qubits in gate arrays which can be
implemented using finite resources. Moreover, classical computers can perform arbitrary
operations on any input data with a fixed universal gate array, which can be programmed
to perform any operation on the input data. However, this was shown to be impossible
quantumly by Nielsen and Chuang [NC97]: the so-called no-programming theorem states
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that perfect universal quantum processors require an orthogonal state for each unitary
that we desire to perform, and since there are infinitely many unitaries acting on any
d-level system, we would need infinite-dimensional spaces to perform arbitrary unitaries
on quantum states. The relaxed scenario of approximate UPQPs has also attracted much
attention [HZB06; KPP19; Maj18], but a recent article by Yang, Chiribella and Ren-
ner [YRC20] closed the gap between the upper and lower bound on the memory dimension
m of a d-dimensional ε-approximate UPQP:

(1
ε

) d2−1
2

≥ m ≥
(1
ε

) d2−1
2 −α

, for all α > 0. (32)

In other words, the memory dimension scales with the dimension-square exponentially in
the error, which nearly saturates the upper bound in [KPP19] given by the ε-net of the
unitaries. Intuitively, it is as saying that the memory cannot do much better than pointing
to a unitary from the ε-net, which is in a way a classical operation.

Since for some applications the user of the quantum program might actually know which
state they would like to apply the (to them unknown) unitary to, we imagine an analogous
task to ε-UPQPs, where we want to program a universal gate array but to which we will
give a classical input and expect to perform an arbitrary unitary operation on the quantum
state the classical input specifies. The initial state of our classical-quantum system will be
of the form

(ψ, |ϕ⟩M ), (33)

where ψ will refer to the classical description of the d-dimensional quantum state |ψ⟩ we
want to perform the operation on, w.l.o.g. we assume it to be pure, and |ϕ⟩M is the state
of the m-dimensional program register. For any input, the processor P will then map this
system to

(ψ, |ϕ⟩M ) 7→ P(ψ, |ϕ⟩M ), (34)

and we say that the processor P implements a unitary U in the data register |ψ⟩D specified
by the classical input ψ if

TrM [P(ψ, |ϕ⟩M )] = U |ψ⟩⟨ψ|D U
†. (35)

Note that although the processor itself is not unitary, since it takes classical and quantum
data, we want Equation (35) to hold for any input state, thus it is not possible to just
encode all the information about the unitary desired in the classical data. Let us denote
by Pψ := P(ψ, ·) the universal gate array specified by classical input ψ.

As in the case of ε-UPQPs, we are interested in an approximate version of this processor.
We will call such a system a approximate universal programmable hybrid processor (ε-
UPHP) to refer to the classical-input quantum-output dynamics of the system explicitly.
We can also distinguish between probabilistic and deterministic ε-UPHPs, in analogy to
the different variants of port-based teleportation, but since every probabilistic processor
can be converted into a deterministic one, it is more common to treat the latter. We will
do the same here for the sake of simplicity.

Definition 4.1 (ε-UPHP). A family of channels P := {Pψ}ψ ⊂ CPTP (HM ,HD ⊗ HM )
is a d-dimensional ε-Universal Programmable Hybrid Processor, if for every unitary U ∈
U(HD) there exists a unit vector |ϕU ⟩ ∈ D(HM ) such that

1
2

∥∥∥TrM [Pψ(|ϕU ⟩⟨ϕU |M )] − U |ψ⟩⟨ψ|D U
†
∥∥∥

1
≤ ε for all input ψ, (36)

where ψ is the classical description of the d-dimensional quantum state |ψ⟩D ∈ D(HD).
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M
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U |ψd⟩

Input Processor (PBSP)

Output

Program state(
IA ⊗ UB

∣∣∣ϕ+
d

〉
AB

)⊗N

Figure 2: Construction of approximate UPHP from PBSP.

We describe the above accuracy parameter ε in terms of the trace norm, equivalent to
the average fidelity, because this one is easier to work with, and we want to draw a parallel
with the accuracy parameter in the diamond norm for the original UPQP. However, we
believe that the symmetric structure of this task analogous to PBT will allow us to show
that the optimal accuracy in terms of diamond norm will be equivalent to the one worst-
case fidelity and average fidelity as in [YRC20].

We now give an existence result by constructing a ε-UPHP from PBSP. The UPHP
constructed has a lower scaling of the memory dimension m in terms of the error ε and
the data dimension d, than the optimal scaling for ε-UPQPs. We obtain this by lifting the
exponential properties of PBSP, which once again shows that the former classical-quantum
task is easier to perform by the processor than the fully quantum one, because we are not
constrained by the no-programming theorem anymore.

Theorem 4.1. There exists a d-dimensional ε-UPHP, P := {Pψ}ψ ⊂ CPTP (Hm,Hd ⊗
Hm), with memory dimension

m ≤
(1
ε

)4d ln(d)
. (37)

Proof. Given a unitary U ∈ U(Hd), we can adapt the PBSP protocol from Theorem 3.2 to
transmit the state with the unitary applied to all ports instead, so that the ε-UPHP will be
a machine simulating the PBSP interaction between Alice and Bob, where Alice’s classical
PBSP input will be the one given to the processor, and the PBSP resource state shared
between Alice and Bob will be used as the program state of the processor. Therefore, by
using the Choi state of the unitary as a memory state, i.e. by using a PBSP protocol with
N copies of the state (IA ⊗ UB)

∣∣∣ϕ+
d

〉
AB

as a resource state, the measurements described
by Theorem 3.2 will output the unitary applied to the input state U |ψ⟩⟨ψ|U † with high
fidelity.

By the properties of the maximally entangled state, we have that by projecting the
unitary U applied to the maximally entangled state to the conjugate of the desired state
|ψ∗⟩, we obtain the unitary applied to the state with the same probability as projecting
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without the unitary. This holds because

TrAi

[
(|ψ∗⟩⟨ψ∗|Ai

⊗ IBi)(IAi ⊗ UBi)
∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

(IAi ⊗ U †
Bi

)
]

= 1
d
U |ψ⟩⟨ψ|Bi

U †

TrAi

[
((I − |ψ∗⟩⟨ψ∗|Ai

) ⊗ IBi)(IAi ⊗ UBi)
∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

(IAi ⊗ U †
Bi

)
]

= 1
d
U(I − |ψ⟩⟨ψ|)BiU

†

(38)

Therefore, when Alice makes the measurements {Mx(ψ)}Nx=1 as in Equation (24), the
probability of success of port x ∈ [N ] will be the same as the original PBSP Equation (29),
but the outcome state will now have the unitary applied to it

ρBx = 1
px

(
1
d
U |ψ⟩⟨ψ|Bx

U †
N−1∑
i=0

(N−1
i

)
i+ 1

(1
d

)i (
1 − 1

d

)(N−1)−i

+ 1
Nd

U(I − |ψ⟩⟨ψ|)BxU
†
(

1 − 1
d

)N−1
)
. (39)

Finally, the outcome fidelity between the protocol ΦU (ψ) and the unitary applied to the
system U |ψ⟩ will be

F (ΦU (ψ), U |ψ⟩) =
N∑
x=1

px ⟨ψ|Bx
U †ρBxU |ψ⟩Bx

= N

d

N−1∑
i=0

(N−1
i

)
i+ 1

(1
d

)i (
1 − 1

d

)(N−1)−i

= 1 −
(

1 − 1
d

)N
.

(40)

We have thus constructed a processor P such that for every unitary U ∈ U(HD), there
exists a memory state

|ϕU ⟩M := (IA ⊗ UB)
N⊗
i=1

∣∣∣ϕ+
d

〉
AiBi

, (41)

for which

F (TrM [Pψ(|ϕU ⟩M )] , U |ψ⟩D) = F (ΦU (ψ), U |ψ⟩) = 1 −
(

1 − 1
d

)N
, (42)

for all inputs ψ. The dimension of the memory m of the ε-UPHP is the dimension of
the maximally mixed state d2 to the power of the number of ports N needed m := d2N .
Therefore, if the number of ports is chosen such that N ≥ d ln

(
1/ε2), from the properties

of the exponential function and the Fuchs–van de Graaf inequality Equation (9), we obtain

1
2

∥∥∥ΦU (ψ) − U |ψ⟩⟨ψ|U †
∥∥∥

1
≤
√

1 − F (ΦU (ψ), U |ψ⟩) ≤
(

1 − 1
d

)d ln(1/ε2)
2

≤ e
ln(ε2)

2 = ε

(43)
which means that in order to obtain a processor with accuracy ε, it is enough for the
memory to be of dimension

m ≤
(1
ε

)4d ln(d)
. (44)
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5 Achievable optimality of the tasks
The existence results of the previous chapters show that having a classical description of a
quantum state substantially increases the power of teleportation and processing tasks. In
this section, we complement these with bounds on the optimality achievable by Port-Based
State Preparation and Universal Programmable Hybrid Processors.

5.1 Approximate UPHP
As we saw previously, an approximate UPHP is a quantum machine that, given a descrip-
tion of a quantum state, outputs a quantum state to which a unitary of choice is applied.
In a way, ε-UPHPs are encoding the functionality of the unitary in a quantum memory
state, but this should intuitively also involve encoding at least some classical information
into this quantum state.

We formalize this intuition in the following theorem, where we show the hardness of
ε-UPHP though the hardness of Quantum Random Access Codes. That is, we show that
UPHPs can be used as QRACs, which are limited by Nayak’s bound, Theorem 2.1.

Theorem 5.1. For any d-dimensional ε-UPHP, P := {Pψ}ψ ⊂ CPTP (Hm,Hd ⊗ Hm),
the memory dimension must be at least

m ≥ 2
d
2 (1−h(2ε)). (45)

Proof. Given a (d,m, ε)-UPHP we can construct a (d/2, log(m), 1 − 2ε)-QRAC. Let us
consider an arbitrary d/2 bit-string f ∈ {0, 1}d/2 where each bit f(x) is indexed by the
bit-string x ∈ {0, 1}log(d)−1. we can equivalently see this as a description of a Boolean
function f : {0, 1}log(d)−1 → {0, 1}.

We can compress this Boolean function into a log(m)-dimension Hilbert space using
the (d,m, ε)-UPHP. That is, note that every Boolean function f can be computed by a
unitary

Uf : |x⟩1 ⊗ |y⟩2 7→ |x⟩1 ⊗ |y ⊕ f(x)⟩2 , with y ∈ {0, 1}, (46)

where the unitary associated with the Boolean functions of input size log(d) − 1 can be
hosted in dimension d.

Now from the ε-UPHP assumption in Equation (35), given Uf ∈ U(Hd/2) there exists
a memory state |ϕf ⟩ ∈ HM such that the processor P := {Pψ}ψ ⊂ CPTP (HM ,HM ⊗HD)
approximates the desired unitary

1
2

∥∥∥TrM
[
Px(|ϕf ⟩⟨ϕf |M )

]
− Uf (|x⟩⟨x| ⊗ |0⟩⟨0|)U †

f

∥∥∥
1

≤ ε. (47)

Now consider the channel consisting of applying Px, tracing out the parts we do not
need, and then applying a measurement in the standard basis. Via a standard argument,
we can write this procedure as a single measurement which we call M0

x and M1
x . The

exact form can be derived e.g. through writing out the Kraus operators. In particular,
if define Kx

k to be the Kraus operators of the channel P and subsequent partial trace,
we have that Tr1,M [Px(·)] =

∑
kK

x
kρ(Kx

k )†. Now define the set of d/2 measurements
{M0

x ,M
1
x}x∈{0,1}log(d)−1 :

My
x :=

∑
k

(Kx
k )† |y⟩⟨y|Kx

k , for y ∈ {0, 1}. (48)
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We can verify that for these measurements it holds that

Tr[My
xρ] = Tr

[∑
k

(Kx
k )† |y⟩⟨y|Kx

kρ

]
= Tr

[
|y⟩⟨y|

∑
k

Kx
kρ(Kx

k )†
]

= Tr[|y⟩⟨y| Tr1,M [Px(ρ)]],

(49)
as desired.

We can use these as the set of measurements of a (d/2, log(m), 1 − 2ε)-QRAC, because
the probability of correctly guessing the bit f(x) of the bit-string f is at least

Tr
[
Mf(x)
x |ϕf ⟩⟨ϕf |

]
= Tr[|f(x)⟩⟨f(x)| − |f(x)⟩⟨f(x)|] + Tr

[
Mf(x)
x |ϕf ⟩⟨ϕf |

]
= 1 − Tr[|f(x)⟩⟨f(x)| − Tr1[(I1 ⊗ |f(x)⟩⟨f(x)|2) TrM [Px(|ϕf ⟩⟨ϕf |)]]]
≥ 1 − ∥|f(x)⟩⟨f(x)| − Tr1[(I1 ⊗ |f(x)⟩⟨f(x)|2) TrM [Px(|ϕf ⟩⟨ϕf |)]]∥1
≥ 1 − 2ε,

(50)

where in the last line we used the data processing inequality for the trace distance.
Finally, from Nayak’s bound, Theorem 2.1, we know that, even when allowing some

error, we cannot compress bits into less qubits, which leads to the desired bound

log(m) ≥ d

2(1 − h(2ε)), (51)

where h refers to the binary entropy function.

We remark that this bound (which of course also applies to ε-UPQP, besides ε-UPHP)
is tighter than the bound in [KPP19], that was proven in the context of ε-UPQPs. We also
want to point out that we were not able to reproduce the impossibility results blowing-up
with the error tending to zero present in the UPQP literature [HZB06; Maj18; Pér06].
These results seem to rely on the spectral decomposition of the processor, but the fact
that we now have infinite copies of the input state makes it impossible to exploit the
uniqueness of the spectral decomposition. In fact, it is not even clear to us how to prove
the no-programming theorem as in [NC97] for the zero-error UPHP case.

5.2 PBSP
In the following, we give two bounds on the limitations of Port-Based State Preparation.
The first bound follows from the achievable optimality of Universal Programmable Hybrid
Processors, recall that the construction of PBSP from Theorem 4.1 relied on UPHPs. The
second bound follows from a non-signaling argument.

Theorem 5.2. The optimal fidelity achievable by a (d,N, F ∗)-Deterministic Port-Based
State Preparation protocol with N independent resource states is upper bounded by

1 − h(
√

1 − F ∗) ≤ 4N log(d)
d

. (52)

Proof. Recall that we saw in Theorem 4.1 how to use a (d,N, F = 1 − ε2)-PBSP to
construct a d-dimensional ε-UPHP with memory dimension m = d2N . Moreover, by The-
orem 5.1 the dimension of the program register of d-dimensional ε-UPHP is lower bounded
by

d2N ≥ 2
d
2 (1−h(2ε)). (53)
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Figure 3: Non-signalling times t1 before Alice’s measurement and t2 after Alice’s measurement.

Substituting ε = (
√

1 − F )/2, we obtain the desired bound

1 − h
(√

1 − F
)

≤ 4N log(d)
d

. (54)

For the non-signaling argument, the idea is for Bob to make a measurement on his
half of the shared resources, and to compare the outcome before and after Alice makes a
measurement, without any communication. Note that the following bounds explicitly use
the fact that the resource states are maximally entangled states.

Theorem 5.3. The optimal probability achievable by a (d,N, p∗)-Probabilistic Port-Based
State Preparation protocol with N maximally entangled resource states is upper bounded
by

p∗
EPR ≤ 1 −

(
1 − 1

d

)N
. (55)

Proof. Imagine that Alice wishes to execute a PBSP protocol to transport an arbitrary
d-dimensional state |ψ⟩, that for the sake of the argument is also known to Bob.

Imagine that Bob measures all his halfs of the N maximally mixed states to see if they
are in the state |ψ⟩⟨ψ| or I − |ψ⟩⟨ψ|, for example by using the POVM M′ = {M⊤,M⊥},
with

M⊥(ψ) =
N⊗
i=1

(I − |ψ⟩⟨ψ|)Bi and M⊤ = I −M⊥. (56)

We will compare Bob’s outcome before and after Alice does any measurement. Before
Alice does any measurement, see time t1 in Figure 3, observe because |ψ⟩ is random, any
specific port will have probability 1

d to see |ψ⟩. Therefore, because the resource state is a
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product state of identical ports, the probability of seeing |ψ⟩ in some port is

pt1success = 1 − Tr
[
(IA ⊗M⊥)

N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]

= 1 −
N∏
i=1

Tr
[
(IAi ⊗ (I − |ψ⟩⟨ψ|)Bi)

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]

= 1 −
(

1 − 1
d

)N
.

(57)

Let M = {M0,M1, . . . ,MN} be Alice’s POVM, outcome x ∈ [N ] refers to the state
being in port Bx, and outcome x = 0 refers to the protocol failing. After Alice does her
measurement, see time t2 in Figure 3, if the probabilistic PBSP went correctly, a port
Bx would exist containing |ψ⟩. Therefore, the probability that Bob sees any port with
the teleported state has to be at least p∗

EPR by correctness of the protocol. Formally, the
probability of Bob seeing |ψ⟩ in some port is

pt2success = Tr
[
(IA ⊗M⊤)

N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]

= Tr
[
(M0 ⊗M⊤)

N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]
+ Tr

[(
N∑
x=1

Mx ⊗M⊤

)
N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]

= Tr
[
(M0 ⊗M⊤)

N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]
+ p∗

EPR.

(58)

By non-signalling, the probabilities of some event happening on Bob’s side (if no com-
munication is involved) is identical before and after Alice’s measurement. So by equating
the probabilities of the event at time t1 and t2 we obtain the desired bound

1 −
(

1 − 1
d

)N
= pt1success = pt2success ≥ p∗

EPR. (59)

The same argument can be applied for deterministic PBSP, where the analogous non-
signalling theorem for fidelity tells us that the entanglement fidelity of a protocol cannot
increase if no communication happens between the parties. We will only include a sketch
of the proof.

Theorem 5.4. The optimal fidelity achievable by a (d,N, F ∗)-Deterministic Port-Based
State Preparation protocol with N maximally entangled resource states is upper bounded
by

F ∗
EPR ≤ 1 −

(
1 − 1

d

)N
. (60)

Proof. We will compare Bob’s outcome when performing the measurement Equation (56)
before and after Alice does the optimal measurement. Before Alice performs any measure-
ment, see time t1 in Figure 3, the probability of seeing |ψ⟩ in some port is

pt1success = 1 −
(

1 − 1
d

)N
. (61)
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We can bound the probability of projecting into a tensor product
⊗N

i=1(I − |ψ⟩⟨ψ|)Bi

by the minimum of all the marginal projections, which gives us an upper bound for the
probability of failure in terms of individual registers

pt1failure = 1 − pt1success

= Tr
[(
IA ⊗

N⊗
i=1

(I − |ψ⟩⟨ψ|)Bi

)
N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]

≤ min
x∈[N ]

Tr
[(
IABx̄ ⊗ (I − |ψ⟩⟨ψ|)Bx

) N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]

= min
x∈[N ]

(I − |ψ⟩⟨ψ|)Bx TrABx̄

[
N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]
(62)

Let M = {M1, . . . ,MN} be Alice’s POVM, outcome x ∈ [N ] refers to the state being
in port Bx. By non-signalling a measurement on Alice’s side without communicating the
outcomes to Bob cannot change his perspective of the state, this is, for every x ∈ [N ]:

∑
i∈[N ]

TrABx̄

[
(Mi(ψ) ⊗ IB)

N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]
= TrABx̄

[
N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]
. (63)

Therefore we can rewrite the upper bound on the probability of failure as

pt1failure = min
x∈[N ]

∑
i∈[N ]

(I − |ψ⟩⟨ψ|)Bx TrABx̄

[
(Mi(ψ) ⊗ IB)

N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]

≤
∑
x∈[N ]

(I − |ψ⟩⟨ψ|)Bx TrABx̄

[
(Mx(ψ) ⊗ IB)

N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]
.

(64)

Note that by the correctness of the protocol, this value is related to the fidelity in the
desired way

1 − F ∗
EPR = 1 −

∑
x∈[N ]

⟨ψ|Bx
TrABx̄

[
(Mx(ψ) ⊗ IB)

N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]
|ψ⟩Bx

=
∑
x∈[N ]

px − Tr
[
|ψ⟩⟨ψ|Bx

TrABx̄

[
(Mx(ψ) ⊗ IB)

N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]]

=
∑
x∈[N ]

Tr
[
(I − |ψ⟩⟨ψ|)Bx TrABx̄

[
(Mx(ψ) ⊗ IB)

N⊗
i=1

∣∣∣ϕ+
d

〉〈
ϕ+
d

∣∣∣
AiBi

]]
.

(65)
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